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Date of Degree: MAY, 2015

Title of Study: IMPROVING NAVIGATION THROUGH COOPERATION AND PATH PLAN-
NING

Major Field: MECHANICAL AND AEROSPACE ENGINEERING

Abstract: In this thesis, the problem of two autonomous vehicles traveling in a two dimensional
environment from an initial location to a predefined goal location without any absolute position
reference is considered. The objective of the research is to study the effect of cooperation between the
vehicles by considering the measurements such as relative range to help in improving the navigation
state estimation and its effect on the observability of the system. Without the aid of an absolute
position reference such as Global Positioning System (GPS) the navigation solution of the system
will drift with time, since it can be shown that the state estimation problem is unobservable. The
idea here is to reduce the navigation solution drift of the system with cooperation between the
agents using measured relative information and to study its effect on the observability of the system
while taking different paths. Various simulations are performed to compare the performance of the
vehicles using different techniques to generate the trajectories. Simulations and theoretical results
show that relative motion between the agents helps reduce the navigation drift of the agents when
there is no absolute position reference.
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CHAPTER 1

Introduction
Recent advancements in Unmanned Aerial Vehicles (UAV), especially Miniature Air Vehicles (MAV)

technology, has made it possible to substitute human pilots to keep them out of dangerous aerial

situations. A system of multiple UAVs can accomplish tasks which are a combination of several

subtasks and can help improve coverage and robustness in performing such operations as compared

to deploying a single UAV, whose capability is limited. These vehicles find use in a vast number

of applications. They can be used in defense applications like using multiple MAVs for searching

a particular area [2], search and rescue, disaster management, covert military missions, hazardous

search, rescue operations and a variety of civil applications such as aerial photography and firefighting

operations.

Navigation is vital for all manned or unmanned air missions. Without precise navigation it is not

possible to accomplish many of the above mentioned tasks. Most navigation systems for UAV state

estimation typically consist of an Inertial Measurement Unit (IMU) and a position sensor. They rely

on fusing inertial information from accelerometers and gyroscopes with absolute position information

from a position sensor. The resulting navigation system, often referred as an Inertial Navigation

System (INS), are known to provide excellent estimates of vehicle states despite potential sensor

biases and misalignment errors (see e.g. [3]). In the process of obtaining position estimates from

the IMU, any errors in measurement are accumulated from point to point which leads to significant

drift over time [4] and the position sensor is used to bound this drift. Due to its low cost and

ease of availability, GPS is one of the most common absolute position sensors used. Hence, several

GPS based INS solutions have been emerging [5]. However, adversarial effects from the external

environment such as sky occlusion, GPS jamming, or internal effects such as hardware failure may

inhibit the use of GPS. Navigation in such cases where GPS is denied is a challenging problem.

This problem is further exacerbated when we have a group of autonomous, collaborating vehicles.

As a result, several authors have explored relative INS that leverage locally visible features. The
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Figure 1.1: Groups of airplanes moving in a formation [1] found at

navigation accuracy is increased using various sensors along with the INS [6, 7] in the case of a

single vehicle. Most of this work has focused on the single agent case; yet, potential improvement

in the quality of the navigation solution and robustness to GPS or local-feature visibility loss could

be better tolerated when multiple agents collaborate [8].

Even though biological aerial systems like birds, flying insects, etc. cannot use GPS, they are

capable of navigating in their environment. With this as an inspiration to the natural world Soloviev

et al. did some work on the integration of inertial, visual, and compass information to aid in

navigation for the GPS denied environments [9]. Most of the biological systems execute their

navigation in groups, such as flocks of birds, colonies of ants, etc. Likewise, groups of airplanes

flying in formations such as V-formation is shown in figure 1.1. Inspired by these biological systems,

cooperative control in autonomous systems has become an active research area [10, 11]. Though

these biological systems do not have luxury of using GPS or an absolute reference in the environment,

they may be using cooperative behaviors to improve their navigation missions. Inspired by this, in

this research, path planning and control strategies are investigated that optimize the navigation

performance of a group of cooperating agents in the absence of absolute position reference. For

example, Sharma and Taylor’s work [8] indicates that a cooperative INS can improve state estimates.

However, they, and others who have considered this problem, have not analyzed how relative motion

between agents affects cooperative navigation. Specifically, we are concerned with the problem

where the agents must travel from a known initial location to a predefined goal location without

the benefit of an absolute position reference. Furthermore, the agents should reach the goal location

2
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as accurately as possible under suitable time constraints. Without an absolute position reference,

the navigation solution of the group could eventually drift over time. The path taken by each

vehicle has an effect on how quickly the navigation solution drifts. Furthermore, any easily available

additional relative measurements, such as relative range or relative velocity, fundamentally affect

the observability of the problem. Observability analysis of linear time-varying systems is discussed

in [12, 13] and this was used to study the GPS-aided INS for some specific maneuvers in [14].

In this research, the hypothesis is that the relative motion between the agents helps improve

the navigation state estimation to reduce the drift, in the absence of an absolute position reference.

This is tested by performing an observability analysis to show the effect of the path taken by each

vehicle on the observability of the system. Simulations are run to demonstrate the observability

analysis on several trajectory types. Here, a simplified version of the cooperative navigation analysis

is presented by considering the problem in a one-dimensional environment and extended to two

dimensions. In this research, the problem of path planning for vehicles with the help of relative

motion between them is illustrated on two Dubins models with a measured relative range between

said models, since the Dubins models can serve as an approximation of the UAV models in 2D. The

Dubins model was first introduced by Lester Dubins in his paper in 1957 [15]. The Dubins model

considers a nonholonomic ground vehicle which can only move forward, with a constant speed and

constraints on the turn rate.

The various trajectory types that are considered in this research include straight line paths with

zero heading angle for both the vehicles, straight line paths with different but constant heading

angles for both the vehicles, sinusoidal trajectories where the vehicles move with in phase, out of

phase, and different frequencies. Sampling based path planning algorithms are also demonstrated

in this research. Rapidly-Exploring Random Trees (RRT) is a randomized data structure algorithm

in the area of path planning designed for problems with nonholonomic constraints [16]. In RRT,

the points are sampled randomly from the state space and the algorithm is written to connect these

points to reach the goal location. RRT, Iterative sampling with RRT and RRT with cost function

included for the selection of points in the graph are the sampling based algorithms used in this thesis

to develop path planning for the vehicles. The comparison of mean square error in the final position

estimation is done over 1000 Monte Carlo runs for each trajectory type considered in here. The

straight line paths and sinusoidal paths can serve as an approximation for several other paths like

polygonal path approximated by multiple straight line segments, circular paths approximated by

sinusoidals, etc. The simulation results and E-Uniform observability analysis on these paths show

that the navigation state estimation error is significantly less when the vehicles travel along sinusoidal
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trajectories especially with different frequencies from each other and with out of phase than any other

trajectory type. Some of the trajectory types we have not considered include complex polynomial

trajectories, completely random trajectories, etc. but, they can be considered for future work. The

goals here are to gain a fundamental understanding into the observability of the cooperative INS

and leverage this understanding to develop path planning and control strategies that minimize or

nearly minimize the drift of the estimated values from the true position values in the absence of

an absolute position reference. The observability analysis and the simulations results shown in this

research show that the relative motion between the agents has an effect on the navigation state

estimation and the drift in the position estimation can be reduced by certain relative motion of the

agents while tracking different paths.
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CHAPTER 2

Literature Review
Relative navigation using locally visible features has been extensively studied (see e.g. [17, 18, 19]) in

the multi-agent case. Two quadrotor helicopter systems which are capable of autonomous navigation

in unknown environments using only the sensors without any prior map are developed in [17]. In

[19] a new motion planning approach was presented to optimize a particular task for the robot

motion planning. In all of these works navigation was done using locally visible features and did

not concentrate on the scenarios where there is no absolute position reference. In [20], a framework

was presented to improve the localization and mapping performance for a single UAV working in an

unknown terrain in the absence of GPS. In this work the navigation of the agent is done using the

Simultaneous Localization and Mapping technique (SLAM). They showed that the circular, S-shaped

maneuvers and the combination of both improve the navigation state estimation performance than

the straight line and steady level paths. An observability analysis of the inertial SLAM algorithm

for path planning is also presented. Furthermore, in [21] it is also shown that an optimal path width

can be achieved by generating zigzagged trajectories from an initial known goal location towards

the final known goal location without direct position measurements. In both of these works, an

optimal path in the absence of GPS was not found. In [22], a sequential Monte Carlo optimization

technique was used to obtain more accurate position estimates between two known positions taking

the help of landmarks, but a guaranteed global optimal trajectory was not found. Also, these

works did not consider the benefit of cooperation nor the design of motion planning for improving

observability in the absence of GPS. To reduce the drift and improve the navigation accuracy, fixed

radio beacons and onboard vision sensors were considered [23, 24, 25, 26], but these techniques

depend on the conducive environmental conditions. In [27] a cooperative localization technique is

developed with various sensors and communication ranges, but with the help of external landmarks

for the navigation of the robots. Using sensors to provide relative observations between two robots

and observability analysis done for different relative observations show that the relative bearing is
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the best observation for the robots [28]. All these works indicated the benefits of cooperation,

however they did not analyze how relative motion between agents affects cooperative navigation.

