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ABSTRACT

A finite element program based on the plane stress
assumption is developed and applied to elasto-plastic frac-
tufe problems involving monotonically increasing loads. The
program directly predicts the initiation and propagation of
fracture in the structure. That is, the concept of stress
intensity factor is not utilized in the present approach.
The approach uses a piecewise linear approximation of the
actual stress-strain curve for the material, and the maximum
strain criteria to predict both the yield and fracture. An
incremental loading technique is employed to load the struc-
ture, and a "zero modulus-unload reload" scheme is developed
to handle the response of the structure at fracture. Com-
parisons with published data on a cracked panel, and the ex-
perimental data obtained during this study on tensile and
cracked specimens show that the finite element program de-
veloped herein can accurately predict load and deflection at
fracture, load-deflection curves, fracture initiation loca-
tions, and stable or unstable crack propagation. This ap-
proach is shown to be highly dependent on the mesh density

in areas of high strain gradients.
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NOMENCLATURE

A, Initial area
Dg Gage deflection
Dpp Pin-to-pin deflection

DEPR Incremental element principal strain

Dr Pin-to-gage boundary deflection per unit load

E Elastic modulus

Ee Elastic modulus

E; Incremental tangent modulus

Eg Secant modulus

Egs Incremental secant modulus

ECH Array of strains for next element property
changes

EPRI Total element principal strains

I Potential energy

L Load

LI Incremental load

ij Compliance coefficient

T Temperature change

u ,v Displacement in the x and y directions, respec-
tively

ui,vy Nodal displacements in the x and y directionms,
respectively

v Volume

W Width of tensile specimen neck

q; Coefficients of thermal expansion



a;,Bi, Interpolation coefficients

Vi

' ?xy:

Element area
Strain components

Strains in the X, y and z directions

Tensor shear strain relative to x and y axes
Yield strain

Principal strains

Poisson's ratio

Elastic Poisson’'s ratio

Incremental Poisson's ratio

Stress components

Normal stresses in the X, y and z directions

Shear stresses relative to Xy, yz, and zX axes -

Yield stress

Principal stresses

Interpolation functions

Force vector

Displacement vector

Strain displacement coefficient matrix
Stress-strain coefficient matrix

Stiffness matrix
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FRACTURE PREDICTION IN PLANE ELASTO-

PLASTIC PROBLEMS BY THE FINITE

ELEMENT METHOD

CHAPTER I

INTRODUCTION

I.1l Historical Background

On the 10th of January 1954, a B.0.A.C. Comet, the
first pressurized commercial jet airliner, fell into the sea
near Rome, killing 29 passengers and its crew of 6. The
Comet fleet was immediately grounded and carefully inspected
and modified. Comet service resumed on the 23rd of March,
and 16 days later, a second Comet was lost. Subsequent in-
vestigations determined that the Comet had met airworthiness
requirements effective at the time; hcwever, these require-
ments, based on static analysis and testing, were insuffi-
cient to predict the type of cyclic failure experienced by
the Comets.

As a result of these accidents, fatigue analysis and

testing became an integral part of aircraft design. Fatigue



analysis frequently took the form of a damage accumulation
theory such as Miner's rule. With Miner's rule, the number
of cycles at each stress level is divided by the number of
cycles to failure at that level. These fractions are then
summed with failure indicated by a total accumulation of
one. Fracture testing was accomplished by subjecting an
airframe to "blocks" of loading which would simulate those
anticipated in actual service. The inaccuracies in this
type of fatigue approach required considerable conservatism
(along with the associated high cost) to insure the integ-
rity of the structure. Typically, airframes were required
to withstand one and a half times the maximum static load
and four times the number of cyclic loads expected to be
encountered in service. Additionally, most fatigue phil-
osophies dictated that any cracking was to be considered a
failure.

The loss of a U.S. Air Force F-111 in 1969 initiated
a rethinking of airframe design and analysis concepts.1
Failure in this aircraft was traced to a small manufactur-
ing flaw in a wing pivot fitting, not to a design induced
fatigue. In a fashion reminiscent of the Comet incidents,
it became apparent that static and fatigue concepts alone
would not predict the type of failure incurred by this air-
craft. It also became clear that a more efficient approach
would be to design a structure to be crack tolerant, and

that some analytic method would be necessary to accomplish



this goal.

I.2 Fracture Mechanics

Fracture mechanics theory which had been successfully
applied to crack instability research was adapted to this
new design role. A popular form of the fracture mechanics
"law" is

da/dN = C £(X)
where da/dN is the crack growth rate (2 being the crack
length, N the number of cycles), C is a material constant,
and K is the stress intensity factor which relates the
stress conditions with the crack length.2 When coupled with
a damage tolerance approach to design, an initial flaw size
(usually the minimum crack size which can be repeatedly de-
tected by nondestructive inspection) is assumed. The crack
is then grown according to the appropriate fracture mechan-
ics "law" until it reaches a critical crack length. This
information is then used to establish inspection intervals
for the structure. During the course of the design, any
area found to have unacceptably rapid crack growth (i.e.,
inspection intervals are too close) must be redesigned.
The advantage of such a procedure is that accurate analysis
and inspection can safely extend the structure to its full
useful life. However, due to the randomness of possible
initiation sites, each area of the structure must be anal-

yzed.



Unfortunately, the application of a fracture mechanics
"law" to all areas of a large structure is a difficult, if
not impossible, bookkeeping task. The stress intensity fac-
tors must be determined for each area ~f the structure for
each type of loading, a time consuming effort even for simple
geometries and loadings. Then these factors must be combined
in the proper manner to establish the crack growth rates.
Additionally, Boyd3 pointed out that the assumptions asso-
ciated with fracture mechanics '"laws'" are more restrictive
than is generally realized. The most significant defect in
the application of these fracture mechanics approaches to
practical aircraft structures lies in their elastic formu-
lation. Structural metals, however, exhibit a large degree
of plastic deformation ahead of the crack tip which signifi-
cantly affects their response. Some attempts have been made
to provide correction factors for this effect, but they only
further the gap between the physical phenomenon and the an-

alytical technique.

I.3 The Finite Element Method

If the finite element method, which has enjoyed enor-
mous success in the application to structural mechanics
problems over the last three decades, could be employed
successfully to directly predict fracture in structures,
the shortcomings of present methods could be overcome. The

method has already been used in fracture mechanics to cal-



culate stress intensity factors. However, a direct proce-
dure of predicting fracture would eliminate the laborious
task of calculating stress intensity factors for all regions
of a structure and using them to predict fracture. Additio-
nally, the fracture mechanics approach based on the stress
intensity factor does not take into account the plastic de-
formation associated with the fracture phenomena ip non-
brittle materials. Since the finite element method can also
be used to analyze structural problems involving material
nonlinearities, it seems obvious to employ the method to di-
rectly predict fracture in elasto-plastic materials using a
realistic stress-strain law.

In the finite element method (FEM), a given structure
is divided into substructures, called finite elements.
These elements can be of different shapes and sizes (a phy-
sical continuum can be viewed as a collection of smaller
elements). A typical element is isolated from the collec-
tion and its physical properties, such as the stiffness co-
efficients, are developed using piecewise approximation of
the variables. Then the discrete set of equations govern-
ing the complete structure are obtained by putting the ele-
ment equations together. Generally, the accuracy of the
predicted structural response improves with the number of
elements (i.e., with the decrease of element size), and the
order of approximation which is used to represent the solu-

tion. With respect to fracture studies, the FEM offers a



unique opportunity to include the effects of the material
nonlinearities. The inherent flexibility and ease of ap-
plication of the FEM suggests that it is a valuable design
tool for direct prediction of fracture as well as the res-

ponse of structures in the presence of cracks.

I.4 Brief Review of Pertinent Literature

The finite element method has already been used in
many studies4’ll to investigate fracture processes. Most of
these investigations have centered on examining the local-
ized effects of fracture and the effects of cracks on struc-
tures, rather than on predicting actual catastrophic fail-
ure loads and deflections. Newmnl® studied the effects of
various parameters such as the mesh size, strain hardening,
and critical strain on finite element fracture prediction;
however, no experimental results were used for comparison.

On the other hand, Miller et al.l

presented a finite ele-
ment solution and experimental results for a cracked panel
under monotonically increasing stress. Unfortunately, the
finite element predictions did not show close agreement with
experimental data. These predictions also varied signifi-
cantly with the method of load redistribution at fracture.
Furthermore, the nodal uncoupling method used by Newman,

Miller and others is restricted to fracture prediction along

lines of symmetry.



1.5 Objectives of the Present Study

The present investigation is concerned with the de-
velopment of a finite element program to directly predict
fracture in non-brittle materials under monotonically in-
creasing loads. The procedure involves the use of a piece-
wise linearized stress-strain curve, with an incremental
loading. This study also involved experimental investiga-
tion of fracture to determine the accuracy of the numerical
predictions. Thus, the goal of this research was to deter-
mine if the finite element method could provide an accurate
and useable design tool for the analysis of fracture and
crack growth in practical structures. To accomplish this
goal, simple, non-trivial two dimensional (plane stress)
structures under uniaxial loading were considered. This
study further defines the factors affecting accurate pre-
diction of fracture by the finite element method, and de-
termines if the results obtained by Miller represent typi-
cal errors to be expected by such a method. Accuracy of
the method is demonstrated by comparison with experimental

data.



CHAPTER 1II

THEORETICAL CONSIDERATIONS

IT.1 Governing Equations

In a continuum, application of loads results in
stresses. At any point in the structure, there are nine
stress components; however, only six of them, three normal
stresses (0, Oy, 0z) and three shearing stresses (oxy,
Oyz, Ozx), are independent. The stresses induce strains in
the material. For a three dimensional linear elastic aniso-
tropic material, the six strains (gj) are related to these
stresses as follows:

€i = Sij oj * a;T (2.1)
where Sij's are the compliance coefficients, Ai's are the
coefficients of thermal expansion, and T is the temperature
change. There are 36 compliance coefficients, but due to
symmetry of Sjj only 21 are independent. For isotropic
materials the number of independent coefficients is two.

Here it is assumed that the material is isotropic and
the temperature changes are negligible. Since only thin

sections are to be modeled, a state of plane stress (with
8



respect to the xy-plane) is assumed to exist in the body.
That is, gzz = Ozx = Ozy = 0. In view of these assumptions,

Eq. (2.1) becomes

Sx = (OX 'ucy)

= EHli—

(o-. —"a )
7 X (2.2)

€y = -——EI'-‘(O'X"FO'y)

_ (L
sxy (_:E’_) oxy

where E is the modulus of elasticity, and g is Poisson's

ratio. These equations can be inverted to express the

stresses in terms of the strains:

E
Ox = ——21_“ (&4 +p8y)
E
- E
oxy = T Exy

Note that equations (2.2) and (2.3) are valid only in the
linear elastic portion of the stress-strain curve.

The kinematic analysis of the body, under the assump-
tion of small displacements, gives the following strain-dis-

placement equations:

sx=%, sy=%—§,exy=é(g—;+%) (2.4)

where u and v denote the displacements along x and y-direc-

tions, respectively.
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Finally, to complete the description of the equations,
the equations of equilibrium must be added,

99_X ?_qu bO'xy bcy
3z T =0 3x tay <O (2.5)

wherein the body forces are assumed to be zero. Equations
(2.3) - (2.5) must be appended with appropriate boundary
conditions of the problem.

Since this study involves loading of the body through
the linear elastic, nonlinear elastic and plastic regions of
the stress-strain curve, we must have a relationship between
the stresses and strains in these regions. In the present
study, where aluminum (2024-T3) was used, it is assumed that
the nonlinear elastic portion is negligibly small.

These two remaining regions are shown in Figg;g 2.1
for a uniaxial stress state. In the initial linear region,
the material response is elastic and structures whose loads
result in stresses in this region will return to their ori-
ginal shape when the loads are removed. Structures loaded
into the plastic zone, however, take on a permanent set on
unloading (dashed line of Figure 2.1).

In order to analyze the nonlinearity introduced by
the plastic response, the curve in Figure 2.la is divided
into a series of linear portions as shown in Figure 2.1b,
with the tangent modulus and incremental Poisson's ratio
replacing the elastic constants previously mentioned.

Next, the choice of failure criteria to determine

yield and fracture should be considered. The commonly
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used failure criterion- is that of ven Mises, which shows the
best agreement with experimental yield data for metals.

For the case of plane stress, von Mises criterion takes the

form
2 2 . 2.
g.¢ - + = 2.
1- —0109 * Oy Gyp (2.6)
where 07 and Oy are the principal stresses, and oyp is the
yield stress. If the left hand side is less than a&p% yield

does not occur. The surface described by Eq. (2.6) is shown
in Figure 2.2. Problems arise in extending von Mises' cri-
terion into the plastic range witk the incremental approach
used in this study (this will be discussed in detail in
Chapter III); therefore, the maximum strain criterion was
used. In this theory, yield occurs when the maximum strain

exceeds the strain at yield. That is

€1 =+ ¢
17 Z%p
or €5 =+ Egp (2.7)

where 81, €9, and &5 are the principal strains. Conversion
of these equations to equivalent principal stresses is also
shown in Figure 2.2. As can be seen, when g1»»0g OTr
Oo>» 07, both theories give approximately the same results.
Since the stress fields in the parts to be analyzed meet
this requirement, the use of the maximum strain criterion’ is
justified for this study.

The maximum strain criterion can also be extended

along the stress-strain curve to predict subsequent changes
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in modulus and finally the fracture.

The principal strains used in Eq. 2.7 can be obtained

from the following equation:

Extey

€x-€
SR N S BT

xy)? (2.8)

A similar equation may be used to obtain principal stresses.
With the basic continuum equations developed here, a

suitable procedure must be employed to obtain a solution.

II.2 The Finite Element Approach

The finite element method (FEM) is employed to solve
the elasticity equations for each increment of load. Only
a brief discussion of the method will be presented here;
however, for a more thorough presentation, see Ref. 12.

The basic element used in this study is the standard
constant strain triangle (CST) shown in Figure 2.3. The
element has a total of six displacement degrees of freedom,
one in each direction at each of three nodes. The displace-
ment field is approximated by the linear relation of the
form

U= Yu (x,5), V=) viWi(x,y) (2.9)
where u;, v; are the nodal values of the deflections (at
node i), and the 4&'5 are element interpolation functions,
given by

Wi = ;-A(Gi + Bix + V.y) (2.10)
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Figure 2.2. Maximum Strain and Von Mises Yield
Criteria.
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where A= area of the triangle,
a;i= X3y ~ kaj’ Bi =75
(xj,y4) are the coordinates of node i.

Combining Egs.

