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Abstract: Background/Objective: Protein-based drugs are increasingly used to treat a 

variety of conditions including cancer and cardio-vascular disease. Due to the immune 

system’s innate ability to degrade the foreign particles quickly, protein-based treatments 

are generally short-lived. To address this limitation, the objective of the study was to: 1) 

develop protein-loaded liposomes; 2) characterize size, stability, encapsulation efficiency 

and rate of protein release; and 3) determine intracellular uptake and distribution; and 

4) protein structural changes. 

Method: Liposomes were loaded with a fluorescent-albumin using freeze-thaw (F/T) 

methodology. Albumin encapsulation and release were quantified by fluorescence 

spectroscopic techniques. Flow cytometry was used to determine liposome uptake by 

macrophages. Epifluorescence microscopy was used to determine cellular distribution of 

liposomes. Stability was determined using dynamic light scattering by measuring 

liposome size over one month period. Protein structure was determined using circular 

dichroism (CD). 

Result: Encapsulation of albumin in liposome was ~90% and was dependent on F/T 

rates, with fifteen cycles yielding the highest encapsulation efficacy (p < 0.05). Albumin-

loaded liposomes demonstrated consistent size (<300nm). Release of encapsulated 

albumin in physiological buffer at 25°C was ~60% in 72 h. Fluorescence imaging 

suggested an endosomal route of cellular entry for the FITC-albumin liposome with 

maximum uptake rates in immune cells (30% at 2hour incubation). CD suggested 

protein structure is minimally impacted by freeze-thaw methodology. 

Conclusion: Using F/T as a loading method, we were able to successfully achieve a 

protein-loaded liposome that was under 300nm, had encapsulation of ~90%. 

Synthesized liposomes demonstrated a burst release of encapsulate protein (60%)  at 72 

hours. Cellular trafficking confirmed endosomal uptake, and minimal protein damage 

was noticed in CD.  
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CHAPTER I 
 

 

INTRODUCTION 

Limitations of Conventional Therapy 

Medicine has come a long way since the time of Galen in the 1500’s. The production 

of antibiotics, cancer drugs, cardiovascular drugs, and now genomic treatments are a 

testament to its advancement. These discoveries are allowing treatment of a wide variety of 

ailments including  infectious diseases that once was the number one killer due to lack of 

aseptic technique (Miller, et al., 2005). Similarly, cancer survival rates have steadily inclined 

due to the development of new drugs and treatments.  

 

Despite significant advances in human medicine, current treatment approaches rely 

on systemic delivery with limited organ specificity, and therefore result in adverse side 

effects in normal tissues and insufficient drug delivery to the target tissue. Drugs can also be 

filtered from the blood prior to its intended effect. At low doses of drug compounds, the 

human liver and kidneys can metabolize and clear molecules that are less than 60KDa 

(Hagenbuch, 2010; Shitara, et al., 2006).  However, at higher doses, the clearance of drug is 

influenced at many levels. For example, absorption of drug molecules from gastrointestinal 

tract is pH dependent and can be retained differently based on the chemical composition of 

the drug (Hagenbuch, 2010). The administered drugs can be metabolized in liver, and may 

create products that are toxic to healthy tissues.  Similarly, renal filtration and removal of 

drugs are helpful if the substance is toxic and needs to be removed rapidly; however, if the 

drug is removed before it reaches the target organ, or is trapped within a certain organ due 

to its chemical make-up (hydrophilic drugs vs. hydrophobic drugs), the desired clinical 

outcomes are not achieved. Thus, new approaches that maintain the efficacy while reducing 

the toxicity of drugs are needed . 

Nanomedicine 
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 Nanotechnology is a multidisciplinary scientific field focused on materials whose 

physical and chemical properties can be controlled at the nanoscale range (1–1000 nm) by 

incorporating chemistry, engineering, and manufacturing principles (Kim et al., 2010). The 

convergence of nanotechnology and medicine, suitably called nanomedicine, can potentially 

advance the fight against a range of diseases (Sanhai et al., 2008). Nanomedicine can sustain 

drug release, increase solubility and bioavailability, decrease aggregation and improve 

efficacy (Ranjan et al 2011). Additionally, the use of nanoparticles may decrease toxicity of 

drugs (Byrne, et al., 2008) and increase the ability to target the drug to the correct tissue 

(Jain, 2006; Coti, et al., 2009). Drugs, proteins, or genes have been successfully loaded into 

differing nanoparticles, and many have made it to clinical trials. For clinical translation, 

Food and Drug Administration recommends that nanoparticle size be less than 300nm 

(Food and Drug Administration, et al., 2002).  To achieve this, various nanoparticles are 

created from a variety of materials. For example, some nanoparticles are polymer based and 

have a cage-like structure while others are created from heavy metals such as gold. In 

contrast, liposome nanoparticles mimic a cell with a lipid bilayer and aqueous core. 

 

Liposomal Nanomedicine 

 Liposomes were first described in 1961 by Alec Bangham (Deamer, 2010). 

Structurally, liposomes are composed of a lipid bilayer with  hydrophobic tails in the center 

and hydrophilic heads on the outside. The aqueous core allows for loading of different 

materials, and the outside can have different peptides or proteins attached for cellular 

targeting. Liposomes can be multilamellar (multiple lipid bilayers stacked) or unilamellar 

(single lipid bilayer), and may have different size and charge chemistry. In general, larger 

liposomes are relatively quickly taken up by the reticoluendothelial system (Machy & 

Lesserman, 1983). This can be addressed by decorating liposome surface with polyethylene 

glycol (PEG)-based polymers. PEGylation helps to increase the half-life of liposomes in a 

biological system (Maruyama, et al., 1992), prevents uptake by the immune system (Ishida, 

et al., 2002), and consequently reduces its clearance from the circulation 

 As a drug delivery system (DDS), liposomes can encapsulate both hydrophilic and 

hydrophobic molecules, and thus are widely translatable against a variety of clinical 

conditions (Gregoriadis, 1985). Clinically, liposomes achieve higher volume of distribution 

and solubilization of drug molecules in blood and thereby can decrease the unwanted side 
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effects. For example, liposomes can decrease the toxicity of drugs such as gentamicin, which 

is used for bacterial infections (Frierer, et al., 1990), or doxycycline which is also an 

antibiotic and doxorubicin for cancer treatments (Green & Rose, 2006).  

Liposome mediated site directed drug delivery can be achieved by various methods 

(Chan & Yeh, 2012). For example, a pH sensitive liposome upon reaching the target tissue 

will release its content based on the pH difference (e.g. cell endosomes) (Cho, et al., 2008). 

Alternatively, heat-sensitive liposomes keep the drug in its aqueous core at body 

temperature, but when a particular spot of the body is heated to 42⁰C, the liposomes release 

the cargo. Other methods of targeting include using cell receptor specific peptides or 

antibodies (Wang & Thanou, 2010). Finally, the highly pegylated stealth liposome can 

circulate for long time (-48-72 h) with very slow systemic release, and eventually accumulate 

in tumors by enhanced permeation to provide targeted drug release (Kim, et al., 1987). Next 

we discuss the application of liposomes for delivery of protein-based therapeutics. 

