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Title of Study: ROBOT SKILL LEARNING THROUGH HUMAN DEMONSTRATION 
AND INTERACITON 

Major Field: ELECTRICAL ENGINEERING 

Abstract: Nowadays robots are increasingly involved in more complex and less structured 
tasks. Therefore, it is highly desirable to develop new approaches to fast robot skill 
acquisition. This research is aimed to develop an overall framework for robot skill 
learning through human demonstration and interaction. Through low-level demonstration 
and interaction with humans, the robot can learn basic skills. These basic skills are treated 
as primitive actions. In high-level learning, the complex skills demonstrated by the 
human can be automatically translated into skill scripts which are executed by the robot. 
This dissertation summarizes my major research activities in robot skill learning. First, a 
framework for Programming by Demonstration (PbD) with reinforcement learning for 
human-robot collaborative manipulation tasks is described. With this framework, the 
robot can learn low level skills such as collaborating with a human to lift a table 
successfully and efficiently. Second, to develop a high-level skill acquisition system, we 
explore the use of a 3D sensor to recognize human actions. A Kinect based action 
recognition system is implemented which considers both object/action dependencies and 
the sequential constraints. Third, we extend the action recognition framework by fusing 
information from multimodal sensors which can recognize fine assembly actions. Fourth, 
a Portable Assembly Demonstration (PAD) system is built which can automatically 
generate skill scripts from human demonstration. The skill script includes the object type, 
the tool, the action used, and the assembly state. Finally, the generated skill scripts are 
implemented by a dual-arm robot. The proposed framework was experimentally 
evaluated.
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Chapter 1

Introduction

In this chapter, first the motivation and objectives of our research are presented. Then an

overview of existing robot skill learning approaches is provided. At the end of this chapter, related

work is introduced.

1.1 Motivation

As more and more advanced robots enter our life, the demand for teaching robot complex skills

increases [3, 4]. If a robot can replace a human worker doing complex assembly tasks, the labor

cost can be reduced. Compared to the heavy-duty industrial robot manipulators employed in au-

tomotive industry, light weight arm (LWA) robots and dual-arm robots have appeared recently for

small batch manufacturing. For example, Foxconn Technology Group has already deployed their

own assembly robot called “Foxbot” in their factories [5]. Dual-arm robots have been developed

by several companies that are mainly targeting small part assembly. These robots include Rethink

Robotics’ Baxter robot [2], Kawada’s Nextage robot [6], etc. Currently these robots can only per-

form simple assembly tasks. Many of the complicated assembly processes still require human

labors. Many of the complicated assembly processes still require human labors. Teaching a robot

such delicate assembly skills through human demonstration can avoid lengthy robot programming,

while no technical expertise is required for the operator.
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Programming by demonstration can enable quick skill acquisition [7]. However, this is only

true in the situation where the reproduction is sufficiently similar to that of the demonstration. To

allow the robot to learn to perform a task again in a different situation, it appears important to

combine PbD methods with other learning techniques. Reinforcement learning (RL) [8] is par-

ticularly suitable for this type of problem. It enables the robot to learn its own ways of acting,

in order to improve its abilities. RL algorithms have already been successfully implemented in

robotic applications such as swinging up and controlling an inverse pendulum [9], refining fore-

hand and backhand tennis swing [10]. RL algorithms perform well in discrete environments of low

dimensionality.

There are mainly two ways of demonstration: robot-based demonstration and human-based

demonstration. Compared to robot-based demonstration, human-based demonstration is more con-

venient for the human operators since it avoids operating the robot. To extract important clues from

the human demonstration, the following functions are required: accurate action and object recog-

nition and robust action effect estimation. With the effect of the action available, the learned skills

can be used in a robot task planning system.

1.2 Objectives

Our research goal is to build a robot skill learning framework for acquiring complex human

skills. The overall learning framework we proposed is shown in Fig. 1.1. It contains both low-

level skill learning and high-level skill learning. In low-level learning, both PbD and reinforcement

learning are employed. These learned skills are treated as basic actions. In high-level skill acqui-

sition, complex skills that usually involve multiple actions and the use of various objects need to

be captured. The manipulated objects are recognized. With the object/action dependencies, the

manipulative actions are recognized. 3D object models are created which can be used to esti-

mate the spatial relationship between the objects. One example of high-level skill acquisition is

assembly skills acquisition. The human will demonstrate the whole process of an assembly task.

For example, the sequence of actions may include inserting a screw into a hole, screwing using a

screw driver and etc. Finally, the learned skills are implemented on the robot through a planning
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Figure 1.1: The overall learning framework.

procedure.

In summary, the proposed framework enables the following robot capabilities:

• Basic skills learning. With human demonstration, scaffolding, and interaction, the robot can

learn basic actions like grabbing, approaching, lifting and etc. The learned actions are treated

as basic skills for the high-level skill learning.

• Complex skills learning. With a Portable Assembly Demonstration (PAD) system, the skill

scripts can be automatically extracted from the demonstration. It includes the action applied,

the object involved and the relative position and orientation between objects.

• After learning both the basic actions and the complex skills, the robot can autonomously

interpret and implement the generated skill scripts.

1.3 Overview of Robot Skill Learning Approaches

Robots can acquire skills through many different learning approaches, such as programming by

demonstration, and reinforcement learning. The idea of these methods is inspired by how human
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learns. The most straightforward method humans use to learn is through imitation. Also we can

learn by ourselves through trial-and-error since demonstrations are not always available.

1.3.1 Programming by Demonstration

The research on robot programming by demonstration [11] started about thirty years ago, and

has been attracting more research interest during the past decade. The rationale for moving from

tedious coding for robot programming to flexible demonstration-based skill acquisition is three-

fold [12].

First, imitation learning offers an implicit means of training a machine, such that explicit and

tedious programming of a task by a human user can be minimized or eliminated. Imitation learning

is thus a “natural” means of interacting with a machine that would be accessible to people.

Secondly, it is a powerful mechanism to reduce the complexity of search spaces for learning.

When observing either good or bad examples, one can reduce the search space for a possible

solution, by either starting the search from the observed good solution (local optima), or conversely,

by eliminating bad solutions from the search space. Imitation learning is, thus, a powerful tool for

enhancing and accelerating learning.

Third, studying and modeling the coupling of perception and action, which is at the core of

imitation learning, helps us understand the mechanisms by which the self organization of percep-

tion and action could arise. The reciprocal interaction of perception and action could explain how

competence in motor control can be grounded in rich structure of perceptual variables, and vice

versa, how the processes of perception can develop as a means to create successful actions.

PbD promises are thus multi-fold. On the one hand, it will make learning faster, in contrast

to reinforcement learning or other trial-and-error learning approaches. On the other hand, one

expects that the methods, being user-friendly, will enhance the application of robots in human

environments. Recent progresses in the field, which we review in this chapter, show that the field

has made a leap forward during the past decade toward these goals. In addition, we anticipate that

these promises may be fulfilled very soon.

A number of key problems need to be solved to ensure such a generic approach for transferring

4



skills across various agents and situations. One of the key problems is “What to Imitate” [12].

Current approaches to representing a skill can be broadly divided between two trends: a low-level

representation of the skill, taking the form of a non-linear mapping between sensory and motor

information, which we will later refer to as “trajectories encoding”, and, a high-level representation

of the skill that decomposes the skill in a sequence of action-perception units, which we will refer

to as “symbolic encoding”.

Another key problem is “How to reproduce a skill in a completely novel situation” [12]. The

robustness of dynamic system control to perturbations occurring in uncontrolled environments has

been demonstrated. However, it can happen that the dynamic system alone is not sufficient to

handle any perturbation. In those cases, an exploration process is needed, during which the robot

will search for new ways of accomplishing the task. Reinforcement learning is particularly suitable

for this type of problem.

Learning through interaction is usually combined with PbD. The purpose is to detect and utilize

“social cues” given implicitly or explicitly by the teacher during training. It has become the focus

of a large body of work in PbD [13, 14]. Such social cues can be viewed as a way to introduce

priors in a statistical learning framework which can speed up learning.

1.3.2 Reinforcement Learning

Reinforcement learning is learning how to map situations to actions so as to maximize a nu-

merical reward signal. The learner is not told which actions to take, as in most forms of machine

learning, but instead must discover which actions yield the most reward by trying them. In the most

interesting and challenging cases, actions may affect not only the immediate reward but also the

next situation and, through that, all subsequent rewards. These two characteristics: trial-and-error

search and delayed reward, are the two most important features of reinforcement learning [15].

Reinforcement learning is different from supervised learning, most current research in ma-

chine learning, statistical pattern recognition, and artificial neural networks. Supervised learning

is learning from examples provided by a knowledgeable external supervisor [16]. This is an im-

portant type of learning, but alone it is not adequate for learning from interaction. In interactive
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problems it is often impractical to obtain examples of desired behavior that are both correct and

representative of all the situations in which the agent has to act. In uncharted territories where one

would expect learning to be most beneficial an agent must be able to learn from its own experience

[17].

One of the disadvantages of reinforcement learning is that as the dimension of the learning

space grows, the computation cost will grow exponentially. Combined with PbD, which has al-

ready offered a solution, the search space can be decreased dramatically.

1.4 Related Works

Related work is divided into three parts. First, PbD approaches are surveyed. Then a review on

action recognition is presented. Finally, an overview of the ways of skill demonstration is given.

1.4.1 Learning from Demonstration

Current approaches to representing a skill can be broadly divided into two trends: a low-level

representation of the skill, taking the form of a non-linear mapping between sensory and motor

information, which we will later refer to as “trajectories encoding”, and, a high-level representation

of the skill that decomposes the skill into a sequence of action-perception units, which we will

refer to as “symbolic encoding”. Some related works are listed below. Work in low-level PbD

encodes human movements in either joint space, task space or torque space. The encoding may

be specific to a cyclic motion [18], a discrete motion [19], or to a combination of both. The most

promising approaches to encoding human movements are those that encapsulate the dynamics of

the movement into the encoding itself. Several of these methods are highlighted below.

Calinon et al. [20] presented a probabilistic architecture for solving generically the prob-

lem of extracting the task constraints through a PbD framework and for generalizing the acquired

knowledge to various situations. They extend this approach to a more generic procedure handling

simultaneously constraints in joint space and in task space by combining directly the probabilistic

representation of the task constraints with a simple Jacobian-based inverse kinematics solution.
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Two 5-DOFs Katana robots [21] from Neuronics are used for the experiment. Each motor is

equipped with encoders which allows the user to move the robot manually while registering joint

angle information.

Calinon et al. [22] proposed an approach to teaching incrementally human gestures to a hu-

manoid robot. The learning process consists of first projecting the movement data in a latent space

and encoding the resulting signals in a Gaussian Mixture Model (GMM). The demonstrations can

be provided in various modalities. The robot observes a human user demonstrating the gesture

while wearing motion sensors. On the other hand, the coach helps the robot move correctly its

limbs by kinesthetic teaching.

Ude et al. [23] used spline smoothing techniques to deal with the uncertainty contained in

several motion demonstrations performed in a joint space and in a task space. In [24], using

different demonstrators ensures variability across the demonstrations and quantifies the accuracy

required to achieve a Pick & Place task. The different trajectories form a boundary region that is

then used to define a range of acceptable trajectories.

In [25], the robot acquires a set of sensory variables while a human demonstrates a manipu-

lation task of arranging different objects. At each time step, the robot stores and computes the

mean and variance of the collected variables. The sequence of means and associated variances is

then used as a simple generalization process, providing respectively a generalized trajectory and

associated constraints.

Dynamical systems also offer a particularly interesting solution to an imitation process aimed at

being robust to perturbations. It is robust to dynamical changes in the environment. The first work

to emphasize this approach was that of Ijspeert et al. [10], who designed a motor representation

based on dynamical systems for encoding movements and for replaying them in various conditions.

The approach combines two ingredients: nonlinear dynamical systems for robustly encoding the

trajectories, and techniques from non-parametric regression for shaping the attractor landscapes

according to the demonstrated trajectories.

The main advantages of these trajectory-level approaches are that they offer generic represen-

tation of motion which allows encoding of very different types of signals. However it doesn’t allow
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to reproduce complicated high-level skills.

On the other hand, a large body of work [14, 26] uses a symbolic representation of both the

learning and the encoding of skills and tasks. This symbolic way of encoding skills may take

several forms. One common way is to segment and encode the task according to sequences of

predefined actions, described symbolically. Encoding and regenerating the sequences of these

actions can be done using classical machine learning techniques, such as Hidden Markov Model

(HMM).

In [27], an approach for teaching a humanoid robot is presented that will enable the robot to

learn typical tasks required in everyday household environments. The first step concentrates on

an analysis of human actions and action sequences that can be identified when watching a human

demonstrator. Secondly, sensor systems are introduced which augment the robot’s perception ca-

pabilities while watching a human’s demonstration and the robot execution of tasks respectively.

The main focus is then put on the knowledge representation in order to be able to abstract the

strategies and to transfer them onto the robot system.

Ekvall et al. [28] proposed a novel method for learning robot tasks from multiple demon-

strations. Each demonstrated task is decomposed into subtasks that allow for segmentation and

classification of the input data. The demonstrated tasks are then merged into a flexible task model,

describing the task goal and its constraints. The two main contributions of their paper are the state

generation and constraints identification methods. They also present a task level planner, which is

used to assemble a task plan at run-time, allowing the robot to choose the best strategy depending

on the current world state.

Saunders et al. [29] described an approach of robot task learning based on studies of social

animals where two teaching strategies are applied to allow a human teacher to train a robot by

moulding its actions within a carefully scaffolded environment. Within these environments, sets

of competences can be built by building state/action memory maps of the robot interaction within

that environment. These memory maps are then polled using a k-nearest neighbor based algorithm

to provide a generalized competence.

The main advantage of these symbolic approaches is that high-level skills (consisting of se-
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quences of symbolic cues) can be learned efficiently through an interactive process. However,

because of the symbolic nature of their encoding, the methods rely on a large amount of prior

knowledge to predefine the important cues and to segment those efficiently.

Also, as the PbD techniques develop, traditional ways of guiding/teleoperating the robot were

progressively replaced by more user-friendly interfaces, such as vision [27], data gloves [30], laser

range finder [31] and kinesthetic teaching which has already been introduced above.

1.4.2 Action Recognition

In recent years, vision-based human action recognition has found many applications, such as

human-computer interaction, surveillance, etc. [32]. The use of human action recognition in

robotics is a new research frontier. As robots start entering human environments, there is a great

need for robots to acquire new skills in an efficient way.

There are generally three steps for vision based action recognition: feature extraction, model

training and classification. Local spatial-temporal features such as histogram of gradient (HOG)

[33], histogram of optical flows (HOF) [34], 3D scale-invariant feature transform (SIFT) [35],

and Cuboids [36] have been widely used for action recognition. In [37, 38, 39, 40], features are

first extracted on images from a 2D sensor or point clouds from a 3D sensor. Then probabilistic

approaches such as Hidden Markov Models (HMMs) [41] and Supporting Vector Machine (SVM)

[42] are used for modeling and classification.

To further improve the accuracy, feature-level fusion has been applied to the features generated

from the single sensors. In He’s paper [43], a new feature fusion method for gesture recognition

based on a single tri-axis accelerometer has been proposed. Both time-domain and frequency-

domain features are extracted. Recognition of the gestures is performed using SVMs. The average

accuracy results using the proposed fusion methods is 89.89% which is improved compared with

the approach using only one of the features. Tran et al. [44] presented a real-time or online system

for continuous recognition of human daily actions. HMMs are applied to model a joint of human

posture features. The results show the fusion models outperform the baseline approach.

However, the capability to differentiate very similar actions mainly depends on the distinction
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of features. Therefore, more and more attention has been focused on how to utilize multiple sensor

modalities to help improve action recognition. Correspondingly, the information fusion approaches

have been applied. Thomas et al. [45] present a novel method for continuous activity recognition

based on ultrasonic hand tracking and motion sensors attached to the users arms. Plausibility

analysis is designed to fuse the decisions. Lukowicz et al. [46] present a technique to automatically

track the progress of maintenance or assembly tasks using body worn sensors. The technique is

based on a novel way of combining data from accelerometers with simple frequency matching

sound classification. Zhang et al. [47] presented a framework for hand gesture recognition based

on the information fusion of a three-axis accelerometer (ACC) and multichannel electromyography

(EMG) sensors signals. A decision tree and multistream HMMs are utilized for decision-level

fusion to generate a final decision. Chen et al. [48] presented a robust visual system that allows

effective recognition of multiple-angle hand gestures in finger guessing games. Three Support

Vector Machine (SVM) classifiers were trained for the construction of the hand gesture recognition

system. The classified outputs were fused by proposed plans to improve system performance.

