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ABSTRACT:  
 
Few events can cause the catastrophic impact to ecology, infrastructure, and human safety of a 

wildland fire along the wildland urban interface.  The suppression of natural wildland fires over 

the past decade has caused a buildup of dry, dead surface fuels: a condition that, coupled with the 

right weather conditions, can cause large destructive wildfires that are capable of threatening both 

ancient tree stands and manmade infrastructure.  Firefighters use fire danger models to determine 

staffing needs on high fire risk days; however models are only as effective as the spatial and 

temporal density of their observations.  OKFIRE, an Oklahoma initiative created by a partnership 

between Oklahoma State University and the University of Oklahoma, has proven that fire danger 

assessments close to the fire – both geographically and temporally – can give firefighters a 

significant increase in their situational awareness while fighting a wildland fire. 

This paper investigates several possible solutions for a small Unmanned Aerial System (UAS) 

which could gather information useful for detecting ground fires and constructing fire danger 

maps.  Multiple fire detection and fuel mapping programs utilize satellites, manned aircraft, and 

large UAS equipped with hyperspectral sensors to gather useful information.  Their success 

provides convincing proof of the utility that could be gained from low-altitude UAS gathering 

information at the exact time and place firefighters and land managers are interested in.  Close 

proximity, both geographically and operationally, to the end can reduce latency times below what 

could ever be possible with satellite observation. 

This paper expands on recent advances in computer vision, photogrammetry, and infrared and 

color imagery to develop a framework for a next-generation UAS which can assess fire danger 

and aid firefighters in real time as they observe, contain, or extinguish wildland fires.  It also 

investigates the impact information gained by this system could have on pre-fire risk assessments 

through the development of very high resolution fuel maps.  
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CHAPTER I 
 

 

INTRODUCTION 

 

1. MOTIVATION 

 

On June 30, 2013, 19 firefighters lost their lives fighting a wildfire near Yarnell, AZ.  The elite 

team of firefighters, called the “Hot Shots,” was protecting the evacuated town from a 2,000-acre 

wildfire when the fire encircled them.  They were in the wrong location, and they were unaware 

of an unforecasted wind shift.  Because of a lack of situational awareness, these veteran 

firefighters died trying to simply limit property damage. 

Large wildfires can cause massive ecological damage and threaten structures and human lives, 

and wildfire suppression has increased these risks.  Over 9,000,000 acres were burned from 

wildfires in 2012, and that number has been increasing since 1986.  In 2012, the federal 

government and some states exhausted their wildfire suppression funds trying to contain these 

fires.  [Gabbert, 2012]   

Current technology has limited the effectiveness of small UAS for tactical firefighting.  Some of 

the problems identified are the limitations of autonomous capabilities, ease of control, 

effectiveness of the user interface, and communication of useful information in a timely manner.  

[Murphy]  This paper will address a part of the last problem: efficiently processing raw data into
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useful products that firefighters can use while keeping size, weight, and cost low enough to be an 

effective tool for rural, volunteer fire departments fighting remote wildland fires. 

 

Figure 1 - Concept of operations for a firefighting UAS 

Land managers use natural and prescribed burning to eliminate excessive fuel buildups in areas 

where fire suppression has allowed dead fuel to accumulate on the forest floor.  For instance, 

when draught and high winds created multiple catastrophic fires across Yellowstone National 

Park in the summer of 1988, 16 years of natural fire management (i.e. allowing fires ignited 

naturally to burn up to a certain size without suppression) had reduced the available fuels that had 

accumulated over the previous century of a total fire suppression policy.  [Christensen, et al., 

1989]  Today, prescribed burning is a cornerstone of natural fire management across the US, 

replacing the regular natural fires of previous centuries with regular manmade fires, which can be 

analyzed for risk and monitored for safety.  Additionally, national policy makers have recognized 

the need for community preparedness and efficient fire response, specifically a “more realistic 

and accurate depiction of where wildland fire hazard or risk actually occurs,” and to “assist 

communities with evaluating their risk from wildfire.”  [National Cohesive Wildland Fire 

Management Strategy, 2014]  Achieving these goals would require an accurate, efficient, and 
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persuasive means of gathering wildfire risk information and communicating it to the people who 

need it. 

 

Figure 2 - Concept of Operations for a fuel mapping UAS 

Fire spread models are required for safe, large scale prescribed burning.  Current wildfire spread 

models are empirical in nature, and do not integrate the effects of fuels, topography, and weather 

into the fundamental physical processes that produce fire (heat transfer, combustion, ignition, 

entrainment, etc.).  A robust physics-based fire model requires further experimentation on the 

impact of atmospheric effects on fire behavior and of fire behavior on the local atmosphere.  No 

one has developed a common experimental basis for determining the organization, order, and 

required amounts fire spread phenomena.  [Carlson, et al. 2003, Wildland Fire Management 

RD&A, 2013] 
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2. GOALS AND OBJECTIVES 

 

The goal of this paper is to develop and evaluate imaging sensors and algorithms for wildland fire 

surveillance and fuel mapping with small UAS.  The specific objectives of this paper are: 

1. Determine the specific situational awareness needs of an incident commander 

responding to a wildfire that can be solved using image processing techniques. 

2. Evaluate the capabilities of image processing to increase an incident commander’s 

situational awareness 

a. Autonomous flame detection using video captured by a UAS 

b. Autonomous smoke detection using video captured by a UAS. 

c. Fuel load mapping using Color Near Infrared (NIR) imagery captured by a 

UAS and Structure from Motion (SfM) techniques. 

d. Identification of vegetation type and fuel state using low-cost multispectral 

sensors from a UAS. 

3. Evaluate multiple UAS platforms for application to specific firefighting tasks. 

4. Evaluate multiple sensor packages, both passive and active, for application to specific 

firefighting tasks. 

5. Analyze the abilities and costs of commercial-off-the-shelf platforms and sensors to 

recommend a UAS that would benefit a small, volunteer fire department.  

6. Evaluate the minimum crew requirements of a useful wildfire UAS by developing an 

effective single-operator system.
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

1. SURVEY OF WILDLAND TACTICAL FIREFIGHTING 

 

Municipal fire departments, often volunteer fire departments, are usually the first to respond to a 

wildland fire report.  The Incident Commander has the responsibility to contain the fire with the 

resources available. Typically if they have not contained the fire after one or two hours, the 

Incident Commander will request help from the Emergency Manager, who can request mutual aid 

(other municipal fire departments), state aid, or federal aid, as needed.  The Emergency Manager 

may also own useful firefighting resources unavailable to the Incident Commander. [Reed, 

Metcalf, and Louthan, conversation with author] 

In order to make good decisions, Incident Commanders at a wildland fire must have certain 

information.   First, he must have an accurate picture of where the forward burning line, or the 

fireline, is located.  A wildland fire typically spreads to an area of three to four acres by the time 

firefighters arrive.  If the fire is located quickly enough the initial attack may contain the fire with 

negligible loss of property.  Second, the location of the fire in relation to natural fire breaks such 

as roads is critical to the allocation of resources around the fire.  Third, the Incident Commander 
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must have an accurate picture of how the fire will spread.  Currently, the Incident Commander 

must determine this picture through intuition and experience.  A variety of unknown conditions, 

such as winds at various altitudes, accurate fuel estimates in the vicinity of the fire, or exact 

topography of the area, will limit the accuracy of the Incident Commander’s assessment of the 

fire spread characteristics.  Fourth, the evacuation of any wildland-urban interface, such as a 

nearby house or trailer, will be an Incident Commander’s first priority when arriving at the scene.  

Therefore, any new knowledge of nearby structures or people would drastically change an 

incident commander’s firefighting plan.  [Bradley, conversation with author] 

A volunteer fire department will have little or no money for the purchase of equipment for 

gathering any of the unknown variables of fire spread, namely weather, fuels, and topography.  

However, many of these variables could be determined long before the fire occurs.  This gap in 

situational awareness has driven several state and federal programs that regularly gather 

information and determine the general wildland fire risk over a large area.  One such program in 

Oklahoma is OK-FIRE.  This system gathers meteorological information from the 155 reporting 

stations across Oklahoma that make up the Mesonet.  It also utilizes the National Weather 

Service’s 84-hour North American Mesoscale (NAM) weather prediction model.  OK-FIRE then 

combines this current and predicted meteorological information with the latest estimates of fuel 

conditions in various locations across Oklahoma to determine the fire risk in the vicinity of each 

Mesonet weather reporting station. [Carlson, et al. 2003] 

Systems such as OK-FIRE are limited by the scarcity of the reporting stations, the infrequency of 

fuel load and fuel type surveys, and the inaccuracy of indirect fuel state measurements.  

Nonetheless, OK-FIRE has proven to be a valuable tool that is currently used by municipal fire 

departments across the state to determine fire risk, make short-term staffing decisions to match 

the risk, and communicate that risk to the general public. [Carlson, et al, 2003] 
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A good assessment of fire danger must integrate information about the three major environmental 

drivers of fire spread: topography, fuels, and weather.  [Carlson, et al. 2003]  Current models take 

advantage of online surveys of ground topography, such as the USGS 30 meter digital elevation 

models, or even satellite-based canopy-penetrating radar, such as the Spaceborne Imaging Radar-

Band C (SIR-C), or airborne LiDAR sensors.  [Blair, et al. 1999, Iriarte, 2015]  Topography is the 

most constant of the environmental drivers, but the same remote sensing techniques used to map 

ground topography can also map the changing conditions of canopy fuels.  [Saatchi, et al. 2007] 

The next variable, fuels, can be estimated through sample destructive harvesting, ground survey, 

or multispectral remote sensing.  Harvesting is the most accurate, and it involves gathering all 

vegetation within a specified plot into bundles, weighing the bundles, drying the bundles in an 

over until all the moisture is removed, and then weighing the dry bundles again.  This process 

gives the best indications of fuel weight and moisture content, however it is incredibly time 

intensive and is destructive to the plot measured.  [Schmidt, 2014] 

Ground survey is the oldest technique of producing fuel maps.  The fuel types and relative 

quantities are estimated by experts who visually inspect each area.  It is less time intensive than 

destructive harvesting, but the results are subjective since they depend on the observer’s opinion.  

[Hornby, 1935] 

Satellite remote sensing has been used to create fuel maps of many parts of the world, including 

the entire United States, that are readily input into national-scale fire spread and fire danger 

models.  Airborne color imagery has likewise been used to identify individual plant species or 

classes over a smaller scale with less uncertainty, but at the cost of a higher workload by the 

observer.  [Schmidt, 2014] 

Accurate fuel loading maps are important for more than just fire danger maps or predictive 

wildfire models.  Communities on the Wildland-Urban Interface (WUI) are using fuel 
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information for strategic fire mitigation practices.  Reliable knowledge of the special distribution 

of fuel can highlight at-risk areas, allowing for informed placement of reduction measures.  

[Krasnow et al, 2009] 

Prescribed burns are one means of managing the wildfire risk in areas that have built up 

significant amounts of dry, burnable fuel since their most recent fire.  Prescribed burning is 

defined as the controlled application of fire to a specific land area to accomplish planned resource 

managements objectives, such a reducing surface fuels.  Wildfire risk assessment is based on, 

among other variables, the fuel type, fuel load, and fuel state.  Fuel type is determined visually by 

a trained observer as the fuel that will be the main carrier of the fire.  The most accurate way to 

determine fuel load and state is destructive harvesting.  Through this method, all plants in an area 

are clipped at some short distance from the ground, and the total clipped vegetation is weighed, 

oven dried for days or weeks, and reweighed.  The dry weight is the burnable fuel load, and the 

amount of water removed by over drying determines the fuel state.  This method is only useful for 

limited research environments and would not be used for local wildfire risk assessment.  A typical 

risk assessment for a prescribed burn may involve an estimation of fuel load as low, medium, or 

high and an estimation of fuel state as the percentage of fuel available to burn.  The first would be 

based on the assessment of a trained observer, and the second would be based on fuel moisture, 

fuel size, fuel arrangement, depth of the fuel bed, days since last precipitation, and long-term 

drought conditions.  [SCFC, 2014]  Because all three of these variables are determined by human 

observation, their accuracy is severely limited.  As a result, risk management and planning must 

be significantly more conservative than it would if accurate, reliable measurements could be 

taken.  Fast, accurate surveys of fuel type, state, and load could make planned burns more 

efficient and less dependent on weather conditions than they currently need to be. 

Predictive fire spread models are sometimes used for emergency management planning or for 

managing risk at large prescribed burns.  Unlike fire risk assessment tools like OKFIRE, these 
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models are largely empirical-based rather than physics-based, and are therefore limited in 

accuracy when extrapolated to previously unobserved conditions.  Current models are country- or 

region-specific.  For instance, a model developed in Canada would perform poorly in New 

Zealand.  They are calibrated using predefined fuel categories, and will not capture the 

differences associated with uncalibrated fuels or even variations between plants of the same 

species.  They are designed to predict rate of spread and intensity only, and they cannot 

accurately predict other fire behaviors like “catching the crowns,” a term for fire ascending from 

the ground to the forest canopy.  [Arroyo et al, 2008]  A physics-based model would be much 

more complex, requiring accurate assumptions about the wind currents in the vicinity of the fire.  

However such a model would only be limited by the accuracy of the input conditions.  One 

required input for any wildfire predictive model is the horizontal distribution of Above Ground 

Biomass (AGB), or fuel loading.  In order to more accurately predict a fire’s behavior, a model 

would also need information about the vertical distribution of fuel loading, such as canopy height, 

canopy base height, and canopy bulk density.  These variables are difficult to measure, and they 

are often provided as generalities of a plant species or functional group and age.  Even a uniform 

vertical distribution of biomass is sometimes considered reasonable.  [Saatchi, et al., 2007] 

This survey achieves objective 1. 

 

2. WILDFIRE AIRCRAFT 

 

The National Interagency Fire Center (NIFC) operates two fixed-wing aircraft to provide 

situational awareness for asset management around major wildfire events in the United States.  

These aircraft supplement satellite hyperspectral imagery with night-time thermal infrared (TIR) 

imagery collected from a mission altitude of 10,000 feet Above Ground Level (AGL).   These 
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sensors, though they provide higher spacial resolution than satellite imagery, are still too coarse to 

spot individual small hot spots, which may saturate a larger pixel, giving an indication of a larger 

fire threat than what actually exists.  Because of this issue, mop-up operations are often supported 

instead by handheld TIR sensors carried onboard low-altitude rotorcraft.  Both of these 

techniques (broad area observation from fixed-wing aircraft or small area observation from 

rotorcraft) are manpower intensive, with a dedicated crewmember required for sensor operation 

and communication with the ground.  A UAS by necessity would automate some of these 

processes, reducing the required manpower while increasing endurance and reducing fuel costs.  

[Ambrosia, et al., 2011] 

From 2006 to 2009, NASA flew two modified General Atomics Predator over 55 major wildfire 

events in both day- and night-time as part of the Western States UAS Fire Imaging Mission.  

[Ambrosia, et al., 2011] The first of these aircraft, a modified Predator B called “Altair,” was 

designed to demonstrate the capabilities of an UAS performing high-altitude Earth science 

missions, but it was also flown over the .  The aircraft could carry a sensor payload of up to 750 

pounds.  In October, 2006, the Altair was equipped with a pod-mounted infrared imaging sensor 

under the fuselage and flew several missions Esperanza fire to support firefighting efforts there.  