 

Protein-Based Treatments 

 In the last few decades, protein or DNA-based drugs are being increasingly applied in 

medicine. Examples include the use of thrombokinase for stroke or burtrylcholinesterase 

against nerve agents. Acetylcholinesterase is an enzyme that breaks down acetylcholine from 

muscle junctions, but organophosphorus insecticides and nerve agents can inhibit this 

enzyme. This prevents the breakdown of acetylcholine and leads to a build-up of 

acetylcholine which leads to excessive salivating, seizures, and respiratory failure (Zimmer, 

et al., 1998). Drugs such as atropine can reverse these effects. Protein therapeutics have a 

fast clearance and require administration at the moment of exposure.  Additionally,  the in 

vivo usage of protein is limited by its purity and amount (Kimichi-Sarfaty, et al., 2013). 

Proteins have to be purified from their source before use. As such, it can be challenging to 

procure a large amount of pure protein from a consistent source. To address this, a major 

focus in this area of work is on the discovery of recombinant proteins that may last up to a 

week in the human body (Cohen, et al., 2006) compared to native protein. Alternatively, 

protein-based therapeutics can be combined with nanocarriers (e.g. liposomes) to reduce 

frequency and dosage of treatment. For example, in Putney and coworkers  (1998) study, 

they observed the stability of protein-polymers had extended periods in vivo after injection.  
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Liposomes and Protein-Based treatments 

 The use of liposomes for protein-based therapy has been extensively investigated and 

reported previously. One example of liposome use could be in the case of prions, liposomes 

were combined with a PrP-27-30 protein. By doing this Gabizon contended that this protein 

was necessary for infectivity of the prion virus (Gabizon, et al., 1988). However, liposomes 

can also be used to encapsulate other proteins for uses in treatment. These methods of 

encapsulation can increase the circulation time by preventing the immune system access and 

increase the targetability of the protein. For example, thrombokinase, which can cause 

hemorrhage in its native state, could theoretically be encapsulated to prevent unwanted 

damage to blood vessels and reach its target destination. Similarly, proteins incorporated 

into the lipid bilayer of liposomes have shown to enhance vaccination response (Bucher, et 

al., 1980, Theunis, et al, 2013,Schwendener, et al., 2010). The blood brain barrier is an 

effective barrier against most drugs, except those that are lipophilic, so the use of liposomes 

to bypass it has merit. The addition of proteins to lipid membranes helped to increase 

targetability to tissues, bacteria, or viruses (Lersman, et al.,1980; Bedi, et al., 2011). Proteins 

can interact with cell-surface markers in both the adaptive and innate immune system. By 

using proteins, such as antibodies adhered to the liposomes, it is possible to target liposomes 

away from self-tissues and towards foreign (Schnyder & Huwyler, 2005). For example, 

Scott’s et al., (2007) reported a 92% increase in accumulation of targeted liposomes to 

myocardial infarction compared to liposome alone.  

 

A variety of methods can be used to encapsulate protein into liposomes (Walde & 

Ichikawa, 2001; Lasic & Papahadjooulos, 1996; Meyer, et al., 1994; Tan, et al. 2006; 

Gokhale, et al., 1997; Patel, 1976). These are broadly categorized into active and passive 

loading. Passive loading aims to capture the protein during liposome synthesis. Active 

loading, on the other hand, uses pH gradient to drive the drug of choice into the aqueous 

core following liposome synthesis. This method is highly suitable for encapsulation of small 

molecules (e.g Doxorubicin), but is not feasible for proteins because of their large size and 

isoelectric points. Near the isolectric point, proteins can precipitate out of solution, and at 

low or high pH’s, denaturing can occur. It may be noted that some structure loss is 

reversible, but often the activity of protein is impacted at high or low pH.  
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 Despite significant advancement, the current encapsulation approach fails to prevent 

degradation over time and protein structural damage (Meyer, et al., 1994).  New capacity to 

optimize protein loading into liposome is critically needed. The aim of this thesis project was 

to address the problems associated with extrusion and pH dependent active loading, through 

adoption of an older traditional method of freeze-thaw. Fundamentally, freeze-thaw is the 

use of liquid nitrogen to flash freeze a sample and a warmer thawing temperature, usually 

done in a water bath, to thaw the sample. The contraction and expansion of the lipid bilayer 

allows for the capture of certain drugs, molecules, or proteins in the aqueous core or lipid 

bilayer. Freeze-thaw as a method of protein loading can encapsulate up to 40% of 

Acetylcholinesterase protein (Colletier, et al., 2002), and create small sized liposomes (< 

300nm). This is clinically relevant since large sized nanoparticles are quickly taken up by the 

immune cells, risk cellular damage and may cause thrombotic diseases by absorption from 

the red blood cell and disrupting osmotic pressure (Zhao, et al., 2011).  

 

A critical gap in translation of freeze-thaw methodology is lower loading efficiency 

and temperature induced loss in protein activity. Due to lack of standardized methodology 

for freeze-thaw, the number of freeze-thaw cycles, timing of each of those cycles, the freezing 

temperature, and the water bath temperature are highly variable between various 

laboratories, thereby achieving a range of size, encapsulation efficiency, and cellular 

interaction profiles. One study extruded first then used a freeze-thaw cycle of 3min in a 

liquid nitrogen bath, and a thaw at 50°C for three minutes to achieve a mean diameter of 

14um (Castile & Taylor, 1999). A different study used liquid nitrogen to freeze for an 

unreported amount of time before thawing at 23°C for fifteen minutes (Pick, 1981). Studies 

using different preparations in the lipids, freezing and thawing time and temperatures have 

yielded different results in encapsulation efficacy and liposome size. 

 

In the last decade, freeze-thaw as a method has been witnessing less use in the more 

modern labs partly due to availability of extruders that can create uniformly sized liposomes 

(Benjakul & Bauer, 2000; Xia, et al., 2009). However, modern extruders work at high 

pressure, and thus may not be suitable for protein with delicate conformation.  

 

 The goals of this study were to formulate and characterize protein encapsulated 

liposomes by freeze thaw and extrusion method, and determine the optimal synthesis 

methodology for in vivo protein delivery.  We chose albumin as a surrogate of protein-based 
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therapeutics since it is cheap and easily available. Albumin is 66KDa with an isoelectric 

point of 4.2. Albumin can detoxify toxins and drugs, and increase the circulation time for 

drugs (Elsadek & Kratz, 2012; Yamasaki, et al., 2013; Jung, et al., 2010; Sleep, et al., 2013). 

While in these experiments, albumin is a place-holder for other potential proteins or 

enzymes, there is a potential avenue to use albumin in conjunction with liposomes to further 

increase circulation time of drugs. Additionally, albumin is not enzymatically active, but can 

be tagged with fluorescent markers (e.g. FITC or Cy5) to provide a measure of encapsulation 

efficiency and cellular trafficking.   
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CHAPTER II 
 

 

OPTIMIZATION OF FREEZE-THAW PROCESS FOR LIPOSOMES SYNTHESIS 

2.1 Abstract 

Background: Freeze-thaw (F/T) can encapsulate proteins into liposomes, however, 

there is no agreed upon single optimized method. The objective of this study was to: 1. 

optimize the number of F/T cycles to achieve a liposome under a specific size limit, and 

2. determine optimal freeze and thaw time.  