The problem of motion planning and control has been considered in the context of relative nav-

igation and target tracking by several authors [29, 30, 31, 32, 33]. Bishop et al. showed several

necessary and sufficient conditions on the sensor target geometry to improve the localization perfor-

mance by reducing the estimation uncertainty [29]. In [30], requirements on the angular separation

of the sensors have been shown to achieve the best localization performance. In the presence of un-

certainties using the sensors for vision, an algorithm for path planning which improves the navigation

and mapping accuracy was presented in [32]. Trajectory planning was improved for autonomous

robots using a framework developed in [33] for the information gathering tasks. Furthermore, Fox

et al. have considered active localization approaches which take into account the ability of a mobile

platform to position itself to acquire better measurements [34]. However, most of these works have

not considered the benefits of cooperation among the vehicles to study the estimation performance

of the system.

The observability of inertial navigation systems in the single agent case has also been studied

[35, 36]. The problem is nonlinear and hence the trajectories of the system affect the observability.

The problem of inconsistency of the state estimator in the SLAM technique is studied using the ob-

servability analysis [37] and an algorithm is presented to improve the estimator’s consistency during

SLAM. For multi-agent case, Sharma and Taylor have provided preliminary results on observability

[8], however, their analysis did not consider the effect of vehicle’s motion on the observability of the

system. Observability and control of multi-agent networks has also been studied in the networked

systems literature for estimating states of all of the agents in the network when only the states of a

subset of agents are available for measurements (e.g. see [38, 39, 40, 41]). Also, the observability

of multiple robots localizing themselves with the position of other robots taken into consideration

as reference [42]. Sharma et al. showed the observability properties of the system for cooperative

localization and some conditions on the connection of the robots that improve the observability of

the system using bearings only cooperative localization [43]. In [44] the localization accuracy was

improved for a group of unmanned vehicles performing cooperative localization in a GPS-denied

environment based on the observability conditions obtained in [43]. Using the bearing-only coopera-

tive localization an observability based path planning algorithm for the reduction in the uncertainty

of state estimation was presented [45]. Sharma and Taylor in [8] proposed a cooperative INS that

was partially decentralized. They showed that by exchanging the relative measurements between

the vehicles and fusing the exchanged data with Extended Kalman Filter the estimation drift can be
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constrained in the absence of GPS. In a GPS-denied environment, using the position and yaw states

with the Extended Kalman Filter a relative navigation capability was provided in [46]. However in

all of these works Sharma et al. have not considered the effect of the choice of vehicles’ trajectories

on the observability of the system. Here, in this thesis, linear analysis is shown to lend preliminary

insights into the problem and then extended the work to nonlinear analysis that couples the motion

of the vehicle with the observability. We argue that such an approach is mandated by the nonlin-

earities in the problem. In this thesis, the relative motion of the agents is taken into consideration

to see how it affects the observability of the system. The effect of each vehicle’s trajectory on the

accuracy of the navigation state estimation is studied and analyzed.

2.1 Contribution

Though cooperative navigation of UAVs has been discussed in the literature by lots of authors in the

absence of an absolute position reference, any work has not been done to study the relative motion

between the agents. The contributions of this thesis are summarized as follows:

• Simulations results are shown for various vehicle trajectories like the straight line, sinusoidal,

and sampling based techniques for the generation of the trajectory. The results show that the

error between the true position values and the estimated values from the Extended Kalman

Filter (EKF) is reduced significantly when the agents move in sinusoidal paths with different

frequencies from each other in the absence of an absolute position reference.

• E-Uniform observability analysis is performed to study the effect on the choice of vehicles

trajectories and relative motion between them on the observability of the system. From the

observability analysis, we can see that the path taken by each vehicle affects the observability

of the system and the space of unobservability (more details on this are given in section 3.3.1)

is lower for certain paths taken by the vehicles.
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CHAPTER 3

Problem Formulation
In this section the dynamic model of the vehicles is considered in 1D and 2D environments. First,

for better understanding of the problem the agents are considered in 1D. But the 1D case is linear

and it does not take into consideration the effect of trajectories on vehicles’ estimation performance

and the observability analysis. Hence the analysis is extended into 2D where the problem is non

linear. The state space representation, estimation of the states using EKF and the observability

analysis are shown for the Dubins model in 2D.

Figure 3.1 shows the general problem scenario where two agents have pre-defined initial locations

and desired goal locations. Both vehicles travel at a constant and equal speed and are required to

reach the goal locations in 140 seconds in the absence of an absolute position reference.
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Figure 3.1: General problem scenario

3.1 One-dimensional case with relative range and relative

velocity measurements

This section investigates the effect of vehicle trajectories on navigation performance for two vehicles

with and without relative range and relative velocity measurements in 1D. In the continuous time

model the system model is written in the following manner where x is the displacement, y is the

measurement of the vehicle, ẋ represents the speed of the vehicle and ẍ represents the turn rate

of the vehicle (subscript indicates the vehicle number). The control inputs are assumed to be the

accelerations of the vehicles, a1 and a2. Since in the real world the accelerometers are not perfect

we assume that they are corrupted by white Gaussian noise with a standard deviation of 0.01 units.

ẋ1

ẍ1

ẋ2

ẍ2


=



0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0





x1

ẋ1

x2

ẋ2


+



0 0

1 0

0 0

0 1


a1

a2

 (3.1)

The measurement equation may be written as follows, with the measurements being the relative

range and relative velocity between the vehicles.

 y1

y2

 =

1 0 −1 0

0 1 0 −1




x1

ẋ1

x2

ẋ2


(3.2)
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For a linear time continuous system of the following form

Ẋ = Ax+Bu (3.3)

Y = Cx+Du (3.4)

The observability matrix, O may be written as

O =



C

CA

CA2

...

CAn−1


(3.5)

where n is the number of states for the system shown in equation 3.3. The observability matrix for

the two vehicles moving in 1D whose state space representation is shown in equations 3.1 and 3.2

may be written as

O =



1 0 −1 0

0 1 0 −1

0 1 0 −1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



(3.6)

From the above observability matrix we can see the rank of the matrix is 2 which is less than n

e.g. 4, the number of states, thus the system is clearly unobservable which shows that without the

absolute position reference the position estimates of the vehicles will drift with time. Also, in the one

dimensional case the observability analysis does not take into consideration the effect of trajectories

on the vehicle’s estimation performance.
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Figure 3.2: Model of a Dubins car

3.2 Two-dimensional case with speed and heading rate mea-

surement

In this section, let us consider the problem of two agents navigating in a two dimensional environment

from one point to another, in particular we consider the agents as two Dubins models shown in

figure 3.2. Let x and y be the displacements of the Dubins model along the x and y coordinate axes

respectively. Also let V be the speed of the vehicle, θ be the heading angle of the vehicle, and ω be

the turn rate of the Dubin’s model.

The kinematic equations of motion for the Dubins model are as follows [47]:

ẋ = V cos(θ) (3.7)

ẏ = V sin(θ) (3.8)

θ̇ = ω (3.9)

The control inputs are assumed to be the velocity and turn rate. The control input matrix would

be:  u1

u2

 =

 V

ω

 (3.10)

The above equations are used for the state space formulation of the two agents in a two dimensional

world and the discrete time state space equations are used for the estimation of the states using the

extended Kalman filter.
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This section investigates the effect of vehicle trajectories on navigation performance for multiple

vehicles using inter-agent range and/or bearing measurements. First, let us consider a system

architecture with two Dubins cars and a centralized navigation filter in 2D. Also, let us assume that

the vehicles can measure their speed and angular rate using sensors such as wheel encoders. In

discrete time, the system model for the two Dubins cars with the control input as shown in equation

(3.1) can be written in the following manner, where x, y, and θ are the x-position, y-position, and

heading of a vehicle, v is the vehicle speed, ω is the vehicle turn rate, ∆t is the time-step (i.e. the

time between tk−1 and tk, the subscript indicates the vehicle number, the superscript indicates the

time index, and a tilde˜is used to indicate measured quantities).

xk =



xk1

yk1

θk1

xk2

yk2

θk2


=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





xk−1
1

yk−1
1

θk−1
1

xk−1
2

yk−1
2

θk−1
2


+



cos(θk−1
1 )∆t 0 0 0

sin(θk−1
1 )∆t 0 0 0

0 ∆t 0 0

0 0 cos(θk−1
2 )∆t 0

0 0 sin(θk−1
2 )∆t 0

0 0 0 ∆t





Ṽ k−1
1

ω̃k−1
1

Ṽ k−1
2

ω̃k−1
2



(3.11)

The measurement equation may be written as follows, where ρ is the inter-vehicle range and β

is the bearing of one vehicle with respect to another.


ρ̃k

β̃k1

β̃k2

 =


√

(xk2 − xk1)2 + (yk2 − yk1 )2

arctan
(
yk2−y

k
1

xk
2−xk

1

)
− θk1

arctan
(
yk1−y

k
2

xk
1−xk

2

)
− θk2

 (3.12)

3.2.1 Estimation

An Extended Kalman Filter (EKF) is used to estimate the states (position and orientation) of the

vehicles using input from speed and angular rate sensors, and inter-agent range and/or bearing

measurements. Proper filter design requires analyzing how errors in the states (related to the

estimation process) evolve over time. The followings are the equations used in the estimation process

of the Kalman filter.

δxk = δ(xk−1 + Vk−1 cos(θk−1)∆t)

= δx− V sθ∆tδθ + cθ∆tδv

(3.13)
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δyk = δ(yk−1 + Vk−1 sin(θk−1)∆t)

= δy + V cθ∆tδθ + sθ∆tδv

(3.14)

δθk = δ(θk−1 + ωk−1∆t)

= δθ + ∆tδω

(3.15)

We can write this in matrix form as
δxk

δyk

δθk

 =


1 0 −Ṽ k−1∆tsθk−1

0 1 Ṽ k−1∆tcθk−1

0 0 1



δxk−1

δyk−1

δθk−1

+


cθk−1∆t 0

sθk−1∆t 0

0 ∆t


wv
wω


δxk = Φδxk−1 + Γwk−1

(3.16)

Note that it is not actually necessary to estimate the state errors themselves, rather, this is used

to keep track of the covariance in the state estimates. Thus, the covariance matrix, P is propagated

as

Pk = ΦPk−1ΦT + Q (3.17)

where the process noise matrix, Q is given by

Q = ΓΣuΓ
T (3.18)

and

Σu =

σv2 0

0 σω
2

 (3.19)

where σ2
v and σ2

ω are the covariances in the velocity and turn rate respectively. Linearizing about

the current state estimate yields the following measurement matrix.