The system presented can effectively recognize hand gestures, with an accuracy of over 93%,

for different angles, sizes, and different skin colors. Wu et al. [49] proposed to take audiovisual

characteristics of realistic human action videos into account in human action recognition. Effective

features are identified from a large number of audio features with the generalized multiple kernel

learning algorithm. The widely used spacetime interest point descriptors are utilized as visual

features, and a support vector machine is employed for both audio- and video-based classifications.

At the final stage, fuzzy integral is utilized to fuse recognition results of both audio and visual

modalities. Bahrepour et al. [50] implemented classification techniques on wireless sensor nodes

attached to patients body, online evaluation of the classification results on individual nodes, and

fusing results of various nodes to resolve possible conflicts between sensor nodes and reach a

consensus. The wireless body sensor network consists of a number of wireless sensor nodes that

cooperatively monitor physical and physiological conditions of a person.

The other way is to model contextual information. Kojima et al. [51] proposed a method

for recognizing human actions and objects. With the recognition of the human pose, object and
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the detection of contact points, human actions can be inferred based on the prior knowledge. The

limitation is that each object and pose correspond to only one action which results in a deterministic

object and action correlation. Gupta et al. [52] presented an approach which unifies the inference

process involved in object recognition and localization, action understanding and perception of

object reaction. They use the object properties as prior for action recognition, while taking the

advantage of object reaction to verify the object detection. Wilson et al. [53] presented a parametric

Hidden Markov Model (PHMM) for human action recognition. They indirectly modeled the effect

of object properties on human actions. Yao et al. [54] proposed a mutual context model to jointly

model objects and human poses in human-object interaction activities. In their approach, activity

classes, objects and human poses all contribute to the recognition and detection of each other.

The model includes co-occurrence compatibility between activities, object and pose. Instead of

considering the dynamics of actions in the 3D image, they mainly focus on pose detection in 2D

images. Kjellstrom et al. [55] presented a method for categorizing manipulated objects and human

manipulative actions in the context of each other. Their method employs conditional random fields

(CRFs) and is able to simultaneously segment and classify human hand actions, as well as detect

and classify the objects involved in the action. However, to segment hand from the 2D images, the

appearance of the hand is compared to a large database (on the order of 105 examples) of synthetic

hand views tagged with articulated pose and orientation which is computationally intensive.

Kojima et al. [51] proposed a method for recognizing human actions and objects. With the

recognition of the human pose, object and the detection of contact points, human actions can be

inferred based on the prior knowledge. The limitation is that each object and pose correspond

to only one action which results in a deterministic object and action correlation. Gupta et al.

[52] presented an approach which unifies the inference process involved in object recognition and

localization, action understanding and perception of object reaction. They use the object properties

as prior for action recognition, while taking the advantage of object reaction to verify the object

detection. Wilson et al. [53] presented a parametric Hidden Markov Model (PHMM) for human

action recognition. They indirectly modeled the effect of object properties on human actions.

Yao et al. [54] proposed a mutual context model to jointly model objects and human poses in
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human-object interaction activities. In their approach, activity classes, objects and human poses

all contribute to the recognition and detection of each other. The model includes co-occurrence

compatibility between activities, object and pose. Instead of considering the dynamics of actions

in the 3D image, they mainly focus on pose detection in 2D images. Kjellstrom et al. [55] presented

a method for categorizing manipulated objects and human manipulative actions in the context of

each other. Their method employs conditional random fields (CRFs) and is able to simultaneously

segment and classify human hand actions, as well as detect and classify the objects involved in the

action. However, to segment hand from the 2D images, the appearance of the hand is compared

to a large database (on the order of 105 examples) of synthetic hand views tagged with articulated

pose and orientation which is computationally intensive.

1.4.3 Ways of Skill Demonstration

The ways to demonstrate skills to robots fall into two categories: robot-based demonstration

and human-based demonstration. Robot-based demonstration uses robots as the demonstrator.

This method mainly includes teleoperation [56] and kinesthetic teaching which is also called scaf-

folding [57]. On the contrary, human-based demonstration employs humans as the demonstrator.

Compared to robot-based demonstration, human-based demonstration is more convenient for the

human operators since they can just focus on the task itself and do not need to control the robot.

Two kinds of sensors are widely used for collecting human demonstration data: wearable sensors

and vision sensors. Wearable sensors include inertial measurement units (IMUs) [58] and data

gloves [59, 60]. In robot learning, it is also called the “sensor on teacher” approach. Wearable

sensors are usually used along with vision sensors that extract the information of the involved ob-

jects. Lee et al. [61] proposed a skill learning and inference framework for a Skilligent robot.

Data gloves are used to demonstrate the task. Based on the framework, the robot learns and in-

fers situation-adequate and goal-oriented skills to handle uncertainties and human perturbations.

Kunze et al. [62] performed a manipulation task in an interactive physics simulation. By perform-

ing novel manipulation tasks in a virtual environment using a data glove, task-related information

of the demonstrated actions can be directly accessed and extracted from the simulator. By using
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simulation, they avoid the practical problem of object and pose estimation.

On the other hand, vision-based human motion tracking systems are regarded as a natural way

to capture demonstration since no sensors need to be attached to the demonstrator. Ahmadzadeh

et al. [63] proposed a visuospatial learning approach which uses a simple algorithm and mini-

mum prior knowledge to learn a sequence of operations from a single demonstration. Song et

al. [64] developed a testbed for learning by demonstration from natural languages and a Kinect

sensor, with the initial domain of kitchen activities. In their work, only a single large-size object

is involved, which can be recognized easily. Additionally, there are research works specifically

on vision-based assembly skill learning from human demonstration. Hovland et al. [65] proposed

an approach to representing an assembly skill by a hybrid dynamic system where a discrete event

controller models the skill. The discrete controller is represented as an Hidden Markov Model

(HMM) [41]. The deficiency for this approach is that as the task becomes complex, the HMM will

demand a tremendous training data set. Dantam et al. [66] developed a method to transfer human

demonstration to robots. The demonstration is interpreted into a sequence of object connection

symbols which can be further transformed into the task language. The assembly task they handled

is simple and only the location of the part is required. Takamatsu et al. [67] aimed to recognize

assembly tasks through human demonstration. Two rigid polyhedral objects are recognized from

noisy data obtained by a conventional 6 degree-of-freedom (DOF) object-tracking system. Assem-

bly tasks can be basically expressed as chains of two-object relationships. However, they ignored

the problem of occlusion between the parts. Aleotti et al. [68] demonstrated the assembly task

through simulation, which does not address the action recognition and object recognition task. A

task planner is designed to analyze the demonstration and segment it into a sequence of action

primitives.

1.5 Organization of the Dissertation

In the following chapters, each part of the learning framework will be introduced. In Chapter 2,

human robot collaborative manipulation task learning through PbD and reinforcement learning is

described, which is a type of low-level skill learning of basic actions. In Chapter 3, an action recog-
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nition system with a Kinect sensor is developed which considers the correlation between objects

and actions, as well as the sequential constraints of actions. In Chapter 4, The action recognition

framework is extended to handle more challenging tasks, such as assembly skill acquisition, using

multiple sensing modalities. Based on the previous work, Chapter 5 presents a Portable Assembly

Demonstration (PAD) system which can generate a complete robot skill script for complex part

assembly from human demonstration. Chapter 6 describes how to implement the skill scripts gen-

erated by the PAD system on a real robot. Chapter 7 presents the conclusions and future work is

discussed.
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Chapter 2

Human Robot Table Lifting through PbD

and Reinforcement Learning

In this chapter, the robot imitation learning and reinforcement learning framework is presented

as a solution to low-level skill learning. Section 2.1 introduces the motivation of the proposed

framework. In Section 2.2, the problem to be solved is described. In Section 2.3, the experiment

setup is introduced. Section 2.4 gives details of the framework. In Section 2.5, experiment results

are given and discussed.

2.1 Motivation

Before demonstrating a complex task, the low-level skills (primitive actions) should be learned

first. For co-robots to be useful, one of the fundamental abilities they should possess, is to work

collaboratively with humans. A common example where collaboration would be required, is in a

cooperative manipulation task, where a human-robot team has to manipulate an object of interest.

Human-robot collaboration (HRC) is a research field with a wide range of applications and high

economic impact [69]. Technology that enables robots to work collaboratively with humans can

be widely applied in the industry as well as in common day-to-day scenarios. This field has seen a

renewed interest in recent years because of the possibility of humanoid robots residing along with
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us in the near future. In this chapter, we are going to explore how to enable a robot to learn such

basic manipulative skills in an interactive way. These basic skill can be learned at the low level

and they can be later used in high-level skill learning.

2.2 Problem Statement

The task we consider is how a robot learns to collaborate with a human to lift a dummy table.

The reason of using a dummy table is because the robot can not handle heavy objects. Two skills

need to be learned: reaching the table and lifting the table up with the human. A two-phase

framework which combines PbD and reinforcement learning is developed to enable the robot to

learn dynamic tasks in a reasonable amount of time. In the first phase, PbD is used to teach the

robot how to reach out to the table. In the second phase, reinforcement learning is used for keeping

the table horizontal.

2.3 Experimental Setup

This section presents the experimental platform developed for human-robot table lifting. The

hardware includes a motion capture system, a humanoid robot and a dummy table. Fig. 2.1

illustrates the experimental setup.

The goal is to extract the task constraints from the human demonstrations, map the constraints

to the robot’s internal frame and let the robot learn to approach the table and keep the table horizon-

tal while lifting it with the human. Multiple demonstrations of human’s hand approaching the table

are given to the robot. Markers are attached and rigid-bodies are created to collect information of

interest. The position vector and the rotation matrix of each rigid-body are defined as follows:

• The position vector of the human’s left wrist (HLW PW).

• The position vector of the robot’s left wrist (RLW PW) and its torso for reference (RT PW).

• Four markers on the table’s corners to create the table object. Its position vector is repre-

sented as (T ABPW). Mid-points of these markers are calculated for each end and they denote
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Figure 2.1: Experimental setup.

the position of the human robot-ends (Z1 and Z2).

• T ABRW and RT RW denote the rotation matrices of the table and the robot’s torso respectively.

Each variable has three parts, the upper left superscript denotes the name of the variable, the

subscript denotes the which frame the variable is in, where P indicates a position vector and R

indicates a rotation matrix.

There are totally four frames used which are shown in Fig. 2.2: the world frame W, the table’s

frame T , the robot’s internal frame RI and external frame RE. The world frame is the frame of

the Vicon system. All the position vectors and rotation matrices are initially in the world frame.

The table’s frame is used to observe the human’s hand motion with respect to the table during the

demonstration. The robot’s external frame is used for calibration, and the robot’s internal frame is

used for controlling the robot.

2.3.1 Motion Capture System

The motion capture system used for our experiments is the Vicon MX motion capture system

[70]. The system consists of 12 Vicon T-40 cameras. Each camera can capture a 10 bit grayscale

image at a resolution of 4 megapixels. It can capture data at speeds upto 100 frames per second.

However, in our experiments, we only need the speed of 10 frames per second. The system is
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Figure 2.2: The frames used in the experimental setup.

equipped with sophisticated dynamic reconstruction algorithms for real time tracking. A Gigabit

Ethernet port is provided for connecting the cameras to the system. With the given system, we

can track any optical marker within a tolerance of 0.7 mm. We can create rigid bodies which are

three markers attached to a solid body in a specific pattern. The Vicon Tracker software is used

for capturing the rigid-body data. The algorithms used in Tracker are optimized for tracking rigid

bodies.

The Nao humanoid robot [71] is used for the experiment. It is an autonomous, programmable

and medium-sized humanoid robot which has 21 degrees of freedom (DOF), developed by Alde-

baran Robotics. The robot can be controlled remotely using telnet-like commands on a wireless

network. The SDK provided by the company includes an inverse kinematics procedure to control

end-effector positions with respect to a frame of reference located in its torso.

2.3.2 Calibration

The robot’s end-effector has to be controlled with respect to its internal frame of reference. But

the data obtained from motion capture, is for the markers placed on the robot’s body. Hence, a

correspondence between the externally attached markers and the controllable points on the robot

has to be found out. The robot’s SDK can provide the position of the robot’s end effector with

respect to its internal frame of reference. Hence we can obtain a model of transformation given the
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Figure 2.3: The block diagram of the imitation learning phase.

motion capture data and the corresponding robot’s data. We model this relation as a homogeneous

transformation which includes scaling, translation and rotation. The homogeneous transformation

takes the form of a calibration matrix.

For calibration, the robot waves its hand in random trajectories trying to cover all the possible

joint configurations of its arms. While it is doing so, positions are collected simultaneously from

the motion capture system (denoted by A) and forward kinematics is applied to robot’s internal

joint encoders (denoted by B). The linear least squares formula used to calculate this homogeneous

transformation (H) can be expressed as

H = (AT A)−1AT B (2.1)

2.3.3 Imitation Learning Phase

Firstly, the trajectories of interest have to be derived from the human demonstrations. Then we

have to extract critical constraints from the trajectories. Gaussian Mixture Model (GMM) is used

to encode the set of demonstrated trajectories (representation phase). Gaussian Mixture Regression

(GMR) [72] is then applied to retrieve a smooth generalized version of these trajectories and asso-

ciated variances (generalization phase). After mapping the constraints to the robot’s perspective,

the robot can generate its own trajectories based on the constraints. In the reproduction phase a

position controller is derived from the generalized trajectories for the new position and orientation

of the robot and the table. The block diagram of the proposed learning algorithm is shown in Fig.

2.3. The details of the block diagram are described next.
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Coordinate transformation

This section explains the required coordinate transformations. HLW PW , RT PW and T ABPW are

all in the Vicon’s world frame. The human’s wrist trajectory with respect to the table (denoted by

HLW PT ) is of interest for the learning purpose. So we need to transform the trajectory from the

world frame to the table’s frame. This transformation includes translation and rotation given by

HLW PT =
T AB RW(HLW PW −T AB PW) (2.2)

• Generalization

For imitation learning we adopt the probabilistic learning framework proposed by Calinon et

al. [20]. Let
{
ε j

}N
j=1

denote the N demonstrations. Each demonstration is normalized to 100 time

steps. Each datapoint ε j =
{
t j, ε

S
j

}
consists of a time step t j and a coordinate of position εS

j which

is a point in the trajectory of the human’s left wrist with respect to the table, HLW PT . The dataset

is first modeled by a Gaussian Mixture Model(GMM) of K components [73]. Each data point is

defined by its probability density function

p(ε j) =

K∑
k=1

πkN(ε j; μk,Σk) (2.3)

where, πk are prior probabilities and N(ε j; μk,Σk) are Gaussian distributions defined by cen-

ters μk and covariance matrices Σk, whose temporal and spatial components can be represented

separately as

μk = (μT
k , μ

S
k ), Σk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ΣTT

j ΣTS
j

ΣS T
j ΣS S

j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2.4)

Based on the GMM, a generalized version of the trajectories is computed by applying Gaussian

Mixture Regression (GMR). The procedure is as follows. For each component k, the expected

distribution of likelihood of εS
j given a time step t j and Gaussian mixture component k is defined

by

p(εS
j |t j, k) = N(εS

j ; ε̂S
k , Σ̂

S S
k ) (2.5)
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ε̂S
k = μ

S
k + Σ

S T
k (ΣTT

k )−1(t j − μT
k ) (2.6)

Σ̂S S
k = Σ

S S
k − ΣS T

k (ΣTT
k )−1ΣTS

k (2.7)

By taking the complete GMM into account, the expected distribution is defined by

p(εS
j |t j) =

K∑
k=1

βk, jN(εS
j ; ε̂S

k , Σ̂
S S
k ) (2.8)

where βk, j is the probability of the component k responsible for t j. By using the linear transfor-

mation property of Gaussian distribution, and estimation of the conditional expectation of εS
j given

t j is thus defined by p(εS
j |t j) ∝ N(ε̂S

j , Σ̂
S S
j ), where the parameters of the Gaussian distribution are

defined by

ε̂S
j =

K∑
k=1

βk, jε̂
S
k , Σ̂

S S
j =

K∑
k=1

β2
k, jΣ̂

S S
k (2.9)

By evaluating
{
ε̂S

j , Σ̂
S S
j

}
at different time steps t j, a generalized form of the trajectories ε̂ ={

t j, ε̂
S
j

}
and associated covariance matrices Σ̂ =

{
Σ̂S S

j

}
representing the constraints along the task

can be computed [74].