 

Method: Lipid films were hydrated with phosphate-buffered saline (PBS), and 

subjected to 10-20 F/T cycles as follows: 1. Five min freeze and five min thaw; 2 min 

freeze, 4 min thaw; and 1 min freeze with a 4 min thaw. 

 

Result: Results indicate that after 15 cycles of freeze-thaw with a 1 min. freeze, 4 min. 

thaw is the most optimal condition for obtaining liposomes in the size-range of 200-

300nm. Shorter cycles with longer F/T yielded larger and non-optimal liposomes 

(300nm + size). 

 

Conclusion: 15 cycles of freeze-thaw with a 1 min. freeze, 4 min. thaw can achieve 

desired size range of under 300nm. 

 

2.2 Introduction  

Freeze-thaw achieves (MacDonald, et al., 1994) fragmentation of multi-lamellar 

liposomes into unilamellar vesicles. The advantage of processing multi-lamellar vesicles 

into unilamillar is size; multi-lamellar liposomes are larger and thus easier for the 

immune system to functionally remove from the body (Hope, et al., 1986).  F/T 

methodology can effectively encapsulate both drugs as well as proteins into liposomes. 

F/T methodology is similar to extrusion that also creates unilamellar vesicles by forcing 
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liposomes through a small diameter filter at high pressure; however, freeze-thaw works 

on the principles of temperature  modules (Costa, et al., 2014; Traikia, et al., 2000; 

Castile, et al., 1999). Freeze-thaw methodology effectively encapsulates not only drugs 

but proteins as well in the liposomes (Meyer, et al.,1994).  

 

The percentage drug encapsulated can be highly variable among various studies 

due to differences in the time of annealing, the number of cycles, and lipids used in the 

procedure (Castile, et al.,1999). For optimal encapsulation, 20 cycles of freeze-thaw has 

been generally adopted as a standard practice (Colletier, et al., 2002). However this 

process can damage the lipid membranes and increase liposome size (Hincha, et al, 

1998). Some studies have reported liposomes under 200nm after five or 10 cycles of 

freeze-thaw (Traikia, et al., 2000; MacDonald, et al., 1994). Attempts to replicate these 

findings by other groups reported contrasting outcomes  with liposome size not 

decreasing to under 200nm with 5-10 cycles of freeze-thaw (Castile, et al., 1999).  

 

Plausibly, the differences in size could be due to variability in freezing and 

annealing duration and lipid compositions (Sriwongsitanont & Ueno, 2011). With a goal 

on achieving liposomes under a certain size (<300nm for systemic use) (Akbarzadeh, et 

al., 2013), here we discuss a novel freeze-thaw protocol. 

 

2.3 Methods 

2.3.1 Liposome thin film preparation 

 All reagents were obtained from VWR unless noted. Lipids were obtained from 

Corden pharma (Switzerland). Liposomes were prepared by hydration using phosphate-

buffered saline (PBS) of a lipid film followed by freeze-thaw. Three phospholipids (2-

dihexadecanoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearyl-phosphatidyl 

ethanolamine-methyl-polyethyleneglycol conjugate (DSPE-MPEG),  cholesterol) were 

dissolved in chloroform at a molar ratio of 85.3:9.7:5.0. The chloroform was evaporated 

off at 60⁰C in a rotovap to create a lipid film. This film was dried overnight in a 

desiccator. All assays were performed using six technical replicates generated in parallel 

on the same day. 

 

2.3.2 Optimization of freeze-thaw procedure 
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Freeze-thaw was performed in two stages by optimizing 1) number of cycles of 

freeze thaw, and 2) the duration of each cycle. A cycle was defined as one round of liquid 

nitrogen (-196⁰C) freezing and one round of a 35⁰C water bath thawing. The 35⁰C 

annealing temperature was chosen due to the fragile nature of some thermosensitive 

proteins. 

 

2.3.3. Optimization of the number of cycles and duration of freeze thaw 

The lipid film (as previously stated in 2.3.1) was rehydrated with phosphate 

buffer saline (PBS) using 5mg of lipids/mL of PBS and transferred into 2mL cryo-

protectant vials. Initially, a 5 min. freeze (F), 5 min. thaw (T) was used for size 

determination. Later, we compared additional groups from a 1 min. freeze, 4 min. thaw 

and a 2 min. freeze, four min. thaw. Based on this, a 4 min. thaw was found to be the 

minimum amount of time required to completely thaw a 2mL sample. As controls, half of 

the hydrated samples were also extruded once through a 200nm filter for size 

comparison to liposomes that only underwent F/T. Samples were taken at 0 cycles, 5 

cycles, 10 cycles, 15 cycles, and 20 cycles. Liposomes were sized using dynamic light 

scattering (DLS) equipment (Brookhaven instrument Corporation, 90Plus ZetaPALS 

particle size analyzer). 

 

2.3.4. Statistical analysis 

Treatment groups were compared for differences in mean absorbance using 

ANOVA followed by Tukey's multiple comparisons with GraphPad Prism 6 (GraphPad 

Software Inc.). A p-value less than 0.05 was used as a threshold for statistical 

significance. 

 

2.4. Results 

2.4.1. Optimization of the number of cycles 

 To determine if the number of F/T cycles impacted liposome size, we generated 

liposomes using varied numbers of F/T cycles, and subsequently measured the size of 

the liposomes generated by each methodology. 
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 Results based on 

the six technical replicates 

show that  F/T of 15 cycles 

resulted in a significantly 

decreased size compared 

to 10 or 20 cycles (F = 5 

min, T = 5 min) (p < 

0.05). The size of the 

liposomes dropped from 

2000nm to under 500nm 

after 15 cycles of F/T. 

Surprisingly, 20 cycles of 

freeze-thaw caused an increased liposome size compared to 15 cycles of freeze-thaw 

(Figure 1). …. . Extrusion at any cycle significantly decreased liposome size ~180nm, 

compared to F/T samples. 

 

2.4.2. Optimization of 

the F/T duration 

 To determine the 

effect the F/T duration on 

liposome size, we 

generated liposome batch 

using a varied time on each 

F/T cycle and measured 

the size of the liposomes 

generated by each 

methodology. 

 

 Reduced duration of the F/T achieved smaller liposomes (Figure 2). With a 1 or 2 

min. freeze and 4 min. thaw, liposome size was consistently decreased from ~450nm to 

~200nm than with a 5 min. freeze/5 min. thaw; this trend was particularly prominent 

from 10 to 15 cycles of F/T. In general, average liposome size decreased significantly (p < 

0.05) with a 1 min. freeze, 4 min. thaw at 15 cycles. By increasing the cycles of the F/T, 

liposome size would continue to decrease in diameter. A 1 min. freeze, 4 min. thaw was 
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under 300nM on average after 15 cycles of F/T and was significantly smaller than both 

the 2 min. freeze/4 min. thaw and the 5 min. freeze/5 min. thaw.  