[NASA Armstrong, 2014] 

The second Predator B deployed by NASA as part of this mission, the “Ikhana,” was first flown 

in 2007.  It was able to provide incident commanders with near-real-time GIS products for 

visualizing the fire front through an internet distribution (10 minute latency to process imagery 

and distribute GIS information over the internet).  The aircraft was able to reduce the latency 

greatly by utilizing an Applanix, Inc. ‘Position and Orientation System for Airborne Vehicles 

(POS-AV)’ model 310 system to tag all images with the precise GPS position and inertial 

orientation of the sensor.  This information eliminated a tedious post-processing step and gave a 

“forward” solution that had a RMS error of only 2.5 pixels when compared to post-processed 
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information.  Onboard processing allowed the aircraft to communicate only processed 

information to the ground through the limited communication bandwidth.  The entire payload of 

the instrumented Ikhana weighed 2400 pounds.  [Ambrosia, et al., 2011] 

NASA was able to attain an FAA Certificate of Authorization (COA) for each aircraft by filing 

flight plans with as little as 48-72 hours’ notice for scheduled flights over controlled burns.  On 

the other hand, after the Ikhana was delivered in January 2007, the first COA for the new aircraft 

tail number was not issued until August of that year.  The Ikhana operators had to fly the flight 

plan similarly to pilots flying on an Instrument Flight Rules (IFR) flight plan [Federal Aviation 

Regulations, 91.117], with all deviations requiring a clearance from the FAA Air Route Traffic 

Control Center (ARTCC) via verbal radio communications.   [Ambrosia, et al., 2011] 

In the summer of 2014, in a partnership between the Alaska Fire Management office and the US 

Army, an RQ-7 Shadow battalion flew three flights to determine the best practices for employing 

these combat aircraft in fighting wildfires.  The aircraft and operators were evaluated based on 

their (1) ability to create an IR map of a large scale fire progression, (2) ability to integrate into a 

fire management team, (3) ease of use, (4) response time, and (5) potential to operate 

independently over unstaffed burning on military lands and send status reports and hotspot 

locations to fire managers.  The UAS was only allowed to fly at night to avoid any firefighting 

aircraft flying during the day, and had to develop a course of action for leaving the airspace if a 

night medivac helicopter launched.  [Hill, 2015] 

The systems on the Shadow were sufficient to gather the information important for tracking a fire 

line and finding hotspots.  The biggest challenges came from training the crew in the new 

mission.  The crew and the liaison worked together, especially during the second and third flights, 

to fit the abilities of the aircraft with the needs of the incident commander.  Some capabilities, 

such as geotagging images with latitude and longitude or plotting a search pattern using the 
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ground station’s computer after takeoff, required some improvisation from the pilots, who were 

trained for but unfamiliar with the capabilities not typically used on a combat mission.  This split 

attention could be dangerous in a busy airspace, especially given the already limited situational 

awareness of most UAS.  The author concluded that embedding an experienced firefighter with 

the operators would eliminate many of the problems inexperienced flight crews would experience 

as various agencies develop procedures and training plans for this new mission.  [Hill, 2015] 

Large UAS like these are beyond the scope of this paper; however some of the problems 

experienced apply to small firefighting UAS as well.  Concerns over the danger of mixing 

manned and unmanned aircraft in the same crowded, uncontrolled airspace around an active fire 

has grounded fire-aviation assets in the United States, and a fire service deputy commissioner in 

Australia has threatened to do the same in New South Wales.  [Bruce, 2015]  In the United States, 

these areas are often protected from sightseeing aircraft by the FAA’s Temporary Flight 

Restriction (TFR) program.  [Federal Aviation Regulations, 91.137(a)]  Conflicts like this could 

be avoided in the U.S. if non-participating UAS operators will monitor and respect these 

restrictions to flight, and participating operators are able to stay situationally aware of other 

aircraft in the airspace. 

Large, military UAS like the Predator are inappropriate for commercial use because of a number 

of practical barriers.  These systems lack the sophistication, reliability, safety, and flexibility 

expected in civilian aircraft operating in the National Airspace System.  They therefore require a 

large investment in capital and training to operate.  [Grossman]  Conversely, components 

marketed to UAS hobbyists are not designed or tested as rigorously as would be required for 

widespread commercial applications. 
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3. PASSIVE  SENSORS 

 

One solution to the wildfire detection problem is the use of satellite imagery in the color and 

infrared spectrums to locate hot spots on the ground.  Satellites can monitor large areas at regular 

intervals to detect sufficiently large fires in remote areas.  Because of the limited spatial 

resolution of satellite imagery, small fires will likely go undetected.  Atmospheric phenomena 

such as high humidity or cloud cover could absorb most or all of the color and infrared light 

emitted by a fire before that light could reach an orbital satellite.  Satellites fly fixed orbital paths, 

often created for purposes other than firefighting, and therefore may not be available for a 

particular area at a particular time.  The cost of launching and maintaining an orbital satellite has 

prohibited their use for dedicated firefighting applications, and therefore the communication time 

with the end user often makes them makes the data unusable for all but large federal fires. 

Satellites have also been used to gather information for large-scale predictive models of fire 

behavior.  The LANDFIRE database was a federal program in the United States to create a 

nationwide map of fuels and vegetation using satellite-based remote sensing.  This program was 

limited by a moderate spatial resolution (30 m) and is not suitable for modeling fires on the local 

level.  It also has no way of determining canopy characteristics, and so the data was supplemented 

with Landsat imagery.  However this method also tends to underestimate canopy bulk density and 

canopy base height.  [Erdody and Moskal, 2010] 

The Normalized Difference Vegetation Index (NDVI) has also been used to determine plant 

health and moisture content on the ground using hyperspectral imagery from satellites such as 

NASA’s MODIS [Rouse, et al, 1973].  By measuring the reflectance of a Near Infrared (NIR) and 
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red bands captured by MODIS, one can calculate NDVI, which is an estimate of 

photosynthetically active biomass, as: 

���� =  ��	
 − ��
	��	
 + ��
	 

Where ρ857 is the reflectance at 857 nm (NIR), and ρ645 is the reflectance at 645 nm (red).  NDVI 

has a strong correlation with moisture content in grasses, but the extremely low spatial resolution 

of MODIS imagery (500 m) makes it difficult to use for determining local fire risk.  [Dennison et 

al, 2005] 

Krasnow et al, [2009] makes the case for more precise fuel maps to predict fire spread and plan 

for fire mitigation practices.  The paper used two historic Colorado wildfires (Overland in 2000 

and Walker Ranch in 2003) to evaluate the performance of FARSITE simulations using 

LANDFIRE national fuel maps and maps developed through the method described in the paper.  

This method used sampling and predictive modeling to create detailed, local fire maps for the 

areas burned in these fires.  Simulation showed that the LANDFIRE map greatly underestimated 

the extent of the fire, predicting only 40.3% and 77.7% of the area that was burned in the actual 

fires.  The local fuel maps improved that performance to 88.2% and 91.4%, respectively.  In the 

wind driven Overland Fire, the LANDFIRE map predicted an average spread rate of 3.58 m/s 

whereas the local map predicted a more dangerous 5.75 m/s average spread rate.  The author 

points out that some of this improvement is likely due to the iterative calibration process used to 

correct the map to match historic fire behavior.  This step was necessary to create an accurate 

metric with which LANDFIRE maps could be compared.  However, the paper points out that the 

predictive model was only able to account for 56-62% of the variability of predicting four fuel 

parameters used by FARSITE.  The simulation may have performed even better if fuel 

parameters could have been directly measured immediately before the fire. 



15 

 

Fire spotting towers are a low-cost solution to the wildfire detection problem.  These fixed towers 

are deployed in remote areas to monitor atmospheric conditions in the immediate vicinity of the 

tower and provide warnings of nearby fires.  Some towers are equipped with CCD cameras to 

monitor large tracts of land with or without a human observer.  Image and video processing 

techniques can provide autonomous smoke detection from up to several miles away, reducing an 

observer’s workload.  However, commercial software available today is still less effective than a 

trained observer and produces many more false alarms.  [Matthews et al, 2012]  Though less 

expensive than a satellite at about $30,000 per tower, a fire tower can only observe the area 

around it, and its view can be obscured by natural or manmade features.  As the price of 

processing and communication systems goes down these towers will become more effective, but 

they will still be limited to line-of-sight observations from the tower. 

Davenport [2012] tested the effectiveness of multispectral video for smoke detection.  By 

correlating visible, cooled midwave IR, and cooled longwave IR videos, he was able to perform a 

Principle Component Analysis (PCA) to find the most significant color channels for smoke 

identification.  According to his findings, smoke was most easily detectible in the seventh 

principal component of a two frame, five channel PCA (10 principal components in all).  The 

seventh principal component is made up almost exclusively of red, green, and blue channels, with 

very little contribution from midwave or longwave IR.  A duplication of the technique with only 

red, green, and blue channels obtained the same results.  According to these results, midwave IR 

and longwave IR do not provide significant information for smoke plume detection. 

Mallinis et al [2014] evaluated three hyperspectral satellite systems for their ability to gather 

information that could determine fuel types in the University Forests of Taxiarchis in central 

Macedonia.  Using machine learning techniques, they compared the ability of the Quickbird, 

Landsat TM, and EO-1 Hyperion imagery to accurately identify the fuels in the test set after 

being trained on the known set of fuels.  They found that the high spatial resolution of the 
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Quickbird imagery may be more decisive than the high spectral resolution data of Landsat TM 

and OE-1 Hyperion for Mediterranean fuel type mapping, even without including the contextual 

information and texture and shape clues that have been shown to improve Quickbird’s 

classification results.  Of course, such a simple test is not a replacement for a human classifier.  

However it does highlight the limitations of the extremely low spatial resolution satellite imagery 

when attempting to construct a fuel type map. 

 

4. ACTIVE SENSORS 

 

Saatchi, et al, [2007] tested the idea of using radar remote sensing from an airborne or spaceborne 

platform to determine fuel characteristics.  They were able to survey large swathes of 

Yellowstone National Park using an AIR-SAR (Synthetic Aperture Radar) system mounted to a 

NASA DC-8.  Spatial resolution varied from 5 to 10 meters for different bands and different tests.  

The paper found a strong relationship between the measured radar backscatter and specific 

categories of above ground biomass useful for computational computer models (crown and stem 

biomass, canopy fuel weight, and foliage biomass) by fitting the applicable backscatter signals in 

dB to the Log of the fuel component desired, and second order Log fits were also provided when 

they improved the accuracy of the plot significantly.  Some sources of error were the uncertainty 

of the canopy height or the ground relief of the terrain below the canopy, both of which are 

difficult to attain without ground measurements.  Accurate measurements of topographical 

variations would be required to correct backscatter measurements.  These measurements can 

either come from recent, detailed surveys or from a second sensor to measure surface elevation. 

Erdody and Moskal [2010] tested a method of combining passive optical and active Light 

Detection And Ranging (LiDAR) measurements to form a more accurate estimate of forest 
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canopy composition of Ponderosa Pine in Ahtanum State Forest in Washington State.  The 

apparatus used employed high-definition digital color near-infrared (NIR) camera coupled with 

discrete-return LiDAR sensor to determine the strengths of individual measurements compared to 

a model that combines information from both sensors.  The camera was mounted to a fixed-wing 

manned aircraft, and provided a spatial resolution of 61 cm, which was a large improvement over 

the 30 meter Landsat or 2 meter Quickbird satellite imagery, however it is still too low to 

determine features for species identification or structure from motion.  The paper concluded that 

the color NIR imagery added only about 3 to 4% accuracy to the LiDAR estimates of canopy 

characteristics.  However, color NIR information can also be used to identify species, evaluate 

plant health, estimate moisture content, or other characteristics that LiDAR information cannot 

estimate.  Also, the large, heavy LiDAR system employed in the study would not be feasible on a 

small UAS, whereas small UAS routinely carry lightweight high-resolution cameras with a 

spatial resolution much smaller than 61 cm, mainly due to the lower altitudes at which UAS 

generally fly.  Smaller, less sophisticated LiDAR systems would not provide as much accuracy, 

however penetrating LiDAR information could supplement imagery to identify features below the 

top of the canopy. 

Iriarte [2015] used a LiDAR device mounted to a UAS with a 3 meter wingspan to determine the 

ground characteristics below Amazon rainforests in Brazil.  This project plotted LiDAR 

reflections, filtered out the reflections that came from the canopy, and mapped out the ground 

reflections to find the relatively small remains of 1000 year-old structures.  Small, cheap LiDAR 

could also be carried by a wildfire UAS in order to map small changes in the topography in order 

to get a more accurate picture of the canopy height and the local ground slope. 
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5. FIRE AND SMOKE DETECTION ALGORITHMS 

 

A smoke plume can be detected a number of ways.  Chemical detectors, such as household smoke 

detectors, are often used to detect carbon monoxide or carbon dioxide in the vicinity of the 

detector quickly and with great accuracy.  A transportation delay exists with these point sensors 

because they cannot detect a smoke source far away from the detector until a sufficient amount of 

smoke reaches the detector.   

Another solution takes advantage of how smoke absorbs, reflects, and transmits light.  If a laser is 

fired at a smoke plume, certain wavelengths will be either absorbed or reflected back at the 

source.  These optical smoke detectors collect a sample of the ambient atmosphere and fire a laser 

through it and into a detector or receiver on the other side.  If the gas sample reflects or absorbs 

enough of certain wavelengths, then an alarm is triggered.  [US Patent 08/120,947, 1995] 

Optical smoke detectors are often attached to towers to test for various chemicals, but these 

systems are expensive and have a short range, requiring a dense arrangement for effective 

coverage.  Handheld sensors are available, but their low sensitivity limits them to simple point 

sensing.  Long range sensors are available, but they are the size of a semi-trailer and are not 

practical for surveying large areas of wildland.  At Oklahoma State University, the Sensorcraft 

carries an optical chemical detector on a small UAS to survey an area for high levels of a 

particular gas, which could indicate anything from a smoke plume to an invisible gas leak from a 

natural gas pipeline.  [Mitchel, 2015]  Point smoke detection techniques like these are outside the 

scope of this paper and will not be evaluated. 
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Figure 3 - OSU Sensorcraft, equipped with a small optical point chemical sensor. 

Vision-based smoke detection has considerable advantages over other fire and smoke detection 

methods.  A vision sensor is a volume sensor rather than a point sensor, and therefore the hazard 

is detected without a transportation delay and from a safe distance.  Despite considerable research 

in this area, vision-based smoke detection is still an open problem.  Variability in the sequence 

lighting, video fogginess, outdoor background, and moving objects with characteristics similar to 

the smoke make background estimation difficult.  No primitive features such as motion, color, 

edge, shape, or reduction in background energy uniquely describe the smoke.  It is also difficult 

to model the appearance of smoke. 

The topic of autonomous fire and smoke detection through image processing techniques has been 

a subject of study for over a decade, but almost all of the techniques described in literature 

assume a fixed camera and little if any camera flicker.  [Ojo, et al. 2014]  These conditions rarely 

occur even with a CCD camera mounted to a fire tower, and therefore the individual techniques 

are less effective in this scenario.  A camera mounted to a constantly moving UAS makes these 
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assumptions invalid under all but perfect conditions, and many of the techniques simply have to 

be discarded.   

The first smoke detection algorithms used background subtraction or color discrimination to 

detect smoke plumes.  [Ojo, et al. 2014]  Though these techniques can be implemented in real 

time, they have proven too basic for an accurate smoke detection without excessive false alarms.  

Background subtraction, or frame differencing, involves subtracting some saved background 

image from the current frame and noting the differences.  This background image can be the 

previous image, the first image in a sequence, an image updated by each successive frame, or 

some average image across a training set of frames.  Background subtraction techniques are 

effective in urban settings where the background does not change significantly with each frame, 

however they must increase in complexity in the presence of a constantly changing background, 

such as waving grass or blowing leaves common in wildland backgrounds.  [Dawson-Howe, 

2014]  To be effective for smoke detection in wildland environments, the camera must store a 

pre-smoke background image from the same orientation, position, and time of day as the current 

frame.  Tower cameras will update their background slowly throughout the day in order to ignore 

subtle changes in illumination, but the limited flight time of a UAS would make this hours-long 

process impractical. 

Color discrimination involves using RGB, [Chen, et al., 2004] HSV, [Chen, et al., 2006] or some 

other color space values to determine the presence of smoke in a pixel.  The cutoff for classifying 

a pixel as smoke can involve a fixed threshold of values, an updating threshold of values, or a 

probability distribution based on a training set of images.  Though some improvement can come 

from choice of color space, [Damir, et al. 2009] it is negligible when compared to the number of 

false alarms and missed detections that occur when evaluating the algorithm with an image 

outside of the training set.  When evaluating each image as a whole, especially under conditions 
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not included in the training set, these algorithms perform worse than a human observer.  When 

evaluating individual pixels their results are completely unreliable. 

Chen, et al. [2004], created a chrominance test with only one static threshold, so that the 

thresholds were relative to the other chrominance values, not absolute thresholds.  In this test, a 

pixel was fire colored if all of the following were true: 

� > �� 

� ≥ � > � 

� ≥ �255 − �� ∗ ���� 

where R, G, and B are the Red, Green, and Blue pixel values, respectively, Rt is some fixed 

threshold for Red, S is the Saturation value, given as: 

� = 1 − 1� + � + � ������, �, ��!, 0 ≤ � ≤ 1 

and St is the value of S when R=Rt.  

Chen, et al. [2004] also includes a chrominance-only smoke test involved testing for the greyness, 

or the closeness of the R, G, and B values.  The paper gives the following formula: 

� ∓ % = � ∓ & = � ∓ ' 

0 ≤ %, &, ' ≤ ( 

where a is a fixed threshold for the minimum greyness of smoke. 

Celik, et al. [2007] provided a five step level flame test using chromatic values.  The first two 

steps used only relative thresholds, and the last three are designed to be illumination independent. 
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0.25 ≤ ��), *���), *� + 1 ≤ 0.65 

0.05 ≤ ��), *���), *� + 1 ≤ 0.45 

0.20 ≤ ��), *���), *� + 1 ≤ 0.60 

where k is the total number of pixels in the image. 