Correspondence problem

In the next step, the constraints derived from HLW PT will be applied to the robot. Since the hu-

man’s dimension is different from the robot, the constraints derived for HLW PT have to be mapped

to the robot’s end effector with respect to the table RLW PT . This problem can be simplified if we

consider only the position of the human’s wrist with respect to the table. Then, it only needs to

compensate for the dimension difference between the human’s wrist and the robot’s end effector.

The dimension difference is nothing but a constant bias. A simple method is proposed to calculate

this dimension difference. We put markers on a fixed object, then we let the human with markers

on the wrist and robot with markers on the end effector touch the same point on the box respec-

tively. The coordinates with respect to the fixed object are obtained. The difference of these two

coordinates is the dimension difference.
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Reproduction

In the reproduction phase, a new trajectory for the robot’s end effector RLW PRE has to be pro-

duced based on the generalized version of RLW PT . Given the T ABPW during reproduction phase,

RLW PRE can be derived as follows:

We have RLW PT which is

RLW PT =
T AB RW(RLW PW −T AB PW) (2.10)

RLW PW can be obtained as

RLW PW =
T ABRW

−1 RLW PT +
T AB PW (2.11)

Finally we can derive RLW PRE as

RLW PRE =
RT RW(RLW PW −RT PW) (2.12)

RLW PRE is the trajectory of the robot’s left end effector with respect to its torso, which will be

enacted by the robot after converting it into the trajectory with respect to the robot internal torso

frame.

Mirroring the trajectory

In the imitation learning phase, only left hand demonstrations are provided to the robot. This

trajectory is mirrored to obtain the corresponding trajectory of robot’s right end effector. The

mirroring process keeps all the X and Z coordinates in the trajectory of the left arm as they are and

reverses all the Y coordinates.

2.3.4 Reinforcement Learning

Once the robot holds the table successfully, it switches to learn the second task, table lifting

with human. The robot has to learn a reactive controller which generates a robot behavior based on

the human motion in order to keep the table horizontal. We use a reinforcement learning algorithm

to fulfill this task. For reinforcement learning, the state, action space and the rewards have to
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Figure 2.4: State definition for the reinforcement learning.

be defined. Instead of having a complex contact environment, the environment in our task is

simplified. The inclination of the table object determines the state. The action space consists of a

predetermined discrete set of commands which move the robot’s hand-tip up or down by specified

distances. The objective of the task is to keep the table horizontal during the task. Accordingly, the

reward structure has been designed to give a positive reward if the robot decreases the slope of the

table or a negative reward if the robot increases the incline of the table. The reward r is calculated

as

r = (|Z2 − Z1|)t − (|Z2 − Z1)|)t+1 (2.13)

where Z1 and Z2 represent the position of the human-end and the robot-end of the table respec-

tively.

The state definition for N states is shown in Fig. 2.4. In our task, we chose N = 5.

The update for the Q-learning algorithm is given by

ΔQ(st, at) = α[r + γmax
a

Q(st+1, a) − Q(st, at)] (2.14)

where α is the learning rate, γ is the discount factor.

In order to speed up the reinforcement learning phase, a guided-exploration method is used.

The guided learning algorithm is given below.

Visit(si, ai) is a counter which counts the number of visits to the state-action tuple (si, ai). Given

a state, the action selection for exploration is done on the basis of number of visits to the particular

state-action pair. The state-action pair explored least is given more priority.
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Algorithm 1 Guided Q Learning

1: Initialize Visit(si, ai) = 0 ∀i ∈ N

2: Initialize Q-table Q(si, ai) = 0 ∀i ∈ N

3: while Learning phase do

4: t = timestep

5: st = getS tate()

6: Select at ← argmin(Visit(st, a))

7: Take action at

8: Visit(st, at)← Visit(st, at) + 1

9: r = getReward()

10: Update Q(st, at) using Eq. (2.14), based on reward r.

11: end while

2.4 Experimental Results

In this section, first the imitation learning results are presented, followed by the reinforcement

learning results.

2.4.1 Imitation Learning Results

In the imitation learning phase, multiple demonstrations are given by the human. In each

demonstration, the human tried to approach the same position of the table with his or her left

hand from an arbitrary initial position. An open source code from http://www.calinon.ch/

has been used to run the GMM/GMR. The GMM/GMR results are shown in Fig. 2.5. Generalized

trajectories and constraints are thus obtained. From the results, it can be seen that the constraint on

the human-hand’s initial position is very loose. In contrast, the constraint on the human hand’s final

position is very strict, which indicates the final position of the robot’s end effector with respect to

the table is constant. After compensating for the size difference between human’s hand and robot’s

hand, the robot can generate its own trajectory given the constraints extracted. Each time the table

is moved to a new position, a new trajectory is reproduced by the position controller so that the
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Figure 2.5: Trajectory encoding and generalization.

robot can successfully approach the table. Finally the calibration matrix is used to convert the

trajectories from the robot’s external frame to the robot’s internal frame. In the imitation learning

phase, only left hand demonstrations are provided to the robot. This trajectory is mirrored to

obtain the corresponding trajectory of robot’s right end effector. The results are shown in Fig.

2.6. The images (a)-(d) show the robot replaying the generalized trajectories extracted from the

demonstrations and the images (e)-(f) show the robot reproducing the trajectories in a new situation

(different pose of the table). It is observed that the trajectories generated are smooth, with which

the robot successfully approaches the table.

2.4.2 Reinforcement Learning Results

For state-action space consisting of 5 states and 5 actions, the performance of random explo-

ration is compared with that of guided exploration. For training, in each experiment, the number

of iterations is fixed to 100. To test the speed of convergence, the experiment was performed 100

times. Fig. 2.7 shows the speed of convergence for these two algorithms for a single experiment
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Figure 2.6: (a)-(d) Replaying the generalized trajectory. (e)-(h) Reproducing the generalized tra-

jectory in an unknown table pose.

respectively. It is observed that the guided exploration policy converges much faster and is more

stable than the random exploration policy. On average the random exploration took more than 100

trials to reach an optimal policy whereas the guided learning algorithm could reach the optimal

policy within 60 trials.

After learning the optimal policy, we apply it to the robot. Fig. 2.8 shows the positions of the

ends of the table for human and robot side. The moving range of the table is within 20 cm. Fig. 2.9

shows the whole process of the table lifting task. From these figures, we can see that the robot can

follow the human’s action and perform the table lifting task successfully. However we could also

observe some jerks during the task which are due to the imperfections in the position controlled

end effector of the robot. Also the movement of the robot’s end effector has some delays, since it

takes some time for the robot to realize the human’s action.
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Figure 2.7: (a) Random exploration learning performance. (b) Guided exploration learning perfor-

mance.

Figure 2.8: Trajectory of the robot’s movement and human’s movement during lifting the table.
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Figure 2.9: Snapshots of human robot performing the table lifting task. (a)-(d) the robot lifting the

table up. (e)-(h) the robot putting the table down.

2.5 Summary

This chapter proposed a low-level skill learning strategy for robot skill acquisition. As shown

in the overall framework, the low-level skills (primitive actions) learned become part of the knowl-

edge base. It is a two-phase learning framework which combines imitation learning and reinforce-

ment learning. In the first phase, using imitation learning the robot can reach out and hold the end

of the table. A Programming by Demonstration (PbD) algorithm is used to accomplish this. From

the demonstration, the human left wrist position with respect to the table is recorded. Through

compensating the size difference between the human wrist and robot’s end effector, the trajectory

of the robot left end effector with respect to the table is obtained. Then the relationship between

the robot’s external frame and internal frame is calibrated. After that, the trajectory which can be

implemented by the robot is derived. GMM/GMR is applied to the multiple demonstrations for

generalization. The generalized trajectory is reproduced according to the new table position.

In the second phase, through reinforcement learning, the robot can learn to collaborate with a

human for the table lifting task. With the guided exploration strategy for Q-learning, the learning
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speed is improved. Using the entire framework, the robot can learn to perform the collaborative

table-lifting task quickly and successfully. Such low-level skills learned can be treated as primitive

actions in high-level skill learning. In our task, the robot only behaves as a follower and simply

reacts to the human’s action. For future works, if the robot can predict human’s motion, the per-

formance can be improved. Also, in the reinforcement learning phase, the states and actions are

discrete. Using continuous state-action representation can make the robot’s action smoother.
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Chapter 3

RGB-D Sensor based Manipulative Action

Recognition

To obtain high-level skills, the action used in the demonstration is an important clue because

it can tell the robot how to implement a task. In this chapter, by adopting an Xtion sensor [75],

we aim to recognize manipulative actions. Section 3.1 introduces the motivation of the proposed

framework. In Section 3.2, the problem to be solved is formulated. Section 3.3 presents the pro-

posed methodology. Section 3.4 describes the experiment procedures and gives the experimental

results.

3.1 Motivation

In recent years, human action recognition has found many applications, such as human-computer

interaction, surveillance, video games, etc. [32]. The use of human action recognition in robotics

is a new research frontier. As robots start entering human environments, there is a great need for

robots to acquire new skills in an efficient way. To fulfill this task, the robot has to understand the

actions conducted by the demonstrator.

Traditional action recognition methods merely consider motion related features captured by

either motion sensors or cameras. However, the capability to differentiate very similar actions
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mainly depends on the distinction of features. Therefore, more and more attention has been focused

on how to utilize other information sources to help improve action recognition, which is inspired

by psychological theories. Previously action and perception are treated as two separate human

information processes [76]. Recent studies in experimental psychology have confirmed the role

of object recognition in action understanding and vice-versa [77, 78]. In this chapter, we aim

to build an accurate action recognition system by considering the contextual constraints such as

object/action correlation and sequential constraint between actions. Such an action recognition

system can be used in robot skill learning through human demonstration.

3.2 Problem Statement

In this chapter, by adopting an Xtion sensor we aim to solve the manipulative action recogni-

tion problem. When equipped with this capability, a robot can understand human’s skills and learn

from human demonstration. In this work, we choose “preparing and having breakfast” as an exam-

ple, which is shown in Fig. 3.1. The proposed approach should be able to recognize the sequence

of actions involved in preparing and having breakfast. Since many manipulative actions in human’s

daily life are not very distinctive to each other, an efficient algorithm is needed to distinguish sim-

ilar actions. In many vision-based action recognition systems, the computational process is often

divided into three steps, namely human detection, human tracking and human action recognition.

Since the Xtion sensor already realizes human detection and tracking, we only focus on the third

step, action recognition.

3.2.1 System Setup

The system setup includes both hardware and software. The hardware consists of an Xtion

sensor and a DELL desktop computer with a 2.4GHz Intel Core(TM)2 CPU. The Xtion sensor is

used for both action and object recognition. It is a low-cost RGB-D camera that can provide both

color images and depth information. Its function is almost the same as Kinect [79]. However,

it is lighter than the Kinect sensor and is powered using a USB cable. This sensor has been
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Figure 3.1: Breakfast scenario. The objects in the scene, from left to right are bowl, milk box,

coffee can, cup, cereal box.

widely used in many robotic applications for object recognition, manipulation and human robot

interaction [1, 80, 40]. In this work, by appropriately setting the Xtion sensor as shown in Fig. 3.1,

it can observe the human motion and the objects he manipulates at the same time.

For the software, all the programs run under Robot Operating System (ROS) [81] in Linux.

ROS provides libraries and tools to help software developers create robot applications. It pro-

vides hardware abstraction, device drivers, libraries, visualizers, message-passing, package man-

agement, and more. One of the advantages of the ROS framework is that a system built using ROS

consists of a number of processes, potentially on a number of different hosts, connected at runtime

in a peer-to-peer topology [81]. So instead of writing a whole program for all the functions, we can

write each function as a node, and then run these nodes simultaneously. This parallel processing

structure can enhance the efficiency of the program.

3.2.2 Formulation of the Problem

Given the above setup, the input to the recognition system has two parts: the observation of

the object and the observation of the human action. The observation of the object ψo includes 3D

point cloud along with associated features {Pc, f1, f2... fk}.
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The observation of the action ψa is a sequence of skeleton joints angles of the human subject

{Γ1,Γ2...Γt}, where at each time point t, Γt = {Θ1,Θ2...Θp},Θi is the ith joint angle. Each joint could

have up to three joint angles. p is the total number of the joint angles. The reason of choosing joint

angles instead of joint positions is because joint angles are view and scale-invariance. On the other

hand, according to [82], instead of directly using the original joint angle time series data, one can

also extract various types of features such as the mean or variance of joint angle time series, or

the maximum angular velocity of each joint. However, in our scenario, we are trying to recognize

breakfast preparation actions which usually have relatively short durations and smooth velocities.

Therefore, instead of apply a function that maps the joint angle sequence to a single scalar value,

we use the joint angle sequence as our feature.

We assume the object set O = {O1,O2...Om}, and the action set A = {A1, A2...An}. The problem

is to develop an algorithm to decide on Aj ∈ A given the above observation. In other words, the

goal of the action recognition is to find a mapping function f ,

Aj = f (ψo, ψa) (3.1)

Each element in ψa is a temporal sequence.

3.3 Methodology

A multi-level probabilistic framework is proposed to recognize the human manipulative ac-

tions. The whole framework is shown in Fig. 3.2. There are totally three levels in this framework.

In the low level, HMMs are employed to model the dynamics of the actions. In the middle level,

a Bayesian model is used to capture object/action dependencies. In the high level, the contextual

constraints are modeled with an HMM to refine the mid-level recognition results.

3.3.1 Object Recognition

We adopt the ROS object recognition package developed by the RoboEarth team [83]. The

package introduces a way to build up and use an extensive sensor-independent object model

database. There are three steps for object recognition in RoboEarth.
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Figure 3.2: The multi-level action recognition framework.

3D Model Creation

To build a 3D object model, an Xtion sensor is used along with a marker pattern. At the

beginning, the object of interest is placed at the center of the predefined marker pattern on a rotating

table such as a Lazy Susan as shown in Fig. 3.3. Subsequently, the Lazy Susan is rotated smoothly

by the user so that the Xtion sensor records the object from different views. The marker pattern

puts a limit on the size of the object. Typically, the object should have a diameter less than 13 cm

so that it will not cover the maker pattern. Fig. 3.4 shows the 3D model of a coffee can created

using this method.
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Figure 3.3: Setup for 3D object model modeling. (a) the camera view. (b) the object recording

setup.

Figure 3.4: Two different views of the 3D model of a coffee can.

Feature Extraction

Each object model consists of several recordings from around 100 viewpoints. For each record-

ing, a 3D point cloud along with the SURF features [84] associated with some of those points are

stored. There are currently two different recognition algorithms implemented that make use of the

objects stored in the database: one for using common RGB cameras and the other for using the

Xtion. We use the recognition algorithm using the Xtion.

Recognition

In the recognition phase, the depth information for the feature points in the camera image is

used to compare the distances between given feature points with the distances in the respective
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Figure 3.5: Human skeleton tracking.

object model feature points. This check is used to discard the less likely correspondences. Addi-

tionally, the pose of the recognized object is estimated, which is a rigid transformation between

the point cloud models. To obtain a good recognition result, the position of the object should be in

certain range (0.7-1.5 meters) with respect to the Xtion sensor.

3.3.2 HMMs for Low-level Action Recognition

Modeling the low-level dynamics of human motion is important for human motion recogni-

tion. It serves as a quantitative representation of simple movements so that they can be recognized

in a reduced space by using the motion trajectories [85]. We propose an HMM based approach

that does not require explicit motion segmentation to perform real-time action spotting and clas-

sification from continuous user motion. The HMM approach to action recognition is motivated

by the successful application of HMM techniques to speech recognition problems. Each action is

characterized by an HMM.

Each model is trained with 20 sets of training data at a sampling rate of 20 Hz. The training

data is a sequence of right arm joint angles which can be accessed through the Openni [86] driver

and the skeleton tracker function as shown in Fig. 3.5. All the actions are conducted using right

arm. Therefore, four joint angles from two right arm joints are considered: the roll and yaw angles

of the right elbow, the roll and pitch angles of the right shoulder. The number of state in each

HMM is 10. The number of observation symbol is 8. They are set by heuristic method.
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Figure 3.6: Data segmentation in recognition phase.

