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ABSTRACT

The temperature dependency of electrical power demand,
i.e., load, was statistically analyzed and a set of tempera-
ture versus demand characteristics were used to develop a de-
mand forecasting model.

In this researchastatistical distribution analysis of
a temperature dependent demand characteristic was made. The
conditional distributions of load ané temperature were de-
termined. These were applied in the estimation of the prob-
ability of occurrence of a load. The results show that the
basic demand characteristic of one utility may be represen-
tative of the characteristics of several other electric
utility systems in the region studied. This spanned Oklahoma,
Texas, and Louisiana, which experience summer peaks.

Also, a system demand forecasting model was developed.
Annual system peak loads were predicted using the model, as
the ultimate goal. Application may be made from one systenm
to another for regions with the basic demand characteristic
described. A temperature dependent characteristic, based
on temperatures occurring in the spring, summer, and fall
seasons, was used in the determination of the forecasting

model. The developed model is a compromise between the




current methods that use conventional temperature dependent
forecasting, and time series analysis approach. An explicit
temperature dependent forecasting model was developed by
utilizing time series analysis based on Box-Jenkins' models.
Real system demand data, comprising peak temperatures, were
used to illustrate the methodology. The data was divided
into two main parts. The first part was used to estimate
the parameters of the forecasting model. The forecasts were
then compared to the second part of the data. The relative
errors, calculated as a percentage of the actual demand, were
small; less than 5% for the system in a six-year forecast
horizon.

The results show that the developed model is a promis-
ing tool that can be used by researchers and cthers in long
range capital and operational planning, and in the advance-

ment of forecasting methodology.
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A TEMPERATURE DEPENDENT STOCHASTIC MODEL

FOR POWER SYSTEMS DEMAND FORECASTING

CHAPTER 1

ELECTRIC POWER DEMAND MODELING

A. Introduction

The necessity of a power system demand model has been
evident to system planners for years. However, it is only
recently that guantitative specifications for such a model
have been needed as planning techniques have become more so-
phisticated. The purpose of this research was: 1) to de-
termine the parameters of a system demand model, 2) to de-
termine the statistical distributions of the model, and 3) to
formulate a normalized model for individual, utility and re-
gional application.

The major application of such a model is in the area
of demand forecasting. It will be shown how such a model may
be so applied. There are several forecasting techniques [18]
and completely specified demand models will greatly aid in
consolidating and improving accuracy and confidence in their

use.

The need for more accurate and reliable forecasts by




electric power system planners assumed higher proportions in
the period after the 0il boycott of 1973 and subsequent
formation of the international oil cartel, which has raised
the price of petroleum fuel to levels considered intolerable
a few years ago. It is noteworthy that several institutions
and agencies are coming up with forecasts of total energy re-
quirements that indicate shortfalls in supply of fuel in the
short term. Most of these forecasts have, in many cases, not
had the impact they deserve, due partly to the incomplete
specifications of the models upon which they are based.

Their statistical distributions may not be specified, and

the data base may be questionable.

However, forecasting methodology is becoming more im-
portant due to the growing ccmplexity of power systems and
the demands of utility regulating agencies. Variables that
previously were not important have increasingly had more in-
fluence lately and will have much more in the future. Some
other areas that depend on a demand model are reviewed be-
low. [18]

1) Economic dispatching and unit commitment

depend on a demand model used in a short
term forecasting model. Xnowledge of the
demand characteristic is needed to schedule
generation or inter-area power exchange.
On-line control programs for computer control

of scheduling are based on a demand model.




2) Spinning reserve and other system reserves
are planned based on forecasts reached using
a demand model. An accurate estimation of
reserve is important in planning mainten-
ance, future capital expenditures in the
system, as well as keeping within reliabil-
ity limits set by the appropriate reliabil-
ity councils.

3) Several studies such as load flow, reliabil-
ity and stability studies are dependent on
a load model to some extent.

4) Generation and transmission are major areas
of the power system where a good demand
model is indispensable. The presence of
a load to be served or the anticipation or
development of load is the main motivation
for expansion.

There are requirements for capital, equipment orders,
right of way, system optimum operation, etc., that depend on
a demand model. In recent years, power plants have become
increasingly larger with resultant complexity in design and
high cost. The cost of an installed kilowatt exceeds about
$500.00 for coal and nuclear power plants. When the costs
of transmission and distribution are accounted for, the de-
cision to build a new plant assumes profound proportions,

not to mention the requirements of state and national




regulatory agencies as well as highly vocal environmental
groups. An error in forecasting demand and capital acquisi-
tion can be financially very expensive, considering the long
lead times of the order of eight to twelve years.
Forecasting electric power demand requires a great
deal of subjective judgment. Planners know very well the
difficulty and uncertainty involving a forecast. 1In the
period before 1950, most utilities forecasted demand based
solely on judgment by "eyeballing" the available data to ob-
tain a "ball park" forecast. This method was sufficient so
far as the demand was dependent on predictable parameters
and insensitive to weather and fluctuations in the economy.
There were no indications of any price elasticity in demand.
In the period of 1950 through 1972, there was a
sharp and diversified increase in the use of electricity.
Household appliances, including air conditioning egquipment,
gained widespread use. The combination of units and their
duty cycles at any time varied widely £rom one customer to
another. This created a diversity within the demand for pow-
er that increased the uncertainty of a forecast. Statisti-
cal methods [12] of data analysis found applications in de~-
mand modeling during this period. The increased capability
of the electronic computer greatly facilitated statistical

applications. There were numerous technical papers published

during this time in the area of forecasting.

The following is a more formal but very brief review




of the past literature.

B. Review of the Literature and Problem Development

The importance of demand forecasting in the power
industry was first recorded by Reyneau [19] in 1918. Load
densities were then quite low and most industries were coal
or oil fired. From 1918 to 1944 there were only few publica-
tions on electric demand forecasting, when Dryar [5] showed
the effects of weather on system load. He demonstrated the
forecast technique of separating demand into a base load and
weather sensitive components. There have been numerous pub-
lications investigating various aspects of this technique.

The advantage of the method was its large data base that gave
more meaning statistically to the results. The underlying
mathematical forecast tool in most of these methods was linear
least sguares regression.

Latham and Nordman [12] extended Dryar's technique fur-
ther to include a method of probability estimation of fore-
casts. Probabilities of load occurrence were estimated by
calculating the empirical discrete density function of load,
taken cver the years. The weather function was further used
by Stanton [22] in a method for forecasting the weather sensi-
tive component, and combines with the base load forecast
to obtain total system demand forecast. The method consisted
of curve fitting the weather sensitive component with a
straight line; the slope of the line measured in megawatts

per degree of temperature calculated for each year in the




data set. The slope of the weather sensitive component is
predicted by regression. There are numerous variations on
these techniques in the literature. 1In each case an attempt
was being made to overcome the drawback of having to use only
one data point, the annual peak, per year. The methods use
large amounts of data. However, this drawback remained
though the forecasts continued to improve. Analysis of

load against temperature is made, but the forecasts are time
dependent.

Several researchers, such as Christiaanse [2], Gupta
[7], Reyhani [11], Vemuri [25] looked into the use of time as
an independent variable for predicting future loads. The ap-
plication of time series models [25,23], using the methods
known as the Box-Jenkins models [26], by some of these authors
to utility forecasting further widened the scope for the meth-
ods currently available.

Concurrent with the development of forecasting meth-
odology as outlined, there were other methods developed that
were economic in nature. One such method is the method of
land use described by Lazzari [13]. The service area is div-
ided into one mile squares or smaller. Population growth is
forecast, and the areas likely to receive the increase in
population determined. It is then possible to determine
for each square area the likely customer demand, and thus
cumulatively arrive at a system forecast. The weather re-

lation was brought into the foreground by Dryar, Heineman [9],




Nordman [12], Stanton, Davey [4], and others. The other
major approach has time or a combination c¢f time and weather,
in a regression model, as the important factor of considera-
tion, described by Christiaanse, Gupta, Vemuri, Mabert,
Lijensen [14], Toyoda [24], and others.

The .objectives of this research were stated at the
beginning of this chapter. In the ligit of discussion that
included the merits of weather and time related forecasting
respectively, further explanation of those objectives follow.
The peak load, for most electric utility companies shows
marked weather dependence, particularly temperature dependence.
A temperature dependent demand characteristic will be des-
cribed.

In this research, a model will be developed for time
series analysis that is implicitly temperature dependent.

It will thus be a compromise between the two major techniques
presently in use. Considerable attention will be given to
the cdevelopment of statistical distributions of the data set
used as a means of carrying information about the data set

into the future.

C. The Data Base

In order to generalize the results of this research,
a rather large amount of data were collected from several
utilities servicing a relatively large geographical area.
Hence, the data analysis and models derived were intended to

have a regional application. The geographical area under study




has the characteristic that peak demand for electric power
occurs during the summer. This area (see Appendix B) includes
most of Oklahoma, Texas and Loulsiana, selected solely for
availability of their system data for study. There are sev-
eral other states with a predominant summer peak, however,
data from these areas were inaccessible. Specific informa-
tion about the sources of peak demand data will be held in
confidence. Real system data were used in all analysis, un-
less noted otherwise. The data obtained consist of

1) daily system peak demand in megawatts, and 2) daily peak
temperature in °F of a major load center within the service

area for the period 1967 through 1976, where available.

