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ABSTRACT

This study investigates the stochastic and dynamic nature of 
freeway traffic time series data using the analysis techniques described 
by Box and Jenkins. The objectives of this investigation are to develop 
an improved filtering and prediction model for use with computer-supervised 
freeway suirveillance and control systems, and to propose computer algor­
ithms for detecting accidents and other capacity-reducing incidents which 
are typical occurrences on urban freeways. The analysis was based on 
surveillance data recorded at the Los Angeles, Minneapolis, and Detroit 
freeway systems during the afternoon peak periods.

An autoregressive integrated moving average model of the form 
ARIMA (0,1,3) was found to be representative of 166 time series of traffic 
volume and occupancy data (more than 27,000 minutes of observations) with 
varying detector configurations and data aggregation time intervals.
The moving average parameters of the model, however, vary from detector 
station to another and over time. In operational forecasting, parameter 
updating over time can be done occasionally, for example, at the beginning 
of peak and off-peak periods. With the increasing trend toward decentra­
lized control and distributing the computational capabilities, parameter 
updating can be efficiently performed using microcomputers. In terms of 
mean absolute error and mean square error, the ARIMA (0,1,3) model was 
found to be superior to moving average, double exponential smoothing, and 
Trigg and Leach adaptive models.

Using the ARIMA (0,1,3) model, freeway capacity-reducing inci­
dents were detected by the sudden and pulsed changes they generate in 
traffic stream time series data. Eight traffic features sensitive to 
incident situations were compiled during a sample of 50 on-freeway inci­
dents (1694 minutes of observations). The form of the ARIMA (0,1,3) 
model was found representative of the time series of these features. An 
incident was detected if the observed feature value laid outside the pro­
bability limits constructed two standard deviations away from the corres­
ponding point forecasts. This approach eliminated the need for threshold 
calibration and allowed for the uncertainty associated with the forecasts 
to be included in the detection decisions. The ARIMA station occupancy 
algorithm dominated the California algorithm, five of the TTI algorithms, 
and the exponential station occupancy algorithm in terms of higher 
detection rate, lower false-alarms, and faster response.

IV
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ANALYSIS OF FREEWAY TRAFFIC TIME SERIES DATA AND 

THEIR APPLICATION TO INCIDENT DETECTION

CHAPTER I 

INTRODUCTION

Short-term prediction is at the heart of most computer-supervised 

traffic surveillance and control systems. These systems are planned, 

designed, and implemented to increase the operational efficiency of urban 

streets and freeways. In particular, this dissertation addresses the 

stochastic and dynamic nature of freeway traffic time series data, and 

the development of improved filtering and prediction models for traffic 

stream measurements. It also proposes and explores the development of 

incident detection algorithms based on time series analysis techniques.

1.1 Computer-Supervised Freeway Surveillance and Control Systems

A computer-supervised freeway surveillance and control system is

defined by Weinberg [85] as:

A closed loop system ... that provides for surveillance of 
traffic operations, acquiring data on those operations 
which can be processed by a computational logic in real­
time, testing observed conditions against a set of decision 
rules, selecting commands in light of the results of the 
test, activating appropriate controls and/or communicating 
with drivers to improve traffic movement when necessary, 
and then reassessing the traffic behavior to determine if 
further corrections are to be made.



In general, one can distinguish between two approaches of automated traffic 

surveillance and control. The first approach requires monitoring and 

controlling each individual vehicle, and is particularly appropriate for 

automated guideways or high speed train networks. The second approach 

is an aggregate type of control applied to an entire stream of vehicles 

rather than individual ones, and is suitable to many traffic systems like 

freeway corridors, tunnels, and bridges. In the latter approach traffic 

is typically monitored by means of vehicle detectors and/or television 

cameras located at strategic positions along the corridor.

The primary functions of a computer-supervised freeway sur­

veillance and control system are to maintain an acceptable level of 

service for freeway operations, reduce the extent and duration of traffic 

congestion, minimize the adverse effects of accidents and other incidents, 

and lower the accident experience. From the overall community values 

standpoint, two categories of benefits can be recognized, direct benefits 

to the motorists and indirect benefits to the residents near the corridor. 

Savings in travel time, enhancing safety, reducing energy consumption, 

and minimizing discomfort of drivers are examples of the former category, 

while reducing air pollution and some of the effects of accidents are 

examples of the latter.

Figure 1.1 illustrates the concepts of automated freeway sur­

veillance and control. In general, three functionally interrelated con­

trol and surveillance techniques can be characterized: ramp metering,

variable message signs,and incident detection. When freeway demand 

exceeds capacity at some location as a result of traffic bottleneck or 

incident, the flow of additional vehicles onto the freeway upstream is
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restricted by means of traffic signals installed at entrance ramps. The 

queued vehicles stored at an entrance ramp are permitted to smoothly 

enter the freeway at a particular rate known as metering rate, which is 

determined by the difference between upstream demand and downstream 

capacity. In the extreme case, if upstream demand exceeds downstream 

capacity, the ramp is completely closed. To assure safe merging oper­

ations for drivers entering the freeway, another type of ramp control 

known as the moving-merge system is used. This system displays the right- 

lane gaps to the ramp drivers so that they can easily merge into the 

freeway even when the view of the right-lane is restricted. Demonstra­

tion projects in Houston, Chicago, Detroit, and Atlanta have shown that 

ramp control has the potential of significantly reducing the extent and 

duration of peak-period congestion and the number of rear-end collisions 

that occur on the freeway [55,77,83].

In addition to ramp metering control, variable message signs 

are used to provide the drivers with real-time information concerning 

traffic conditions on the freeway and the surrounding surface streets.

The philosophy behind these messages is that traffic demand can be best 

distributed among the freeway corridor, frontage road, and surface street 

links if the drivers have a prior knowledge about the location, extent 

and duration of congestion. However, minimizing the overall travel time 

by redistributing traffic demand does not necessarily imply that the 

travel time of each individual motorist is also minimized. Different 

types of variable message signs exist on the freeways and alternate 

surface streets of many major cities in the United States, Europe, and 

Japan. In Detroit, for e:jample, variable message signs were installed



on the entrance ramps to the John C. Lodge Freeway corridor. Should con­

gestion exist on the freeway downstream of an entrance ramp, drivers who 

are going to enter the freeway using this ramp are advised to continue 

along an alternate route or to use other entrance ramps [82]. For motor­

ists already on the freeway corridor, variable message signs are installed 

at strategic positions to advise drivers of traffic conditions ahead, and 

in some cases recommend alternate routes to drivers upstream of the con­

gested sections [82]. In addition, other variable message signs are pro­

vided on the freeway near the sections where sufficient sight distances 

are not available, to assist drivers in formulating their expectations 

of the actual downstream traffic conditions. In Houston, for example, 

warning signs of this type have been installed on the Gulf Freeway near 

crest vertical curves to inform approaching drivers about traffic stoppages 

downstream resulting from accidents, stalled vehicles, or traffic bottle­

necks. This warning system has shown significant reduction in the acci­

dent experience and overall delay on the Gulf Freeway [21].

Finally, the desired redistribution of traffic demand can be 

potentially facilitated if the drivers are made aware of congestion 

particularly caused by an accident or capacity-reducing incident.

Freeway accident or incident information, and traffic conditions upstream 

can be carried to the motorists by variable message signs and commercial 

radio. In such case, it becomes more acceptable to the drivers who 

intend to enter the freeway from upstream of the troublesome location if 

metering rates are reduced or ramps are completely closed. Concurrently, 

freeway drivers upstream can be diverted by advising them to proceed 

along alternate routes, knowing that downstream capacity will be available



by the time they reach the downstream entrance ramps. This, of course, 

can be accomplished only if the incident is promptly detected both in 

time and location, and if immediate response and effective management 

are made by the surveillance and control system. While different methods 

of incident detection have been established including highway patrols, 

emergency roadside telephones, citizen-band radio, and television sur­

veillance, demonstration projects of automated incident detection have 

shown substantial reduction in detection time due to eliminating the time 

lag of human interpretation [82]. Furthermore, computer-supervised 

incident detection has the capability of assessing the magnitude of 

capacity reduction on a quantitative basis, information that could only 

be guessed at by a human observer. With this quantitative information, 

entrance ramp metering rates can be automatically adjusted by the com­

puter, and estimates of the likely delay to be encountered by freeway 

traffic can be made and relayed to the drivers or used to control variable 

message signs. Also, the computer has the ability for surveillance of 

the system hardware components, and for making automatic response when 

a hardware failure takes place. However, computer-supervised incident 

detection cannot exactly identify the nature of a detected incident or 

the kind of help needed unless it is coupled with closed-circuit tele­

vision surveillance. Previous research on the Lodge Freeway indicated 

that computer detection can be useful in supplementing a television 

system by directing the attention of observers to incident situations 

[14]. Computer algorithms for incident detection are mostly in the 

research and development stage. Basically, these algorithms attempt to 

identify changes in traffic characteristics either temporally at a given



point on the freeway, spatially at a particular point in time or in com­

binations. False incident alarms generated by the computer represent a 

major operational problem in the field of freeway incident detection and 

management, particularly if highway patrols are to be dispatched every 

time. Generally, the rate of false incident alarms can be reduced only 

at the expense of the fraction of incidents detected. Research work is 

needed to develop improved methods for detecting and managing 

incident situations. Only after the development and testing of such 

methods will it be possible to operationally incorporate an incident 

detection capability into automated freeway surveillance and control 

systems.

1.2 A Capsule History, and Most Likely Projections

The evolution of freeway surveillance and control technology in 

the U.S. can be described by four technological levels as depicted in 

Figure 1.2. The bar graph gives the approximate timing of each of these 

levels. The first level includes the periods of scientific and techno­

logical resources development which generally preceed the time frame 

shown in Figure 1.2. Scientific resources include the basic traffic flow 

and control theories, the empirical relationships, and the controlled 

laboratory and field experiments. Technological resources, on the other 

hand, are primarily the computers but they also include traffic signal, 

television, and detector technologies.

Level II, the period of first-generation freeway surveillance 

and control systems, can be dated back to the I960's. During this period, 

research and demonstration projects financed by Federal, state, county, 

and city funds, were designed in Detroit, Chicago, and Houston [82]. In



Technological
Levels

tIV. Third-Generation 
Systems :
- Large Scale
- Decentralized
- Microcomputer 

Based

III. Second-Generation 
Systems :
- Small/Medium Scale
- Centralized
- Maxicomputer Based

II. First-GeneraLion 
Systems :
Research and 
Demonstrat ion 
Projects

Scientific and 
Technological 
Resources 
Development

I' I' I' I' I I " rr T" T "f  'TT T'n— "!■ i" i 'i" i' i"i"i
1950's 1960's' 1970's

T ' T  "T'T-'I ' I I " f 1—  - r
1990's1980's

FIGURE 1.2

GENERAL LEVELS OF FREEWAY SURVEILLANCE AND 
CONTROL TECHNOLOGY EVOLUTION



1960, the use of closed-circuit television as a freeway surveillance tool 

was pioneered on the John C. Lodge Freeway in Detroit. Manually operated 

lane control signals, variable speed signs, and ramp closure signs were 

the major forms of control and driver information. Ramp metering control 

started later in 1966 utilizing a closed network of ultrasonic vehicle 

detectors connected to an IBM 1800 computer for data logging. The Chicago 

Area Expressway Surveillance Project was initiated in 1961 pioneering the 

instrumentation of automatic detection systems. Vehicle presense 

detectors connected to a central computer were installed on the Eisenhower 

Freeway for ramp control purposes. In 1963, the Gulf Freeway Surveillance 

and Control Project in Houston, Texas, combined television surveillance 

and ramp control emphasizing gap acceptance concept. Using the same con­

cept, the moving-merge type of control was first experimented in 1967 in 

Woburn, Massachusetts. Finally, on-line computer surveillance and control 

of tunnels was pioneered in the. Lincoln Tunnel during a joint study con­

ducted by the Port of New York Authority and IBM which ran from 1966 until 

1969.

Level III is the period of second-generation freeway surveillance 

and control systems. Starting about 1970, several surveillance and control 

projects with different features have been designed and implemented on the 

freeways of some cities. Notable in this regard is the Los Angeles Area 

Freeway Surveillance and Control Project, LAAFSCP, which was put into use 

in 1971. It has been since evolved a fully operational system of auto­

matic monitoring. Ramp metering control has been coordinated with freeway 

improvements and incident detection. On the Northern Long Island Corridor, 

New York, an integrated motorist information system was established in
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1973 utilizing current motorist aid and information technology and real­

time traffic management. The Dallas North Central Corridor Project, 

initiated in 1974, is noteworthy because it combines arterial street 

signal control with freeway ramp control and selective television moni­

toring. Other surveillance and control systems have been developed and 

implemented at various levels in Seattle, Minneapolis, Atlanta, and Phoenix 

in attempt to relieve existing congestion problems [82]. The Minneapolis 

system, initiated in 1973, is of particular interest because it provides 

preferential treatment to express buses at the entrance ramps to the 1-35 

W. Corridor.

In summary, today there are about ten operational surveilance 

and control systems covering only about one percent of the urban freeway 

mileage in the U.S. [82]. The centralized type of surveillance and control 

is the one in predominant use. It is characterized by having all the 

decision-making and computational capabilities on one level located at one 

geographic location. Most of the installed computers are of the con­

ventional medium type (minicomputers).

Using the scenario technique described by Kahn and Weiner [44], 

the basic underlying trends which bear on the future of freeway surveillance 

and control technology can be summarized in the following six points :

1. Growing automobile travel and the associated congestion, 
accidents, and environmental problems.

2. Increasing recognition among transportation engineers 
and planners that the traditional solution to prevent 
congestion by constructing new freeways has become both 
economically and politically more unfeasible.

3. The joint policy promulgated by the Federal Highway Admin­
istration and the Urban Mass Transportation Administration 
emphasizing transportation system management as a short­
term planning concept. This concept requires making best
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use of ejâsting highways and vehicles to achieve 
greater urban mobility [82].

4. Increasing concern about the reliability and efficiency 
of existing traffic control and surveillance systems.
Many of the concepts presented in section 1.1 are 
being further developed and refined to increase their 
functionality and effectiveness [82].

5. Rapid technological advances in solid-state technology 
which led to the relatively recent development of 
microcomputers at reduced cost and size [1,80]. These 
developments are observed by the industry with an eye 
toward incorporating them into future surveillance and 
control hardware [82].

5. Noticeable shift toward the decentralized and multi­
level schemes of surveillance and control in which 
the decision-making and computational capabilities 
are distributed from a geographic viewpoint and placed 
at various levels in a hierarchical organization [71,82].

From the standpoint of looking toward the future, the above 

trends seem likely to continue at least for the next two decades. Exami­

nation of these trends indicates that rapid changes and advances in free­

way surveillance and control systems are anticipated in the near future. 

This is represented by technological level IV in Figure 1.2. It is the 

successful application of technology, in particular microelectronics, 

which will lead to hardware advances. Other advances will be made 

possible as a result of current research and development efforts coupled 

with the experience gained over the past years. Significant developments 

are expected to take place in traffic responsive ramp control strategies, 

automatic incident detection and management, driver information systems, 

and merge control. Concurrently, the increasing cost of communication 

links and equipment will accelerate the shift toward decentralized schemes 

of surveillance and control. The technological developments and reduced 

cost of microcomputers will provide another technological impetus for
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decentralization and distributed computations. Last but not least, pre­

ferential treatment of high occupancy vehicles is expected to receive 

more attention in future freeway control systems.

1.3 The Purpose and Utility of This Research

The basic premise of any computer-supervised freeway surveillance 

and control system is its adaptability to the rapidly changing traffic 

conditions in time and space. However, in complex traffic situations 

where optimum utilization of corridor capacity is needed, it is not 

sufficient to determine the control strategies on the basis of traffic 

conditions which exist at the exact time of implementing these strategies.

To help illustrate, consider a variable message sign warning the approaching 

freeway drivers of traffic congestion downstream, and suggesting alternate 

routes based on traffic conditions observed at the same moment of the 

message. Keeping in mind that congested traffic operations are usually 

unstable, that is, congestion appears first at one point then at another, 

and that the warning message itself will probably change the situation, 

it is very likely that when the drivers reach the trouble-spot, they may 

encounter quite different conditions from those previously displayed.

As a result, the message information may seem to have been misleading, and 

perhaps over the long run drivers may completely ignore such information.

In addition, the message may cause significant degradation to the per­

formance of the overall control system. It appears important, therefore, 

that variable message signs should allow for the effects they are likely 

to cause in the immediate future through incorporating short-term forecasts 

of traffic performance into the control logic. Similarly, in both 

centralized and decentralized schemes of real-time ramp control, the
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optimal control strategies are based upon short-term forecasts of traffic 

demand conditions. These forecasts are usually required for 5 to 10 

minutes ahead in the future in order to allow enough response time to 

the implemented control. Figure 1.3 illustrates these concepts.

Another important application of traffic prediction in freeway 

surveillance is that of incident detection. Recent research [13] has 

concluded favorable results when statistical forecasting is utilized to 

detect traffic disturbances caused by accidents or capacity-reducing 

incidents. In particular, a forecasting model is employed to provide 

real-time estimates of the expected values of future traffic performance 

measurements. Due to the rapid changes in freeway traffic conditions, 

these estimates are usually made for one to five minutes ahead in time.

An accident is detected if the difference between an actual observation 

and its estimate significantly exceeds the expected difference due to 

random variations in traffic behavior.

Forecasting techniques of real-time traffic systems are still in 

their early development stage. With the increasing complexity of these 

systems, and the growing concern about their operational reliability, 

considerable interest has been recently demoted to the analysis and fore­

casting of their dynamic behavior. Ad hoc models nave been proposed in 

many situations, however, a concensus as to which model is appropriate 

has not been reached yet. The major weakness of these models is that 

there is no sound basis for their form or their transferability from one 

freeway system to another. A more general and powerful approach for 

modeling and forecasting a traffic system is to collect data describing 

how this system did behave over time, and then to construct a model
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based on the observed system behavior. This approach is known as "time 

series analysis" where very general types of models exist for describing 

the stochastic properties of dynamic systems over time. The purpose of 

this dissertation is to investigate these issues. In particular, this 

study explores: (1) the dynamic nature of freeway traffic measurements

over time, (2) the alternative techniques of forecasting real-time traffic 

systems, (3) the development of a time series forecasting and simulation 

model for these systems, and (4) the formulation of incident detection 

algorithms based on the developed forecasting model.