More recent research in flame detection involve the temporal characteristics of fire (i.e. slow 

spread rate, high frequency flicker on the boundary) that break down when the camera is far away 

from the fire or the camera is moving.  There has been very little success in spotting wildfires 

from the color characteristics of the flame, and so an evaluation of these techniques for 

implementation into a wildfire UAS is beyond the scope of this paper.  By far, the most 

successful method of spotting a wildfire from aerial imagery has been viewing infrared bands to 

detect relative hot spots.  This method has the potential to find fires that are obscured by smoke or 

obstacles or even roots burning under the soil.  [Hill, 2015] 

A more complex version of color discrimination is testing for greyness.  In general, the color of a 

smoke plume is some level of grey, ranging from white to black depending on the stage of the 

fire.  In RGB color space, this means that the values for red, green, and blue, denoted by R, G, 

and B are close to each other.  Chen, et al. [2004] includes the following chrominance-only 

smoke test involved testing for the greyness: 

� ∓ % = � ∓ & = � ∓ ' 
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0 ≤ %, &, ' ≤ ( 

where “a” is a fixed threshold for the minimum greyness of smoke.  Yuan [2008] gives a similar 

test, which is easier to implement on MATLAB: 

     �(8��, �, �� − �����, �, �� < :�         

where TR is a predefined threshold.  However, certain conditions (i.e. sunrise, sunset, colored 

smoke, greyish moving objects, heavy mist) can cause the assumptions associated with fixed 

thresholds to break down.  For instance, thick fog may trigger false alarms or obscure actual 

smoke.  Reflections of fire or the sun may also color the smoke, making it fail the greyness test.   

As recently as 2013, Yoon, et al. developed a smoke detection test using fixed thresholds that was 

supposed to eliminate fog and clouds from the pool of false positives.  The paper evaluated 5 

smoke video sequences, determining smoke pixels by subtracting from a background that was 

updated through a Gaussian Mixture Model once every minute for 30 minutes.  They found that 

in the HSL color space, 90% of the smoke pixels had a Saturation (S) value from 0-60, and 95% 

had a Lightness (L) value from 40-140, both on a scale from 0-255.  According to this paper, 

detection times were under 2 minutes, including a thin smoke plume representative of an early 

fire, with minimal false alarms from fog and clouds.   

Töreyin, Dedeoglu, and Çetin [2005] developed an effective five step method for detecting smoke 

within about 100 meters of the camera.  After segmenting potential smoke regions through 

motion detection, this method uses a background subtraction of the spatial wavelet transform to 

detect a decrease in high frequency energy, which is indicative of the “blurring” experienced 

when observing a background through light smoke or haze.  The high frequency energy of a 

pixel, E(i,j), is given by: 

;��, <� =  =>��, <�? + >=��, <�? + >>��, <�?    
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where LH, HL, and HH are the high frequency subbands of an image, and (i,j) represents the 

pixel located at the ith row and jth column.  Candidate regions that lose high frequency energy 

between subsequent frames are checked for a loss of U and V chrominance values in the LUV 

color space, an indicator of the “graying” effect that the addition of smoke cover often creates.  

Finally, the boundaries of the remaining candidate regions are checked for a one to three Hertz 

flicker observed in smoke boundaries.   

This algorithm performs well in the majority of scenarios; however there are several conditions 

under which it will fail to identify smoke.  If the background has very little texture then the 

smoke will not blur it, and in some cases the smoke will actually increase the high frequency 

energy of the region.  [Chen, et al. 2013]  Moving shadows tend to reduce the U and V like 

smoke does, and if the sun or the fire is reflecting off the smoke and giving it a red hue then the 

smoke will likely not decrease the red value of the pixel and the region may be discarded during 

this step.  If the smoke is too far away from the camera then any small flicker of the boundary 

will not be observable, and so the range of the algorithm is limited by the resolution of the video 

and the inherent flicker and jitter associated with all cameras and camera mounts.  Photo 

compression methods, like .jpg, often use discrete transforms to reduce the memory requirements 

by filtering out the high frequencies [Gubbi, et al. 2007], so a system that uses this approach 

would require a camera that outputs uncompressed images and videos.  Regardless of these 

shortcomings, the Töreyin, et al, technique can perform well across a wide range of conditions 

and is still considered the standard upon which other new techniques are often compared.  The 

high computational complexity of the algorithm has driven researcher to develop algorithms that 

achieve similar of better results with algorithms that can be processed in real time. 

Yuan [2008] proposed a method that utilized optical flow to identify the unique movement of 

smoke in an image.  Optical flow is built on the assumption that light intensity (I) is conserved, 

and therefore: 
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for each pixel in the image.  It uses frame differencing to determine the change in intensity 

between two subsequent frames DEF
E�G and then determines the x and y derivatives within the 

image using a least squares or some other fit with the surrounding pixels.  Because the equation is 

applied to a digital image with discrete pixels, the movement in the image must not exceed the 

size of a pixel in order to arrive at a useful solution.  Though the theory is based on a false 

assumption (intensity is rarely conserved in a moving image due to changes in the image 

brightness and movement toward or away from the light source), the illumination change between 

two subsequent frames is usually very small, and the calculations converge to a useful solution in 

the vast majority of problems.  [Dawson-Howe, 2014] 

In Yuan’s technique, optical flow was collected over several frames as an oriented histogram, and 

regions that showed a general upward motion were classified as potential smoke, taking 

advantage of the buoyancy of smoke.  This one step in particular was able to eliminate many 

moving objects that would have created a false alarm for other algorithms.  Optical flow is a 

powerful tool for smoke detection, and it provides a means to detect smoke in the presence of 

camera ego-motion.  However it is computationally expensive and therefore currently unsuitable 

for real time implementation. 

Yuan’s was not the first paper to attempt to use optical flow to detect smoke in a video.  

Kopilović, et al. [2000] studied the use of low resolution 180o panoramic lenses for surveillance 

and smoke detection.  The study separated the optical flow orientations into discrete bins and 

calculated three characteristics: Entropy, Variation, and Maximum-norm.   By testing smoke and 

non-smoke motion blocks between two consecutive frames of a video, the paper found that 

Entropy, defined below, showed the best discrimination of smoke motion versus rigid body 

motion: 
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where e is the Entropy, n is the number of discrete orientations considered on the interval (0,π], 

and f(i) is the distribution of the ith orientation, on the interval [0,1].  This result allows for a quick 

algorithm that can be implemented in real time for low resolution video; however it still assumes 

a fixed camera since the random motion of a UAS in turbulence could easily increase the entropy 

of the background beyond some fixed threshold for smoke.  Also, while indoor backgrounds 

rarely move, outdoor backgrounds are full of non-rigid motion that may have higher Entropy than 

a smoke plume. 

NASA Armstrong [Ambrosia, et al. 2011] deployed the Ikhana UAS over several fires from 

2007-2009 in part as an attempt to autonomously detect, identify, and locate flare ups following 

fires, an operation often referred to as “mopping up.”  The Ikhana was equipped with an AMS-

Wildfire, a high spatial resolution multispectral sensor that was capable of determining radiance 

in some Thermal Infrared (TIR) bands for temperature measurement, as confirmed by laboratory 

calibration.  The aircraft used the following thresholds to create a fire alarm: 

�(�M 11�3.60 − 3.79Q�� > 360° S 

�(�M 12�10.26 − 11.26Q�� > 290° S 

�(�M 4�0.76 − 0.90Q�� < 0.4 

The third threshold was used only during the day, when reflectance from the Sun was likely to 

create false alarms.  This step eliminates any highly reflective objects as false alarms.  This 

technique was able to quickly identify still-burning objects on the ground at night and notify 

firefighters on the ground to extinguish them.  [Ambrosia, et al. 2011]  The algorithm is a natural 

extension of traditional mopping up operations, where thermal video is often taken by firefighters 
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either on the ground in helicopters above the burn in order to identify hot spots not visible to the 

naked eye.  These experiments proved the usefulness of TIR information for hot spot 

identification from the air, however without additional color information or highly precise 

orientation information TIR alone is difficult to analyze. 

Chen, et al [2013] used the Gray Level Co-occurrence Matrix (GLCM) to identify pixels within a 

smoke region by quantifying the discontinuities in the vicinity of each pixel.  Similar to the 

blurring noticed by Töreyin et al [2005], this paper assumes that as smoke occludes a region the 

number of discontinuities within that region will decrease.  Like the high frequency energy 

observation, this technique will often fail in the presence of a uniform-color moving object, a 

textureless background, or smoke very near the camera, where rich edges of the smoke can 

increase the background texture. 

Ko, et al [2013] identified two spatiotemporal features for determining smoke regions in a video.  

The paper states that the smoke boundary has a distinguishable pattern in a spatial Histogram of 

Oriented Gradients (HOG) within a single frame because of the upward diffusion characteristics 

of smoke; however it does not describe the pattern so the effectiveness of this feature is difficult 

to confirm.  Additionally, the paper generated a Histogram of Oriented Optical Flow (HOOF) for 

each pixel in a candidate block over 100 frames.  The assumption is that over time, the net optical 

flow of a smoke pixel is up and left, up, or up and right, as indicated by the discretized range of 

motion that optical flow can resolve.  Another assumption of this technique is that either the 

camera is motionless or its motion is cyclical so that by the end of the process it will be located 

and oriented as it was at the start.  As in Yuan [2008], it may be possible to use the HOOF to 

estimate the motion of the camera, but optical flow calculations are very computationally 

expensive at high image resolutions. 
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Wang, et al [2014] introduced the idea of using swaying (smoke moves more at the top than at the 

bottom) and diffusion (the smoke diffuses as it rises, so the top has fewer characteristics of smoke 

than the bottom) features to identify smoke blobs in an image.  The swaying tracks the centroids 

of the top and bottom halves of a large smoke colored blob through several frames.  A rigid 

moving object such as a car would give similar results between the top and bottom halves, 

whereas the bottom half of an example smoke plume moved only 70% as much as the top over 5 

frames.  Two specific examples, a man exercising and a plastic bag tied to a vent on the ground, 

showed similar results.  To eliminate potential false alarms, the paper also calculated the diffusion 

of the blobs using the GLCM.  By summing the elements along the main diagonal (exact 

matches) and dividing by the total number of elements, these normalized matching ratios could be 

compared.  The paper concluded that if 65% of the bottom pixels match (main diagonal on the 

GLCM) and if the top half has less than 96% of the matches that the bottom has, then the region 

is a good candidate for smoke.  The swaying characteristic may have some benefit to a camera 

that is allowed to translate but not rotate.  As long as the motion between frames is small enough 

that a candidate smoke region can be identified in consecutive frames, the difference in motion 

between the top and bottom could be found, though the ratio may break down when the camera 

motion is much greater than the smoke motion. 

Dark channel priori is a technique that has been used for automatically normalizing the ambient 

light in an image.  Ligang, et al [2014] proposed using this technique to identify smoke regions 

by noting the increase in the minimum RGB value within a smoke region.  This technique 

assumes that inside any background region Ω(x) centered at the pixel identified by vector x, 

which is not occluded by smoke, there are always pixels for which the dark channel Jdark(x), 

defined below, is very small, potentially even zero.  This means there are some pixels inside each 

region for which one either the Red, Green, or Blue values are considerably small.  When the 
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smoke covers that background region, the dark channel will increase, and this phenomenon could 

be used to find smoke regions in the current frame.  The dark channel is calculated as: 

TU-V2�W� = min[∈]^,_,`a b minc∈d�W�KT[�e�Lf    

 

6. FUEL MAPPING ALGORITHMS 

 

McCree [1972] determined the Photosynthetically Active Region (PAR) of the electromagnetic 

spectrum by measuring the response of 22 plant types to electromagnetic radiation between 350 

and 750 nm.  He determined that all plants absorbed ultraviolet, visible blue and visible red light, 

with a noticeable dip in the range of visible green light and a sharp drop at the boundary between 

visible red and near infrared, as illustrated by the following figure. 

 

Figure 4 – Average absorptance characteristics of 22 plant types [McCree, 1972] 



30 

 

Rouse, et al. [1973] used LANDSAT spectral information to develop this PAR into a useful index 

to determine plant health or density.  The paper determined that healthy, dense vegetation 

exhibited high NIR reflectance and low red reflectance, whereas unhealthy or sparse vegetation 

exhibited low NIR reflectance and high red reflectance.  This study also created a so-called 

“greenness” measures called the Vegetative Index (VI) (later called the Normalized Difference 

Vegetative Index, or NDVI), which could be used to monitor range lands and wheat crops, for 

seasonal changes.  VI combines the LANDSAT channels MSS7 (NIR) and MSS5 (RED) using 

the following equation: 

�� = g��7 − g��5g��7 + g��5 

Tucker [1979] evaluated several spectral indices and ratios like Rouse’s VI.  He used regression 

techniques to compare 18 spectral variables using IR-RED or GREEN-RED combinations against 

six canopy characteristics.  The study found that IR-RED reflectance characteristics were a much 

better indicator of vegetative qualities that GREEN-RED.  Also, although VI was a good 

indicator of photosynthetic vegetation, it reached an asymptote in high green biomass situations.  

The significance of different IR bands, namely 0.75-0.80µm, 0.80-0.90µm, and 0.75-0.90µm 

were also evaluated and found to be extremely similar. 

Running, et al. [1995] proposed that vegetation could be classified into one of six categories by 

using remote sensing measurements to determine whether the plants within the plot were 

perennials or annuals, whether the perennials were evergreen or deciduous, and whether the 

leaves were broad or needle-like.  Plants could be categorized into annual or perennial by tracking 

a 12-month history of above-ground biomass, and likewise the evergreen versus deciduous 

characteristics could also be identified using a 12-month history of “greenness,” such as NDVI.  

The third classification, leaf shape, would be the hardest to measure directly.  However, 

evergreen forests in the Pacific Northwest and Southeast can be clearly discriminated by 
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“duration of greenness” and “onset of greenness.”  [Loveland, et al. 1991]  Additionally, known 

spectral characteristics of stems and leaves have been proposed for weed detection.  [Wang, et al. 

2001, Okamoto, et al. 2007]  Similar characteristics could be used for autonomous fuel 

classification or even species identification for more detailed fuel mapping using very high 

special resolution hyperspectral aerial photography.  

Scott et al. [2002] was one of the first studies into the feasibility of creating a fuel map from 

aerial imagery.  This paper compared U.S. Forestry Service aerial photos of the Santa Fe 

Watershed area in the Sangre de Cristo Mountains of northern New Mexico.  Sixty 105’ x 105’ 

plots were harvested, dried, and weighed to determine the fuel loads in the area.  The purpose of 

the study was to determine if there was a correlation with the crown density of Mixed Conifer, 

Ponderosa Pine, and Pinyon-Juniper trees and the amount of fuel available to burn.  The study 

used color photos and a visual density guide to estimate the percentage of ground covered by the 

tree crowns and compared that to the measured dry fuel load within the plot.  Linear relationship 

showed that Mixed Conifer and Ponderosa Pine had a strong linear relationship (P-values of 

0.0135 and 0.0185, respectively), and Pinyon-Juniper did not (P-value of 0.5614).  Extrapolating 

the empirical equations to another region, near Los Alamos National Lab in the Jemez Mountains 

also in northern New Mexico, yielded poor results.  Therefore, these correlations are obviously 

site specific, and likely time-of-year specific. 

Dennison et al [2005] compared the use of NDIV, which quantifies the reflectance characteristics 

of vegetation, with the Normalized Difference Water Index (NDWI), which was designed around 

the absorption characteristics of water, to determine the live fuel moisture (LMF) of a California 

shrubland.  They found that replacing the visible light used in NDVI (red, in their example) with 

shortwave infrared (SWIR) gave a significantly better correlation with moisture content recently 

measured through destructive harvesting and oven drying.  The paper used imagery from the 

MODIS multispectral satellite, so large resolution (500 meters per pixel) adds some uncertainty to 
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the measurements.  The paper only evaluated five species of California chaparral, so a broader 

evaluation is still necessary.  The authors believed that grasses, which have much lower moisture 

content, would not respond as well to NDWI as they do to NDVI. However, the asymptotic 

quality of NDVI at high values is not as prominent when using NDWI to measure moisture 

content. 