 

2.5. Discussion 

 The advantages and disadvantages of F/T as a viable technique for encapsulating 

proteins in liposomes has been extensively in the past (Costa, et al., 2014; 

Sriwongsitanont and Ueno, 2011; Traikia, et al., 2000; Castile and Taylor, 1999; Hope, et 

al., 1993) (Castile, et al.,1999). These published studies report their own methodology, 

used varying temperatures and yielded different protein encapsulation efficiency and 

liposomal size.  Thus, there is a critical need to standardize freeze-thaw protocol so that 

the scale-up to clinical use can be achieved. 

 

One approach to standardize synthesis methodology could be to use a set thawing 

temperature. To do so, we used a set temperature of 35˚C to thaw all of our samples. Our 

variables, instead, were the duration of each cycle of F/T and the number of cycles of 

employed for liposome synthesis. An important prerequisite in thawing duration is that 

it should liquefy the sample completely. As a first step, we chose a 5 min. freeze-5 min. 

thawing condition that achieved a liposome size of over 300nm after 15 cycles (Figure 1). 

However after adjusting the freezing time to 1min and thawing to 4min, the size achieved 

were under 300nm after 15 cycles of F/T (Figure 2). Additionally, extrusion further 

decreased the size of the liposomes under 200nm in all cases, and there was no 

significant difference across any of the groups likely due to filters that were 200nm and 

resulted in a uniform suspension of liposomes. Thus, extrusion was uniform no matter 

how long or how many cycles of F/T were done. While some studies in the past had 

achieved a liposome size of under 300nm in less than two F/T cycles (Costa, et al., 2014), 

other studies reported contrasting outcomes (Castile and Taylor, 1999). Data from our 

study suggest that increasing the number of cycles to achieve liposomal size below 

300nm is important especially when applying shorter freezing and annealing time. Our 

studies indicated with a 1 min. freeze, 4 min. thaw at 15   cycles, the entire process does 

not take longer than 1 hour. Thus, our methodology is important in protecting 

encapsulated protein from thermal damage at higher annealing temperatures. 

 

A consistent finding in our studies was a decrease in liposomal size with up to 15 

cycles of freeze-thaw. This is in agreement with Traikia et al., 1999 who have shown that 
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liposome composition consisting of dioleoylphosphatidylcholine/dioleoylphoshpatidic 

acid (DOPC/DOPA) can achieve a size under 200nm with greater than 10 cycles of F/T.  

Interestingly, beyond a certain F/T cycle (e.g. 20 cycles), we noted an increase in NP size 

suggestive of liposomal damage. Sriwonsitanot’s & Castille et al., 2011 have reported that 

at higher F/T cycles or low levels of  DSPE-PEG2000, a loss of spherical shape and 

membrane damage can occur. This is interesting, but we did not change our lipid 

composition to explore these effects (see method). Also, the thawing temperatures 

(60⁰C) reported in these studies might not be suitable for protein delivery. We believe 

that our approach of using a 35⁰C thawing might have more widespread use and can 

enhance our ability to encapsulate a wider range of proteins and warrants further 

investigation. 
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CHAPTER III 
 

 

CHARACTERIZATION OF FITC-ALBUMIN LOADED LIPOSOMES 

3.1 Abstract 

Background: F/T methodology currently has a protein encapsulation efficiency that is 

variable based on methodology. The objective of this study was to evaluate and optimize 

encapsulation of protein in liposomes to create a desirable product for in vivo use.  

 

Methods: Liposomes were prepared by 15 cycles of a 1 min. freeze, 4 min. thaw. 

Synthesized liposomes were characterized for encapsulation efficiency, protein release 

and stability in phosphate buffered saline based physiological fluid.  

 

Results: Results suggest that 15 cycles of a 1 min. freeze and 4 min. thaw can achieve 

90% encapsulation efficacy into our liposomes. Synthesized liposome did not differ in 

size compared to the blank liposomes. Liposome size was stable at both 37⁰C and 4⁰C to 

day 28. Release of albumin was minimal till 72 hrs, and at 28 days, liposomes still 

retained 40% of encapsulated protein. 

 

Conclusion: F/T procedure at 15cycles can achieve high encapsulation efficiency and 

liposomes are stable for up to 4weeks at 37⁰C. 
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3.2 Introduction 

 In the last few decades, protein-based therapies are being increasingly applied in 

treatment of cancer, heart disease, and gene therapy (Weidle, et al., 2013; Khan, et al, 

2003; Strayer, et al, 2005). For therapeutic use, a major challenge is the inability of 

current methods to acquire proteins with excellent purity and in high amounts. This has 

been addressed to some extent by discovery of recombinant proteins instead of the 

native form. However, in vivo, proteins last only for couple of hours before being 

removed by the body (Schellenberger, et al, 2009). There is a critical need to develop 

alternative approaches to extend the site-specific concentration of  chosen protein. To do 

so, we hypothesize that encapsulating proteins in liposome may protects its function, and 

enhance its circulation time and targeted delivery. As an initial step, we chose albumin as 

the protein of interest for encapsulation because: 1) Albumin is easily procured in purity 

and amount, and 2) Albumin’s potential as a scavenger molecule for both endogenous 

and exogenous molecules has been well established (Evans, 2002). 

 

 Albumin is synthesized by the liver and serves as a carrier protein in the blood 

and performs numerous functions. Upon systemic injection of drugs, albumin binds with 

them, and this can be leveraged for increasing the circulation time of drugs (Sleep, et al., 

2013; Elsadek & Kratz, 2012), and decrease the likelihood of it being removed by the 

kidneys. It also helps in detoxification by binding to toxins and increasing their ability to 

be excreted in bile or by renal clearance. Purified albumin is readily available, cheap and 

can be easily procured commercially especially for large scale studies. 

 

 Albumin has also been studied to increase the stability of liposomes themselves 

(Jung, et al, 2010; Vuarchey, et al, 2011) and increase their circulation time. However, in 

these cases, the albumin was tethered to the liposome itself and not loaded (Jung, et al., 

2010; Vuarchey, et al, 2011). Albumin can be loaded and used as a marker to determine 

the efficacy of freeze-thaw encapsulation but the reported encapsulation efficacy has 

been variable between studies. The objective of this study was to develop an optimal 

method of protein encapsulation for systemic therapy purposes. As surrogate of protein 

therapeutics, we used bovine serum albumin coupled with a tagged molecule, fluorescein 

isothiocyanate (FITC), a fluorescent marker (excitation: 495nm, emission: 519nm).  
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3.3. Methods 

3.3.1 Synthesis of liposome-FITC-albumin 

 Liposomes were prepared as described in 2.2.1. FITC-albumin was loaded by 

rehydrating the lipid film with 0.17 mg albumin/mL of PBS. Lipid film underwent F/T  

(1min F/4min Thaw: 1/4 F/T) for 15 cycles. Samples (200uL) were drawn at 0, 5, 10, and 

15 cycles. Half of each sample (100uL) at each cycle point was extruded once through a 

200nm filter. All samples were purified using a high centrifugation filter (300kDa cut 

off), and the liposomes were characterized for size via DLS, and encapsulation efficacy 

using spectrophotometry fluorescence (excitation: 420nm, emission: 520nm). For 

optimal reading, dequenching was performed by treating the liposomes with 1% Triton-X 

after purification. Liposome size replicates were technical replicates (n = 6) while 

encapsulation experiments were conducted independently (n = 2). 