1.4 Overview of the Next Chanters

In Chapter II, the nature of freeway traffic measurements is 

discussed in terms of their inherent characteristics, their measurement 

techniques, and their interrelationship. Traffic flow models are briefly 

reviewed both at the microscopic and macroscopic levels, with emphasis 

upon the propagation of disturbances caused by incidents. Chapter III 

covers the alternative techniques of forecasting real-time traffic control 

and surveillance systems. There is a discussion of three ad hoc fore­

casting models, as well as the time series analysis models developed by 

G. E. Box and G. M. Jenkins [7]. Chapter IV describes the freeway traffic 

data base used in the analysis, and the previous work on modeling traffic 

time series data. Also, it describes in detail the development of a time 

series forecasting model and its utility in operational forecasting and 

simulation. The developed model is then compared on a comparative basis 

with the other ad hoc models. Chapter V discusses the application of the 

developed model in freeway incident detection. It represents a review of 

incident detection algorithms and discusses the formulation of new
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algorithms based on time series analysis of traffic measurements. Enough 

theory is provided throughout Chapters II-V so as to make the discussion 

meaningful, but not so much as to obscure the underlying practical 

applications. Finally, Chapter VI covers the conclusions of this study 

and some prospects for future research.



CHAPTER II

NATURE OF FREElfAY TRAFFIC STREAM MEASUREMENTS

2.1 Introduction

The study of the true nature of freeway traffic measurements 

has been pursued extensively by investigators in the transportation 

field. Much of this interest has evolved from the difficulties inherent 

in modeling the behavior and interactions of a ccmplex made up of 

drivers, vehicles, and a roadway. This chapter begins with the difini­

tions of basic traffic variables and their measurement techniques.

Then, there is a review of various traffic flow models, specifically 

microscopic car-following models and macroscopic continuum models. 

Particular emphasis is given to the propagation of disturbances caused 

by freeway incidents which provides the necessary background required 

for Chapter V. No attempt will be made in this chapter to review the 

stochastic properties of traffic variables.

2.2 Traffic Stream Variables; Definitions and Measurements

Streams of traffic are by their nature physical successions of 

discrete occurrences of vehicles, however, they are sometimes treated 

as a continuous fluid. The major macroscopic variables which character­

ize a stream of vehicles are the flow rate or volume q (vehicles per 

unit time), the concentration or density K (vehicles per unit length of

17



18

roadway), and the average speed of a group of vehicles in space or 

space mean speed üg (miles per hour or kilometers per hour) [19].

Volume is a characteristic of traffic passing a point, while density and 

space mean speed are spatial characteristics at a given instant of 

time [41]. These three variables are of particular interest to the 

traffic engineer, since volume describes how many vehicles are moving 

(demand), density and space mean speed together describe the quality of 

service experienced by motorists [89].

In studying the behavior of a physical stream of traffic, it 

is interesting to consider the projection of the stream onto a space­

time plane. A plot of the trajectories of each vehicle in both time 

and longitudinal distance might appear as in Figure 2.1, with each 

trajectory describing the movement of a single vehicle as a function of 

time. The slope of the trajectory at any point represents the vehicle's 

current speed. Vehicle trajectories can be constructed by continuous 

monitoring of point detectors over some period of time, or by sequential 

aerial photos of a stretch of roadway.

Measurements of traffic stream variables are made either by 

observing vehicles as they pass a particular point in space, or by 

observing their location at a particular point in time, as depicted in 

Figure 2.1. The variables q, K, and üg are meaningful only as averages 

over small band of width dx or dt since they count the number of 

vehicles in a unit of time or unit of space. Edie [26] provides opera­

tional definitions of the variables q, K, and üg based on the methods 

used in measuring these variables. He also discusses the different 

averaging schemes to be employed in each situation.



Flow

Freeway

Instant Measurements 
(Aerial photos)

(n-1 )

(n+1 )
5

CO

5
O

- 4 k —dt TIME, t

Point Measurements 
(Detectors)

FIGURE 2.1

VEHICLE TRAJECTORIES AND MEASUREMENT METHODS



20

Every computer-supervised traffic surveillance and control 

system uses detectors tc obtain information concerning traffic condi­

tions. Magnetic loop detectors are the most widely used devices to 

sense vehicle presence over successive detection points. The principle 

of magnetic loop detectors is that a vehicle resting in, or passing 

over the loop causes unbalance in a tuned circuit and sends an impulse 

signal to a computer [82]. Current freeway surveillance systems 

(notably those in Los Angeles, Chicago, and Minneapolis) use a central 

computer for signal processing. As mentioned in Chapter I, evolving 

technology may make it possible to do some or all of the required pro­

cessing by microprocessors [1,76]. The processed signal gives direct 

measure of traffic volume and time headway between vehicles [2 ].

Vehicle speeds can be derived from a combination of detectors forming 

a speed trap, or from a single detector under the assumption of a stan­

dard length of each vehicle [31]. The average speed of a group of 

vehicles passing a point during a time interval is called the time mean 

speed and is different from the space mean speed [41]. Traffic density 

at a freeway section bounded by two detectors is equivalent to the 

number of vehicles stored between these two detectors. Although this 

method has been used successfully to measure traffic density in the 

Lincoln Tunnel in New York, it requires precise measurement of car 

lengths and presumes relatively few changes of lane by individual 

vehicles [31,32]. Therefore, the application of this method to free­

ways is rather questionable [31]. A surrogate for traffic density that 

can be measured at a point from detector information is occupancy, the 

percentage duration of activation of a presence detector [2]. It is a
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nondimensional variable giving the proportion of time a single point on 

a roadway is occupied by vehicles. Athol [2], found that density and 

occupancy are linearly related up to densities of about 80 vehicles per 

mile per lane depending on the average vehicle length.

Detector failures represent a major hardware problem in free­

way surveillance systems today. Dudek, et al. [22], reported that 87 

percent of the hardware problems experienced on the Gulf Freeway warn­

ing system in Houston were due to detector failures, while eleven per­

cent were related to computer hardware. They also found that detectors 

failed at a rate of 3.78 x 10"^ failures per detector hour. The 

Traffic Control Systems Handbook [82] describes new innovations in 

detector technology which may relieve the problem of detector failures.

2.3 Volume, Density, and Speed Interrelationship

The definitions of macroscopic traffic stream variables indi­

cate that they are all interrelated, and by dimensional analysis this 

interrelationship can be expressed as:

q = K • üg (2 .1 )

where:

q = volume (vehicle/hour),

K = density (vehicle/mile), 

üg = space mean speed (miles/hour)

The above relation is known as the "equation of state" of traffic 

flow [24]. In addition, the definitions require volume to be zero when 

density is zero (no vehicles on the road), and require volume to be 

zero at maximum density (jammed conditions). Further, volume should 

increase to a maximum level (known as capacity) and decrease before
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density reaches a maximum value. Therefore, the relationship between 

traffic volume and density must have a general form similar to that 

depicted in Figure 2.2. This is called the fundamental diagram of 

traffic flow [24]. The slope of the line extending from the origin to 

any (q,k) point on the volume-density curve represents the space mean 

speed corresponding to flow state (q,k).

Several volume-density models have been proposed or derived 

from empirical studies or theoretical considerations [24]. Most traffic 

engineering applications, however, adapted the Greenshield's linear 

relationship between density and space mean speed to develop workable 

approximations [89]. This relationship can be expressed as:

ûg = üf(l - K/K.) (2.2)

where :

Ü£ = space mean free speed 

Kj = jam density

The corresponding volume-density model is parabolic and can be derived 

by substituting q/K for üg in equation 2.2.

q = üf K(1 - K/K.) (2.3)

The main advantage of such traffic model is that it gives useful aver­

ages of the overall statistical properties of a traffic stream. How­

ever, Haight [37] reported that there is no unique volume-density 

relationship which applies in all situations, and that a volume-density 

curve is a characteristic of a particular location at a specific time 

with a given population of drivers. Figures 2.3 and 2.4 are plots of 

volume versus occupancy (surrogate for density) for the afternoon peak 

period from 2:40 p.m. to 7:00 p.m. at the Chicago and Glendale detector
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stations on the Lodge Freeway in Detroit. The two plots differ both in 

shape and range of values although the two stations are separated by 

only one mile. Probably, these differences arise from variations in 

flow characteristics, types of vehicles, driving situations, and geo­

metries. The increased scatter of data points at occupancies greater 

than about 15 percent has been confirmed by Mika, et al. [54], who 

differentiated between two modes of traffic stream behavior, one rela­

tively stable over time, and the other oscillatory when occupancies 

exceeded 13 to 16 percent.

2.4 Microscopic Traffic Flow Models

A more theoretical approach for studying the microscopic 

behavior of a traffic stream was first proposed by Clayton [12] who 

related a driver's headway to his ability to avoid a collision when the 

vehicle in front brakes suddenly. Chandler, et al. [10], incorporated 

this concept in what is known as the car-following model, which can be 

expressed in the form;

response = sensitivity x stimulus 

A driver probably reacts to the relative speed between his car and the 

car in front (x̂  - ^ 4.2 )̂ which is assumed to be the stimulus. His res­

ponse is constrained by the vehicles surrounding him and is taken as 

his acceleration or deceleration rate x^^^. If X represents the driv­

er's sensitivity coefficient (intensity of reaction to stimulus from 

the vehicle in front), and " the average driver reaction time (time 

between receiving a stimulus and implementing a response), the car- 

following model at time t can be expressed as
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+ t) = X[x^(t) - (2.4)

Gazis, et al. [34], found experimentally that the driver’s sensitivity 

coefficient X is inversely proportional to the space headway, that is,

V i ' '  + = % (t) - % x t )  G-:)n n+±

where X̂  is the constant of proportionality. They also found that by 

integrating equation 2.5, the steady-state relationship letween speed 

and density is given by

ÛS = Xo logg (Kj/K) (2.6)

A traffic stream is in steady-state condition when the joint distribu­

tion of vehicle speeds and lengths is the same at all points along the

roadway [24]. An expression identical to that in equation 2.6 was

derived by Greenberg [36] using a different approach based on the fluid 

flow analogy which is discussed in the next section. Greenberg fitted 

his model to speed and density observations from the north tube of the 

Lincoln Tunnel in New York, and found values of Xq equals 17.2 and 

equals 227 vehicles per mile. One of the limitations of the model 

described by equation 2 . 6 is its violation of the boundary condition at 

zero volume and density where there is no upper bound on stream velocity. 

In order to overcome this discrepancy, several investigators [33,52] 

proposed modifications of the driver's sensitivity coefficient X to 

include various powers of vehicle speed and reciprocal headway, that is,

' - (2.7,
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Particular solutions of the modified car-following model include the 

case where m = 0 and 2 = 2 which yields the Greenshield ' s model dis­

cussed earlier. Gazis, et al. [33], fitted car-following data from the 

Lincoln Tunnel and found the best correlation for values of m = 1 and 

1=2. May and Keller [52] proposed values of m = 0.8 and £ = 2.8 for 

freeways, and m = 0.5 and £ = 2 . 1 for tunnels.

2.5 Macroscopic Traffic Flow Models

In contrast to the car-following models which keep track of 

individual car movements at the micro-level, the hydrodynamic theory of 

traffic flow describes the movement of a sizable aggregate of vehicles 

forming a traffic stream at the macro-level. Lighthill and Whitham [50] 

and Richards [67] introduced analogies between the flow of fluids and 

the movement of vehicular traffic. These analogies only hold for high 

traffic densities, the case where important traffic control problems 

exist. Individual vehicles forming a traffic stream are replaced with 

a one-dimensional compressible fluid which has a certain density K(x,t) 

and a flow rate q(x,t), where x is a linear coordinate measured in the 

direction of flow, and t is the time. Figure 2.5, adapted from Edie 

[24], shows the trajectories of vehicles in both time and longitudinal 

distance. If measurements of the flow rate q and density K are made on 

a section of highway Ax long during a time period At, as illustrated in 

Figure 2.5, the principle of conservation of vehicles results in the 

differential equation

^ + ^ = 0  (2.8)0 L oX

Equation 2.8 is recognized as the continuity equation of a compressible 

fluid.
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The fundamental hypothesis of Lighthill and Whitham is that at 

any point along a roadway, the flow rate q depends explicitly on the 

density of traffic K, and on the position x, so that

q = q(K,x) (2.9)

If the spatial distribution of density is homogeneous over a particular 

roadway, then equation 2.9 reduces to

q = q(K) (2.10)

Equation 2.10 is the "equation of state" discussed earlier, and by 

partial differentiation with respect to x the result is

If = i • f
For small variations of density about an average value, the partial 

derivative of the flow rate with respect to density can be assumed as 

a constant C, and consequently equation 2.11 will have the form

If ' = f
By substituting equation 2.12 into the equation of continuity 2.8, this 

results the differential equation

# + C § = 0  (2.13)

which has the general solution

K = f ( x - C t )  (2.14)

where f is an arbitrary function. This solution represents a wave of 

density K moving in the direction of increasing x with velocity C = 

3q/3K. The conceptual implication of equation 2.14 is that a small 

disturbance in traffic density propagates a.' a kinematic wave with 

velocity C given by the tangent to the volume-density curve at the 

corresponding point. For densities below the density at capacity-flow.
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the slopes of the tangents are everywhere positive, and the disturbances 

propagate forward relative to the roadway. This is the case where the 

interaction between vehicles is small. For densities above the density 

at capacity-flow, the slopes of the tangents are negative so that dis­

turbances propagate backwards relative to the roadway. At conditions of 

capacity-flow the wave is stationary.

Based upon the relationship q = K-û^ of equation 2.1, the 

velocity of wave propagation C is given by 

C = -& (K-Ü )
 ̂ (2.15)
3uc

Herman and Rothery [39] found experimentally that the term 3u^/3K is 

always negative, and therefore C is always less than the average speed 

of the traffic stream. The quantity (1 = u^ - C) was defined by Herman 

and Rothery as the driver’s sensitivity coefficient, and is equal to 

the velocity of propagation of a disturbance back through a chain of 

vehicles relative to the moving traffic stream. They also observed an 

increasing linear relationship between \ and average speed up to 50 mph. 

In the car-following model of equation 2.5, Herman, et al. [40], found 

that instability in flow conditions arises when Àgt exceeds ît/2 , and 

hence the spacing between successive vehicles oscillates with increasing 

amplitude. The hydrodynamic analogy of this situation is the case when 

drivers adjust spacing between their cars to changing traffic conditions, 

and therefore restrict the freedom of individual motion [6 6 ]. To allow 

for this possible instability, Lighthill and Whitham suggested an 

extension to their hydrodynamic theory to include a "diffusion effect" 

and an "inertia effect." The diffusion effect accounts for the fact 

that each driver adjusts his speed to flow changes slightly ahead of
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him, while the inertia effect allows for a time-dependence in the 

behavior of individual vehicles [30]. Therefore equation 2.10 is modi­

fied so that the flow rate q becomes a function of the density K, the 

density gradient 3K/3x , and the time rate of concentration 3K/3t, that 

is,

q = q(K, 3K/3X, 3K/3t) (2.16)

Franklin [30] showed how this modification makes it possible that flow 

becomes unstable for certain ranges of density.

2.6 Propagation of Disturbances Caused by Freeway Incidents

Since Kinematic -waves propagate with velocities which are 

functions of the vehicular density, it is possible to find different 

waves moving through a traffic stream. A particular situation of 

interest is that where a capacity reducing incident occurs on a section 

of freeway as shown in Figure 2.6. For simplicity, Greenshield's 

parabolic volume-density curve is used to demonstrate the different 

flow states associated with the incident situation. It is assumed 

that the flow state before the incident is below capacity as represented 

by point one. Point two is the congested regime of traffic operations 

upstream the incident, and point three represents the flow state down­

stream the incident. Kinematic waves in the high-density traffic 

(point two) propagate upstream of the incident site, while kinematic 

waves in the low-density traffic (point three) travel downstream at a 

higher velocity than the waves in the normal flow (point one). When 

the two latter waves meet, a new wave will form. Lighthill and Whitham 

[50] referred to this new wave as "shock wave" and its velocity
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given by the slope of the chord between points one and three on the 

fundamental diagram.

In addition to the shock wave of expansion which travels down­

stream of the incident site, other shock wave of congestion growth may 

propagate upstream depending on the slope of the chord connecting the 

prevailing flow state before the incident with point two. In Figure

2.5 the slope of the chord connecting flow states one and two is nega­

tive indicating that the disturbance will propagate upstream and gener­

ate state two of congested operations. This is the case when a capacity- 

reducing incident occurs under medium or heavy flow conditions (peak 

period operations). If light flow conditions prevail before the inci­

dent as represented by point four, then the slope between states two 

and four is positive. This indicates that the demand downstream the 

incident can still be accomodated at an increased level of traffic 

density.

Figure 2.7 demonstrates the same sequence of events by means 

of spatial distributions of average speed, density and volume at some 

fixed moment. Regions one and four represent prevailing normal traffic 

conditions before the incident. Region two immediately upstream of the 

incident represents congested operations where a queue of vehicles 

builds up if demand exceeds bottleneck capacity. This is indicated by 

the lower than normal speed and higher than normal density. In region 

three immediately downstream of the incident, the traffic flow is func­

tion of the bottleneck capacity which is less than the freeway capacity 

in region three. Consequently, region three is characterized by higher 

than normal speed and lower than normal density. The boundary betx»aen
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regions one and two moves upstream, while the boundary between regions 

three and four moves downstream. The movement of these boundaries is 

what has been referred to as shock waves by Lighthill and Fnitham. This 

type of diagram provides the conceptual ideas necessary for developing 

incident detection models which are discussed in Chapter V. The models 

should detect the passage of either or both of the waves at the upstream 

and downstream detector stations.