Roberts, et al. [2006] also evaluated the usefulness of multispectral satellite imagery in 

determining LFM.  LFM is a critical factor for determining fire danger in shrubland and 

catastrophic forest fires, where live crown fuels contribute to fire spread.  It is defined as: 

=hg = ij,� − iUVciUVc ∗ 100% 

where Wwet is the harvested fuel weight before oven drying and Wdry is its weight after oven 

dying.  In this study, imagery from MODIS and AVIRIS satellites collected from 1994 to 2001 

were compared against each other and against samples taken by the Los Angeles County Fire 

Department (LACFD) during that time.  They found strong linear relationships for predicting 

LFM with four greenness indices (NDVI, EVI, VIg, and VARI) and three moisture indices (WI, 

NDWI, and NDII) for LMC above 60%, with stronger correlations when plants were categorized 

by functional group.   As the reflectance index fell below the level for 60% LMC the LMC 

remained constant.  This phenomenon is likely a result of the LACFD’s harvesting procedures, 

which excluded dead material which would build up under low moisture conditions and would 

affect the spectral reflectance of a plot. 
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INDEX FORMULA REFERENCE 

NDVI �857 − �645�857 + �645 
Rouse et al. [1973] 

EVI 2.5 ∗ �857 − �645�857 + �6 ∗ �645� − �7.5 ∗ �469� + 1 
Huete et al. [2002] 

VIg �555 − �645�555 + �645 
Gitelson et al. [2002] 

VARI �555 − �645�555 + �645 − �469 
Gitelson et al. [2002] 

NDII6 �857 − �1640�857 + �1640 
Hunt and Rock [1989] 

NDII7 �857 − �2130�857 + �2130 
Hunt and Rock [1989] 

WI �900�970 
Penuelas et al. [1997] 

NDWI �857 − �1240�857 + �1240 
Gao [1996] 

Table 1 - Spectral index formulas defined by available MODIS channels, reproduced from Roberts et al. [2006] 

According to Roberts et al. [2006], four main factors control LFM: leaf-level LFM, the age 

distribution of foliage, stem LFM, and the balance between stems and leaves.  Satellite imagery 

can determine the large-scale reflectance of plots, which is largely driven by leaf reflectance in 

shrublands and forests.  Of the greenness indices, the paper found that best predictors of LFM in a 

shrubland plot were VIg and VARI, both of which outperformed NDVI in in either MODIS or 

AVIRIS imagery.  Of the moisture indices, WI and NDWI slightly outperformed the NDII 

indices.  The paper also found that the moisture indices could be decreased by an increase in dead 

foliage as much as by a decrease in leaf-level moisture.  Higher spatial resolution imagery which 

could identify individual plants as well as bare soil, roads, etc. may be able to improve some of 

these estimates.  Additionally, VARI and VIg have been shown to have an almost linear 

relationship with vegetation cover, which may be useful for giving plant identifying algorithms a 
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starting point for determining the apparent footprint of live vegetation from high resolution 

imagery. 

Poulos [2009] found that fuel distribution patterns for prioritizing fuel reduction treatments (i.e. 

prescribed burning) are influenced primarily by spectral characteristics, topographic position, soil 

moisture, and solar radiation.  He used classification trees to identify four distinct fuel types in 

forested plots in Big Bend National Park in Texas, USA and Maderas del Carmen Protected Area 

in Coahuila, Mexico.  Spectral information was taken from LANDSAT imagery, and topographic 

and solar radiation features were derived from a 30 meter Digital Elevation Model (DEM) from 

the US Geological Survey.  The model was able to correctly classify plots one of into the four 

broad fire risk categories with over 80% accuracy, with the highest number of incorrect 

classifications occurring in grass and shrub plots.  The paper concludes that these two vegetative 

groups have similar spectral qualities, but their burning characteristics are very different.  Grasses 

are associated with low-intensity, high spread rate surface fires, whereas shrubs burn in more 

intense fires with slower spread rates.  Despite this tendency, the results show that a model which 

integrates spectral measurements, local topography, soil condition, and solar radiation could be 

very useful for autonomously identifying fuel types for wide spread use in pre-fire risk analysis 

and mitigation. 

Riggan, et al, [2010] observed that useful fire prediction would require accurate estimates of 

biomass accumulation, which in the case of southern California chaparral brush could be 

determined by a combination of historical tracking of the environmental conditions and remote 

sensing measurements of the spectral properties of the stand.  In fact, the paper theorizes that the 

fuel state within a chaparral stand may be directly related to the reflective properties of the 

vegetation alone.  The results of the analysis show a power-function relationship between NDVI 

and fine live biomass measurements when both are averaged across several stands of 

approximately the same age.  Unfortunately, the low spatial resolution of the Landsat imagery 
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was too large to allow a detailed analysis of the effects of species composition within a stand, and 

extrapolation gave poor results in high-elevation stands and frequently burned stands. 

Schmidt [2014] found that measuring chaparral ground cover by species gave a reasonable 

estimate for fuel loading.  The test utilized aerial imagery of three stands, each with a different 

age since the last wildfire.  Low altitude aerial imagery using ultra-high resolution cameras 

(spatial resolution less than 10 cm) was sufficient for a trained observer to identify plant species.  

When compared to the very labor-intensive process of destructive harvesting, aerial photography 

is an efficient means of surveying a large area on the ground.  Plotting the observed ground cover 

of individual species against the measured fuel loading, the paper found that the data matched 

well to a linear fit.  In fact, using a Leave One Out (LOO) regression scheme, the paper showed 

that the shrubs could be classified into broader functional groups rather than individual species 

and still follow a linear fit.  LOO is often used in small sample sizes, where the training set is 

made of all data points but one, and the fit is tested against the one left out.  This process is 

repeated for all data points, so that each one’s fit is calculated as part of the validation.  The paper 

even found that considering ground cover of all shrubs together - regardless of species - gave an 

even better fit for the two older stands.  The technique tended to underestimate large plots and 

overestimate small plots.  However, this phenomenon is within the error band of the data, and it 

could just be a coincidence given the small sample size. 

Volumetric characteristics can play an important role in the prediction of wildfire behavior, 

especially catastrophic forest fires.  Many of these characteristics can be estimated through active 

sensing such as LiDAR [Erdody and Moskal, 2010], and recent advances in photogrammetry 

could provide certain volumetric fuel characteristics from passive optical sensors.  Fonstad, et al. 

[2013], constructed a bare-earth model using a low-altitude UAS platform equipped with a 10 

megapixel Canon A480 compact digital camera.  The system was able to produce point clouds 

with vertical and horizontal precision in the centimeter range.  The paper compared the DEM 
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developed from of a LiDAR scan of Pedernales Falls State Park in Texas, USA in 2006 to the 

results of a Structure from Motion (SfM) analysis of photos taken from helikite blimp UAS flying 

between 10 and 70 meters above the ground.  The accuracy of the two techniques, when 

compared to GPS ground surveys, were comparable, and the point density of the SfM point cloud 

was over thirty times as dense as the LiDAR acquisition. 

SfM has some advantages over traditional photogrammetry.  SfM algorithms do not require 

calibrated cameras like the ones used by NASA’s Altair, even though most modern digital 

cameras usually have a focal length estimate encoded in the image tags.  This feature would make 

the SfM calculations more efficient for programs that are optimized for it.  [Snavely, 2008]   

Like other photogrammetry techniques, if the images are geotagged with the camera’s GPS 

coordinates or if ground reference points are added for landmarks then the georeferenced point 

cloud can be integrated into a Geographic Information System, or GIS. [Fonstad, et al., 2013]  

Mathews, et al., [2013] showed that SfM could determine volumetric characteristics of vineyards, 

where the ground points and the vegetation points are readily separable for creating a differential 

DEM, using a very simple unpowered UAS combination. 

An industry presentation of the AirGon AV900 system [AirGon, 2015] showed that current 

systems are able to create dense point clouds in remote areas with 1-2 cm pixel size.  The system 

uses a DJI S900 folding hexcopter frame equipped with a Sony NEX-5 camera and a gimbal 

mount to maintain a nadir orientation.  This Vertical Takeoff and Landing (VTOL) system was 

designed for use in open-pit mines, where short landing areas and the risk of overflying populated 

areas would make a fixed-wing platform impractical.  The system inputs images into Agisoft 

PhotoScan to produce a point cloud, and then uses LP360 to produce a volumetric analysis of 

specific areas (piles of gravel, in the mine example) by subtracting the base from the hull, or the 

above ground features.  Like in Fondstat, et al. [2013], AirGon found that calibrating the camera 
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before the flight did not improve the accuracy, since SfM programming self-calibrates the images 

as it determines camera locations and orientations.  The manufacturers admit that the exact 

accuracy of systems like this is unknown, and data should be interpreted conservatively until the 

accuracy in diverse environments is better understood.  The entire system, including hardware, 

software, training, and support is just under $30,000, which is not much higher than estimates of a 

volunteer fire department’s expected budget and well within the budget of a large fire department 

for acquiring a wildfire UAS. [Kurtley, 2014, Bradley, 2014] 
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CHAPTER III 
 

 

METHODOLOGY 

 

1. NEW TOOLS 

 

The goal of this project is to research the capabilities of low-cost specialty UAS to identify 

ground fires and assess wildfire risk.  The purpose of these experiments was threefold.  First, the 

project would expand on previous wildfire UAS research by testing the effectiveness of small, 

relatively cheap commercial-off-the-shelf (COTS) sensors carried by a low-altitude airborne 

platform.  Second, it would evaluate the minimum crew requirements to operate and monitor a 

small wildfire UAS at actual wildfire events.  Third, it would research the firefighting impact of a 

wildfire UAS which was cheap enough that a rural fire department could afford to acquire and 

operate one. 

Images were acquired from controlled burn experiments performed by the Oklahoma State 

University Fire Ecology department in the vicinity of the Marena Mesonet station and Lake Carl 

Blackwell in Stillwater.  These tests demonstrated the operational and performance differences in 

platform and operating modes and imagery from various multi-spectral bands.  Fixed wing 

platforms demonstrated a dramatic increase in range and endurance (roughly twelve times the 

range and four times the endurance with a similar payload) at the expense of an additional crew 
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chief responsible for hand launching the aircraft.  Small COTS sensors could provide a much 

higher spatial resolution at low altitudes than more expensive sensors at very high altitudes.  This 

tradeoff makes the platform more comparable to handheld sensors carried on board low-altitude 

helicopters used for mop up operations.  A UAS will likely never achieve the situational 

awareness and flexibility that a dedicated helicopter will provide, however the operating cost of a 

single helicopter is orders of magnitude higher than a small UAS.  The potential of nearly 

continuous coverage of a large area by a team of semi-autonomous UAS could give incident 

commanders more consistent situational awareness of hot spots after a fire.  Additionally, a single 

UAS could give the incident commander at a small burn the same situational awareness available 

very large burns at a cost that is attainable to small volunteer fire departments. 

Some flight tests were performed to test the usefulness of a 2-axis gimbal mount to reduce ego-

motion of an airborne camera platform.  An aluminum gimbal frame with two brushless motors 

was originally used to mount the camera, and several gimbal controllers were tested for 

compatibility.  The first controller tested was a Basecam AlexMos 2-axis controller that came 

installed on the gimbal mount.  The board was an outdated version, and it no longer supported the 

firmware that was available from the AlexMos.  The second controller was a Quantum Micro 

AlexMos SimpleBGC, and it was damaged the first time a battery was attached to it.  It was 

returned to the manufacturer as a defect.  The third controller was a newer version of the 

BASECAM AlexMos 2-axis controller.  It was able to maintain a more stable position for period 

of time, but any abrupt movement of the camera by approximately 20o or more caused the gimbal 

to reference a new attitude as level. The white airframe visible at the top of the image shows the 

attitude of the aircraft, which is constantly changing to maintain a GPS position in the gusty 

winds.  Any useful footage from this gimbal mount used the third gimbal controller. 

After the third gimbal controller, a plug-and-play XAircraft STELL 2-axis gimbal was acquired 

for the project.  This mount was designed specifically for the GoPro Hero3, and it is considered 
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the top-of-the-line COTS 2-axis gimbal for small UAS.  This gimbal tested well in lab trials, but a 

damaged vibration absorber prevented it from being used in flight tests.  Unfortunately, the 

gimbal’s electronics were damaged in a lab test before more vibration absorbers could be 

purchased, and it was returned to the factory for repairs. 

 

Figure 5 – DJI Phantom with GoPro camera 

 

 

Figure 6 - XAircraft STELLA gimbal 
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2. EXPERIMENTAL SETUP 

 

For the quadcopter tests, images were gathered by mounting a camera to the copter and recording 

for the entire flight, from just before takeoff to just after landing.  There was no communication 

between the camera and the ground.  All information was logged on an SD card in the camera.  

The pilot was not able to see a live feed of the video while flying, so he had to estimate whether 

the test object (smoke, fire, field, etc.) was in the camera’s field of view or not.  Similarly, exact 

altitudes are unknown other than a preprogrammed ceiling of 100 meters AGL based on GPS 

information, which was required to maintain compliance with the FAA mandated ceiling of 400 

feet AGL without a Certificate of Authorization (COA) prior to changes in the FAA regulations 

[FAA Modernization and Reform Act of 2012].  All test flights were below 400 feet Above 

Ground Level (AGL) altitude and within visual line of sight of the operator and an observer.  The 

differences in recording video and still images at intervals throughout the flight were also tested. 

Some of the first flights were performed to test the viability of using raw GoPro video to detect 

fire or smoke.  Videos were taken at a stabilized hover in order to capture clouds, buildings, 

roads, and other features that may confuse a smoke or fire detection algorithm.  Stabilized slow 

hovering turns were also tested.  Interviews with fire chiefs and trainers showed that one of the 

most difficult problems firefighters may have in interpreting color video data is maintaining 

awareness of the aircraft’s position.  These slow hovering turns would demonstrate a “400 foot 

periscope,” which could perform a GPS position stabilized hover over the operator’s position.  

This method of semi-autonomous flight and manual smoke and fire detection, when used with an 

On Screen Display which could give the aircraft’s compass heading, would likely be the least 

sophisticated tool an incident commander would find useful for tactical firefighting. 
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An aircraft fixed down-facing GoPro camera was used in several flights lawn to identify the 

potential for stitching a photomosaic map of the area and using it for navigation and orientation 

through template matching algorithms.  This technique was identified as an alternative to GPS 

navigation for the NASA UAS Airspace Avoidance Challenge.  Tests were initially performed to 

evaluate the effectiveness of communicating the features on the ground to firefighters using a 

photomosaic.  These tests were ended when it became evident that the extreme fish-eye distortion 

of the GoPro camera would produce nonlinear errors that require significant post-processing 

before image stitching could be applied. 

Most of the data was acquired at the Oklahoma State University Fire Ecology test plots, located 

13 km west of Stillwater, Oklahoma, USA.  They are located 400 meters east of the “Marena” 

Mesonet site, which is the source of all relevant meteorological data.  The site is relatively flat, 

with a 1 to 5% slope.  The vegetation within each plot is a combination of tallgrasses, other 

grasses, forbs, legumes, sericea lespedeza (Lespedeza cuneate), woody plants, and litter.  The site 

is organized into 14 plots, 20 meters by 30 meters each, with mowed paths between the plots. 

 

Figure 7 – Location of the Marena Mesonet station, west of Stillwater. 
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Figure 5 - The test plots are located approximately 400 meters from the Marena Mesonet station, west of Stillwater. 

The primary purpose of the first test flights over a controlled burn was to gain aerial footage of 

smoke plumes during various stages of a fire using a hovering and slowly moving platform.  The 

secondary purpose was to give the pilot practice flying near a fire and to develop a methodology 

for future flights at controlled burns.  The Phantom was hand flown in the stabilized mode with a 

GoPro fixed under the aircraft.  Most of the flight time this day devoted to gathering footage of 

the smoke plume from a hover.  During one flight the aircraft was flown away from the fire and 

then back to it.  Some issues were identified with aiming a camera while maintaining visual 

contact with the aircraft in the presence of smoke. 

A second set of flights utilized the custom built aircraft fixed mount built for the modified Canon 

SX260 HS camera.  This camera was pointed down in relation to the aircraft, but since it was 

fixed to the aircraft rather than gimbaled to maintain a strict nadir orientation this configuration 

will be referred to as “down facing.”  The aircraft was flown back and forth over the long axis of 

the plots and then over the short axis, simulating a search pattern that would cover the entire plot 

area.  The camera took 1080p video of the entire flight.  This caused two problems: each flight 
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used about 2 GB of storage space on the camera, and the constant motion of the aircraft relative 

to the ground caused the autofocus to lag the motion and caused most of the frames to be blurry. 

The aircraft was flown at a controlled grass fire approximately half a mile west of the test plots.  

The CHDK was used to take still photos at two second intervals; however the program failed 

shortly after each takeoff.  As a result, no useful footage was taken at this flight.  Additionally, 

the thicker smoke made the aircraft harder to see, and so the return-to-launch failsafe had to be 

used.  Designed for a loss of radio line-of-sight, the failsafe returns the Phantom to the GPS 

coordinate where it was turned on if the transmitter-controller is powered off.  A subsequent 

flight at the test plots also failed to take more than a few still images before encountering the 

failure, and no useful images were collected from the flight. 