In the training phase, there are four steps:

• Step 1: Segment the training set.

• Step 2: Quantify the vectors into observation symbols using the K-means clustering [87].

• Step 3: Set up the initial HMM parameters.

• Step 4: Parameter estimation using the EM method [88].

In the recognition phase, as shown in Fig. 3.6, the testing data is segmented using a fixed

sliding window of size 15. The step size for the sliding window is 1, therefore, no data is missed.

The probability of having the observation sequence given the model P(ψa|λ j) is computed for each

sliding window. ψa is a sequence of feature vector. λ j is the HMM model for action Aj. Solving

this problem allows us to choose the model which best matches the observations. For further details

about the low-level HMM please see our previous work [89].

3.3.3 Bayesian Network for Modeling Object/action Dependency

The object/action dependency is modeled by a Bayesian network shown in the lower part of

Fig. 3.7. The object which is selected for manipulation is denoted by Os ∈ O. The manipulating

action is denoted by Aj. ψo and ψa are the observation of the selected object and the observation

of the action, respectively, where ψo ∈ Ψo and ψa ∈ Ψa. At this level, the goal is to find Am which
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Figure 3.7: The hierarchical probabilistic model.

generates the maximum posterior likelihood (MAP) estimation,

Am = arg max
A j

P(Aj|ψo, ψa) (3.2)

According to Bayesian rule,

P(Aj|ψo, ψa) ∝ P(ψa|Aj, ψo) · P(Aj|ψo) (3.3)

As shown in the Bayesian model, we made the assumption that ψa is independent of ψo given

Aj. Therefore, P(ψa|Aj, ψo) = P(ψa|Aj). P(ψa|Aj) is interpreted as P(ψa|λ j) which is the output the

low-level HMMs. Applying the total probability theorem, we have

P(Aj|ψo) =
∑

i

P(Aj|Oi, ψo) · P(Oi|ψo) (3.4)

P(Aj|Oi, ψo) = P(Aj|Oi), since Aj and ψo are independent given Oi. P(Aj|Oi) is the prior proba-

bility characterizing the object/action dependency, which can be calculated based on the occurrence

of Aj given Oi in the training set. On the other hand, P(Oi|ψo) is the object classification results in

terms of probability.
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Figure 3.8: The constraints in the upper level HMM.

3.3.4 HMM Modeling of Sequential Constraints

In most human daily activities, actions usually follow certain patterns. For example, “drink

milk” is more likely to happen after “pour milk” than “shake milk”. Such sequential constraints

can be modeled by a high-level HMM and will be used to improve the action recognition accuracy.

The structure of the proposed high-level HMM is shown in the upper block of Fig. 3.7. In

the model, the state is defined as the combination of action and object as Action(Ob ject). For

example, “drink(cup)” and “drink(milk)” are two different states in the upper level HMM. The ob-

servations are the outputs from the Bayesian network. The parameters of the model λh(Ah, Bh, πh)

are obtained from the observed patterns of the experimenter, which may be different from person

to person. The transitional matrix Ah is estimated from the observed action sequence. The obser-

vation symbol probability distribution matrix Bh is the accuracy matrix of each action/object pair

given the decision from the Bayesian network. The sequential constraint is shown in Fig. 3.8. The

goal is to find the optimal state sequence associated with the given observation sequence.
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Table 3.1: Object and action dependencies. Darker color represents lower probability.

drink pour stir eat shake fill
milk�bottle

cup
bowl

coffee�can
cereal�box

Action�type
Object

3.4 Experiments and Results

In this section, we first explain the experiment procedures. Then, we analyze the experimental

results.

3.4.1 Experiment Procedure

Scenario

A breakfast scenario as shown in Fig. 3.1 is used to validate our theoretical framework. The

procedure consists of two parts: preparing breakfast and having breakfast. Five objects are used,

O ={ “coffee can”, “milk box”, “cup” , “bowl”, “cereal box”}. Six different actions are defined,

A ={“drink”, “pour”, “stir”, “eat”, “shake”, “fill”}. Currently we only focus on right arm move-

ment. However, it is very convenient to extend to any joints of interest. At any time, we assume

only one object is manipulated. The training data is collected from one subject while the model is

tested by 4 subjects including the trainer.

Training

Each level of the probabilistic model needs training. For the low-level HMMs, each model

is trained with fifteen sets of training data at a sampling rate of 20 Hz. A rule-based method is

adopted for data segmentation. The starting pose is defined, and each training data set consists

of twenty data points after the starting point. For the Bayesian model, each object has certain

probabilities regarding the actions that can be applied on it. The probability is estimated using the
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ratio of the number of each action on the object over the number of all the actions on the object

respectively. Table 3.1 presents the probability of actions applied on each object. The color from

light to dark indicates the probability from high to low. For the high-level HMM, the transition

matrix is obtained from the training action sequence.

Testing

The trained models are tested in real-time. The object recognition is affected by occlusion

and shadowing caused by the human hand. However, the actions are not affected by the objects,

since we are focusing on the arm movement and the human skeleton tracker is robust to minor

occlusion. The action recognition follows the procedures shown in Fig. 3.9. The objects on the

table are recognized first. Based on the relative position between each object and human’s hand, the

object to be manipulated can be determined. Then, the low-level HMM based action recognition

will be triggered. It will be combined with the object recognition to generate the decision from the

Bayesian model. Finally, the Bayesian filtering generates the output based on the previous and the

current Bayesian model outputs.

Object 
recognition

Determine which object is 
picked

Action 
recognition

Time axis

Low-level HMM based 
recognition output

Bayesian model 
recognition output

Bayesian 
filtering output

Previous Bayesian 
model output

Figure 3.9: Real time recognition procedure.
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Figure 3.10: Object recognition results 1. The objects from left to right are bowl, milk box, coffee

can, cup, cereal box. (a) bowl, coffee can, cup and cereal box have been recognized. (b) bowl,

milk box, cereal box have been recognized.

3.4.2 Results

We first present the object recognition results. Figure 3.10 shows two snapshots of object

recognition, in which different objects are recognized. As long as the object in the camera view is

detected once, we can obtain the object type and pose. Only the object type is used as the object

context. When the object moves fast, the recognition is not stable. Therefore, the objects are

recognized when they are put on the table. On the other hand, the human’s hand position can be

calculated based on the human skeleton. According to the relative position of the human’s hand

and the object, the object to be manipulated can be determined. To verify the robustness of the

object recognition algorithm, we put two objects with similar shape in the field of camera view, the

coffee can 1 (in the middle) and coffee can 2 (on the right). The goal is to recognize coffee can 1.

Fig .3.11 (b), Fig .3.11 (c) and Fig .3.11 (d) show that the algorithm can recognize the coffee can 1

even with occlusion and similar objects in the scene. The object recognition accuracy is shown in

Table 3.2.

For action recognition, two offline experiments are designed to verify the proposed framework.

To make the performance comparison of each level consistent, we only show the action type and

do not show the object involved, since the low-level HMM does not consider the object informa-

tion. In the first scenario, the subject manipulates each object multiple times. The purpose is to

evaluate the accuracy of the Bayesian network decision. Parts of the testing results are shown in

Fig. 3.12. It indicates that the low-level HMMs cannot distinguish action “fill”, “stir” and “pour”
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Figure 3.11: Object recognition results 2. (a) Camera view. The goal is to recognize the coffee can

in the middle of the three objects. (b), (c) Recognition result with occlusion and similar object in

the scene. (d) Recognition result in cluttered scene.

from each other, since they have similar motion features. Therefore, with the motion features

alone, the recognition performance is poor. Table 3.3 shows the accuracy of the low-level HMMs.

However, most of these similar actions can be differentiated from each other effectively by con-

sidering the object involved. This is because the conditional probability P(action|ob ject) can be

used to distinguish these actions. For example, P( f ill|milk box) = 0, P(stir|milk box) = 0.05, while

P(pour|milk box) = 0.6. The comparison between the low-level HMM output and Bayesian net-

work output are shown in Fig. 3.12. Table 3.4 shows the recognition results when the object types

are considered.

However, there are still misclassification between action “stir” and “pour”. The reason is that

according to Table 3.1 which presents the occurrence of action given the object. Action “stir”

and action “pour” are all possible for object “cup”. The conditional probability P(stir|cup) and

P(pour|cup) are not distinctive enough from each other. Therefore, the Bayesian model is unable

to distinguish these two similar actions effectively. The Bayesian filtering approach can solve this

problem because for the object “cup”, the action “pour” is more likely to happen after “drink”

than “stir”. Fig. 3.13 shows that, the first “pour” action is recognized as “stir” falsely by the
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Table 3.2: The confusion matrix of object recognition

test type
decision type

accuracy
milk box cup bowl coffee can cereal box

milk box 0.95 0.05 0 0 0 0.95

cup 0.02 0.98 0 0 0 0.98

bowl 0 0 1.00 0 0 1.00

coffee can 0 0.02 0 0.98 0 0.98

cereal box 0 0 0 0 1.00 1.00

Table 3.3: Recognition accuracy of the low-level HMMs

test type
decision type

accuracy
drink pour stir eat shake fill not detected

drink 0.85 0.04 0 0.06 0 0 0.05 0.85

pour 0 0.56 0.22 0 0 0.12 0.10 0.56

stir 0 0.28 0.52 0 0 0.12 0.08 0.52

eat 0.04 0 0.10 0.76 0 0 0.10 0.76

shake 0 0 0 0 0.90 0 0.10 0.90

fill 0 0.44 0.12 0 0 0.32 0.12 0.32
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Figure 3.12: Action recognition results with object constraints. Results of 11 actions are shown

here. The Bayesian network output is action object pair. The object type is not shown in the figure.

The legend RER,REY,RSR,RSP represent the angle of right elbow roll, right elbow yaw, right

shoulder roll and right shoulder pitch respectively.

Table 3.4: Recognition accuracy of the Bayesian model

test type
decision type

accuracy
drink pour stir eat shake fill not detected

drink 0.86 0.04 0 0.06 0 0 0.04 0.86

pour 0 0.54 0.33 0 0 0.05 0.08 0.54

stir 0 0.26 0.62 0.04 0 0.02 0.06 0.62

eat 0.04 0 0.08 0.78 0 0 0.10 0.78

shake 0 0 0 0 0.90 0 0.10 0.90

fill 0 0.04 0.02 0 0 0.84 0.10 0.84

Bayesian model. However, it is not corrected, because its previous action is “shake”. The se-

quential constraint between these two actions is not tight. The second wrong decision is corrected
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Figure 3.13: Action recognition results with object constraints and sequential constraints. Results

of 7 actions are shown here. The high-level output is action object pair. The object is cup. The

legend RER,REY,RSR,RSP represent the angle of right elbow roll, right elbow yaw, right shoulder

roll and right shoulder pitch respectively.

since it happened after action “pour”, which has strong sequential constraints with action “pour”.

Table 3.5 shows the accuracy of the high-level HMM. We also conducted real time experiments.

In this experiment, the subject does a series of actions during breakfast. The result indicates that

the low-level HMM decision is poor when the action is very similar to some other actions. On the

other hand, the high-level HMM can correct wrong decisions from the Bayesian models effectively.

Therefore, the results of the real-time experiment are consistent with the offline results.

The action recognition performance is highly dependent on the skeleton tracking. Therefore,

three subjects with different heights and weights were asked to verify the robustness of the system.

Each of them was asked to do breakfast routine several times until enough actions were collected

for each action type. The profiles of the subjects are show in Table. 3.6. Subject 1 is the trainer.
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Table 3.5: Recognition accuracy of the high-level HMM

test type
decision type

accuracy
drink pour stir eat shake fill not detected

drink 0.86 0.02 0 0.06 0 0 0.04 0.86

pour 0 0.85 0.07 0 0 0 0.08 0.85

stir 0 0.04 0.88 0.04 0 0 0.04 0.88

eat 0.04 0 0.05 0.85 0 0 0.06 0.85

shake 0 0 0 0 0.92 0 0.08 0.92

fill 0 0.04 0.02 0 0 0.86 0.08 0.86

Table 3.6: The profiles of the subjects

subject No. sex height(cm) weight(pounds)

1 male 177 180

2 female 155 100

3 male 185 190

4 male 170 160

Figure 3.14: Recognition performance on different subjects.

The comparison results are shown in Fig. 3.14. It shows that the performance is stable when the

algorithm is tested on different subjects.

We also test the action recognition algorithm on the MSRDailyActivity 3D dataset [93]. The
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Table 3.7: Recognition Accuracy Comparison for MSRDailyActivity 3D dataset

Method Accuracy

Dynamic Temporal Warping [90] 0.54

Actionlet Ensemble [91] 0.857

DCSF + joint positions [92] 0.882

Proposed Method 0.87

dataset was captured using a Kinect. There are totally 16 activities. Each action was performed by

ten subjects twice. We extract the joint angles of both arms from the skeleton joint data. There are

totally four joint angles: elbow roll and yaw of both arms, shoulder roll and pitch of both arms.

Most of the actions involve object. However, the dataset does not include object information.

Therefore, object context and sequential constraints are not considered here. We use half of the

data for training and the other half for testing. The average accuracy of our algorithm is compared

with that of some existing approaches, as shown in Table. 3.7. The performance of our algorithm

is among the best.

3.5 Summary

Recognition of human actions using a vision based approach is a challenging task if the ac-

tions have similar motion features. This chapter investigates how to improve the performance of

manipulative action recognition through a RGB-D sensor. A human body can be represented as

an articulated system of body segments connected by joints. Based on that human motion can be

treated as a temporal evolution of the spatial configuration of these body segments. Therefore,

if we can reliably extract and track the human skeleton, action recognition can be performed by

classifying the temporal evolution of human skeleton. With the emergence of low-cost RGB-D

sensors, a skeleton of a person can be easily obtained. These sensors provide 3D depth data of the

scene, which is robust to illumination changes and offers more useful information to recover 3D

human skeletons.
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A multi-level probabilistic model is proposed as a solution to the action recognition problem.

In the low-level, human motion is modeled using an HMM. The joint angle sequence is used as

the motion feature. In the training phase, the training data is segmented into vectors. Before

they are fed to HMMs, these vectors are quantified into discrete observation symbols. Then HMM

parameters are estimated using the EM method iteratively. In the recognition phase, the testing data

is input to each HMM. The HMM that outputs the maximum probability is chosen as the decision.

In the mid-level, the dependencies between object and action are modeled in a Bayesian model,

actions which are either too subtle to perceive or too similar to discriminate can be recognized

with high accuracy. The idea is that the object type can be used as a prior knowledge for action

recognition, for example, if a cup is held in a hand, actions like “pouring” or “drinking” are more

likely to happen than “eating”. In the high-level, with the action sequential constraints, similar

actions on the same object can be differentiated effectively. Because in most human daily activities,

actions usually follow certain patterns.

Both online and offline experimental results verify that our framework outperforms the ap-

proaches that use motion feature only. The experiment on subjects with different body shapes

show the robustness of the system. The accuracy test using the MSRDailyActivity 3D dataset

proves that the performance of our algorithm is comparable to that of the existing work. How-

ever, we use much simpler features. In this work, the object recognition helps action recognition

while the future work is to exploit the mutual dependency so that object recognition and action

recognition can help each other.
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Chapter 4

Fine Manipulative Action Recognition

through Sensor Fusion

In this chapter, we extend our previous work to recognize fine manipulative actions. Multiple

sensors are adopted to completely capture the related features. Information fusion methods are de-

signed to generate more accurate decisions. Section 4.1 introduces the motivation of the proposed

framework. In Section 4.2, the problem to be solved is formulated. Section 4.3 presents the pro-

posed methodology. Section 4.4 describes the experiment procedures and gives the experimental

results.

4.1 Motivation

Nowadays, the demand for intelligent robots is not limited to repetitive tasks. Teaching a

robot delicate assembly skills through human demonstration can avoid lengthy robot program-

ming, while little technical expertise is required for the operator. To fulfill this goal, one of the

fundamental problems is to understand complex human assembly actions. Assembly actions may

involve arm and finger motions and interactions with the manipulated objects. For example, ham-

mering involves obvious arm and wrist movement while minor finger motion. Screwdriving is

mainly about finger rolls. Drilling only involves finger pressure on the buttons. To capture manip-
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Figure 4.1: The setup of the Portable Assembly Demonstration (PAD) system.

ulative actions in assembly tasks, traditionally vision or motion sensors are used [94, 95]. However,

recognizing manipulative actions using vision-based methods has several difficulties. First, the in-

teraction between the human hand and the object, such as the force applied can not be captured.