The removal of an incident after some elapsed time T since its 

occurrence allows the queue of vehicles stored upstream of the incident 

site to start moving downstream. Theoretically, the flow rate should 

rise to capacity of the freeway at the incident site. The application 

of kinematic wave theory to the recovery process results in two shock 

waves with velocities C2 5 and C3 2 as shown in Figure 2.6. A shock wave 

of recovery propagates upstream of the incident site with velocity 

indicating the clearing up of the queue of vehicles stored during time 

T. Also, a shock wave of release which defines the boundary between 

capacity flow and the reduced flow during the incident travels down­

stream of the incident site at velocity C3 5 . Figure 2.8, adapted from 

Messer, et al. [53], is a space-time diagram showing the different 

shock waves which exist when an incident occurs and after it is removed. 

Point A represents the beginning of the incident where the two shock 

waves of congestion and expansion proceed upstream and downstream with 

velociteis €2^ and €33  ̂respectively as discussed before. Point 3 repre­

sents the incident removal, and it is noticed that some time, T, has 

elapsed. The shock waves of recovery and release propagate upstream 

and downstream from point B with velocities C93 and C3 3 , respectively.
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As depicted in Figure 2.8, one remaining shock wave should propagate 

upstream before all traces of the disturbances generated by the incident 

disappear. Sometime after the incident is removed, the shock wave of 

recovery C25 meets the shock wave of congestion Z21 s-t point D which 

designates the complete dissipation of the queued vehicles. The final 

clearing shock wave proceeds downstream from point D with velocity 

defining the boundary between capacity flow and normal traffic flow 

before the incident.

Messer, et al. [53], used the time-space diagram of Figure 2.8 

to estimate the freeway travel time during incident conditions. The 

computational procedure used was based on Greenshield's linear speed- 

density model of equation 2.2. In a similar manner, Dudek, et al. [23], 

discussed the use of the same kind of diagram to determine the maximum 

detector spacing for an automated freeway incident detection system.

They found that the maximum spacing between detectors is a function of 

the prevailing traffic conditions before the incident as well as the 

elapsed time between incident occurrence and removal.

Several studies have been made to test and apply the conceptual 

ideas of kinematic wave theory. Edie and Baverez [25] investigated the 

generation of shock waves in tunnels by means of contour maps of flow, 

density, and speed at traffic bottlenecks, and they found wave velocities 

to vary between 9.5 and 14 mph. These results were obtained for a 

single lane traffic with no passing allowed. Herman and Rothery [39] 

measured the speed of propagation of disturbances through an eleven-car 

platoon moving on a test track and found it to be 12.3 mph. By means 

of aerial photographs of individual lane traffic on the Lodge Freeway
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in Detroit, Forbes and Simpson [29] found that acceleration waves pro­

pagate faster upstream than deceleration waves. Their results reflected 

the interaction between driver response time, speed and headway.

2.7 SiiTrmiary

A considerable amount of effort has been expended over the 

years in studying the true nature of freeway traffic stream measurements. 

It is interesting that traffic flow theory still receives considerable 

emphasis in current research activities. However, the concern is grow­

ing towards reducing the gap between theory and practice by implementing 

the body of knowledge so far developed to solve urban traffic problems.

To some extent, this chapter has attempted to discuss the opposite ends 

of traffic flow behavior spectrum. The car-following models represent 

movements of individual vehicles, whereas the fluid flow models des­

cribe movement of a population of vehicles. Importantly, the two 

approaches are deterministic flow behavior models. In some occasions, 

however, it is necessary to have a probabilistic model of traffic 

behavior. For example, in ramp metering studies it is important to 

know the probability distribution of time headways in the freeway traf­

fic stream. References [19,89,24,37] discuss the probabilistic aspects 

of traffic behavior.



CHAPTER III

EXISTING FORECASTING TECHNIQUES 

APPLIED TO TRAFFIC SYSTEMS

3.1 Introduction

The design and operation of real-time traffic control and sur­

veillance systems depends heavily on developing efficient and accurate 

methods for making short-term forecasts of traffic demand. Whereas 

ad hoc forecasting models have been used in the past without solid 

theoretical justification, the growing concern about control and sur­

veillance reliability demands more strenuous attempts to find a com­

plete and general approach for forecasting the dynamic aspects of 

traffic systems.

This chapter begins with some basic definitions and concepts 

in time series, followed by a typological breakdown of forecasting 

techniques into four fairly distinct categories. There is then a 

review of three widely used ad hoc forecasting models; the moving 

average model, the exponential smoothing model, and the Trigg and 

Leach adaptive exponential model. Particular emphasis is given to the 

contribution that time series analysis can make to operational fore­

casting, specifically the autoregressive integrated moving average 

models developed by Box and Jenkins.

40
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3.2 Basic Definitions and Concepts

A discrete time series is a sequence of observations on a vari­

able process taken at equally spaced points in time. For illustration, 

Figure 3.1 shows representative plots of traffic volume and occupancy 

series observed at detector station 1 of the 1-35 Freeway in Minneapolis. 

It is common to represent a time series by mathematical model expressing 

the process values as function of time, that is,

= Ft + t̂ (3.1)

where F^ is the value of a deterministic component at time t, and ê  is 

a stochastic noise component. In general, the noise components are 

serially correlated, and therefore induce correlation in the series. 

It is sufficient in many processes to assume that the series fluctuates 

about some fixed level u, that is, F̂  equals p. However, trends over 

time can be represented by polynomial and/or cyclical terms.

An important concept in the analysis of time series is that 

of stationarity. Mathematically, a stationary time series is one for 

which the probability distribution of any (K -f 1) observations (x̂ ,..., 

x^_^) is invariant with respect to time t. Consequently, any set of 

observations from a stationary time series will have the same mean 

value p. Traffic time series as well as many other series encountered 

in practice are of the nonstationary type. In Figure 3.1 it is hard 

without additional prior information to confirm that any of the two series 

is stationary. Also, it is interesting to notice that the kind of non- 

stationarity displayed is homogeneous, in a sense that the behavior of 

each series at different periods in time is essentially the same. A 

homogeneous nonstationary time series can be reduced to a stationary
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form by means of differencing some finite number of times d. To help 

clarify the concept of differencing, it is useful to introduce the back­

ward shift operator B which is explicitly defined by the relationship

=t = =t-d

Another important operator is the backward difference operator (1-B) 

defined by

(3.3)

Figure 3.2 shows plots of the first differences (d equals one) of the 

volume and occupancy series presented in Figure 3.1. As one may readily 

notice, the temporal changes in the local level have been eliminated.

In most real processes, stationarity can be achieved by one of the first 

three consecutive differences.

3.3 A Typology of Forecasting Techniques

The alternative approaches to constructing models for fore­

casting traffic systems can be categorized into four reasonably dis­

tinct categories. These are deterministic models, functional and 

structural models, ad hoc models, and time series analysis models. The 

following paragraphs briefly describe the characteristics of each of 

these categories.

3.3.1. Deterministic Models

In this class of models, the variable of interest is treated 

as a deterministic function of time so that there is only one possible 

outcome at each point in time. The forecasts are based on extrapolation, 

assuming that whatever factors produced the trend in the past will
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continue to produce the same trend in the future. The general form of 

a deterministic model is

= f(t) (3.4)

where f(t) is some function of time. The major limitation of any 

deterministic model is the implication that the structure of the time 

series is perfectly systematic, and therefore completely predictable. 

Given the variety of factors which contribute to the behavior of any 

traffic system, it is almost impossible to postulate a sound determin­

istic model.

3.3.2 Functional and Structural Models

These models can be constructed by applying mathematical and 

statistical methods to a set of historical observations. The first 

stage in building such models is the specification of the model, that 

is, deciding upon the endogenous and exogenous variables describing 

the subject of the forecast. If is the value of the endogenous 

variable at time t, and y^, x^ and wt, are the exogenous variables, 

then the specified model has the general form

Xj. = f(y^, x^_^, cos wt) (3.5)

The choice of the specific form of the function f is also part of the 

model specification. The next stage is the parameter inference or 

estimating the unknown coefficients from historical observations.

The theory of econometrics provides different estimation 

techniques when the classical assumptions of the linear regression 

model are violated. Consistent estimators can usually be found, but 

they are likely to have large variances, and consequently the precision
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of the forecasts falls. In addition, the model itself may be subject 

to specification error, that is, the structure of the model is 

deficient in some respect. For example, the form of the model might 

not be linear as it is assumed.

3.3.3 Ad hoc Models

This class of models utilizes the past history of the variable 

of interest to provide forecasts of its future values. The general 

form of any ad hoc model is

(3-6)

•where:

x̂ _̂  ̂= forecast made at time t for i points ahead in time,

f̂  = function of the past observations on x, and depends 
only on the lead time I.

There exist many forecasting models which can be characterized as ad 

hoc. The basic difference between these models is the weighting 

pattern assigned to current and past observations. Three major weight­

ing schemes have been proposed in the literature: uniform, exponential,

and adaptive exponential. The primary virtue of all ad hoc models is 

their ease of implementation and computational convenience. However, 

their major weakness stems from the inherent lack of a general approach 

for choosing among alternative schemes, and therefore they are charac­

terized as ad hoc.

3.3.4 Time Series Analysis Models

The distinguishing feature of this final class of models is that 

the past history of a given process is viewed as a realization of jointly



47

distributed random variables, that is, any sequence of observations 

x^,..., x̂  is thought of as being drawn from a particular probability 

density function p(xj_,..., x̂ ). The form of such probability function 

is determined by studying the structure of correlation among x's dis­

played over time. As an example, if it is postulated that successive 

changes in a process value are generated independently from some proba­

bility distribution with mean zero, hence the process evolves according 

to the relationship

""t = V l  ^ ^  (3-7)

where a^ is a random variable with mean zero and constant variance. If 

Xq is the starting value of the process, then the succeeding values are 

given by

= %o + & 1

X2 = Xq + aj_ + 32
(3.8)

Xj. = Xq + 3]_ + ... + â.

The process described by equation 3.7 is known as the random-walk process.

Information about future values of a process can be obtained 

from the probability distribution which describes the process evolu­

tion. In particular, the first and second moments of the distribution of 

t̂+Jl Siven its history up to time t yield the mean and variance of the 

forecast made at time t for i points ahead in time.

3.4 Ad hoc Forecasting Models

This section presents a discussion of three ad hoc forecasting 

techniques: the moving average, the exponential smoothing, and the



48

Trigg and Leach models. These models will be used in the next chapter 

as a conjparative basis for assessing the forecasting performance of 

time series analysis models,

3.4.1 Moving Average Model

The moving average at time t defined over the N previous obser­

vations is given by

N
m(t,N) = (1/N) £ X. „ (3.9)

K=1

This model weighs each of the previous N observations by 1/N, while the 

earlier observations have zero weight. The forecast of x^ is

x^ = m(t,N) (3.10)

Whitson, et al. [8 6 ], proposed the use of five-minute moving average of 

traffic volume data, (N equals five), with upper and lower threshold 

limits (twice the standard deviation of the five-minute observations) 

in incident detection on freeways, in a similar approach, Dudek, et al. 

[23] incorporated the moving average concept in their standard normal 

deviate model (SND) for incident detection. The SND is defined as

x^ - m(t,N)
SND(t,N) =--------- -- (3.11)

where S(t,N) is the moving standard deviation at time t, and is given by

S(t,N) = xf - [m(t,N)]^ (3.12)
K= 1

The value of SND measures the relative change in a traffic variable 

compared to the average trends which existed during previous time 

intervals.
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3.4.2 Exponential Smoothing Models

The two basic exponential smoothing versions are the work of

Winters [87] and Brown [9]. Single exponential smoothing as proposed

by Brown assumes that in equation 3.1 represents some equilibrium 

level, and the corresponding smoothing function is given by

Si(t) = 0 ‘Xj. + (l-a)*S]_(t-l) (3.13)

where :

S^(t) = smoothed value of x at time t,

a = smoothing constant, 0 < a < 1

The function S^(t) is a linear combination of all previous observations 

weighed by damped exponential weights. The forecast of x^ is

\  = Sj_(t) (3.14)

As an extension, the double exponential smoothing which is simply an 

exponential smoothing of assumes that F^ in equation 3.1 can be des­

cribed by a linear trend, and the corresponding smoothing function is

SgXt) = a-S^(t) + (l-a)*S2 (t-l) (3.15)

Brown [9] demonstrated that the steady-state response of exponential 

smoothing to a linear trend has a constant lag of (l-a)/a. Hence, the 

lag between the line through the observations and the line through 

is equal to the lag between the lines through and S2 , and is equal 

to b(l-a)/a, as depicted in Figure 3.3. A forecast of the future 

observation at time (t+£.) would therefore be

V i  " [2Sl(t) - 52(C)] + [a/(l-*)][Si(t) - S2 (t)]-i (3.16)

In operational forecasting it is evident from equation 3.16 that the 

only two pieces of information required to be stored are the values of 

and $2 .
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To detect the presence of large forecast errors Brown

introduced a "tracking signal" which reflects the magnitude of past 

cumulative errors. The conceptual idea is that if the sum of forecast 

errors departs significantly from what would be expected to occur at 

random, the tracking signal should indicate a change in the input 

observations not properly represented by the forecasting model. The 

tracking signal is defined by the relationship

where :

TS(t) = tracking signal at time t,

Y(t) = cumulative sum of errors at time t,

MAD(t) = mean absolute deviation of forecast errors at time t 

An important property of the mean absolute deviation is that it is 

proportional to the standard deviation of the forecast errors. If 

these errors are normally distributed, and the noise components of 

equation 3.1 are serially independent, then the constant of proportion­

ality is approximately 0 .8 .

Many applications of exponential smoothing have been proposed 

in the field of real-time traffic surveillance and control. Gazis and 

Knapp [31] applied the single exponential smoothing, with a equals 0.7 

to speed measurements from three half-mile sections in the Lincoln 

Tunnel. Smoothed speeds were then used to predict travel time and 

traffic density. Most extensively tested are the predictor algorithms 

used in the first, second, and third generations of the Urban Traffic 

Control System programs (UTCS). Single exponential smoothing has been 

incorporated into these predictor algorithms to account for temporal
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and spatial trends in traffic volume and occupancy in an urban street 

network [46,47,75]. Values of the smoothing constant a equal 0.5, 0.1, 

and 0.05 are used in the first-, second-, and third-generation UTCS 

predictors respectively. Tamoff [75] discussed the inherent limita­

tions in these predictor models and showed that the magnitude of the 

resulting errors had the potential for degrading the control system 

operations.

Cook and Cleveland [13] applied the double exponential smooth­

ing with a equals 0.3 to thirteen traffic variables as a means of 

incident detection on freeways. They used the tracking signal of 

equation 3.17 to detect sudden changes in behavior of traffic time 

series data caused by incidents. Tignor [79] recommended a single 

exponential smoothing for incident detection under low volume condi­

tions.

3.4.3 Exponential Smoothing with Adaptive Response

One major problem with exponential smoothing models is that of 

choosing a proper value of the smoothing constant a which remains 

unchanged over time. The role of the smootthing constant can be under­

stood by studying how it affects the resulting forecasts. In the 

limiting case with a equals one, all the weight is given to current 

observation and the forecast would vary as widely as the input data.

At the other extreme with o near zero, this will produce very stable 

forecasts regardless of any recent change in input data. Some studies 

have attempted to determine optimal smoothing constants based on mini­

mizing the mean square error of the forecasts [9,58]. These studies.

I
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however, assumed certain properties for the time series like station- 

arity or constant level which are unrealistic in practice.

Adaptive approaches have been suggested by many authors 

including Chow [11], Roberts and Reed [6 8 ], and Trigg and Leach [81]. 

The following is the adaptive approach proposed by Trigg and Leach:

(3.18)
SE(t) = + (l-T)-SE(t-l)

SAE(t) =Y*|ej.[ + (l-Y)'SAE(t-l)

=t = = t -  2 c

where :

TS(t) = tracking signal at time t,

SE(t) = smoothed error at time t,

SAE(t) = smoothed absolute error at time t,

e^ = forecast error at time t, and

Y = smoothing constant, 0<y<1

Adaptive response is achieved by setting a equal to the absolute value 

of the tracking signal.

3.4.4 Summary of Ad hoc Models

Many models have been proposed for making short-term forecasts 

of traffic variables, however, a concensus as to which model is most 

appropriate has not emerged yet. Most of these models have been success­

fully applied to certain situations, but the results from one study are 

frequently contradicted by another. To make matters worse, the theo­

retical developments of these models have no real means of determining
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which is best. The previous sections have attempted to summarize the 

types of ad hoc models which are commonly used, and to discuss their 

general properties. In using these models to forecast the performance 

of a traffic system, much is left to the personal judgement of the 

investigator or engineer, who must assume any special knowledge of 

such system.

3.5 Box and Jenkins ARIHA Models for Time Series Analysis

The use of stochastic linear models to describe the dynamic 

behavior of discrete time series dates back to the early twentieth 

century [91,92,72]. Yule [92] in his analysis of sunspot series intro­

duced the idea of random shocks which is basic to the theory of sto­

chastic processes. A rigorous probabilistic foundation for stochastic 

time series properties was provided by Kolmogorov [45], while a common 

terminology is due to Wold [8 8 ].

In the late 1950's, Box and Jenkins [6,7] formulated a general 

approach for time series analysis, forecasting, and control. The 

approach proposes a class of autoregressive integrated moving average, 

ARIHA, models. It also suggests a strategy for identification and 

estimation of an appropriate model for a particular series. In the 

following sections, the ARIHA models are discussed with their identi­

fication and estimation techniques. The utility of the fitted models 

in forecasting, control, and simulation is also described.

3.5.1 Models for Stationary Time Series

The basic premise in building a model for the stochastic 

behavior of a time series is that of equation 3. 1 can be represented



55

by a linear combination of a white noise sequence â , a^  ̂ \  2...

where the a's are independent variables with mean zero and variance 
2 As illustrated in Figure 3.4 the white noise can be thought of as 

an input to a linear filtering operation which transforms the a's to 

an output series whose successive values are correlated. The obser­

vation in equation 3.1 can therefore be written as

Xt = y +
(3.19)

= y +  ^(B)a^

where is replaced by y since the series x^ is stationary, and \p(B) 

is the transfer function of the filter relating a's to s's. It turns 

out that the major task in modeling a given time series is to choose 

an appropriate linear filter which generates a correlation sequence 

similar to that observed in the series. In particular, the class of 

ARIMA models utilizes three linear filtering operations as depicted in 

Figure 3.5. The transfer functions of these filters can be expressed 

as the ratio of finite polynomials in B of the general form

*(B) = 8q(B)/*p(B) (3.20)

where 6^(6 ) is the transfer function of the moving average component of 

the model and îp(B) is the transfer function of the autoregressive com­

ponent .