The aircraft was flown at another controlled burn approximately 2 miles east of the test plots.  

The area had both crown fuels (trees) and surface fuels.  This time a laptop computer was used to 

evaluate the footage and clear the memory card between flights.  Because of this added step, the 

error that was causing the failure was discovered.  Video was taken over wooded areas to 

evaluate the camera’s ability to distinguish between surface and crown fuels, and the aircraft 

hovered over a burning area for three minutes to attempt to determine the spread rate. 

Unfortunately, the low ground clearance of the camera allowed dirt to get on the camera lens and 

shutter during one of the takeoffs or landings, so very little of the footage was useful for image 

processing.  A subsequent flight was made at the test plots to gather video for SfM analysis of the 

plots. 

Additional data was acquired The first flight was performed at a beginning of a small prescribed 

grass fire approximately two miles East of the test plots.  The second was performed near the end 

of that burn, in order to test the capability of NIR imagery to locate hot spots on the ground 

during mop-up operations.  The third was performed at the test plots in order to compare the SfM 
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and NDVI results with the previous two flights.  All flights captured geotagged still images at two 

second intervals. 

Additional flights were conducted at a 200 acre controlled grass burn on the northwest corner of 

Lake Carl Blackwell, 10 miles west of Stillwater, OK USA.  The Phantom was flown to the edge 

of its visible line of sight range and back during these flights, and the controllable range in the 

presence of smoke was determined to be approximately 500 meters along the ground.  Another 

two flights were made at the test plots to evaluate the difference between two flights on the same 

day under the same conditions using the same controls.  Both flights were made in a back and 

forth search pattern across the long axis of the plots.  The second flight took off approximately 

two minutes after the first flight landed, and no changes in illumination were observed between 

the flights.  All of these flights utilized two second interval still photos.  No video was taken of 

any flights. 

For certain flights, hourly weather data for the Marena Mesonet station and OKFIRE satellite 

greenness maps for the state of Oklahoma were noted before, during, and after all the flights of 

that day.  This included between two and four hourly weather and fire danger observations and 

the two weekly satellite maps: Relative Greenness and Visual Greenness. 
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3. PLATFORMS 

 

The DJI Phantom quadcopter was the most used aircraft in this study.  At its empty weight, the 

Phantom has an endurance of about 10 minutes with a 2.2 amp-hour battery.  When loaded with a 

fixed camera this endurance is reduced to about 8 minutes, and with a camera and gimbal the 

endurance is about 5 minutes.  This flight time is sufficient for gathering information, but a 

production system would need significantly longer endurance to be effective.  The aircraft also 

lacks the payload capacity for onboard computations or reliable data communication with the 

ground.  Because of these shortcomings, all data was post-processed in the lab after the flights. 

The DJI S-900 folding-arm hexcopter was also built for this study.  This aircraft has significantly 

greater payload capacity than the Phantom, and it has greater ground clearance to protect the 

sensors mounted under the main body.  It is capable of carrying both a digital camera for SfM 

analysis, as well as a small LiDAR device to confirm the accuracy of SfM calculations.  The 

aircraft was flight tested and shown to be uncontrollable, and redesign was not completed in time 

to integrate the aircraft into this study.  For more information on the flight testing, refer to Section 

5 Ground Control, below. 

 

4. SENSORS 

 

For color video used for smoke detection, a GoPro Hero was fixed to the aircraft, facing forward.  

The GoPro is capable of taking 1080p video at 30 frames per second or 12 megapixel still images 

at regular intervals (usually once per second).  The fixed mount provided a wide field of view for 

surveying a large area in front of an aircraft at a high hover.  Unfortunately, controlling an out-of-
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ground effect hover requires significant motion in pitch and roll.  These rotations make the video 

and images completely unusable for motion detection calculations, so an XAircraft STELLA 2-

axis gimbal was also used to stabilize the camera in pitch and roll for optical flow and 

background subtraction algorithms.  Unfortunately, the gimbal was damaged before any 

stabilized video could be taken in flight. 

A modified Canon SX260 HS was used for fuel mapping and hot spot detection.  Event38 

modified this camera by replacing its red channel with near infrared (690 – 770 nm).  As stated 

previously, near infrared reflectance is an indicator of plant health (chlorophyll) and can be 

combined with a color channel to calculate NDVI, an indicator of moisture content in grasses.  

Because this camera does not measure red, blue has been used instead as the visible color channel 

for NDVI calculation.  This alternate definition of NDVI will be referred to bNDVI.  The field of 

view was measured by analyzing the following picture taken from 12 inches.  The heavy dashed 

lines represent 1 inch grid squares. 
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Figure 6 - A grid sheet held 12 inches from the camera lens.  The heavy dotted lines represent 1 inch squares. 

The picture shows that the image is 15 inches (64o) wide and 11.25 inches (50o) tall.  Since the 

picture resolution is 4000 x 3000, the pixel size is approximately 3.75 x 10-3 inches squared, 

which at 12 inches is approximately 0.018o (0.3 milliradians) square in the center, using the 

following formula. 

I�HJM mI *�Hn =  tanq4 bJ%f 

Where l is the length along the focal plane, and r is the distance to the focal plane, or 12 inches in 

this example.  The camera also takes 23 frames per second (FPS) video at 1080p (1920 x 1080, 8 

bit, 3 channel) resolution.  Though the aspect ratio is different, assuming a similar coverage of 

(15” x 11.25” = 168.75 in2) gives a pixel coverage of 8.1 x 10-5 in2, or 9 x 10-3 inches square.  

Using the equation above, this gives an angular resolution of 0.043o (0.75 milliradians) square in 
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the center.  This resolution is still significantly higher than the AMS-Wildfire multispectral sensor 

used by the NASA Ikhana, and the total field of view is comparable to the AMS-Wildfire. 

The Canon camera can operate in two distinct modes: video or still images taken at a set interval.  

The camera was not designed to automatically take pictures at intervals, but the camera was 

loaded with the CHDK, which used a script called “Shot Interval” to take an image every two 

seconds for up to 300 images (approximately 10 minutes).  In addition to giving a much higher 

resolution image and automating the step of frame grabbing, this process gave two distinct 

advantages over video that needed to be tested.   

First, unlike video, which can only geotag the first frame of a movie, each image can be 

geotagged with the precise GPS latitude, longitude, and altitude at the time the picture was taken.  

Without precise Euler angles of the camera orientation this information would be insufficient for 

traditional photogrammetry, but using SfM this information should simplify the very 

computationally complex step of locating the cameras.  It may also eliminate the need for ground 

reference points since the center of every image can be used as a ground reference point with the 

same latitude and longitude as the image. 

Second, ego-motion of the camera in flight causes the automatic focus for lag behind the actual 

distance to the target, causing an intermittent blurriness in the video.  When taking sample 

frames, these blurry images must be removed manually in order to get a useful solution from 

SfM.  With still images the autofocus has some time to ensure the target is in focus before taking 

the picture.  In order to test this theory, the blurriest images were not removed from the bank of 

still images.  Only images before takeoff and after landing were removed, because in that 

condition the camera is very close to the ground and so navigational information can be derived 

from those images. 
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The camera was loaded with the CHDK on an 8 GB SD card.  This software kit allowed the 

camera to be programmed to automatically take pictures at a regular interval (every 2 seconds in 

this study).  This approach was a huge improvement over 1080p video.  It provided six times the 

resolution and a sharper focus while reducing the memory requirements.  Unfortunately, 

vibrations from the DJI Phantom at high throttle settings were significant enough to induce an 

error in the camera’s internal clock, disengaging the process shortly after takeoff in almost all 

flights.  Video was sampled using Aoao Video to Picture Converter to collect two images per 

second of video, and blurry images were manually removed. 

 

Figure 7 - Modified Canon SX260 HS camera with custom build aircraft mount. 

Some Long Wave Infrared (LWIR) video was also evaluated for its use in spotting fire-related 

hotspots from a UAS.  LWIR radiation is often used for determining temperature (thermal 

infrared) of surfaces that are close to room temperature.  Technically, any temperature above 

absolute zero will emit radiation at all wavelengths according to Planck’s law for spectral 

blackbody emissive power, Ebλ. 

;rs�t, :� = u4t	�exp�u?/t:� − 1!   �i/�? ∙ Q�� 

Where 
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u4 = 3.74177 × 10� i ∙ Q�

�?  

u? = 1.43878 × 10
 Q� ∙ S 

T is temperature in Kelvin, and λ is wavelength in µm.  Differentiating Planck’s law with respect 

to λ while holding T constant and setting equal to zero gives Wein’s displacement law for the 

wavelength for which the peak occurs for a specified temperature.  [Çengel, 2007] 

�t:�|}~ ��j,V = 2897.8 Q� ∙ S 

Therefore, a NIR camera which has a range of 0.72-1.00 µm (i.e. AHVRR imagery) will see peak 

emissive power from 2900-4025 K (4760-6785o F). On the other hand, a LWIR camera which 

captures a range of 8-14 µm (i.e. Lepton camera used in the FLIR ONE) [FLIR] would see peak 

emissive power from 207-362K (-87-192o F), which is a much more reasonable range for 

detecting fire. 

A single-channel long-wave infrared (LWIR) camera (DRS Tamatisk320™) was mounted to a 

fixed wing aircraft (OSU’s Firebird) and collected forward-and-down facing video in flight in 

both fire and non-fire environments.  The camera used auto-scales the intensity for each frame, so 

that the intensity range falls between the brightest and dimmest pixels in the scene.  This 

characteristic keeps bright pixels from saturating the intensity, but it prevents a direct 

measurement of brightness (or temperature) from the image intensity.  Because of the auto-

scaling function, the video was evaluated for qualitative characteristics only. 

The evaluations of these systems will satisfy objective 5. 
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5. GROUND CONTROL 

 

The DJI Phantom was hand-flown using the DJI model DJ6 transmitter-controller.  The Phantom 

is automatically stabilized in four axes: heading hold using the magnetometer, and altitude, lateral 

position, and longitudinal position hold using the onboard accelerometers and GPS 

measurements.  These modes assist in maintaining a stable hover, especially in gusty winds 

outside of ground effect (approximately 2 feet or higher AGL).  The NAZA-m flight controller on 

the Phantom does not allow for flying preprogrammed routes.  DJI publishes a ground control app 

for the iPhone, however this program is designed for DJI factory aircraft like the Phantom 2 

Vision, not modified aircraft like the one used in this study, and so the app was not used to gather 

data for this study. 

The DJI S-900 was also flight tested as part of its integration into this study.  The transmitter-

controller used was a commonly used fixed wing controller made by Futaba.  The hexcopter used 

an Atlas flight controller, and was stabilized in four axes like the Phantom.  It was uncontrollable 

during initial flight tests, and it was not ready in time for any of the information gathering flights.  

The Futaba controller is designed for fixed wing aircraft flying straight and level and level bank 

maneuvers, which is a very different profile than a level hover or very low speed maneuvers used 

throughout these tests.  This difficulty comes from two fundamental differences in flying 

traditional fixed-wing aircraft and flying Vertical Takeoff and Landing aircraft.   

The Futaba appeared to send continuous control signals to the aircraft, which in fixed wing 

aircraft is used to “trim” the aircraft for stable flight without any control inputs.  Unlike fixed-

wing aircraft, the hexcopter is an inherently unstable platform, and it is only stabilized by a 

complicated automatic control scheme, which results in the four controlled axis mentioned above.  

Any control input from the operator causes the hexcopter to simply re-reference the profile it is 
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trying to maintain.  For instance, a continuous yaw input in a fixed-wing aircraft would deflect 

the rudder, which could be used to compensate for a sideslip condition.  In a stabilized hexcopter 

it would induce a yaw rate by continuously re-referencing the heading angle.   

Secondly, the Futaba’s throttle, or thrust, control is designed with detents to hold one of several 

discrete positions during flight.  In a fixed-wing aircraft, this is a desirable feature.  Maintaining a 

constant speed is almost impossible without maintaining a constant throttle setting, since thrust is 

oriented forward and is the most responsive airspeed control.  In rotary-wing aircraft thrust is 

oriented upward, so that in a hover altitude is maintained by constantly changing the throttle 

setting to adjust for updrafts, downdrafts, and side gusts (since any lateral, or transverse, airflow 

makes the propellers more efficient).  In addition, takeoffs and landings are finesse maneuvers 

that cannot be performed well by the autopilot because of the risk of dynamic rollover.  These 

maneuvers would require constant adjustment of all four control settings to pick up or land the 

aircraft smoothly without any lateral movement.  In initial flight tests, the aircraft came off the 

ground abruptly and was also set down abruptly, causing the aircraft to rotate around the skid and 

invert on the ground.  Damage to the aircraft was minimal, but further flight tests were postponed 

until a new transmitter-controller could be integrated into the system. 

Based on the observations of the hexcopter test, a successful transmitter-controller for a rotary-

wing aircraft must have three features.  First, it must have the ability to completely zero-out the 

control inputs when the control force is removed.  In other words, there must be no trim feature 

that could induce a yaw rate or lateral drift.  The aircraft is trimmed automatically by the flight 

controller.  Second, the gains must be small if the aircraft is going to be hand-flown during 

routine take-offs and landings.  GPS and inertial systems are not precise enough to prevent 

dynamic rollover, especially in gusty wind conditions.  Similarly, the pilot’s control gains must 

be limited to reduce the potential for pilot-induce oscillations due to the large latency period 

inherent to remotely piloted aircraft.  Third, the controls should include no detents except the 
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zero-input detent already mentioned.  Detents eliminate the operator’s ability to the make very 

small adjustments required while hovering.  Also, they could induce a rate-of-change to the flight 

controller’s settings, similar to the trim function mentioned above. 

The use of a more complex ground control program, such as ArduPilot Mission Planner, is 

beyond the scope of this project.  One goal of this study is to evaluate the usefulness of an aircraft 

that is deployed quickly by a single, minimally trained operator. 

The flight testing of these platforms with operating sensors satisfies objective 6. 

 

6. ALGORITHMS 

 

Fire spotting algorithms were tested against one image of a blazing forest fire (a) for calibration 

and four aerial photos with no fire (b)-(e) for evaluation.  Image (b) was taken by OSU’s Firebird 

UAS at the OSU Unmanned Aerial Flight Station (UAFS) on a foggy morning.  Image (c) was 

taken by an octocopter at the UAFS at sunset after a snow.  Image (d) was taken by Firebird over 

a field near the UAFS, and it contains a small red “X” on the ground that was used to evaluate 

target detection capabilities.  The “X” is in the left center of the image.  Image (e) includes most 

of OSU’s Stillwater Campus.  It was taken at a high altitude from the East side of campus, and it 

includes several red brick buildings and snow on the ground, with overcast skies. 

(a)  (b)  
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(c)  (d)  

(e)  

Figure 8 - The test set of images (1 fire and 4 non-fire) used to evaluate smoke and fire image detection techniques. 

Additional images were also added as needed to illustrate specific issues with each algorithm.  

The motion detection algorithms were tested using videos from online smoke databases 

(http://signal.ee.bilkent.edu.tr/VisiFire and http://cvr.kmu.ac.kr) to determine their effectiveness 

using stationary cameras.  Successful algorithms were tested further using video gathered from 

GoPro color imagery captured by either a hovering copter or the Firebird fixed-wing UAS. 

Some of the first tests performed were chrominance only tests for spotting wildfires in an aerial 

photo using RGB or some similar color space.  A test image was broken down into histograms, 

with the non-fire and non-smoke pixels manually removed, to determine what RGB values were 

the most common in the fire pixels and least common in the non-fire pixels.  These empirical 

value ranges were then applied to other images, with or without smoke and fire, to test the 

effectiveness of fixed chromatic thresholds.  A similar test was performed for the HSV color 

spaces. 
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In accordance with Chen, et al. [2004], another chrominance test was conducted with thresholds 

that were relative to the other chrominance values, not absolute thresholds.  In this test, a pixel 

was fire colored if all of the following were true: 

� > �� 

� ≥ � > � 

� ≥ �255 − �� ∗ ���� 

where R, G, and B are the Red, Green, and Blue pixel values, respectively, Rt is some fixed 

threshold for Red, S is the Saturation value, given as: 

� = 1 − 1� + � + � ������, �, ��!, 0 ≤ � ≤ 1 

and St is the value of S when R=Rt.  