Second, tracking human hands is difficult since occlusions between the objects and hands occur

frequently. On the other hand, wearable sensors can offer stable information about human arm

and finger motion. However, they cannot capture the information regarding the object. Therefore,

it is desired that sensors with multiple modalities are used to recognize assembly actions. In this

work, three kinds of sensors are used to fully capture the fine manipulative actions during assembly

tasks. The captured information includes human motion, object geometry and visual appearance,

and human/object force interaction.

4.2 Problem Statement

In this chapter, by adopting multimodal sensors, we aim to solve the fine manipulative action

recognition problem. When equipped with this capability, a robot can better understand human

skills. Assembly tasks are chosen to evaluate our proposed algorithms.
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4.2.1 System Setup

The hardware platform as shown in Fig. 4.1 consists of a Kinect sensor on a tripod, a motor-

driven Lazy Susan, a data glove that senses finger joint angles and forces, and a computer for data

processing (not in the picture). The Kinect sensor is used to capture the information about the

objects and the human skeleton motion. As a low cost RGB-D camera, the Kinect has been widely

used in many robotic applications for object recognition and human robot interaction [40]. The

Kinect has three operation modes: 1) template extraction mode, 2) object recognition mode and 3)

human tracking mode. To extract object templates, the object is put at the center of the Lazy Susan.

As the motor rotates, object templates (the points above the Lazy Suan) from different angles are

extracted. They will be used later for object recognition. To scan and recognize objects, the Kinect

faces downward 45 degree at the objects on the Lazy Susan. To track the human skeleton, the

Kinect looks horizontally at the demonstrator. The pose of the Kinect can be controlled through

the motor embedded in it.

The data glove is used to measure the finger joint angles and finger forces. Due to the lack of a

commercial data glove that measures finger joint angles such as the CyberGlove [96], we use the

Vicon motion capture system to track markers attached to the glove fingers. The motion capture

system has an accuracy of 0.7 mm. To capture finger motion, the hand model needs to be created

first. Instead of building a full hand model, we only model the thumb and index fingers, which is

sufficient to characterize the hand motion in our assembly task. The finger model created is shown

in Fig. 4.2 which captures wrist angles, index finger angles and thumb finger angles.

Assembly tasks always involve forces applied by hands. Therefore, force is also an important

clue for action recognition. To measure the finger forces, the FlexiForce sensors [97] are used. It

can detect and measure a relative change in force or applied load. The range of this sensor is from

0 to 1 lb. An XBee module [98] samples 4 channels and sends the result to the receiver. We attach

a FlexiForce sensor to each finger (except the pinkie finger) through a rubber inner glove as shown

in Fig. 4.3.

For the software, all the programs run in Robot Operating System (ROS) [81] in Linux. The

overall flowchart is shown in Fig. 4.4. There are totally three kinds of node: three information
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Figure 4.2: Finger model created. (a) the placement of the markers. (b) finger model created.

Figure 4.3: Force sensor setup. (a) the force sensors on the finger tips. (b) the Xbee module for

wireless communication.

Vion data 
collection node

Force sensor data 
collection node

Kinect data 
collection node

Action recognition 
node

Object recognition 
node

Figure 4.4: The flowchart of the action recognition system.

collection nodes, object recognition node and action recognition node. The three information col-

lection nodes receive the data from the force sensor, Vicon system and Kinect sensor respectively.

The message filter in ROS synchronizes the multiple data sources. The object recognition node
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is for recognizing the parts and tools involved. The action recognition node considers both the

multiple sensor data and the object recognition node output for improved accuracy.

4.2.2 Formulation of the Problem

Given the above setup, the input to the recognition system consists of two parts: the observation

of the object and the observation of the manipulative action. The observation of the object ψo is

the decision of the object recognition algorithm. The observation of the action ψa has three parts.

The first part comes from the human skeleton tracked by the Kinect sensor which is shown in

Fig. 3.5. {Γ1,Γ2} are the left shoulder and left elbow joints. Four joint angles are extracted from

these two joints. The second part is from the Vicon system, which is a sequence of finger and

wrist joints angle data. The joints are index finger joint, thumb finger joint and the wrist. They

are represented as {α1, α2, α3} respectively. For each joint αi, the roll, pitch and yaw angles are

captured. The third part is the force data from the four fingers {β1, β2, β3, β4}. We assume the object

set O = {O1,O2...Om}, and the action set A = {A1, A2...An}. The problem is to develop an algorithm

to decide on Ai ∈ A given the above observation, or to find a mapping function f ,

Ai = f (ψo, ψa) (4.1)

where

ψa = {Γ1,Γ2, α1, α2, α3, β1, β2, β3, β4} (4.2)

Each element in ψa is a temporal sequence.

4.3 Methodology

A probabilistic framework is proposed to recognize the fine manipulative actions. The frame-

work is shown in Fig. 4.5. There are two levels in this framework. In the low level, hidden Markov

models (HMMs) are employed to model the temporal variations of the actions. In the high level,

a Bayesian model is used to capture object/action dependencies. The details about the HMMs are

introduced in 3.3.2.
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Figure 4.5: The two-level action recognition framework.

4.3.1 Object Recognition

With the emergence of RGB-D cameras, color and depth based object recognition has been

receiving more attention recently. With RGB-D cameras, not only the object type but also its pose

can be obtained efficiently, which is useful for object manipulation. By recognizing the parts to be

assembled and the tools to be used, we can better recognize the assembly action. The challenge is

that the size of the parts and tools are usually small and traditional 2D feature based recognition

algorithms are not effective due to the limited number of features. Therefore we adopt a 3D feature

based recognition algorithm.

To recognize objects, the 3D templates for each object will be created beforehand. For each

object, we will capture multiple templates (2 for symmetric object and 4 for asymmetric object)

from different camera views. To extract the point cloud of the object on the Lazy Susan, all the

distant points will be filtered out first. Then the top surface of the Lazy Susan is extracted and all

the points above that surface are considered as the points of the object.

3D object recognition is performed based on the recognition module in Point Cloud Library

(PCL) [99]. The recognition process is as follows. First, from the point cloud of the whole scene,

only points above the Lazy Susan are extracted which greatly decreases the number of points to

be processed. It can also help improve the recognition accuracy since the false alarms can be pre-

vented effectively. Second, the normals of each point in both the model point cloud and the scene

point cloud are computed using the 10 nearest neighbors. Third, each point cloud is downsampled
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to find a small number of keypoints, which will then be associated to a 3D descriptor in order

to perform keypoint matching and determine point-to-point correspondences. The density of the

sampled point clouds is adjusted according to the size of the object. To extract enough features,

higher sampling densities are required for small objects. According to [100], the SHOTCOLOR

[101] descriptor, which is a color version of SHOT (Unique Signatures of Histograms) [102], has

competitive performance among the 3D descriptors. Therefore we choose SHOTCOLOR as the

descriptor. Fourth, point-to-point correspondences between model descriptors and scene descrip-

tors need to be determined. The last step is to cluster the previously found correspondences. One

correspondence grouping algorithm developed in [103] are used. The object recognition results

gives both identity and pose of the recognized object. Only identity information is used in our

algorithm.

4.3.2 Fusion Method

The feature-level fusion method is shown in Fig. 4.6-(a) which consists of feature selection,

HMM-based classification and Bayesian filtering. In general, different sets of features characterize

different manipulative actions. For example, finger forces vary during actions such as “screwing”

and “fixing”. The skeleton joint angles capture the motion of the actions like “hammering” and

“wrenching”. However, some of the features may be irrelevant and have to be removed, since the

presence of irrelevant features requires more computational cost. In addition, it may reduce the

classification accuracy. Algorithms used for selecting features fall into two categories: the wrap-

per methods and the filter methods [104]. The wrapper method uses cross-validation to predict the

benefits of adding or removing a feature from the feature subset used. While the filter method does

not rely on any knowledge of the algorithm to be used [105]. The wrapper method is computa-

tionally intensive. Since each new subset is used to train a model, which is tested on a hold-out

set. Counting the number of mistakes made on that hold-out set gives the score for that subset.

Therefore, we choose the filter method which uses a proxy measure instead of the error rate to

score a feature subset. This measure is chosen to be fast to compute, whilst still capturing the use-

fulness of the feature set. Our feature selection approach is inspired by the variance preservation
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Figure 4.6: Fusion approaches. (a) feature-level fusion method. (b) decision-level fusion method.

algorithm [106], which selects a subset of features that preserve the variance contained in the data.

Since the assembly action are all non-stationary actions. Therefore, the feature sequence which

can characterize the action should show a decent amount of variance. The variance of each feature

in the training set for each action is calculated. The range of the feature data is normalized to the

same scale. The variance ratio ρ is used as the selection measurement

ρi j = vi j/
∑

i

(vi j) (4.3)

where vi j is the variance of the ith feature in action j’s training data set. As long as ρi j is over a

predefined threshold, which indicates it is a significant feature for the jth action, the ith feature

will be kept. The recognition models will be trained using the features selected.

On the other hand, for the decision-level fusion method as shown in Fig. 4.6-(b), features are

divided into different groups. Multiple classifiers are created using the different groups of features.

To fuse the decision from each classifier, we design a measure which indicates the confidence of

each decision. The confidence index is defined as

ζ j = maxP(ψa|λi j)/
∑

k

(P(ψa|λk j)) (4.4)
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Figure 4.7: The Bayesian Model for action recognition.

where λi j is the HMM for action i using feature group j. ζ j is the confidence index of the decision

from classifier j. The decision of the classifier with the strongest confidence index ζs will be

chosen.

arg max
i

P(ψa|λis) (4.5)

where λis denotes the type s HMM (with the strongest confidence) for action i.

4.3.3 Bayesian Network for Modeling Object/action Dependency

There are two kinds of objects involved in the assembly task: tools and parts. They both have

correlation with the action, which can be modeled using a Bayesian model. Here Aj denotes a

manipulative action. The Bayesian model is shown in Fig. 4.7. ψp is the decision of the part

recognition. ψt is the decision of the tool recognition. where ψp ∈ Ψp, ψt ∈ Ψt and ψa ∈ Ψa.Ψp and

Ψt are the set of part and tool type respectively.

At this level, the goal is to find the maximum posterior likelihood (MAP) estimation,

arg max
A j

P(Aj|ψa, ψp, ψt). According to the Bayesian rule,

P(Aj|ψa, ψp, ψt) ∝ P(ψa|Aj, ψp, ψt) · P(Aj|ψp, ψt) (4.6)

As shown in the Bayesian model, we made an assumption that ψa is independent of ψp and ψt

given Aj. Therefore, P(ψa|Aj, ψp, ψt) = P(ψa|Aj). P(ψa|Aj) can be interpreted as P(ψa|λ j) which

is the output of the low-level HMMs. λ j is the HMM model for action Aj. Applying the total

probability theorem, we have
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P(Aj|ψp, ψt) =∑
m

∑
n

P(Aj|Pm,Tn, ψp, ψt) · P(Pm,Tn|ψp, ψt)
(4.7)

where Pm,Tn is part m and tool n. Aj is independent of ψp, ψt given Pm,Tn. Therefore,

P(Aj|Pm,Tn, ψp, ψt) = P(Aj|Pm,Tn) (4.8)

P(Aj|Pm,Tn) is the prior probability characterizing the action that occurs on part Pm using tool

Tn, which can be calculated based on the occurrence of Aj given Pm and Tn in the training set. On

the other hand, we have

P(Pm,Tn|ψp, ψt) = P(Pm|ψp) · P(Tn|ψt) (4.9)

P(Pm|ψp) is the part classification accuracy and P(Tn|ψt) is the tool classification accuracy.

4.4 Experiments and Results

In this section, we first introduce the experiment setup. Then, we analyze the experimental

results.

4.4.1 Experiment Setup

An assembly scenario as shown in Fig. 4.1 is used to validate our theoretical framework. Fig.

4.8 captures all the parts and tools. The action, tool and part sets are shown in Table. 4.1. Currently

the force sensors and markers are attached to left arm and hand. However, it is straightforward to

extend them to both arms. At each time, we assume only one part is manipulated. The training

data is collected from one subject while the model is tested on 5 subjects including the trainer.
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Table 4.1: The action, tool and part sets.

No. 1 2 3 4

Action hammering screwing wrenching sawing

Tool hammer screw driver wrench saw

Part screw red base board blue base board bolt

No. 5 6 7

Action drilling rasping fixing

Tool drill wood planer G clamp

Part N/A N/A N/A

Figure 4.8: The parts and tools. From left to right, the top row shows saw, G clamp, drill, and

wood planner. The middle row shows hammer, screw driver, and wrench. The bottom row shows

screw, red base board, long base board, and bolt.

4.4.2 System Evaluation

Object Recognition

We evaluate the robustness of our approach under occlusion and in cluttered scenes. Fig. 4.9

(a) shows that with minor occlusions, the red base board can still be recognized. Fig. 4.9 (b) shows

that our algorithm works correctly in cluttered scenes. The two red blocks in the cluttered scene

which are similar to the red base board are not misclassified as the red base board. The recognition

accuracy for each part and tool is shown in Table. 4.2.
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Table 4.2: The object recognition accuracy.

Object saw G clamp drill wood planner

Accuracy 0.92 0.93 0.95 0.92

Object hammer screw driver wrench screw

Accuracy 0.97 0.87 0.88 0.85

Object red base board blue based board bolt

Accuracy 0.86 0.87 0.89

(a) (b)

Figure 4.9: Results of board recognition, where the recognized objects are highlighted in green.

(a) recognition of the red base board with occlusion from a bolt. (b) recognition of the red base

board in a cluttered scene.

Table 4.3: The feature selection output

��������������
Action

Feature
relevant features

hammering elbow roll elbow yaw - -

screwing index finger roll thumb finger roll thumb finger force index finger force

wrenching shoulder roll elbow roll elbow yaw -

sawing elbow roll elbow yaw shoulder pitch -

drilling index finger force index finger yaw - -

rasping elbow roll elbow yaw shoulder pitch -

fixing index finger roll thumb yaw - -

Action Recognition

The action recognition algorithm is evaluated using real-time experiments. The subject is asked

to do each action 100 times. For the feature-level fusion method, the selected features for each
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Table 4.4: The list of recognition approaches.

Type No. Classification approach

1 arm motion feature based HMMs

2 finger motion feature based HMMs

3 force feature based HMMs

4 selected feature based HMMs

5 Decision-level fusion method + Bayesian model

6 Feature-level fusion method + Bayesian model
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Figure 4.10: Recognition results of the HMMs using left arm motion features.
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Figure 4.11: Recognition results of the HMMs using left finger motion features.
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Figure 4.12: Recognition results of the HMMs using left finger force features.
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Figure 4.13: Recognition results of the decision-level fusion method.
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Figure 4.14: Recognition results of the feature-level fusion method.

action are listed in Table. 4.3. They are all considered for each HMM model. In addition to the
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HMMs used by the feature-level and decision-level fusion methods, three types of HMMs that

use a subgroup of features are also implemented for performance comparison purpose. They are

force-feature based, finger-motion-feature based, and arm-motion-feature based HMMs. All the

algorithms are listed in Table. 4.4.

Fig. 4.10, 4.11, 4.12 show the partial ( 10 out of 100 actions) recognition results of the HMMs

using three kinds of features. The Type 1 HMMs can recognize the manipulative actions “ham-

mering” (1) and “wrenching” (3) accurately. However, it fails to distinguish between the action

“sawing” (4) and “rasping” (6). The reason is that the arm movement of these two actions are very

similar. For the other actions which do not involve major arm movement, the Type 1 HMMs does

not perform well. Similarly, Type 2 HMMs can recognize action “screwing” (2) and“fixing” (7)

which involve obvious finger movement. However, the finger motion pattern of these two actions

is similar which causes misclassification as shown in Fig. 4.11. However, the force applied dur-

ing “screwing” and “fixing” is different. The Type 3 HMMs can recognize “screwing” (2) quite

well. The action “drilling” (5) does not have obvious arm or finger movement, but the index finger

tip force variation during pushing and releasing the button can be recognized by Type 3 HMMs.

Overall, different types of HMMs have their own advantages on recognizing different actions.

Therefore, the combination of all these HMMs should improve the recognition performance.

Fig. 4.13 shows that the output of the decision-level fusion outperforms each individual HMM.