Moving Average Processes. A finite moving average process of 

order q or just MA(q) expresses of equation 3.1 as a linear combina­

tion of â , a^_^,..., a^_q, that is,

•i)(B) = 6 (3) = l-8^B-8^B^-...-9qB^ (3.21)

Hence, the process value at time t can be written as
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= y + a^-9^a^_^-62a^_2-.. (3.22)

The name "moving average" is somewhat misleading, because the weights 1, 

-6 ,̂ -6 ,,..., -6q need not sum to unity nor need they be positive. 

However, this nomenclature is of common use, and therefore it is pur­

sued in the rest of this dissertation.
2An MA(q) process is fully described by (q+2) parameters; 

y, 9^,..., 9q, which in practice need to be estimated from the observed 

series. The mean and variance of MA(q) process are given by 

E(x̂ ) = y

' 'a L'l
Also, by multiplying equation 3.22 by x^_^ and taking expected value, 

the autocovariance function is

GlGl&H 8q-K*q) 
for K = l,2,...,q and zero for K>q.

The autocorrelation function is obtained by dividing y by that is,

r (-^K + . K . 1 ,2 ,...,,

. L 0 , K > q

It follows that the autocorrelation function of an MA(q) process con­

sists of q spikes at lags l,...,q, and zero thereafter.

Autoregressive Processes. A finite autoregressive process of 

order p or just AR(p) expresses of equation 3.1 as a linear combi­

nation of a , e £ . The inverted transfer functiont t— 1 t“Z t—p
has the form
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= 4 (B) = (3.23)

Hence, the process value at time t can be written as

X j .  = y + + 92(=t-2"*) *p(=c-p"*)

or

%c ° ° + *1 \-l + h  \-2 *■ ■ -+ *pV p  (3.24)

where 5 is a constant whose value is a function of y and the 4  ̂weights. 

The name "autoregressive" comes from the fact that the model of 

equation 3.24 is essentially a regression model in which is regressed 

on its own past values as independent variables.
2

An AR(p) process contains (p+2) parameters; a^, y, 4p

which in practice need to be estimated from the observed series. The 

autocorrelation function of an AR(p) process is given by the difference 

equation

" "̂ l̂ K- 1 *2 (̂K- 2 ‘ ‘̂p°K-p , K > 0

which has a general solution of the form

■•••+ S f

where the C^'s are constants, and Ĝ , Gg,..., G^ are the p roots of the 

characteristic equation 6^(3) = 0. For real values of 4^ each root G^ 

\d-ll be either real or one of a complex conjugate pair. Real roots 

contribute a damped exponential or geometrical decay to the auto­

correlation function as the lag K increases, whereas a complex pair of 

roots contribute a damped sine wave. It follows that the autocorrela­

tion function of an AR(p) process consists of a mixture of damped expo­

nentials and/or damped sine waves. Unlike the moving average process.
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there is no cut-off at a certain lag, a fact which is important in 

identifying an unknown process.

Mixed Autoregressive-Moving Average Processes. In some cases, 

a process is neither strictly of the moving average or autoregressive 

type, and the model must include both AR and MA terms. A mixed auto- 

regressive-moving average model of order (p,q) or just AHMA(p,q) expresses 

of equation 3.1 as a linear combination of â , a^_^,..., a^_g, ...,

, and the transfer function is a ratio of two polynomials of the form

'r'(B) - (1-8^B-.. / (1-Oĵ B-.. .-OpB^) (3.25)

Hence, the process value at time t can be written as

+ ’lVr-"%WV®lVr---^Vq (3-2G)
9

An ARMA(p,q) process has (p+q+2) parameters, a“, p,

0 ,̂..., 9^ which in practice need to be estimated from the observed series. 

The autocorrelation function of an ASMA(p,q) process satisfies the dif­

férence equation

°K " ®1°K-1 2̂*̂ K-2 %°K-p

except for the first q lags which depend directly on the moving average 

parameters and provide the necessary starting values. It follows that 

if p is greater than q, then the autocorrelation function of an ABMA(p,q) 

will consist of a mixture of damped exponentials and/or damped sine waves 

.whose nature is dictated by the polynomial $(B) and the starting values. 

Whereas, if q is greater than p, then there will be (q-p-1) initial 

autocorrelations which do not follow this pattern.
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3.5.2 Stationarity and Invertibility Requirements

A finite moving average process of order q can be expressed 

as an infinite autoregressive process. Also, a finite autoregressive 

process of order p can be expressed as an infinite moving average pro­

cess. In general, this duality can be represented as

*p(B) = (3.27)

which implies that the two transfer functions of AR(p) and MA(q) pro­

cesses should be invertible. Box and Jenkins [7] discussed the station­

arity and invertibility requirements of linear stochastic processes in 

relation to the convergence of the two polynomials in B

4 (B) = 0 ,

8 (B) = 0

which is satisfied if B lies on or within the unit circle, that is,

|B| ^ 1.

3.5.3 Models for Nonstationary Time Series

The application of a finite difference filter to homogeneous 

nonstationary processes reduces them to a stationary form. The transfer

function of a difference filter of order d is

D(B) = (l-B)'̂

It follows that the class of models discussed for stationary processes 

can be utilized to represent differenced nonstationary processes.

A general model for expressing stationary and nonstationary 

time series is called an autoregressive integrated moving average process
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of order (p,d,q) or just ARIMA(p,d,q). The difference form of this 

model is

p̂(B)(l-B)'̂ (x̂ -ji) = 8 (B)a^ (3.29)

which expresses the process value at time t in terms of previous process 

values and current and past white noise variables. Equation 3.29 is 

known as the basic Box-Jenkins model for non-seasonal time series.

Box and Jenkins demonstrated that the ad hoc forecasting models 

are derivatives of the general ARIMA model, and that they are appropriate 

for particular types of nonstationary processes. For example, the single 

exponential smoothing model of equation 3.13 is equivalent to an ARIMA 

(0 ,1 ,1 ) process with the smoothing constant a set equal to 9̂ .

3.5.4 Model Fitting Procedure

ARIMA models are fitted to a particular time series data by a 

three-stage iterative procedure, preliminary identification, estimation, 

and diagnostic checking. The various steps of the procedure are out­

lined below.

Model Identification. The values of p,d, and q of equation 3.29 

are determined by inspecting the autocorrelation and partial autocorrela­

tion functions of the observed series and/or its differences, and com­

paring them with those of some basic stochastic processes. The estimated 

autocorrelation function of a sample x̂ , x,,..., x^ is given by

n-K n 2
r = 2 (x -x)(x -x)/2 (x -x) , z = 1,2,... (3.30)
K t=l  ̂ t=l
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where:

X = sample mean, 

n = number of observations 

The autocorrelation function provides a measure of how long a disturbance 

to a process at some point in time affects the state of this process in 

the future. The variance of the sample autocorrelation estimates is 

approximately

Var(r ) - (l/n)[l + 2Z r̂ j ^.31)
^ i=l ^

Figure 3.6 illustrates the theoretical autocorrelation functions of typical 

first and second order MA, and AR processes. In general, the autocorrela­

tion function of an MA(q) process has significant spikes only at the 

first q lags (memory of lag q). Conversely, if the true process is AR(p), 

the autocorrelation function tails off in the form of damped exponentials 

and/or damped sine waves. Failure of the autocorrelation function to die 

out rapidly suggests that differencing is needed (d>o).

The sample partial autocorrelation function provides another identi­

fication tool, particularly for the order of an AR process. The value

of this function at lag K, <p._, measures the dependence of x on xt
given x.̂ _̂ , x.̂ _,,..., can be thought of as the last coeffi­

cient in an autoregressive model of order K fitted to the time series.

In practice, the partial autocorrelation function is estimated by fitting 

successively AR processes of order 1,2,... by least squares and picking 

out the estimates of the last coefficient at each stage. If the true 

process is AR(p), then estimated partial autocorrelations beyond lag p 

are approximately independent with mean zero and variance 1 /n, an
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important clue for identifying p. For moving average processes, çKK
decays as a mixture of damped exponentials and damped sine waves.

Parameter Estimation. Box and Jenkins [7] demonstrated that a 

close approximation to the maximum likelihood estimates of the parameters 

(j)̂, (j)p and 6 ,̂ 6^,..., 0 ,̂ assuming that a's are normally dis­

tributed can be obtained by minimizing the sum of squared residuals

SS(*,§) = Za2($,@) (3.32)

In practice, iterative non-linear least squares subroutines are used to

obtain estimates of the parameters, their approximate standard errors,
2and an estimate of â . These subroutines require only the provision of 

initial guess of the parameter values.

Diagnostic Checking. Several tests of model adequacy have been 

proposed [7], and they are based upon detecting departures from 

randomness among residuals. If the form of the fitted model is correct, 

and if the parameter estimates are close to their true values, then the 

estimated residuals a^ should be uncorrelated random deviates. A simple 

test of model adequacy is to examine the autocorrelation function of the 

residual series which should not display any noticeable structure.

Rather than considering the individual autocorrelations of 

residuals. Box and Pierce [8 ] developed an overall test for a whole set 

of residual autocorrelations for lags one through K. They showed that 

the variable

0 = n Z r:(a) (3.33)
i=l
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where:

n = number of observations minus the order of differencing 
in the postulated model,

f^(a) = residual autocorrelation for lag i
2is approximately distributed as X (K-p-q).

Other tests to determine the normality of residuals must also 

be carried out. Non-normality of residuals may require transformation 

of the original series to natural logs or the like. If the postulated 

model proves inadequate, then a new model is proposed and fitted. A 

model cannot be useful for forecasting or simulation before diagnostic 

checks are satisfied.

3.5.5 Forecasting and Simulation

If an ARIMA model passes the diagnostic checks, then it can be 

used to forecast future values of the fitted time series. Box and Jenkins 

[7] demonstrated that the minimum mean square error forecast of x̂ _̂  ̂

made at time t for Z points ahead in time (written as x̂  (2)) is given by

(3.34)

where E(x̂ _̂ /̂Ĥ ) is the expected value of given the past history

of the series up to time t. Conditional expected values are calculated 

from the fitted model by replacing unknown a's by their expected value 

which is zero. For demonstration, consider the general linear process 

of equation 3.19. The one-step ahead forecast made at time (t-1) can be 

written as

- E(Sc/ac_i)

= 11 + +••• (3.35)
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Hence, the one-step ahead forecast error at tine (t-1) is

Gc-id) = - \-id) = (3.36)

which means that the white noise variables generating the process turn 

out to be the one-step ahead forecast errors.

Ihe extension to forecasting £ units ahead in time can be defined 

in terms of the transfer function iJj(B) as

" V t  W t - 1 ■"• • •

The forecast error for £ units ahead in time is

= V î  + W.38)

which has expected value zero and variance

Var[e^(£)] = (1 + +*% +... + (3.39)

Confidence intervals for the forecasts can be constructed assuming that 

the forecast errors are normally distributed. For a specified probability 

level a, the confidence limits are given by

2 1/2
&t(2) ± + : jj;!) ' d.40)

where S is an estimate of the standard deviation of the white noise a
variables, and is the deviate exceeded by a proportion a/2 of the 

area under the standardized normal distribution.
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Forecasts of any ARIMA process can be simply and efficiently 

updated over time. Box and Jenkins [7] showed that the eventual shape 

of the forecasting function of equation 3.37 can be written in the form

= bQ • fpd) + b̂  • f̂ (i) +... +

P+d-1
= Z b - f U) , £ > (q-p-d) (3.41)

i= 0

where the terms f^(2 ) are functions of the lead time £ , and bĵ  ̂are 

updating coefficients whose values change from point in time to the next. 

For values of 2 less than or equal to (q-p-d), and q greater than (p+d), 

the forecasting function will have additional terms containing a's, so 

that

P+d- 1 /p) j
1(£) = Z b) f (£) + Z c • a , £ < (q-p-d) (3.42)

i= 0 1 i= 0

where j equals (q-p-d-£), and the c's are coefficients obtained by sub­

stituting equation 3.42 in the difference equation 3.29.

A fitted ARIMA model can also be utilized to generate a simulated 

time series with the same stochastic properties as the observed series.

The only requirement is to generate a stream of random normal deviates 

with zero mean and appropriate variance and passing it through the 

estimated linear filter. Simulated time series of traffic variables 

have many potential applications in evaluating the performance of complex 

traffic systems mthout the need to observe these systems for long periods 

of time. This reduces the cost and manpower required to conduct traffic
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studies and enables running through a variety of operational designs in 

a very small fraction of the time required to try each on the physical 

system.



CHAPTER IV

MODELING FREEWAY TRAFFIC TIME SERIES DATA

4.1 Introduction

The analysis and modeling of time series of traffic variables 

has been the subject of much conjectural and experimental research work 

in recent years. This has been motivated by the need for better under­

standing of the dynamic behavior of traffic systems, and by practical 

problems of prediction and control. However, the literature which have 

come forth on this topic indicates that many theoretical developments 

are yet to be accomplished.

In this chapter, the Box and Jenkins approach is applied to 

■traffic time series data obtained from freeway surveillance systems in 

Los Angeles, Minneapolis, and Detroit. Basically, a forecasting model 

is developed for traffic volumes and occupancies. The chapter begins 

with a brief summary of previous work on modeling freeway traffic time 

series data. There is then a description of the data base used in model 

development, followed by a detailed discussion of the modeling procedure. 

In addition, the model utility in operational forecasting and simulation 

is discussed. Finally, the developed model is evaluated on a comparative 

basis with the ad hoc forecasting models presented in chapter three.

69
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4.2 Siinwtiary of Previous Work on Traffic Time Series Analysis

In transportation literature, two analysis techniques have been 

commonly applied to modeling time series of traffic variables. These 

are spectral analysis and discrete time series analysis. Spectral 

analysis as discussed by Jenkins and Watts [43] is a descriptive tool 

which examines the data stream in the frequency domain, whereas discrete 

time series analysis examines the data stream in the time domain. Math­

ematically, the two techniques are equivalent since the spectral density 

function and the autocorrelation function are the Fourier transforms of 

each ocher. However, spectral analysis is particularly relevant to modeling 

time series which exhibit periodic behavior and relatively long-term 

trends.

One of the earliest works on spectral analysis of traffic time 

series is that done by Bartlett [4] who analyzed time-headway observa­

tions from a rural two-lane road in Sweden. He recognized the tendency 

of vehicles to form platoons when traveling at constrained speeds. Cox 

and Lewis [16] used the same data set to fit branching renewal models to 

time-headway series. A renewal process is a series of events in which the 

times between events are independently and identically distributed. In 

a more recent paper, Bartlett [5] continued his line of thought discussing 

the cross-spectral analysis of volume and speed series on a three-lane 

roadway.

Probably, most of the research work on traffic time series analysis 

was conducted at the National Proving Ground for Freeway Surveillance, 

Control, and Electronic Traffic Aids in the John C. Lodge Freeway Corridor 

in Detroit. Mika et al. [54], analyzed one-minute average speed observa-
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tions from four locations at the center lane of this facility. They 

distinguished between two modes of traffic flow, an oscillation-free 

mode and an oscillatory mode with the transition between these two modes 

near the maximum flow value. By means of spectral analysis technique 

they calculated the frequency of oscillation which was found to be 1/4 

cycle per minute. Furthermore, they estimated the propagation velocity 

of speed shock waves using cross-autocorrelation between pairs of time 

series, and found it to be approximately 16 mph. They concluded that 

this is the same velocity that could be obtained using Lighthill and 

Whitham's kinematic wave theory [50]. Herman and Rothery [38] investi­

gated speed records of two instrumented vehicles moving with traffic in 

the center lane of the same corridor. They found that high-frequency 

speed oscillations were more readily absorbed in the platoons of vehicles 

than low-frequency oscillations. More recently, Lam and Rothery [48] 

performed an analysis of average speed time series from four adjacent 

locations in the center lane of the same freeway. Their results revealed 

periodic flow patterns with dominant frequencies of 1/6 to 1/3 cycles 

per minute. They also estimated the propagation velocity of speed shock 

waves and found it to be 12 mph.

In addition, Darroch and Rothery [17] applied the cross-spectral 

analysis to car-following data in order to explain the dynamic behavior 

of a freeway traffic stream. Also, Nicholson and Swann [59] employed 

the same technique to make short-term forecasts of traffic volumes in 

tunnels. Their analysis was based on traffic volume observations from 

the Mersey Tunnel in Liverpool, England. This application is particularly 

important to scheduling tunnel ventilation systems and improving traffic 

onerations in tunnels.
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The second analysis technique, that is, discrete time series 

analysis of traffic variables has been conducted on many occasions.

Welding [84],in discussing the influence of delays on regularity of bus 

operations in London noted that traffic conditions had little effect on 

bus services because of the degree of autocorrelation in journey times, 

and partly because of the efforts of drivers in correcting irregularities. 

Of particular interest is his model for time series of journey times in 

which measurements are assumed to vary about constant mean levels but 

subject to random shocks with mean zero. Wright [90], postulated a first- 

order autoregressive (Markovian) model for traffic volumes and densities 

in discussing volume-density relationships. He recognized the existence 

of bias in regression coefficients when time-aggregated variables are 

used. Hillegas et al. [42], examined time series of traffic volume and 

occupancy from the John F. Kennedy freeway in Illinois. They distinguished 

between two regimes of traffic stream behavior and proposed a stationary 

first-order autoregressive model. Their results indicated random behavior 

for light traffic (occupancy less than 15 percent), and strong auto­

regressive behavior for heavy traffic. However, they did not estimate 

the parameters of any model or perform statistical tests. Furthermore, 

they concluded that "a higher order autoregressive process or integrated 

autoregressive moving average process may be occurring that cannot be 

analyzed using only autocovariance techniques."

More elaborate models for investigating the dynamic nature of 

traffic time series data have been discussed by Polhemus [64], Der [18], 

and Eldor [27] based on the techniques formulated by Box and Jenkins. 

Polhemus explored the application of discrete finite parameter time
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series models to describe the fluctuations in air traffic flow operations. 