 

3.3.2 Release of FITC-Albumin in physiological media  

 FITC-albumin from the liposomes was determined as follows. Liposomes were 

prepared as 3.3.1, and initial encapsulation was determined via fluorescence. The 

samples (extruded and non-extruded) were placed into separate dialysis bags (300kDa 

cut off), and kept at 25⁰C and 37⁰C in 10mL of PBS.  One mL  samples were collected 

daily for seven days and samples were measured for fluorescence (excitation: 420nm, cut 

off: 425nm, emission: 519nm). Each study had 3 technical replicates. 

 

3.3.3 Stability of liposomes in physiological media  

 Long term stability of the liposomes was determined by measuring its size over 

time. To do so, the synthesized lipids were stored in 5mL vials and kept at 25⁰C or at 

37⁰C. Liposome size was estimated using DLS on days 1-7, 14, 21, and 28. 

 

3.3.4 Statistical analysis 

Treatment groups were compared for differences in mean absorbance using 

ANOVA and independent t-tests between groups. A p-value less than 0.05 was our 

threshold for statistical significance. 

 

3.4. Results 

3.4.1 Liposomal Loading with FITC-Albumin 
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 To determine 

the encapsulation 

efficacy (EE) of 

albumin into 

liposomes, we 

generated liposomes 

as previously 

described and loaded 

them with 

0.17mg/mL of 

albumin. After removing free albumin from the sample via centrifugation, we measured 

the excitation and emission of the FITC-albumin to determine the EE.  

 

At 10 cycles of F/T or greater, non-extruded liposome had an EE of~ 90% (Figure 

3). With extrusion, a significant loss in EE was noted at 0, 5, and 10 cycles (p < 0.05) 

with 5 F/T cycles showing the greatest loss. For the extruded group of liposomes, there 

was no significant difference between 0 and 5 F/T cycles, and none between 10 and 15 

F/T cycles. However, there was a significant increase in encapsulation efficacy with 

regards to extrusion from 5 to 10 F/T cycles (Figure 4). 

 

3.4.2 Release of FITC-Albumin in physiological media  

 To determine 

release of the FITC-

albumin from the 

liposomes over the 

course of a week, we 

took a batch of 

liposomes with a pre-

determined EE, and 

separated them into 

dialysis bags at 25°C or 

37°C. Over the course 

of a week, samples of 

the buffer were analyzed for protein release. 
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FITC-albumin was 

noted on day 3 from both 

the extruded liposomes 

and non-extruded 

liposomes (60% and 53% 

respectively). For the 

non-extruded liposomes, 

at day 2 about 10% loss 

was observed that increased to almost ~ 50% on day 3. In contrast, extruded liposomes 

demonstrated no release on day 1 or 2, but had about 60% loss on encapsulated protein 

on day 3 (Figure 5). Following the burst release noted at day 3, non-extruded liposomes 

demonstrated significantly less release compared to the extruded liposomes over the 

subsequent days (47% retained). The extruded liposomes following burst release only 

maintained 40% of their original FITC-albumin. 

 

3.4.3 Stability 

To determine the stability of our liposomes when loaded with albumin, we 

generated liposomes 

and stored at 25°C 

and 37°C. Over the 

first week, we took a 

sample per day before 

changing to once per 

week subsequently. 

 

FITC-albumin 

loading did not 

change liposome size 

(Figure 6). Liposome size over 28 days remained stable at both 25⁰C and 37⁰C (<200nm 

for extruded samples, <300nm for non-extruded FITC-albumin liposomes). Day 1 size 

when compared to day 28 size for all groups (blank liposomes or FITC-loaded) was not 

significantly different (Figure 6). Day 1 size for non-extruded FITC-albumin liposomes at 

25˚C, for example, was 300nm, and after 28 days, the size was still 289nm (Figure 6).  
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     Extrusion of 

liposomes resulted 

in  smaller 

liposomes over 28 

days in that their 

size was 

consistently under 

200nm. At day 1, 

extruded liposomes 

started under 

200nm, and after 

28 days of incubation at either 37˚C or 25˚C, their size remained consistently <200nm. 

 

 In comparison between the two temperatures, there was no significant difference 

between the FITC non-extruded groups, FITC extruded, and the blank extruded groups. 

Temperature did not factor in to size changes between the groups of liposomes. 

Liposomes kept at 37˚C that were extruded did not differ in size after 28 days from 

liposomes that were extruded and kept at 25˚C (Figure 7 & 8). 

 

 To determine whether our liposomes were of a single population or multiple 

populations in size, we 

analyzed the 

polydispersity index. 

Polydispersity is the 

measure of a 

liposome’s population 

size- whether or not a 

group of liposomes are 

uni-sized or have 

multiple populations of 

multiple sizes. For polydispersity index, there was no significant difference in that 

population size and was consistent across the entire month period within a group of 
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liposomes at one temperature or when compared between liposomes kept at 25°C and 

37°C (i.e. extruded at 25⁰C and extruded at 37⁰C) (p = .15)(Table 1 & 2).  

 

 

 

 

  

 



30 
 

3.5 Discussion 

 Effects of serum/plasma components on the integrity of liposomes are not readily 

generalized, as they vary among individual liposomal formulations and preparation 

methodology, and thus must be determined empirically. Therefore, to yield a consistent 

product of desired size and stability we determined the stability of albumin-liposome in 

PBS over one month. Our data suggest that the liposome size (F/T average = 300nm; 

blank average = 400nm) and the polydispersity index (markers of structural stability) 

did not change at either 25⁰C or 37⁰C for a period of one month (extruded or non-

extruded).  This was in contrast to encapsulation efficiency that showed only 40-50% of 

the protein retention in the liposomes after 72hrs; although the non-extruded liposomes 

(15 cycles F/T) had less protein release (~7%) over the week period. The discrepancy in 

size and albumin release needs further investigation, but we speculate that if the 

liposome is stored frozen within the first 72hrs post-freeze-thaw, then the release can be 

minimized/controlled.  

 

Our encapsulation efficiencies were comparable to those observed in previous 

studies (Zhao & Lu, 2009; Colletier, et al., 2002; Xu, et al., 2012),  In our study, 15 cycles 

of F/T yielded the best encapsulation efficacy (~90%) of the protein, and least loss upon 

extrusion. This method of F/T is relatively superior to a previous study (Dhoot, 2003), 

wherein FITC-albumin encapsulated via sonication achieved an encapsulation efficiency 

of 50-55%. During this process, similar to sonication, albumin is captured and retained; 

however unlike sonication, F/T includes the energy change of multi-lamellar to 

unilamellar liposomes and size changes associated with heating and freezing that likely 

was more effective in encapsulation under our conditions. Protein release pattern was 

consistent with Dhoot (2003) et al.  that suggested a significant loss of encapsulated 

protein upon extrusion at 0, 5, or 10 F/T cycles. Further, like previous studies, 

cholesterol incorporation allowed more release of their cargo (Dhoot, et al., 2003). 