Chen, et al. [2004] also includes a chrominance-only smoke test involved testing for the greyness, 

or the closeness of the R, G, and B values.  The paper gives the following formula: 

� ∓ % = � ∓ & = � ∓ ' 

0 ≤ %, &, ' ≤ ( 

where “a” is a fixed threshold for the minimum greyness of smoke.  For calculation in MATLAB, 

the following equation was used instead: 

�(8��, �, �� − �����, �, �� ≤ ( 

Celik, et al. [2007] provided a three level flame test using chromatic values.  First two steps used 

no fixed thresholds, and therefore they were used to test the effectiveness of relative thresholds.  

These two decision rules are written below: 
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After the greyness test proposed by Chen, et al. [2004], the second color smoke test evaluated 

was the dark channel test to confirm the assumptions of Ligang, et al [2014].  This technique was 

tested in MATLAB against images depicting various atmospheric conditions, such as clouds, fog, 

sunrise/sunset, and artificial lights.  Still images were segregated into pixels that fall above or 

below a certain threshold of dark channel brightness, and video clips were tested by comparing a 

frame before the smoke plume was evident to various frames after the fire began to smoke.  

Because of the limited flight time of a small hovering UAS, each video was only tested for smoke 

plume identification in the first minute after the smoke starts. 

 Optical flow was also tested for its application to smoke detection.  With a stationary camera, the 

upward movement of a smoke plume can sometimes make the smoke boundary evident within a 

few frames, since the background motion is small and often cyclic.  With a moving camera, the 

camera’s motion must first be estimated from the optical flow, and then the smoke plume can be 

identified by subtracting the optical flow due to camera motion from the optical flow of the entire 

frame.  Since in-plane rotation (pitch and roll) would likely make this calculation impossible with 

current technology and computational techniques, only gimbal stabilized video was analyzed by 

this technique.  A GoPro Hero3 was attached to a XAircraft STELLA gimbal and recorded video 

in the lab with the operator moving the gimbal mount in all tree directions and in pitch and roll 

relative to the camera orientation (the x-axis being perpendicular to the camera’s focal plane).  

Because the GoPro produces video with an extreme fish-eye effect, the video was tested for 

symmetry of optical flow rather than uniform optical flow across every pixel in a single frame.  
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Dense optical flow calculation was calculated using the MATLAB code referenced in Sun, et al. 

(2010).  The code can be downloaded freely at http://cs.brown.edu/~black/code.html. 

Another Oklahoma State University UAS project had attempted to use optical flow in a down-

facing camera for navigation.  Due to the success of this technique, optical flow was also 

evaluated on down-facing NIR/G/B video originally collected for bNDVI and SfM analysis.  The 

purpose of this test was to find discontinuities in the dense optical flow that would indicate a 

moving background, which could be a strong indicator of smoke.  Discontinuities in the optical 

flow field could be determined by taking the Laplacian, as defined below.  [Horn and Schunck, 

1981] 

∇?�), *� = ∇ ∙ ∇�), *� =  �?)�8? + �?)�e? + �?*�8? + �?*�e?
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CHAPTER IV 
 

 

RESULTS 

 

1. FIRE DETECTION 

 

The first models tested were chrominance-only, fixed threshold, empirical flame color algorithms.  

The following pictures were broken into three histograms (Red, Blue, and Green channels) to 

analyze fire colors in RGB color space. 

(a)  (b)  

(c)  

Figure 9 (a) a wildfire image, (b) manually segmented fire and smoke only and (c) manually segmented fire only
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The histograms from these three images are shown below, with the top row representing the 

red channel the entire image, fire and smoke only, and fire only respectively, the middle row 

representing the green channels of the same images, and the bottom row representing the blue 

channels of those images. 

Figure 10 - Histograms of the Red, Green, and Blue channels of the full image and the manually segmented sub 

images. 

 Entire Image Fire and Smoke Fire Only 

R 

   

G 

   

B 
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The histograms showed that the most number of fire pixels and the least number of non-fire pixels 

met the following criteria: 

� > 180, � > 100, � < 160, 0 ≤ �, �, � ≤ 255 

These static thresholds were tested against the training image and the following non-fire images, 

with the following results.  Fire alarms are indicated on the right. 

(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 11 fixed RGB threshold results from the test images. 
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(g)  (h)  

 (i)  (j)  

Figure 14 (cont.) - fixed RGB threshold results from the test images. 

 

From the images above, it appears that fixed RGB thresholds will produce excessive false 

positives when applied to images other than the one it was calibrated with.  Variations in 

background, illumination, sky condition, humidity, etc. will cause a set of fixed RG thresholds to 

break.   The same test was applied to the HSV color space.  HSV stands for Hue, Saturation, and 

Value, and it was also tested because each channel represents different chromatic characteristics 

than RGB color.  An evaluation of the HSV histograms of the fire image gave the following 

thresholds: 

> < 50, � > 130, � > 200, 0 ≤ >, �, � ≤ 255 

Further experimentation on the original image found that the following values gave the best 

results: 

> < 50, � > 50, � > 50, 0 ≤ >, �, � ≤ 255 
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��     > < 0.2, � > 0.2, � > 0.2, 0 ≤ >, �, � ≤ 1.0 

The second values represent the default scale given by the MATLAB function RGB2HSV.  The 

8-bit integer values were originally used because they were easier to develop into a histogram.  

The HSV static thresholds were tested against the training image and the following non-fire 

images, with the following results.  Fire alarms are indicated on the right. 

(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 15 - fixed HSV thresholds results from the test images. 
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(g)  (h)  

(i)  (j)  

Figure 12 (cont.) - fixed HSV threshold results from the test images. 

These tests illustrate the problem with defining static thresholds of chromatic characteristics alone 

to identify fire pixels.  Snow, a rising or setting sun, red objects, and lights all have the potential 

to create false fire alarms. 

In order to test the improvement from removing static thresholds, the previous images were also 

tested with the first two steps from Celik, et al. (2007), namely: 

��), *� > ��), *� > ��), *� 

��), *� > �+,-. =  1/ 0 ��)1, *1�2
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These relations are illustrated by the following breakdown of the Red, Green, and Blue channels 

of a wildfire image. 
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(a)  (b)  

(c)  (d)  

Figure 13 - (a) A wildfire image, (b) the Red channel only and scale, (c) the Green channel only, and (d) the Blue 

channel only and scale. 

These relative thresholds were tested against the same set of images as the earlier tests, with the 

following results.  Fire alarms are indicated on the right. 

(a)  (b)  

(c)  (d)  

Figure 17 – Relative RGB threshold results from the test images. 
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(e)  (f)  

(g)  (h)  

(i)  (j)  

Figure 14 (cont.) - Relative RGB threshold results from the test images. 

This increase in computational complexity results in an increase in the number of false alarms in 

the test images.  Clearly, in the images tested, a transition from fixed thresholds to relative 

thresholds does not improve accuracy.  The literature points to an improved performance from 

data from the infrared spectrum.  The following images were taken over a controlled burn by a 

RGB camera that has been modified by replacing the Red filter replaced with an NIR filter, 

referred to as “color NIR.”  Vegetation viewed through this camera appears to be red, which is a 

result of the high NIR reflectance of vegetation. 



67 

 

(a)  (b)  

(c)  (d)  

Figure 15 - (a) NGB image of a fire, (b) NIR greyscale of a fire, (c) NGB image of trees, and (d) NIR greyscale of trees. 

In the non-fire image, the NIR values range from 69-196, while the road in the fire image has 

values as high as 230, and the white trucks and the fire each had several pixels that saturated the 

NIR channel at 255.  Even in the non-fire image, almost all of the pixels above 160 were mowed 

pathways.  Clearly, high NIR values are an indicator of non-natural features in these images, with 

fire emitting a stronger NIR signature than anything other than the white trucks in the image. 

Another interesting feature of the NIR images is the lack of blurriness due to smoke in the fire 

image.  Almost all of the blurring in the fire image comes from the Blue and Green channels.  

This agrees with Davenport’s (2012) conclusion that almost none of the information useful for 

smoke plume identification came from the infrared bands when combined with color information.  

See the next section for a more detailed analysis of the use of NIR to identify smoke plumes. 

Some Long Wave Infrared (LWIR) video collected from the OSU Firebird fixed wing UAS was 

also evaluated for this study.  Surfaces close to room temperature emit their strongest radiation in 

the LWIR range, and therefore this type of sensor is often used to find hotspots on room 

temperature objects.  The camera used was not calibrated for temperature sensing, and the 
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intensity auto-scales to prevent hot or cold spots in the frame from saturating the output.  

Therefore, the following images have been evaluated qualitatively for the merit of this type of 

sensor mounted to a UAS.  The first two images show how well LWIR can locate animals (first 

image) or humans and urban structures like the OSU UAFS facility (second image). 

(a)   (b)  

Figure 16 - LWIR images of (a) cattle and (b) the OSU Unmanned Aerial Flight Station. 

The  

The next pair of images were taken one second apart.  The first image shows the end of a right 

banking turn, where the aircraft has pitched up to maintain altitude in the turn.  The second image 

is the aircraft recovering from the turn, levelling the wings and pitching back down to a cruise 

attitude.  These images illustrate the total lack of information that comes from a LWIR camera 

looking at the horizon.  The sky is so dark that horizon looks bleached out by comparison.  If an 

LWIR camera points at the horizon, the only information it will get is the attitude of the horizon. 
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(a)  (b)  

Figure 17 - LWIR images of (a) the horizon during a banking turn and (b) the ground after recovery from the turn. 

The next two images illustrate how a LWIR camera percieves water.  Water and water vapor 

almost completely absorb all radiation in this band, so this type of camera will get virtually no 

information from the surface of water.  These images also show a mild instance of the auto-

scaling function, where the camera has reduced all the intensities due to bright objects in the 

scene, then has increased all the intensities as the dark pond begins to dominate the image.  This 

feature would make direct measurements of surface temperature impossible, though relative 

temperatures may be measurable assuming there are no bodies of water or other anomolies 

present that could skew the results. 

(a)  (b)  

Figure 18 - an example of auto-scaling intensity.  (a) The lake is just coming into sight.  (b) The lake is dominating the 

scene, increasing the intensity of everything else. 

The follow ing fi re images   

The follow ing  
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The remaining images were taken at a controlled burn on March 13, 2013.  They clearly show the 

problems with the autoscaling function in the presence of fire.  In the first image, the road is just 

coming into view at the top of the image.  This road is being used as a backstop for the fire, and 

as the aircraft moves forward the fire comes into view one second later.  The field behind the 

road, which previously was bright white, now has become black in relation to the very hot ground 

behind the fireline.  Little imformation can be extracted from this second image, since the hot fire 

looks similar to a blurry field from a non-fire frame.  The third image is about two minutes later, 

as the aircraft is finishing a pass over the fire from a different direction.  The field in front of the 

bright fire line is dark and little information coud be extracted from it.  A second later, as the 

fireline begins to pass out of view off the bottom of the image, the detail returns to the field in 

front of the fireline.  This phenonomon of autoscaling could be dangerous if the LWIR camera is 

being used for locating both the fireline and humans or animals in the vicinity of the fire.  It the 

target is too close to the fireline it will be bleached out by the bright fire and will not be detected.  

An effective tool would use a camera with a scale calibrated to find both warm targets (i.e. 

humans) and hot targets (i.e. fire) and maintain that calibrated scale throughout the flight.  Color 

imagery can determine much more information about the surroundings, while LWIR information 

should be used primarily to determine temperature. 

remain   

Figure 19- (a) Coming close to the fire line, the image is bright.  (b) The fire line is in the image, and the brightness is 

reduced. 
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Figure 20 - (a) Passing the fire line, the image is dim.  (b) Past the fire line, the image is bright. 

 

2. SMOKE DETECTION 

 

The first tests conducted on smoke were designed around analyzing a single frame.  This 

approach could possibly negate the effects of the random motion of a camera attached to a small 

UAS.  The simplest single frame tests are for color characteristics.  The best examples of smoke 

color tests from the literature are greyness tests, or the closeness of the Red, Blue, and Green 

channels. 

�(8��, �, �� − �����, �, �� ≤ ( 

where R, G, and B are the Red, Green, and Blue pixel values, and “a” is an empirical threshold.  

This threshold can be fixed at some value (Ligang, et al [2014] recommends between 15 and 20) 

or varied so that only a certain number of pixels are identified.  The following images illustrate 

one of the problems with a fixed threshold, in this case 20. 
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(a) (b)  
 

 

Ligang, et al. [2014] claimed that smoke could be segmented by analyzing the dark channel of 

each candidate block.  Non-smoke, non-sky blocks would have a zero value in at least one 

channel of one pixel in the block.  Smoke, on the other hand, is gray in color and therefore all the 

channels in each pixel will have at least a small value.  This study first tested that the dark 

channel is very small for non-smoke blocks and found that this foundational assumption, referred 

to as the “dark channel prior,” could not be validated for various conditions.  The figure below 

shows a frame from a video smoke sequence, and the smoke plume is just beginning to be visible.  

Each pixel in the image was evaluated, and the pixels with at least one channel ≤ 25 are shown as 

white.  25 was chosen because it is 10% of the full range of values (0-255).  Clearly, there are 

very few reasonably sized blocks that would satisfy the criteria of a very small or zero dark 

channel.  An increase in the dark channel due to the appearance of smoke is unlikely to be noticed 

in this video sequence. 

Figure 21- Example results for the assumption of gray smoke: (a) original frame, (b) pixels for which a = 20 
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(a)  (b)  

 

For consistency, the dark channel prior assumption was tested against the test set of images.  The 

images on the left are the original image, and the images on the right show the highest dark 

channel value in a 9 pixel wide and 7 pixel tall window around each pixel.  Clearly, the dark 

channel prior assumption fails under even mundane conditions.  The smoke blocks have a small 

dark channel value, but so do most of the non-smoke blocks.  In some of the images every block 

has a non-zero value. 

(a)  (b)  

(c)  (d)  

Figure 22 – Example results for the assumption of dark channel for smoke: (a) Background frame; (b) Pixels for which 

dark channel is 10% of the maximum RGB values (≤25). 
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(e)  (f)  

(g)  (h)  

(i)  (j)  

Figure 23 - The dark channel results from the test images. 

One smoke video was tested for the overall effectiveness of the dark channel test for smoke 

detection.  The first images are the background image from before the smoke plume is apparent 

and its dark channel values, as calculated above.  The second images are the foreground image 

once the smoke plume has developed.  The last image is the difference in dark channel values. 
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(a)  (b)  

(c)  (d)  

(e)  

Figure 24 - (a) The background image, (b) its dark channel image, (c) the smoke image, (d) its dark channel image, (e) 

the increase in dark channel values from background to smoke images. 
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The dark channel difference image does seem to capture a small portion of the smoke plume, but 

it does not add any information that color image background subtraction would not give.  Also, 

depending on the threshold set for triggering an alarm, this technique would allow several false 

positives resulting from a change in background illumination. 

A more complex technique uses wavelet transforms, similar to those used in image compression, 

to determine high frequency energy in an image.  The following transformed images were found 

using the “dwt2” function in MATLAB.  In theory, a smoke plume should have less high 

frequency energy than the background, because the smoke tends to blur the pixels it covers.  This 

technique appears to have some promise.  The thin smoke at the top of the fire image does have a 

very low value.  However, the thick smoke at the bottom of the image has some high values, due 

to its sharp edges.  The foggy image, (c), seems to have a lower value throughout the entire image 

than in the smoke plume in image (a).  Also, the low values at the top of the fire image do not 

appear to be any lower than the smoke-free background along the left side.  If we were to observe 

several frames as the smoke plume started to form, then we may have seen a stronger indication 

of smoke obscuration.  Wavelet transforms like this are an important part of many successful 

indoor smoke-detection techniques.  This type of analysis may require a highly stabilized camera 

which can observe minute changes in energy between frames without creating false positives 

from illumination changes, fog, or haze. 

(a)  (b)  
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(c)  (d)  

(e)  (f)  

(g)  (h)  

(i)  (j)   

Figure 25- The high frequency wavelet transform of the test images. 

The wavelet transform was also applied to two subsequent images taken from a down facing 

camera over a controlled burn on January 30, 2105.  The figure below illustrates the results of 

that process.  This might be the ideal condition for the wavelet transform.  The background – the 

ground – is highly textured and the light wind makes the smoke visible and opaque without 
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completely obscuring the background.  The results show a clear reduction in high frequency 

energy in the area obscured by smoke.  This technique shows some promise for real-time smoke 

detection from an airborne platform. 

(a)  (b)  

(c)  (d)  

Figure 26 - (a and c) Images from a flight over a controlled burn.  (b and d) Their high frequency wavelet transforms, 

respectively. 