H =
∂h

∂x
|x=x̂ =


−∆x
ρ

−∆y
ρ 0 ∆x

ρ
∆y
ρ 0

∆y
ρ2

−∆x
ρ2 −1 −∆y

ρ2
∆x
ρ2 0

−∆y
ρ2

∆x
ρ2 0 ∆y

ρ2
−∆x
ρ2 −1

 (3.20)

In this case where only inter-agent range is measured, only the first row of H is used. Likewise, if

only relative bearings are measured, then only the last two rows are used.

3.2.2 Observability Analysis

To determine the observability of the system, the nonlinear observability rank criterion developed

by Hermann and Krener in [48] is used. Sharma et al. [43] used the observability analysis for the
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cooperation of MAVs using bearing-only measurements. The observability matrix, O for a nonlinear

system may be written as

O =


∇L0

fh

∇L1
fh

...

 (3.21)

Where the p-th Lie derivative is defined in a recursive manner as

Lpfh = ∇(Lp−1
f h) · f

L0h = h

We can build up the observability matrix in the following sequence.

∇L0h = ∇h = H

L1
fh = ∇(L0h)·f = H·x =


(−x1+x2)∆x+(−y1+y2)∆y

ρ

(−y1+y2)∆x+(x1−x2)∆y
ρ2 − θ1

(y1−y2)∆x+(−x1+x2)∆y
ρ2 − θ2

 =


(∆x)2+(∆y)2

ρ

(∆x)(∆y)−(∆x)(∆y)
ρ − θ1

−(∆x)(∆y)+(∆x)(∆y)
ρ − θ2

 =


ρ2

ρ

−θ1

−θ2

 =


ρ

−θ1

−θ2


Using the gradient of the range with respect to the state that was already written in (3.20), we can

immediately write.

∇L1
fh =


−∆x
ρ

−∆y
ρ 0 ∆x

ρ
∆y
ρ 0

0 0 −1 0 0 0

0 0 0 0 0 −1



L2
fh = ∇(L1

fh) · f = ∇(L1
fh) · x =


ρ

−θ1

−θ2


Now, it is obvious that

∇Lpfh =


−∆x
ρ

−∆y
ρ 0 ∆x

ρ
∆y
ρ 0

0 0 −1 0 0 0

0 0 0 0 0 −1

 ∀p ≥ 1

Thus, we don’t need to include any terms with Lie derivative order higher than one in our observ-

ability matrix since they will be linearly dependent with existing terms. We may now write the
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observability matrix as

O =

∇L0
fh

∇L1
fh

 =



−∆x
ρ

−∆y
ρ 0 ∆x

ρ
∆y
ρ 0

∆y
ρ2

−∆x
ρ2 −1 −∆y

ρ2
∆x
ρ2 0

−∆y
ρ2

∆x
ρ2 0 ∆y

ρ2
−∆x
ρ2 −1

−∆x
ρ

−∆y
ρ 0 ∆x

ρ
∆y
ρ 0

0 0 −1 0 0 0

0 0 0 0 0 −1



(3.22)

As part of the fundamental theorem of linear algebra we know that the row rank and the column

rank of a matrix are always the same. We can immediately see that column 4 is the negative of

column 1, and column 5 is the negative of column 2, thus the rank of the observability matrix is 4.

In conclusion, this system is not observable. From the Lie derivative observability analysis, we can

observe that this does not take into consideration the choice of the vehicle’s trajectory to affect the

navigation state estimation performance of the system.

3.3 E-Uniform observability analysis

3.3.1 Preliminaries

Since the Lie derivative observability analysis does not take into account the choice of the vehicle’s

trajectory on the performance of the system, we consider E-Uniform observability analysis. The

E-Uniform observability analysis takes into consideration the choice of the control inputs in the

observability analysis of the system. Thus, clearly the path taken by each of the vehicle affects

the observability of the system. Hence to verify the hypothesis of the problem that is considered,

E-Uniform observability analysis of the system is performed while traversing different paths or

trajectories, and analyze how the observability of the system is affected by the choice of the trajectory.

The following preliminaries are necessary for better understanding of the analysis that is done in

the further sections.

Definitions

Consider a nonlinear system for which the dynamics are represented by

ẋ = f(u, x)

y = h(x)

(3.23)
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Definition 3.1 ([49],chapter 2) Let x be the initial state of the system and xu be the trajectory asso-

ciated to the initial state x and to the input u. The system represented in (3.23) said to be Observable

if for every pair of different initial states there exists an input u∈ L∞([0,T],U) such that h(xu(·)) is

not identically equal to h(x̄u(·)) on [0, T (x, x̄, u)] where T (x, x̄, u) = min{T (u, x), T (u, x̄)}.

Such an input, u is said to distinguish the considered initial states x, x̄ on [0, T ].

Definition 3.2 ([49],chapter 2) An input which distinguishes every pair of different initial states

on [0, T ] is called as a Universal input on [0, T ].

Definition 3.3 ([49],chapter 2) If E is any Borelian subset of U then the system shown in (3.23)

is said to be E Uniformly Observable if and only if for every T > 0 and every u ∈ L∞([0, T, E]), u

is a Universal input on [0,T].

In the following analysis for all the nonlinear cases considered we show that there exists at least

some set of initial conditions, x and x̄ for which the E-uniform observability does not hold true. We

show that h(xu(·)) is equal to h(x̄u(·)) at least for certain given initial conditions x and x̄.

Space of unobservability

The space of unobservability, Φ is defined as the set of all initial conditions for a given input where

the E-Uniform observability analysis does not hold true.

Φ = {h(xu(·)) = h(x̄u(·)) | ∀[x1o, y1o]
T , [x2o, y2o]

T , [x̄1o, ȳ1o]
T , [x̄2o, ȳ2o]

T ∈ <2} (3.24)

Analysis

In the following sections, to demonstrate the E-uniform observability analysis we do the following:

• Pick an input, u ∈ L∞([0, T, E])

• Find the set of initial conditions for which the h(xu) is equal to h(x̄u)

• Define the space of unobservability and compare this in all the cases
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3.3.2 Linear case

Let us consider a simple linear system to study the E-Uniform observability analysis. The system

dynamics is represented by

f(X) = Ẋ = Ax+Bu

Y = Cx

(3.25)

Let us apply the system with two different initial conditions x1o and x2o with the same input u.

Then the system dynamics are written as follows

f(X1) = Ẋ1 = Ax1 +Bu

f(X2) = Ẋ2 = Ax2 +Bu

Consider the outputs Y1 and Y2.

Y1 = Cx1

Y2 = Cx2

The solution to the above linear system is given by

X1(t) = eAtX1o +

∫ t

0

eA(t−τ)Bu(τ) dτ

X2(t) = eAtX2o +

∫ t

0

eA(t−τ)Bu(τ) dτ

(3.26)

Consider

Y1 − Y2 = C

[
eAtX1o +

∫ t

0

eA(t−τ)Bu(τ)dτ

]
− C

[
eAtX2o −

∫ t

0

eA(t−τ)Bu(τ) dτ

]

= C

[
eAt(X1o −X2o) +B

∫ t

0

eA(t−τ)(u(τ)− u(τ)) dτ

]
= CeAt [X1o −X2o]

= C

[
1 +At+

(At)2

2
+

(At)3

6
+ . . .

]
[X1o −X2o]

=

[
C + (CA)t+ (CA2)

t2

2
+ (CA3)

t3

6
+ . . .

]
[X1o −X2o]

=



C

CA

CA2

...


[
1 + t+

t2

2
+
t3

6
+ . . .

]
[X1o −X2o] (3.27)

17



From the above equation we can observe that since time ‘t’ is greater than zero and [X1o −X2o]

is not equal to zero then we say that the system represented in (3.25) is observable if the matrix[
C CA2 CA3...

]
is fully ranked which leads us to the condition of traditional observability for the

linear systems. Thus, the choice of the vehicle’s trajectory does not effect the system’s observability

in the linear case.