As a case study, he analyzed an eight-hour sample of air traffic in the 

local control sector at the New York's LaGuardia Airport. He found that 

a second-order autoregressive model is adequate in describing the dynamic 

behavior of aircraft loading series after separating the local fluctua­

tions. Der investigated traffic occupancy time series from the Dan Ryan 

Freeway in Chicago, and suggested an ARIMA (1, 0, 1) model. However, 

he reported that a higher order ARIMA process may be a better candidate 

model. The problem with an ARIMA (1, 0, 1) model is that it assumes 

stationarity of traffic time series which is not always true. Finally, 

Eldor analyzed 5-minute aggregations of volume time series data which were 

collected during the morning peak-period at the Santa Monica Freeway in 

Los Angeles. He proposed an ARIMA (0, 1, 1) model as a predictor for 

traffic volumes and suggested its application in determining traffic 

responsive control strategies for freeway entrance ramps. Importantly, 

the ARIMA (0, 1, 1) model is equivalent to Brown's single exponential 

smoothing model [7]. He also evaluated the ARIMA (0, 1, 1) model on a 

comparative basis with the predictor models used with the second and 

third generations of the Urban Traffic Control System programs. It 

should be pointed out, however, that the data used by Eldor in identi­

fying the form of his ARIMA (0, 1, 1) model and in estimating the model 

parameters was not the same data which he used in evaluating the fore­

casting performance of the ARIMA (0, 1, 1) model.

^•3 Freeway Traffic Surveillance Data Base

The data used in this research work consist of freeway traffic 

volume and occupancy compilations recorded at electronic surveillance
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systems in Los Angeles, Minneapolis, and Detroit. In these systems, 

point detectors communicate vehicle presence information to a central 

computer facility in the form of electrical signals. These signals are 

electronically processed and aggregated in real-time so as to provide 

averages over a specific time period, for example, twenty-second average 

volume. Table 4.1 summarizes the data sources and types. In all, a 

total of 166 time series data sets representing more than 27,000 minutes 

of observations were used in the analysis.

The Los Angeles and Minneapolis data were collected by the 

California Department of Transporation and the Minnesota Highway Depart­

ment, respectively. In particular, the collection period lasted from 

January 1974 to February 1976. These data are furnished by the National 

Technical Information Service in the form of three magnetic tapes. The 

contents and organization of these tapes are described in [62]. Generally, 

the Los Angeles data are twenty-second averages of volume and occupancy 

per lane updated every twenty seconds, while the Minneapolis data are 

thirty-second averages of volume and occupancy aggregated over lanes 

and updated every thirty seconds.

Figure 4.1 shows the Los Angeles data collection site which 

contains a 42-mile freeway loop of segments of the Santa Monica Freeway, 

the San Diego Freeway and the Harbor Freeway in Metropolitan Los Angeles. 

These three freeways are all heavily traveled and they encounter sub­

stantial variations in traffic volume and occupancy. The detection 

system consists of induction loop detectors instrumented at one-half 

mile intervals in lane one (median lane), and lane three. In addition, 

all lanes are instrumented with detectors at three-mile intervals. For
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TABLE 4.1 

DATA SOURCES AND TYPES

Data Description
Freeway
System

Detection
Hardware Type Aggregation 

Interval 
(Sec.)

Total 
Intervals 
per Set

No. of 
Data 
Sets

Observation
Date

Volume 
(agg. over lanes) 60 175 10 April 23, 74

Volume 
(per lane) 60 175 30 April 23, 74

Los Angeles 
Area Freeway 
Surveillance 
and Control 
Project 
(LAAFSC?)

Induction
Loop

Volume 
(per lane)

Occupancy 
(agg. over lanes)

20

60

525

175

30

10

April 23, 74 

April 23, 74

Occupancy 
(per lane) 60 175 30 April 23, 74

Occupancy 
(per lane) 20 525 30 April 23, 74

Minneapolis 
(Interstace- 
35 S.)

Induction
Loop

Volume 
(agg. over lanes)

Occupancy 
(agg. over lanes)

30

30

150

150

10

10

Oct. 24, 74 

Oct. 24, 74

Detroit 
■ (Lodge 
Freeway)

Ultra­
sonic

Volume 
(agg. over lanes)

Occupancy 
(agg. over lanes)

60

60

260

121
260

2

2
2

Dec. 3, 69

Dec. 23, 68 
Dec. 3, 69
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ramp metering purposes, detectors are also instrumented at exit and 

entrance ramps. The Minneapolis data were collected from a 28-mile 

section of the 1-35 freeway, shown in Figure 4.2, which represents a 

portion of the Minneapolis freeway surveillance system. In this freeway 

section, induction loop detectors are instrumented at one-half mile 

intervals in all lanes, and at entrance and exit ramps.

Other data from Detroit were collected from an eight-mile research 

section of the John C. Lodge Freeway Corridor, shown in Figure 4.3, and 

are described in [13]. The collection period ranged from December 1968 

to December 1969 when this section was under continuous television 

surveillance. In addition to fourteen television cameras, the detection 

system contained a closed network of ultrasonic vehicle presence detectors 

placed at variable spacings on the freeway and at all entrance and exit 

ramps. These detectors represented the source of traffic data which were 

recorded in the form of one-minute averages of volume and occupancy 

aggregated over all lanes and updated every one minute.

In summary, it is believed that the data utilized in this re­

search work represent an extensive source for modeling and analyzing 

time series of traffic variables. However, one point to be made regarding 

the limitations of the data base is that the collection period covered 

only few hours in one single day. Some minor problems were encountered 

with the California and Minneapolis data which were available in binary 

character. This was due to the inadequate preparation of the magnetic 

tapes and the confusing description of the data records. Upon completion 

of the data preparation effort, further aggregation over different time 

intervals and/or over lanes was accomplished.
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4.4 ARIMA Model Development

Three computer programs entitled PDQ, ESTIMATE and FORECAST 

were used in this research to perform the computations required by the 

Box-Jenkins technique. These programs are written in FORTRAN IV for 

the IBM 360 computer and are described in [57]. Program PDQ provides 

estimates of the sample statistics required for identification of a 

tentative model or models, and requires a priori specification of orders 

of consecutive differencing, d. Storage requirement for this program is 

90K for a maximum of 1,000 observations. In program ESTIMATE, values 

of the autoregressive parameters and moving average parameters are 

estimated utilizing nonlinear iterative least squares technique. The 

estimation logic is based on Marquardt's iterative algorithm [51] which 

is a compromise between the Gauss-Newton and Steepest descent methods.

It is necessary to specify the values of p (number of autoregressive 

parameters), d (order of consecutive differencing), and q (number of 

moving average parameters) to be included in the ARIMA model. Output 

from program ESTIMATE includes the variance and autocorrelations of 

residuals, and values of the Q statistic of equation 3.33 for lags K 

equal 8 , 12, 24 and 36. Storage requirement is 130K under the constraint; 

(No. of observations + 104) x (No. of parameters to be estimated) - 9,624. 

Finally, program FORECAST computes point forecasts and their 95 percent 

confidence intervals for the specified lead times. This program requires 

lOOK storage capacity for a maximum series length of 1,500.

Application of the Box-Jenkins techniques to all of the time 

series listed in Table 4.1 resulted the same ARIMA model, albeit with 

different parameter values. To help demonstrate the model fitting
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procedure, the representative volume and occupancy series shown in Figure

3.1 will serve as a case study. Sample autocorrelations and partial 

autocorrelations of the raw series and of their first differences are 

illustrated in Figures 4.4 and 4.5. It appears that sample autocorrela­

tions of the raw series damp off very slowly as lag increases, suggesting 

that differencing is needed. Meanwhile, however, sample autocorrelations 

of first differences indicate that only the spikes at lags one, two, and 

three are large relative to their standard errors. Also, partial auto­

correlations of these first differences gradually tail off. From the 

results of section 3.5.4, it might be reasonably postulated that the 

stochastic process generating the data stream is ARDIA (0, 1, 3), that 

is, the first differences of traffic data can be represented by the third- 

order moving average model

(l-B)(x^-y) = (l-8^B-8 2B^-8 gB^)a^ , |8 1<1 (4.1)

or simply.

^t V ® l V r ® 2 V 2 ~ ® 3 V 3  (4.2)

where Z: = x - x The above model states that the series of differencest t t—i
Ẑ , Zg,..., Z^,... is a series of moving linear combinations of (â , â , 

a.̂, a^), (â , a^, a^, a^),..., (â  ,̂ a^_2 , a^_^, a^),... with weight 

functions (-Ĝ , -8 2 , -8 ,̂ 1). Alternatively, it is perhaps more meaning­

ful to view the model as showing that the shock â , coming into the system 

at time t, will persist over times t, (t+1), (t+2) and (t+3) in propor­

tion to (1, -8 ,̂ -d^, -Gg) before dissipation. The vector (1, -6 ,̂ -8 2 »

-8g) which is the mirror image of the weight function (-8 ,̂ -8 ,̂ -8 ,̂ 1) 

is called the shock effect function.
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The estimated moving average parameters of the volume and occu­

pancy series shown in Figure 3.1 are 

Volume Data

8  ̂= 0.6178 (Standard error = 0.0795)

0, = 0.3730 (Standard error = 0.0906)

8  ̂= -0.0297 (Standard error = 0.0804)

Occupancy Data

8^ = 0.6039 (Standard error = 0.0792)

0 2 = 0.3819 (Standard error = 0.0885)

6 2 = -0.3097 (Standard error = 0.0795)

As it is typical in many time series of physical processes, the para­

meter estimates are highly correlated. The estimated correlation 

matrices are 

Volume Data

-0.5016

-0.1996 -0.5046

Occupancy Data

1
^2

8,

-0.4851 1

-0.2204 -0.4836

This makes marginal inference for individual parameters difficult and 

not particularly informative. In other words, when testing whether any 

of the 8 parameters is different from zero using the t-test, one may 

incorrectly drop this parameter while the truth may be that the parameter 

should be retained.
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Diagnostic checking was carried out by inspecting the resid­

uals, â̂ , from the estimated model. Figures 4.6 and 4.7 show plots of 

the residuals and their autocorrelation functions. The autocorrelations 

exhibit no significant structure remaining in the data, and they are 

all quite small in magnitude. Also, the average of residuals, a, from 

the volume series is -0.038, and the estimated standard error of â is 

0.248, strongly supporting that the a's have zero mean. Similarly, the 

average of residuals from the occupancy series is -0.019, with an esti­

mated standard error of 0.214, supporting the same conclusion. The 

lack-0 f-fit statistic, Q, which is described by equation 3.33 was com­

puted from the first 24 residual autocorrelations. The values of Q(24) 

are 27.4 and 23.5 for the volume and occupancy series, respectively.

IJhen these values of Q are compared with tabulated chi-square values 

with 2 1 degrees of freedom, they indicate that the residuals are white 

noise at the five percent level of significance.

In addition, the normality of residuals was checked using the 

chi-square goodness-of-fit test. Basically, this test makes use of a 

statistic which is approximately distributed as a chi-square variable 

to indicate the degree of discrepancy between an observed probability 

density function, and the hypothesized theoretical density function.

The test statistic

x2 = T ---:---  (4.3)
i=l

where:

K = number of class intervals,

fg = observed frequency in class interval i,

ft = theoretical frequency in class interval i.
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asymptotically has a chi-square distribution with (K-1 ) degrees of freedom. 

This fact holds only when the parameters of the theoretical distribution 

under consideration, (mean and variance of the normal distribution), are 

known. When the parameters are unknown, it turns out that becomes 

asymptotically distributed as a chi-square variable with (K-S-l) degrees 

of freedom, where S is the number of parameters of the theoretical distri­

bution. It is recommended that fg of equation 4.3 should be greater than 

five for acceptable results [60]. The computed x values are 36.03 and 

30.79 with 27 degrees of freedom for the volume and occupancy series 

respectively. This indicates that the hypothesis of normality of residuals 

cannot be rejected at the five percent level of significance.

As noted earlier, freeway surveillance data are generally 

aggregated in two forms, over a specific time interval which is usually 

20, 30, or 60 seconds, and/or over lanes. The transferability of the 

ARIMA (0,1,3) model under these conditions was explored by applying the 

model to different time series from the three freeway systems in Table 4.1. 

The range of values of the moving average parameters for 46 time series 

of traffic volume and occupancy aggregated over lanes is shown in Tables

4.2 and 4.3. It is of crucial importance that although there are some 

differences in the parameter estimates between and/or within the differ­

ent freeway systems, the same form of the ARIMA model was found adequately 

representative. Probably, these differences arise from variations in 

driving situations, geometries and other environmental factors.

In addition, the Los Angeles data which consist of 20-second 

compilations of volume and occupancy per lane, provided an opportunity 

to model traffic time series of individual lanes. The ARIMA (0,1,3)



TABI.E 4.2

MOVING AVERAGE PARAMETERS OF VOLUME SERIES 
AGGREGATED OVER LANES

Freeway
System

Harbor F(vy. 
(Los Angeles)

1-35 Fwy. 
(Minneapolis)

Lodge Fwy. 
(Detroit)

No. of Data 
Sets

1 0

10

Total No. of 
Observations

1750

1500

381

Moving Average Parameters

0.7301 ± 
0.1885

0.7553 1 
0.1375
0.7420 ± 
0.0732

0.1777 ± 
0.5765

0.1519 ± 
0.5249

0.0403 ± 
0.0671

0.0391 ± 
0.1398

-0.1530 ± 
0.1438

0.0012 ± 
0.0143

oooo
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TABLE 4.3

MOVING AVERAGE PARAMETERS OF OCCUPANCY SERIES 
AGGREGATED OVER LANES

Freeway No. of Data Total No. of Moving Average Parameters
System Sets Observations

«1 ®2 ®3

Harbor Fwy. 
(Los Angeles) 10 1750 0.5611 ± 

0.3541
0.1145 ± 
0.2711

0.2596 ± 
0.3507

1-35 Fwy. 
(Minneapolis) 10 1500 0.4710 ± 

0.2160
0.1307 ± 
0.2515

-0.0848 ± 
0.2249

Lodge Fwy. 
(Detroit) 4 762 0.6121 ± 

0.1649
0.0859 ± 
0.1398

0.0704 ± 
0.1678

ooVO
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model was applied to 60 series of 2 0-second lane volumes and occupancies, 

and was found representative in all these cases. Also, the effect of 

sampling interval was investigated by aggregating the 2 0-second obser­

vations to 60-second observations with similar confirmation of the 

model. Tables 4.4 and 4.5 give the range of values of moving average 

parameters for the 2 0 -second and 60-second lane volumes and occupancies.

The sensitivity of the performance of the ARIMA (0,1,3) model 

to variations in thu moving average parameters over time was explored 

to a limited extent using eight volume and occupancy time series, each 

150 time intervals (of 60 seconds) long, from the 1-35 freeway in 

Minneapolis. Each series was broken into three 50-interval segments, 

and the ARIMA. (0,1,3) was applied separately to each segment. The 

variations in the estimated moving average parameters 6 ,̂ and 6  ̂

for both sets of series are depicted in Figure 4.8. The horizontal 

scatter of points indicates that the parameters vary over'time but no 

consistent pattern in this variation was noted. However, due to the 

limited number of observations used in estimating the parameters for 

each 50-interval segment, the conclusion that these parameters vary by 

time cannot be accurately drawn. Importantly, the same form of the 

ARIMA (0,1,3) model which represented the 150-observation series did 

as well representing the 50-observation segments.

4.5 ARIMA Model Utility in Forecasting and Simulation

In forecasting traffic control systems, a crucial requirement 

for the employed forecasting model is that it should be operational, 

that is, the model can be used in real-time to provide forecasts on an 

on-going basis. To appreciate the operational value of the ARIMA (0,1,3)



TABLE 4.4

MOVING AVERAGE PARAMETERS OF 20- AND 60-SECOND 
LANE VOLUME SERIES, HARBOR FREEWAY, LOS ANGELES

Moving Average Parameters

Lane 20-Second Series 60-Second Series
No.* (15, 750 Observations) (5, 250 Observations)

0, 0o 0. 0„1 2 3 1 2 3

1 0.8081 ± 0.0752 ± 0.0426 ± 0.8280 ± 0.0311 ± 0.0085 ±
0.1263 0.1145 0.0742 0.1720 0.1786 0.1129

9 0.8701 ± 0.0404 ± 0.0401 ± 0.7860 ± 0.0056 ± 0.0229 ±
0.1245 0.1133 0.0738 0.1127 0.1788 0.1222

0.8131 ± 0.0296 ± 0.0074 ± 0.8180 ± -0.0389 ± 0.0412 ±
0.1582 0.1253 0.0933 0.1414 0.3364 0.1466

0.8811 ± 0.0569 ± 0.0278 ± 0.4526 ± 0.1250 ± 0.0437 ±
0.1130 0.0573 0.0622 0.3510 0.2358 0.0904

Numbering begins with the lane closest to the median and goes toward the right 
shoulder.



TABLE 4.5

MOVING AVERAGE PARAMETERS OF 20- AND 60-SECOND 
LANE OCCUPANCY SERIES, HARBOR FREEWAY, LOS ANGELES

Moving Average Parameters

Lane 
No. *

20-Second Series 
(15,750 Observations)

60-Sccond Series 
(5,250 Observations)

°2 °3 °1 °2 83

0.6196 ± 0.1971 ± 0.0814 ± 0.7057 ± 0.1666 ± -0.0581 ±1 0.2786 0.1988 0.1261 0.2856 0.2337 0.0565

0.7096 ± 0.1037 ± 0.0674 ± 0.6284 ± 0.1330 ± 0.0134 ±2 0.2353 0.1234 0.0776 0.2547 0.2681 0.1046

0.6672 ± 0.1658 ± 0.0211 ± 0.6888 + -0.0261 + 0.0388 ±3 O . 2 394 O . 1 7 0 0 O . 1 1 1 6 0 . 3 1 1 1 0. 2 9 9 1 0 . 1 4 4 8

0.6539 ± 0 . 0 4 0 0  ± 0.1094 ± 0.5617 ± 0.1855 1 0.0431 ±4 0.1802 0.0857 0.1203 0.3655 0.1277 0.1687

^Numbering begins with the lane closest to the median and goes toward the right 
shoulder.