D. Temperature Data

The only independent variable used is temperature,
[3,10,23] which is adequate to demonstrate the model, and
possible extensions to several variables. Every system plan-
ning engineer or researcher is aware of the problem of using
one temperature value taken at one location, such as the geo-
graphical load center which is a hypothetical locaticn that
may be far from any real concentration of load. Since system
load is a widely distributed function, the associated temper-
ature function will be distributed also, because the tempera-
ture is usually different from one location to another within
the service area. However, it is immediately clear that this

is an infeasible proposition, since there is an infinite




number of sample points. In this study, temperatures were
taken from the most dominant load center within the service
area. This showed strohg correlation with system peak demand.
In the area under study, daily load curves show a rise in de-
mand with increasing temperature that is predictable. How=-
ever, winter temperatures have not been found to have the
same strong effect on demand as do summer temperatures. The
greater interest in the annual peak occurring during the sum-
mer is sufficient reason to use peak daily temperatures as an
input variable of this model.

The data (peak daily loads and temperatures arranged by
date), were key-punched where not supplied on magnetic tape.
To facilitate accessing, all the data were loaded to computer
disk files. The disk file svstem is on line when the com-
puter is up. There is a file for each data set from each
utility, and a composite file containing data for the region.
Each record in a file has a date,maximum temperature and
peak load. Full documentation to access each file is given

in Appendix A.




CHAPTER 2

CHARACTERISTICS OF THE MODEL

A. Introduction

One of the objectives of this study is to determine
the statistical distributions of a demand model. 1In this
chapter, the basic form of a demand characteristic is des-
cribed and the conditional distribution of demand, at a giv-
en temperature, is shown. Ultimately, the statistical dis-
tributions and the demand model will be used to estimate
the probability of load occurrences when the model is used
in forecasting future demand. The temperature and demand

data used are in computer data storage.

B. The Basic Demand Characteristic

A plot of demand in megawatts (MW) versus temperature
in degrees Fahrenheit (°F) yielded the characteristic shown
in Figure 2.1. This characteristic indicates three broad
regions discussed below.

Region I of the plot shown in Figure 2.1 shows a
fairly constant region, where the demand is independent of
temperature. This region contains data mainly from the

spring and fall seasons, during which time temperatures are

10
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Figure 2.1. Demand Versus Temperature Characteristic
mild and comfortable. It is a "comfort region" or baseload
region of daily maximum demands. It is bounded by about
60°F on the low side and about 75°F on the high side. These
bounds ars approximate, and there may be variations of iSOF
in some cases. In this region, most heat sensitive equip-
ments stay off, or on a minimum of the time.

Heat sensitive equipment, as used here, refers to
residential, commercial or industrial weather modification
devices such as air conditioning plants, both heating and
cooling. Agricultural water pumping equipments that are
thermally controlled are also included in this description

of temperature sensitive eguipment.

Region II of Figure 2.1, shows a marked temperature

dependence. It is fairly defined for each year's data




plotted. Most heat sensitive equipment will cycle on and off
in a steady state mode for any given temperature. The higher
the temperature, the higher the rate of cycling and the
longer the duration of the on cycle. This region extends
approximately from 75°F to 95°F. The slope of this region
of the characteristic depends on the density of heat sensi-
tive equipment within the geographical service area. For
example, a high use of air conditioning equipment in a ser-
vice area causes a large number of eguipments to cycle on
when a rise in temperature occurs. Hence, the load on the
power system increases with rising temperature.

Beyond lOOOF, the effects of saturation become notice-
able. This is Region III, where temperatures reach such high
values that most heat sensitive eguipments tend to stay on
most of the time. The diversity in equipment use has
been completely eliminated, hence, demand reaches an approx-
imately constant value again, this time in weather condi-
tions generally accepted as hot .

Hence, there is a region of minimum sensitivity fol=-
lowed by a region of dependence, where sensitivity is a
steady state value given a state of the independent variable.
Finally, there is a region of saturation where further in-
creases in the independent variable do not produce appreci-
able corresponding increases in demand.

It is appropriate to restate here that most of the

analysis will be directed at summer load. This is important

12




because it is the period during which the system peak load
occurs. The geographical region selected for study does not
generally experience very severe winter weather conditions.
Other sources of winter heating, other than electricity, such
as gas, wood and 0il are readily available. Heavy clothing
worn during the winter season is one more factor to consider.
Hence, the winter load is much more difficult to characterize

in those states where winters are mild.

C. Statistical Analysis [28]

The conditional distribution of the load at any given

temperature, may be defined as

F(X/T) = if“({g—)m (2.1)

where X is the load or dependent variable and T is tempera-

ture or independent variable. Hence,

F(XNT) = F(X/T) - £(T) (2.2)

The calculation of this requires a knowledge of the density
function f£(T) and of F(X/T). Estimation of £(T) will

be shown in a later chapter. The distribution function of
F(X/T) is the object of this chapter. Figure 2.2 shows a
plot of load and temperature data points, similar to Figure
2.1. The distribution function F(X/T) is shown here as a
normal distribution, which is assumed, and will be verified
true or false. Figure 2.2 is for the purpose of illustra-

tion only.
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Figure 2.2. Wormal Conditional Density Function
Statistical parameters such as mean and standard de-
viation will be calculated where necessary in the description
of the data sets. The distribution of load, at a given tem-
perature, will be calculated for several years' data over
the test geographical region in an attempt to describe their
distribution functions. Several tests of the data will be
made, the basics of which are described presently. Mean and

standard deviations are calculated as explained below.

D. Mean

This is estimated as the sample mean of data at a
given temperature, or a band of temperatures. The particular

case will be specified. Referring to Figure 2.2, the sample

mean X is calculated as




X = (2.3)

where Xi is the daily peak demand at T;. oF, n the number of

occurrences of xi's.

E. Standard Deviation

The sample standard deviation of the data at a given

temperature or band of temperatures is calculated as

S = (2.4)

where S is the sample standard deviation, X is the sample
mean as calculated above, Xi is demand occurrence at TiOF
and n is the sample size; number of Xi’s.

Several statistical distribution functions were sel-
ected for testing. The test procedure used is the Kolmogor-

ov-Smirnov test of goodness of fit.

F. Xolmogorov-Smirnov Test of Goodness of Fit [28]

This is a non-parametric statistical test. It does
not depend on any particular distribution. It compares the
empirical cumulative distribution of the data set being test-
ed to that of an assumed distribution by comparing the devi-
ation at all points of the two distributions against an ac-
ceptance limit. This test was selected over other tests
because of its power to detect differences in cumulative dis-

tributions. Most statistical tests require large sample

15
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Cumulative Distribution

sizes for any conclusive descriptions of their nature. How-
ever, the Kolmogorov-Smirnov test remains valid for small
sample sizes. In a test of hypothesis, the Kolmogorov-
Smirnov test provides grounds for rejecting or not rejecting
the assumed distribution. A non-rejection region, however
implies acceptance of the assumed distribution only to the
extent that other distributions might equally describe the
same data set. The test helps to narrow down the number of
trial distributions, which may then be more explicitly tested.

The following and figure 2.3 illustrate the test procedure.

F(X{. 4)//////’
/
/

H(X)

G (X)

Random Variable X -

Figure 2.3. Cumulative Distribution for Comparing
Assumed Distribution to Empirical Distribution
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Figure 2.3 shows a plot of the empirical cumulative
distribution function, (cdf), G(x) and the assumed cdf H(x),
which is assumed to describe the sample. The deviations at
all the breakpoints of the empirical cdf are computed. In the

following test of hypothesis; sup represents least upper bound.

- . . . l . >
B : reject normality if sup ,Dl] Dao

(2.5)

. i i L]o<
Hy: accept normality if sup | D, | Dyo

where sup[Di[ > D, is the minimum value in the set {D,} that

exceeds D .
a0

Table 2.1. Xolmogorov-Smirnov Test, Assuming
Normal Distribution for Data Set

| 1 2 3 4 5 6 7
i x| Te lem=T s |mm=ecn]| o,
st =1 © .
1) 7es |1 0.077 |-1.56 | 0.059 |0.059
2| 787 | 2 0.154 |-1.24 | 0.108 |0.046
3] 803 | 3 0.231 |-1.12 | 0.131 |0.100
4| 858 | ¢ 0.308 {-0.70 | 0.242 |0.066
5| 860 | 5 0.385 |-0.69 | 0.245 0,140
6| 922 | 6 0.460 |-0.23 | 0.409  {0.051
71 958 | 7 0.538 | 0.04 | 0.48¢ |0.054
8 11002 | 8 0.615 | 0.37 | 0.644  [0.106
9 11051 | 9 0.692 | 0.74 | 0.770 |0.155
10 11054 | 10 0.769 | 0.76 | 0.776  [0.084
11 (1077 | 11 0.846 | 0.93 | 0.824 |0.055
12 |1123 | 12 0.923 | 1.28 | 0.900 |0.054
13 |1142 | 13 1.000 | 1.42 | 0.922 10.078
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Column 1 is a row index of a monotonically increasing data
set Xi in Column 2. Column 3 is the cumulative frequency of
occurrence. There may be more than one entry in any row 1i.
Column 4 is the empirical cumulative distribution function
of the data set. The cumulative distribution function of
the data set, assuming a normal distribution as shown in
Column 6, is derived by using Column 5 and standard normal
cdf tables. Here, D; is the calculated deviation at point
i and Do, is the Kolmogorov-Smirnov acceptance limit at a
significance level of e for the data sample size.