3.3.3 Dubins model

The concept of E-Uniform observability is now considered for the Dubins model for the illustration

of our problem. Let Ẋ = f(X,u) be a nonlinear system such that f : D 7→ Rn is uniformly Lipschitz

on D. If x(t) and y(t) are the solutions to the f(X) with different initial conditions x(t0) = x0,

y(t0) = y0 then ([49],chapter 2)

x(t) = x0 +

∫ t1

t0

f(x(s)) ds

y(t) = y0 +

∫ t1

t0

f(y(s)) ds

(3.28)

The state space representation for two Dubins models moving relative to each other in a 2D environ-

ment is considered in the following equations 3.29, 3.30 and 3.31. Here x, y and θ are the x-position,

y-position and heading of the vehicles, V is the speed of the vehicles, and ω is the vehicle’s turn rate

(subscript indicates the vehicle number)

f(X) =



ẋ1

ẏ1

θ̇1

ẋ2

ẏ2

θ̇2


=



V cos θ1

V sin θ1

ω1

V cos θ2

V sin θ2

ω2


(3.29)



u1

u2

u3

u4


=



V1

ω1

V2

ω2


(3.30)

h(X) =
√

(x2 − x1)2 + (y2 − y1)2 (3.31)
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3.3.4 General case

In this section we consider the E-Uniform observability analysis for two Dubins models moving in

a 2D environment. The agents have the relative range between them as the measurement. The

state space representation for such a case is shown in equations 3.29, 3.30 and 3.31. The solution to

the nonlinear system represented in (3.23) is given in (3.28). Here we consider two Dubins models

moving relative to each other whose dynamics are represented in (3.29). For the general case, we

rewrite the solution given in (3.28) as follows

x1 = x1o +

∫ t1

t0

V cos θ1 dt (3.32)

x2 = x2o +

∫ t1

t0

V cos θ2 dt (3.33)

y1 = y1o +

∫ t1

t0

V sin θ1 dt (3.34)

y2 = y2o +

∫ t1

t0

V sin θ2 dt (3.35)

Consider

x2 − x1 = x2o − x1o +

∫ t1

t0

V cos θ2 − V cos θ1 dt

= x2o − x1o + V

∫ t1

t0

(cos θ2 − cos θ1) dt

y2 − y1 = y2o − y1o +

∫ t1

t0

V sin θ2 − V sin θ1 dt

= y2o − y1o + V

∫ t1

t0

(sin θ2 − sin θ1) dt

(3.36)

The measurement equations when we apply two different initial conditions with the same input are

h(Xu) =
√

(x2 − x1)2 + (y2 − y1)2

h(X̄u) =
√

(x̄2 − x̄1)2 + (ȳ2 − ȳ1)2

(3.37)

Consider

(x2 − x1)2 + (y2 − y1)2 =
[

(x2o − x1o) + V

∫ t1

t0

(cos θ2 − cos θ1) dt
]2

+
[

(y2o − y1o) + V

∫ t1

t0

(sin θ2 − sin θ1) dt
]2

(3.38)
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Similarly when we apply, with different initial conditions, X̄ and the same input u, consider the

following

(x̄2 − x̄1)2 + (ȳ2 − ȳ1)2 =
[
(x̄2o − x̄1o) + V

∫ t1

t0

(cos θ2 − cos θ1) dt
]2

+
[
(ȳ2o − ȳ1o) + V

∫ t1

t0

(sin θ2 − sin θ1) dt
]2

Consider the two measurement equations

h(Xu)− h(X̄u) =
(√

(A+ I1)2 + (B + I2)2 −
√

(C + I1)2 + (D + I2)2
)

(3.39)

where

A = x2o − x1o (3.40)

B = y2o − y1o (3.41)

C = x̄2o − x̄1o (3.42)

D = ȳ2o − ȳ1o (3.43)

I1 = V
∫ t1
t0

(cos θ2 − cos θ1) dt (3.44)

I2 = V
∫ t1
t0

(sin θ2 − sin θ1) dt (3.45)

The solutions for the above equation would be obtained by equating (3.39) to zero.(√
(A+ I1)2 + (B + I2)2 −

√
(C + I1)2 + (D + I2)2

)
= 0

The solution for the above equation is

√
(A+ I1)2 + (B + I2)2 =

√
(C + I1)2 + (D + I2)2

=⇒ (A+ I1)2 + (B + I2)2 = (C + I1)2 + (D + I2)2

=⇒ A2 +B2 + 2(AI1 +BI2) = C2 +D2 + 2(CI1 +DI2) (3.46)

To solve this equation properly for constants A,B,C,D, one must isolate the time invariant and

time varying parts of the above equation. In other words, the time invariant part leads to

A2 +B2 = C2 +D2 (3.47)

The coefficients on the (time varying) term I1 lead to the following condition

A = C (3.48)
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And finally, equating the coefficient of the I2 on both sides leads to the following

B = D (3.49)

Since the last two equations satisfy the first directly, the first equation is not an independent con-

dition, and thus all of the solutions to (3.46) are given by A = C and B = D. The space of

unobservability for the general case can be written as

Φ = {(x2o − x1o) = (x̄2o − x̄1o) | ∀x1o, x2o, x̄1o, x̄2o ∈ <} ∩{(y2o − y1o) = (ȳ2o − ȳ1o) |

∀y1o, y2o, ȳ1o, ȳ2o ∈ <}

Thus, the system would be unobservable for any trajectory considered for the initial conditions

shown in the set Φ. In the future sections we analyze the space of unobservability for each different

trajectory taken by the vehicle.

3.3.5 Special Case 1: Straight line

Figure 3.3: Straight line case with zero heading angle of the agents

In this case let us consider that the agents traveling along two straight lines as shown in the

figure 3.3, hence there is no deliberate relative motion between the agents. The heading angles of

the agents here are zero degrees. The result for the straight line case is verified by substituting

θ1 = θ2 = 0 in (3.39). By substituting θ1 and θ2 to be zero in (3.44) and (3.45) we obtain the

following.

I1 = 0

I2 = 0

(3.50)
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Substituting back into (3.46) leads to the following condition for unobservability.

A2 +B2 = C2 +D2 (3.51)√
(x2o − x1o)2 + (y2o − y1o)2 =

√
(x̄2o − x̄1o)2 + (ȳ2o − ȳ1o)2 (3.52)

We can conclude here that any pair of initial conditions is indistinguishable from any other pair with

the same initial separation distance. Thus, the system is not E-Uniformly observable for the set of

initial conditions given by

Φ = {
√

(x2o − x1o)2 + (y2o − y1o)2 =
√

(x̄2o − x̄1o)2 + (ȳ2o − ȳ1o)2

| ∀[x1o, y1o]
T , [x2o, y2o]

T , [x̄1o, ȳ1o]
T , [x̄2o, ȳ2o]

T ∈ <2}.

If instead we substitute θ1 = θ2 = k where k is a constant, we obtain the same result for I1 and

I2, thus leading to the same conclusion that the system is not E-Uniformly observable.

3.3.6 Special Case 2: Different but constant heading directions

In this case let us consider two agents are moving along two different straight lines with different

heading directions that are constant over time, i.e, θ1 = k1 and θ2 = k2 where k1 6= k2. This is

shown in figure 3.4. Hence there is relative motion between the agents. From (3.44) and (3.45), we

obtain

Figure 3.4: Straight line case with different heading angles of the agents

I1 = V (cos k2 − cos k1)(t1 − t0)

I2 = V (sin k2 − sin k1)(t1 − t0)

(3.53)

Solving the above for I2 as a function of I1 leads to the following

I2 =
sin k2 − sin k1

cos k2 − cos k1
I1 = qI1 (3.54)
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This leads to the following condition of unobservability.

A2 +B2 + 2I1(A+Bq) = C2 +D2 + 2I1(C +Dq) (3.55)

As in the general case, we equate the time invariant and time varying parts. In this case, we obtain

the following solution conditions

A2 +B2 = C2 +D2

A+Bq = C +Dq

(3.56)

Solving the linear equation for C, we get

C = A+Bq −Dq (3.57)

Then, substituting back into the equation 3.56, we obtain

A2 +B2 = (A+Bq −Dq)2 +D2

A2 +B2 = A2 +B2q2 +D2q2 + 2ABq − 2ADq − 2BDq2 +D2

0 = D2q2 +D2 − 2ADq − 2BDq2 + 2ABq +B2q2 −B2

0 = (1 + q2)D2 + (−2Aq − 2Bq2)D + 2ABq +B2q2 −B2

D =
2Aq + 2Bq2 ±

√
(−2Aq − 2Bq2)2 − 4(1 + q2)(2ABq +B2q2 −B2)

2(1 + q2)

D =
2Aq + 2Bq2 ±

√
4A2q2 − 8ABq + 4B2

2(1 + q2)

D =
Aq +Bq2 ±

√
(Aq −B)2

(1 + q2)

D =
Aq +Bq2 ± (Aq −B)

(1 + q2)

D = B or
2Aq +Bq2 −B

(1 + q2)
∀[x1o, y1o]

T , [x2o, y2o]
T , [x̄1o, ȳ1o]

T , [x̄2o, ȳ2o]
T ∈ <2

(3.58)

Solving for C by substituting 3.58 into 3.57, we get C = A or

C = A+Bq − 2Aq +Bq2 −B
(1 + q2)

q

C =
(A+Bq)(1 + q2)

(1 + q2)
− 2Aq2 +Bq3 −Bq

(1 + q2)

C =
A+Aq2 +Bq +Bq3 − (2Aq2 +Bq3 −Bq)

(1 + q2)

C =
A+ 2Bq −Aq2

(1 + q2)
∀[x1o, y1o]

T , [x2o, y2o]
T , [x̄1o, ȳ1o]

T , [x̄2o, ȳ2o]
T ∈ <2

(3.59)

It should be pointed out here that it is not possible for the vehicles to travel to the goal location

with any arbitrary choice of constant heading angle; only a single choice of heading angle (directly
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to the goal) is possible if the heading angle is constant. Also, the space of unobservability is larger

in this case when compared to the following cases, but smaller than the straight line case with zero

heading angles.

3.3.7 Special Case 3: Sinusoidal motion with the agents in phase relative to each other

To obtain in phase motion, we substitute θ1 = θ2 without requiring them to be constant over time.

For this case, from (3.44) and (3.45), we see that I1 = I2 = 0, which is equivalent to the straight

line case 3.51. This explains why the simulation results for the straight line and in phase cases yield

similar (bad) results. The figure 3.5 shows the displacements of agents in sinusoidal motion where

the agents are in phase to each other.