Despite minor errors, it can recognize most of the actions accurately. However, confusion between

similar actions still exists. Action “sawing” (4) and “rasping” (6) can not be distinguished since

none of the classifier can recognize them correctly. Neither does action “fixing” (7). In contrast,

the feature-level fusion method performs well on recognizing action “fixing” (7) as shown in Fig.

4.14. The reason is that the combination of the selected features makes the action “fixing” (7)

distinguishable. However, misclassification between similar actions still exists. Action “sawing”

(4) and “rasping” (6) can not be distinguished since none of the classifiers can recognize them

correctly. Compared to the decision-level fusion method, the feature-level fusion method does

not involve feature grouping (by hand). Also, one HMM is built for each action instead of three.

Therefore, computationally, it is more efficient than the decision-level method.
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Figure 4.15: Recognition results of the decision-level fusion method + Bayesian model.
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Figure 4.16: Recognition results of the feature-level fusion method + Bayesian model.

Finally, we show the results of the Bayesian model outputs, which adds the object/action de-

pendencies on top of the two fusion methods. Fig. 4.15 and 4.16 shows that the Bayesian model

can eliminate the confusion between action “sawing” (4) and “rasping” (6). In addition, it can

further improve the accuracy. The recognition accuracy of the decision-level, feature-level fusion

methods and the Bayesian model are shown in Table. 4.5, 4.6, 4.7 respectively.

Four additional subjects with different heights and weights are asked to verify the robustness

of the system. Each of them was asked to repeat 80 times for each action type. The profiles of

the subjects are shown in Table. 4.8. The training data is collected from Subject 1. The Bayesian

model outputs are shown in Fig. 4.17. It shows that the performance is stable when the algorithm

is tested on different subjects.
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Table 4.5: Recognition accuracy of the decision-level fusion method

test type
decision type

accuracy
hammer screw wrench saw drill rasp fix missed

hammer 0.88 - - 0.05 - 0.02 - 0.05 0.88

screw - 0.80 - - - - 0.15 0.05 0.80

wrench 0.02 - 0.94 - - - - 0.04 0.94

saw - - - 0.53 - 0.45 - 0.02 0.56

drill - - 0.02 - 0.90 0.03 - 0.05 0.90

rasp - - - 0.51 - 0.48 - 0.01 0.48

fix - 0.46 - - - - 0.50 0.04 0.50

Table 4.6: Recognition accuracy of the feature-level model

Test type
Decision type

Accuracy
hammer screw wrench saw drill rasp fix missed

hammer 0.85 - 0.05 0.06 - 0.02 - 0.02 0.85

screw - 0.90 0.01 - - - 0.07 0.02 0.90

wrench - - 0.95 - - - - 0.05 0.95

saw - - - 0.56 - 0.40 - 0.04 0.56

drill - - - - 0.92 - - 0.08 0.92

rasp - - - 0.47 - 0.51 - 0.02 0.51

fix - 0.06 - - - - 0.88 0.06 0.88
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Table 4.7: Recognition accuracy of the Bayesian model

Test type
Decision type

Accuracy
hammer screw wrench saw drill rasp fix missed

hammer 0.94 - - 0.02 - 0.02 - 0.02 0.94

screw - 0.95 - - - - 0.02 0.03 0.95

wrench - - 0.98 - - - - 0.02 0.98

saw - - - 0.96 - 0.02 - 0.02 0.96

drill - - - - 0.95 - - 0.05 0.95

rasp - - - 0.04 - 0.92 - 0.04 0.94

fix - 0.02 - - - - 0.92 0.06 0.92

Table 4.8: The profiles of the subjects

Subject No. Sex Height(cm) Weight(pounds)

1 male 177 180

2 female 155 100

3 male 185 190

4 male 168 140

5 male 177 170
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Figure 4.17: Recognition performance on different subjects.
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4.5 Summary

To understand human demonstration, manipulative actions need to be recognized. This chapter

investigates how to improve the performance of fine manipulative action recognition using multi-

modal sensors. Two information fusion methods (decision-level and feature-level) are proposed to

combine the multiple data source. In the feature-level fusion method, feature selection is applied

to select related features first. The feature selection approach is inspired by the variance preserva-

tion algorithm, which selects a subset of features that preserve the variance contained in the data,

since the assembly actions are all non-stationary actions. Then, HMM models are trained with

the selected features for each action. In the decision-level fusion method, features are divided into

three groups: arm joint angle group, finger angle group and force feedback group. An HMM-based

classifier is built for each feature group. A confidence index is designed. It is calculated using the

maximum output (probability) divided by the sum of of all the outputs. Then, the classifier which

has the maximum confidence index is chosen to make the global decision. Moreover, with the

dependencies between object and action modeled in a Bayesian network, actions which are too

similar to discriminate can be recognized with high accuracy. Online experimental results indicate

that the feature-level fusion method outperforms the decision-level fusion method in terms of both

computational efficiency and accuracy. The experiment on subjects with different body shapes

shows the robustness of the system.

In this work, the force sensor we adopt has a very limited range (0 N to 1 N), we need to

replace them with wide range ones. In addition, instead of just tracking the thumb and index

finger motions, a full hand model should be created to fully capture all kinds of fine manipulative

motions.
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Chapter 5

Automated Complex Assembly Skill

Acquisition through Human Demonstration

Based on the work introduced in the previous chapters, in this chapter we build a complex skill

acquisition system. The used tools, the manipulated parts and the manipulative actions are simul-

taneously recognized. The assembly state which indicates the relative part pose is estimated using

3D models of the parts. Finally, skill scripts are automatically generated. Section 5.1 introduces

the motivation of this chapter. In Section 5.2, the problem to be solved is formulated. Section 5.3

presents the proposed methodology. Section 5.4 describes the experiment procedures and gives the

experimental results.

5.1 Motivation

A complex assembly task usually involves many parts and tools while being conducted in many

steps, which introduces several challenges. First, it is still a nontrivial task to recognize small parts

and tools using computer vision based methods [107]. Second, it is hard to recognize fine assembly

actions purely based on human motion features [108]. Third, to obtain the relative position and

orientation between the parts using 2D vision is challenging, since occlusion frequently occurs

between assembled parts [109]. Finally, to capture the information of both the objects (parts and
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tools) and human movement, traditional approaches use multiple sophisticated sensors, which is

costly and not easy to use.

Existing human skill demonstration systems focus on extracting either human motion informa-

tion or object information from the demonstration. In [67], object information is extracted from

the demonstration to create chains of two-object relationships. In [68], the demonstration is seg-

mented into a sequence of primitives that describe the user actions. In [110], humans are tracked

by multiple calibrated stereo cameras for human motion imitation. However, for assembly skill

learning, both the objects and human motion during the demonstration are important clues. The

human motion can tell how to accomplish a task while the object information can tell what parts

are being manipulated or what tools are being used. Dillmann [59] built a human skill demonstra-

tion platform using data gloves to capture human motion while using multiple cameras for object

recognition.

In this chapter, in contrast to previous works, we adopt a single RGB-D camera to develop a

Portable Assembly Demonstration (PAD) system. This PAD system can generate skill scripts by

capturing the information about human motion, the tools being used, and the parts being manipu-

lated during human demonstration of a complex assembly task. The PAD system has the following

features. First, it can recognize small assembly parts and tools used based on both color and depth

information. Second, with the parts and tools as the contextual information, the assembly action

can be recognized more accurately and effectively. Third, the final state (post-condition) of the

assembled parts can be reliably estimated, which represents the effect of the assembly action. The

state describes the relative position and orientation between the parts in the final assembly. With

this capability, for example, it is possible to estimate how deep a bolt is hammered into a hole,

or what is the angle a screw is rotated in the demonstration, which is important for the robotic

assembly process.

70



Figure 5.1: The hardware setup of the PAD system.

5.2 System Overview

5.2.1 PAD System Setup

The proposed Portable Assembly Demonstration (PAD) system is shown in Fig. 5.1, which

consists of a Kinect sensor on a tripod, a motor-driven Lazy Susan, and a computer for data pro-

cessing (not in the picture). The functionality of the PAD system is introduced in the previous

chapter, except that we did not use the data glove.

5.2.2 Formulation of the Problem

Generally a complex assembly task which involves n parts can be represented as a sequence of

subtasks as shown in Equation (5.1) and Equation (5.2):

ζ = p1︸︷︷︸
M1

1

⊕ p2︸︷︷︸
M2

1︸�����������︷︷�����������︸
M1

2

⊕ p3︸︷︷︸
M2

2

⊕...

︸���������������������������︷︷���������������������������︸
M1

n−1

⊕ pn︸︷︷︸
Mn−1

2

(5.1)
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ζ = p1︸︷︷︸
M1

1︸︷︷︸
⊕ p2︸︷︷︸

M2
1︸︷︷︸︸�����������︷︷�����������︸

M1
3

⊕ p3︸︷︷︸
M1

2︸︷︷︸
⊕ p4︸︷︷︸

M2
2︸︷︷︸︸�����������︷︷�����������︸

M2
3

⊕...

︸��������������������������������������︷︷��������������������������������������︸
M1

n−1

⊕ pn︸︷︷︸
Mn−1

2

(5.2)

where ζ is the final product, pn is the nth part, ⊕ is the assembly action on the two parts. The

complex assembly task can be treated as a sequence of two-part assembly subtasks. As shown in

Equation (5.1), in a two-part assembly task, the models for each part are defined as M1
1 and M2

1.

First, take p1’s model as M1
1, p2’s model as M2

1, The superscript denotes the index of the subtask.

Then, M1
2 and M2

2 will be used to denote p1⊕ p2 and p3 respectively. This process continues until

the last part is assembled. On the other hand, the implementation of a complex task can also follow

the sequence show in Equation (5.2) using the same idea.

For the case when there are multiple actions applied to the parts p1 and p2, we have

M1
m+1 = p1 ⊕1 ⊕2... ⊕m p2

= p1︸︷︷︸
M1

1

⊕1 p2︸︷︷︸
M2

1

=> ... => p1︸︷︷︸
M1

m

⊕m p2︸︷︷︸
M2

m︸�������������︷︷�������������︸
M1

m+1

(5.3)

M1
m+1 is the model of p1 ⊕m p2. ⊕m is the mth action on part p1 and p2. It will be used as the

M1 for the (m + 1)th subtask. => denotes the action sequence flow.

Given the above setup, two problems need to be solved. The first is to recognize the action

and all the parts/tools involved. The second is to estimate the assembly state which represents the

effect of the action.

The input to the action recognition system has two parts: the observation of the objects and the

observation of the human action. The observation of the objects has two parts, ψp is the decision

of the part recognition which is one of the parts in the assembly sets. ψt is the decision of the

tool recognition system which is one of the tools in the tool set. If the action does not involve any

tool then ψt = null. The observation of the action ψa is a sequence of skeleton data of the human

subject {Γ1,Γ2...Γt}, where Γt = {Θ1,Θ2...Θk}, Θi is the angle of joint i and k is the total number of

joints. We assume the part set P = {P1, P2...Pm}, the tool set T = {T1,T2...Tn}, and the action set
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A = {A1, A2...Aq}. The action recognition is to develop an algorithm to decide on Ai ∈ A given the

above observation. In other words, the goal of the action recognition is to find a mapping function

fa,

Ai = fa(ψa, ψp, ψt) (5.4)

To obtain the assembly state, the input includes the 3D models of each individual part and the

3D model of the assembled part after each action. The goal of assembly state estimation is to find

a mapping function fs,

S = fs(M1,M2,M1 ⊕ M2) (5.5)

Here, S is the assembly state. M1 and M2 are the models of the two parts involved. M1 ⊕ M2 is

the 3D model of the assembled part which is a joint of part M1 and M2. To estimate the assembly

state, M2 is treated as the reference part. Then the state S is the pose of the non-reference part

with respect to the reference part. Based on the solutions to the two problems mentioned, we can

generate a skill script Σ as follows

Σ = (Σ1,Σ2,Σ3...Σn) (5.6)

where each assembly skill Σi is a 5-tuple symbolic description defined as

Σi =< Ai,Ti, P1i, P2i, S i > (5.7)

where P1i and P2i are the two parts involved in the ith step.

5.3 Methodology

In this section, the approaches to object recognition, action recognition and assembly state

estimation are described. We adopt the same approaches used in the previous chapter for object

and action recognition. Here, we just introduce the assembly state estimation approach.
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Figure 5.2: Coordinate system defined by the 6 markers in [1].
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and M2 to CM1 
&calculate state

CM1 CM2

Registering M1 
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Figure 5.3: State estimation for a two-step assembly task. M1 and M2 are the 3D models of the

base board and the bolt. CM1 is the 3D model of the assembled part after the first action. CM2 is

the 3D model of the assembled part after the second action.

5.3.1 Assembly State Estimation

To estimate the assembly state, we first define a common coordinate system based on 6 markers,

as shown in Fig. 5.2. One of the two parts will be treated as the reference part. Therefore, the

assembly state is the pose of the non-reference part with respect to the reference part.

Fig. 5.3 shows a two-step assembly task that inserts and hammers a square bolt into a hole on

the base board. With the 3D scanner, first we create the 3D models for these two parts. Since they
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are in the same coordinate frame, the initial state S 0 can be represented by a 4 × 4 identity matrix.

The 3D model of the assembled part is created after an action is applied to these two parts. The 3D

model of each part is registered to the 3D model of the assembled part.

We adopt a two-step point cloud registration approach. In the first step, Fast Point Feature

Histograms (FPFH) [111] are extracted from both object and scene models. It is an informative

pose-invariant local feature which represents the underlying surface model properties at a point.

Based on the correspondences between features, Sample Consensus Initial Alignment (SAC-IA)

[112] is used to find the initial alignment. In the second step, the ICP (Iterative Closest Point)

[113] algorithm is adopted to calculate the transformation based on the initial alignment. With this

approach, the position and orientation of the individual models can be arbitrary with respect to

the model of the assembled part. The transformation matrix obtained by our approach is shown in

Equation (5.8).

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R11 R12 R13 Dx

R21 R22 R23 Dy

R31 R32 R33 Dz

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.8)

The translation along each axis is given by Dx,Dy,Dz. To calculate the Euler angles about each

axis, let ψ, θ, φ be the Euler angles about the X, Y, Z axis, respectively, then we have the following

equations [114].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ = atan2(R32/R33)

θ = −sin−1R31

φ = atan2(R21/R11)

(5.9)

Here we define two transformation matrices. Tri represents the pose change of the reference

part after action i; while Tpi represents the pose change of the non-reference part after action i. The

assembly state S i after action i can be calculated as
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Figure 5.4: The parts and tools. From left to right, the top row are saw, G clamp, drill, and wood

planner. The bottom row are hammer, screw driver, wrench, bolt, screw, nut and red board.

Case 1: S i and S i−1 are calculated using the same models.

S i = (Tri)
−1 · S i−1 · Tpi (5.10)

Case 2: S i and S i−1 are calculated using different models.

S i = (Tri)
−1 · Tpi (5.11)

5.4 Experiment and Results

Experiments are conducted to verify the proposed method. An assembly scenario is used to

validate our theoretical framework. Fig. 5.4 shows the parts and tools used in our experiment.

5.4.1 Object Recognition

Template Extraction

The point clouds of the parts on top of the Lazy Susan are extracted. They will be used for

part recognition. The point clouds of the base board are shown in Fig. 5.5. It shows that our

approach can effectively extract the points that belong to the part from the scene point cloud. It is

worth mentioning that the plane function of the Lazy Susan corresponds to the camera pose. If the
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Figure 5.5: Extraction of the based board’s points from the scene point cloud. (a) and (b) show

the scene point cloud with two different rotation angles of the Lazy Susan. (c) and (d) show the

extracted points of the base board.

camera pose is changed, the plane function should be recalculated. To reliably recognize objects,

two templates are needed for symmetrical objects and four for asymmetrical objects.

Object Recognition

The top row in Fig. 5.6 shows the recognition results of the screw driver and the hammer re-

spectively. The bottom row shows the recognition of the base board and the screw. The recognized

objects are highlighted in red. In order to recognize small objects like the screw, the down sam-

pling radius for the scene has to be small enough so that enough keypoints can be extracted. In

addition, we evaluate the robustness of our approach under occlusion and in cluttered scenes. Fig.

5.7 (a) and (b) show that with minor occlusions, the board can still be recognized. Fig. 5.7 (c) and

(d) show that our algorithm works correctly in cluttered scenes. The two red blocks in the cluttered

scene which are similar to the base board are not misclassified as the base board. The recognition

accuracy is shown in Table. 5.1.
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Figure 5.6: Results of tool and part recognition, where the recognized objects are highlighted in

red. (a) recognition of the screw driver. (b) recognition of the hammer. (c) recognition of the base

board. (d) recognition of the screw.