3
ou oWi
E. === z U ——
X Ox i=1 1dx
_dv 2w
by =%y = ;zi Vidy
éu bv - oWi
%( ) = % (E U 35
In matrix form
_ -
b'-l»’l o¥s [o) )
SXX\ dx 0 Ox 0 O0x
0P Ay a¥
8YY = Oy oy dy
/ oW1 OW, oWo OW5 W3 W3
28y dy ox Oy 0Ox Oy 0x
i

18] ful

The governing equations for this

= Ve ¥i T %

(2.4) and (2.9) gives:

- X., and
J
(2.12)
3
oWi
ééﬁ i 3%
uj
1
ug (2.13)
v2
u3
v3

element are derived

from a minimization of potential energy (I) for the system.

é[ d v+ Force Terms
vol

since fromEq. (2.3) (in matrix form)

(o}= [l {ey

(2.14)

(2.15)
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I1=3% {sF[E]{s} dv + Force Terms (2.16)
vol

and substituting from Eq. 2.13,
I= %}r {llF[B]T[E][B]{u} dv + Force Terms (2.17)
vol

Applying variational methods to this equation to minimize

I (8I=0) results in the governing equation for this system.

- ]

is the force vector, [K] is the stiffness matrix,

u (2.18)

where ;F

and {u; is the displacement vector. The form of [K] results

from the variation of Eq.(2.17)and is given as
(x] =f [B]T[E][B] ov (2.19)
vol
which for the CST element becomes
[£] = [8]T[e][5] at (2.20)
where A is the area and t is the thickness.

The procedure then becomes to assemble the stiffness
matrix [K], element by element. These are used to assemble
the global stiffness matrix for the entire system. Boundary
conditions must be applied to the assembled system of equa-
tions of the form of Eq. (2.18) before these equations are
If strain or stress values are desired

solved for (u;.

Eq. (2.12) and Egq. '(2.3) may then be applied..

This procedure is then automated, and the analyst only
need describe the geometry in terms of elements and nodes
and boundary conditions.

The programs that incorporate this development are

described in the next chapter.



CHAPTER III

FINITE ELEMENT FRACTURE PROGRAMS

III.1 Introduction

Three two-dimensional plane stress finite element pro-
grams are developed herein to predict yield and fracture
under monotonically increasing loads. These programs are:

1. TFRACTURE: This finite element program is devel-
oped to analyze point loaded tensile and notched specimens.
Engineering stress-strain relations are used; however, the
model geometry is not updated during each load increment.

2. PANEL1: This program is a modification of FRAC-
TURE and is used to analyze uniformly loaded panel specimens.

3. PANEL2: This is a modification of PANEL1 which
uses incremental geometry changes and true stress-strain
relationships.

Input was obtained from a mesh generation program,
and all input data was plotted as a check for errors. All
of the programs were run on the University of Oklahoma's

Merrick Center IBM 370/158 computer.
17
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The programs contained in this work are not optimized

or even necessarily efficient from the programming point of

view.

I11.2 Formulation

The basis of the formulation of the programs developed
herein is that each element of the finite element mesh has
its own material properties (modulus and Poisson's ratio)
based on its state of strain. These "local" properties
should approximate those of the actual structure. Further-
more, these properties will be those of a uniaxial tensile
test specimen of the same material under the same state of
strain; that is, when an element has a principal strain
equal.to the uniaxial yield strain of the material, the ele-
ment yields (changes tangent modulus and Poisson's ratio).
In a similar manner, an element fractures (changes modulus
to zero) when its maximum principal strain is equal to the
strain at which the tensile specimen fractures.

To apply these concepts to an operational program, it
is necessary to have the entire stress-strain curve from
the elastic region all the way to fracture (while stress-
strain curves are readily available, strain at fracture is
not). The stress-strain curve is then divided into a series
of linear segments as shown in Figure 3.1. From this lin-

earized curve, values for modulus are obtained as
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Figure 3.1. Linear Approximation of a Stress-Strain Curve.
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0i - 0i-1
E. = —m———— =
S~ Rl oF P | (3.1

where 0; and €; are the engineering stress and strain, res-
pectively.

The values of Poisson's ratio () in the plastic
range were calculated from the equation given by Bert, Mills,
and Hyler13 as proposed by Nadai:14

H=3 - (3 -p)(Eg/Ee) (3.2)
where Yo is the elastic Poisson's ratio, Eg is the secant
modulus, and E, is the elastic modulus. For any section,
the secant modulus is taken as the average stress in the
interval divided by the average strain in that interval;

that is,

i + 0i-1
Eg, = 21~ “1-1 3.3
Sl si -+ si—l ( )

Therefore, the incremental Poisson's ratio (4i) becomes

=3 - (2 —ye) (Oi *0i-1)

Hi Ee  (8; *+ gi_1) (3:€)

These material properties along with the terminal
strains (€;) for each interval are stored in the program
and referenced by an element material pointer. The proper-
ties for a fractured element are also stored, with the tan-
gent modulus set to zero and Poisson's ratio equal to 0.5.
As an example Table 3.1 gives the tabulated steel and alum-
inum properties used in the program FRACTURE.

With the material properties tabulated and referenced

by strain level, the material nonlinearity of the problem
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TABLE 3.1
EXAMPLE OF TABULATED MATERIAL PROPERTIES

Pointer Region Ej H; €5
1,1* Elastic 29000000. 0.318 0.00200
1,2 Elastic 10500000. 0.313 0.00472
2,2 lst yield 1183000. 0.375 0.00753
3,2 2nd yield 462000. 0.443 0.01814
4,2 3rd yield 271000. 0.467 0.03286
5,2 4th yield 152000. 0.484 0.07817
6,2 5th yield 65000. 0.491 0.14291
7,2 Fracture 0. 0.500 999.

*First #=Region, Second #=Material (1=Steel, Z2=Aluminum)

is approximated by considering the structure to be analyzed
as a composite of a finite number (n) of elements with ap-
propriate properties. At the start of the analysis, the
entire composite is assumed to have the same properties
(those of the elastic portion of the stress-strain curve).
As the load increases, one element (say the k-th element)
will reach a total principal strain value equal to the yield
strain. This k%D element's properties (modulus and Pois-
son's ratio) are modified; therefore, the composition of

the structure is n-1 elastic elements and one element with
a reduced (plastic) modulus. Since the response of each

element is again linear, the usual elastic finite element
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analysis can be used until another element yields or the kth
element reaches the strain at which mext modulus change
occurs. The process is repeated until at least one element
fractures. The total load to this point is the sum of the
incrementally applied loads, and the total deflections at
any node are the sum of the incremental deflections.

At fracture, the procedure described above must be
modified, since the loads carried by the fractured element
to this point must now be carried by the remaining structure.
In Ref. 10 and 11 the crack is advanced by removing the con-
straint at fhe fractured node and redistributing the force
on that node to the remaining nodes along the appropriate
line of symmetry; however, as Millerllpoints out, there is
no obvious rationale which appears to govern the redistri-
bution, while the effects of the redistribution method are
significant. In the present program, a new and completely
general procedure is applied. When an element reaches the
strain for transition to fracture, the structure is unloaded
following the elastic response of the unfractured specimen
while retaining each element's progress along the stress-
strain curve. It is then reloaded with the fracture sur-
face extended. Any effects due to compression during this
unloading are ignored since the actual structure never under-
goes this unload reload cycle. If the main diagonal stiff-
ness coefficient corresponding to a node is reduced to zero

(the node is unconnected) as a result of a modulus change




at fracture, the node is constrained.

If another element fractures before the maximum load
is reachieved, then the crack growth is unstable but may be-
come stable again if the load subsequently increases over
the previous maximum fracture load. Figure 3.2 illustrates
this procedure for a stress-strain curve with 3 linear plas-
tic regions. A sample mesh at a crack tip is shown in
Figure 3.2 along with four sample elements nuﬁbered. The
bottom four curves.are plots of typical stress-strain res-
ponses of the four elements as load increases. Numbers
along the curves indicate the load level at that point. At
level 1, element 1 at the crack tip enters the first yield
region. There is less stress (strain) concentration at the
other three elements; therefore, they advance only partially
along the elastic portion of the curve. At load level 2,
element 1 changes modulus again, even before any of the
other three elements have yielded for the first time. The
load continues to increase to level 3, at which point the
principal strain of element 2 indicates it has reached the
transition strain for first yield. This continues through
levels 4, 5, and 6. At level 7, element 1 has reached the
fracture strain. The entire model is then unloaded (arti-
ficially). The modulus for element 1 is set to zero and
reloading begins with all unfractured elements having an
elastic modulus. Stress remains at the unloaded value for

element 1, since all incremental stresses are zero. Strains
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Figure 3.2. Typical Element Response, "Zero Modulus-Unload Reload" Method
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for element 1, however, continue to increase. At level 8
element 4 changes modulus for the first time. At level 9,
thé stress and strain, but not the load, at element 2 equals
the equivalent values at level 7. Here the element's prop-
erties, just at the elastic values, return to those of yield
zone 2. Elements 3 and 4 retain the elastic modulus and
Poisson's ratio. At level 10, element 2 enters the 3rd
yield zone and at 11, element 4 enters the 2nd yield zone.
At level 12, element 2 fractures and the structure is again
artificially unloaded. Note that element 3 properties have
remained elastic since element 1 fractured. At 13, reload-
ing has begun but at a slower rate for element 3 due to the
low strain behind the crack tip. If the load at level 12

is larger than the load at 7, then fracture at 7 is stable.
On the other hand, if load 7 exceeds level 12, then fracture
is unstable. This process continues until the stiffness
matrix is no longer invertable.

The '"zero modulus-unload reload" method just described
has the following advantages over the nodal release-load
redistribution approach of Ref. 10 and 11:

1. The method of redistribution is not arbitrary,
but based on cracked specimen geometry.

2. Failures can occur anywhere in the model. With
sufficiently small elements, the zero modulus elements act
as the crack. Not only is the nodal release method incap-

able of predicting general crack growth, it is specifically
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restricted to the study of fracture along axes of symmetry.

3. The "zero modulus-unload reload" method described
herein is element oriented, whereas the load redistribution
method is node oriented. Since only deflections are speci-
fied at the nodes and stresses and strains are specified
over the elements, stress or strain data must be arbitrarily
distributed to the nodes in the load redistribution method
so that the failure criteria may be applied.

The current method does require the eitra time used
to unload and reload the structure.

This study uses maximum strain criteria both for
yielding and fracture. Newmam© and Miller et al.llboth use
maximum strain for fracture, but use von Mises criteria for
yielding. A problem with the stress formulation of von Mises
criteria is that not all practical materials ( for example
mild steel) have unique strains for a given stress. Thus
if the material stress-strain curve is as shown in Figure 3.3,
and one linearized section is taken from a2 to b, then the
modulus for section ab is zero. The incremental stress for
an element with properties in this portion of the curve will
always be zero. Therefore, under the stress formulation of
von Mises criteria, the stress will never advance past point
b. This problem could be circumvented by reformulating
von Mises criteria in terms of strain.' Since the specimens
for this study were uniaxially loaded and the minimum stress

was low compared to the maximum stress, maximum strain
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criteria and von Mises criteria are very similar, and there-
fore, this reformulation was not attempted. It should be
remembered, however, that for geometries and/or loadings
which result in approximately equal principal stresses, the
principal strain criteria used in this program will intro-
duce significant error.

As described in Chapter II, the programs developed
here utilize a standard constant strain (linear deflection)
triangular element, CST, under plane stress conditionms.

This element enables the use of a large number of elements
in a given area with minimum storage requirements and mesh
refinement is easier to accomplish. The predicted rate of
crack growth must be independent of the element size (crack
growth of 0.001 inches cannot be predicted using elements
with sides 0.1 inches long); therefore, many small elements
are needed along anticipated crack paths. If higher order
elements (e.g., the linear strain triangle) are used in such
a dense mesh, storage requirements become excessive. There-
fore, the simplest two dimensional element (the CST) is used.

In the experimental procedure, the tensile specimens
are loaded through a steel pin in the center of the head of
the specimens. To realistically simulate this composite
structure, the finite element analysis includes the pin as
part of the system. One half of the pin is divided into
six elements in the one quadrant models, and a full pin is

divided into twelve elements in the half specimen models.
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A unit load is applied to the center of the pin to distrib-
ute the load. In programs PANEL 1 and PANEL 2, the load is

uniformly distributed to the nodes along the edge of the

panel.

IIT.3 Description of the Computer Programs

Each of the three programs consists of a main program
and six major subroutines as shown in Figure 3.4. Subrou-
tines FAIL and CHANGE are the only routines not common to a
standard elastic finite element analysis. Appendix I con-
tains a listing of FRACTURE with significant differences
between FRACTURE, PANEL1, and PANEL2 discussed in this
section.

The main program first calls IREAD, which reads in the
geometric description (nodal locations and element conduc-
tivity) from the mesh generator as well as the nodal con-
straints. IREAD also prints out the data as a check on
proper input.

The subroutine PROP sets up the material property mat-
rix. This matrix contains the modulus, Poisson's ratio, and
strain for next transition indexed by a pointer and type of
material. Recall that programs FRACTURE and PANEL use mater-
ial properties that are based on the engineering stress~
strain relation while program PANEL2 uses the true stress-

strain relation. The subroutines IREAD and PROP are called
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CALL IREAD
(READ IN MESH DATA)

CALL PROP
(ESTABLISH MATERTAL
PROPERTY TABLE)

CALL ASSEM
(ASSEMBLE THE
GLOBAL STIFFNESS
MATRIX)

\ {

CALL SOLVE1
(SOLVE CONSTRAINED
STIFFNESS MATRIX
UNLER UNIT LOAD
FOR DEFLECTIONS)

CALL FAIL
(FIND NEXT ELEMENTS
TO YIELD OR
FRACTURE AND
LOAD INCREMENT)

CALL CHANG
(UPDATES MATERTAL
PRCPERTIES FOR
FATLED ELEMENTS)

CALL STIFF

(COMPUTE ELEMENT
STIFFNESS MATRIX)

CALL ENDRY
(APPLY NODAL
CONSTRAINTS)

STIFFNESS MATRIX
NOT INVERTABLE

Figure 3.4. Flow Chart for the Program FRACTUEE.
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only once in the program and no further reference is made
to them later in the program.

The subroutine ASSEM assembles the element stiffness
properties to obtain the global stiffness matrix, GSTIF.
For each element, ASSEM calls STIFF which calculates the
element stiffness matrix. The global stiffness is stored
in a banded form in the interest of storage and computational
efficiency. The appropriate boundary conditions on the
nodal deflections are then applied by calling the subroutine
BNDRY. Finally, a check is made to insure that no main di-
agonal terms are zero. This occurs if the stiffness con-
tribution of each element touching the node is zero; if
any diagonal term is zero, the node is condensed out by
BNDRY.