Referring to Figure 2.3, the deviation D, is calcula-

ted as

D; = Gi(X) - Fi(X) (2.6)

However, the deviation at i has two values due to the
discontinuity at i. Hence, the deviation is stated as

D; =max |G (X) - F, (X, |6, (X -F, x| (2.7

Some of the distributions assumed for testing are re-

viewed below, and sample tests follow.

G. The Normal Distribution

This is a continuous distribution function. It is de~

scribed by the general density function given by

2
£(X) = —=— exp - % [X;“] (2.8)

A plot of the normal distribution is the familiar bell

shaped figure shown below.
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The cumulative distribution of the normal density
function is.shown in Figure 2.5.

The difference between the empirical cdf and the
assumed normal cdf is calculated and entered in Column 7, of
table 2.1. The method of calculation is bv Egquation 2.7.

The test requirement is that the assumed distribution
is acceptable if
D, (n) < aing!Di[
where n is the sample size.

In Table 2.1, n=13, which yieids an acceptance limit
for the Kolmogorov-Smirnov test of goodness of fit at 5 per-

cent significance level as D 05(13) = 0.361. Hence, no




entry in Column 7 may exceed this value if the normal distri-
bution is to be included in the class of acceptable distri-
butions. In Table 2.1, Column 7, all entries are less than
D.05(13). Hence, the normal distribution has been accepted.
The next distribution function assumed is the uniform
distribution. The results are shown in Table 2.2.
Figure 2.6 shows the application of the uniform den-

sity function to the given data set.

M‘W % XX
| x’& x%
L. x %
% X
| X)‘Kx
| x)‘ X X
> ! X "x
<+ ,‘x x *
oy "Ixx‘t >
@ -.-"x“"
g Xrex | £(X/7 )
s i o}
x % |
xX
e xi":‘ X |
LA
":n‘x",l <% |
I
Tl
o

: o)
Temperature T

Figure 2.6. Uniform Conditional Density Function

£(X)

Density
(b]
[
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1

Random Variable X

Figure 2.7a. Uniform Density Function
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The plot, which is similar to Figure 2.1, is now assumed to

be a uniform distribution. The density function is given by

|+

£(X/T) = a<X<b

o

-a
Hence, the cumulative distribution function is given by

F(X/T) = a

e
o]

| A

X <b

o’
|
]

where a and b are the extremities of the function as shown in
Figures 2.7a and 2.7b. All other definitions remain as be-

fore.

F(X)
1

cdf

a B

Random Variable X _
Figure 2.7b. Uniform Cunmulative Distribution Function

The criterion of acceptance remains at D 13) =

R
0.361. Hence, the uniform distribution is also acceptable to
describe the data set. No entry in Column 6 of Table 2.2 is
greater than .361. Further testing of data sets from the pop-
ulation are required. Tables 2.3a and2.3b chow a data set test-
ed on normal and uniform distributions. Teble 2.3a tests

against normality. The limit of acceptance D (16) = .328 is

.05

barely satisfied at i = 10, for acceptance of normality.
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Table 2.2.

For Data Set

Kolmogorov-Smirnov test
Assuming Uniform Density Function

(1) (2) (3) (4) (6) (7)
n n
i X, 1z izlfi F(X;) D,
i=1 7| G(X)==
1 744 1 0.077 | 0.000 ]0.077
2 787 2 0.154 | 0.108 {0.046
3 803 3 0.231 | 0.148 [0.083
4 858 4 0.308 |0.362 [0.131
5 860 5 0.385 |0.291 [0.094
6 922 6 0.460 | 0.447 |0.062
7 958 7 0.538 |0.538 {0.078
8 1002 8 0.615 | 0.648 {0.110
9 1051 9 0.692 | 0.771 [0.156
10 1054 10 0.769 | 0.779 10.087
11 1077 11 0.846 | 0.837 |0.068
12 1123 12 0.923 [0.952 {0.106
13 1142 13 1.000 |1.000 [0.077
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Table 2.3a.

Kolmogorov-Smirnov Test For
Marginal Acceptance of Normality

n A
iz | Ve G(X)—iz R F(X)=¢(X) | D.
1 i=1 1 n 0] 1
1 1577 | 1 0.0625 |-0.93 | 0.1762 .1762
2 |s78 | 2 0.1250 |-0.92 | 0.1788 1163
3 |s99 | 3 0.1875 | -0.70 | 0.2420 1170
4 | 603 | 4 0.2500 | -0.66 | 0.2546 L0671
5 | 606 | 5 0.3125 |-0.63 | 0.2643 .0482
6 | 611 | 6 0.3750 |-0.58 | 0.2810 .0940
7 |s16| 7 0.4375 | -0.52 | 0.3015 .1360
8 | 622 | s 0.5000 |-0.46 | 0.3228 1772
9 | 625 | 9 0.5625 |-0.43 | 0.3336 .2289
10 | 633 | 10 0.6250 | -0.35 | 0.3632 .2618
11 | e66 | 11 0.6875 | 0.00 | 0.5000 .8750
12 | 706 | 12 0.7500 0.42 | 0.6628 .0872
13 | 735 | 13 0.8125 | 0.72 | 0.7642 .0483
14 | 756 | 14 0.8750 0.92 | 0.8264 .0486
15 | 800 | 15 0.9375 | 1.40 | 0.9192 .0442
16 | 924 | 16 1.0000 2.70 | 0.9965 .0590
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Table 2.3b.

Kolmogorov-Smirnov Test for
Rejection of Uniform Distribution.

n
i X iélfi G(X) F(X) D,
1 577 1 0.0625 | 0.0000 0.0625
2 528 2 0.1250 | 0.0029 0.1221
3 599 3 0.1875 | 0.0634 0.1241
4 603 4 0.2500 | 0.0749 0.1751
5 606 5 0.3125 | 0.0836 0.2289
6 611 6 0.3750 | 0.0980 0.2770
7 616 7 0.4375 | 0.1124 0.3251
8 622 8 0.50060 | 0.1297 0.3703
9 625 9 0.5625 | 0.1383 0.4242
10 633 10 0.6250 | 0.1614 0.4636
11 666 11 0.6875 | 0.2565 0.4310
12 706 12 0.7500 | 0.3718 0.3782
13 735 13 0.8125 | 0.4553 0.3572
14 756 14 0.8750 | 0.5158 0.3592
15 800 15 0.9375 | 0.6390 0.2985
16 924 16 1.0000 | 1.0000 0.0625
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However, in the test against the uniform distribution shown
in Table 2.3b, the acceptance limit D.OS(lG) is exceeded at
the points indicated by an asterisk. Hence, for this data
set, the uniform distribution has been rejected. Normality
continues to be accepted.

Figure 2.3 shows a comparison of the empirical céf and
the assumption of normality on the data set in column 2 of
Table 2.1. The two curves show a close fit for the amount
of data at hand. In conclusion, the conditional density
function of the load, at a given temperature, may be des-

cribed by a normal density function.
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Figure 2.8. (l) Empirical Cumulative Distribution,
(2) Normal Cumulative Distribution
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CHAPTER 3

TEMPERATURE DISTRIBUTION

A. Introduction

In Chépter 2, a distribution of temperature £(T) was
described in Equation 2.2. In deriving this distribution,
an assumption had to be made about the nature of £(T) from
year to year. In this study, it will be assumed that the
earth's atmosphere is neither cooling nor warming appreciably.
Hence a time stationary distribution, is assumed.

Several definitions of £(T) may be made, each requir-
ing a different data set. &Each definition depends on the
time frame being considered. If the temperature data .set is
the set of daily maximum temperatures, then £(T) describes
the probability of T being the daily maximum temperature.

If the data set is the set of all annual peak temperatures,
£(T) describes the probability of T being the yearly maximum
temperature. Dailly maximum temperature data from 1962
through 1976 were used.

Table 3.1 shows for area 1, (see appendix B) all pos-
itive temperatures between Q@ and 110°F. The table is self-
zxzplanatory. The column are as defined previously in Chap-

ter 2. The table shown here may be tested for normality.
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Table 3.1. Test of Normality of Empirical
Temperature Distribution

H , -
i X, n, ?Zzil zzi zi-xi i 6(2;) | D
i=1 S
1| 0-5| o 0 |0.0000] =-3.18 |0.0007 [.0007
2 | 6-10] o 0 |0.0000] =-3.18 {0.0007 [.0007
3| 11-15| 9 9 |0.0016] =-2.93 |0.0017 !.0017
4 | 16-20 | 17 26 | 0.0047| =-2.67 |0.0038 |.0022
5 | 21-25| 32 58 |0.0106{ -2.42 [0.0078 |.0031
6 | 26-30 | 54 | 112 |0.0204| -2.17 |0.0150 |.0054
7 | 31-35|101 | 213 |0.0388| -1.92 |0.0274|.0114
8 | 36-40 | 173 | 386 | 0.0704| =-1.67 {0.0475|.0229%
9 | 41-45|209 | 595 |0.1085| =-1.42 [0.0778 |.0307*
10 | 46-50 | 283 | 878 | 0.1602 =1.17 [0.1210 |.0591%
11 | 51-55|340 | 1218 | 0.2221] =-0.92 {0.1788 |.0433%
12 | 56-60 | 378 | 1596 | 0.2911| =-0.66 |0.2546 |.0365%
13 | 61-65 {377 | 1973 | 0.3598] -0.41 10.3409 |.0498*
14 | 66-70 | 481 | 2454 | 0.4467| =-0.16 |0.4364 |.0766%*
15 | 71-75 1483 | 2942 |0.5366|  0.09 |{0.5359 |.0892%
16 | 76-80 | 460 | 3402 | 0.6205| 0.34 [0.6331|.0965*
17 | 81-85|586 | 3988 |0.7273|  0.59 |0.7224 |.1019%
18 | 86-90 | 584 | 4572 | 0.8339|  0.84 |0.7996 |.0723*
19 | 91-95 | 520 | 5092 {0.9287| 1.09 |0.8621 |.0666%
20 | 96-100! 300 | 5367 |0.9788| 1.35 |0.9082|.0706%
21 |101-105| 106 | 5473 |0.9982|  1.60 |0.9452 |.053*
22 |106-110| 10 | 5483 | 1.0000{ 1.85 |0.9678 |.0322%

The acceptance limit at a significance level of 0.05 is D 05
= .0184, which is exceeded at i = 8 and all asterisked points.