Figure 5.7: Results of board recognition, where the recognized objects are highlighted in green.

(a) recognition of the board with occlusion from a bolt. (b) recognition of the board with occlusion

from another board. (c) recognition of the board in cluttered scene 1. (d) recognition of the board

in cluttered scene 2.

5.4.2 Action Recognition

For action recognition, segmentation is implemented implicitly by the HMMs. If the outputs of

all the HMMs are very small, it indicates that there is no action or the action has already finished.
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Table 5.1: The object recognition accuracy.

Object saw G clamp drill wood planner

Accuracy 0.92 0.93 0.95 0.92

Object hammer screw driver wrench bolt

Accuracy 0.97 0.87 0.88 0.85

Object screw nut red board

Accuracy 0.86 0.87 0.89

Table 5.2: Recognition accuracy of the HMMs

test type
decision type

accuracy
hammering screwing wrenching sawing drilling rasping fixing inserting aligning missed

hammering 0.90 - - 0.02 - 0.04 - - - 0.04 0.90

screwing - 0.75 - - - - 0.22 - - 0.03 0.75

wrenching - - 0.93 0.02 0.01 - 0.02 - - 0.02 0.93

sawing - - - 0.66 - 0.32 - - - 0.02 0.66

drilling 0.02 - 0.02 - 0.89 - - - - 0.07 0.89

rasping - - - 0.34 - 0.62 - - - 0.04 0.62

fixing - 0.25 - - - - 0.72 - - 0.03 0.72

inserting - - - - - 0.02 - 0.86 0.10 0.02 0.86

aligning - - - - - 0.01 - 0.06 0.87 0.06 0.87

Two kinds of manipulative actions are tested. For the actions that involve tools, both tool/action and

part/action dependencies are considered. The priority of the tool/action dependencies is higher than

that of the part/action dependencies, since the tool used usually offers more clue about the action

than the part does. While for the actions that do not involve tools, only part/action dependencies are

considered. As the human hand (with or without tool in the hand) approaches the part, the Bayesian

network takes effect. To evaluate the action recognition system, the training data set is collected

from one subject while the HMMs are tested on four other subjects. Each action is conducted 50

times by four subjects. The accuracy of the HMMs and the Bayesian model are shown in Table 5.2

and 5.3 respectively. With the object context, the Bayesian model can differentiate actions more

effectively.
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Table 5.3: Recognition accuracy of the Bayesian model

test type
decision type

accuracy
hammering screwing wrenching sawing drilling rasping fixing inserting aligning missed

hammering 0.94 - - 0.02 - 0.02 - - - 0.02 0.94

screwing - 0.95 - - - - 0.02 - - 0.03 0.95

wrenching - - 0.98 - - - - - - 0.02 0.98

sawing - - - 0.96 - 0.02 - - - 0.02 0.96

drilling - - - - 0.95 - - - - 0.05 0.95

rasping - - - 0.04 - 0.92 - - - 0.04 0.94

fixing - 0.02 - - - - 0.92 - - 0.06 0.92

inserting - - - - - - - 0.91 0.07 0.02 0.91

aligning - - - - - - - 0.05 0.90 0.05 0.90

5.4.3 Assembly State Estimation

In this section, the point cloud registration method used is evaluated first. Then the assembly

state estimation results are given.

Point Cloud Registration Method Evaluation

The computation cost of the point cloud registration is proportional to the size of the point

cloud. However, reducing the size of point clouds may impact the accuracy of registration. There-

fore, we design an experiment to evaluate how the size of the point cloud affects the accuracy of a

pure rotation assembly. The accuracy of the calculated angle φ is evaluated against the portion of

the points kept. Fig. 5.8 indicates that as long as more than half of the points are kept, the accuracy

will be consistently high.

Another experiment is implemented to test the robustness of our registration approach. The

model of a bolt is registered to its flipped model. Fig. 5.9 (a) and (b) are the input point cloud

and the target point cloud respectively. Fig. 5.9 (c) is the registration result of the ICP algorithm

without initial alignment. The registration failed since without initial alignment, the ICP algorithm

falls into a local minimum. Fig. 5.9 (d) is the result of the Sample Consensus Initial Alignment

algorithm. It roughly aligns the input cloud to the target cloud. However some obvious misalign-

ment still exists, since the correspondences found are not always correct. The last figure is the
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Figure 5.8: Accuracy of the rotation estimation with respect to the portion of point cloud kept.

Different colors denote registration from the models with different intial angles. The angular dif-

ference between the input model and the target model of each registration is 30 degree.

result of the proposed approach. The ICP is applied after initial alignment which can overcome the

limitation of each individual algorithm and the registration results are better.

Assembly State Estimation

The experimental procedure is shown in Table. 5.4, while Fig. 5.10 shows the six steps of the

assembly task and Fig. 5.11 shows the parts and the corresponding models after each step. First,

the bolt is inserted in one hole of the base board. Second, the bolt is hammered into the hole.

Third, the bolt is wrenched by 30◦ with respect to the base board. Fourth, a nut is aligned to the

other hole. Fifth, a screw is inserted into this hole. Finally, a screwdriver is used to screw the base

board and the nut.

The initial state S 0 is

S 0 = {Dx,Dy,Dz, ψ, θ, φ}
= {0.0 mm, 0.0 mm, 0.0 mm, 0.00◦, 0.00◦, 0.00◦}

(5.12)

Fig. 5.12-(a) gives the results of registering M1
1 and M2

1 to CM1 after the “inserting” action. The
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a b

c d e

Figure 5.9: Registration results. All the figures show the downsampled 3D models without color

information. (a) the input 3D model. (b) the target model. (c) registration result of ICP. (d)

registration result of SAC-IA. (e) registration result of our approach. ((c) - (e): Red ones indicate

the registration results. Yellow ones indicate the target model.)

a b c

d e f

Figure 5.10: The actions used in the experiment. (a) inserting the bolt. (b) hammering the bolt. (c)

wrenching the bolt. (d) aligning the nut to the hole on the base board. (e) inserting the screw. (f)

screwing the screw.

state S 1 which represents the pose of M2 with respect to M1 is estimated as:
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Figure 5.11: The parts and the associated model. (A) red board. (B) bolt (C) nut (D) parts pose

(CP1) after action 1. (E) parts pose (CP2) after action 2. (F) parts pose (CP3) after action 3. (G)

parts pose (CP4) after action 4. (H) parts pose (CP5) after action 5. (I) parts pose (CP6) after

action 6. (a) - (i) are the models of (A)-(I).

Table 5.4: The procedure of the assembly task

step p1 (reference) p2 action⊕ p1⊕ p2

1 red board bolt inserting CP1

2 red board bolt hammering CP2

3 red board bolt wrenching CP3

4 CP3 nut aligning CP4

5 CP4 screw inserting CP5

6 CP4 screw screwing CP6

Ŝ 1 = {43.2 mm, 1.7 mm,−2.8 mm, 0.50◦, 0.12◦, 1.01◦} (5.13)

The major movement is a translation along the positive direction of X axis by 43mm. Fig. 5.12-

(b) shows the registration of M1
2 and M2

2 to CM2. The major movement of M1
2 is translation along

the vertical axis (Z axis). The ground truth of S 2 is {43.0mm, 0.0mm,−34.0mm, 0.00◦, 0.00◦, 0.00◦}.
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a b

Figure 5.12: Registration results. (a) register M1
1 and M2

1 to CM1 after action 1 “inserting”. (b)

register M1
2 and M2

2 to CM2 after action 2 “hammering”.

The estimated S 2 is

Ŝ 2 = {44.1 mm, 3.5 mm,−35.9 mm, 0.95◦,−0.74◦, 1.41◦} (5.14)

After wrenching, the bolt is rotated anticlockwise by 30◦ around the base board. The ground

truth of S 3 is {43.0 mm, 0.0 mm,−34.0 mm, 0.00◦, 0.00◦, 30.00◦}. The estimated S 3 is

Ŝ 3 = {43.5 mm,−4.1 mm,−33.2 mm, 2.21◦, 1.36◦, 31.47◦} (5.15)

Similarly, this process goes on until the final part is assembled. The estimated assembly state

Ŝ 4, Ŝ 5, Ŝ 6 are as follows,

Ŝ 4 = {−42.7 mm, 2.2 mm,−2.8 mm, 3.65◦, 2.74◦, 4.21◦} (5.16)

Ŝ 5 = {−46.2 mm,−1.0 mm, 0.9 mm, 4.39◦, 4.26◦, 5.12◦} (5.17)

Ŝ 6 = {−45.2 mm, 5.2 mm,−51.2 mm, 3.88◦, 3.54◦, 7.26◦} (5.18)

The registration result of the last step is shown in Fig. 5.13. As the assembled part becomes

more complicated, the registration result gets less accurate. The reason is because the chance of

occlusion increases. The registration performance of each step is given in Table 5.5 in terms of

root mean square (RMS in mm). It is worth noting that for some symmetrical parts, the rotation

angle cannot be uniquely determined, which may require other source of information.
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Figure 5.13: Registration results. Register M1
5 and M2

5 to CM6 after action 6 “screwing”.

Table 5.5: The registration performance

step 1 2 3

RMS error (mm) 1.280 1.662 1.862

step 4 5 6

RMS error (mm) 1.7014 1.9014 2.4624

The assembly process is repeated 10 times. The average error for translation and rotation is

within 10 mm and 10◦ respectively. Finally, after the human demonstration, the following script

can be generated automatically:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Σ1 =< inserting,N/A, bolt, baseboard, Ŝ 1 >

Σ2 =< hammering, hammer, bolt, baseboard, Ŝ 2 >

Σ3 =< wrenching,wrench, bolt, baseboard, Ŝ 3 >

Σ4 =< aligning,N/A, nut,CP3, Ŝ 4 >

Σ5 =< inserting,N/A, screw,CP4, Ŝ 5 >

Σ6 =< screwing, screwdriver, screw,CP4, Ŝ 6 >

(5.19)

where N/A stands for “Not Applicable”. In summary, with the action recognition and assembly

state estimation methods developed in the paper, we can automatically obtain the assembly script

from human demonstration.
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5.5 Summary

To teach robots complex assembly skills, the robots should be able to recognize the objects

(parts and tools) involved, the actions applied, and the effect of the actions on the parts. Recogniz-

ing the subtle assembly actions is a non-trivial task, and it is challenging to estimate the effect of

the actions on the assembly part due to the small part sizes.

In this chapter, we propose a Portable Assembly Demonstration (PAD) system for robots to

learn complex assembly skills from humans. A complex task can be divided into a sequence of

two-part subtasks. Therefore, the human demonstration can be sequentially segmented. Based on a

RGB-D camera, tools and parts used in the assembly are recognized based on the 3D point cloud,

which helps to effectively recognize complex assembly actions. To recognize objects, the 3D

templates for each object are created beforehand. Point-to-point correspondences between model

descriptors and scene descriptors are then determined. Each correspondence generates a vote for

the object pose. If an object pose gets enough votes, it indicates that the object is recognized. To

recognize assembly actions, HMMs are trained for each assembly action to capture the temporary

change. On top of that, a Bayesian model is built to characterize the object/action dependencies.

In this chapter, the object includes both part and tool. To estimate the assembly state, 3D models

of the individual parts and the assembled parts are created using the PAD system. A two-step

registration approach is adopted to estimate the assembly state. First initial alignment is obtained

between the source and target point clouds. Then ICP is applied to get the final result. In this case,

the source and target point clouds can have random initial poses. This registration method is robust

to minor occlusions and works well for small parts. Experiments have verified and evaluated the

proposed PAD system and the associated theoretical framework. Our PAD system can be used

for robots to acquire assembly skills, which can help automate the future factories. Currently the

limited accuracy of the created 3D models restricts the current PAD system to only simple parts.

In future work, we will explore the use of more accurate 3D sensors and 3D modeling methods

and also try on more complicated parts.
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Chapter 6

Implementing Assembly Skills on the

Baxter Robot

In this chapter, we teach a dual-arm robot how to implement the assembly scripts. Section

6.1 introduces the hardware platform. In Section 6.2, the method to track the assembly parts

is presented. Section 6.3 presents the basic action learning approach. Section 6.4 describes the

experiment procedures and gives the experimental results.

6.1 System Overview

The implementation procedure as shown in Fig. 6.1 includes three steps: basic action learning,

complex skill demonstration and skill implementation. The complex skill demonstration is intro-

duced in the previous chapter. In basic level learning, the basic skills are learned through human

scaffolding. The trajectory of the robot left gripper with respect to the reference part (the part that

is fixed during the demonstration) is recorded. The reference part is tracked using an Xtion sensor.

Therefore, the relationship between the Xtion frame and the robot frame has to be calibrated. The

trajectories extracted from multiple demonstrations are generalized. The generalized trajectory

will be reproduced according to the pose of the reference part.

After the basic skill learning, a complex assembly task that consists of multiple steps is demon-
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Human 
scaffolding Generalization Reproduction

Skill script 
interpretation Implementation

Basic action learning Skill script implementation

Human 
demonstration PAD system Skill scripts

Complex skill demonstration

Figure 6.1: The assembly skill implementation procedure.

strated to the Baxter robot using the PAD system. The skill scripts generated by the PAD system

are interpreted. The interpretation involves obtaining part and tool information, confirming the

assembly action, and assembly state mapping. After that, the robot implements the skill script.

6.1.1 Hardware Setup

The hardware setup for the implementation mainly includes a Baxter robot [115] and an Xtion

sensor. We use the same assembly parts and tools introduced in Chapter 5. The Baxter robot

is shown in Fig. 6.2. It is a dual arm robot which is capable of performing a variety of simple

yet critical production tasks while safely and intelligently working next to people. Its 360◦ sonar

and front camera can be used for human presence detection, vision-guided movement, and object

detection. Each arm has 7-degrees of freedom for maximum flexibility and range [116]. The Xtion

sensor is used to track the assembly parts.

6.1.2 Calibration

The pose of each part is tracked using augmented reality (AR) markers by an Xtion sensor.

Tracking the parts is very challenging because of the limited size and occlusion between the as-

sembly parts. Therefore, AR markers attached to each part are tracked. By making the marker
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(a) (b)

Figure 6.2: The robot implementation setup. (a) The Baxter robot [2]. (b) The workspace of the

Baxter robot.

(b)

(a) (b)

Figure 6.3: Camera views. (a) The Xtion color image view. (b) The left gripper camera view.

reasonably small (2cm by 2cm), we can reduce the chance of occlusion. In order to record the

trajectory of the left gripper with respect to the reference part, calibration between the Baxter base

frame (R) and the Xtion camera frame (X) is required. A 3D coordinate frame can be represented

by a 4x4 matrix which is also called homogeneous transformation matrix containing information of

both rotation R and translation T. The relationship between two different frames can be represented

by a rigid transformation:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
BP

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

B
AR B

AT

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
AP

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6.1)

The homogeneous transformation matrix GAB is defined as
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Baxter base frame (B)

Xtion frame (X)

Figure 6.4: Camera calibration results. (a) Robot and camera positions. (b) Relationship between

the camera frame and selected frames of the Baxter robot.

GAB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
B
AR B

AT

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6.2)

In our case, the goal is to find the homogeneous transformation matrix GXB which represents

the transformation relationship between Xtion frame (X) and Baxter base frame (B). However, it

is impossible to calibrate these two frames directly. Therefore, the left gripper camera frame (L)

and the Xtion frame (X) is calibrated. After which GXL can be obtained. We have

GXB = GXL ·GLB (6.3)

GLB is given by the robot SDK since it is determined by the robot internal joint configuration.

To find GXL, an AR marker pattern is used. The marker pattern is put in both camera views as

shown in Fig. 6.3. After both cameras detect the AR marker pose, GXA and GLA are found through

regular camera calibration [117] where A denotes denotes the marker pattern frame. Then we have

GXL = GXA ·G−1
LA (6.4)

The Xtion frame (X) and the Baxter base frame (B) are shown in Fig. 6.4 after calibration.
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6.1.3 Object Tracking

We use the ALVAR tracking library [118] for marker tracking. It features an adaptive threshold

to handle a variety of lighting conditions, optical flow based tracking for more stable pose esti-

mation, and an improved tag identification method that does not significantly slow down as the

number of tags increases. Different markers are encoded with different IDs. A single marker is

attached to the part that does not have significant rotations. For the parts that involve significant

rotations, multiple markers with different IDs are attached to the opposite sides of the part. The

performance of the marker tracking is evaluated. The Vicon MX motion capture system is used to

obtain the ground truth of the object tracking.