VOfo
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model, it is instructive to show how the model can be efficiently applied 

in making short-term forecasts. Given that the observations x̂

... on a traffic variable have been made at time t, suppose that it is 

required to forecast x̂ _̂  ̂which when observed will be given by

\  + W  - - ®2^-l - ®3^-2 (4.4)
The above equation can be readily obtained by replacing t by (t+1) in 

equation 4.2. Since at time t, the future random shock a^^^ cannot 

be forecasted, it would be rationale to replace it by its expected value 

which is zero. Also, from the results of section 3.5.5, the disturbances 

â , a^_^, a^ _2 are simply previous one-step-ahead forecast errors.

Hence, the forecast made at time t for x^^^ would be

\(1) = \  - 01 • - 02 • e^_2 (l) - 6 3 • (4.5)

At the first beginning, values of the one-step-ahead forecast errors 

are unknown, and therefore they are replaced with zeros.

The problem of forecasting future traffic observations becomes 

considerably easier if the values of the moving average parameters 

B̂ , and 63 are constant over time. In such case, equation 4.5 

provides an operational expression for forecasting. The computational 

utility of this expression stems from the fact that its application 

requires storage only of the latest three forecast errors, and the 

current observation. Values of the moving average parameters, however, 

may vary by time period as discussed in the previous section. In this 

case, the simplest approach is to use fixed average values of the 

parameters, thus, ignoring any probable variations in the parameter 

estimates over time. This approach was used by Der [18], and Eldor [27].
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The other extreme approach is to update the parameter estimates in 

real-time. It is believed, however, that a rapid adjustment in the 

parameter estimates, each observation interval, for example, may 

degrade the overall forecasting performance of the ARIMA. model. Past 

experience with adaptive exponential smoothing models, particularly 

the Trigg and Leach model, has shown that successively changing the 

smoothing constant values over time yielded potentially larger forecast 

errors than those resulting from Brown's original models [73]. Another 

important factor which should be taken into consideration when thinking 

of real-time updating of the model parameters is that of computational 

requirements. One intermediate approach between these two extremes is 

to update the parameter estimates only occasionally, for example, at 

the beginning of peak and off-peak periods. Parameter updating was 

not explored in this research, in part because the available data sets 

consisted of afternoon peak-period time series for one single day only.

So far, the question of how long a time series should be in 

order to estimate the moving average parameters and forecast future 

values of the series has not been discussed yet. Certainly, the total 

amount of information included in a series affects the accuracy of 

estimation and consequently the computed forecasts. Most of the 

results presented in Chapter III on estimating the autocorrelation 

functions and moving average parameters, and on diagnostic checking of 

the ARIMA model adequacy are based on large sample theory. Nelson [56] 

conducted Monte Carlo simulation studies on the reliability of identi­

fication and estimation procedures of moving average models and related
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test statistics. He found that series of length 100 observations are 

adequate for most practical studies.

Using the above approach, one-step-ahead forecasts for the 

different time series in Table 4.1 were computed from the fitted 

ARIMA (0,1,3) models utilizing program FORECAST. Figure 4.9 shows 

forecasts of the representative volume and occupancy series presented 

in Figure 3.1 superimposed on the observed series. The forecasts seem 

to be fairly close to the actual observations except in some few cases. 

Measurement errors from detectors are probably the reason for these 

exceptions. As a measure of uncertainty of the forecasts, 95-percent 

probability limits were constructed using expression 3.40, and are 

indicated in Figure 4.9 by broken lines.

To illustrate the utility of the ARIMA (0,1,3) model in simu­

lation, a computer program was written in PL/1 to generate compilations 

of traffic volume and occupancy series. The program consists of main 

procedure TRAFIK and subprocedure RNNOEM. Each call to RMORM returns 

a pseudorandom number which is normally distributed with specified mean 

and variance. These pseudorandom numbers are approximately white noise, 

and they are input to procedure TRAFIK. In particular, if the mean 

and variance of residuals from a fitted ARIMA model are set equal to 

the mean and variance in RMORM, and for given values of moving average 

parameters, a time series of traffic volumes or occupancies can be 

generated. The starting value of the series must be specified. To 

serve as an example, results of the fitted ARIMA (0,1,3) models for the 

representative volume and occupancy series of Figure 3.1 were used in 

the simulation program. Figure 4.10 displays profiles of the simulated
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traffic volume and occupancy series. The dynamic behavior of the simu­

lated series and of the actual series looks very similar. This is 

because the simulation logic is not solely based on theoretical con­

siderations about how traffic might behave under idealized conditions, 

but on an observed set of data describing how it did behave during the 

observation period.

The simulation program described above can be of potentially 

broad usage in traffic studies. It can be utilized separately as a 

cheap and convenient source of traffic data which may be stored on a 

magnetic tape or in the form of computer cards for further analysis. 

Alternatively, it can be used with other programs to simulate the 

dynamic behavior of traffic systems presently in existence or antici­

pated for the future.

4.6 Comparative Evaluation of Forecasting Performance

To assess the forecasting performance of the ARIMA (0,1,3) 

model on a comparative basis with the ad hoc models described in Chapter 

III, the moving average model, the double exponential smoothing model, 

and the Trigg and Leach model were applied to the traffic volume and 

occupancy data base of Table 4.1. Computer programs were written in 

PORTSAIS IV to perform the computations required by these models. Two 

performance criteria were used in the evaluation process. These are 

the mean absolute error, MAE, and mean square error, MSE, which are 

defined as

n
MAE = (1/n) Z |x - '1 \ (4.6)

t=l  ̂ ^
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and

2MSE = (1/n) Z (X - X ) (4.7)
t=l ^

where:

x^ = observed value at time t,

x^ = predicted value at time t,

n = number of observations 

The mean absolute error indicates the expected error which may take 

place in each individual forecast, while the mean square error detects 

the presence of frequent large forecast errors. Values of MAE and MSE 

for the ARIMA (0,1,3) models ranged from 1.30 to 6.50 and from 2.80 to 

91.41, respectively. For the purpose of comparison, these values of 

MAE and MSE of the ARIMA (0,1,3) model were chosen as a basis, and 

ratios-to-Box-Jenkins for MAE and MSE were calculated for the other 

models as follows

for MAE =

Ratio-«-Bo.-Jenkins for MSE =

In evaluating the moving average model of equation 3.10, five 

values of N, (N equals 5,10,20,50 and 100), were used in the analysis. 

Results of this model indicated that both MAE and MSE increase with 

increasing N. When N equaled five, the ratio-to-Box-Jenkins varied 

between 1.00 and 1.27 for MAE and between 1.00 and 1.45 for MSE.

Values of the smoothing constant a included in assessing the 

double exponential smoothing model of equation 3.15 were 0.1 through 

0.9 in increments of 0.1. As expected, the best results of this model



101

were associated with small values of a. In particular, smoothing con­

stants between 0.1 and 0.3 resulted values of the ratio-to-Box-Jenkins 

in the range from 1.00 to 1.64 for MAE, and from 1.00 to 1.43 for MSE. 

For larger values of a, (0.4 to 0.9), the ratio-to-Box-Jenkins varied 

between 1.10 and 2.31 for MAE, and between 1.22 and 3.80 for MSE.

The Trigg and Leach model of equation 3.18 was tested using 

nine values of the smoothing constant a between 0.1 and 0.9 in incre­

ments of 0.1, and three values of the smoothing constant y equals 0.1, 

0.2 and 0.3. With large initial values of the smoothing constant a 

between 0.6 and 0.9 and a smoothing constant y of 0.1, (which gave the 

best results of this model), the ratio-to-Box-Jenkins varied between 

1.45 and 8.20 for MAE, and between 2.08 and 44.34 for MSE. The reason 

for the poor performance of this model could be the abrupt successive 

changes in the smoothing constant a [73]. This tends to confirm the 

belief that real-time updating of the moving average parameters in the 

ARIMA (0,1,3) model may not be warranted.

Figures 4.11 and 4.12 display the ranges of the best values 

of the ratio-to-Box-Jenkins for MAE and MSE for the different models. 

It is readily seen that the ARIMA (0,1,3) model is superior to the 

other ad hoc forecasting models. This is due to its more accurate 

representation of the stochastic process generating freeway traffic 

data. Also, the magnitude of reduction in forecast errors has the 

potential for significantly improving the operations of surveillance 

and control systems.
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4.7 Summary

The class of autoregressive integrated moving average models, 

however complex as may seem, is no substitute for thinking about the 

dynamic behavior of many physical systems. These models have been 

successfully applied over the past few years in modeling economical, 

industrial and environmental systems. In this chapter, an attempt has 

been made to demonstrate the application of these models to freeway 

traffic data. An ARIMA (0,1,3) model did adequately represent traffic 

volume and occupancy time series from different freeway systems, thus 

providing evidence for the transferability of the form of the model. 

This model can be of potential utility in forecasting and simulating 

traffic systems. The next chapter investigates the application of this 

ARIMA model to freeway traffic management, particularly incident 

detection.
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CHAPTER V

APPLICATION OF TIME SERIES ANALYSIS TO 

URBAN FREEWAY INCIDENT DETECTION

5.1 Introduction

Freeway capacity-reducing incidents are hazardous events occur­

ring randomly at a rate which could be as high as one incident per direc­

tional mile per hour [70]. Moskowitz [55] reported that the most impor­

tant problem in urban freeway operations is the determination of how to 

detect stopped vehicles and the necessary steps to remove the stoppage. 

The Traffic Control Systems Handbook [82] indicates that nonrecurrent 

freeway congestion caused by traffic incidents in large urban areas is 

responsible for as much motorist delay as the recurrent congestion due 

to geometric bottlenecks. In a metropolitan freeway network, at least 

one lane is expected to be blocked for 7.2 percent of the time because 

of accidents, 6.7 percent of the time as a result of stopped vehicles 

and for 27.8 percent of the time due to maintenance operations [82]. 

Another interesting finding by Goolsby [35] is that the magnitude of 

freeway capacity reduction due to an incident usually exceeds the magni­

tude of reduction in the physical width of the travelled way. For exam­

ple, research on 6.5-mile section of the Gulf freeway in Houston indi­

cated that the blockage of a single lane halved the capacity of the
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three-lane freeway section, while the blockage of two lanes out of the 

three reduced the capacity by approximately 80 percent. In summary, inci­

dent detection is a very important function of any automated freeway sur­

veillance and control system.

This chapter begins with a review of incident detection algo­

rithms which can be used in real-time by the computer to determine the 

location, time of occurrence and magnitude of capacity reduction caused 

by freeway incidents. The review includes a general typology of detection 

algorithms, and the measures of effectiveness of these algorithms. Also, 

it attempts to survey the current structures of detection algorithms.

There is then a description of the incident data base used in the analysis. 

Finally, there is a formulation and discussion of some detection algo­

rithms based on the ARIMA (0,1,3) model, including an evaluation of one 

of these algorithms on a comparative basis with a number of previously 

developed algorithms.

5.2 Computer Incident Detection Algorithms

A computer incident detection algorithm is defined by Tignor [78] as 

"a specific logical and analytical procedure used along with data obtained 

from freeway surveillance traffic detectors to ascertain the presence or 

absence of a capacity reducing incident." As discussed earlier in section 

2.6, when the capacity of a freeway section is reduced to a level below 

that of the prevailing demand as a result of traffic incident, certain 

flow-states will develop both upstream and downstream of the incident site. 

In general, downstream volume will decrease and the blocked lane or lanes 

will not be fully utilized for some distance by downstream traffic unless, 

of course, congestion have existed before the incident. Meanwhile, a
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queue of vehicles will form upstream in the blocked lanes, and stop-and-go 

conditions will probably be generated in all lanes when the queued vehi­

cles attempt to move to the unblocked lanes. Furthermore, occupancy will 

increase upstream and lower downstream relative to the conditions which 

have prevailed before the incident. Figure 5.1 illustrates representative 

volume and occupancy observations during a traffic incident which involved 

a disabled vehicle on the Lodge Freeway and lasted for approximately 14 

minutes. Moreover, as long as the incident remains and the upstream 

demand exceeds the reduced capacity, shock waves of congestion and shock 

waves of expansion will continue to propagate upstream and downstream of 

the incident site, respectively.

In conclusion, incident detection algorithms are basically struc­

tured so as to register sudden changes in flow-states both upstream and 

downstream the incident site, and/or the passage of shock waves, particu­

larly the wave of congestion travelling upstream. However, it is impor­

tant to note that there exist some incident situations where the developed 

traffic patterns can not be exactly or immediately recognized by an inci­

dent detection algorithm. Examples of these situations are the case when 

free flowing traffic conditions prevail and the magnitude of capacity 

reduction is not severe, the case when congestion prevails before the 

incident both upstream and downstream of the incident location, and the case 

when heavy traffic conditions exist but traffic demand is less than the 

reduced capacity. On the other hand, there also exist some incident-free 

situations which tend to generate traffic patterns similar to those 

caused by incidents, and therefore produce false-alarms. Examples of 

these incident-free situations include the case of heavy traffic where the
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vehicles experience significant speed variations causing congestion waves 

to propagate opposite to the direction of flow, thus, creating significant 

spatial variations in traffic occupancy, and the case of abnormal geomet­

ries at interchanges between freeways or at locations with a high volume 

of entrance ramp traffic.

5.2.1 Measures of Effectiveness for Detection Algorithms

To evaluate the performance of an incident detection algorithm, 

certain measures of effectiveness are usually used. These measures are 

highly pertinent to the applicability of an algorithm in automated free­

way surveillance systems. Figure 5.2, adapted from Tignor [78], illus­

trates the outcome possibilities which arise when an incident detection 

algorithm is executed. The first and perhaps most obvious measure of 

effectiveness is the probability of detection, which is the percentage of 

incidents detected by the algorithm out of all incidents which occurred. 

Generally, the probability of detection can be increased, but only at the 

expense of an increase in the probability of false-alarms [65]. Two 

definitions of the probability of false-alarms exist in the literature, 

an on-line definition, and an off-line definition [49]. The on-line 

definition is the percentage of false incident messages out of total 

incident messages generated by the algorithm. Alternatively, the off­

line definition is the percentage of incident messages out of all messages 

generated by the algorithm using representative incident-free data. This 

latter definition is particularly relevant in off-line studies as means of 

comparing different algorithms. Generally, the cost of false-alarms can 

be better understood if one recognizes that detection information is used 

to dispatch highway patrol units to the scene of the incident. On the
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other hand, the benefits derived from prompt detection include the receiv­

ing of the required type of assistance to the motorists in distress, and 

the reduction in delay to the other freeway users.

In addition to the probabilities of detection and false-alarms, 

the third measure of effectiveness is the average time lag to detection, 

which is the expected time between the actual occurrence of an incident 

and its detection for all detected incidents. As mentioned earlier in 

Chapter I, efforts to redistribute traffic demand during a freeway inci­

dent by diverting upstream drivers to other alternate routes become more 

effective in reducing total expected delay if the response starts in the 

early stages of congestion growth. An interesting rule of thumb which 

helps assessing the effect of faster response to incident situations is 

that motorist delay is proportional to the square of the total incident 

duration. Hence, if it is assumed that an incident duration of 25 minutes 

is reduced by 5 minutes, the proportionate reduction in total delay will 

be 36 percent. Also, faster response to incidents has the potential of 

improving safety due to reduction in time of exposure to hazards.

Other measures of effectiveness for detection algorithms include 

the probability of detecting the end of the incident, determining the 

exact incident location, assessing the magnitude of capacity reduction 

and determining the nature of the incident. Usually, however, one can­

not expect that a single detection algorithm would satisfy all the perfor­

mance requirements together. In a practical sense, the operating agency 

of an incident management system decides upon the acceptability of a 

particular algorithm based on its overall detection performance.
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5.2.2 A Typology of Detection Algorithms

Detection algorithms can be categorized in a number of ways 

depending upon their structure and the data input required. Four dimen­

sions can be proposed to describe the types of algorithms which might be 

constructed. These are: (1) station or subsystem algorithms, (2) pattern

recognition or smoothing algorithms, (3) cross-sectional or lane- 

aggregated algorithms, and (4) empirical or simulation-based algorithms.

Station or Subsystem Algorithms. A station algorithm is one that 

identifies changes in macroscopic traffic stream measurements only at a 

detector station upstream of an incident site. Subsystem algorithms, on 

the other hand, attempt to identify discontinuities in traffic flow at 

detector stations on both sides of the incident. The freeway section 

between these stations is called a subsystem.

Pattern Recognition or Smoothing Algorithms. The basic purpose 

of a pattern recognition algorithm is to discriminate between incident and 

non-incident situations by means of one or more traffic features which 

significantly differ under both situations. A traffic feature can be a 

single variable like occupancy or a function of variables which is more 

sensitive to incident patterns. To a large eictent, these algorithms deal 

with existing traffic patterns and pay no attention to past values of the 

features. Alternatively, smoothing algorithms utilize short-term fore­

casting techniques to identify sudden changes in traffic stream behavior 

which occur during incidents. This is similar to the problem of signal 

detection with noise present in communication systems. An important 

advantage of smoothing algorithms is that past trends of traffic features
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may well forecast peak-period congestion, whereas incident congestion 

would be unexpected.

Cross-Sectional or Lane-Aggregated Algorithms. Cross-sectional 

algorithms are usually structured to compare traffic features of individ­

ual lanes at the same detector station. Basically, they attempt to iden­

tify whether the different freeway lanes are equally utilized by traffic 

or there is significant under-utilization of one or more lanes because of 

blockages. On the contrary, lane-aggregated algorithms deal with traffic 

features averaged across all lanes at a particular detector station.

Empirical or Simulation-Based Algorithms. Empirical algorithms 

can be built by utilizing mathematical and statistical techniques as well 

as a set of empirical data to serve as a basis for evaluating the relation­

ships represented by the algorithm. Usually, however, such data is col­

lected during peak-periods where the likelihood of occurrence of traffic 

incidents is relatively high. These situations are generally character­

ized by demand which exceeds the reduced capacity, and by extreme changes 

in traffic stream measurements. On the other hand, when demand is rela­

tively low, as it does during off-peak periods, the sudden changes in 

traffic stream due to an incident become localized and unnoticeable in 

traffic data. Also, the frequency of incidents in light traffic condi­

tions is very small, which makes if difficult to collect a reasonably ade­

quate incident data base. In such cases, Monte Carlo simulation techniques 

can be utilized to generate traffic patterns similar to those occurring 

under incident conditions. Simulated traffic data may then be used in 

constructing and evaluating detection algorithms. The development of a 

simulation model to represent freeway incidents under light traffic
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conditions is therefore an important aspect in building detection algo­

rithms, and it usually involves several trial models before an adequate 

representation is obtained.