However, unlike previous studies that notice burst release of FITC-albumin after 24hrs 

(Hua, 2014) from the liposomes prepared with sonication, our data suggest a more 

robust encapsulation of proteins by F/T method (Figure 9), and suggest retention up to 

50% of encapsulated protein for 30 days. The differences in results could be due to 

higher amounts of cholesterol (7:3 ratio of phosphatidylcholine and cholesterol) relative 

to our formulation that had a molar ratio of 85.3:9.7:5.0 ratio (cholesterol being the 

minimum amount added).  We also speculate that the albumin may not have been 
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entirely encapsulated but was retained on the surface of the liposome in liposomes with 

higher cholesterol content. Albumin, due to its size and anionic nature, is cell membrane 

impermeable, and  can associate with positive groups on the liposomes surface. Presence 

of  the PEG theoretically can prevent such interactions and may improve liposome 

retention for  a relatively longer period.    
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CHAPTER IV 
 

 

LIPOSOMAL INTERACTIONS WITH CELLS IN VITRO, AND FREEZE-THAW 

MEDIATED PROTEIN STRUCTURAL CHANGES  

4.1. Abstract 

Background: Targeted cell-specific therapy of albumin-liposome requires an 

understanding of the structure altering properties of the freeze-thaw on proteins, and 

uptake and trafficking rates by various cell types. The objectives of this study were the 

following: 1) Determine the interaction of liposomes with red blood cells (RBCs), 

macrophages and lung epithelial cells; 2) Quantify the rate and mechanism of uptake, 

and 3) Determine protein structure and activity upon freeze thaw.  

 

Methods: Liposomes were incubated with red blood cells (RBCs), macrophage and lung 

epithelial cells at 37⁰C. Epifluorescence microscopy was performed at 1hr following co-

incubation of liposomes with cell. Flow cytometry was conducted to quantify cellular 

uptake over time (15min, 30min, 1hr, and 2hr).  Protein structure in liposomes upon F/T 

was analyzed using circular dichroism (CD).  

 

Results: Liposomes were taken up by an endosomal route. The rate of uptake varies 

significantly between the extruded, non-extruded liposomes, and free albumin. At 2 

hours, free albumin demonstrated relatively greater phagocytosis than liposomal 

albumin. Additionally, the rate of uptake of albumin liposomes was highest in 

macrophages with intermediate to minimal phagocytosis in lung cancer and RBC cells. 

Protein structure was negatively impacted by freeze-thaw and the damages were more 

profound compared to encapsulated form. 
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Conclusions:. Liposomal encapsulation of protein reduces its cellular uptake. F/T can 

impact protein structure if in free from. Protein encapsulation in the liposome can 

preserve some of the secondary structure and prevent protein damage. 

 

 

4.2. Introduction 

 Conventional drug therapy has limited specificity and can cause toxic side effects. 

To address this problem, currently drugs are encapsulated in nanoparticles as a means to 

achieve site specific delivery. A variety of drug delivery system are currently under 

investigation. This includes  gold nanoparticles (Ghost, et al., 2008, Zensi, et al, 2009), 

polymers (Davis, 2009), and lipid based nanoparticles (Xu, et al, 2009). Of these,  

liposomes have a bilayer structure with an aqueous core, and can encapsulate both 

hydrophobic and hydrophilic drugs. 

 

Liposomes can enter a cell by a variety of mechanisms including: endocytosis; 

absorption; and lipid transfer (Pagano, & Weinstein, 1978). However, the rate of its 

uptake is highly variable between cells (macrophages, cancer cells etc.).  In general,  no 

uptake is seen in the red blood cells due to absence of endosomes in RBCs, however, 

liposomes may cause RBC hemolysis, and thus can serve as a marker for cytotoxicity 

(Iren, et al., 2003, Stork, et al., 2013). Hemolysis below 10% is considered safe in the 

human body (Mocan, 2013), and thus, optimal dosing is critical to avoid cytotoxic events 

upon nanoparticle therapy.  

 

One approach to prevent hemolytic interaction and dissuade preferential uptake 

by the phagocytic cells is by modulation of the physicochemical properties of the 

liposomes (e.g. size). For example, larger (>80nm) liposomes tend to be taken up by the 

immune cells (e.g. macrophages)(Badiee, et al., 2012); however, macrophages cannot 

identify liposomes or nanoparticles under 80nm. Thus, an elegant approach to avoid 

phagosomal uptake can be by creation of small-sized liposomes using extrusion method. 

In some cases especially for protein delivery, extrusion is not the preferred methodology 

since it can cause conformational changes in protein structure. One approach to address 

this issue has been loading of proteins using F/T methodology. However, F/T creates 

larger and less uniformly shaped liposomes causing it to interact with cells in a different 
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manner (Traikia, et al., 2000). To verify these anomalies, in this study we quantified the 

uptake mechanisms of liposomes by fluorescent microscopy, flow cytometry, and 

hemolysis assay.  

 

As noted earlier, liposome synthesis methods (F/T vs extrusion) can also impact 

protein structure that may influence the activity and encapsulation. There is some 

evidence of  proteins denaturing even with F/T (Chang, et al., 1995), and  the loss in 

activity was proportional to protein concentration in the sample (Jian & Nail, 1998). In 

contrast, Chaize et al. observed least amount of damage compared to other 

methodologies of encapsulation (Chaize, et al.,2003). Thus, it is important that F/T 

needs optimization prior to clinical use. 

 

To evaluate liposomal protection of protein, in this study we used circular 

dichroism (CD). CD was discovered in early 19th century by Jean-Baptiste Biot. The 

concept is based on the light that is absorbed differently by the alpha helixes of a protein 

compared to the β-sheets of a protein. This allows to help determine changes in a 

protein’s secondary structure in liposomes and other proteins (Jullien, et al., 1988; 

Hirak & Lentz, 2012). In our CD studies, we determined secondary structure of both free 

and liposome encapsulated liposomes to determine nanoprotection. Although damage to 

secondary structure cannot predict potential damage in tertiary form, yet it may still 

serve as a good basis to understand the impact of synthesis methodologies.   

 

4.3. Methods 

4.3.1 Cell Culture 

A549 alveoli cancer cell line and the RAW 264.7, macrophage cell lines were 

kindly provided by Dr. Lin Liu (Oklahoma State University). A549 cells were grown in 

RPMI media. RAW 264.7 cells were grown in DMEM media (Life Technologies).  Cells 

were incubated at 37°C at 5% CO2. Both media contained 10% fetal bovine serum (Sigma-

Aldrich).  Both media were supplemented with 1% Penstrep.  Red blood cells were 

obtained from a bovine donor (OSU IAUCC approval), and were stored at 25°C until use 

(within 24hrs). 