Hence, normality is rejected. Such a statistical test
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determined that the data set may not be described under a
normal distribution. Further analysis, as shown in Figure
3.1, revealed that a normal distribution is a very poor fit
to the empirical distribution, leaving room for further im-
provement. However, the shape of the boundary of the density
function £(T) indicated possible fit using well-defined stan-
dard statistical functions. The densities in Figure 3.1 show
a skewness to the left.

Upon compariscon with several standard statistical
functions, the beta function was selected for trial. Selec-
tion was based on the fact that the same left-handed skew-
new of Figure 3.1 can be approximated by the beta function.
The following is a brief review of the beta density func-

tion.

B. Beta Density Function

The beta density function is given by

1 a-l,. _ .8-1
£1x) = §TETETX (1 - X) 0 <Xx<1
where B(a,B) = r(%iu.+ré?) a constant for a given &, and 83;

and where T is a gamma notation, and a and B are parameters
of the beta densitv function.

The shape of the density function depends on the
choice of o and B. For example, when o = 8 =1, then £(X) =

l, a constant, which is the uniform density function.
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The mean, i, ané varance, Var(X), of the beta density

function were found using the moment generating function, thus

Var(X) = 20‘3
(¢ + B8 (¢ + 8+ 1)

A choice of a > B > 1 yields a left skewed beta den-

sity function of the form shown in Figure 3.2.

£ (x) 4

Density of X

Figure 3.2. A Typical Beta Function for o > 3 > 1.
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The point of maximum density X is given by

Xn = E_%—%_%—f
and is to the right of the mean value X.

The density function shown in Figure 3.1, was approx-—
imated using a trial and error method in the selection of
values for o and 8. The smooth curve shows this approxima-
tion, using ¢ = 4 and B = 2. These values for a and B vield

a density function given by

3

£(X) =20 X° (1 - X) 0<x<1

Since the beta function lies between 0 and 1, a transforma-
tion of variables has to be made in order to satisfy the
boundary conditions. In this example, the transformation

used is given by

=

X =175

0 <T< 110

where T is temperature in °p,
Having defined the density function by an approximate

curve fit, the cumulative distribution function F(T) is eas-

ily calculated as

-

o
F(T) = { 10 502301 - 2)az
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or P(T) = X0 (5 - 4%)

where X is as defined previously.

The above example was done using data from one of the
areas under study. Figures 3.3 through Figures 3.6 show the
temperature density functions for the other areas. Figure
3.7 shows an overlay, or composite density distribution func-
tion, which is an average of all the areas together. It is
a hypothetical distribution function. The estimation of £(T),
using an appropriate curve fit as demonstrated above, com-

pletes the calculation of the right-hand side of the equation,

F(PM T) = F(P/T) + £(T)

where P is demand in megawatts and T is temperature, des-
cribed in Chapter 2.

The objective to this point has been to define the
natures of F(P/T), the conditional distribution of a load
level P, at a given temperature T, and of £(T), the distri-
bution function of temperature T. Hence, the distribution
function of load P and temperature T is known.

F(PN T) may be calculated at temperatures TO to Tn'
as shown in Figure 3.8.

The probability of reaching and exceeding load level

P megawatts is thus given by

T=T
n

F(P) = ]} F(PAT
T=T
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Figure 3.8. Sample Points for the Calculation of F(PNT).

1

T=T
n

or F(P) = ) F(p/T) + £(T)

T=T
o

The probabilityv densities of temperature f(T) and the
average loads or forecasts for the vear being studied, were
determined and stored on disk. These were used in the com-
puter program listed in Appendix A to calculate the probabil-
ities of load occurrence, assuming the standard normal dis-
tribution previously accepted. For example, let the peak
demand forecast for 1970 be 2163 MW. The program calculation
showed that this level of load has a probabilityv of 0.0157 of

being reached or exceeded in that vear. This level of load
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has a low chance of occurrence, and the supply situation is
the criterion for acceptance of this load level for planning
purposes.

Factors such as the availability of adequate external
supplies when needed, and the cost of capital will aid in the
determination of the most feasible supply option. Thus, the
probability levels are measures of risk, as well as an index

to capital expenditures.
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CHAPTER 4

MULTI-AREA DEMAND CHARACTERISTICS

A. Introduction

In this chapter, data from each area under study are
discussed in greater detail. An attempt is then made to
state, in broad terms, what the characteristics of most util-
ities in similar areas can be expected to be. Finally, a
composite characteristic of all regions is developed, and its
statistical parameters calculated and checked for conformity
with the results of Chapter 2.

Figures 4.1 through 4.5 are representative plots of
peak daily load versus peak daily temperature for geograph-
ical areas 1 through 5 which are climatically very similar
geographical areas. Area 1 and 2 interleave, as do areas 3
and 4. Area 5 has a warmer weather system during most
of the vear. Descriptions of the characteristics of these
plots are as stated at the beginning of Chapter 2. Sections
of base load, temperature dependence and saturation are evi-
dent on most of these plots.

Composites of these plots will be built in stages.

Two approaches may be used in the combination of the daily

data points to yield a total multi-area demand.
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B. Summation by Temperature

Plots, such as those shown in Figure 4.1 and Figure
4.2 for the same year, are overlaid. Such an overlay is
shown in Figure 4.6. The points of match in the overlay are
temperatures. The demand obtained in this case is not the
sum of the demands in the two areas, but an average demand
for both areas. It is obvious that this approach is useful
only when the demands and weather sensitivity of the demand
in the two areas are quite similar. If this condition is not
met plots of the data points will be so widely spread out
that no meaningful trends will be noticeable. An advantage
of this method is that the number of data points at each tem-
perature 1s significantly increased, giving a more solid

base for statistical analysis.

C. Summation by Date of Occurrence

In this case, the number of data points stays the
same for any given year. However, the ordinate of the grarch
is the sum of demands in the two areas on any given date.
The problem here is that two temperature values, one for each
area, are now to be considered. A direct overlay of plots
is not possible. A new temperature for the composite
load has to be calculated and weighted to account for dif-
ferences in the size of the loads. It has been noted before
that the total area system load has a base load and heat sen-

sitive component expressible as
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P =R + H(T) (4.1)

where P is the total area load, B is the base load, H(T) is
the temperature sensitive component and T is the temperature
in °F.

In deriving the temperature to use, only the heat sen-
sitive component will be used. The parameters that determine
the level of base load are largely independent of temperature
or weather. In the calculation of the resultant temperature
for the two areas, it is necessary to give more weight to the
area with the higher temperature sensitive demand. Given a
date and two areas, 1 and 2, the two-area temperature is

calculated as

o - Hy(Ty) + Ty + Hy(T,)) - T, (1.2)
Hy (Ty) + Hy(T,)

The resultant temperature T, is weighted in the direc-
tion of the area with the higher heat sensitive component, in
the transformation which may also be used to obtain a temper-

ature, such as T, or Ty for an area using demands and temper-

1

atures from sub-areas on a distributed basis.

The total demand is retrieved as

= + F
P=B B, + Hl(Tl) + H, (T

1 2 (4.3)

2(T5)

+ P (4.4)

2

Using the data sets of Figure 4.1 and Figure 4.2, the
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resultant two-area demand is shown plotted in Figure 4.7.

A comparison of Figure 4.7 to Figures 4.1 and 4.2
shows a strong similarity in characteristics. These figures
show sections of base load followed by linear dependence.
This characteristic describes the combined demand within the
two service areas taken as one. In order to verify the hy-
pothesis that a normal distribution function can be used to
describe the data set of a given temperature, a Kolmogorov-
Smirnov test was made and the results are presented in Table
4.1 for a given example. Further analysis on probability
graph paper vielded an approximate straight line, as shown
in Figure 4.8, which reinforced the test results of Table 4.1.
The composite model is thus derived from its components.

The above analysis was repeated, using data from areas
3 and 4, which are adjacent to each other, and serve a simi-
lar customer mix. Figure 4.9 is a plot of the composite two-
area model for areas 3 and 4. Again, there is an evident
similarity in characteristics (see Appendix C). Finally, all
five areas were combined to produce a five-area composite de-
mand characteristic, shown in Figure 4.10. Total demand con-
tinued to conform to the separate demands for each utility.
Figure 4.10 shows a five-~area composite characteristic. Meth-
ods developed for the analysis of the sevarate demands can,
therefore, be applied to the composite model without loss of
generality.