Subroutine SOLVEl solves the banded system of equa-

gF€ = [K] éu
t
for the unknown displacements ;uz. Here

)

force vector and [K] is the global stiffness matrix. The

tions,

(3.4)

Fg is the nodal

program was originally developed using a Gauss-Seidel iter-

ative solution technique since [K] and

u€ change very little
from load increment to increment. This eliminates the need
to reassemble the stiffness matrix for each load increment.
For a small mesh, the iterative method converged rapidly

for the first few iterations, but the time required for accu-

rate solutions greatly exceeded that required for the Gauss
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elimination method. As a result, the Gauss elimination
method was used exclusively in this study; however, for the
very large meshes used in the following chapters, this iter-
ative scheme may deserve more attention. When the specimen
fails, the stiffness matrix is no longer invertable and the
computation is terminated. The load matrix for FRACTURE
consists of a unit load applied to the center node of the
pin (used to distribute the load to the specimen) in the lon-
gitudinal direction. ZFor the PANEL programs, where the
specimen is uniformly loaded, the unit load is divided be-
tween the top five nodes of the specimen in ratios of 1/8,
1/4, 1/4, 1/4, and 1/8 starting from the edge node. Double
precision is used in this subroutine and throughout the pro-
gram to reduce roundoff errors.

Subroutine FAIL is the first non-standard subroutine
of FRACTURE; i.e., it cannot be found with the usual finite
element analysis programs. First, FAIL calculates the unit
strains in the x and y directions along with the shear
strains for each element. These are a function of the de-
flections calculated in SOLVEl. The first time through
FAIL, all elements are in the elastic range and the initial
strains are zero. Therefore, the principal strains for a
unit load are calculated and the load at first yield is
taken to be the tabulated strain at first yield divided by
the maximum principal strain for a unit load. Next, the

unit strains are multiplied by the calculated load to obtain
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the total strains for each element at first yield.

For subsequent calls to FAIL, the total strains for
each element are not zero and their directions are not the
same as those of the incremental strains. This makes di-
rect calculation of the next yield or fracture load impos-
sible; therefore, an incremental scheme must be used to
predict the next load increment. This is accomplished by
storing the next strain for modulus change for each element
in an array called ECH, and calculating the incremental
principal strain (DEPR) and total principal strain (EPRI).
If the incremental principal strains are in the same direc-
tion as the total principal strains, the incremental load

(LI) for the next failure is given by
LI = ( ECH - EPRI )/ DEPR (3.5)

Since EPRI and DEPR are not in general in the same direction,
Eq. (3.5) is only an approximation. This calculation is

made for each element and the smallest load increment is then
used as the trial load increment which will cause the next
element to change modulus. In order to reduce the compu-
tational time, this increment may be increased to cause

more elements to fail for each solution of Eq. (3.4). With
the incremental load now calculated, the total strains are
set equal to the previous total strains plus the incremental
strains times the incremental load. The total principal

strains for each element are then calculated and compared
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with the tabulated strains for next modulus change. If no
elements exceed the next change strains, the incremental
strains are again multiplied by the incremental load and
added to the total strains. The principal strains are again
calculated and are compared to the tabulated values. The
cycle continues until at least one value of the tabulated
maximum allowable strain for the interval is exceeded. All
such elements are printed along with the new total load and
the corresponding property intervals. If only yielding has
occurred, control is returned to the main program. If frac-
ture has occurred, the total strains are reduced by the elas-
tic response due to a unit load times the total load at frac-
ture, and then control is returned to the main program.
Subroutine CHANG was originally conceived to update
the global stiffness matrix for failed elements in conjunc-
tion with the SOLVE (Gauss-Seidel) iterative routine. Since
the entire stiffness matrix must now be regenerated (because
it is changed during the Gauss elimination in SOLVEl) for
each pass, the function of CHANG has been reduced to up-
dating the material pointer for failed elements. Element
thickness was also updated in CHANG for the PANEL2 program.
The program continues to cycle from ASSEM to SOLVEL
to FAIL to CHANG until the stiffness matrix can no longer

be inverted or the program exceeds the estimated time limit.



CHAPTER IV

CRACKED PANEL ANALYSIS

IV.1 Introduction

After the present study was undertaken, and the FRAC-

11 on frac-

TURE program was completed, the article by Miller
ture prediction became available. Miller's work raised two
questions pertinent to the present study. First, can the
present program improve on Miller's prediction of fracture
load, and second, can the program accurately predict the ex-
perimental results presented by Miller?

To answer these questions and to determine the parame-
ters that effect FEM fracture prediction, a modification of
FRACTURE, called PANEL1l, was made. The essential differences
between FRACTURE and PANEL1l, the method of load application
and the size of the incremental load steps, are minor. A
third program, PANEL2, used true stress-strain relations

and updated geometric coordinates and element thicknesses

for each load increment.

35
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IV.2 Finite Element Analysis

Due to the geometric and loading symmetry of the panel,
only one quadrant of the panel is used in the finite element
analysis. TFigure 4.la shows the dimensions of the 0.10",
2024-T3 aluminum test panel. A nonuniform finite element
mesh of the panel is shown in Figure 4.1b. To predict the
response at the crack tip more accurately, further refine-
ment was made there, as shown in Figure 4.lc. The crack-
tip portion is blown up in Figure 4.1d to show the mesh de-
tails. The stress-strain curve data for the material was
obtained from published datal®. Some error is introduced by
this selection since the exact material properties are not
known. The stress-strain curve was then divided into one
elastic and three linearly plastic regions. The panel was
first analyzed using a coarse mesh. Subsequent refinements
of the mesh were made at the crack tip. The loads predicted
by each of these meshes are shown in Figure 4.2 as a function
of the minimum element area at the crack tip. Entry into
each plasticity region of the stress-strain curve is shown
by the lower three curves with initial fracture and final
fracture shown in the top curves. The horizontal line repre-
sents Miller'sll experimental results. The elements on the
right side of the figure are too large to predict stable
fracture; therefore, only initial fracture is shown in this
area. As can be seen in the figure, as element size becomes

smaller at the tip, the load at entry into each of the
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plasticity regions decreases, and the predicted final frac-
ture curve converges to the experimental value. Note that
there is no significant difference in the present solution
and that of Miller's for equivalent mesh sizes. The large
differences between Miller's experimental and numerical re-
sults appears to be due solely to the refinement of the mesh.
While the methods do appear to have similar accuracies, it
should be remembered from earlier discussions that Miller's
method only applies to failure along lines of symmetry, and
load redistribution procedures are arbitrary.

For stable fracture prediction, the mesh not caly
needs to be refined at the crack tip, but also along the
projected crack path. The element meshes for the data
shown in Figure 4.2 are basically the same except for re-
finements at the crack tip. The mesh shown in Figures
4.1c and 4.1d, however, is refined along the entire path
of anticipated stable fracture. While the element size at
the crack tip is larger for this fine mesh than those at
the extreme left of Figure 4.2, the predictions are more
accurate as can be seen in Figure 4.3. This refined mesh
also predicted the crack growth as a function of load as
shown in Figure 4.4. While no experimental data is available
to confirm these predictions, it is interesting to note that
each increment of crack growth advanced over several nodes.

Element orientation also plays a role in fracture load

prediction. Figure 4.5 shows one example of this effect.
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This difference in element orientation accounts for the
slight upswing near the middle of Figure 4.2.

Finally, the program shows the material state of each
element as the load increases. This data is plotted at se-
lected load intervals in Figure 4.6. Part (a) shows the
initial formation of the plastic zone at a load of 10,000
pounds. As the load increases to 20,000 pounds (Part (b)),
the region of the specimen with properties in the first
plasticity section increases and a small region in the
second and third sections begin to form at the crack tip.
Part (c) shows the expansion of all three regions just prior
to initial fracture. One quadrant of the specimen is also
shown in (c¢) to indicate the relative size of the plasticity
zones. Tigure 4.6d shows the plasticity zones after a sig-
nificant amount of stable cracking. Note that after initial
fracture and unloading, an element may go directly from an
elastic response into any of the plasticity sections depend-
ing on its previous progress along the stress-strain curve
(strain hardening). Note also that the plasticity zo;é is
still increasing in size as the crack advances. In Figures
4.6e and 4.6f the plasticity zones move partially outside
the magnified area of the crack tip with the region shown
in Figure 4.6f being the plasticity zone at fracture.

PANEL2 was also used to analyze several panel meshes
to determine the effects of using true stress-strain and

updating specimen geometry during each load increment. No
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significant improvement was noted; therefore, only the engi-

neering stress-strain programs, PANEL1l and FRACTURE, were

used in the subsequent analyses.

IV.3 Cracked Panel Summary

The analysis of a centrally cracked panel under mono-
tonically increasing load using the modified finite element
program, PANEL, demonstrated that unstéble fracture predic-
tion using the FEM is highly dependent on the mesh size
at the crack tip. Additionally, the prediction of stable
fracture requires that a suitably refined mesh be extended
along the entire length of the anticipated crack growth.

For monotonically increasing load, accurate predictions
can be made using the engineering stress-strain relation and

initial specimen geometry.



CHAPTER V

TENSILE SPECIMEN ANALYSIS

V.1 Introduction

As mentioned in Chapter IV, the fracture prediction
programs require stress-strain data all the way to ultimate
load. This data is not generally published for the high
strain range. Even if it were, the scatter in properties
might introduce error into the analysis since published
stress capabilities are normally statistical minimums.
Therefore, the entire stress-strain curve was determined
experimentally for the 2024-T3 sheet from which experimental
specimens were fabricated. This data was converted to sec-
tional modulus and Poisson's ratio which were then used in
the program. Models of the tensile test specimens were also
run in FRACTURE to evaluate the effectiveness of the pro-

gram.

50
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V.2 Experimental Study

The stress-strain relation for the 0.125 inch thick,

2024-T3 aluminum sheet used in the fractured specimen analy-
sis (Chapter VI) was obtained from uniaxial tensile tests
on specimens whose dimensions are shown in Figure 5.1.
These specimens were loaded to fracture on a Riehle test
machine which provides calibrated load data. Pin to pin de-
flections for the specimens were obtained from a spring
loaded potentiometer attached to the pins. These deflec-
tions were recorded as a function of the applied load. The
resultant load-deflection curves are plotted in Figure 5.2.

The loads (L) were converted to engineering stress (o)

by dividing by the original cross sectional area (4g):
o =1L/ A (5.1)

Only pin to pin deflection data was obtained to avoid
damage to instrumentation when specimens were loaded to cat-
astrophic failure. It was therefore necessary to adjust
the pin to pin deflection (Dpp) to a gage deflection (Dg).
This was accomplished by selecting a two inch gage length
on the neck section and assuming that outside this region
the material remained elastic. An elastic finite element
program, based on published Young's modulus and Poisson's -

16

ratio, was then used to determine the relative elastic

deflections between the pin and a point on the gage boundary
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Figure 5.1. Tensile Test Specimen Dimensions.
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as a function of load. Calling this deflection D), the gage

deflection is approximated by
Dg(L) = Dpp(L) - 2.0 Dy(L) L (5.2)

The factor two in Eq. (5.2) results from there being two pin
to gage boundary regions. While, as will be shown shortly,
some plastic region exists outside of this gage region, the
error is considered small. This results in a strain (€) of
the form

€ = Dg/2.0 (5.3)
or, in view of (5.2),

€= (Dpp/2.0) - Dy L (5.4)
The resulting stress-strain curve is shown as the solid line
in Figure 5.3. Note that the strain at fracture was init-
ially determined from the 0.824 inch width specimen. The
stress-strain curve was then approximated by the six linear

sections as shown in Figure 5.3.

V.3 Finite Element Analysis

The finite element models from the mesh generator
program were run in the FRACTURE program to test its ability
to duplicate the load deflection curves which generated the
Stress-strain data used in the program. Figure 5.4a shows
the original coarse mesh and Figure 5.4b shows a medium
mesh. The medium mesh is refined in the area of the fillet

and pin sections. The fine mesh is used at the midsection
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Figure 5.4. Tensile Test FEM Models.



56

in both models in anticipation of fracture in this area.
Again, only one quadrant of the specimen was modeled due
to symmetry.

Figure 5.5 shows a comparison of the results of the
FEM analysis with the experimental loads and deflections.
For the 0.824 inch wide specimen (used to obtain the stress-
strain curve for the program), the results obtained from
both meshes are very accurate; however, the medium mesh,
with refinements in the pin and fillet areas, gives slightly
more accurate results in the elastic and fracture regions.
A further refinement of the mesh in the neck area was found
to have negligible effect on the results. The results ob-
tained for 0.759 inch wide coarse model shows good agree-
ment with experimental results except at fracture, even
though the material properties were obtained from the wider
specimen. When a medium mesh (results not shown for clarity)
was run for the 0.759" model, fracture occurread at approxi-
mately the same deflection as the 0.824" model, as opposed
to the larger deflection of the test specimen. This sug-
gests that, if the FEM analysis is assumed to be correct,
the difference in deflections at fracture for the two ex-
perimental specimens is not accurate; indeed, the difference
was traced to a slight anomaly in width of the 0.824" speci-
men. To compensate, the 0.824" load-deflection curve was
extrapolated out to the 0.759" deflection at failure, and

an adjustment, shown in Figure 5.3, was made to the program's
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stress-strain data. The medium mesh was then used in the
program with the new yield region 5 material properties.
Correlation with the experimental results was much better.
The remaining difference is most probably due to the fact
that the deflection at fracture should be higher for the
0.824" specimen than for the 0.759" specimen since there is
additional deflection in the elastic region for the 0.824"
specimen due to its increased load carrying capability at
fracture. The adjusted stress-strain curve was then used
for the fracture studies of Chapter VI.

Not only did the program demonstrate the ability to
accurately predict the load-deflection curves which generated
its material properties, it also yielded the following impor-
tant and useful data: First, note on Figure 5.5 that local
yvielding occurred well before yielding became apparent in
the load deflection curve. Second, the program provided
data on the progression of yield through the specimen. Fig-
ure 5.6 shows the smoothed yield response. Initial yielding
occurs at the fillet as shown in Figure 5.6a. At a load of
approximately 1000 pounds below the apparent yield, this
region spreads through the fillet area and begins at the
edge of the pin (while the yielding at the pin was con-
firmed by measuring the hole after fracture, the coarse-
ness of the mesh in this region may not have given an accu-
rate map of the yield zone). In Figure 5.6c, one element

at the fillet has moved into the second yield region, the
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fillet yield region has expanded, and yielding has begun on
the center axis. In Figure 5.6d, the neck area is almost
entirely involved in the first yield region. The two large
white areas in the neck are still elastic. In Figure 5.6e,
the entire neck is involved in the first yield region, the
second yield region at the fillet is expanding, and second
yield has occurred at the center axis. The second region
at the fillet is expanding in Fig. 5.6f, g and h with the
first yield region moving up to the base of the neck while
the first yield zore spreads at the pin. In Figure 5.61i,
third yield (dark aréa) is progressing in much the same

way as the second did in Figure 5.6f. Also in Figure 5.61,
the second yield region is entered at the pin. Figure 5.6j
and k show the further expansion of the third yield zone with
Figure 5.6(1) showing the beginning of the fourth yield re-
gion. The first, second, and third yield zones are com-
pressed toward the base of the neck as zone four expands in
Figure 5.6m and n, with the pin zone continuing to expand.
Fifth yield initiates from the center axis as shown in
Figure 5.6(0). In Figure 5.6p the pin zone increases fur-
ther along with the fifth yield region while zones one, two,
three and four are pushed further toward the base of the
neck. Initial fracture occurs in Figure 5.6q initiating
from the center axis and propagating unstablely to the edge
as shown in Figure 5.6r. Note that the FEM prediction for

fracture load is 99.5% of the experimentally obtained load.
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Third, as mentioned above, the FEM analysis predicted an
initiation and unstable propagation of the crack from a
point on the longitudinal centerline of the specimen. This
phenomenon was confirmed on the test specimens by placing
the fractured surfaces together and observing that the end
sections fit together while the center sections did not.