The previous techniques are generally spatial in nature, or corresponding to a single frame.  A 

very common temporal algorithm involves the calculation of optical flow, or 

I�u + ∆u, v + ∆v, t + ∆t� − I�u, v, t� = ∂I∂u ∆u + ∂I∂v ∆v + ∂I∂t ∆t = 0 

in the vicinity of each pixel in the current frame.  The time derivative is found by differencing the 

corresponding pixels from adjacent frames, and the u and v derivatives are determined from the 

neighboring pixels.  Dense optical flow was calculated using Sun, et al. [2010], which is not 

compatible with real-time processing but is a good benchmark for other techniques.  This dense 

optical flow was used to determine if the two-axis STELLA gimbal would reduce the pitch and 

roll motion to sub-pixel levels, which would be necessary in order to use any of the temporal 
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techniques for video smoke detection in the literature.  The camera took video inside the lab 

while the gimbal base was waved back and forth by hand.  The gimbal was rotated at an average 

of about 120 degrees/second and translated at about an average of about 4 feet/second.  This is the 

results from optical flow taken at two separate instances in the video.  The images are from 

subsequent frames, so they are separated by approximately 33 milliseconds.  The second set of 

images represents the optical flow estimates for each pixel.  The first image represents the right 

motion, and the second represents the up motion. 

(a)  (b)  

(c)  (d)  

Figure 27 - (a) The first image, (b) the second image, (c) the optical flow “right,”, and (d) the optical flow “up.” 

These results are inconclusive, and so a second test was also performed, approximately 3 seconds 

after the first in the video.  The results are displayed below, in the same format as above. 

(a)  (b)  
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(c)  (d)  

Figure 28 - (a) The first image, (b) the second image, (c) the optical flow “right,”, and (d) the optical flow “up.” 

 

Some reasonable conclusions can be drawn from this second image set.  First, the rightward 

motion (left image) seems to be almost symmetric from top to bottom.  This situation would 

imply that there is little or no rotation in the image.  Not that the increased motion in the center of 

the image is likely due to the fish-eye effect of the GoPro camera.  The upward motion is more 

chaotic.  The bottom half looks like an extreme counterclockwise rotation, with the largest 

movement close to 10% of the image height.  The top half, of the other hand, appears to have a 

much smaller rotation, closer to 2% of the image height at the edges.  Inspecting the images, one 

can easily see that blurriness in the left image could contribute to erroneous optical flow results in 

the bottom left and bottom right of the images.   

These results are far from conclusive, but unfortunately the STELLA gimbal was damaged before 

any further tests could be performed.  The initial tests do seem to imply that any motion detected 

in video footage could be the result of blurriness or lag in the GoPro autofocus or processing, 

rather than actual camera rotation.  Further testing of the STELLA gimbal in flight would be 

required before any conclusive results could be taken, but initial results appear to show that the 

gimbal could potentially minimize camera rotational ego-motion to sub-pixel levels. 

Optical flow was also evaluated in the segregation smoke pixels when viewed from above.  This 

is a very difficult scenario for color smoke detection since the background – the ground – can 

have a variety of colors within a single frame.  Optical flow was tested to determine if noticeable 



81 

 

discontinuities could be found in video taken from a slow-moving (on the same order as the 

smoke motion) aircraft, in this case the Phantom quadcopter.  The following images were taken 

from a flight over a controlled burn.  These images are 3-channel NIR/G/B color from a down 

facing camera.  They are blurry due to the autofocus lag inherent in video taken from a moving 

platform.  The Laplacian of the optical flow field shows the large discontinuities that highlight the 

entire smoke plume. 

(a)  (b)  

(c)  (d)  

Figure 29 - (a) the first frame, (b) the second frame, (c) the optical flow directional orientation, (d) the Laplacian of the 

optical flow field. 

Two tests were performed in order to extrapolate the results of Davenport [2012], which claimed 

that SWIR and LWIR were not useful for smoke identification when compared to visible colors, 

into the NIR spectrum.  The first test confirmed the uselessness of NIR information for smoke 

identification.  The images below are of a smoke plume several miles away in front of a setting 

sun with no clouds, where infrared information may be most useful because the smoke would 

scatter the sunlight as it passed through the plume on the way to the camera.  From the first 

picture, smoke makes a vertical plume in the center of the picture and wind shear is causing a 

separate plume to the right of the first to become more horizontal, spreading to the right as 
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viewed in the picture.  The second picture shows the NIR channel alone, where the vertical smoke 

plume is weak and the horizontal plume is barely visible.  The third and fourth pictures show the 

green and blue channels, respectively, where both plumes are much more identifiable.   

(a)  (b) 

(c)  (d)  

Figure 30 - (a) an image of smoke, (b) the NIR channel, (c) the Green channel, (d) the Blue channel. 

Another image set was also evaluated for the effectiveness of NIR information for smoke 

detection with a thick plume from about 100 feet away, this time integrating the red channel into 

the test.  The first image is a RGB color image taken by an iPhone 4.  The color channels are 

again broken down to illustrate the effectiveness of each one for smoke plume identification.  The 

second picture is the same scene taken with the Canon color NIR camera.  Here the channels are 

also broken down to compare to the first image.  The RGB image was taken about 1 second 

before the color NIR image, to the smoke plumes have drifted slightly up and right in that time. 
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(a)  (b)  

Figure 31 - (a) An RGB image of thick smoke and (b) an NGB image of the same scene. 

Though NIR may give more useful smoke identification information than shortwave IR or 

longwave IR as tested by Davenport (2012), it is still performs very poorly when compared to 

color information. 

 

3. FUEL MAPPING 

 

NGB images and videos used for fuel mapping were taken at the OSU Fire Ecology test ranges 

near the Marena Mesonet station.  Blurry images were manually removed and the remaining 262 

images were combined in Microsoft Photosynth to create a photomosaic for color manipulation.  

The images were also input to Agisoft Photoscan and Pix4D to create 3D point clouds for 

geometric measurements.  The first flight was taken, during a controlled burn of one of the plots.  

The results of the photogrammetry steps are shown below, with a similar scene taken from 

Google Maps for comparison. 

The images show that Pix4D can create a photomosaic that is more correlated with the ground 

truth than the free Photosynth.  However, the Pix4D software took hours to compile the images 

into a point cloud, whereas Photosynth provided a solution in about a quarter of that time.  Pix4D 
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eliminated some of the blurriness from the smoke and the bright spots from the fire, whereas 

Photosynth kept them both since it simply combines images like a panorama.  If Pix4D cannot 

find a particular feature in enough images then it discards them.  The constantly changing smoke 

plume and moving fire is not a good target for this kind of reconstruction.  Also, Pix4D was more 

likely to throw out the far North and South features.  These images were taken while the aircraft 

was in a bank, so they were likely thrown out because they did not have a straight nadir point of 

view, as a result or the aircraft-fixed camera mount. 

Figure 35 shows the output of each program: (a) is a Google Maps clip of the area, (b) is the 

Pix4D point cloud from above, (c) is the Agisoft Photoscan point cloud from above, and (d) is the 

Photosynth photomosaic.   Pix4D created a more detailed photomosaic than Photoscan, as pointed 

out in (AirGon, 2015), but otherwise the two images are similar. 

(a)  (b)  
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(c)  (d)  

Figure 32 - (a) A Google Earth image of the test plots, (b) A Pix4D mosaic, (c) an Agisoft Photoscan mosaic, and (d) a 

Microsoft Photosynth stitched image. 

Agisoft Photoscan was able to capture more of the fire and smoke features that Pix4D, though it 

is still much less than the stitched image produced by PhotoSynth. 

For comparison, another flight was made on February 12.  Several flights were made at another 

controlled burn site that day, and only one flight was made over the test plots, with the plots not 

burning.  The images were sampled from video taken with a down-facing camera.  Again, blurry 

images were manually removed, and only the best 316 images were used.  The following images 

are (a) the Google Maps image of the test plots, (b) a Pix4D point cloud of the plots, (c) an 

Agisoft Photoscan point cloud, and (d) a Photosynth photomosaic of the plots.  Obviously, 

Photosynth failed to create a useful photomosaic with the images provided.  All of the images 

including the operator were removed on the assumption that a moving operator was the cause of 

the failure.  This improved photomosaic is shown as (d).  Even this improved product gives 

greatly distorted proportions when compared to the SfM programs. 
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(a)  (b)  

(c)  (d)  (e)  

Figure 33(a) A Google Earth image of the test plots, (b) A Pix4D mosaic, (c) an Agisoft Photoscan mosaic, and (d) a 

Microsoft Photosynth stitched image, and (e) another Photosynth image with images selectively removed. 

The pictures clearly show that Microsoft Photosynth images have a much greater distortion than 

either SfM program, even when this program is using images that are not geotagged with GPS 
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latitude, longitude, and altitude.  Tagging images with GPS position or manually adding 

georeferenced points to the point cloud (such as known locations at the corners of plots) would 

further reduce the distortion.  The advantage of stitching programs like Photosynth is the 

processing time required.  For example, all of the Photosynth mosaics took on the order of 20 

minutes to process, whereas Pix4D and Photoscan required between 4-6 hours to produce a dense 

point cloud.  Even with this reduced processing time, Photosynth was prone to breaking or 

freezing with certain image sets. 

We also demonstrated the capabilities of the CKHD loaded on the Canon SX260 HS.  This kit 

allows the camera to operate from an alternate menu, allowing reprogrammed scripts such as 

“Shot Interval.”  Using this script, the camera was programmed to capture one image every two 

seconds, up to 300 images (approximately 10 minutes of flight time).  These images would be 

taken at 12 Megapixel resolution, approximately 6 times higher than 1080p video, and would be 

geotagged with latitude, longitude, and altitude from the internal GPS receiver. 

This feature was also tested at the two previous flights (January 30th and February 12th), but each 

time the camera failed to take more than a few pictures before encountering an error and ending 

the process.  The company that modified the camera suggested that vibrations were causing an 

error in the camera’s internal clock.  A UAS with higher ground clearance was purchased so that 

vibration isolators could be mounted between the aircraft and the camera.  Fortunately, once the 

pilot was aware of the problem he was able to reduce vibrations by performing only smooth, low-

power maneuvers during flight.  At the March 20th flight, under the new flying procedure, the 

error was not encountered, and all three flights captured still images from takeoff to landing 

without a failure. 

As stated above, three test flights were performed on March 20th.  The first flight was performed 

at a beginning of a small prescribed grass fire approximately two miles East of the test plots.  The 
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second was performed near the end of that burn, in order to test the capability of NIR imagery to 

locate hot spots on the ground during mop-up operations.  The third was performed at the test 

plots in order to compare the SfM and bNDVI results with the previous two flights. 

The plots were analyzed from the March 20th flight just like as in the two previous flights.  By 

eliminating only those images where the camera was too close to the ground to gather any useful 

information, 186 images were chosen to analyze the plots.  Because the images were all 

geotagged, the initial processing steps took approximately half as long as with the images ripped 

from video.  On the other hand, the higher resolution produces almost ten times the number of 

distinguishable points per image, from just over 4000 to up to the maximum of 40,000 points in 

Agisoft.  Pix4D found an average of 17,116 points per image, with the highest image having 

72,860 recognizable points.  The result was a greater processing time, but a much clearer mosaic.  

Agisoft was not able to use the highest resolution available for the dense point cloud.  At the 

highest resolution, resulting mesh, which uses a 14 level tree search, required more than the 16 

GB of memory available on the processing computer.  By using the second highest resolution 

setting, almost 50 million points were identified and the mesh calculations required 12 GB of 

memory.  Figure 36 shows the resulting mosaics, followed by the approximate processing time in 

parenthesis.  (a) Google Earth clip for reference, (b) Agisoft (4 ½ hours for the dense point cloud, 

10 hours total for the mosaic), (c) Pix4D (2 hours total), and Microsoft Photosynth (20 minutes).  

The decreased processing time for Pix4D is partly due to that program’s ability to make 

assumptions based on the camera calibration estimates implanted on all Canon SX260 HS 

images.  
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(a)  (b)  

(c)  (d)  

Figure 34 - (a) A Google Earth image of the test plots, (b) an Agisoft Photoscan mosaic, (c) a Pix4D mosaic, and (d) a 

Microsoft Photosynth stitched image. 
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Photosynth again failed to create a useful mosaic from the images.  This program will no longer 

be considered as a candidate for any image processing.  Two tests were performed to determine 

the variability of two flights taken under the same conditions.  Below are the mosaics produced 

on both flights using Agisoft Photoscan, then Pix4D. 

(a)  (b)  

(c)  (d)  

Figure 35 - (a) An agisoft mosaic from the first flight, (b) an agisoft mosaic from the second flight, (c) a Pix4D mosaic 

from the first flight, and (d) a Pix4D mosaic from the second flight. 
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These mosaics show variability in the NIR reflectance that is not evident in color imagery (see 

Google Earth map).  This NIR reflectance, combined with prior knowledge of local species could 

be used to train a classification program that could autonomously separate fuels by type.  For 

example, the big bright red tree on the fifth row is an Eastern Red Cedar, and the smaller trees 

and shrubs are Mexican Plums, Post Oaks, and several Winged Sumac shrubs.  Information like 

this could be extrapolated over the local area to classify a number of fuel types without increasing 

a land manager’s workload.  Implementation of this type of classification is beyond the scope of 

this paper, but the large differences in NIR reflectance (interpreted as the RED channel in the 

above mosaics) between trees could provide a level of distinction that color imagery cannot, in 

the context of autonomous fuel classification. 

Pix4D provides information on the calibration of images and the accuracy of geolocation of 

geotagged images.  Geolocation error (RMS error x/y/z) is the difference between the initial and 

computed image positions, and it is not a primary indicator of the accuracy of the 3D points.  The 

following table summarizes the results from the three flights over the test plots. 

DATE Calibrated 

Images 

Mean Reprojection 

Error (pixels) 

Geolocation Error 

RMS X RMS Y RMS Z 

Jan 30 237/262 0.199 N/A N/A N/A 

Feb 12 163/316 0.291 N/A N/A N/A 

March 20 135/186 0.162 4.94% 8.57% 14.50% 

March 27 167/185 0.208 8.81% 13.01% 22.15% 

March 27 167/184 0.204 6.84% 11.55% 13.71% 

Advertised GPS Accuracy 5% 5% 10% 

Table 2 - Pix4D error calculations from all five mapping flights over the test plots. 
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The alternate blue Normalized Difference Vegetation Index (bNDVI) was also calculated for each 

pixel of the photomosaic using the following formula. 

���� =  ��� − �����=;��=�;���� + �����=;��=�;� 

Where NIR is the spectral reflectance measured in the band (690 to >800 nm), and BLUE is the 

spectral reflectance measured in the band (380 to approximately 450 nm) according to the 

following chart from the manufacturer’s website.  [event38.com]   

 

Figure 36 - The spectral characteristics of the NIR (minus red) filter on the modified Canon camera. 

Because chlorophyll absorbs red and blue radiation but not NIR, NDVI (or bNDVI) is an 

indicator of chlorophyll content, normalized to the range [-1,1].  Higher NDVI or bNDVI values 

in the image likely indicate higher chlorophyll content in the plant.  In low-moisture plants like 

grasses, chlorophyll content is a good indicator of moisture content.  The images below show the 

photomosaic from the January 30th flight from Agisoft PhotoScan, Pix4D, and Microsoft 

Photosynth, respectively, on the left, and their corresponding bNDVI image on the right. 
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(a)  (b)  

(c)  (d)  

Figure 37 – (a) A Agisoft mosaic, (b) its NDVI map, (c) a Pix4D mosaic, (d) its bNDVI map. 

  

OKFIRE provides a way to compare these measured bNDVI values to AHVRR satallite data 

compiled weekly by the EROS Data Center, U.S. Geological Survey. OKFIRE uses “greennesss” 
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satellite maps of Oklahoma updated every seven days using NDVI, caculated with the following 

formula. 

���� =  ��� − �;���� + �;� 

Where NIR is the spectral reflectance measured in the band (720-1000 nm), and RED is the 

spectral reflectance measured in the band (572-703 nm).  OKFIRE is in the process of 

transitioning from AVHRR to MODIS spectral data by the end of 2015.  MODIS provides a finer 

spectral resolution (841-876 nm for NIR and 620-670 nm for RED) and a finer spatial resolution 

(500 meter pixels instead of 1 km).  [Carlson email, March 2015]  Below are two greenness maps 

generated by OKFIRE for the week of January 30th. 