5.2.3 Review of the Structures of Current Detection Algorithms

Since 1961, several automated incident detection algorithms have 

been proposed by researchers in the field of traffic surveillance and con­

trol. Table 5.1 presents most of these algorithms classified according to 

the typological dimensions discussed in the previous section. To facili­

tate the discussion the following notation will be used throughout:

Ç(i,t) = occupancy in percent at detector station i and
minute t, averaged across all lanes.

Ç(i,j,t) = occupancy in percent at detector station i, lane j, 
and minute t.

q(i,t) = volume (vehicles per minute) at detector station i
and minute t, averaged across all lanes.

q(i,j,t) = volume (vehicles per minute) at detector station i, 
lane j, and minute t.

u(i,t) = q(i,t)/C(i,t), surrogate for speed at detector sta­
tion i and minute t, averaged across all lanes.

2
S(i,t) = [q(i,t)] /S(i,t), surrogate for kinentic energy at

detector station i and minute t, averaged across all 
lanes.

2
E(i,j,t) = [q(i,j,t)] /Ç(i,j,t), surrogate for kinetic energy 

at detector station i, lane j, and minute t.

i, i+1 = upstream and downstream detector stations, respec­
tively.

Among the earliest detection systems is the one installed by the 

Port of New York Authority in the Lincoln Tunnel [28]. The algorithm 

used was based on the identification and tracking of individual vehicles 

within each of three sections of the tunnel by matching vehicle length
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patterns at each two consecutive sections. At the beginning of time 

period (t+1), the number of vehicles present in a section can be expressed

as

where:

‘5.1)

= number of vehicles in the section at the beginning of time 
period t,

I = traffic volume input to the section during time period t, 
and

0^ = traffic volume output from the section during time period t. 

Traffic density at each section of the tunnel was estimated using equa­

tion 5.1, and incidents were predicted for unusually large values of den­

sity. This method was later improved by application of the Kalman filter­

ing technique so as to account for occasional detector miscounts. The 

utility of this algorithm, however, is limited to tunnel operations where 

few lane changes take place.

In 1968, the Texas Transportation Institute, TTI, conducted inci­

dent detection research on the Lodge Freeway in Detroit as part of their 

study program. During their research. Courage and Levin [15] explored six 

detection algorithms in attempt to characterize traffic operations during 

a capacity-reducing incident. One of these algorithms is based on 

entrance ramp metering rates, while the other five algorithms employ dif­

ferent functions of one-minute volume and occupancy observations as detec­

tion features. These features are: station kinetic energy, station dis­

continuity, subsystem energy, subsystem shock wave, and subsystem discon­

tinuity. A brief description of each of these features is given below:

Station Kinetic Feature, E'(i,t) = E(i,t)/E^^^(i,t) (5.2)
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where E^^^(i,t) is the maximum kinetic energy determined by fitting repre­

sentative peak-period data to a linear speed-occupancy model [15]. Unus­

ually low values of this feature, those below a predetermined threshold 

level may indicate an incident.

(n-l){Min[E’(i,j,t)]°^^}
Station Discontinuity Feature = —  ■  -------------------------(5.3)

Z E(i,j,t) - Min[E'(i,j,t)]^ 
j=l j=l

where n is the number of lanes. Significantly low values of this feature 

actuate an incident signal.

Subsystem Energy Feature = E'(i,t) - E'(i+l,t) (5.4)

Unusually large numerical differences in normalized kinetic energy values 

observed at adjacent detector stations may register an incident presence 

in that subsystem.

Subsystem Shock Wa'̂ e Feature = q(i,t) - q(i+l,t) (5.5)

Significantly large numerical differences in the volume recorded at adja­

cent detector stations may indicate the presence of an incident in that 

subsystem.

Subsystem Discontinuity Feature =

r r u ( i . t )  u(i+l,t) ,2 . ,Ç(i,t) ?(i+l,t) ,2,-2
' u/i+ii'cX ‘rcï7« ■I J J

where u^ is the free speed, and is the jam occupancy. Significantly 

large values of this feature may indicate an incident presence in that 

subsystem.
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For each of the above five features, a threshold of detection 

is determined such that its value would be exceeded only one percent of 

the time during non-incident operations. The process of estimating 

these thresholds is known as "calibration," and as one may readily 

expect the threshold values may vary by location and time of day. Cour­

age and Levin concluded that their algorithms demonstrated some ability 

to detect incidents, and that despite the exhibited high false-alarm 

rates, the algorithms may merit further consideration.

In the late 1960's, the California Department of Transportation 

developed an incident detection algorithm for use on the Los Angeles 

freeway system. The California algorithm consists of three sequential 

tests based on spatial and temporal changes in occupancy features over 

short periods of time at the upstream and downstream detector stations 

of a freeway subsystem. An incident signal is actuated only when the 

threshold values for all three features are exceeded, indicating that 

the scenario of events associated with a typical capacity-reducing inci­

dent has occurred. Like the TTI algorithms, the California algorithm 

requires a calibration process to estimate the threshold values which 

may vary by location and time of day. The following is the structure 

of the California algorithm:

(1) Ç(i,t) - Ç(i+l,t) = \  (5.7)

=='2-^2 (5-8)
‘ ^3 - b  «.9)

where:

B = five minutes in the original structure, and two minutes 
in the modified structure, and
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= threshold levels for detection.

The first test examines the current difference in occupancy between two 

successive detector stations. If this difference is unusually large, it 

is likely that either a bottleneck or a capacity-reducing incident has 

occurred within the freeway subsystem. The second test is a normaliza­

tion of the occupancy difference used in the first test to assure the 

existence of significant difference in the state of traffic operations 

at the two detector stations. Finally, the third test evaluates the 

relative temporal change in downstream occupancy over the past two min­

utes. Since a short-term decrease in occupancy is more characteristic 

of an incident than a bottleneck, the third test serves mainly as a dis­

crimination tool between both situations.

More recently, the Technology Service Corporation in Santa Mon­

ica, California, conducted an empirical study on incident detection 

using data obtained from the Los Angeles and Minneapolis freeway sur­

veillance systems. Payne and Tignor [78,61] defined several detection 

algorithms based upon extensions of the structure of the California algo­

rithm. These algorithms have been referred to as "decision-tree algo­

rithms." In general, the defined algorithms were intended to improve 

the performance of the California algorithm by including a persistence 

check and a compression wave presence check. To lower the false-alarm 

rate, the persistence check attempts tc identify the short-lived distur­

bances in incident-free traffic by requiring discontinuity in traffic 

operations to continue for two or more time intervals. The compression 

wave presence check, on the other hand, utilizes the traffic feature 

used in the third test of the California algorithm, but in a more
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elaborate way, to distinguish between traffic bottlenecks and capacity- 

reducing incidents in heavy traffic conditions.

Levin and Krause [49] proposed the application of the Bayesian 

concepts to the problem of incident detection. They used representa­

tive incident and incident-free data obtained from the Chicago freeway 

system to determine mathematical expressions for the distribution of the 

occupancy feature utilized in the second test of the California algo­

rithm. Also, they estimated the prior probabilities of capacity-reducing 

incidents based on historical information from the highway patrol 

reports. The conditional probabilities of having an incident given that 

a sequence of incident signals has been generated by the computer were 

then calculated and used to calibrate the threshold level T̂  of equation 

5.8. An incident was detected if the occupancy feature X^ exceeded T̂ . 

The effectiveness of the algorithm was evaluated on a comparative basis 

with the California algorithm and one of the decision-tree algorithms 

using a sample of 17 incidents which occurred on the Kennedy Freeway in 

Chicago. Levin and Krause found that the Bayesian algorithm compared 

favorably with the other two algorithms included in their evaluation.

In addition to the pattern recognition algorithms discussed in 

the above sub-sections, detection algorithms based on smoothing techni­

ques have been proposed and tested in some occasions. %itson, et al. 

[86], suggested the use of a moving average of the most recent five min­

utes of volume data as a forecast of the next volume observation. When 

succeeding observations fell below the lower probability limits con­

structed two standard deviations away from the corresponding point
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forecasts, an incident signal was actuated. This algorithm, however, 

was not fully evaluated with actual incident data.

Cook and Cleveland [13] conducted incident detection research 

on the Lodge Freeway in which they evaluated the California algorithm 

and five of the TTI algorithms. They also formulated 13 traffic fea­

tures including the five features used with the TTI algorithms. All the

13 features were investigated with the double exponential smoothing 

model of equation 3.15 as a means for incident detection. A smoothing 

constant of 0.3 was used in calculating the forecasts. Based on the

tracking signal of equation 3.17, an incident was detected when the suc­

cessive values of this signal significantly deviated from zero. In com­

puting the tracking signal, the mean absolute deviation was estimated 

by single exponential smoothing of the absolute values of forecast 

errors using a smoothing constant of 0.1. Similar to the TTI and the 

California algorithms, detection thresholds for the tracking signal 

require calibration. Among all the detection algorithms evaluated by 

Cook and Cleveland using a sample of 50 representative incidents, the 

most effective algorithms were those based on exponentially smoothed 

station occupancy, station volume, and station discontinuity features. 

Joint application of more than one feature resulted higher detection 

rate, but at the expense of increased probability of fais e-alarms.

As an extension to the approach of incident detection based on 

smoothing techniques, Dudek, et al. [23], proposed the application of a 

five-minute moving standard normal deviate to lane occupancy and lane 

energy features. The standard normal deviate, SND, as defined by equa­

tion 3.11 attempts to recognize rapid changes in traffic features over
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short periods of tine in relation to the expected changes caused b;/ nor­

mal fluctuations in traffic flow. Values of SND corresponding to 90 

percent detection rate and one percent false-alarms were used as thres­

holds of detection which, of course, need to be calibrated for different 

locations and times of day. The effectiveness of the SND algorithm was 

partially evaluated by Dudek, et al., using a sample of 35 incidents 

that took place on the Gulf Freeway in Houston during moderate and heavy 

traffic operations. Detection rate was found to be as high as 92 percent 

with one percent false-alarms.

Finally, research on incident detection under low-volume condi­

tions has been pursued in limited studies based on simulation. As dis­

cussed earlier in this chapter, if the reduced capacity is not below the 

level of approaching traffic volume, it becomes difficult to distinguish 

between incident and non-incident traffic patterns. The reason for this 

difficulty is that flow discontinuities under low-volume conditions are 

less noticeable from those occurring under high-volume conditions, and 

stoppage waves are not likely to propagate [23]. The earliest sugges­

tion is apparently that of Barker [3] who explored the discontinuity in 

traffic operations on the Connecticut turnpike using input-output analy­

sis technique. Further work along these lines was done by Sakasita and 

May [69] based on incident data generated by a Microscopic Monte Carlo 

simulation model for a 1.5-mile freeway section. More recently, Dudek, 

et al. [20], applied time-scanning and event-scanning methods to indiv­

idual vehicle counts, and produced a family of curves for determining 

detector-spacing using simulation. In general, the common denominator 

of these detection algorithms is that they use vehicle storage as a
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feature. Despite their attractive nature, these algorithms are subject 

to some operational problems such as the presence of entrance or exit 

ramps between detector stations, the frequent vehicle stoppages on 

shoulders, and detector miscounts. In particular, these algorithms may 

have merit for tunnels, bridges, and freeway sections without ramps or 

shoulders, but their application elsewhere requires considerable refine­

ment.

5.3 Incident Data Base

At the beginning of this research, incident data from the Los 

Angeles, Minneapolis, and Detroit freeway systems were available for 

subsequent analysis. The Los Angeles and Minneapolis data, described 

in [62], were obtained from the National Technical Information Service 

on three magnetic tapes. However, the documentation of the incident 

data contained on these tapes was incomplete, and much information 

needed for the analysis were missing. Therefore, it was decided to 

limit the study to the remaining incident data obtained from Detroit.

In particular, this is the same data utilized by Cook and Cleveland [13] 

in their development and evaluation of the exponential smoothing algo­

rithms .

The Detroit incident data base used in this research was col­

lected from a 2-mile section of the National Proving Ground for Freeway 

Surveillance, Control, and Electronic Aids in the John C. Lodge Freeway. 

This section of the Lodge Freeway contained four detector stations, 

(Seward, Chicago, Calvert, and Glendale), located at variable spacing 

between 1460 and 4815 feet. The detection system consisted of fourteen
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television cameras and a closed network of ultrasonic vehicle presence 

detectors connected to an IBM 1800 computer.

The data collection period covered a total of 13 months from 

December 1968 to December 1969. A total of 50 lane blockages consisting 

of 18 accidents, 28 stalls and breakdoivns, 2 instances of debris, and 

2 short maintenance operations were included in the incident data base. 

Most of the incidents took place during the afternoon peak-period, from 

2:30 to 6:30, in the lane adjacent to the median with duration times 

ranging from 1 to 19 minutes. Observed volume levels which prevailed 

prior to the occurrence of incidents ranged from 1200 to 2000 vph per 

lane, while occupancies varied between 9 to 45 percent. During inci­

dents, the prevailing flow levels were reduced by an average of 21 

percent.

For each of the 50 incidents, historical records of one-minute 

average volume and occupancy data obtained from detectors were aggre­

gated by the computer over all lanes, and recorded on punch cards for 

the nearest upstream and downstream detector stations. The historical 

records commenced about ten minutes preceding the television log time 

of occurrence of an incident, and continued until about ten minutes 

after the logged time of removal of the incident or until the dissipa­

tion of congestion. When two incidents occurred on the same day and in 

the same freeway subsystem, the data was continuously compiled through­

out the interval between the two incidents. Thus, there was a net of 

42 data records which contained the information on the 50 incidents. 

These 42 records represented a total of 1692 minutes of observations 

on traffic data associated with capacity-reducing incidents.
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The time of occurrence of each of the 50 incidents was deter­

mined by inspecting the time the incident occurred as recorded in the 

television surveillance logs and the onset of incident-generated conges­

tion as judged by the incident traffic data obtained from detectors [13]. 

It was noted that television surveillance detected the incidents from 

one to three minutes sooner than would the onset of congestion. For 

consistency, the incident time of occurrence was estimated from the 

onset of congestion as determined by traffic flow characteristics.

In conclusion, it is believed that the sample of the 50 on- 

freeway incidents used in this study is representative of the typical 

lane blockage incidents which take place during the peak periods on the 

freeways of most urban areas. However, the problem with applying the 

ARIMA (0,1,3) model to the individual time series of these 50 incidents 

is the limited number of observations contained in most of these series. 

Only three of the time series of incident data contained more than 100 

observations. Two of these series were recorded at the Seward detector 

station, while the third series was recorded at the Calvert detector 

station.

5.4 ARIMA Model Application to Incident Detection

As indicated earlier, freeway incidents are usually associated with 

sudden changes in operating flow states which typically appear as pulsed 

input in the profiles of time series of traffic features [13]. The 

representative volume and occupancy plots depicted in Figure 5.1 tend 

to illustrate this concept. On the other hand, past trends of traffic 

features, those which can be determined by smoothing out the random 

variations, can predict the development of peak-period or bottleneck
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congestion, whereas the unexpected impact of incidents cannot be 

reflected by these trends. Therefore, it is sensible to apply short­

term forecasting techniques to detect incident generated irregularities 

in time series of traffic features.

Previously developed detection algorithms based on smoothing 

techniques, notably the exponential algorithms and the standard normal 

deviate algorithm, utilize ad hoc forecasting techniques to provide 

point forecasts of traffic features for one time interval in advance. 

Although these algorithms were found comparable if not superior to other 

pattern recognition algorithms, there is no solid theoretical reasoning 

for the particularly chosen forecasting techniques. In addition, a 

common weakness shared by all the detection algorithms described earlier 

is that they require calibration to determine the appropriate threshold 

levels for detection. Given the many factors contributing to variations 

in traffic flow, such as time of day, pavement and environmental condi­

tions, several threshold levels need to be calibrated which require the 

development of frequency distributions for each set of factors at each 

freeway detector station. Furthermore, it may be difficult to account 

for all the factors involved. One way to overcome this problem is to 

use real-time estimates of the variability in traffic stream features as 

detection thresholds. Thus, false-alarms could possibly be reduced, 

and the thresholds would be responsive to the different factors. The 

approach used in this research is based upon constructing probability 

limits for the point forecasts rather than considering the point fore­

casts themselves. Importantly, this allows for the uncertainty asso­

ciated with the forecasts to be included in the detection decisions, and
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eliminates the need for threshold calibration. An incident is detected 

if the observed feature value lies outside the probability limits con­

structed two standard deviations away, for example, from the correspond­

ing point forecasts.

A total of eight traffic features were chosen from those pro­

posed by Cook and Cleveland [13], and by Courage and Levin [15], for 

application with the ARIMA (0,1,3) model, using the same notation as 

in Section 5.2.3, these features are:

(1) Station Volume = q(i,t)

(2) Station Occupancy = Ç(i,t)

(3) Station Speed = u(i,t)

(4) Station Energy = E(i,t)
(5.10)

(5) Subsystem Volume = q(i,t) - q(i+l,t)

(6) Subsystem Occupancy = g(i,t) - g(i+l,t)

(7) Subsystem Speed = u(i,t) - u(i+l,t)

(8) Subsystem Energy = E(i,t) - E(i+l,t)

The time series of the station volume and station occupancy for the 50 

incidents described in Section 5.3 were readily available in the form of 

42 data records. Values of the other six features were computed minute- 

by-minute spanning the duration of the 50 incidents. Thus, there were 

42 incident time series records for each of the above eight features.