Figure 3.5: Sinusoidal case with agents in phase to each other
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3.3.8 Special Case 4: Sinusoidal motion with the agents out of phase relative to each

other

The displacements of the agents along the sinusoidal trajectories with out of phase to each other is

shown in figure 3.6. To obtain out of phase motion, we substitute θ1 = −θ2. For this case, from

(3.44), we see that I1 = 0. Substituting this result into (3.46) yields the following

A2 +B2 + 2BI2 = C2 +D2 + 2DI2 (3.60)

When we equate the time invariant and time varying parts, we obtain the following solution condi-

tions

A2 +B2 = C2 +D2 (3.61)

B = D (3.62)

Substituting B = D into the nonlinear equation in (3.60) leads to the following solution

A2 = C2

C = ±A (3.63)

This result indicates that any two initial states with the same separation distance between the two

vehicles along the x-axis, together with the same relative displacement along the y-axis will be

indistinguishable. For example, if vehicle 1 starts at (0,0) and vehicle 2 starts at (100,100), this is

indistinguishable from vehicle 1 starting at (100,100) and vehicle 2 starting at (200,200) or (0,200).

In some sense, this space of unobservability is larger than in the general case (which may explain

why out of phase motion is better than in phase, but worse than other types of motion in general).

Figure 3.6: Sinusoidal case with agents out of phase to each other
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The space of unobservability is given by Φ = {(x2o − x1o) = ±(x̄2o − x̄1o) | ∀x1o, x2o, x̄1o, x̄2o ∈ <}

∩{(y2o − y1o) = (ȳ2o − ȳ1o) | ∀y1o, y2o, ȳ1o, ȳ2o ∈ <}
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3.3.9 Special Case 5 : Sinusoidal motion with the agents moving with different fre-

quencies

In the above special cases where the agents are moving in sinusoidal motion, the agents are considered

to move with the same frequency. In this section we will consider the agents are moving with different

frequencies ω1 and ω2 as shown in the figure 3.7. Let us assume θ1(t) and θ2(t) are the heading

rates of the agents corresponding to their frequencies respectively which change with time, t. From

(3.44) and (3.45), we obtain

I1 = V

∫ t1

t0

(cos θ2(t)− cos θ1(t)) dt

I2 = V

∫ t1

t0

(sin θ2(t)− sin θ1(t)) dt

(3.64)

Solving the above for I2 as a function of I1 leads to the following

I2 =

∫ t1
t0

(sin θ2(t)− sin θ1(t)) dt∫ t1
t0

(cos θ2(t)− cos θ1(t)) dt
I1 = I3I1 (3.65)

For the solution to the measurement equation as shown in (3.46) we obtain

A2 +B2 + 2I1(A+BI3) = C2 +D2 + 2I1(C +DI3)

A2 +B2 + 2I1A+ 2I1BI3 = C2 +D2 + 2I1C + 2I1DI3

Again we equate the time varying and time invariant coefficients on either sides.

A2 +B2 = C2 +D2 (3.66)

A = C (3.67)

B = D (3.68)

Figure 3.7: Sinusoidal case with agents moving with different frequencies
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The result here indicates if the two vehicles with two initial states that have the same separation

distance between them on both x and y axes, then they are indistinguishable. Again, this space of

unobservability is smaller than in the other cases like the straight line, in phase, and out of phase

ones which indicate that the different frequencies case should perform better than any other cases

considered in the previous sections. The set of initial conditions for which the E-Uniform observ-

ability does not hold true is given by Φ = {(x2o − x1o) = (x̄2o − x̄1o) | ∀x1o, x2o, x̄1o, x̄2o ∈ <}

∩{(y2o − y1o) = (ȳ2o − ȳ1o) | ∀y1o, y2o, ȳ1o, ȳ2o ∈ <}

From the E-Uniform observability in all the cases considered, we observe that the space of

unobservability is highest in the straight line case and the sinusoidal case with the agents moving

in phase to each other. The space of unobservability for the sinusoidal case with the agents moving

out of phase to each other is less than the in-phase case, while the sinusoidal case where the agents

move with different frequencies has the least space of unobservability.
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CHAPTER 4

Simulations and Results

4.1 Introduction

The goal of this section is to compare the results obtained by tracking various paths to verify the

hypothesis that relative motion between agents can help bound the drift. The hypothesis was mo-

tivated through the E-uniform observability analysis, here we test it extensively over 1000 Monte

Carlo simulations (for each trajectory type) run for eight different trajectory types. In the following

results, we show the simulation results from the straight line paths, paths obtained by tracking vari-

ous sinusoidal maneuvers (in phase, out of phase, and with different frequencies), Rapidly Exploring

Random Trees (RRT) [50] and two other algorithms developed using the RRT algorithm (sections

4.2 through 4.10). In all of these trajectory types the simulations are run for 140 seconds with a

tolerance of 0.10 seconds except for the straight line case since it takes only 133 seconds for the

vehicles to reach the goal location in this case.

In this section the plots of the simulations are demonstrated for two vehicles (specifically Dubins)

moving with a vehicle speed of 30 m/s. The agents start from an initial location of [0,0] and [0,300]

respectively([x,y] on the 2-D coordinate axes) and the final goal locations are [4000,0] and [4000,300]

respectively. The initial separation distance considered between the agents is 300 units on the y-axis.

The vehicles are required to reach the final goal location with the least error possible in the absence

of absolute position reference.

The simulation figures for each of the trajectory types include displacement plot for the agents

with both the true values and the estimated values from the Extended Kalman Filter (more details

on EKF are described in section 3.2.1). The sub-figures in the middle display the errors in the x

and y axes as a function of time with 3σ Kalman filter covariance bounds shown in blue and the
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actual error shown in the middle for each of the vehicles. In all of the cases the bottom sub-figures

display the histograms of final position estimation error of both the vehicles based on 1000 Monte

Carlo runs plotted for 100 bins and the root-mean-square error is shown on these histograms. The

final position estimation error is the difference between the true final position values and estimated

final position values from the EKF.

4.2 Straight line Paths

In this section the Dubins are simulated to move along the straight line paths with zero heading

angles. Agent 1 starts at an initial location of [0,0] and agent 2 starts at [0,300], and the final goal

location for the agents are [4000,0] and [4000,300] respectively on the 2D coordinate axes. In this

case the agents reach the goal location with time around 133 seconds. Since the agents are expected

to move along the straight line trajectories the heading angle for both the agents would be zero units

which indicates there is no deliberate relative motion between the agents.
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Figure 4.1: Displacements of the vehicles along the straight line trajectories
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Figure 4.2: 3D plot showing the displacements of the agents with time

In the figure 4.1 the red lines indicate the true values of the agents and the blue dashed lines indi-

cate the estimated values of the agents from the EKF with the x-position of the vehicles considered

on the x-axis and y-position of the vehicles on the y-axis. In the figure 4.1 the bottom displacements

are of the agent 1 and the top lines indicate the displacements for the agent 2. We can observe from

the figure that the estimated values of the agents drift from the true values with the displacement

along the goal location. This indicates that in the absence of any absolute position reference the

estimated values of the agents drift from the true values of the agents.For the purpose of better

understanding, the displacements of the agents are plotted with time on a 3D plot shown in 4.2.

Figure 4.3a indicates the x and y position errors for the vehicle 1. The time is plotted on the

x-axis and the error value on the y-axis. In these figures the middle red lines are the actual error

between the estimated values from the true values and the blues lines on the top and bottom of the

middle red lines are the covariance bounds from the EKF. In figure 4.3c, the histogram of the final

position estimation error for 1000 Monte Carlo runs of the vehicle 1 is plotted for 100 bins with the

final position estimation error on the x-axis and the frequency of the error on the y-axis. The red

line here indicates the root mean square error value of the estimation error. Similarly the figures

4.3b and 4.3d show the x, y position errors and histogram of final position estimation error for the

vehicle 2 respectively. We can observe from the figures 4.3a and 4.3b, the x-position error of both

the vehicles shows an abrupt change in the covariance values from the EKF after the time of about
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(b) Vehicle 2 x-position and y-position errors
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(c) Vehicle 1 histogram of final position estima-

tion error over 1000 Monte Carlo runs
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(d) Vehicle 2 histogram of final position estima-

tion error over 1000 Monte Carlo runs

Figure 4.3: Error plots for vehicle 1 and vehicle 2 in the straight line case with zero heading angles

for both the vehicles
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80 seconds. The reason for this abrupt change in the x-position error is not clearly known. We also

observe the growth in the errors along the x and y axes with time. This is due to the absence of

any absolute position reference. The figures 4.3c and 4.3d show the histograms of the final position

estimation error for vehicle 1 and vehicle 2 respectively. We can observe that the mean square error

after 1000 Monte Carlo runs is 15.38 units in the straight line case for both the vehicles.

4.3 Sinusoidal paths in phase with each other

In this section, the Dubins models are simulated to move along the sinusoidal trajectories with both

the agents in phase to each other. Again in this section, the start and goal locations for the agents

are [0,0], [4000,0] and [0, 300], [4000,300] respectively on the 2D coordinate axes for vehicle 1 and

vehicle 2. In this case the agents reach the goal location with time around 140 seconds. Since the

agents are in phase to each other the heading angles of both the agents are exactly the same. In

figure 4.4 the displacements of the agents with their true values and the estimated values from the

EKF are shown.
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Figure 4.4: Displacements of the vehicles along the sinusoidal trajectories with the vehicles in phase

to each other
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Figure 4.5: 3D plot showing the displacements of the vehicles in the sinusoidal trajectories with time

in which the agents are in phase to each other

In figure 4.4, the red lines indicate the true values of the agents and the blue dashed lines indicate

the estimated values of the agents from the EKF with the x-position of the vehicles considered on

the x-axis and y-position of the vehicles on the y-axis. The bottom displacements are of the agent

1 and the top displacements are of the agent 2. We can again observe from figure 4.4, that the

estimated values of the agents drift from the true values similar to the case of straight line paths.