This yields an effective tool for system planners on
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TABLE 4.1
Rolmogorov-Smirnov Test of Composite Data Set

(Critical acceptance limit at 5%)
significance level is 0.391.

T
n=10 L0 v -7
N B L = - Zi-}“:i e D]
1 1790 1l 1 0.091 -1.193 0.117 0.117
2 18438 1 2 0.182 -0.364 0.195 0.104
3 1878 1l 3 0.273 -0.693 0.245 0.0€3
4 1885 1 4 0.364 -0.653 0.258 0.126
5 1941 1 5 0.455 -0.335 0.367 0.088
6 1969 2 7 0.636 -0.176 0.433 0.203
7 2014 1 8 0.727 0.079 0.528 0.199
8 2026 1 9 0.318 0.148 0.560 0.258
9 2310 1 10 0.909 1.760 0.961 0.143
10 2335 1 11 1.000 1.900 0.971 0.052
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a regional basis. Although utilities usually do not plan on
a regional basis, they are all members of power reliability
pools, where some degree of regional planning is done. The
composite demand of any given power pocl with the character-
istics described for the five-area composite model, described
above, can be similarly analyzed. The ever increasing size
of generating plants and transmission voltages, and the mount-
ing pressures of envirommental groups will make regional plan-

ning necessary in the future.
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CHAPTER 5

THE FORECASTING MODEL

A. Introduction

The modeling technique used is described in this chap-
ter. A data series is developed using the demand character-
istics previously discussed and the theory of time series
analysis, particularly Box-Jenkins models, applied to fore-
casting. Most forecasting methods extract only one coordin-
ate point for each year's data set, thus losing information

available in the entire characteristic.

B. Model Development

In previous chapters the form of the demand charac-
teristic was discussed. 1If the plots of demand versus tem-
perature are placed side by side, in succession, the series
shown in Figure 5.1 results. Axis number 1 has temperature as
the independent variable extending from 60°F to l}OoF for each
year's data set. Time series analysis is applicable only to
a monotonically increasing axis. 2Axis number 2 transforms
axis number 1 to a monotonically increasing axis, with each
year spanning a period index of 50 units.

A mathematical model will be formulated for this
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series that permits the forecast of the next annual demand
characteristic.

A time series may be represented by the linear filter

form given as

= § 1 ! ! .o 0. . .
Zt ° * wout T VU TPl * * yjlt-j (5.12)
or

Z

d -
g=8+ 1 (5.1b)

Y.u,
t-
3 J J

O

which is a discrete linear stochastic process, where § is

the mean of the series. wj are weights associated with ut—j;

independent random noise components of the series.
Hence the value of the function Zt at time t is equal
to the mean of the function and a sum of fractions wj' of de-

viations, u_ ., from a mean §, at j preceding time periods.

t-J

In the analysis zt is a time series whose parameters

will be identified to obtain a demand model. The method
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used was initially developed by Box-Jenkins [26]. The
method consists of three main parts, namely

1. identification of the nature of the time series,

its components,and the order of the components.
2. estimation of the model parameters to completely
describe Zt.
3. diagnostic checking of the model for goodness

of fit, against the actual data used, for accep-
tance or rejection.
The model obtained on acceptance may then be used to fore-

cast.

C. Autocovariance and Autocorrelation [26,30,31]

These are statistical parameters necessary in the
identification phase of the model. The prefix "auto" is
used to signify the covariance or correlation between obser-

vations at different points in the same series, for example,

the covariance or correlation between Zor By_qr O 24y Zt-j’
Autocovariance is defined by
=5 - B -
Y5 Elz, ‘“(Zt)][zt+j E(Zt+j)] (5.2a)
=E[(Z, - W) B,y - W] (5.2b)
where

the population mean of the function.
The autocovariance depends only on the span, j, be-

tween the two observations. Yj is called the autocovariance
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of the series at lag j. Variance is a measure of dispersion,
and for the analysis of series, is more useful when referred

to a reference. Yo is made the reference, where Yo is given

by
Yo = E[(Z, - w(Z, - w1l i.e., j=0 (5.3)
Autocorrelation is defined as
o=
J Yo
= 5 (5.4)
E[(Z, = ¥)°]
A plot of the autocorrelation function is called a
correlogram.

Since u = E(Zt) may not be easily obtained due to

limitations of sample size, the sample average is used.

1 N33 = 0 -
1L (B~ Dy - D)
=7z, -

for 3 =0,1,...K

where K < N/4

Further information may be obtained by decoupling the auto-
correlation function into partial autocorrelation function,

between Zt and 2 +k with all observations bounded by zt and

t
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Zt+k neglected. The partial autocorrelation function is

given by

117 A1

k-1
" -jzl¢k'l'3 " Py

¢kk = k_l ,k = 2,3,-0.1( (5.6)

j£ @k—-,j ) pj
. = .- * 9 . ) = 2,...k-
¢kj ¢k-l,] ¢kk Qk‘l,k"] for J l, r 1

(5.7)

where ¢kj is jth coefficient in an autoregressive process of

order k. is the autocorrelation estimate.

Pk
Most time series may be represented by autoregressive
processes, moving average processes or combinations of the

two. The following is a brief discussion of the two proces-

ses.

D. Autoregressive Processes

An autoregressive process 1s given bv an eguation of
the form

zt =§ + ¢lzt—l + ¢2Zt-2 + ... + ¢pzt_p + €y (5.8)
where §, ¢p are parameters of the autoregressive process.

Zt-p are values of the function at time lags p. The
value of the function at t depends on previous values of the

function at time lags p. ¢, is the error at t.
[
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Equation 5.8 may be written as

- ; \ nl P
Zt =§ + (¢lB + ¢2B + ... ¢pB )Zt + et or
- 6.8 - 2 _ - s RPyy =

(1 @lB ¢2B .o @pB )Zt § + €y

¢p(B)Zt =§ + €y (5.9)

-1 - -6 Re _ - 4 P - -

where ¢p(B) =1 ¢1B @zB oo QPB and B is the back
shift operator such that Z..1 = BZ..

The first order autoregressive process, AR(1l) is given
by equation 5.9

with p =1

tbl(B)Zt =4 + Et

1 - ¢lB)Zt =4 + .

Z_ =48+ 0 € (5.10)

1Ze-1 * &
By successive application of equation 5.10 it can be shown

that

2
=6 + (,-‘)16 + q')l“Zt_:2 + élst-l + Et

N
I

_ . 2. 3 2 ..
O 08 F 078+ 078 g T 0T 5 T OgE g Ty

or in general

N1y N-1
o= Lot vt ey

=0 * §=0

6,383
For the series to converge it is required that

0,1 < 1

Now @lNZt_N > o as N+ o
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and

¢>1ij (5.11)
0

o
|.._l
L. ]
+
™
o
e
e~ 8

0 ]
The mean of the series may be obtained by taking the expec-
tation of Equation 5.11, given by
-3 . © ..
v =E[2] =86+ § o +e_ - o Bl
t P t LTl
3=0 =0

or

. ® P
0 3=0

Now E(et) = 0 since €t is random noise about the mean.

b= T (5.12)

The variance of the series mayv be found by the procedure out-

lined as follows.

,.3 (5.13)

3
$,° + ¢

1}

—

(3]
e~ 8

769837 - 5
=Ol

il ~18
(o]

]

The variance is given by the expectation of the square of
equation 13.
@

B[z, - B(z)1% =E[ ] ¢
j=0

Jnd 2
1 B st]
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_ 2,. 22 4 2 -
= E[st +¢l €y + ¢l €io + ... + cross products]
cez
= (5.14)
1 - ¢l
2 _ j_ 2
where O E(B €y )

which is the variance of the series. Thus the autocovar-

iance at lag k is given by

o)
=1 .52 (5.15)

'Y =
k 2 £
1 - ¢l

The autocorrelation function of the first order autoregres-
sive process is given by the ratio of

(5.16)

Since (¢l] < 1, the autocorrelation function of the first
order autoregressive process decays exponentially for
increasing lags as shown in equation 16. This is important

in the identification of an autoregressive process.

E. Moving Average Processes

A moving average process is given by an equation of

the form

Z, = p+¢g -8 - g

- 8
: 186-1 ¢ € (5.17)

285¢-2 7 o0 g t-g

where yu, eq are parameters of the moving average process.

Et is random noise or error.
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The value of the functicn at time t depends on previous

errors.

The first order moving average process MA(l) is given

by
= h
zt B+ ep(B)et where
58 (B) =1-8.B - 8.8 - - 5 8P
p 1 2 . es 5
with p = 1
e L

The mean of the series is given by

E(Zt) =u

Since Et

j is calculated fronm

is distributed randomly.

(5.18)

The autocovariance at lag

vy = B {12, - B@)1E, 5 - E(2)]1}

J
=E [(e - elet-l)(et-j - elet-j—l)]
- = - A e ¢ -
{j E [etet_j] JlELst-t_j_l] elE[st_lst_j] +
2
a
8 Eleg 18 5] (5.19)
. 2
At j = 1, Y, = -eloE
2
where o = = E[e e ] = Ele, 841!
and 0 = E[etst_l] = Ele,_;e.]

The autocorrelation at lag 1 is given by
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1 %
p, = — = for 1 =1
LYy 14 el2
(5-21)
=0 for j > 1

The autocorrelation function in a first order moving average
process cuts off at lag 1. The function converges for any

value of Sl.

F. Mixed Models

The foregoing analysis describes stationary series.
However most real series, such as the data used in this re-
search are non-stationary. It is necessary to transform the
non-stationary series to.a stationary one. Time series
analysis may then be applied to characterize the series.