Xtion camera rigid frame (XR) Object rigid frame (OR)

Reflective 
markers

Augmented 
Reality (AR) 

markers

Reflective markers

Augmented Reality 
(AR) markers

(a)

(b)

Figure 6.5: Marker placement. (a) reflective markers on camera and object (hammer). (b) frames

created using reflective markers.

As shown in Fig. 6.5, reflective markers are put on the target for tracking using Vicon. Mean-

while, an AR marker is also attached to the target which is tracked by the Xtion camera. Therefore

it is necessary to find the relationship between the object AR marker frame and the rigid body

frame formed by the reflective markers on the object. To solve this problem, multiple frames are

defined. They are Vicon frame (V), the Xtion camera rigid frame (XR), the Xtion camera frame

(X), the object AR marker frame (O) and the object rigid frame (OR). The frame transform tree is
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Vicon frame
(V)

Xtion camera 
rigid frame (XR)

Object AR marker 
frame (O)

Object rigid 
frame (OR)

Xtion camera 
frame (X)

Figure 6.6: The frame transform tree. The dash line represents the unknown relationship.

Figure 6.7: The chessboard frame (CH). (a) the chessboard frame defined in the calibration method.

(b) the placement of three markers which are used to create the same frame.

shown in Fig. 6.6.

The Vicon frame is defined by the Vicon system. The relationship between the rigid bodies cre-

ated and the Vicon system can be obtained using Vicon SDK. The relationship between the Xtion

camera frame (X) and the object AR marker frame (O) is the output of the AR marker tracking

algorithm. The relationship between the object AR marker frame (O) and the object rigid frame

(OR) is fixed. Therefore, the key step is to find the relationship between the the Xtion camera rigid

frame (XR) and the Xtion camera frame (X). To find this relationship, a chessboard is used to con-

duct the calibration and a chessboard frame (CH) is introduced. We apply a traditional calibration
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method [119] to obtain both extrinsic and intrinsic parameters of the Xtion color camera. Here, we

are more interested in the extrinsic parameters which represent the relationship between the camera

frame (X) and the chessboard frame (CH). On the other hand, by using three markers attached to

the chessboard, we can manually create the chessboard frame. Fig. 6.7-(a) shows the chessboard

frame (CH) defined by the calibration method. Fig. 6.7-(b) shows the placement of three markers

to create the same frame in Vicon. Then, we can have the marker positions {OCH, XCH,YCH} in

the chessboard frame (CH) and {OV , XV ,YV} in the Vicon frame (V). The goal is to find a rigid

transformation that optimally aligns the two sets in the least squares sense. The singular value

decomposition method (SVD) [120] is used to fulfill this task. Then, the relationship between the

camera frame (X) and the Vicon frame (V) is found. Also, the relationship between the Vicon

frame (V) and the camera rigid frame (XR) is known from the Vicon tracking output. The rela-

tionship between the frame (X) and the frame (XR) is obtained. After bridging the gap shown in

Fig. 6.6, the relationship between the object AR marker frame (O) and the object rigid frame (OR)

is found.

Now, we can evaluate the AR marker tracking performance. We move the object (hammer)

randomly within the marker’s reliable tracking range (0.1m - 0.5m). One of the tracking evaluation

results is given in Fig. 6.8. The peaks shown in the figure are caused by the sudden motion of the

tracked target. The tracking algorithm can catch up with the target in a few seconds. The dynamic

tracking error is not a problem since it is assumed that the object motions will be slow or mainly

stationary. The average translational error is within 1.0 cm and the average rotational error is

within 5 degrees.

6.2 Basic Action Learning

The basic actions are learned through human scaffolding. Fig. 6.9 shows one demonstration

of the hammering actions. There are four actions taught in total: grasping, inserting, hammering,

and screwdriving. Due to the limited capabilities of the Baxter robot, the following assumptions

are made:
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Figure 6.8: Tracking accuracy evaluation. The peaks are caused by the quick motion of the tracked

target.

Figure 6.9: Human scaffolding for the hammering action.

• The robot always grasps the part from an overhead position.

• Once a part is grasped, there is no relative motion between the part and the gripper.

• The tool is fixed on the gripper manually.

For each action, the robot arm is guided to the desired pose multiple times from different initial

poses. Let
{
ε j

}M
j=1

denote the M demonstrations. Each demonstration is normalized to 40 time

steps using interpolation. Each data point in ε j, {ti, γi}, consists of a time step ti and a pose γi

which is the pose of the left gripper with respect to the part, lgPpt. To extract the principle task

and joint space constraints from multiple demonstrations, the Gaussian Mixture Model (GMM)
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Figure 6.10: Trajectory encoding and generalization 1. The figures on the left column represent

the trajectories of x,y, and z positions of each demonstration (hammering). The figures in the

middle column show the GMMs to model the trajectories. The figures on the right column show

the generalized trajectories of each dimension and the corresponding variances.

and Gaussian Mixture Regression (GMR) methods [57] are adopted. The data is first normalized

before applying GMM/GMR. The normalization is to make each demonstration have the same

data length. The normalized dataset is first modeled by a Gaussian Mixture Model (GMM) which

has three components and three states. These parameters are experimentally decided using a trial-

and-error method. Based on the GMM, a generalized version of the trajectories is computed by

applying Gaussian Mixture Regression (GMR).

Fig. 6.10 and 6.11 show the results of applying GMM/GMR to multiple “hammering” demon-

strations which characterize the left gripper’s pose with respect to the bolt. The results indicate that

the positional constraints of the hammering action are tight at the end, since the hammer always

needs to strike the small top surface of the bolt. On the other hand, the rotational constraints are

loose, which also makes sense since the hammer can approach the bolt from multiple directions.

This method is applied to all the other basic actions required.
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Figure 6.11: Trajectory encoding and generalization 2. The figures on the left column represent

the roll, pitch, and yaw rotations of each demonstration (hammering). The figures in the middle

column show the GMMs to model the trajectories. The figures on the right column show the

generalized trajectories of each dimension and the corresponding variances.

When a new pose of the part is obtained by the Xtion sensor, it can be transformed into the

pose with respect to the Baxter base frame ptPbase. Then the reproduced pose at each time point

can be derived as follows:

lgPbase =
lgPpt · ptPbase (6.5)

Ultimately, lgPbase must be converted from the task space to the joint space using the given

Inverse Kinematic function, since the robot is controlled in the joint space. Fig. 6.12 shows the

robot executing the hammering action.
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(a) (b)

(c) (d)

Figure 6.12: Reproducing the hammering action given the bolt pose.

6.3 Script Implementation

6.3.1 Experiment Procedure

After the basic actions are learned, a four-step assembly task is demonstrated to the robot using

the PAD system. The detail of the task has been described in the previous chapter.

• Step 1: Inserting a bolt into a baseboard.

• Step 2: Hammering the bolt down.

• Step 3: Inserting a screw into the baseboard.

• Step 4: Screwdriving the screw down.

The four skill scripts generated are:

• Script 1: Σ1 =< inserting,N/A, bolt, baseboard, S 1 >

• Script 2: Σ2 =< hammering, hammer, bolt, baseboard, S 2 >.

• Script 3: Σ3 =< inserting,N/A, screw, baseboard, S 3 >

• Script 4: Σ4 =< screwdriving, screwdriver, screw, baseboard, S 4 >
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The generated scripts for each step are interpreted as follows: The action A tells the robot which

action to apply. The tool T (if used) identifies which tool is used. The robot needs to grasp it before

applying the action. The part P1 identifies the part to which the action is applied. The part P2 is

the fixed reference part. Both of them are tracked in real time using AR markers.

The assembly state S describes the relative pose of the two assembly parts after they are as-

sembled together. The coordinate of the 3D model of each part is defined by the marker frame on

the lazy Susan as shown in Fig. 5.2. On the other hand, the robot uses AR markers to track each

part. Therefore, for each part, the transformation between the 3D model frame and the AR marker

frame has to be calculated. The transformed assembly state is represented as S
′
.

Case 1: S
′
i and S

′
i−1 are calculated using the same models.

S
′
i = (Tri · Tr2a)−1 · S ′i−1 · Tpi · Tp2a (6.6)

Case 2: S
′
i and S

′
i−1 are calculated using different models.

S
′
i = (Tri · Tr2a)−1 · Tpi · Tp2a (6.7)

S
′
i is the transformed assembly state after action Ai. Tr2a is the transformation from the ref-

erence part 3D model frame to its AR marker frame. Tp2a is the transformation from the non-

reference part 3D model frame to its AR marker frame. The robot repeats the assembly action Ai

until S
′
i is reached.

6.3.2 Results

Fig. 6.13 shows the robot inserting the bolt into the base board. Fig. 6.14 shows the robot

hammering the bolt down to the base board. It hammers the bolt multiple times (three times in this

example) until it reaches the desired pose. Fig. 6.15 shows the screw being inserted into the slot.

Fig. 6.16 shows the robot screwdriving the screw down to a hole in the base board. This action is

repeated 8 times until the assembly state is reached. To track the screw, two identical markers are

attached on the two opposite sides of the screw. The reason is twofold. First, the screw rotates 180

degrees after one screwdriving action, so one marker is not enough to track it. Secondly, due to the
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(a) (b) (c)

Figure 6.13: The robot implements script 1 (inserting bolt).

(a) (b) (c)

Figure 6.14: The robot implements script 2 (hammering bolt).

symmetric geometry of the screw, the use of two identical markers enables the robot to apply the

same learned constraint in either configuration.

The successful rate of implementing each script is also evaluated and is shown in Table. 6.1.

Each script is implemented 20 times. The script containing action “hammering” is the simplest

for the robot, since the hammer only needs to hit the top of the bolt. On the other hand, the most

challenging task for the robot is script 4 which involves “screwdriving”, since the slot on the screw

is very small. Due to the errors of the robot and the augmented marker tracking algorithm, the

robot sometimes fails to insert the screwdriver onto the slot.
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Figure 6.15: The robot implements script 3 (inserting screw).

Figure 6.16: The robot implements script 4 (screwdriving).

Table 6.1: Successful rate of script implementation.

script 1 2 3 4

successful rate 0.7 0.9 0.8 0.6

6.4 Summary

This chapter verifies the PAD system with skill implementation on a real robot. The Baxter

robot learns the basic actions through scaffolding first. Then, the skill scripts are implemented.

The basic actions are learned with the following procedures. First of all, the robot base frame and

the Xtion camera frame is calibrated using AR markers. Second, the relative pose between the left

gripper and the part is recorded during the demonstration. Augmented markers are used to track

parts. Third, GMM/GMR is applied to generalize multiple trajectories from the demonstrations.

In each demonstration, both position and orientation information is captured. The generalized tra-
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jectory will be reproduced according to the tracked part pose. After learning the basic actions, the

robot implements each skill script learned from human demonstration. For assembly action such

as hammering, which has big tolerance on sensor errors, the successful rate of implementation is

high. However, when it comes to very delicate actions like inserting a bolt into a hole or screwdriv-

ing, failures occur more frequently because this type of action is more sensitive to uncertainties

caused by the sensor errors.

The grippers on the Baxter robot are only capable of open and close. Therefore, the robot

grasps all the parts in the same way. In the future work, a more sophisticated robotic gripper

should be used, so that the robot can learn how to grasp objects with different shapes using different

approaches. On the other hand, in the implementation part, only positional feedback is considered.

However, robotic assembly is a task that frequently requires physical contact between the robot and

its environment. When the task contains uncertainties, additional sensing is needed to accomplish

the assembly. Using force control is one way to handle these difficulties.
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Chapter 7

Conclusions and Future works

7.1 Conclusions

In this dissertation, a robot skill learning framework is proposed which contains low-level skill

learning and high-level skill learning. The learned low-level skills are treated as primitive actions

in high-level learning. The acquired skills are then implemented on a real robot. The contributions

of this dissertation are summarized as follow:

• Chapter 2 proposed a two-phase low level skill learning framework which combines imita-

tion learning and reinforcement learning. In the first phase, using imitation learning the robot

can reach out and hold the end of the table. A Programming by Demonstration (PbD) algo-

rithm is used to accomplish this. In the second phase, through reinforcement learning, the

robot can learn to collaborate with a human for the table lifting task. With the guided explo-

ration strategy for Q-learning, the learning speed is improved. Using the entire framework,

the robot can learn to perform the collaborative table-lifting task quickly and successfully.

The learned low-level skills are treated as primitive actionsin high-level skill learning.

• Chapter 3 investigates how to improve the performance of manipulative action recognition

through a RGB-D sensor. A multi-level probabilistic model is proposed as a solution. In

the low-level, human motion is modeled using an HMM. Joint angle sequence is used as the
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motion feature. In the mid-level, the dependencies between object and action are modeled

in a Bayesian model, actions which are either too subtle to perceive or too similar to dis-

criminate can be recognized with high accuracy. In the high-level, with the action sequential

constraints, similar actions on the same object can be differentiated effectively. Because in

most human daily activities, actions usually follow certain patterns. Both online and offline

experimental results verify that our framework outperforms the approaches that use motion

feature only. The experiment on subjects with different body shapes show the robustness of

the system.

• Chapter 4 extends Chapter 3’s work by using multimodal sensors for fine manipulative action

recognition. Two information fusion methods (decision-level and feature-level) are proposed

to combine the multiple data sources. In the feature-level fusion method, feature selection

is applied to select related features first. Then, HMM models are trained with the selected

features for each action. In the decision-level fusion method, features are divided into three

groups: arm joint angle group, finger angle group and force feedback group. An HMM-based

classifier is built for each feature group. A confidence index is designed. It is calculated using

the maximum output (probability) divided by the sum of of all the output. Then, the classifier

which has maximum confidence index is chosen to make the global decision. Moreover, with

the dependencies between object and action modeled in a Bayesian network, actions which

are too similar to discriminate can be recognized with high accuracy.

• Based on the above work, in Chapter 5, a Portable Assembly Demonstration (PAD) system is

developed for robots to learn complex assembly skills from humans. With a RGB-D camera,

the PAD system can recognize the part/tool used, the action applied and the assembly state

characterizing the spatial relationship between the parts. The experiment results proved that

this PAD system can generate assembly scripts with good accuracy in object and action

recognition as well as assembly state estimation. The skill script includes both symbolic

information like the action type and trajectory-level clue as given by the assembly state.

• Chapter 6 verifies the PAD system with skill implementation on a real robot. The Baxter
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robot learns the basic actions through scaffolding first. Then, the skill scripts are imple-

mented. The basic actions are learned with the following procedures. First of all, the robot

base frame and the Xtion camera frame is calibrated using AR markers. Second, the relative

pose between the left gripper and the part is recorded during the demonstration. Augmented

markers are used to track parts. Third, multiple trajectories from the demonstrations are

generalized. The generalized trajectory is reproduced according to the tracked part pose.

7.2 Future Works

The robot skill learning framework we proposed still needs to be further improved, some of the

future works are listed below:

• Occlusions frequently happen to the assembled parts during the human demonstration. Al-

gorithms which can handle significant occlusion need be designed and implemented.

• In our action recognition algorithm, only the object type is considered as context. However,

it is more informative to know how an object is being used (associated affordances like mov-

able, pourable, drinkable, etc) rather than only knowing what the object type is. Therefore,

affordance information should be considered in the action recognition algorithm.

• Human assembly actions sometimes have significant variations. For the same action, dif-

ferent people have their own customized way to perform the action. Sometimes, the action

depends on the pose of the manipulated part. Therefore, the action recognition algorithms

should be robust to these variations.

• Low-level assembly actions can be represented by the relative motion between subparts and

the associated force interactions. An accurate description of such motion and force interac-

tion can help robots quickly learn these assembly actions. How to capture force interactions

between subparts is a still an open question which can be further studied.

• In the robot implementation, only positional feedback is used. The sensor errors and uncer-

tainties are not modeled. However, in robotic assembly, the uncertainties or errors introduced
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by the part variance may cause implementation failure. When the task contains uncertainties,

additional sensing is needed to accomplish the assembly. Using force control is one way to

handle these difficulties.

• Currently, the robot always passively observes the demonstration. However, the robot should

be able to give social feedback to the human through verbal communication, gestures or

expressions if possible.
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