The displacements of the agents with time are also shown in a 3D plot in 4.5.

The figures 4.6a and 4.6b show the error plots of the x and y position for the vehicle 1 and vehicle

2 respectively. Again in these figures the middle red lines indicate the actual error of the estimated

values from the true position values and the blues lines on the top and bottom of the middle lines

indicate the covariance bounds from the EKF. These errors are plotted on the y-axis and the time

is plotted on the x-axis of these plots. We can observe from these figures there are abrupt changes

in the x-position error for the vehicles. This is due to the nonlinearities that arise in the EKF with

the vehicles relative motion of approaching together and moving away from each other. Again, the

exact reason for this behavior is not known yet.

The figures 4.6c and 4.6d show the histograms of the final position estimation error for 1000

Monte Carlo runs for vehicle 1 and vehicle 2 respectively. The mean square error in these figures

is shown with the dotted red lines. The error is plotted on the x-axis of these figures and the
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frequency of the error on the y-axis. The mean square error from the sinusoidal in phase case is

found to be 14.86 units which is almost the same as the straight line case which actually supports

the observability analysis results shown in the previous section 3.3.7.
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(b) Vehicle 2 x-position and y-position errors
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(c) Vehicle 1 histogram of the final position error

estimation over 1000 Monte Carlo runs
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(d) Vehicle 2 histogram of the final position error

estimation over 1000 Monte Carlo runs

Figure 4.6: Error plots for vehicle 1 and vehicle 2 in the sinusoidal case with both the vehicles in

phase to each other
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4.4 Sinusoidal paths out of phase with each other

In this section the vehicles are simulated along the sinusoidal trajectories like in the above section.

The start and goal locations of the vehicles are both the same as in the previous section. Again, the

agents take around 140 seconds to reach the goal location. The agents are simulated to travel out

of phase to each other which shows that the heading angles of both the agents are exactly opposite

to each other. It makes the agents move closer to each other during the highest amplitude of the

sinusoidal curve. This helps in understanding better how the relative motion between the agents

affects the navigation state estimation accuracy in the absence of absolute position reference.
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Figure 4.7: Displacements of the vehicles along the sinusoidal trajectories with the vehicles out of

phase to each other
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Figure 4.8: 3D plot showing the displacements of the vehicles in the sinusoidal trajectories with time

in which the agents are out of phase to each other

In figure 4.7 we observe the displacements of the agents along the sinusoidal trajectories with

the agents moving out of phase to each other. The displacements are also shown in 3D for time in

figure 4.8. The bottom displacements in the figure show the trajectory of the agent 1 and the top

displacements show the trajectories of the agent 2. Again, the red lines indicate the true position

values and the blue dotted lines show the estimated values. We can observe from the figure the drift

of the estimated values from the true values similar to the straight line and the sinusoidal in phase

cases.
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(a) Vehicle 1 x-position and y-position errors

0 50 100 150
−2

−1

0

1

2
vehicle 2 error

time

x 2 e
rr

or

0 50 100 150
−100

−50

0

50

100

time

y 2 e
rr

or

(b) Vehicle 2 x-position and y-position errors
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(c) Vehicle 1 histogram of the final position error

estimation over 1000 Monte Carlo runs
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(d) Vehicle 2 histogram of the final position error

estimation over 1000 Monte Carlo runs

Figure 4.9: Error plots for vehicle 1 and vehicle 2 in the sinusoidal case with the agents moving out

of phase to each other
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Figure 4.9 shows the x and y position errors and the histograms of the final position estimation

error for both the vehicles. In figure 4.9a, the x-position and y-position errors are plotted for vehicle

1 on the y-axis and time on the x-axis. The red line in the middle is the actual error between the

estimated values, true values in the positions and the blue lines above and below this show the

covariance bounds from the EKF. A histogram is drawn in figure 4.9c with the mean square error

shown in the red dotted line and the final position estimation error plotted on the x-axis with the

frequency of error on the y-axis. Similarly the figures 4.9b and 4.9c are the x and y position errors,

histogram of the final position estimation error for the vehicle 2.

We can observe from the figure 4.9 the x-position error for both the vehicles has several nonlin-

earities due to the vehicle motions. The mean square error for the vehicles in this case is around

15.58 units which is almost as equal to the straight line and the sinusoidal in phase cases. From the

section 3.3.8 we noticed that the space of unobservability is lower in the sinusoidal out of phase than

sinusoidal in phase and straight line cases. This is not actually seen from the simulation results here.

However, from the table 4.2 we observe that the sinusoidal out of phase case does perform better

(lower mean square error) than the sinusoidal in phase case. This indicates that the performance of

the agents depends on also the frequency and amplitudes which cause much relative motion between

them.

4.5 Vehicles moving in straight lines with different heading

angles and constant frequency

In this section of the simulations, the vehicles are simulated along the straight lines again with the

difference in the agents heading angles which may lead to the relative motion between the agents

unlike in the previous straight line case of zero heading angle for the agents. Again, the frequency

of the agents is constant. Here, agent 1 start location is [0,0] and the goal location is [4000,0] on

the 2D coordinate axes. Agent 2 has a start location of [0,275] and goal location of [4000,300]. The

difference in the start location of agent 2 leads to the heading angle difference with agent 1 upon

reaching the goal locations.
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Figure 4.10: Displacements of the vehicles along the straight lines with different heading angles for

both the vehicles
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Figure 4.11: 3D plot showing the displacements of the vehicles for time along the straight lines with

different heading angles for both the vehicles
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The displacements plot shown in figure 4.10 shows the displacements of agent 1 at the bottom

and the displacements of agent 2 on the top. The true values and the estimated values are shown

similar to the previous cases. We can observe from the figure 4.10, the heading angles of both the

vehicles are different from each other. In this simulation the agents reach the goal location in about

133 seconds. The drift of the estimated values from the true values is also clearly observed from

figure 4.10. Figure 4.11 also shows the displacements of the plots in 3D with time.
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(b) Vehicle 2 x-position and y-position errors
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(c) Vehicle 1 histogram of the final position error

estimation over 1000 Monte Carlo runs
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(d) Vehicle 2 histogram of the final position error

estimation over 1000 Monte Carlo runs

Figure 4.12: Error plots for vehicle 1 and vehicle 2 in the straight line case with different heading

angles for both the vehicles
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From the figures 4.12a and 4.12b, we can observe the x and y position errors for agent 1 and

agent 2 respectively. The middle line indicates the error in the estimated values from the true values

and the top and bottom lines show the covariance bounds from the filter. We can notice the abrupt

increase in the x-position error at time around 60 seconds. Again, the reason is not known yet. The

histograms of the final position estimation errors for vehicle 1 and vehicle 2 are shown in figures 4.12c

and 4.12d. The mean square error shown in the red line in these figures is 14.9 units. The change

in the heading angles in the straight line case did not show much improvement for the navigation

state estimation.

4.6 Vehicles moving in sinusoidal paths with different fre-

quencies

In this section, the vehicles are simulated along the sinusoidal paths. Unlike in the previous sections

where both the agents travel with same frequencies, in this case the agents have different frequencies

with each other. The start location for agent 1 is [0,0] and the goal location is [4000,0]. Similarly,

the initial and final positions for the agent 2 are [0,300] and [4000,300]. The time taken for the

agents to reach the goal location is 140 seconds. The displacements plot for the agents in this case

is shown in figure 4.13. Since the agents have different frequencies the time taken for the agents to

reach the goal location will be different. Hence, for both the agents to reach the goal location at the

same time the amplitudes of the agents are also different from each other in the simulations. The

agent with more frequency will have lower amplitude than the agent with higher frequency. That

way, both the agents reach the goal location at the same time.
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Figure 4.13: Displacements of the vehicles along the sinusoidal trajectories with the vehicles moving

with different frequencies from each other
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Figure 4.14: 3D plot showing the displacements of the vehicles for time along the sinusoidal trajec-

tories with the vehicles moving with different frequencies from each other

45



Figure 4.13 shows the displacement plots of both the agents with agent 1’s displacement on

the bottom and the agent 2’s displacement on the top inside the figure. Figure 4.14 also shows the

displacements of the agents in 3D with time. The solid red lines show the true position values and the

dotted blue lines indicate the estimated values. We can observe from the figure that the frequency

of the sinusoidal curve for agent 1 is more than the frequency of agent 2, hence the amplitude of

agent 1 is also more than agent 2. We notice from the figure that the drift in the estimated values

from the true values of the agents is actually lower than in the straight line cases and the sinusoidal

case where the agents are moving with the same frequency. We also observe this from the error plots

shown in the following figures.
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(b) Vehicle 2 x-position and y-position errors
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(c) Vehicle 1 histogram of the final position error

estimation over 1000 Monte Carlo runs
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(d) Vehicle 2 histogram of the final position error

estimation over 1000 Monte Carlo runs

Figure 4.15: Error plots for vehicle 1 and vehicle 2 in the sinusoidal case with the vehicles moving

with different frequencies from each other
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Figures 4.15a and 4.15b show the x-position and the y-position errors for the agent 1 and agent

2. We can observe from the figures that the nonlinearities in the covariance values from the EKF

are quite a bit lower than the straight line case and the sinusoidal case where the agents move with

the same frequency. The reason for this is not known, however, we observe that the relative motion

between the agents while moving with different frequency helps reduce the navigation estimation

error better than any other case considered in the previous sections. This can clearly be observed

from figures 4.15c and 4.15d where the histograms of the final position estimation error for the

vehicles 1 and 2 are shown. We observe from these figures, the variance of the error is significantly

lower compared to the previous cases. Also, the mean square error shown as the red dotted line is

3.38 units which is very much lower than the other cases around 15 units. It can be seen that the

navigation estimation error is reduced if the agents move along the sinusoidal paths with different

frequencies.