Most real series are a mix of autoregressive and moving aver-

age processes of the form
=qpu+ 8 -2
¢p(B)Zt u q(B)et (5.21)
The first order mixed autoregressive and moving average pro-
cess ARMA(l,l1) is expressed as

Cbl(B)Zt =p + Gl(B)st

or

I, = u + ¢lzt-l + g, - 6.¢ (5.22)

t t 17t-1

As an example, the series shown in Figure 5.2a below is non-

stationary. The value of the function is not stationary
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about some constant mean. Most series begin to show station-
ary characteristics, such as the simple series shown in Fig-
ure 5.2b, upon successive differencing, given by
=2, - .23
Yg = % 7 By (5.23)
The order of differencing may be introduced into the model

equation as shown below

d,
QP(B) (1 -28)"z, .

where d is the order of differencing.

o+ Sq(B)s

Most raw series tend tc exhibit a seasonal character-

istic which may be introduced into the model eguation as

a S - .
05(8)-(1 = 3)%(1 - Bz, = v+ 8 (B)e

where S is the seasonal length.

+ (5.24)

The determination of values for p, 4, g and S com-
pletes the identification process. This is the most criti-
cal phase of the modeling process. The minimum values for

P, 4, g and S that adequately describe the series are
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selected. The aim is to develop parsimonious models.

G. Identification of the Data Series

Figure 5.3 shows a plot of the raw data, extending from
1969 through 1976; megawatts demand versus a monotonically
increasing index t. The series shows a periodic character-
istic. However, there is a growth factor that may be deter-
mined. The three regions of base load, temperature depen-
dent loadﬂand saturation, are easily defined for each segment
of the series. The following describes an application of
time series analysis to the raw series in Figure 5.3. The
analysis is aided by use of computer programs PDQ, ESTIMATE,
and FORECAST [31], available in the University of Oklahoma
IBM 370 computer system library.

In phase one of the analysis, values of p,d,q and S
described as in equation 24,will be found. The raw series
as shown in figure 5.3, is non-stationary. Hence, differenc-

ing is required to achieve a stationary series.

The above equation called a first order difference equation
yielded a series that was stationary. Further differencing
is not necessary, because once stationarity is reached more
differencing continues to yield stationary series. Figure
5.4 shows first order differencing of the raw series. The
autocorrelation function for this series, Figure 5.5 shows

strong spikes at lag 1 and lag 43. A seasonal component of
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length 43, 44 or 50 was suspected. These values were tried
for the best choice. S was set at 44 in the following equa-
tions.
The model equation is now
44

¢p(B)(l - B)J(1 -B )2, =+ Sq(B)et

The autocorrelation of the series after first order regular
and seasonal differencing shown in Figure 5.6 shows a pre-

dominantly strong spike at lag 1 repeating at lag 44. Hence
the order of the moving average component g is set at unity.

Equation 24 thus becomes

44

@l(B)(l -B)(L-~B )Zt =u+ el(B)Et
or
1-sB@-3@1-3"%s =u+ @-s5Bme (5.29
- 1 t 17771 :
On expanding egquation 5.25 the following is obtained
_ , . a2 44 45 i6
Zt— [(l+q>l)B \plB + B (l+¢)l)B + ¢>1B ]Zt+
c - &
u + € “let-l (5.26)
or B = (LA 0By = gt ligg T (L H )T 45t
01246 * M F el - Byl (5.27)

H. Model Parameter Estimation

The order of the components of the time series model
has been determined. The next step is the calculation of

the parameters ¢l, ¢ and 3 for the autoregressive and

l,
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moving average components respectively. The reference equa-
tion is given in 5.26. This function is non-linear, and hence
the exact methods of linear least squares regression may not
be used. Non-linear regression [27] is used to determine the
parameters, from the actual data series. 1Initial estimates
of ¢l’ ¥ and 81 are made, and then used iteratively. The
square of the error function is given by

= -7 12
e” = [Zt Zt]

where Zt is the actual series value, and Zt’ the estimate of

(5.28)

that value at lag t, for the current values of the parameters.

The total error sum of squares is given by

ESS =

I~

ezj; N is the number of data points.

j=1

It is desired to find values of ¢l, u and 81 such that the
error sum of squares is minimized. The computer program
called ESTIMATE [31] is used to determine the optimum par-
ameter values. It uses a method first developed by D.W.
Marguardt [15]. Marguardt's method is a compromise between
the Gauss-Newton method, ané the method of steepest descent.
Gauss-Newton requires good initial estimates, and converges
quickly to a solution. The method of steepest descent may
start with poor initial parameter estimates of the objective
function, but converges rather slowly te a solution. Mar-

guardt's method bridges the gap between the two methods. A

factor of convergence is introduced such that poor starting
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values may be used, as in steepest descent while convergence
is rapidly approached as in Gauss-Newton.

The parameter set is modified for trial at each iter-
ation, and the error sum of squares calculated. Convergence
is reached when the relative change between the last value
of the objective function and its immediate previous value
is less than some designated constant.

ESSi+l - ESSi

ESS,
i

< C

where i is the iteration count and C is the criterion of

convergence. In the program ESTIMATE e==lO_6. Table 5.1 shows

an iterative progression to a solution. The last row in Ta-
ble 5.1 shows the values of the parameters that minimize the

objective error sum of squares function:

= INAE - = . P |
¢l .2046; Gl .6289; o) L4767

Hence equation 6.26 becomes

= 1.20462,_, - 0.20462 __ - 1.20462,_, *

Zy 2 F Ziag 45

0.2046Zt_ <4767 + e - .6789€t_1 (5.29)

46

I. Diagnostic Checking

After the identification and parameters estimation
phases of the modeling process, it is necessary to check the
adequacy of the model obtained. This is done by statistical
analysis of the error function.

e, = Zt - Zt
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Table 5.1. Model Parameter Estimates
Iteration | Parameter Estimates ESS kESS
Count ¢l 61 u XlO7 ESS
0 ~0.1053 |.0775 | 3.711 | 2.127000
1 ~0.1164 |.2558 | -2.300 | 2.072930 {0.054383
2 0.0203 |.4438 | -0.9461] 1.996629 [0.010349
3 0.0690 |[.4996 | -0.8836| 1.994213 {0.001211
4 0.0999 |.5306 | -0.7597| 1.993397 [0.000409
5 0.1213 {.5513 | -0.7196| 1.993016 {0.000191
) 0.1370 |.5663 | -0.6546| 1.992814 [0.000101
7 0.1495 {.5781 | -0.9308; 1.992710 {0.000052
8 0.1600 |.5878 | -0.5945| 1.992622 |0.000044
9 0.1689 |.5961 | -0.7005| 1.992570 {0.000026
10 0.1764 |.6030 | -0.5400] 1.992526 [0.900022
il 0.1831 |.6093 | -0.6534; 1.992515 |0.000006
12 0.1892 |.6148 | ~0.5285]| 1.992498 [0.000009
13 0.1947 |.6198 | -0.5254| 1.992488 0.000005
14 0.1998 [.6245 | -0.5915| 1.992480 |0.000004
15 0.2046 {.6289 | -0.4767| 1.992478 {0.000004

The error function is examined for random behavior.
A test of a time series model is that its errors are randomly
distributed, and hence the expectation of the errors is zero;
E[et] = 0. One method of testing for random behavior is to
calculgte the autocorrelation of the error function, pk(e).

A Chi-square test of the residue autocorrelations will re-

veal grounds for rejection or acceptance of the model.
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The test statistic is given by

X .
Q(K) = (N = b) « [ op(e) (5.30)
K=1

QK) < x*(v,0) (5.31)
where Q(X) is the calculated statistic, K is the number of
autocorrelations; e i1s the error at lag X; xz(v,a) is the
Chi-square statistic from tables, of v degrees of Ireedom and
o level of significance. N is the number of data points in
the series, b is the highest order in back shift operation in
the model. Table 5.2 shows the sample autocorrelations of
residuals for 36 lags.

Table 5.2. Sample Autocorrelation of Residuals.

Lag

- pk(e) k

pk(e) k pk(e) k pk(e)

1 c.00 10 |-0.01 | 19 |-0.06 | 28 {-0.00
2 0.06 11 {-0.04 |20 0.00 |29 | 0.01
3 0.02 i2 |-0.01 | 21 {-0.05 | 30 [-0.02
4 G.02 13 {-0.04 | 22 |~0.02 | 31 {-0.07
5 (-0.17 141 0.64 |23 0.00 |32 0.00
6 0.01 15|-0.05 | 24 {-0.07 | 33 |{-0.02
7 |-0.09 16| 0.04 | 25| 0.04 | 34 1-0.03
8 [-0.06 17 1-0.04 | 26 |-0.06 | 35| 0.08

9 -0.08 181 0.07 |27 | 0.01 | 36 {-0.01
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The only autocorrelation of significance occurs at lag 5.
The number of degrees of freedom v =k - p ~-d - q; v = 33.

From mathematical tables

x%(33,.05) = 50.22 at 5% significance level

X2(33,.l)

47.11 at 10% significance level

From Table 5.3 and equation 5.30,
Q(36) = 28.71

Hence the inequality 5.31 is satisfied. The test gives no
reason for rejection of the model. Alternative models were
tried before an acceptable model could be found. This phase
of the modeling process ends with information for the model

summarized as follows.