This is due to the increased plastic strain on the outer
sections after the center section failed and unloaded. Fail-
ure of mildly notched tensile specimens from the center axis
has also been reported by Drucker.l? Since initial yield
occurred at the fillet, and fracture initiated on the center
axis, it can readily be seen that fracture initiation loca-
tion can not be predicted by using the maximum elastic stress
location. Fourth, while the mesh was refined on the mid-
‘section in anticipation of failure along the centerline,

the FEM prediction showed that fracture occurred off the mid-
section centerline as shown in Figure 5.6r. Each of the
tensile test specimens also broke along a line off the cen-
terline. Figure 5.7 shows the location of fracture predicted
by the FEM analysis and as occured in the tensile tests.

The test specimens failed on a 45° line through the thick-
ness. This is the scatter band shown in the figure with

the experimental location shown in both the deflected and
undeflected geometries. Note that the FEM prediction indi-
cates that a perfect specimen would break into three pieces.
As can be seen, the FEM accurately predicts the failure loca-

tion.
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Finally, the load and deflection at fracture for both
the experimental test and the FEM analysis are shown in
Table 5.1. The load predictions for the medium mesh models
are extremely accurate (less than three percent for the
0.759" specimen and less than one percent for the 0.824"
specimen), and deflections are also a good approximation of
measured values (about four percent and one percent for the
two respective specimens). As previously discussed, accu-
rate prediction of Ifracture deflection is highly dependent

on accurate material maximum strain data.

V.4 Tensile Test Analysis Summary

The finite element program, FRACTURE, demonstrated
the following capabilities for the analysis of two tensile
test specimens:

1. Ability to predict load-deflection curves,

2. Ability to demonstrate the importance of local
material properties,

3. Ability to provide data on the complete field re-
sponse for the specimen, thus a better understanding of the
failure process,

4, Ability to predict fracture initiation location,
both with respect to the midsection and longitudinal axis,
and

5. Ability to predict load and deflection at frac-

ture.
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TABLE 5.1

COMPARISON OF EXPERIMENTAL AND FEM LOADS
AND DEFLECTION AT FRACTURE

SPECIMEN 0.759" 0.824"
TOAD DEFL. TOAD DEFL.
(1b) (in) (1b) (in)

EXPERIMENTAL 7180 0.3750 7580 0.3125

COARSE 6953 0.2928 7532 0.3035

MESH

PERCENT 3.16 21.92% 0.63 2.88

ERROR

MEDI UM 7015 0.3588 7539 0.3158

MESH

PERCENT 2.30 4.32 0.54 1.06

ERROR

* .
Based on uncorrected stress-strain data.



CHAPTER VI

CRACKED SPECIMEN ANALYSIS

V1.1 Introduction

The tensile test specimen analysis demonstrated the
effectiveness of the current method in predicting experimen-
tal behavior for mild stress concentrations and the panel
study showed that for sufficiently fine meshes, this method
can also predict load at fracture in specimens with severe
stress concentrations (cracks). Unfortunately, no experi-
mental deflection data was presented for the panel study;
therefore, the ability of the program to predict load de-
flection curves for severely notched specimens could not be
addressed without further testing. To obtain the needed
data, three tensile test specimens were notched and loaded
to fracture. Comparisons of this experimental data and the
finite element predictions were made and are presented in

this chapter.
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V1.2 Experimental Tests

The testing procedure for notched specimens was the
same as that rresented in Chapter V, and the three specimens
tested were made from blanks of the same dimensions as the
0.824" wide specimen of Chapter V. Sharp notches of lengths
0.008", 0.023", and 0.129" were then introduced in the blanks
on one edge of the neck at the centerline. The 0.008" and
0.023" cracks were obtained using an X-Acto knife blade,
and the 0.129" crack was machined on a band saw with the

final tip also being formed by an X-Acto knife.

Vi.3 Finite Element Analysis

Introduction of the single edge notch (SEN) in the
specimen removed one plane of symmetry necessitating the
use of a two quadrant finite element model. The overall
mesh is shown in Figure 6.la with details for the different
crack lengths shown in Figure 6.1b, c¢, and d.

Figure 6.2 shows the same type of result that was dem-
onstrated in Chapter IV, Figure 4.2; that is, the accuracy
of the FEM predictions of fracture load is highly dependent
on the element size at the tip of the crack.

The load deflection curves for two different size
elements are shown in Figure 6.3. Note that the shape of
the predicted curves are essentially the same. With large

elements at the tip, the CST elements can not model the large
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gradients at the tip, and therefore, the load and deflec-
tion exceed the experimental values. The slight upward
trend in the load for the finer mesh is due to the size of
the minimum load increments used to reduce the computational
time. As the mesh is refined, the computational time in-
creases due to increased band width of the stiffness matrix
and the increased number of nodes and elements. The compu-
tational time can be reduced by increasing the minimum load
increment; however, the predicted load and deflection at
fracture are affected since elements tend to remain stiffer
during the loading process.

The load deflection curves for the three different
size notches are shown in Figure 6.4. The results improve
as the crack size increases. This can be attributed to in-
creasing the minimum load increment to allow enough time to
advance the crack alcng the additional specimen width for
smaller cracks. Also the deflections are slightly low for
each given load. This same effect can be observed in Fig-
ure 5.5 for the tensile specimen coarse mesh. As discussed
in Chapter V, the tensile predictions were improved by re-
fining the mesh in the area of the fillet and pin.

Finally, the yield regions for a 0.023" initial crack
size are plotted for selected loads in Fibure 6.5. The
initial yield zone formation is shown in Figure 6.5a and b.
Figure 6.5¢c and d show the first, second, third and fourth

yield regions expanding outward from the crack tip. At the
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Figure 6.1. IEM Models of Cracked Specimens.
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(b) Detail of Mesh for 0.008 In. Crack m

-

(c) Detail of Mesh for 0.023 In. Crack

(d) Detail of Mesh for 0.129 In. Crack

Figure 6.1 (cont). FEM Models of Cracked Specimens.
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Figure 6.5b. Yield Regions, Load = 3020 LB.
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Figure 6.5c. Yield Regions, Load = 4000 LB.

Figure 6.5d. Yield Regions, Load = 4500 LB.

Figure 6.5e. Yield Regions, Load = 5000 LB.
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Figure 6.5f. Yield Regions, Load = 5000 LB, Overall Results.
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Figure 6.5g. Yield Regions, Load = 5200 IB.

Figure 6.5h. Yield Regions, Load = 5325 IB.

Figure 6.51. Yield Regions, Load = 5433 IB.
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load that corresponds to Fig. 6.5c, yielding also begins at
the hole. The first yield zone extends past the enlarged
area of the figure (as shown in Figure 6.5e) with the entire
specimen shown in Figure 6.5f for the same load. Figures
6.5g, h and 1 show the further advance of the yield zones

as load increases. At load level corresponding to Figure
6.5g, all five zones are present. In Figure 6.5h, the speci-
men has reached the load at which initial fracture occurs and
Figure 6.5i shows the zones just prior to unstable fracture.
Notice that the entire neck, except at the tip, is in the

second yield region.

VI.4 Cracked Specimen Analysis Summary

The FEM analysis of the sharply notched specimens des-
cribed in this chapter further verifies the abilities demon-
strated in the previous two chapters, and confirms the abil-
ity to predict specimen deflections for sharply notched

specimens.



CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

The finite element program developed during this study
has been shown to predict load deflection curves, load and
deflection at fracture, fracture paths, initiation sites,
crack growth, and stable or unstable crack propagation. The
accuracy of the method is highly dependent on the element
size along the crack path. The use of properly refined
meshes yields accurate results.

The method is completely general in that it can anal-
yze any two-dimensional isotropic structure subjected to
plane stress and uniaxial loading. The loading restriction
can be removed by substituting a failure criterion which is
more suitable than the maximum strain criterion. While this
method represents a valuable design tool for a limited class
of problems, it more importantly demonstrates the potential
of the finite element method for the direct prediction of
fracture. The current program required only minor altera-

tions to a standard plane stress finite element program to
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give accurate analysis of elasto-plastic fracture problems.
Since finite element programs have already been written to
analyze plane strain, three dimensional and thermal loading
problems, if similar modifications could be made to these
programs, then it would be possible to directly predict
fracture for these cases under monotonically increasing
load. The only restriction on this approach appears to be
the computer storage and computational time. These become
less significant as the program effectiveness improves, re-
finements such as substructuring are incorporated, better
solution techniques are found, and as computer capabilities
continue to expand.

The direct prediction of cyclic fracture would be an
even more valuable application of the approach contained in
this work. Again the basic procedures developed in this
study should apply with appropriate modifications.

Each of these capabilities needs to be verified, but
the excellent results obtained in the present study suggest
that the concept is valid and worthy of further development.

The rewards for such a work could be enormous.
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APPENDIX I

THE FINITE ELEMENT PROGRAM, FRACTURE

This appendix contains the finite element FRACTURE.

A sample of the program output is also included at the end

of the program.
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IHPLICIT REALSB(A-H.0-2Z)

OIMENSION X{NRMAXH) s YINRHAXH) ¢« NOOCNEHMAX s NPE) o VBDVY(100), 18DY( 100)
seeeREAD 12 DAYA FRON THE MESH GENERATOReces
READ(S¢900)ISTYPE s IDIV.DCRACK« WhBAR«DHOAR«WHTAP ¢ DTOP ¢ DHOLE «RHOLE s R
IFIL

FORMAT(I1+12:.0F8.4)

GO TO (162030400 1STYPE

WRITE(G.981)

GO ¥O0 &

WRITE(6.982)

GO TU 6

3 wRITE(6.983)

4
S

981

v82

983

A 217

985

902

15
930
931

GO YO S

WRITE(6+:984)

1101v=101VeB

WRITE(6:985)11ID0IV (WHBARyOHBAR e MHTOP sOTOPsRHOL Ee OHOLEsRF IL
FORMAT (1H1 048X +*MESH FOR FRACTURE STUDV® /7 ¢48Xe *SINGLE EDGE NOTC®
Je'H SPECIMEN'//)

FORMAT(1H1+48X+* HESH FOR FRACTYURE STUDY®,// 440Xe *DOUBLE EDGE NOTC®
le*H SPECIMEN'//)

FORMAT( 1) + 40X s* NESH FOR FRACTURE STUDY?® 4// +48Xe *90 DEG EDGE NODOTC*
Le®H SPECIMEN'//)

FORMAT(1H] ¢40X ¢®* HESH FOR FRACTURE STUDY®*,.// 048X *ASSYHH EDGE NOTC®
1e*H SPECIMEN'//)

FORMAT (1t 515X ' DIVISIONS AT CENTER SECTION = %413,

1% DAR HALF WIOTH = ® FB8e80%y BAR HALF LENGTH = '3FB8+¢40¢//¢16Xe
20TOP HALF WIDTH = *,F8e4¢%¢ TOP LENGTH = *eFBede *e HOLE RADIUS =¢
30 *FDeds*y LOCATIUN FROM THE TOP = *9FB8ede //¢16Xe 'FILLET RADIU®
A0S = SoFBeAs///)

HEAD(S+932)NNM

WRITE(LsDI2)NNMN

FORMAT(IH o*'THE NUMBER OF NODES = ®414,//¢1H 30 *NODE®eOXe?*X?*,13Xe
10V ,12X)/)

NMENNM~2

00 15 1=l eNMe3

READ(HLe930) NoXIN) o YINIeNIoXINTDIoVINI) oNNNoXINNN)e YVENNN)
WRITE(G+s931INeXINIoVIN) e NToXUNID)eYINI)sNNNeXINNN) o Y{NNN)
CONT INVE

FORMAT(3(1442F1044))

FOURMAT(LH o3(J402(3XeEL25)08X))

NNN3INNM/3

NNN3INNN&3

IF(NNNeEQoNNM~1) READ(S¢ 930)Ne X(N) o Y(N)

LFC(NNNEQeNNM—L JWRITE(G6G+931 )N XIN) oY IN)

IFCNRNSEQoNNH-2) READC(S ¢ 930INe X NI o Y (N) o NI e X(NI)oYE(NI)
IFUNNNSEQeNNH=2)WRITE(Gs 931 INe XINIe YUNI s NI o XINI) o YINE)
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0037
0038
0039
0040
0041
00432
0043

0044
0045

0046

0047
0048
0049
0050
VoS
0052
0053

0054

0055
0050
0057
0058
0059
0060
o061l

0Jdo2
0063
0064
0065
00606
0067
0068
0069
0070
oo7i
oo7r2
0073

0074
0075
0076

932

$51

950

20

933
23

30

56
vo3
o1
908

99

N

READ(S5»932 )NEN

FORMAT(14)

NE=NEM-2

WRITE(G+951)INENM

FORMAT (/7 ¢ 1H + *THE NUMBER OF ELEMENTS IS *el4e/7/7)

WRITE{(6:950)

FORMAT 22X /77 ¢ ® ELEMENT CONNECTIVITY®,//,

BIXe3(7Xs*ELEM NOUDEL NODE2 NODE3*')M//)

00 20 [=1eNE3

READ(5+933)INEIoNUD(NEL ¢ 1) sNODI(NEL92) o NOD(NELe3)»
NE2 eNOD(NE2+1 ) e NUDENE2+s2) s NUD(NE293) 0

1
2 NEJeNODINE3#1 ) e NOD(NEI»2) o NUD(NEI+3)

WRITE(6¢93)NEL sNUODINEL o1 ) eNODENEL+2) s NODINEL ¢ 3)»
NE2eNUD(NEZ o1 ) e NODENE2¢2) s NDD(NE2+3) s
NEJIosNODINE3+ 2 s NOD(NEI»2) + NODINEI o 3)

FORMAT(1214)