The ARIMA. (0,1,3) model of equation 4.1 was then fitted to the different 

time series of these features, and diagnostic checks for the model ade­

quacy were preformed by inspecting the resulting residuals. It was 

found that the ARIMA (0,1,3) model did adequately represent the stochas­

tic process generating all of the eight features.
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Table 5.2 gives Lhe ranges of values of the estimated moving 

average parameters for the 42 different time series of each of the fea­

tures. As indicated in Section 5.3, the 42 time series of incident data 

were recorded during the afternoon peak periods of 42 different days at 

different detector stations. Hence, the variations in the estimated 

moving average parameters of Table 5.2 are due to location attributes 

and time. The variation in the parameters of the ARIMA(0,1,3) model by 

location was confirmed earlier by the results of Tables 4.2 and 4.3 

using incident-free time series data which was recorded at the same time 

but at different detector stations. To have a closer look on the varia­

tion due to time. Table 5.3 gives the values of estimated moving average 

parameters of two incident records observed on 8/11/69 and 12/4/69, at the 

Seward detector station of the Lodge Freeway. The historical records 

of these incidents are the only available records which have reasonably 

large number of observations. It is evident from the results of Table 

5.3 that the moving average parameters change over time. Although simi­

lar variation was noticed earlier in Figure 4.8, it was not possible 

to accurately conclude that the parameters vary over time because of 

the limited number of observations used in parameter estimation. How­

ever, with the confirmation noted by the results of Table 5.3, it is 

clear at this point that the parameters of the ARIMA(0,1,3) model vary 

from time period to another. As discussed earlier, parameter updating 

can be done occasionally, for example, at the beginning of peak and 

off-peak periods. Again, parameter updating was not explored in this 

research, in part because the available data consisted of afternoon 

peak-period time series only.
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TABLE 5.2

MOVING AVERAGE PARAMETERS OF TRAFFIC FEATURES

Traffic Features
So. of Data Total So. of Moving Average Farameters

Sets Observations = 1 = 3

Station Volune 42 1594 0.2414+
0.7576

0.3003+
0.6504

0.14096
0.7997

Station Occupancy 42 1694 0.2077+
0.6243

0.2425±
0.6544

0.2043+
0.7666

Station Speed 42 1694 0.0772= 
0.7351 ■

0.0428+
0.7339

0.0097+
0.9489

Station Energy 42 1694 0.0793i
0.6767

0.7820=
0.1524

0.13046
0.7935

Subsystem Volume 42 1694 0.3S64±
0.5480

0.24936
0.7283

0.03026
0.S624

Subsystem Occupancy 42 1694 0.22156
0.6561

0.0863+
0.8364

0.1435+
0.7380

Subsystem Speed 42 1694 0.0038=
0.9736

0.10576
0.6853

0.0199+
0.9127

Subsystem Energy 42 1694 0.0470+
0.9222

0.0034+
0.9502

0.0935=
0.3368
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TABLE 5.3

VARIATION IN MOVING AVERAGE PARAMETERS 
OVER TIME AT SEWARD STATION

Traffic Obsenration Number of Moving Average Parameters
Feature Date Observations •1 '3

Station Aug. 11, 1969 124 0.6298 0.2171 -0.1494
Voluae Dec. i, 1969 154 0.6893 0.1747 0.0930

Station Aug. 11, 1969 124 0.5935 0.0991 -0.1263
Occupancy Dec. i, 1969 154 0.3959 0.2515 -0.0990

Station Aug. 11, 1969 124 0.4726 0.1980 -0.0045
Speed Dec. 4, 1969 154 0.6465 0.0985 -0.1114

Station Aug. 11, 1969 124 0.4934 0.2140 -0.0172
Energy Dec. 4, 1969 154 0.6541 0.0911 -0.1000

Subsvstea .Aug. 11, 1969 124 0.6453 0.2437 0.0900
Volume Dec. 4, 1969 154 0.6669 0.1759 0.1436

Subsystem Aug. 11, 1969 124 0.7508 -0.1209 0.0365
Occupancy

■
Dec. 4, 1969 154 0.2497 0.1981 0.0868

Subsystem Aug. 11, 1969 124 0.6635 0.0956 0.2176
Speed Dec. 4, 1969 154 0.5497 0.0653 0.0019

Subsystem Aug. 11, 1969 124 0.6226 0.1965 0.1619
energy Dec. 4, 1969 154 0.6659 0.1149 0.0081
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Having estimated the model parameters and checked the adequacy 

of the form of the ARIMA (0,1,3) model, equation 4.5 was then used to 

calculate the one-step-ahead forecasts. The moving average parameters 

estimated from a particular series were used in calculating the fore­

casts for the same series. Furthermore, approximately 95-percent confi­

dence intervals were constructed utilizing equation 3.40. Sample plots 

for two station and two subsystem features for the incident of Figure

5.1 are depicted in Figure 5.3. The broken lines shown in the same 

figure represent the approximately 95-percent probability limits of the 

point forecasts, while the shaded area indicates the incident duration. 

For clarity, the point forecasts were not plotted. As expected, each 

of the four features is noted to respond for this particular incident 

as indicated by the deviation of the observed feature value from the 

corresponding probability limits at the moment when congestion started 

to develop.

The effectiveness of the ARIMA detection algorithms was par­

tially evaluated on a comparative basis with some of the previously 

developed algorithms using the station occupancy feature as an example. 

In particular, this feature dominated all the other features explored 

by Cook and Cleveland [13] in their analysis of the exponential algo­

rithms. Three measures of effectiveness were employed as evaluation 

criteria. These are detection rate, false-alarm rate, and mean time 

lag to detection. From an operational standpoint, these three measures 

are of particular importance to any effective computer-supervised inci­

dent detection capability.
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In determining the false-alarm rate, a total of 1554 minutes of 

non-incident observations preceding and following the 50 on-freeway 

incidents was used. Since these non-incident observations were closely 

associated with actual incidents, the estimated false-alarm rate using 

this sample may not be equivalent to the false-alarm rate estimated from 

representative incident-free data. Importantly, this same sample of 

1554 minutes of non-incident observations was used by Cook and Cleveland 

[13] in evaluating the effectiveness of the exponential smoothing algo­

rithms, the California algorithm, and five of the TTI algorithms. This 

provided the chance, without any bias in estimating the false-alarm 

rate, to compare the results of the ARIMA station occupancy algorithm 

with the results of those algorithms.

Figure 5.4 depicts the operating characteristic curve for the 

ARIMA station occupancy algorithm which was obtained by varying the 

width of the constructed confidence intervals from 3 to 5 standard 

deviations in increments of 1.0. This caused the false-alarm rate to 

range from nearly 2.5 percent to zero. The algorithm detected all of 

the 50 incidents with 1.4 percent false-alarms. For the purpose of com­

parison, results of the California, TTI, and exponential station occu­

pancy algorithms were taken from the research findings of Cook and 

Clevelend [13] based on the same 50 incident data used in this study. 

These later results are shown in Figure 5.4. The operating points for 

the California and the five TTI algorithms were determined at threshold 

levels corresponding to one percent false-alarm rates, while the opera­

ting characteristic curve of the exponential station occupancy algorithm 

was obtained by varying the tracking signal thresholds from ±1.50 to
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Notation:

ARIMA Station Occupancy 
Exponential Station Occupancy 
California Algorithm 
TTI Station Discontinuity 
TTI Station Energy 
TTI Subsystem Discontinuity 
TTI Subsystem Energy 
TTI Subsystem Shock Wave

4 6 . 8

FALSE ALAEM RATE (Percent)

10

FIGURE 5.4

OPERATING CHARACTERISTIC CURVES FOR 
INCIDENT DETECTION ALGORITHMS
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+10.00 in 0.50 increments [13]. The performance of the ARIMA. station 

occupancy algorithm is seen to be superior to all the other algorithms 

presented in Figure 5.4 by virtue of generating higher detection rates 

at the approximately zero, 1.4, and 2.5 percent false-alarm levels.

Also, at higher levels of detection, between 90 and 100 percent, the 

ARIMA station occupancy algorithm has the lowest false-alarm rate.

Information on the mean and standard deviation of the time- 

lags to detection of the ARIMA station occupancy algorithm is presented 

in Table 5.4 at the low (near zero percent), medium (one to two percent), 

and high (about six percent) false alarm levels. As noted, there is 

no information on the time-lags at the high false-alarm level since the 

false-alarms did not exceed 2.5 percent. To help compare the relative 

effectiveness of the ARIMA station occupancy algorithm, the means and 

standard deviations of the time-lags for the exponential station occu­

pancy and the TTI station discontinuity algorithms were taken from the 

results of Cock and Cleveland [13]. As one may readily expect, the 

mean time-lag decreased as the number of false-alarms increased. The 

ARIMA station occupancy algorithm which enjoyed the highest detection 

rate tended also to have the shortest mean time-lag, thus, eliminating 

the need for considering a trade-off between total detections and mean 

time-lag to detection.

5.5 Summary and Implications for Microcomputers

Although the evaluation of the ARIMA detection algorithms was 

limited in its extent, it did demonstrate the potential improvements 

which can be gained by applying the ARIMA (0,1,3) model to
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TABLE 5.4

MEAN TIME LAGS TO DETECTION

Incident Detection Faise-Alarm Level

Algorithm Low Medium High

ARIMA Station Occupancy 1.33 min. 
(1.58 min.)

0.39 min. 
(1.32 min.)

Exponential Station Occupancy* 1.46 min. 
(2.78 min.)

0.74 min. 
(1.40 min.)

0.35 min. 
(0.81 min.)

TTI Station Discontinuity* 3.13 min. 
(5.62 min.)

2.07 min. 
(4.05 min.)

0.83 min. 
(1.11 min.)

* Source: Refereuce 13
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computer-supervised incident detection. These improvements include 

higher detection rate, lower false-alarms and shorter response time.

In addition, the fact that the ARIMA. detection algorithms do not require 

threshold calibration makes them more attractive algorithms from an 

operational standpoint. However, the only single difficulty with the 

adaptation of the ARIMA detection algorithms in automated incident detec­

tion systems is the computational requirements needed for estimating 

and updating the moving average parameters at each detector station.

It is interesting in this regard to note that the parameters are esti­

mated and updated using non-linear least-squares subroutines which are 

available in many computer libraries. In particular, program ESTIMATE 

which was used in this study needs 13OK of computer core capacity for a 

time series length of 3000 observations. For incident detection pur­

poses, a small portion of this computer core capacity will be actually 

utilized since a time series length of 100 observations is sufficient.

It is important to note that there are increasing trends 

toward the distribution of computational capabilities and the adapta­

tion of microcomputers in large scale control systems. The parameters 

of the ARIMA (0,1,3) model can be estimated and occasionally updated 

using a central computer of medium size or a number of distributed 

microcomputers. Then, the estimated or updated parameters can be trans­

mitted through cables or telephone lines to programed microprocessors 

which compute the required forecasts and perform the logical tests of 

the ARIMA detection algorithms. One microprocessor can serve one or 

more detector stations depending on its computational capabilities.

Thus, it is believed that the rapid advances in computer and
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communication technologies can economically help overcoming any computa­

tional difficulties associated with the application of the ARIMA. detec­

tion algorithms.



CHAPTER VI 

CONCLUSIONS AND SUGGESTED RESEARCH

6.1 Conclusions

The research described by this dissertation has focused on 

investigating the dynamic nature of freeway traffic time series data 

using the analysis techniques described by Box and Jenkins. Throughout 

the investigation, two major developments have been achieved: first,

the development of predictor model for traffic stream variables, and 

second, the development of computer algorithms for detecting accidents 

and other capacity-reducing incidents which are typical occurrences on 

urban freeways. The analysis was based on sur/eillance data obtained 

from the Los Angeles, Minneapolis, and Detroit freeway systems during 

the afternoon peak periods.

It has been indicated that most of the control strategies made 

by computer-supervised freeway surveillance and control systems should 

allow for the operational changes they are likely to cause in the imme­

diate future, through the incorporation of real-time forecasts of traf­

fic variables into the control logic. Other important applications 

which require short-term forecasting include incident detection, inter­

section control, automated transportation systems, and improved methods 

for handling traffic at maintenance and construction sites which involve
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lane closures or during special events such as concerts and athletic events. 

Regardless of the type of application, to be effective, the development 

of efficient and informative forecasting techniques is extremely impor­

tant.

During the review of current approaches to forecasting real­

time traffic systems, it was apparent that these approaches are ad hoc 

in their nature, and that none of them has its solid theoretical justi­

fication. In contrast, the finite parameter autoregressive integrated 

moving average processes form a powerful and broad class of potential 

models for representing the dynamics of traffic time series. The pri­

mary virtue of this class of models is that the eventual form of the 

forecasting model is determined by the properties of the series in hand 

and, among other linear models, the resulting forecasts are optimal in 

terms of having minimum mean square error.

Application of the Box-Jenkins time series modeling framework 

to a total of 166 traffic volume and occupancy series, representing 

more than 27,000 minutes of observations, has revealed that the stochas­

tic process generating traffic stream measurements can be best described 

by an ARIMA (0,1,3) model. Although the parameter estimates varied from 

one detector station to another, within and/or between the different 

freeway systems, there has been strong evidence for the transferability 

of the form of the model. The differences in parameter estimates arise 

from variations in driving situations, geometries, and pavement and 

environmental conditions. Similar confirmation of the form of the 

model has been found with varying detector configurations and data 

aggregation intervals.
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The theoretical discussion coupled with empirical analysis has 

demonstrated the operational utility of the ARIMA. (0,1,3) model in pro­

viding real-time forecasts of freeway traffic stream variables at 

modest computer storage and computational requirements. Since the mov­

ing average parameters change over time, some improvements in the fore­

casts could be achieved by occasionally updating these parameters, for 

example, at the beginning of peak and off-peak periods. It is not nec­

essarily warranted, however, to update the parameters in real-time for 

each new observation interval. Parameter updating requires the execu­

tion of non-linear least-squares routines which can be performed using 

microcomputers. With the increasing trend toward the distribution of 

computational capabilities and the adaptation of microcomputers in free­

way surveillance and control systems, the parameters of the ARII-IA 

(0,1,3) model can be estimated and occasionally updated using a central 

computer of medium size or a number of distributed microcomputers.

Then, the estimated or updated parameters can be transmitted through 

cables or telephone lines to programmed microprocessors which compute 

the required forecasts. One microprocessor can serve one or more detec­

tor stations depending on its computational capabilities. In addition, 

it has been found that the ARIMA (0,1,3) model can be efficiently used 

with other computer programs to simulate the performance of complex 

traffic systems when new operational designs are implemented without 

the need to observe these systems for long periods of time.

Three of the widely used ad hoc forecasting models were eval­

uated on a comparative basis with the ARIMA (0,1,3) model. These are 

the moving average, the double exponential smoothing, and the Trigg



142

and Leach models. The mean absolute error, }IAE, and mean square error, 

MSE, were used as evaluation criteria. Results of the moving average 

model indicated that both MAE and MSE increase as the number of past 

observations utilized in calculating the moving average gets larger.

The best results of the double exponential smoothing model were associa­

ted with small values of the smoothing constant, while the Trigg and 

Leach adaptive scheme for updating the smoothing constant provided no 

improvement in the forecasts. In general, it has been concluded that 

the ARIMA (0,1,3) model is superior to the other models included in the 

evaluation by virtue of its more accurate representation of the stochas­

tic process generating traffic data.

Using the ARIMA model developed earlier, it has been determined 

that freeway capacity-reducing incidents can be detected by the sudden 

and pulsed changes they generate in traffic stream time series data. In 

this context, eight traffic features sensitive to incident situations 

were compiled minute-by-minute spanning the duration of a sample of 50 

on-freeway incidents. The form of the ARIMA (0,1,3) model was found 

representative of the different time series of these features. An inci­

dent was detected if the observed feature value laid outside the probab­

ility limits constructed two standard deviations away from the corres­

ponding point forecasts. This approach eliminated the need for thres­

hold calibration and allowed for the uncertainty associated with the 

forecasts to be included in the detection decisions.

The station occupancy feature was selected as an example to 

comparatively evaluate the performance of detection algorithms based on 

the ARIMA (0,1,3) model with some of the previously developed algorithms.
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Three measures of effectiveness were used in the comparative evaluation: 

detection rate, false-alarm rate, and mean and variance of the time-lag 

to detection. In particular, the ARIMA station occupancy algorithm 

detected all of the 50 representative incidents at 1.4 percent false- 

alarm level. Based on the overall evaluation results, it has been con­

cluded that the ARIMA station occupancy algorithm dominated the one 

developed for use by the Los Angeles Area Freeway Surveillance and Con­

trol Project, the five developed by Courage from the Texas Transporta­

tion Institute, and the exponential station occupancy algorithm which 

was found by Cook and Cleveland to be the best exponential detection 

algorithm. In addition to having the highest detection rate, the ARIMA 

station occupancy algorithm was found to have the shortest mean time- 

lag, thus, eliminating the need for considering a trade-off between 

total detections and mean time-lag to detection.

Despite the fact that this study has dealt primarily with free­

way vehicular traffic, it is believed that the kind of approach pre­

sented has the potential for much broader applications in the field of 

transportation engineering. In many situations, discrete time series 

analysis could be successfully used to model the parameters of trans­

portation systems which evolve over time. To a large extent, the limi­

tations imposed on the range of applications are due to the lack of 

familiarity of many transportation analysts with the proper techniques. 

It is hoped that this dissertation will stimulate those who perform 

research in the transportation field to think along new lines utilizing 

the time series analysis approach to solving important problems in 

transportation research.
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6.2 Prospects for Future Research

It was suggested in Chapter IV that some improvements in the 

forecasting performance of the developed ARIMA model may be achieved if 

the model parameters are occasionally updated over time. Research is 

required to evaluate the possibility of such improvements and, if any, 

to determine the optimal updating strategy which should be used. In a 

related concern, there is a need for developing transfer function models 

which could be efficiently applied to updating the parameter estimates. 

It is also important to investigate the magnitude of accuracy of the 

required forecasts relative to the proposed applications.

Further work on developing and evaluating incident detection 

algorithms based on the time series analysis approach presented in 

Chapter V is recommended. In addition, there is a need to explore the 

application of the developed ARIMA model in ramp signal as well as 

intersection control strategies.

Another area of interest is the application of microcomputers 

to freeway surveillance and control systems. Recent developments in 

microcomputer technology have resulted in increased computational capa­

bilities at reduced cost. Over the past few years, some applications 

of microcomputers in ramp metering control and intersection control 

have been successfully made. Research is needed to expand these appli­

cations and explore the feasibility of using microcomputers in other 

aspects of traffic surveillance and control such as incident detection 

and variable message signs. It is of particular interest to program 

the developed ARIMA model on special purpose microprocessors for use in 

incident detection, ramp metering control, and variable message signs.
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