Order of autoregressive component, p = 1
Order of moving average ccmponent, g = 1
Degree of regular differencing, d = 1
Degree of seasonal differencing, s =1
Length of seasonal differencing, S = 44
Lutoregressive parameter ¢l = .2046
Moving average parameter 6., = .6289

1
Constant of model u

0.4767

and the model is as stated in equation 5.29. The standard
errors and 95% confidence limits on the estimated values are

summarized in Table 5.3.
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A Tremgmtes

Table 5.3. Summary of Standard Errors and 95%
Confidence Limits on the Estimated Parameter Values

Model Parameter Estimates

°1 °1 u
Estimated Value 0.2046 |0.6289 -00.4767
Standard Error 0.1140 |0.0904 05.7010
Upper Confidence Limit|{ 0.4327 0.8097 10.9300
Lower Confidence Limit|-0.0234 [0.4480 -11.8800

The output of program ESTIMATE produces a comprehensive list-
ing of statistical data about the data series. The model may

now be used in forecasting.

J. The Forecast

The main purpose of any forecasting model is to esti-
mate future values of the data series, with the least pos-
sible error margin. Subjective judgment cannot be completely
eliminated, due to changing conditions which introduce new
variables for which historical precedents may not be easily
available. However, a high degree of objectivity greatly
improves any applied subjective judgment. The following
shows results of the method discussed previously.

The forecast mcéel is stated in equation 5.22. A
forecast may be made for % steps ahead, with the origin at
the present index t, as shown in equation 5.32.

Equation 5.33 is the model formulation for the histor-

ical data set from 1969 through 1976. Using the same
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approach and historical data from 1962 through 1969, the mod-

el is described by equation 5.32 below.

.7668%Z +

A = 1.7668%2

£+ T e42=2 F Bpygags T

1.76682 + .76682Z + .0757 + ¢_ - .99365t+

t+2-45 t+2-46 t 1

(5.32)

.20462Z + 2

Z Q= 1.20462 Q=2 t4+0-44 "

t+ £+2-1

1.20462 .20 4767 +

. A8 -
p+g-a5 T 20902, 0 46

€pyp = -6289e, . . (5.33)

Figure 5.7 shows the raw series and a forecast of the series
using equation 5.32. The forecast tracks the actual series
closely. The peak values of the forecast characteristics
are determined and tabulated in Table 5.4. The table shows
peak forecasts obtained by forecasting 190 steps aheacd. This
covers a period of about 4 years, from 1970 to 1973, using

data from 1962 to 1969 as historical data.

Table 5.4. Maximum Demand Forecasts for 1970 through 1973.

Maximum Demand (Megawatts) | Per Cent
Year Peak Annual | Actual | Exrror Error
Forecast
1970 2163 2210 - 47 -2.13
1971 2390 2360 30 1.27
1972 2637 2645 - 8 -0.30
1973 2896 2775 121 4,36
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The forecasts shown in Table 5.4 were plowed back into
the historical data set and forecasts were then made for 1974
to 1976, using the same model parameter values, shown in

equation 5.32. These forecasts are shown below in Table 5.5.

Table 5.5. Maximum Demand Forecasts for 1970 through 1976.

Maximum Demand (Megawatts) | Per Cent
Tear Peak Annual | Actual | Error Error
Forecast
1970 2163 2210 | - 47 | -02.13
1971 2390 2360 30 01.27
1972 2637 2645 | - 8 | -00.30
1973 2896 2775 121 04.36
1974 3165 3140 25 00.80
1975 3452 3187 265 08.30
1976 3747 3335 416 12.47

The errors for the first 5 years of forecasts, 1970 through
1974 are below 5% of the actual demand. However in 1975 and
1976 the errors were 3.3 and 12.47 per cent, respectively,
indicating that the forecast horizon is limited at about 5
yvears <£or a given set of model parameter estimates. The
parameters were now re-estimated and the forecasts repeated.
Table 5.6 shows updated forecasts for 1974 through 1976.

The errors are noticeably below 5%. Forecasts for 1977

through 1980 are also shown, using model equation 5.33,
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derived from historical data up to 1976. The small sizes of
the errors and per cent errors show the strength of the

modeling technigue in forecasting.

Table 5.6. Maximum Demand Forecasts for 1970 through 1980.

| Maximum Demand (Megawatts) | Per Cent 1
Year Exrror
Peak Annual | Actual| Error
Forecast

1970 2163 2210 - 47 -2.13
1971 2390 2360 30 1.27
1872 2637 2645 - 8 -0.30
1973 2896 2775 121 4.36
1974 3055 3140 25 0.80
1975 3225 3187 265 8.30
1976 3369 3335 416 12.47
1977 3526 3650 =114 -3.12
1978 3781 3805 - 24 -0.63
1979 4000 - - -

1980 4192 - -— -
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CONCLUSION

The forecasts of maximum demand, tabulated in the pre-
vious chapter, demonstrated the effectiveness of the metho-
dology developed. The method is a compromise between meth-
ods that assume conventional temperature dependence, and
time series analysis. The peak load for most utilities is
temperature dependent, hence a temperature related character-
istic seemed a most likely basis for the extraction of future
peak loads. Forecasts were obtained by carrying the whole
temperature dependent characteristic into the future. A
pseudo series was developed using the basic temperature de-
pendent demand characteristic. This series was also time
dependent. A mathematical model was found using Box-Jenkins
models and used to forecast demand. Peak annual demand fore-
casts were within 5% of the actual peak demands that occured,
with a 5 year forecast horizon for a given model and param-
eter estimates.

Forecasts were associated with possible errors, a 95%
confidence region, or a probability of occurrence. The temp-
erature distribution was a left-skewed beta density function,
and the conditional distribution of load for a given temper-

ature was approximated by a normal density function. These
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statistical densities were used in the calculation of a prob-
ability of load occurrence. The forecasting method and
probability calculations may be applied to data collected
from geographical areas similar to those studied.

The apparent drawback is the time and effort it takes
to analyze the time series results to determine the nature
lof the model and its parameters. However, a step by step
approach of identification, estimation and diagnostic check-

ing will yield a model that may be accepted or rejected.

Areas for Further Research

The model used is based on the total system coincident
daily peaks. System load may be broken down into classifica-
tions, such as residential, commercial, industrial, and agri-
cultural demand. There are sections of each of these clas-
sifications that are dependent on only certain variables,
such as weather, the economy, population, and so on. Iden-
tification of these variables and the sections of system de-
mand that are affected will greatly enhance forecasting.

An alternative approach will be tc find mathematical
formulations for each temperature dependent characteristic
for each year of historical data. The parameters of these
formulations may then be examined for relationships. Fore-
casts will then be made of the parameters in order to fore-
cast a point on the demand characteristic. The forecast

points can be used to generate a basic temperature dependent




characteristic for each year. This may also serve as a data
preparation stage for the application of time series analy-

sis,
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APPENDIX 2

Sample Computer Programs for Calculating
Probabilities of Occurrence of Load and Data Handling.
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AFFENDIX A

THIS COMMUTER FROGRAM CALCULATES THE FROBARILITY OF 1.0AD OCCURENCE
INFUT REQUIEREMENTS ARE AS FOLLOWS.

DEMe o o0 o THE AVERAGE NEMAND CHARACTERISTIC IS READ
TEMF o 4o « STORE TEMFERATURE DATA

Sheeees s STANDARD DEVIATION DATA ARIZ STORED IN DATA RELOW
TFROE. . . CUMULATIVE TEMPERATURE DATA ARE READ FROM AREA FILE
TAF ...  JDENSITY FUNCTION OF TEMF READ FROM AREA FILE
EASE ... .RASE LOAD FOR THE YEAR

BIGesvs o THE FEAK LOAL WHOSE PROBARILITY IS NEEDEL.

DIMENSION DEMCS0) » TEMF(S50) ySICS0) » TFROR(L1QO) s TAF(L1L0)

UATA BASE,RIG/1300.22200./

TATA E1/.17809.16407 1587 .1490941432.138r.131541245.1125.106

15.099y.0945.088y ,0849.08y.0787y.0727.0692.0667.0635.,06,.038y.056
25.055y.083, 0325 4031y 05y v 059,055,055y 405940354055 .,055 .05+ .05y . 05y

390020:070420450,90,9504504970,90.90.,90./

J=1
TFRORWJY=0.
0 10 I=2,111
KR=I-1

ALLOCATE THE TEMP DENSITY FILE TO TURE ‘FT14F001”
READN (14, 2C0) DENS

FORMAT(LSXELT5.7)
TRROE(I)=TFROR(I-1)+DENS

TAP (K)=[ENS

CONTIMUE

WRITE(Ss 1ITPROE(L1L)

FORMAT(LOX2F10.4)

WRITE(S» &C0)

FORMAT L1, 10Xy LOAD LLEVEL /210Xy ‘FROR’)
FROE=0.

CFROR=0.

STEF=3,

D0 S I=1,50

IF(I .GE. 29)SH(I)=.05

ALL.OCATE THE AVE. DEMAND CHAR. TO ‘FT13F001’
REAT(L3y 300, END=6)EM(I)
FORMAT(24X,F10.1)

IF(TEMF(I) .ER. 9999.)G0 TO 6

K=I

CONT INUE

I3 80 I=1,300

Co=0.