FORMAT(2X 03(4AX24(2Xe14)e2X))

NE=SNEM/J

NE=NE ¢3

IFI{NEEQeNLM~1) READ(SeF3I3INEL ¢ NOD(NEL 1) ¢« NODI(NE 192) ¢ NOD(NEL 43)

IF(NEEQsNEN-1 IWRITE(G¢93) NEL ¢ NUD(NEL1+1)eNODINEL92) o NODINELI)

LIF{NE ¢EQeNEM=2) READ(S+93IINE]L o NOOC(NEL 1) ¢ NOD(NELe2) e NOOCNEL ¢33 )

ENE2e NGDENE2+ 1 ) s NODI(NE2+2) s NODENERs 3)

FF(NEEQeNEM-2IWRITE(L+93) NEL ¢ NOD(NEL 1 ) s NODENELs2) ¢ NOD(NEL e 3)»

INE2¢ NODINE2+ 1 ) sNUDENE2+ 2) s NODE(NE2+ 3)

ecesees COMPUTE THE HALF BAND WIDTHeceoooocosncee

NHDW=0

DO 30 N=1.HEM

00 30 §5=1.NPE

00 30 J=1.NPE

NR=( IAGSINUD(N+I )~NODE{NsJ ) ) ¢1 ) ¢NOF

IF (NHUWLToNW) NifUMSNW
PRINT 903 NHOW
eeeeREAD IN CONSTRAINTY DATAcvee

READ{S«901 )NHDY

WRITE(6900)HBDY

D0 S$6 £=1..NUDY

READ(S5¢901 )11+ IDGFI

WRITE(6:909)11,10,GF1

I00Y(1)=2( 1 I~1 )#NDF+1D

vBOY(1)=GF1

COUNT I NUE

NEQ3NNMONOF

FURMATE/Z7¢ * THE HALF BAND WIDTH IS *,15e/7/7)

FURMAT(2IS5+F10.3)

FORMAT(/7+2Xe *THE NUMBER OF CONSTRAINTS 1S *elBe//e3Xe

IS NGDE DIRECTION VALUE?® /)

FORMAT(2X 224 +6X0L0263XeF10e3)

RE VURN

END
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0042
0043
0044
0245

00406
0047
0048
0049
0050
0051
00s2
0053
0054
0055
0056
0057

120
130
140
150

170

900
180

CONTINVE

CONT LNVE

CONTINVE

CONT INUE

eseee IMPUSE BOUNDARY CONDITIONS ecceccece

00 170 1=1.NRDY

1E=1080VY(s)

VE=vVBDY (1)

CALL BNDRY (NRMAXsNCHAX s NEQ¢NHBMsGSTIFoGFolIEWWVE)
DD 180 I=1.NEQ

IF(GSTIF{lel)eNEDD)IGO TG 280

CALL ONORY (NRMAX s NCHAX o NEQsNHBWeGSTIFeGF ek +0+0)
WRITE (6+900)1%

FORMATCIH »°ROW *o15¢* HAS BEEN CONSTRAINED®)
CONT INVE

RETURN

ENO
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o001

0002
0003
0004
000S
00006
0007
0008
0009

o010
0011
0012
0013
0014
0015

0016
0017
[ R ¥
0019
0020
o021
0022
0023
0024
0025
goz26
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038

0039
2040
004a1d
0042
0043
0044
0045

nnon

an

10

60

60

80

100

SUBROUTINE STIFF (NPE oNNe ELXVIELSTIFeEeANUIBETAsGAMALDET)
¢ NODIFICAVION BASED ON SUBROUTINE STIFF BY JeNe REDDY ¢

THIS SUBROUTINE CALCULATES THE ELEMENT mq—ﬁﬂzmmw MNATRIX

IMPLICIT REAL$B(A~H,0~2Z)

DIMENS ION ELXY(3e2)+ELSTIFINNINNIeX{3I) V(I

DIHMENSIUN U{(3+6)+8T(6¢3)¢STRII46)e0(3+3)

D I ME NSION GAMA(3)+BETAL3)

TE=06127

DO 10 I=143

00 10 J=1,3

0(leJ)=040

secee PLANE STRESS CASE(ISOTROPIC)escee

C1=E/(1 .0-ANUSANU)

0(1+13)=CY

0( 1e2)=ANUCC]

D{3:3)=0e5¢(10~-ANU)*C)

D(2s1)=D('142)

D(2¢23=D(3 1)

esese STIFFNESS MATRIX FUR CONSTANT STRAIN TRIANGLE CASEeseccoce

D0 70 i=1,NPE

X(1)=ELXY(Lel)

Y(I)=ELXY{1e2)

D0 60 K=1eNN

BCl+K)=0.0

CONVINUE

00 80 1=1.NPE

Jelet

IF (JeGTeNPE) J=Jy=NPE

K=Jed .

IF (KeGTeNPE) K=K-=NPE

BETALL)I=VLJI-YIK)

GAMALTL ) =X(K)~X(J)

CONT INUE

DET=X(1)8(V(2)=V(I)IeXC2)0(VLII~VIRI I+ X(I)e(V(L)~YL2))

0OU 100 1=l NPE

J=2s(1-1)¢1

L=2e8

Bl 1+ J)=UEVYA(L) /DEY

B(3sJI)=GAMA(1)/DET .

Bl2,1.)=GAMA(1)/DET

B8(3.L)=BETA(I)/0ETY

CONT INVE

FOR CONSTANT STRAIN TRIANGLE CASE THE STIFFNESS NATRIX IS EQUAL YO
K ®m AsT&(BT)I®(D)I® (D)

00 130 I=1.3

DO 110 J=] ¢NN

BY(Jel)=0.S5¢0ETSTOH(L+J)

CALL. HATMLT (De303:BeNNeSTR)

CALL MATHLT (BVYsNNe3 sSTRsNNI+ELSTIF)

HRETURN

END



0001

ooo02
0003
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0005
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0007
0008
0009
o010

ono

10

SUBROUTINE MATMLT (A:MeN+BsL+C)
¢ MNODIFICATION BASED ON SUBROUTINE NATHLT BY JeNe REODY ¢e
SUBROUT INE FOR MATRIX NJULTIPLICATION -
THES PROGRAN MULTIPLIES A (MsN) 8Y B(HeL) TO GIVE C(NeL)
INPLICET REAL®AG(A-H,0-2Z)
OIMENSION A(HeN) sBINsLIoCiMoL)
00 10 1=1+M
00 10 J=1,.L
ClleJ)=0e
00 10 K=leN
Clled)=Cllsd)eALlsK)I®*BIKeJ)
RETURN
END



0001

0002
0003
0004
0005
0026
0007
Qo086
0009
0010
0011
[ 1: ] ¥
0013
0014
0015
0016
0017
0018
0019
0020

[N N NN s W W2l

SUBROUT INE BNDRY (NRHAXeNCMAXe NEQeNHBW ¢SeSLeIE«SVAL)
% MOOIFICAYT IUN UASED ON SUHBROUTINE ONDRY B8Y JeNe REODY s

THIS PROGRAM IMPUSES THE PRESCRIBED ODUNDARY CONDITIONS ON THE

THE SYSTEM MATRIX(HBANDED SYNMETRIC MATRIX)

S IS THE SYSTEM MATRIX (STIFFNESS MATRIX)

SL IS THE LOAD VECTOR

IE IS THE LABEL OF THE VARIABLE THAT IS PRESCRIOED

SVAL IS THE VALUE OF THE PRESCRIBED VARIABLE

THPLICIT REALSB(A~H,0-2)

OIHMENSION SINRMAX ¢y NCHAX)

1 T=NHBW=1

1 =JE~-NHUW

DO 10 11=1e4T7

I1=1+1

IF (fe.LTal) GO TO 210

JSIE~L+)

S(L+J)=0.0

CONTINVE

S{IEel)=140

1=1E

00 20 1Ix=2.NHBW

I=1+¢1

IF (1.GT4NEQ) GO VO 20.

S(IEe11)=04.0

CONY INVE

RETURN

END
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20
30

8o
90

SUBROUTINE SOLVEL(NRHsNCNeNEQNS eNUWe BANDRHS)
¢ MNODIFICATION UASED ON SUOROUTINE SOLVE 8Y JeNe REDOY o8
THIS PROGRAM SOLVES A BANDED SYMNMETRIC SYSTEM OF EQUATIONS
THE OANDED MATRIX IS INPUT THROUGH BAND(NEQNS.NBW)
RHS IS THE RIGHY HANO SIDE (FORCE VECTOR) OF THE SVYSTEM
NEQGNS 1S THE NOe OF EQUATIONS(EQUAL TO ACTUAL NOe OF ROWS)
NBW IS THE HALF BANDWIDTH OF THE SYSTEM

EMPLICEIT REAL$8(A-H.0~2)
DIMENSION BAND(NRMoNCH) s RHS(NRN)
DD S 1=l +NEQGNS '

RHS(1)=0.0

RHS(2)=1.0

NEQNS=NEQNS~-1

DO 30 NPIV=1.HEQNS

NPIVOT=NPIVeD

LSTSUB=HPIVINBY~]

IF (LSTSUBGTJNEUNS) LSTSUB=NEQNS
00 20 HNROW=NPIVUTLSTSUS

INVERT RUWS AND COLUMNS FOR ROW FACTOR

NCCL=NROW~NPIV¢+]
FACTUR=0DAND (NP IVsNCOL)/DANDINP IVeL)
D0 10 NCUL=NROW.LSTSUD

ICOLSNCOL ~NROW ¢}

JCOL=NCOL-~NPIVEL

BAND (NROW ¢ 1COL )=BAND(NROW ¢ $CUL )~FACTOR$BAND (NPIV ¢ JCOL)

RHSI(NRUW) =RHS(NROW ) ~-FACTORORHS (NPIV)
CONT I NVE

00 90 1JK=2,NEQNS

NP IVENEUNS—L JK$2
RHSINPIVI=RHS (NP IV)/BANDINPIV, 1)
ALTHUUGH ZEROING ELEMENTS IN MATRIX.
LSTSUB=NP S V-NBW+]

IF (LSTSUB.LT.1) LSTSUD=]}
NPIVOY=NPLI V=]

DU 60 JKI=LSTSUBNPIVOT
NROUW=NPIVOT=-JKI+LSTSUB
NCOLaNPIV-NkOW+}
FACYOR=DAND(NROW s NCOL )

RHSINROW) *RHSINROW)~FACTOR®RHS (NPLEV)
CONT INVE

RHS{L )=RHS(LD/DAND(L 1)

RETURN

END

DONT BOTHER TO OPERATE ON TH

G6.
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0068
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[

30

70

960

150

20

23

22

970
100

CALL EXIT

NEF=})

TEF(NEF )=t

EMAX=EPRIN(IL)

CONT INVE

XLOAD=STRAINGL +2 J/EMAX

UT1=U(2) *XLUAD

00 70 I=74+NEM

EXT(1)=EX{I)eXLOAD

EYV(I)=EV{A)€XLUAD

EZTC1)=EZ(1)#XLOAD

GXYT(E)=GXY(1)9XLOAD

EXELUI)=EX (1) .
EYELCLI)=EY (1)

EZELCI)=EZ (1)

GXYELLI)=GXY (1)

CONT INUE

IF(ESTYPE.EQe2e0ReISTYPE+EQ¢3) XLOAD=XLOADS240

XLOADL=XLOAD

WRITE(6+90N)XLOADUTL

FURMAT (1H1 448X +*LOAD DEFLECTION HISTORY'e///¢1H +'FAILURE %,
100 INITIAL YIELO ) OCCURRED AT A LOAD OF *¢F12.2¢* WITH A %,
2°DEFLECTIUN AT THE PIN OF *+EL1245)

00 150 I=1.NEF

WRITE(6e930) 1EFL 1)+ IFV (L)

wWRITE(6+900)

RETURN

INCRE=D

eeee CALCULATE NEXT ELEHENTS TO YIELDe CHANGE HODULUS. OR FRACTURE
X1=1.0

NEF=0,

XFMIN=9999999,

esseAPPRUXKIHATE NEXT FAILURE LOADecsos

DO 22 L=7.NEM

IF(ECH(1) +EQ.99%.)GD TO 22

DEPR=¢5# (EX (1)I¢EY (1) #((EX (T)-EY (1))82¢(GXY (1)) 892)e¢0.5)
EPRI= eSO (EXTLIICEYT(LI0(CEXT(II-EYT(L))0S24(GXVF(L) ) 22)440.5)
XE=(ECHCL) ~EPRI)/0OEPR

IF(XF+LE.0+0)GD TO 23

IF(XF LT e XFHINIXFMINSXF

IF(IFTYPE.NE.11GO TO 22

EXEL(1)=EX(L)

EYEL(1)=EY(})

EZEL(A)=EZ(1)

GXYELLI)=GXV(1)

CONT INUE

XL INCR=XFMIN$S5 40

IF (XLINCR LT +500 JXLINCR=50,

WRITE(6+970) XL INCH

FORMAT(IH +*LOAD INCREMENT = *,E1245)

10UT=0

IF CINCRESNE .0 Xi=042

- L6



0087
(-1 2:1:]
0069
0090
0091
o092
0093
0034
0095
0096
0097
oo9a8
0099
ot00
o101
0102
0t03
03104
0105
0106
0107
o108
0109
0110
o111
o112
0113
aLla
0115
o116
o117
oits
o119
0120

0121
o122

o123

0124
o12s

0126
o127
o128
0129
0130
01312
0132
0133
0134
0135
21306
0437

83
51

82

;1)
a0

915

910

930

130
940

120

980

IFI(XLINCRGLY 2000)X1I=140

DO 80 1=7.NEM

ENAX=LECH(L)
IFISTRAINCIFT(I)e2)4EQ.999,0)G0 TO 80
EXTII)=EXTLL)+EX(1)SXLINCReX]
EYT(I)=EYT(IDIVEVII)®XLINCREX]
EZTUII=EZT(1)+EZ (L) XL INCReXI
GXYTLII=GXYT(L I+GXY (L1 )eXLINCReX]
EPLUS=EXT(1)+EVYT (1)
EMINUS=EXT(L1)—-EYT (L)
ESQRT=({EMINUS)* 23 (GXVYT (1) )982)400.8
EPRIN(1)=0.5¢(EPLUS+ESQRT)
EPRIN(2)=0.5%(EPLUS-ESQRT)
EPRIN(3)=EZ(1)

DO 81 11=1,.3

IFCEPRINCLIL) oL.Te.MAX)IGO TO B3
NEFINEF +3

10UT=]

IF (NEFsNE.301)G0O TU 82

WRITE(6+902)

DO 83 J=1,99

WRITE(G6+951)1IEFC(J)