The simulation results are supported from the analysis done in the section 3.3 which shows

the space of unobservability is least in the sinusoidal trajectory if the agents move with different

frequencies. Here we observe that the mean square error is 3.38 units, less than any other trajectory

considered.

4.7 Comparison of mean-square-error for all the cases

The comparison plot for the mean-square-error in the final position estimation is shown on a box-

plot in figure 4.16. We can observe from the plot, the mean-square-error is highest in the straight

line case. This error is lower in the sinusoidal trajectory type. Among the sinusoidal trajectories,

the mean-square-error is significantly less when both the vehicles move in a sinusoidal trajectory

with different frequencies (section 4.6) than the vehicles with in-phase (section 4.3) and out of phase

(section 4.4) with each other in which the frequency of both the vehicles is the same. Inside the box

plot shown in figure 4.16, the edges of the box are the 25th and 75th percentiles of the error data

and the central mark is the median of the error for 1000 Monte Carlo runs. The diamond inside

the box shows the mean-square of the error. This actually validates the hypothesis that the relative

motion between the agents help in reducing the estimation error resulting due to the absence of an

absolute position reference.
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Figure 4.16: Comparison plot of final position estimation error in different trajectory types

4.8 Rapidly Exploring Random Trees (RRT)

Simulations are also done on some sampling based path planning techniques. RRT is one of such

sampling based path planning algorithms designed for the problems with nonholonomic constraints.

In the following simulations different RRT based algorithms are tried out to observe if these algo-

rithms help improve the navigation state estimation of the agents. In this section, the algorithm

used for generation of the paths using the RRT [50] technique is explained. In this algorithm the

state space of x contains four states which are x,y values of the first agent and x,y values of the

second agent. The RRT algorithm is generated in the following way:

1. A graph is initialized with empty vertices and edges. The start point is added to the graph as

the initial vertex.

2. A random state is written which generates a random vertex in the graph.

3. The random vertex from the above function is passed into the Nearest function which searches

for the nearest vertex in the graph to the random vertex and returns it.

4. A steer function is written for the nearest vertex which gives a new vertex that is in the direction

of the nearest vertex and closer to it.

5. The new vertex is now added to the vertex list of the graph.

6. An edge is created between the new vertex and the nearest vertex and added to the edge list of

the graph.
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7. The steps from 2 through 7 are repeated until we reach the goal vertex within some epsilon radius.

It is more explained in the following pseudo code.

Algorithm 1 RRT algorithm

1: V ← xinit; E ← ∅;

2: while goal is not found do

3: xrand ← RandomState;

4: xnearest ← Nearest(G1 = (V1, E1), xrand);

5: xnew ← Steer(xnearest, xrand);

6: V ← V ∪ xnew;E ← E ∪ (xnearest, xnew);

7: end while

8: returnG = (V,E) ;

In figure 4.17, the displacements of the vehicles along the paths generated using the RRT tech-

nique are shown and figure 4.18 shows the displacements of the agents with time in 3D. The RRT

algorithm is run to generate a path from an initial location of [0,0] for agent 1 and [300,0] for agent 2.

The goal locations are [4000,0] for agent 1 and [4000,300] for agent 2. After the paths are generated

using this technique the vehicles are simulated along the paths to reach the goal locations. In the

figure the blue lines show the actual path generated using the RRT technique, the red lines indicate

the true position values of the vehicles and the black lines show the estimated values from the filter.

Since this is a sampling based path planning algorithm, the paths generated are random. This is

used to see if these paths help in any navigation state estimation in the absence of an absolute

position reference.
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Figure 4.17: Displacements of the vehicles along the paths generated using the RRT technique
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Figure 4.18: 3D plot showing the displacements of the vehicles for time along the trajectories

generated using RRT
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In figures 4.19a and 4.19b, the x and y position errors of agent 1 and agent 2 are shown with the

errors in the position plotted on the y-axis and the time on the x-axis. The time taken for the agents

to reach the goal location in this case is around 170 seconds. We can also observe from these figures

there is a sudden decrease in the x and y position errors at around 60 seconds. Since the paths

generated are random, the reason for this change in the errors is not yet analyzed. The histograms

of the final position estimation error shown in figures 4.19c and 4.19d are for vehicle 1 and vehicle

2 respectively. These histograms show the data of 1000 Monte Carlo runs from the paths generated

using the RRT technique. We can observe from these figures, the mean square of the estimation

error in the final position is 5.57 units which is lower than the previous trajectory types except the

sinusoidal case where the agents are moving with different frequencies. Using the RRT technique

the navigation state estimation is showing improvement though this is not guaranteed as the paths

generated are random.
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(a) Vehicle 1 x-position and y-position errors
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(b) Vehicle 2 x-position and y-position errors
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(c) Vehicle 1 histogram of the final position error

estimation over 1000 Monte Carlo runs
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(d) Vehicle 2 histogram of the final position error

estimation over 1000 Monte Carlo runs

Figure 4.19: Error plots for vehicle 1 and vehicle 2 following the paths generated using the RRT

technique
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4.9 Iterative sampling with RRT

In this section a new approach developed from the RRT technique is explained and the simulation

results of the vehicles traveling along the paths using this technique are also shown. Iterative

sampling is performed for the selection of random points in the RRT technique. In this idea, the

first vertex of the first agent is sampled and around this vertex in an epsilon distance some points

(say 10) are sampled for the agent two. Among these points for the agent two, the point with the

least error in the estimation from the Kalman filter is selected. The estimation is done by simulating

the models between the two points; here first point is the first vertex of agent one and the second

point is one among the ten randomly sampled points for the agent two. The estimation is done for

all the ten points and the point with the least error is picked up as the vertex for the second agent.

Around this vertex of the second agent ten random points are sampled in an epsilon distance for the

agent one and again the point with least error as described above will be selected as the next (or

say second vertex) vertex for the agent one. This procedure of sampling for both the agents is tried

out till they reach the goal location. The pseudo code of this idea is shown below.
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Algorithm 2 Iterative sampling with RRT

1: V1 ← x1init
; E1 ← ∅;

2: V2 ← x2init ; E2 ← ∅;

3: while goal is not found do

4: x1rand
← RandomState;

5: x1nearest
← Nearest(G1 = (V1, E1), x1rand

);

6: x1new
← Steer(x1nearest

, x1rand
);

7: V1 ← V1 ∪ x1new
;E1 ← E1 ∪ (x1nearest

, x1new
);

8: for i = 1,...,n do

9: x2rand(i)
← RandomState(x1new

);

10: LeastError(x2rand
)← Estimates(x2rand(i)

);

11: x2nearest ← Nearest(G2 = (V2, E2), x2rand
);

12: x2new
← Steer(x2nearest

, x2rand
);

13: V2 ← V2 ∪ x2new
;E2 ← E2 ∪ (x2nearest

, x2new
);

14: x1rand(i)
← RandomState(x2new

);

15: LeastError(x1rand
)← Estimates(x1rand(i)

);

16: x1nearest
← Nearest(G1 = (V1, E1), x1rand

);

17: x1new
← Steer(x1nearest

, x1rand
);

18: V1 ← V1 ∪ x1new ;E1 ← E1 ∪ (x1nearest , x1new);

19: end for

20: end while

21: returnG1 = (V1, E1) and G2 = (V2, E2);
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The displacements of the vehicles along the paths generated using the Iterative sampling idea

in the RRT technique are shown in figure 4.20 in 2D and figure 4.21 in 3D with time. The initial

location is [50,0] for agent 1 and [300,0] for agent 2. The goal locations are [4000,0] for agent 1

and [4000,300] for agent 2. After the paths are generated using this technique the vehicles are

simulated along the paths to reach the goal locations. In the figure the blue lines show the actual

path generated using the Iterative sampling idea, the red lines indicate the true position values of

the vehicles and the black lines show the estimated values from the filter.
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Figure 4.20: Displacements of the vehicles along the paths generated using the Iterative sampling

with RRT
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Figure 4.21: 3D plot showing the displacements of the vehicles for time along the trajectories

generated using iterative sampling with RRT

The figures in 4.22a and 4.22b show the x and y position errors of agent 1 and agent 2 respectively.

The time taken for the agents to reach the goal location is around 159 seconds. We can observe the

irregularities in the x-position errors for both agents. This may be due to the increase of nonlinearities

in the filter as the agents move closer and away from each other. Also, in the y-position error after

time period of around 140 seconds the error becomes almost constant. The reason for this is not

known yet. The histograms of the final position estimation error are shown in the figures 4.22c

and 4.22d. We can observe that the variance of the final position estimation error is very high in

this scenario. Also, the mean square of the final position estimation error shown in dotted red line

is 21.36 units for the vehicle 1 and 21.51 units for the vehicle 2 which is higher than any other

trajectory type that are considered in here.
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(a) Vehicle 1 x-position and y-position errors
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(b) Vehicle 2 x-position and y-position errors

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

X: 21.36
Y: 0

histogram of error in the RRT case

error

fr
eq

ue
nc

y

(c) Vehicle 1 histogram of the final position error

estimation over 1000 Monte Carlo runs
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(d) Vehicle 2 histogram of the final position error

estimation over 1000 Monte Carlo runs

Figure 4.22: Error plots for vehicle 1 and vehicle 2 following the paths generated using the iterative

sampling idea with the RRT technique
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4.10 RRT algorithm with cost function included in the se-

lection of random points

In this section a new idea of sampling the points in the RRT algorithm is shown. In the general

RRT algorithm random points are sampled and are selected for the propagation of the graph to the

goal location. In this idea, for each iteration in the selection of random points estimation process is

done using the EKF. In each iteration, ten random points are sampled and the point with the least

error between the true position values and estimated values from the filter is selected rather than

selecting a random point (in the RRT). The estimation is done by simulating the models between

the latest vertex and each of the ten random points.