 

4.3.2: Uptake mechanism determination by fluorescent imaging: 
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To determine liposomal interaction with cells, we used FITC-albumin 

encapsulated liposomes.  

 

Liposomes were prepared as described in section 3.3.1. A549  cells were grown 

overnight (90% confluence) in 6-well plates in a 5% CO2 at 37⁰C. Cells were incubated for 

one hour at 37⁰C with: free FITC-albumin (0.17mg/mL), FITC-albumin loaded 

liposomes that underwent just 15 cycles of freeze thaw (non-extruded group), FITC-

albumin loaded liposomes that were formed by both 15 cycles of freeze thaw and one 

round of extrusion (extrusion group), and a non-liposomal control with just PBS. Prior to 

imaging, cells were rinsed with PBS three times and the nucleus was stained with 4,6-

diamidino-2-phenylindole (DAPI). Additionally, the cell membrane and the endosomes 

were dual-labeled with a green membrane stain: pkh 67 (Sigma-Aldrich, catalog 

PKH67GL-1KT) according to the manufacturer’s protocol to determine endosomal 

uptake.  

 

Red blood cells were not stained due to their natural fluorescence. Cells were 

imaged using an IX-81 confocal fluorescent microscope using a DAPI (exposure = 10ms, 

excitation: 358nm, emission: 461nm), TRITC (exposure: 100ms, excitation: 545nm, 

emission: 600nm), and FITC (exposure: 100ms, excitation: 493nm, emission: 513nm) 

filter.  

 

4.3.3: Quantification of liposome uptake by flow cytometry 

Flow cytometry was used to quantify the rate of uptake of the liposomes into the 

RAW 264.7 macrophage cells. Cells were incubated with extruded and non- extrusion 

FITC-albumin liposomes (15 F/T cycles at 1 min F, 4 min T) for 15 min., 30 min., 1 hour, 

and 2 hours. Prior to imaging, the cells were washed twice with phosphate-buffered 

saline to remove any nonphagocytosed nanostructures. The fluorescence intensity of 

each sample was analyzed by fluorescence-activated cell sorter flow cytometry (BDFACS 

Aria). Assays were performed at room temperature, with time run averaging under a 

min. per sample. 

 

4.3.4 Hemolysis assay to determine cellular toxicity  

To determine liposome toxicity, RBCs were centrifuged at 1500rpm for 15 min., 

and then washed three times with PBS. Then, FITC-albumin liposomes (extruded and 
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non-extruded) at 5mg FITC-albumin/mL in PBS were incubated with the red blood cells 

along with appropriate controls ( free albumin and PBS) for four hours at 37⁰C with 

gentle shaking. After incubation, the cells were centrifuged at 1300rpm for 15 min. The 

supernatant was collected and the absorbance was measured at 394nm. PBS and water 

was used as positive and negative control markers of hemolysis (Chen, et al., 2008).  

 

4.3.5 Assessment of protein damage by circular dichroism 

 Liposomes for CD were prepared and loaded with FITC-albumin as described in 

Section 2.3.1. and Section 3.2.3. As additional control, free bovine serum albumin was 

used and underwent the same 

procedure. Samples were 

analyzed at 0, 5, 10, and 15 cycles 

by CD via spectra-analysis which 

analyzed secondary structure of 

albumin using light rotation. 

After initial results were 

obtained, liposomes were lysed 

with 10% acetonitrile to observe 

the encapsulated protein in a 

free state.  

 

4.3.6 Statistical methods 

 For pairwise comparison,  

a 2- tailed independent t-test was 

conducted (p < 0.05). To 

compare across multiple 

treatment groups, an ANOVA 

followed by pair-wise comparison 

was used (p < 0.05). 

 

4.4. Results 

4.4.1 Uptake mechanism determination by fluorescent imaging 

 FITC-albumin liposomes were phagocytosed successfully upon incubation with 

the macrophage and A549cells (Figures 9A & B) by endosomal mechanism.  Liposomes 
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were localized in the 

endosomes/lysosomes as 

indicated by distinct 

yellow-to-orange spots 

formed by co-localization 

of green nanoparticles and 

red membrane (Figure 

10A & B). No nuclear 

infiltration in either cell 

line was observed, and 

there was no uptake in red 

blood cells (data not 

shown due to absence of 

fluorescence).  

 

4.4.2: Rate of 

liposome uptake by 

flow cytometry:  

 The median 

fluorescence intensity of 

FITC-liposome in RAW 

264.7 macrophages 

showed a significant 

increase uptake over 

time (p < 0.003) 

(Figure 11). Figures 12 

& 13 are representative 

images of flow 

cytometry data 

acquired showing the 

threshold for positive 

cells (i.e. cells that have 

actively taken up the 

FITC-albumin 
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liposome). The rate of uptake varied slightly between extruded (~30%) and non-

extruded liposomes (~26%) at 2 hours.  

 

4.4.3 Hemolysis assay to determine 

cellular toxicity  

 Both FITC-albumin liposomes and 

the free FITC-albumin demonstrated no 

hemolysis (Figure 14), and the percent 

hemolysis was less than 1%, between 

groups (data not shown). 

 

4.4.4 Protein Structure 

 To determine the potential effects 

F/T had on albumin, we generated a batch of liposomes under conditions described in 

3.2.3. and measured the protein change via CD. 

 

  Significant change in secondary structure of free albumin at 5 (~18%), 10 and 15 

(26.5%) cycles of freeze-thaw (p < 0.05) (Figure 15), compared to the free control 

albumin was noted. An increased damage of protein was noted upon extrusion (~63% at 

15 cycles)  when compared to the protein that only underwent freeze-thaw (p < 0.05) 

(Figure 16). In contrast to free albumin, albumin-encapsulated liposomes demonstrated 

minimal damage at 5 cycles, however at 15 cycles, the secondary structure ( 25.8%) 

change was similar to free albumin (Figure 17). When extruded after 15 cycles of F/T, 

there was 38.1% change in structure, thereby suggesting that encapsulation afforded 

about 50% protection in protein structure (Figure 17). When acetonitrile was incubated 

with the liposomes and free albumin, we observed denaturing of the free albumin to a 

complete loss of secondary structure; however, when encapsulated with no extrusion, the 

albumin was able to retain ~45% of its original structure (Figure 18). Figures 19-22 are 

breakdowns of Figure 18. 
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4.5 Discussion 

 The overall goal of our study was to understand the liposomal cellular interaction 

and structural changes in the encapsulated protein upon F/T. For liposomal cellular 

trafficking studies, A549 lung epithelial cells and RAW 264.7 macrophages were used. 
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Fluorescence microscopy was employed to understand the route of uptake in cells and 

the rate of uptake was quantified by flow cytometry. Data suggest that FITC-albumin 

liposomal uptake is mainly by endosomal route which is consistent with previous reports 

(Lee & Low, 1994; Pagano, & Weinstein, 1978; Chan, et al., 2012. Further, in immune 

cells such as RAW 264.7,  FITC-albumin accumulation was also noted  in the cytoplasm, 

likely by micropinocytosis (Makino, et al., 2003). Quantitatively, the rate of uptake of 

FITC-ALB -liposomal in macrophage was greater than the A-549 (~25%, Figure 20). This 

is expected since the immune cells are natural phagocytic cells and are adept at removing 

foreign material, and have a propensity to take-up foreign materials.  Previous studies 

have shown that liposomal coating of protein by PEGylation minimizes its interaction 

with immune cells, and enhances the circulation time of drug molecules. We also noted 

similar findings since the rate of uptake of free albumin was greater than the liposome 

encapsulated protein at 2h of incubation. Metabolically active cells such as macrophages 

can ingest foreign molecules by phagocytosis or micropinocytosis. In contrast to 

macrophages, RBCs cannot perform endosomal uptake since their primary function is in 

oxygen transport. To verify this hypothesis, we incubated the RBCs with the liposomes. 