FORMAT{1H +*ELENENT '913.° FAILED®)
CALL EXIT

TEF(NEF )=2

CONT INVE

CUNTINUE

ENCRE= INCRE L

IF{I0UT«EQ.0)GO TO 100
XINCR=INCRE~1
XINCR=XINCR® XL INCROX I +XL INCR
UTI=UTI4U(2)*XINCR

IFIVPE=0

IFCISTYPE eEQe2 ¢URGEISTYPECEQ«I )X INCR=XINCR®240

XLOAD=XLOAG#XINCR
WRITE(G6 915 )INEF

FORMAT(IH o139° ELEMENTS FAILED OURING THIS LOAD SYEP?)
MRITE(64910)XLOAD,UTY

FORMAT( 144 +'FAILURE (YIELD OR FRACTURE) OCCURRED AT A LDAD OF
1eF12e24* WITH A DEFLECTION AT THE PIN OF ?4,EL12.5)

DO 120 I=) NEF

IF(STRAINCIFTCIEF(1))1¢142)4E0.999.)G0 TO 130
WRITE(6.930)IEFC(I)IFTLIEF(T))

FORMATILM o*ELEMENT ®,154° VIELDED FOR THE %o i5., " TIME®)
GO TO 120 '

WRITE(6.940)1IEFL1)

FORMAT(LH +°ELEMENT *+15¢* FRACTURED®)

IFTYPE=] )

CONT INVE

MRITE(6.980)

FORMAT(//s1H +S3Xe" 0895000806 ,//)
IFLIFTYPEZEQ .0 )RETURN
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0138
0139

0140
o014t
0142

Q143
Q144
0145
01406
0147
o148
0149
0150
0151
o152
0153
0154
PISS
oL 56
0157
o158
0159
2100
olo1
0162
0163

950

147

145

140

IF(XLOAD T «FLOAD)IWRITE(6+950) FLOAD
FORMAY (/77 01H o' #845863 CRACK INSTABILITY OCCURRED AT A LOAD OF »,
IF12e240 #820839,//)

FLOAD=XLOAD

UTsUTI~VI1¢FLOAD

XL.OAD=0.0

esse UNLOAD SPECIMEN ALONG ELASTIC SLOPE sees
XSIVPE=1.0
IF(ISTYPE«LEQe24.0R.ISTYPEEQe3)XSTYPE:S
00 340 [=37.NEN
IF(STRAINCIFT{1)22)+EQe999.)G0 TO 145
D0 1487 [I=1eNEF

IF(IEF(11)+EQs1)G0O VO 148

CONT INUE
IF(STRAINCIFT( 1) s2) e REECHII)IGO TO 145
IF{IFT(1)eEQ]1 )GO TO 145
EPLUSSEXT(L)+EYT(I)
EMINUS=EXT(LI-EVYT(L)

ESQRT=( (EMINUSI#42+(GXYT L1} )e¢e2)080.5
EPRIN(1)=0.5%(EPLUS+ESQRT)}
ECH(I)=EPRIN(L)
EXTOI)=EXTLI)~EXEL{I)*FLOADSXSTYPE
EYTLLI=EYTLL)-EVEL(I )eFLOADSXSTYPE
EZTCL)SEZV (L )~ELEL(I)SFLOADSXSTYPE
GXYTLI)=SGXY(I)-GXYEL(1)$FLOAD®XSTYPE
CONT INUVE

RETURN

END
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0001
0002
0003
0004

0005
0d06
0007
0008
0009
ool0
0011t
ool2

85
80

SUBROUTINE CHANGUCIEF o IFT o NEFsNENNAX o ECHe STRAIN)

IMPLICIT REAL*B(A~H.0-Z)

DIMENS 1ON IFTINEMMAX) s ECHINEMMAX ) o STRAIN(10:2).1EF(300)
IMTYPE=2

sees UPDATES THE TANGENY MATERIAL LUCATION INDEX eaee

DO 80 N=l « NEF

IF(STRAINIIFTLIEF(N)I*L o2) sEQ 999 )IFT(IEF(N) IS IFTCIEF(N)) ¢
IF(STRAINCIFT(IEFIN) )o INTYPE) o NEECH(IEF(N)))IGO TO 85
IFTCIEFIN) ISIFTULEF(IN) ) #)

ECHUIEFIN) I=STRAINCIFTCLIEF(N) ) ¢ INTYPE)

CONVINUE

RETURN

END

001



HMESH FOR FRACTURE STUDY

OOUBLE EDGE NOTCH SPECIMEN

DIVISIONS AT CENTER SECTION = 8¢ BAR HALF WIDTH = 0e4320¢ BDAR HALF LENGTH = 4.5550

TAP HALF ¥WlDTH = 14970¢ TOP LENGTH = 209310 HOLE RADIUS = 05000+ LOCATION FROM THE TOP =

FILLET RADIUS = 0.6250 .

THE NUNMBER OF NODES = 226

NODE

]

LY

T
10
13
16
19
22
25
28
31
3a
37
40
a3
A6
49
52
s5
58
63
1Y
67
70
3
70
79
a2
as
1)
ot
94
°7

X Y NODE X v NODE X

0.0 0.30700D0 013 2 0.0 0357000 O3 3 O0e.25000D0 00
0.433000 00 00332000 01 ] 0.500000 00 0.30700D 01 6 0.433000 00
04250000 00 0.263700 01 8 0.0 . 0.257000 01} 9 0.43320D 00
04250000 OO0 0263700 01} 11 000 0.257000 01} 12 0.0

0.287000 0O 0376290 01 14 0.53030D0 00 0.36003D 0O} 15 0.69290D 00
Je 750000 CO 0307000 01 17 0.69290D 00 0.278300 01} 18 0530300 00
0.283700D 00 0.23773D 01 20 0.0 0.232000 O} . 21 0.48300D 00
0.59650> 02 00 29205D 01 23 0213600 0O 042170080 01 24 0.4790%0 00
0.213800 00 0.19950D 01 26 0.891200 00 0.28562D 01 27 0«74150D0 00
0.0 06418750 01 29 0.+42760D 00 0e41024D 01 30 0.790200 00
0.133240 014 24349760 01 32 04111750 01 0.307000 01 a3 0103240 01
0.79020D 0O 0.227900 01 335 0.42760D 0O 0.203760 O1 36 0.0

0.0 0.455500 01 38 0748500 00 D.455500 01 39 0.112270 21
04149700 01 04381250 (1 41 0.149700 01 0+.307000 O1 42 04149700 02
0eil12270 01 06195630 01 44 0.775200 00 0.19969D 01 4S5 0.597500 00
04419600 00 0.10308D 0O} a7 0.209900 00 0.178820 0} 48 0.0

0.14970D 01 0,455500 01 . 50 0+149700 01 04162400 01 51 O0.126470 01}
0.120647> O 0. 2850620 01 53 0+112270 01 0.232750 01 54 03090950 OO
04206000 00 0162400 V1 56 0.103000 00 0.162400 01 57 0.0

0103700 O} 0162400 01 59 04149700 01 0.328380 01 60 0.66200D0 00
0e14970D 01 0.285620 01 62 0.412000 OO 0.16240D 01 63 0.906100 00
0.849500 00 0.162400 01 o5 0.537000 00 0.16240D O1 66 0.623600 00
0.49570) 00 d+ 1311460 0L 68 04755700 0O 0.166710 Ot 69 0.5178%20 90
C.51780D0 QO 0.14677D0 01 73 0+55970D 00 0+140250 01 72 0.48580D0 00
0.4539%90D0 00 0.131150 01 74 0.40L3800L 00 0.124810 01 75 04412000 00
3309000 00 0.146770 01 : 77 0.20600D 00 04146770 01 78 0.103000 0O
00 0. 146770 01 . a0 0.412000 0Q 0131150 01 a1 0309000 00
0.20600> 00 0.131150 01 83 0.103000 0O 04133150 O} 84 0.0

00412000 00 0e13896D 01t 86 0.36050D 00 0.13896D0 01 ' 87 04432900 00
0360500 00 Oe 224410 O3 89 0.43150D 00 0.115520 01 90 0.309000 00
0257500 02 00123340 01} . 92 0309000 00 0+.107710 01} 93 0.25750D 00
04370400 OO 04999000 00 98 04370400 00 0947500 00 96’ 04309000 00

0206003 00 00115520 01 ou 0«303000 00 0135520 01 °9 0.0

A 4

0350300
00282000
0.282000
0.382000
0335700
0253970
0.294060
0.2280860
0.25314D
0.386020
0264230
04195250
0.41837D
0232750
0.191380
0.178820
0.328380D
0.16240D
0.162400
0+162400
0+181050
Oelo6770
0.154590
0.138%60
0.146770
0.146770
0.13115D
04131150
O0+.12481D
04123340
0107710
0+115520
0218520

14850

01
o1
o1
o1

o1
a1
o1
o1
ol
ot
o1
o1
o1
Gl
o1
o1
ot
o3
o1
o1
o)
o1
al
o1l
ot
o1
o1
o1
o1
01
o1
o1

10T



100
103
106
109
12
115
118
121

124
127
130
133
136
139
142
145
148
151

154
157
160
163
166
169
872
175
178
181

184
187
190
193
196
199
202
205
208
211

214
217
220
223
226

0370400
0.412000
0.210300D
04309000
0.0
0.206000
3.412000
0.,103000
04309000
0.0
0.30900D
0154500
0.0
0.30900D
0154500
0.0
0309000
0.15450D
0D
0.,30900D
0.154500
0.0
0.30900D
06154500
0.0
0, 309000
0.154500
0.0
0+32900>
0.15450D
0.0
0.,309000
0.15450D
0.0
0.309000
0. 154500
0.0
0.309000
0.15450)
0.0
0.309000
0154500
0.0

00
00
00
Q0

(1]
00
[o1+]
(1]

00
00

00
00

[+]s]
00

o0
00

00
00

00

o0

00

00
oo

00
[+1¢]

(]
00

0o
[+]*]

0,115%20 01
0.,999000 00
02999000 00
04896000 00
0.896000 00
0,79300D0 00
0690300 00
0,690000 00
0.587000 00
0. 587000 00
04535900 00
0+53553D 00
0.53550D 00
0.48190D 00
0+,481900 00
0,48190D 00
04428400 00
0»42840D 00
0. 428430 00
04374800 00
0.374480D0 00
0374800 00
0321300 00
0, 321300 00
04321300 0O
0.267700 00
00267700 00
0267700 0O
00214200 OO
0.21420D OO
0.21420D 00
0.160600 00
0160600 00
04160600 00
0.107100 00
0.10730D0 00
0.10710D0 OO
0+ 53500001
0. 53500D0-01
0535000-01
0.0

0.0

00

ThE NUMBER OF ELEMENTYS 1S 375

101

104
107
1
113
116
119
122
125
129
131
134
137
1430
143
146
149
152
155
158
161

164
167
170
173
176
179
182
185
188
191

194
197
200
203
206
209
212
215
218
221
224

04416900
0.309000
0.0

0206000
0.412000
0.10300D
0.+309000
0.0

0.206000
0.412000
04257500
0.103000
0+412000
0.25750D
0.103000
0.412000
0257500
0.103000
0.412000
0257500
04103000
04412000
0.257500
0.103000
04412000
04257500
04103000
0.432000
0257500
0.50300L
0.41200D
0.28750D
0.103000
0412000
0.257500
0.103000
0412000
0.257500
0.103000
0.41200D
0257500
0103000

00
00

00
00
oo
[ 14

00
o0
00
00
00
00
00
00
(]}
00
oo
00
00
00
00
00
oo
[+ 1]
00
oo
o0
o0
o0
00
oo
o0
00
oo
00
00
00
00
00
00

0.10771D 01}
0.999000 00
0«99S00D 00
04896000 00
0793000 00
0793000 OO0
0:690000 00
0.690000 00
0..587000 00
0.53550D 00
04535500 00
0.535500 00
0+48190D0 00
0.481900 00
0.481900 00
0.428400 00
0.42840D 0O
0.428400 00
0.+.3746800 00
0,37480D0 00
0.374800 00
0321300 00
0.32130D0 00
04321300 00
0.267700 00
0267700 OO
0.26770D 00
0.214200 00
0.21420D OO
0.214200 0O
0.16060D 00
0.16060D 00
O.16060D 00
0.107100 00
04107100 0O
0e10710D 0O
053500D0-01
0453500001
0.535000~-01
0.0

0.0

0.0

102
108
108
11
t1a
117
120
123
126
129
132
135
138
141
149
147
150
133
156
159
162
1686
168
173

174
177
180
183
186
189
192
19S
198
201

204
207
210
213
2310
219
222
22%

0,37040D0 00
0.20600D 00
0.412000 00
0.,103000 00
0.30900D0 00
0.0

0.20600D0 0O
0.412000 0O

"0+10309D 00

0.36050D 00
0206000 00
0.51500D~01
0360500 00
0,206%0D0 00
0.51500D0-01
0.36059D 00
0.20600n 00
0.61500D~01
0.36050D0 00
0.20600D 00
0.51520D0-01
04360500 00
0.20600D 00
0.515000-01
0.36050D0 OO
0.20600D 00
04515000-01
0.360500 00
0.206000 00
0.515000~01
0360500 0O
0.20600D 00
0.515000-01
0«36050D 00
0.20600D 00
0.515000~01
04360500 0O
0.206000 00
0.515000-01
0.360500 00
0.200000 0O
0.515000-01

0.10771D 01
0,99%00D0 0O
0.89600D 0O
0896000 00
0793000 00
0793000 00
0.69000D 00
0.58700D0 0O
0587000 00
0.535500 00
0535500 00
0535500 00
04481900 00
0.481900 00
0.48190D 00
0.42840D 00
0.42840D 00
0.428400 00
0.374800 00
0374800 00
0+374820 00
0«321300 OO0
0321300 0O
0+321 300 00O
0.26770D 00
0.26770D 00
04267700 00
0.214200 00
0.214200 OO
0.214200 00
0160600 00
0.16060D 00
0.16060D 00
0.107100 00O
0.107100 00
0.10710D0 OO
04535000~-01
0.535000-01
0.53500D0~01
0.0