X=1

0o 20 J=1,K

TEHF (D) =&04K

JI=TEMF(J)

IF(ST(J) .EQ. 0.)C0 TO 20
T=~(BIG-X¥STEF-DIEM(J) 3/ (BASEXSDI(D)
IF(T LE. =-3. ,OR. T .GE. 3.)60 TO 20
Co=C0o+1,

Y=BRIG-Z#CSTEF.

FROB=EFFC(T)/2.

FROE=1,-FROB

FROB=FROEXTAF(JJ)

CPROEB=CFROR+FROR

CONT INUE

IF(CO JEQ. 0.)60 TQ 80
WRITE(6+400)»FRORsCFROR
FORMAT(10XsF10.2,10Xs2E15.7)

CONT INUE

STOF

END

END OF DATA

90




THIS COMPUTER FROGRAM [IOES MOST OF THE DATA HANDLING
REQUIRED TO AID AREA DEMANDS ,8ETS UF DATA FOR THE BOX-
JENKINS LIBRARY RUGTINES.IT MAY ALSO BE EASILY MORIFIED

TO SET UF DATA FOR THE FROBARILITY CALCULATION FPHASE.
BASICALLY IT REALDS THE LOAD DATA SETS AND WRITES IT IN THE
FORM REQUIRED KY FORMAT SETTING.

OO0O000000on0

//7A6GAL. JUR NOINDZIT:’ANNAN‘yCLASS=JsNOTIFY=LOGONIL

/¥ACCT PASS=NOINOZIT

/X JORFARM D=RMT1 -

// EXEC FORTGCLG

//FORT.SYSIN DO X
DTHENSION TYR(356) yMON(366) yNIA(386) »MHOT(386) yNCOL (366)
DIMENSION IDAY(359) 21 0AD(366) s ITER(100) »LOANL(365) vLOADN2(386)
DIMENSION DEM(S1,100)IFT(110)

CONSTANTS INITIALISED

[y Mol e

00 1060 I0C=13-13
00 100 IYS=76+76
LIS=1
NUM=0
J=0
00 6 K=1,100
ITER(K)=0
D0 6 RK=1,31
LEMC(RKyK)=0

6 CONTINUE

10 Jd=J+1

TASK ...TO COMEINE LOADS QY LATA AS EXPLQINEﬁ IN CHAP. 4.

.

OO0

3 READC13»1000:END=70)NUM: I'YR(JJ s MONCJ) s NDA(J) s MHOT(J) »
INCCL () » IDAY (D) 2 LOADL(JD
TOF=LOADL {J)XMHAT (J)
TY=LOAL1(J)
READI(14y 1000 7END=70)NUMy IYR(J) s MONCJI ) o NDACT) $MHOT(J) »
INCOL () » IDAY (J) £ LLOAR2 ()
1000 FORMAT(S(IS,2X))
TOF=TOF+LOAN2(J)AMHOT (D)
TY=TY+LOAD2(J)
READ(1Sy 1000y END=70)NUMy IYR(J) 7 MONCI) s NDIA(J) »HHOT(J) »
INCOLCJY » IDAY (J) s LOADL ()
TOP=TOF+L0ATL () XMHOT (J)
TY=TY+LOADL(J)
READI(18y 2000 s ENDI=70INUMy TYRCJ) s MONCJ ) o NDA () s MHIT(J) »
INCOL (D) s IDAY () » LOADR ()
TOF=TOP+_0AD2 (J)%¥MHOT (J)
- TY=TY+L.0AN2(J)
READ(179 1000, END=70)MUMy IYR(J) + MONCJ) yNDALI) yMHOT (J) »
INCOL(J) » IDAY () 2 LOADL ()
TOF=TOE+LOADT (J)XHHOT (J)
TY=TY+LOADLCI)
MHOT (J)=TOF/TY
LOADICJ)=TY
IFCIYRGY) LT, IYS)GO TO 3
IFC(IYR(J) .GT. IYS)GO TQ 70
IF(d LT, 2)60 TO 40
JO=4-1
IF(NDA(J)-NDA(JD) Y30, 20530
30 JF=J="
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IFCUP LE. 0G0 TQ 40
IF(NDACS)~NDACIF) ) 40520940
20 J=J-1

GO TO 10
40 N=MHOT(J)~-39

SORT LOADS READ BY TEMF.

oG

IFCIDAY (Y)Y JGE. 7 OR. IDAY(J) LEQ. 1)30 TO 10
IF(N LE. 0)GO TO SO
ITER(N)=ITERI(N)+1
L=ITER(N)
DEM Ny L) =L0ADCJY
S0 IFCMOMOY) JEQ. 12 ,AND, NDAdS) LEQ. 31)60 70 70
GO T0 10
70 IFCLIS .EQ. 0)GO TO 91
00 90 Ni=1s51
NTEMF=N1+59
TEMF=NTEMF
L=ITER(N1)
o 90 Li=1,L
LIS=LIS+1
IFCDEM(NLSLLL) JLE. 9.)G0O TOQ 90
WRITE(P«LL1OD)TEMF s DEMINLYLLL)
1100 FORMAT(2E1S.7930X)
90 CONTINUE
END FILE 9
STO=9999.
WRITE(S&r1110)LIS
WRITE(&»1300)
1360 FORMAT(10Xs“IN ORDER OF +..YEARs TEMPsAVE, LDﬁHySIGHA )
1110 FORMAT(LOX» ‘NUM. OF ENTRIES =’514)
91 DO 130 K=1,391
G=K+39
SUM=0., .
S=0.
SuU1=0.
L=ITERC(KD o
IFCL. JLE. O) GO TO 130
D0 120 J=1.L
SUM=SUM+DEM (K J)
SUL=SUL+DEM (K J)XDEM(K 2 J)
S=S+1.
120 CONTINUE
DEM (K»100)=5UM/S
VARR=(SU1/S) ~(DEM(K»100)XDEM(K»100))
SIGMA=SART (VARR)
WRITE(S91200)IYS-GyIEM(K100)»SIGMA
1200 FORMAT(10XsI4s3F10.1936X)
130 CONTINUE
100 CONTINUE
5TOP
- END
//G0.FTO9FO01 DI DEN=ZEQZ47.AGFS07 .NATAYLISP=0LD
//GQ.FTLI3F001 DI DEN=ZEQGE47 . 48AL L TATA» HISF=SHR
//GO.FT14F001 LD DSN=ZEO347.BNEQ.DATAyDISF=8SHK
//GOFTISFOC1 DD DSN=ZE0347.BTFLL . DATAyDISF=SHR
//7G0.FT1I6FQ01 DD DSN=ZEQ347 .,BIFL .DATAsDISP=SHR
//G0.FT17F001 LD DSN=ZEO347.HGOE.LATA»DICF=8HR
//
/%
END OF DATA
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TEMF. DENSITY DATA

TEMF. (F)
0.1300000E
0.20000G0E
0.30000008
£.40C9000E
0,50000C9E
0.$900000E
0.7000004E
0.2040000E
0.7000C00E
0.1000060E
0.110C000E
0.1200000E
0.1200000E
0.1403000E
0.1500000€
0.1600000E
0.1700099E
0.18000G0E
0.,1900060E
0.+20000C0E
0.+2100900E
0.22060G0E
0.23CG0000E
0.2400000E
0.25000005
0. 2609000E
0.27000098
0.2800000E
0.290000E
0.3000000E
0+3100000E
0.320000"E
0.3300004E
0.3400009E
0.3500000E
0. 3600000E
0370000 0%
- 0.3S000COE
0. 390600E
0.4330000E
0.4100009E
0.4200000E
0.4309000E
0.4400300E
0.4500000E
054600000
0.4700009E
0.4800009E
0+4900000E
0.5000005E
0.5100009E
0.5200000E
0.5390000E
0.5400009E
0.5500000€
0. S600N0E
0.5700000E
0.5800000E

baja
Vo

o2
c2
02
o2
o2
02
o2
02
cz2
02

o2

22
02
e2
e2
02
Q2
G2
02
o2
02
02
¢2
02
02
Q2
02
Q2
02
02
o2
02
o2
o2
02
c2
o2
02

ENSITY

54763703
8’581°F—03
S276E-03
47637E—03

U'lO(-l\li—blOOOOOOOOOOI"

471482E-03
3471AS0E-03
0.18238195-03
0.5471433E-03
0.1276673E-02
G.?2119094E-03
0.7295276E-03
0.1094291E-02
Q0. 1457055E~02
0.1541437E-02
0.1823817£-02
0.9119094E-03
0.2918110E-02
0.2C06201E-02
0.2183383E~02

0,1823819E-02

0,2918110E-02

0.,3330020E-02
0.4741929E~-02
C.31084691E-02
0.528907412-02
0.5836219E-02
0.6200784E~02
0.7299273E-02
O . ..,930‘31 1:"0"

0.5653836E-02
0.6748129E-02
0.8571949E~-02
Q.79350039Z-02
0.,9433859E-02
G+9301476E-02
Q. 1074053E-01
0.93014746~-02
0.89346711E~-02
0.1331388E-01
C.9301476E-02
Q0.1404341E-01
0.13496268E-01
0.1294911E-01
0.,1221959E~-01
0.1532008E-01
0.1288435E-01
0.1240197E-C1
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APPENDIX B
A Map of the Area Studied.

Areas 1 and 2 represent Oklahoma
Areas 3 and 4 represent Texas

Areas 5 represents Louisiana
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Map Showing Oklahoma, Texas

and Louisiana.

96




APPENDIX C

Regional Temperature Dependent Demand Characteristics.
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