Results indicated no uptake as expected.  

 

 To determine the effect of F/T on encapsulated albumin (mostly an alpha-helical 

protein (67%)), we measured the structural change via CD. Data suggest that  structural 

changes initiate at 5 F/T cycles. These changes were more pronounced for the free 

albumin that frequently transitioned from an alpha helical nature to beta sheet. 

Similarly, the encapsulated albumin also showed random coil generation, however, the 

difference in elipticity from the different cycles was more limited when the FITC-

albumin was encapsulated compared to the free FITC-albumin in that the fold difference 

when encapsulated was limited (no change up to 5 cycles, <less than 1-fold change from 

5- 15 cycles of freeze thaw). In contrast, the fold change in free albumin structure was 

greater than 1x. An unexpected finding in our study was the preservation of protein 

structure in liposomes in the presence of organic solvents (e.g. acetonitrile, Figure 27). 

This protective effect was also seen in the case with the free protein that underwent 

extrusion, and requires more evidence to confirm these findings. Regardless, an increase 

in F/T cycles is associated with a proportional increase in damage, and this agrees with 

previous studies (Cao, et al., 2003; Benjakul, et al., 2000).  We also observed protein 

damage via extruding of the free BSA through a filter at high pressure one time may have 
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caused a significant change in protein structure. Interestingly, encapsulating the free 

albumin into liposomes can prevent this effect by decreasing the damage by 1.6x fold. In 

summary, it is clear that both F/T and extrusion cannot prevent protein damage (Pikal-

Cleland, et al., 2000). Methods to limit damage should include an optimal buffer type 

with low salt crystal, an optimize protocols that can achieve fast freezing to partially limit 

the damage (Cao, et al., 2003, Pikal-Cleland, et al., 2000). For dosing, such damage 

should be accounted for prior to administering in a patient.  
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CHAPTER V 
 

 

SUMMARY 

F/T has been shown to be an efficient method of protein encapsulation. (Costa, et 

al., 2014). Despite extensive use, widespread variation exists in the encapsulation 

efficiency (EE) and size of liposomes.  Our studies indicate that the number of F/T cycles 

is a crucial factor since F/T beyond the optimal numbers (~ 15 cycles) may damage lipid 

membrane, thereby preventing the liposomes from holding a spherical shape. The ability 

to maintain spherical bilayer shape is also dependent on adequate freezing and  thawing 

of the sample. In general, a 1 - 2 min. thaw is insufficient to completely liquefy a frozen 

liposome sample (Castile & Taylor, 1999). Our data suggest that a 4 min. thaw at 35°C 

can optimally thaw a sample  in a time efficient manner, and achieve size controlled 

liposome similar to that of extrusion process. Loading of small molecules (e.g. anticancer 

drugs) in liposomes is relatively different than large molecules (e.g proteins such as 

albumin), and it is conceivable that this may impact liposome size.  Our data suggest   

that F/Ting the albumin-liposome samples for 5 cycles or greater achieves a conversion 

from multilamellar to unilamellar liposome form and achieves a dramatic decrease in 

size from 16000µm to less than 1µm. Further, at 10- 15 cycles of F/T, an average size of 

less than 300nm is achieved. Thus, the loading of albumin seems to have no detrimental 

effect on the liposome size.  

 

Compared to previous study that reported 40-50% EE after 20 cycles F/T (Costa, 

et al., 2004), we observed an EE of 90% after 15 cycles. It appears that a 4 min. thawing 

at 35⁰C is optimal for wrapping lipids around the protein and for achieving a higher 

encapsulation efficacy. We also believe that this method of thawing is a significant 

improvement over extrusion methodology that also achieve smaller size but is often has 

lower EE (Costa, et al., 200).  
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An ideal goal of liposome loading of proteins is the minimal release of the 

encapsulated content in physiological fluids. Our data suggests that at 72 hours, ~40-

50% of the encapsulated protein is released in physiological media.  Interestingly, this 

loss of encapsulated protein did not coincide with any changes in liposome size or 

polydispersity index. Although the reasons are not known, we speculate that there could 

be partial damage to lipids during F/T and that exacerbates in physiological fluid, 

resulting in a greater protein loss over time.  Alternatively, the protein may not be 

encapsulated but remain attached to the outside membrane, and this could break off into 

free form in PBS; a future study using a protease should be conducted to eliminate this 

potential hypothesis.  

 

Cell specific nanoparticle therapy requires precise targeting. Since PEGylation 

minimizes liposome interaction with immune cells, this may consequently increase 

uptake by other cell types. Our studies show that the uptake of liposome-albumin by the 

macrophages is relatively lower compared to free albumin, thereby validating the 

prevailing hypothesis. We also noted that both F/T and extruded liposomes are taken up 

by the macrophages by endosomal route, thereby indicating that uptake rates are 

independent of synthesis methodology. In some cases , cytoplasmic localization of NPs 

was noted in the macrophages at 2h of incubation. This is likely due to high rate of 

pinocytosis mediated uptake by the macrophage cells.  Interestingly, the RBCs  showed 

no interactions or uptake as reported elsewhere (Vranic, et al., 2013). It is conceivable 

that the lipid bilayer of the RBC can physically interact with liposome, but such contacts 

may be very weak in the absence of endosomal mechanism, presence of PEG on liposome 

surface, and at shorter incubation time (<2-3 hr). There are some report in literation that 

points suggest induction of hemolysis by PEG molecules (Mocan, 2013; Chen, et al., 

2008), but this was not observed in our studies. Future experiment should include 

longer incubation protocols to throw more light on this observation. Similarly, nuclear 

infiltration in both macrophage and lung epithelial cancer cell line were not observed 

since the nuclear pores are ~40nm, and the liposomes with a > 150nm and above 

(Stewart, 1992) may not escape the endosomes efficiently. In summary, F/T achieves 

optimal size and EE, without significant hemolysis.  

 

Finally, circular dichroism data suggest protein structural changes with freeze-

thaw. In the native protein at 5 cycles of freeze-thaw, the structure was 82% similar, but 
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at 10 cycles, it dropped to 61%. Encapsulating the protein in liposome can help stabilize 

the protein, and the resulting damage is not as pronounced as the free form of albumin 

protein. Thus, by creating a method that can optimally load protein in liposomes, this 

study can ease translation of many protein therapeutics, and thus has high translational 

potential. 
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