0.0

0.0

¢0T



ELEMENT CONNECTIVITY

ELEM NODE1 NODE2 NODEJ ELEM NODE] NODE2 NODE3 ELEM NODE) NODER2 NKQADE3
1 1 3 2 2 1 L 3 3 1 5 .
4 [} 6 8 S 1 7 6 6 1 a8 7
7 2 3 13 8 3 4 14 9 4 S 15
‘ 10 S 21 22 11 9 10 18 12 10 (R} 19
13 2 13 12 14 3 14 13 18 4 15 14
16 S 16 15 17 ) 22 16 18 9 18 17
19 10 19 18 20 11 20 19 21 12 29 28
22 12 13 29 23 13 14 29 24 14 30 29
2s 14 a1 30 26 14 15 a1 27 15 16 31
28 16 32 31 29 16 206 32 30 16 17 26
3l 17 18 27 32 18 343 27 33 18 24 3%
34 18 19 24 35 19 20 23 36 20 36 23
37 28 38 37 34 28 29 36 39 29 30 36
40 30 39 k1) al 30 40 39 42 3o n 40
43 31 51 40 44 32 al 81 45 52 2 61
46 52 33 42 47 33 63 42 48 53 43 a2
49 as 39 49 50 39 40 9 S1 a2 43 60
o2 43 58 50 63 34 44 43 54 34 35 44
55 35 a5 44 6 35 a6 a5 57 35 a7 46
S8 2% 36 a7 59 36 48 47 &0 64 58 63
61 60 63 44 o2 60 44 45 63 60 L1 46
64 60 40 65 65 54 62 46 66 sS4 46 47
67 Sa 47 55 63 56 S5 47 69 56 a7 48
70 56 48 57 71 66 [} 60 72 65 69 60
73 69 [-1-3 60 74 71 66 70 75 a5 T2 75
76 74 67 73 77 76 62 64 78 76 k4 54
79 77 76 54 80 7 54 55 81 81 80 a6
az2 81 a6 76 a3 [: 3] 76 77 83 o2 -3} 77
85 77 45 $6 uo 78 77 56 ar 79 78 66
8y 79 56 57 oY o3 a2 77 S0 a3 77 78
91 83 78 79 92 o4 a3 79 93 [:1:) a0 al
94 v6 100 o8 v5 97 96 91 96 97 o1 a2
97 104 o4 102 Yo 92 102 96 99 93 96 97
100 1056 93 97 101 97 a2 a3 102 98 °7 a3
103 99 98 a3 104 99 83 84 105 106 105 97
100 106 o7 98 107 106 98 99 108 107 106 99
109 108 103 95 110 109 108 95 31l 110 109 104
112 110 104 105 113 114 113 108 114 114 108 109
115 114 109 110 116 115 14 110 117 1310 105 1006
118 11 110 100 119 112 1112 106 - 120 112 106 107
121 116 115 110 122 116 110 111 123 116 111 112
124 117 16 112 125 118 113 114 126 119 118 114
127 120 119 114 128 120 114 115 129 124 123 118

130 124 118 119 131 124 119 120 132 129 124 120

€0t



133
136
139
182
145
148
151

154
157
160
163
106
109
172
175
178
181

184
187
190
193
196
199
202
205
208
211
214
217
220
223
220
229
232
235
238
241

244
247
250
253
256
259
262
265
2068
271
274
277
280

120
122
126
129
131
133
135
138
140
141

142
144
147
148
149
151

153
154
156
158
160
161

102
165
167
168
169
171
174
175
176
178
180
181
143
185
187
188
189
192
194
195
196
198
201
202
203
205
207
208

115
16
121
123
124
125
126
120
139
140
133
136
1306
147
120
141
152
153
147
148
159
160
153
155
166
167
160
161
173
174
1067
168
179
180
174
175
186
167
100
182
193
194
187
1886
200
201
194
195
206
207

116
127
122
124
125
126
127
129
130
132
134
135
137
139
141

142
143
145
148
149
150
152
154
156
157
159
161

162
164
1606
168
169
170
172
175
176
177
179
181

183
1684
186
108
189
191

193
195
196
197
199

134
137
130
143
146
149
152
105
158
161

164
107
170
173
176
179
142
145
188
191
194
197
200
203
296
209
212
2195
218
221
224
227
230
233
230
239
242
245
244
261

254
2567
200
263
266
269

272

279
278
281

121
126
127
130
132
134
136
1398
140
142
143
144
147
149
150
151
153
156
187
158
160
162
103
165
to7
169
170
174
174
176
177
178
180
183
184
1895
187
149
190
192
194
1906
197

1986

201
203
204
2095
207
210

120
125
126
129
131
133
135
129
130
141
142
138
137
148
149
142
143
155
156
149
150
161
162
156
167
168
169
162
164
175
176
168
170
182
183
176
177
168
189
183
184
165
196
189
181
202
203
196
197
209

116
120
122
124
125
126
127
130
13t

132
134
136
138
139
141

143
164
146
148
150
151

152
154
157
158
159
161

163
165
166
168
170
171

173
175
177
178
179
161

184
185
186
1u8
190
192
193
195
197
198
200

135
138
141
144
147
150
153
156
159
162
165
168
171
174
177
180
183
186
189
192
195
198
201
204
207
210
213
216
219
222
225
228
23
23
237
240
243
240
249
252
295
260
261
264
267
270
273
276
279
282

122
126
129
131
133
135
138
139
140
142
144
145
147
149
151
162
153
156
158
159
160
162
165
166
167
169
7
172
174
176
178
179
189
183
185
1806
187
189
192
193
194
156
198
199
201
203
205
206
207
210

121
120
128
130
132
134
137
138
131
132
143
144
138
139
150
151
144
146
157
158
151
152
164
165
158
159
170
171
165
166
177
178
171
173
184
185
178
179
191
192
185
186
197
198
192
193
204
205
198
200

116
121
123
124
128
126
128
130
132
133
134
136
139
140
141
143
145
147
148
150
152
153
155
157
159
160
161
163
166
167
168
170
172
174
175
177
179
180
182
185
186
187
188
190
193
194
195
197
199
201

14028



203 210 201} 202
286 212 202 203
249 214 213 204
292 2156 214 206
295 236 207 208
294 219 209 210
3012 221 220 211
304 222 2213 213
307 223 214 215
310 225 2186 216
N3 6 22 21
316 35 34 24
319 2% as 23
322 32 51 31
325 52 41 32
328 100 1) ao
331 63 43 44
334 62 65 46
337 70 66 69
340 69 65 62
343 a6 as 75
. 346 73 o7 72
349 a0 as a6
352 a8 a7 80
355 103 101 102
358 102 100 26
361 91 90 33
364 93 o2 6
367 104 92 93
370 98 94 104
373 33 32 26
THE HALF BAND wWIOTH 1S 48

THE NUMBER OF CONSTRAINTS IS

NODE

1

2

8
1
12
20
28

OIRECTION

- s s e b e

VALUE

0.0
0.0
0.0
0.0
0.0
0.0
0.0

39

204
247
290
293
296
299
302
308
3908
311
314
nz
320
323
326
329
332
335
338
341
344
347
350
353
356
359
362
308
368
3
374

211
212
214
216
217
219
221
223
2249
225

35
36
S1
52
a3
63
68
7%
72
a6
80
a7
a9
102
96
91
24
105
109
27

210
203
204
2315
216
210
211
222
223
216
17
24
25
a1
61
34
58
58
70
73
75
73
74
74
101
a8
al
103
104
95
a3

285
288
291

294
297
300
303
306
309
312
318
318
321

324
327
330
333
336
339
342
345
348
3st

3sa
3as7
360
363
366
369
372
375

212
213
214
216
219
220
223
223
22%
226
17
23
a7
51
33
36

68
75
72
67
80
a7
89
102
90
26
104
95
1?7
34

211
212
205
206
218
219
212
213
224
22%
16
3s
3s
59
52
A3

64
69
70
71
T2
73
87
a9
1)
90
102
103
33
33

202
204
206
207
209
211
213
214
219
217
22
19
25
40
32
S3

60’

62
5
72
25
80
88
100
8l
91
92
94
26
27

S0l



106

oo
o°o
0°0
o°o
0°0
0°0
0°0
0°*0
c*0
o*o
0°0
c*o
0o*0
[ ]
0“0

c*o
0*0
0°0
00
0°0
0°0
0°*0
0°*0
0°*0
0°0
0°*0
o°o
0°0
o°o
0o°o0
0°0

SR e PO T s o ot ot g O ot e o0 ot s 0 e e NN NN N NN

92z
sz2
vee
| x-24
eez
122
oze
612
e12
9z2
Mz
a0z
(-T2 }
06t
191
et
€91
*St
Sl
9ct
22t
e2t
211
et
401
66

1 4:]

6L

ey

4
oF¢



LOAD OEFLECTION HISTORY

FAILURE ( INITIAL YIELD ) OCCURRED AT A LOAD JF
ELEMENT 76 YIELDED FOR THE 1 YIME

LOAD INCREMENT = 0.17331D 02

1 ELEMENTS FAILED DURING THIS LOAD STEP
FAILURE (YIELD OR FRACYTURE) OCCURRED AT A LOADL OF
ELENENT 356 YIELDED FOR THE 1 YTIME

LOAD INCREMENY = 0.,99004D 02

1 ELEMENTYS FAILED DURING THIS LOAD STEP
FAILUKE (Y IELD OR FRACTURE) OCCURRED AT A LOAD OF
ELEMENT 353 YIELDEO FOR THE b TIME

LOAD INCREMENTY = 0.83544p 02

S ELEMENTS FAILED DURING THIS LUAD STEP
FAILUKE (YEELD OR FRACYURE) UCCURRED AT A LOAD OF
ELEMENT 350 YIELDED FOR THE 1 TIME

ELEMENT 351 YIELDED FUR TVHE 1 TINE
ELERENY 354 YIELDED FOR YHE 1 TIME
ELEMENT 355 YIELDCL FULR THE 1 TIME
ELEMENT 357 YIELOEO FOR THE 1 TIME

LOAD INCREMENT = 0.47180D 02

1 ELEMENTS FAILED DURING THIS LOAD STEP
FAILURE (YIELD OR FRACTURE)} UOCCURRED AT A LUAD OF
ELEMENT 358 YIELDED FOR THE 1 TIME

377423 MITH 'A DEFLECTION AT THE PIN OF

6660345008

36800+91 WITH A DEFLECYION AT THE PIN OF

6050065000

4006.92 WITH A DEFLECTION AT THE PIN OF

PEELRS ¢S4 0%

4341.10 WITH A DEFLECTION AT THE PIN OF

(12 X2 22 21 2]

4435.406 WITH A DEFLECTION AT THE PIN OF

AAI A2 T2 T Y ]

04133490~01

Os114540-01

0.312054D~01

0+13066D0-01

0.133570-01

L0T



LOAD INCREMENT = 0.523110 02
2 ELEMENTS FAILED DURING THIS LOAD STEP

FAILURE (YIELD OR FRACYURE) OCCURRED AT A LOAD OF 4840.08 WITH A DEFLECTION ATV YHE PIN OF
ELEMENT 97 YIELDED FOR THE 1 TINME '
ELEMENT 315 YIELDED FOR THE 1 TINME

E LI 222 2] ] ]

LOAD INCREMENT = 0093306D 01

1 ELEMENTS FAILED DURING THIS LOAD STEP
FAILURE (YIELD OR FRACTURE) OCCURRED AT A LDAD OF 4558474 WITH A DEFLECTION
ELENENT 345 YIELDED FOR THE 1 TIME

WSS %0 08

LOAD INCREMENT = 0.101240 02

1 ELEHENTS FALILED DURING THIS LOAD STEP
FAILURE (YIELDO OR FRACYURE) OCCURRED AT A LOAD OF 45768.99 WITH A DEFLECTION
ELERENT 305 YIELDED FOR THE 1 TIME

SRS S¢S

LOAD INCREMENY = 0.468730 02
1 ELEMENTS FAILED DURING THIS LOAD SYEP

FAILURE (YIELD OR FRACTURE) OCCURRED AT A LOAD OF - 4672.73 WITH A DEFLECYION
ELEMENTY 328 YIELDED FOR TVHE 1 TiIMC .
(L2 X212 24 1]
LOAD INCRENENT = 0.518820 02
1 ELEMENTS FAILED OURING THIS LOAD STEP
FAILURE (YIELD UR FRACTURE) OCCURRED AT A LOAD OF 4776.50 wiTH A DEFLECTION
ELEMENTY 94 YIELDED FOR THE 1 TINE
EC XSSP HES
LOAD INCREMENT = 0,10289D 02
3 ELEMENTS FAILED DURING THIS LOAD STEP
FAILURE (YIELD OR FRACTURE) OCCURRED AT A LOAD OF 4797.07 WIYH A DEFLECTION

ELEMENT 346 YIELDOED FOR THE 1 TIME

23 LOAD INCREMENTS OMITTED FOR BREVITY

e o o
v

AT

AT

AT

AT

AT

THE PIN

THE PIN

THE PIN

THE PIN

THE PIN

OF

QF

OoF

OF

0.136830-01

0e137420-0C1

0.138070-01

0.141080-01

D«144410-01

0.14508D0-01

801



LOAD [INCREMENT = 04664300 01

2 ELEMENTS FAILED DURING THIS LOAD SYEP
FAILUKE (YIELD OR FRACTURE) OCCURRED AT A LDAD OF
ELEMENT 117 YIELDED FOR THE 1 TINME
ELEMENT 355 YIELDED FOR THE 2 TINE

LOAD INCREMENY = 0.83518D 01

1 ELEMENTS FAILED DURING THIS LOAD STEP
FAILURE (YIELD OR FRACTURE) UCCURRED AT A LOAD OF
ELEMENT 112 YIELDEDO FOR THE 1 TIME

LOAD INCREMENY = 06724320 01
# ELEMENTS FAILED DURING THIS LOAD STEP
FAILURE (YIELD UR FRACTURE) OCCURRED AT A LOADL QF

ELERENT 113 YIELDED FUR VHE 1 TIME
ELEMENT 122 YLELOED FOR THE 1 TIME
ELEMENT 123 YIELDED FOR THE 1 TIME
ELEMENT 125 YIELDED FOR THE 1 TIME

LUAD INCREMENTY = 04120740 02 -
3 ELEMENTS FAILEDO DJURING THIS LOAD STEP
FAILURE (YIELD OR FRACTURE) OCCURRED AT A LOAD OF

ELEMENT 100 YIELDED FOR THE 4 T IME
ELEME NT 118 YIELDED FOR THE 4 TINE
ELEMENT 119 YIELDED FOR THE 1 TIME

LOAD INCREMENT = 0.502150 01

3 ELEMENTS FAILED DURING THIS LOAD STEP
FAL_URE (YIELD OR FRACTURE) OCCURRED AT A LOAD UF
ELEMENT 357 YIELDEO FOR THE 2 TINE

5290454 WITH A DEFLECTION AT THE PIN OF

SEEE NS OSSO

5307.25 WITH A DEFLECTION AT THE PIN OF

L5608 06

$321.73 WIVTH A DEFLECTION AT VYHE PIN OF

(IS X222 X1 Y

5345.08 WITH A DEFLECTION AY THE PIN OF

(222 2212 %212}

5355092 WITH A DEFLECTIQON AY THE PIN OF

0.167960-01

0.,169600~-01

0.171040~018

04173560-01

0e17464D-01

60T



LOAD INCRENENT = 04168600 02

2 ELEMENTS FAILEO DURING THIS LOAD STEP
FAI_.URE (YIELO OR FRACTURE) OCCURRED AT A LOAD OF
ELEMENTY 105 YIELDED FOR THE 1 TIME
ELEMENT 358 YIELDED FOR THE 2 TIME