In this algorithm an empty graph is initialized with zero vertices and zero edges. A random

state function is written which samples ten random points within the goal space. The estimation

process is done and the point with least error is selected among these ten points. The vertex in the

graph which is nearest to the selected point from the estimation process is returned from the nearest

function. The steer function returns a new vertex which is in the direction of the selected point and

a little closer to the nearest vertex. This new vertex is added to the graph and an edge is created

to the latest vertex and the new vertex generated. This process is continued until the goal location

is found. The pseudo code for this idea is shown in the following lines.

Algorithm 3 RRT with cost function for selection of points

1: V ← xinit; E ← ∅;

2: while goal is not found do

3: xrand(i) ← RandomState(xnew);

4: LeastError(xrand)← Estimates(xrand(i));

5: xnearest ← Nearest(G1 = (V 1, E1), xrand);

6: xnew ← Steer(xnearest, xrand);

7: V ← V ∪ xnew;E ← E ∪ (xnearest, xnew);

8: end while

9: returnG = (V,E) ;
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Figure 4.23: Displacements of the vehicles along the paths generated using the RRT idea with cost

function included for the selection of random points
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Figure 4.24: 3D plot showing the displacements of the vehicles for time along the trajectories

generated using RRT with cost function included for the selection of random points
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Figure 4.23 shows the displacements of the agents along the paths generated using the RRT

included with cost technique in 2D and figure 4.24 in 3D with time. The blue lines show the actual

paths generated using the algorithm, red lines show the true values of the displacements of the agents

and the black lines indicate the estimated values from the filter. The start and final locations for

the agents are [0,0] , [0,300] and [4000,0] , [4000,300] for agent 1 and agent 2 respectively. Again, the

paths generated using this technique are random since this is based on a sampling based algorithm.

The figures 4.25a and 4.25b show the x and y position errors for vehicle 1 and vehicle 2 respec-

tively. The agents reach the goal location in about 149 seconds in these simulations. There are

several abrupt changes in the y-position error shown in the figures 4.25a and 4.25b. Again, since

the path generated is random using this technique the reason for the changes is not known yet. The

figures 4.25c and 4.25d show the histograms of the final position estimation error for the 1000 Monte

Carlo runs of vehicle 1 and vehicle 2. The mean square of this error is 13.14 units for both the

vehicles, which is also lower than the straight line case, and some of the sinusoidal cases, but, the

variance in this case is very high when compared to the other two cases. This is shown in table 4.1.
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(c) Vehicle 1 histogram of the final position error

estimation over 1000 Monte Carlo runs
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(d) Vehicle 2 histogram of the final position error

estimation over 1000 Monte Carlo runs

Figure 4.25: Error plots for vehicle 1 and vehicle 2 with the vehicles following the paths generated

using the RRT technique where a cost function is included for the selection of points in the graph
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4.11 Discussion

The simulations shown here are run for eight different trajectory types, each consisting of 1000 Monte

Carlo runs. We can observe from the above plot that the vehicles moving in sinusoidal trajectories

perform better than those moving in straight line trajectories, although the mean-square error from

the straight line trajectory and the sinusoidal in-phase and out-phase are fairly close to each other.

This may be due to the fact we need to consider that the vehicles in the sinusoidal case have traveled

for more time (140 sec) than the straight line case (133 sec). The estimation performance of the

vehicles is also analyzed by varying the frequencies and amplitudes. The simulations are run for

1000 Monte Carlo runs of the final position estimation error and the values are tabulated below.

Table 4.1: Comparison of mean square error in different trajectory types

Vehicle Motion Transition Frequency Amplitude Mean Error

Agent1 Agent2 Agent1 Agent2

Sinusoidal In phase 615.38 615.38 41.2 41.2 15.51 ± 143.61

Out phase 615.38 615.38 41.2 41.2 14.8 ± 129.02

Different 615.38 666.67 40.6 44.65 2.974 ± 4.86

Sinusoidal In phase 1600 1600 113.5 113.5 15.12 ± 128.25

Out phase 1600 1600 113.5 113.5 14.82 ± 127.29

Different 1600 1142.86 112 79.6 3.33 ± 6.51

Straight line Same heading NA NA NA NA 15.38 ± 137.39

Different heading NA NA NA NA 14.9 ± 132.49

RRT Random NA NA NA NA 5.57 ± 63.92

Iterative Sampling Random NA NA NA NA 21.36 ± 498.63

RRT with cost function Random NA NA NA NA 13.14 ± 339.97

We can observe from the above table the mean square error is least in the case of sinusoidal

trajectories when the vehicles are moving with different spatial periods. Also, the error is highest

in the case of straight line trajectory and the sinusoidal in phase conditions. The simulations are

again run for all the trajectory types shown in the table with different frequencies and amplitudes

and the results are again tabulated in the following table.
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Table 4.2: Comparison of mean square error in different trajectory types

Vehicle Motion Transition Frequency Amplitude Mean Error

Agent1 Agent2 Agent1 Agent2

Sinusoidal In phase 800 800 54.8 54.8 15.59 ± 143.43

Out phase 800 800 54.8 54.8 15. 37 ± 136.59

Different 800 1142.86 54.8 79.06 2.67 ± 3.97

Sinusoidal In phase 2000 2000 140 140 14.61 ± 124.01

Out phase 2000 2000 140 140 12.58 ± 95.32

Different 2000 1600 142.1 112.1 3.84 ± 8.26

Straight line Same heading NA NA NA NA 15.38 ± 137.39

Different heading NA NA NA NA 14.9 ± 132.49

RRT Random NA NA NA NA 5.57 ± 63.92

Iterative Sampling Random NA NA NA NA 21.36 ± 498.63

RRT with cost function Random NA NA NA NA 13.14 ± 339.97

The simulation analysis done by changing the frequencies among the vehicles shows that the

vehicles improve their performance (lower mean-square error) when both of the agents have different

and higher frequencies than the other cases.

From Figure 4.16, we observe that the results from the simulations actually agree with the E-

uniform Observability analysis done on different trajectory types for the two agents. From the

E-uniform observability analysis in section 3.3.9 we concluded that the different frequencies case

should actually perform better than all the other cases that we considered from figure 4.16. We

notice that the mean square error in the final position estimation is 3.38 units which is as low as

any other trajectory performance. Also, we observed from the analysis that the straight line case

and the in phase case should yield similar results which is in accordance again with the simulation

results. The mean square error from both the cases is equal with a tolerance of 0.5 units. The fact

that the analysis shows the out of phase does perform better than the in phase case can be observed

from the table 4.2. The mean square error from the out of phase case is quite lower than the in phase

case when we have lower frequencies and higher amplitudes. The figure shown in 4.16 also shows

the error obtained by using the RRT technique. The error from this technique is around 21.36 units

more than the other cases though the time taken for vehicles using this technique to reach the goal

location is around 159 seconds. The mean square error obtained using any of the RRT techniques

is not as low as the sinusoidal case with the vehicles moving with different frequencies.
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CHAPTER 5

Conclusion and Future work

5.1 Conclusion

In this research, observability analysis is presented for two Dubin’s models based on the choice of the

vehicle trajectory and the simulations to demonstrate the observability analysis are presented. The

E-Uniform Observability analysis and the simulations on different trajectory types we considered

show that the relative motion between the agents affects the observability of the system in the

absence of an absolute position reference. This helps to reduce the drift in the navigation state

estimation which occurs due to the absence of an absolute position reference. In other words the

agents have low mean square error in the final position estimation when the agents have relative

motion between them. From the tables 4.1 and 4.2, we can observe that the agents performance

is better when they have different frequencies from each other and the mean square error is least

in this case with 3.38 units when compared to other cases considered, in which the error is more

than 14 units. The simulations have been carried out to compare the performances of the vehicles

using different heuristic and sampling based techniques. From the results of the simulations we

can actually show that the relative motion between the agents has an effect on the navigation

state estimation and that the drift in the position estimation uncertainty can be reduced by certain

relative motions of the agents while tracking different paths. Though the reason for the reduction

in position estimation drift is not shown in this work, the observability analysis showed in this work

helps better understand the effect of vehicle trajectory on the performance of the system. Certain

trajectory types like the sinusoidal motion in which the vehicles moving with different frequencies

guarantee that the position estimation uncertainty is significantly less than the vehicles moving in

straight lines in the absence of an absolute position reference.
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5.2 Future Work

• The work presented in this research concentrates on a 2D Dubin’s model which can be extended

in the future to 3D by considering the air vehicles.

• The observability analysis of the system can be analyzed when both inter agent range and

bearing measurements are available while tracking different trajectories in the air vehicles.

• In this work, only certain set of trajectories are explored such as straight line paths, sinusoidal

paths, RRT generated paths. This can be extended by considering other paths such as com-

plicate polynomial paths, completely random paths, some more sampling based path planning

algorithms like RRT-star etc.

• The future work can also be focused on to find a global optimal trajectory when no absolute

position information is available.

• The simulations and algorithms can be tested in the real world on hardware.

• The reason for the abrupt changes in the estimated values from EKF can be examined more

in detail, if it is related to vehicles relative motion.
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