LOAD INCREMENY = 08.13008D 02

1 ELEMENTS FAILED DURING THIS LOAD STEP
FAILURE (VIELD OR FRACTURE) OCCURRED AT A LOAD OF
ELEMENY 353 YIELDED FOR THE 2 VIME

LOAD INCREMENT = 0.53889D 01
2 ELEMENTS FAILED DURING THIS LUAD STEP
FAILURE (YIELD OR FRACTURE) OCCURRED AV A LOAD OF
ELEMENT 97 YIELDED FOR THE 2 TINME
ELEMENT 365 YIELDEO FOR THE 2 TIME

LOAD INCREMENY = 0.31995D 02

8 ELEMENTS FAILED DURING THIS LOAD STEP
FAILURE (YIELD OR FRACTURE) OCCURRED AY A LOAD OF
ELEHENY 341 YIELOED FOR THE 1 TINE

LOAD INCREMENY = 0.69775D 01}
3 ELEMENTS FAILED DURING THIS LOAD STEP
FAILURE (YIELO OR FRACTURE) OCCURRED AT A LOAD OF

ELEMENT 95 YIELDED FOR THE 1 VIME
ELEMENT 140 YIELOED FOR YHE 2 VIME
ELEMENT 349 YIELDED FOR THE L TiImE

SE5004 006

5309.64 WITH A DEFLECTION AY VYHE PIN OF

PESS PSS SIS

6415.66 WiITit A DEFLECTION AY THE PIN OF

(A 12212227 )]

5426444 WITH A DEFLECTION AT THE PIN OF

(AA 2 2122217 )

S5450+43 WITH A DEFLECYION AY THE PIN OF

¢e5053008 00

5464.38 WITH A DEFLECTION AY THE PIN OF

(A2 222222 ] ]

124 LOAD INCREMENT3 OMITTED FOR BREVITY

® o o
v

0e17828D-01

0+181150-01

04182340~03

0+185000-01

0018654D0-01

01T



ELEMENT 141 YIELDED FOR TVHE S TIME

SESSFCEE S
LOAD INCREMENT = 0.93744D 01
4 ELEMENTS FAILED DURING Ti#tlS LUAD STEP
FALI_URE (VIELD OUR FRACTURE) OCCURRED AT A LOAD OF 7316.34 WITH A DEFLECTION AT THE PIN OF
ELEHMENT 93 YIELDED FOR THE 4 TIME
ELEMENY 97 YIELOED FOUR THE & TIME
ELEMENT 129 VYIELOED FOR THE S TIME
ELEMENT 365 YIELDED FOR THE 5 TIME
LA I A XA R T Y]
LCAD INCREMENY = 0.997260 01
S ELEMENTS FAILED ODURING THIS LOAD STEP
FAILURE (YIELD OR FRACTURE) OCCURRED AT A LOAD OF 733629 MITH A OEFLECTION AT THE PIN OF
ELEMENT 80 YIELDED FOR THE 1 ViMc
ELEMENT 111 YIELDED FOR THE 5 VIME
ELEHENT 115 YIELDEDO FOR THE S Y IME
ELEMENT 337 VIELDED FOR THE 2 VIME
ELEMENT 371 YIELDED FOR THE S TIME
6506800081
LGAD INCREMENT = 0.517970 01
4 ELEMENTS FAILED DURING THIS LOAD STEP
FAILURE {VIELD OR FRACTURE) OCCURRED AT A LOAD OF 734665 WITH A DEFLECYION AT THE PIN OF
ELEMENT 109 YIELDEL FOK THE S TIME
ELEMENT 110 YIELDED FOR THE 5 TIME
ELEMENT 114 YIELDEDO FOR THE S5 TIME
ELEMENY 360 YIELDED FOR THE 4 TIKE
6050000060
LOAD INCREMENT = 0.526210 01
3 ELEMENTS FAILED DURING THIS LOAD STEP
FAILURE (YIELO OR FRACTURE) OCCURKED AT A LOAD OF 7367417 WITH A OEFLECTION AT THE PIN OF
ELEMENT 79 YIELOED FAOR THE 1 TIME
ELEMENT 369 YIELDED FOR THE 5 TIME

ELEMENT 370 YIELOED FOR THE S TIME

0+121440 00

0124550 00

0126180 00

0.127870 00

ITT



LOAD INCREMGNY = 04146300 02
2 ELEMENTS FAILED DURING THIS LOAD STLP

FAILURE (YIELD OR FRACTURE) OCCURRED AT A LOAD OF

ELEMENT 104 YIELDED FOR THE 3 VIME
ELEMENT 361 YIELOED FOR THE 4 VIME

LOAD INCREMENT = 0.138290 02
2 ELEMENTS FAILEO DURING THIS LOAD $TEP

FAILURE (YIELD OR FRACTURE) OCCURRED AT A LOAD OF

ELEMENTY 64 VIELOED FOR THE 1 TIME
ELEMENT 81 YIELDED FOR THE 3 ViIME

LOAD INCHREMENTY = 0.102380 02
4 ELEMENTS FAILED DURING THIS LOADO STEP

FAILURE (YIELDO OR FRACTURE) OCCURRED AY A LOAD OF

ELEMENT 112 YIELDED FUR THE 5 TIME
ELEMENT 117 YIELDED FUR THE S TIME
ELEMET 125 VYIELOED FOR THE S ViMe
ELEMENT 357 YIELDEO FOR TYHE S TIME
LOAD INCREMENT = 04155070 02

2 ELEMENTS FAILED DURING THIS LUAD STEP

FAILURE (Y1ELD OR FRACTURE) UCCURRED AY A LOAO OF

ELEMENT 90 YIELDEO FUR THE 2 TIME
ELEMENT 113 YIELOED FOR TYHE S VIME
LOAD INCREMENT = 06537130 01

3 ELEMENTS FAILED DURING ¥HIS LOAD STEP

FAILURE (YIELD OR FRACTURE) OCCURRED AY A LOAD OF

ELEMENT 92 YIELDED FOR THE 2 TiINE

2222 222 X2 Y )

7386443 WITH A DEFLECYIQON AT THE PIN OF

(222 X322 17

7414,09 WITH A DEFLECTIOGN AT THE PIN OF

L2222 222727}

7434.57 WITH A DEFLECYION AY THE PIN OF

(221 X122 2 X 1)

7465.58 WITH A DEFLECTION AY THE PIN OF

SEEEEEES LS

7476432 WITYH A DEFLECYION AY YHE PIN OF

04132590 00

0137060 00

04140360 00

0+145490 00

0.147270 00

¢1l



ELEMENT 358 YIELDED FOR THE S TINE
ELEMENT 366 YIELDED FOR THE S5 TINKE

LOAD [HCREMENT = 0.671500 01
3 ELEMENTS FAILED DURING THIS LOAD STEP
FAILURE (YIELD OR FRACTURE) QCCURRED AT A LOAD OF

ELEMENT 91 VIELDED FOR THE 2 TIME
ELEMENT 307 YIELDED FOR THE 5 TIME
ELENENT 368 YIELDED FOR THE 6 TIME

LCAD INCREMENT = 0.248850 02
4 ELEMENTS FAILED DURING THIS LOAD STEP
FAILURE (YIELD OR FRACTURE) OCCURRED AT A LOAD OF

ELENENT 75 YIELDED FOR THE 3 TIME
ECEMENT 120 YIELOED FUR THE 6 T IME
ELEMENT 140 FRACTURED

ELEMENT 362 VYIELDED FOR THE 4 TIME

LOAD INCREMENT = 0.,135210 04

2 ELEMENYS FAILED DURING THIS LOAD STEP
FAILURE (YIELD OR FRACTURE) OCCURRED AT A LOAD OF
ELEMENY 149 FRACTURED
ELEMENT 150 FRACTURED

2908046 CRACK INSTADILITY OCCURRED AT A L.OAD OF

LUAD INCREMENT = 0.106200 04

1 ELEMENTS FAILED OURING THIS LOAD STEP
FAL_LURE (YIELD OR FRACTURE) OCCURRED AT A LODAD OF
ELEMENT 148 FRACTURED ’

2SS EE S

7489.75 WITH A DEFLECTION AT THE PIN OF

S¢S 20554 08

7539952 WITH A DEFLECTION AT THE PIN OF

LA X I X222 2]

5408424 WITH A OEFLECTION AT THE PIN OF

4660008080

7639.52 #¥ss%s

4653.60 WITH A DEFLECTION AT YHE PIN OF

0.149520 00

0157910 00.

0.12932D0 00

0.110210 00

€1l



94988 CRACK INSTABILITY UCCURRED AT A LUAD OF

LGAD INCREMENT = 0.138600 04

3 ELEMENTS FAILEO OURING THIS LOAD STEP
FAILVUKE (YIELO OR FRACTUKE) UCCUKRRED AT A LOAD OF
ELEMENT 146 FRACTURED
ELEMENT 147 FRACTURED
ELEMHENT 151 FRACTURED

406868 CRACK AINSTASILITY OCCURRED AT A LOAD OF

LOAD INCREMENY = 0.93025D 03

1 ELEMENTS FAILEO DURING THIS LOAD STEP
FAILURE (YIELD OR FRACTURE) DOCCURRED AT A LOADL OF
ELEHENT 145 FRACTURED

#06008 CRACK INSTASILLITY OCCURRED AT A LOAD OF

LCAD INCREMENT = 0,.,727050 03

2 ELEMENTS FAILED DURING THIS LOAD STEP
FAILURE (YEELDO OR FRACTURE) OCCURRED AY A LOAO OF
ELEMENT 143 FRACTURED
ELEMENT 144 FRACTURED

3444350004

5408424 *3990s

3880491 WITH A DEFLECTION AT THE PIN OF

BP0 PSS

A653.60 *2esée

2232461 WITH A DEFLECTION AT YHE PIN OF

SFSESEB OB S

3800.91 %evvee

1744.92 WITH A DEFLECTION AT THE PIN OF

0+936870-01

04770120-01

0+«681340-01

PiT



%6366 CRACK INSTADILITY OCCURRED AT A LOAD OF

LOAD INCREMENT = 0526720 03

1 ELEMENTS FAILED OURING THIS LUAD STEP
FAILURE (YIELD Of FIRACTURE) OCCURKED AT A LOAD OF
ELEMENT 142 FRACYURED

Vpeees CRACK INSTADILILITY OCCUKRED AT A LOAD OF

LOAD INCREMENT = 0.243070 03

1 ELEMENTS FAILED OURING THIS LOAD sTeP
FAILURE (YIELD OR FRACTURE} OCCUHRED AT A LODAD OF
ELEKRENT 141 FRACTURED

3
#D886¢ CRACK INSTABILITY OCCURRED AT A LOAD OF

2600085086

2232.61 *¢62 62

1264.14 WITH A DEFLECTION AT THE PIN OF 0.60211D0-01

(222222 2] ]

1744.92 %8483

584.80 WITH A OEFLECYION AT THE PIN OF 0.52490D0~-01

S LS SN0

126314 2368

JC2091 1BCOM — PROGRAM INTERRUPTY (P) ~ DIVIDE CHECK OLD PSW IS O71D000FA24378B0E <« REGISTER CONTAINED

FRACEUACK ROUTINE CALLED FROM ISN REGe. 14
FAIL 0017 4242004E

MAIN ov008C72

ENTRY POINT= 013A0018

REGe 15 REG ] REG. [}
00430700 000001CS 003AQEEC

0l 3A0D18 ODBEFUT0 00A3LEFFY

3F1C133326D1E810

SIT



STANDARD FIXUP TAKEN « EXECUTION CONTINUING

EHC2091 1HCOM — PROGRAM INTERRUPT (P) — DIVIDE CHECK OLD PSW 1S O71D000FA24378DE o REGISTER CONTAINED

TRACESBACK ROUTINE CALLED FROM ISN REG. 14
FAIL 00Lr7 424200%E
MAIN oooouCcz2

ENTRY POINT= 013A0D18

STANDARD FIXUP TAKEN » EXECUTION CONTINUVING

I1HC2091 IBCOM — PRUGRAM INTERRUPT (P) - DIVIDE

TRACEBACK ROUTINE CALLED FROM ISN REG. 14

FAIL 0017 4242D04E

HALIN ogooucr2
ENTRY POINT= 013A0D18
STANDARD FIXUP TAKEN » EXECUTION CONTINUING
IHC2098 LLUCOM — PRUGRAK INTERRUPT (P) - DIVIOE
TRACEBACK KOUTINE CALLED FROM ISN REGe. 14
FAIL 0017 424200%E
HAIN 0000BC72
ENTRY POINT= 013A0D10
STAMNNARD FIXUP TAKEN ¢ EXECUTLION CONY INULING
I1nC2091 IBCON — PROGRAM INTERRUPY (P) = DIVIODE
TRACEBACK RUUTINE CALLED FROM ISN REGe 14
FAIL 0017 4242D0KE
HAIN 0000BC72
ENTRY POINT= 013A0018

STANDAKRD FEXUP TAKEN ¢« EXECUTION CONTINUING

REG. 1S

00430700

O13A0D018

REGe 4] .REG. 1
000001CS 003A0EEC

OOBEFQ70 OO0AJEFFSH

CHECK OLO PSW IS O0O71D0O00OFAR437DDE « REGISTER CONTAINED

REGe 18
00430700

013A0018

REG. 0 REG. 1
000001C5 003A0EEC

O00HEFB70 O043EFF O

CHECK OLD PSW IS O710000FA2437UDE « REGISTER CONTAILINED

REG. 15

00430700

013A0D1G

REG, ] REG. 3
000001CS OO03A0EEC

O00BEFB70 004 3LEFF 8

CHECK OLD PSW 1S O7IDOOOFA24378DE « REGISTER CONTAINED

REG. 15

00430700

013A0D18

REG. (4] REG. 1
000001CS Q03JA0EEC

O000EFLT70 O0A3EFF A8

JF1BA9C69CBFOF30

3F18BCAB961000AE0D

3FLBDAESOBDFF160

3F1C0A2BE7090U470

9Tt



IHCO001 EXECUTION TERMINATING DUE TO ERRUR COUNT FUR ERROR NUMBER 209

IHC2091 18COM ~ PROGRAN INTERRUPT (P) — DIVIDE CHECK OLD PSW IS O71DOO0OFA2437DDE o REGISTER CONVAINED

TRACEDACK ROUTINE CALLED FROM ISN REGe 14 KEGs 1S REG. o REGs 1

FAIL 0017 4242004E
0J00BC72 013A0018 00BEFBT70 00A3EFFB

00430700 000001CS 003A0EEC

HA LN

ENTRY POINT= 013A0D18

* 3F1C2B5E701C23F0

LTI