 

Figure 38 - An OKFIRE Relative Greenness map 
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Figure 39 - An OKFIRE Visual Greenness map 

Because these values are based on multispectral satellite data, they are only available with a 

spatial resolution of 1 km per pixel, which would put the test site in either the same pixel or an 

adjacent pixel to the Marena Mesonet site 400 meters to the west.  OKFIRE database gives a 

Visual Greenness (VG) value of 38% and a Relative Greenness value of 23% for the Marena site 

that week.  The test lasted approximately nine minutes.  The weather conditions from Oklahoma 

Mesonet before and after the flight are noted below.  All calculations are based on the “Tallgrass 

with brush” model.  For more information about what these variables are and how they are 

calculated, see [Carlson, et al. 2002, Carlson and Burgan, 2003] 

TIME BI SC ERC IC 1-HR 10-HR 100-HR 1000-HR HERB WOODY KBDI RAIN_24H 

3:00 pm 21 9 7 7% 9% 12% 10% 9% 58% 95% 290 0.00 in. 

2:00 pm 13 5 5 5% 10% 12% 10% 9% 58% 95% 290 0.00 in. 

Table 3 - The weather and fire danger conditions during the January 30th flight, from the Marena Mesonet station. 

According to OKFIRE website, RG is calculated with respect to a historical database for that 

particular pixel, and so it would not give an accurate representation of the raw spectral data 

without a long (16 years, in OKFIRE’s calculation) history of that pixel’s minimum and 

maximum NDVI values.  RG is the value OKFIRE uses to estimate Life Fuel Moisture (LFM) 
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and to determine the distribution between 1-hour dead (1-h), live herbaceous (HERB) and live 

deciduous woody (WOODY) fuels.  It is a crucial value to determine fire danger; however it is 

not evaluated in this study because (1) it is based on historical values that are not available at a 

fine spatial scale, and (2) it is dependent on VG, which can be directly compared to discrete 

measurements.  VG uses only calculated NDVI as an input, and is calculated below: 

�� = b����0.66 f ∗ 100% 

So a VG value of 38% would give an NDVI value of 0.25 for the 1km pixel containing the 

Marena Mesonet site.  The NDVI values from the other flights have been calculated the same 

way and collected in the table below. 

The average bNDVI value for all pixels in the January 30th mosaic is 0.0083 for Agisoft and 

0.0016 for Pix4D, both of which are significantly lower than the OKFIRE calculations from that 

week.  There are several possible reasons for the discrepancy.  First, EROS published a 7-day 

composite image, keeping only the highest NDVI values gathered that week in order to minimize 

the effects of clouds, haze, off-nadir view angles, and other factors.  [Burgan, et al., 1996]   

Agisoft Photoscan and Pix4D use the pixel values observed during the flight.  Secondly, though 

the exact spectral bands of each channel in the Canon color NIR camera are not published, they 

appear to be more restrictive than the AVHRR bandwidths (280 nm wide for NIR, 131 nm wide 

for visible red light).  Additionally, the Canon camera does not capture visible red light, and so 

blue light is substituted in the calculation since chlorophyll also absorbs light from that band 

during photosynthesis.  However, it is possible that the photosynthetically active vegetation is 

absorbing more blue light than red light, depending on the exact spectral band measured.  

[McCree, 1972]  The table below shows the comparison of OKFIRE’s NDVI measurement for 

each flight with the bNDVI calculated from the average NIR and Blue values of the Agisoft and 

Pix4D mosiacs.  Note the values are different than above because this is calculating bNDVI from 
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the average blue and average NIR, not averaging the bNDVI from each pixel in the image.  This 

derivation using average values is more similar to satellite imagery, in which one pixel captures 

the total reflectance of a 1 km square for calculating NDVI.  Also, it would be less 

computationally complex since bNDVI is only calculated once.  bNDVI is calculated using this 

formula: 

����1+-�, = sum����� − sum��=�;�sum����� + sum��=�;� 

DATE OKFIRE Agisoft average  Pix4D average  

 VG NDVI NIR BLUE bNDVI NIR BLUE bNDVI 

Jan 30, 2015 38% 0.25 0.5391 0.5290 0.0095 0.5094 0.5047 0.0046 

Feb 12, 2015 32% 0.21 0.5714 0.5640 0.0065 0.5444 0.5390 0.0050 

Mar 20, 2015 27% 0.18 0.6612 0.6472 0.0107 0.6572 0.6468 0.0080 

Mar 27, 2015 31% 0.20 0.6669 0.6708 -0.0029 0.6203 0.6233 -0.0024 

Mar 27, 2015 31% 0.20 0.6061 0.6046 0.0013 0.6000 0.6003 -0.0003 

Table 4 - Average spectral measurements and calculated NDIV from five tests and two SfM programs. 

Rearranged into a scatter plot, the values come to this: 
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Figure 40 - Measured reflectance and calculated bNDVI plotted against EROS NDVI data from Marena Mesonet 

station. 

The two flights in March 27th show that separate flights paths over similar areas under the same 

conditions can produce large variations in the average reflectance measured, as illustrated in the 

table below.   
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DATE NIR BLUE 

  Agisoft Pix4D Agisoft Pix4D 

27-Mar-15 0.6669 0.6203 0.6708 0.6233 

27-Mar-15 0.6061 0.6 0.6046 0.6003 

Mean 0.6365 0.61015 0.6377 0.6118 

Variance 4.78% 1.66% 5.19% 1.88% 

Table 5 - Variation from the mean for each program. 

Despite the small sample size, there is an obvious difference in the consistency of the two 

programs.  Pix4D appears to agree much better than Agisoft for this sample set, but more 

evaluation would be needed to determine the actual agreement.  Additionally, the small value of 

bNDVI can vary widely due to these small changes, even becoming negative.  As noted earlier in 

the work to use higher resolution MODIS data to calculate fire risk in Oklahoma, changing 

spectral bands can change the interpretation of the measured sepctral values.  The following is an 

evaluation of the consistency of the measured NIR and BLUE reflectance values for estimating 

error bars. 

The following table rearranges the reflectance values from table 4 in order to show the variance 

due to program choice.  The error is half of the difference between the two values, as a percentage 

of the mean. 

DATE NIR BLUE 

  Agisoft Pix4D Error Agisoft Pix4D Error 

30-Jan-15 0.5391 0.5094 2.83% 0.529 0.5047 2.35% 

12-Feb-15 0.5714 0.5444 2.42% 0.564 0.539 2.27% 

20-Mar-15 0.6612 0.6572 0.30% 0.6472 0.6468 0.03% 

27-Mar-15 0.6669 0.6203 3.62% 0.6708 0.6233 3.67% 
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27-Mar-15 0.6061 0.6 0.51% 0.6046 0.6003 0.36% 

RMS error   2.34%   2.20% 

Table 6 - Variance from the mean of Agisoft PhotoScan and Pix4D average reflectance values. 

This table shows that the difference due to program selection is very small variance due to choice 

of program.  The highest variance from the mean notes was 3.67%, and the standard deviation for 

this set is 2.34% in NIR and 2.20% in BLUE.  Given the goal of estimating relative fire danger of 

small plots, these small errors are probably acceptable. 

Since the flights on March 20th and March 27th were also georectified, their topography can also 

be generated for vegetation volume estimates.  The following is the results of using Agisoft 

Photoscan to create the digital elevation models of the three flights in .asc format (Arc/Info 

ASCII grid).  The DEMs were then imported into ESRI ArcMap for GIS comparison with the 

curent USGS 30 meter DEM, represented by a contour map in the images.  The GIS data shows 

that the highest point in the plots is northwest corner, and the lowest point is the southeast corner.  

The following figures illustrate these results. 
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Figure 41 - USGS 30 meter DEM contour map (10 foot contour intervals) of the test plots 

 

Figure 42 - DEM from the first flight on March 27th 
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Figure 43 - DEM from the second flight on March 27th. 

These images show a disparity in the two DEMs, though the same tall trees seem to appear in 

both as discontinuities on the south and west sides.  It appears that the DEM from the first flight 

is tilted, giving a much steeper slope than the second flight.  Closer examination of the second 

flight shows that that image is also likely tilted since it shows a downward slope from northeast to 

southwest, not northwest to southeast.  The ground height also appears to change at least 200 ft in 

the DEM, though the USGS ground truth only shows a change of about 50 feet in the same area.  

This type of error would be unacceptable for quantitative calculations.  Evaluating any 

improvements from better calibration practices – such as easy to see ground reference points at 

precisely known locations at the edges of the area of interest – are beyond the scope of this study.  

These problems would have to be solved before the DEMs could be implimented into GIS 

compatible products.  Volumetric properties might still be available through more complex 

software from the ArcGIS suite or manually orienting the DEM to the contour map, however the 

software purchase and programming required are also beyond the scope of this study.   
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A simple visual analysis shows that the Pix4D point cloud from the second March 27th flight 

suffers from a similar tilt.  This point cloud appears to have a 30 foot upward slope from the 

northwest corner to the southeast corner, rather than the 20 foot downward slope expected.  

Fortunately, Pix4D can calculate some useful volumetric characteristics without the need for 

precise geolocation or even correct orientation, because it can calcuate a volume’s base using the 

relative x,y,and z coordinates of the vertices, not simply the apparent latitude and longitude of the 

point cloud.  Using the “New Volume Object” tool, a box was drawn around each plot, as in the 

figure below.  The boundary around each plot was manually set approximately halfway between 

adjacent plots, and the boundaries without adjacent plots were set approximately the same 

distance from the plot as the boundaries with adjacent plots.  This arrangement adds from 1-2 

meters to the height and width of each plot.  For this study the plots are numbered as illustrated 

below, with the northwest plot being 1, the southeast plot being 14, and the numbers increasing 

from west to east and then north to south.  For example, plot 2 is highlighted in the example 

below.   

Pix4D outputs three variables that may be useful in analyzing the fuel composition of the plot, 

namely Enclosed 3D Area (meaning using x,y,and z coordinates rather than simply latitude and 

longitude), Terrain (surface) 3D Area, and Total Volume above the base.  They are collected in 

the following tables, along with when the plot was last burned and other useful information. 
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(a)  (b)  

Figure 44 - (a) An example of segmenting a single plot (plot 2), and (b) the plot numbering. 

 

One major source of variation in these measurements is the choice of vertices.  The mowed grass 

between each plot may vary by a few centimeters depending on the exact point chosen and the 

time since it was last mowed.  No consistent methodology was identified to control or measure 

this variable, and so it remains an unknown in this evaluation.  It would primarily influence the 

precision of volume and vegetation height measurements.   

Two ratios were evaluated for their correlation to fuel type and fuel load within a cell.  The first is 

Terrain 3D Area divided by Enclosed 3D Area, which would give a nondimensional indicator of 

the chaotic nature of the canopy top.  The rationale for this variable is the assumption that a 

canopy full of trees or trees with space between would have a more chaotic surface than a field 
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full of surface fuels only.  Below is a chart of the surface variation observed in each of the 14 

plots over the five flights. 

 

Figure 45 - The calculated surface variation within each plot during each test flight. 

The chart illustrates how there seems to be at least one outlier from each plot.  Close 

examination of the data (Appendix D) shows that every plot during the Feb 12th flight resulted in 

an outlier due to an excessively high Terrain 3D Area.  This mosaic was constructed from video 

data, so there was no geotagging to rectify the mosaic with latitude, longitude, and altitude.  As 

a result, the mosaic was tilted sharply and all lengths were stretched by approximately 50%. 

The second ratio was Total Volume divided by Enclosed 3D Area, or average height above the 

base.  If the ground can be identified, than the height of the canopy above it would be a good 

indicator of the presence of trees or other crown fuels that could be significant carriers of fire in 

a high intensity wildfire event.  The presence of trees could also alter the complex flow of fresh 

air above an active fire.  The following chart shows the surface variation observed in each of the 

14 plots over the five flights. 
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Figure 46 - The Average height within each plot during each test flight. 

This chart also shows at least one outlier from each flight.  Evaluation of the data shows that this 

time the Jan 30th flight was a high outlier in every flight, and almost every Feb 12th flight also had 

an excessively high average height.  This phenomenon is likely the result of the length distortion 

noticed above.  As all the lengths are increased, a volume divided by an area is going to increase 

linearly with them.  Because of these outliers, the Jan 30th and Feb 12th flights have been 

removed from the volumetric evaluation, and future tests should only be conducted using still 

images which have been tagged with latitude, longitude, and altitude, at a minimum.  The 

following chart shows the two ratios above plotted against eachother for the three flights that 

meet this criteria. 
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This graph shows a separation of the center of mass of the three plots with trees (plots 9, 12, 

and 14) from the center of mass of the other plots.  Though a sample size of three is hardly 

convincing evidence, these two variables seem to be strong indicators of the presence of crown 

fuels within a plot.  This evaluation assumes that the ground level can be evaluated, which is not 

always possible with passive sensors observing a closed canopy from above.  In order to extend 

these results into envoronments with closed canopies, an active sensor like canopy penetrating 

LiDAR or a separate ground survey and accurate ground reference points must be utilized. 

These results appear to show that SfM volumetric outputs could be strong indicators of the 

presence of canopy fuels within a plot.  Unfortunately, there is yet no compreensive study of the 

accuracy of SfM measurements.  Fortunately, the two flights on March 27th – under identical 

conditions and seperated by mere minutes – can give some insight into the initial error 
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estimates when using the current methodology.  The following table shows the two ratios 

calculated for each plot for each flight using the three outputs from Pix4D analysis, finds the 

difference between each pair, and calculates the percent variation of each value from the mean.  

Note that variation here is half of the difference.  All values have been rounded off to four 

significant digits, because that is the published accuracy of the smallest output. 

Plot 

No. 

Terrain 3D Area/Enclosed 3D Area Total Volume / Enclosed 3D Area (m) 

First Second Difference Variation First Second Difference Variation 

1 1.521 1.386 0.135 4.64% -0.01631 0.02596 0.04227 438.01% 

2 1.527 1.461 0.066 2.21% 0.1085 0.1142 0.00575 2.58% 

3 1.607 1.508 0.099 3.18% 0.09428 0.1127 0.01838 8.88% 

4 1.720 1.741 0.021 0.61% 0.04991 0.1049 0.05501 35.53% 

5 1.388 1.323 0.065 2.40% 0.02335 0.02459 0.00124 2.59% 

6 1.850 1.760 0.090 2.49% 0.07230 0.1010 0.02868 16.55% 

7 1.381 1.377 0.004 0.15% 0.02440 0.05739 0.03299 40.34% 

8 1.404 1.466 0.062 2.16% -0.007016 0.02929 0.03631 163.00% 

9 4.692 3.922 0.77 8.94% 0.5953 0.7137 0.1184 9.05% 

10 1.615 1.684 0.069 2.09% 0.06803 0.1134 0.0454 25.02% 

11 1.401 1.746 0.345 10.96% 0.1238 0.1507 0.02697 9.82% 

12 1.895 1.884 0.011 0.29% 0.2154 0.2233 0.00793 1.81% 

13 1.279 1.593 0.314 10.93% 0.1823 0.1810 0.001262 0.35% 

14 8.114 5.566 2.548 18.63% 0.4584 0.2796 0.1788 24.23% 

Table 7 - Calculated variation between the normalized Pix4D outputs. 
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The highest variation noticed in the left columns is 18.63%, with a standard deviation of 7.19%.  

Therefore, a 10% error is probably a conservative initial estimate of the error of this non-

dimensional ratio.  The highest variation noticed in the average height is 438.01%, but the 

smallest is 0.35%.  Closer examination shows that the highest variations are on the order of only 

2 cm.  This variance is almost exclusively a result of the choice of vertices close of the ground, 

not the actual variance due to errors in the SfM analysis.  If ground points are chosen manually 

from a point cloud, an additional error should be added based on the difficulty of choosing 

vertices that accurately represent the ground.  If canopy penetrating active sensors are used, 

their error in finding the ground level should likewise be evaluated before height or volumetric 

characteristics can be accurately interpreted. 

These measurements were confirmed using a common feature in all three flights.  A white truck 

was visible in the same location in all flights in March 20th and 27th.  The height of the truck was 

measured in the images by finding the plane defined by three points on the ground around the 

truck and the perpendicular distance from that plane to a point on the top center of the truck’s 

cab.  The following formulas were used: 

J��H-qr = �8r − 8-�� + �er − e-�< + ��r − �-�/ 

J��Hrq[ = �8[ − 8r�� + �e[ − er�< + ��[ − '�/ 

�J(�H-r[ = J��H-qr × J��Hrq[ =  � � < /8r − 8- er − e- �r − �-8[ − 8r e[ − er �[ − �r
� = (8 + 'e + �� + M = 0 

ℎH�&ℎA = (8��� + 'e��� + ����� + M
√(? + '? + �?   
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where xa, ya, and za are the x, y, and z coordinates of point a (and, respectively, b and c) on the 

ground and xtop, ytop, and ztop are the x, y, and z coordinates of the top of the cab.  The distance 

between the axles was also measured using the following formula: 

JH�&Aℎ =  �K8�V�.� − 8V,-VL? + Ke�V�.� − eV,-VL? + K��V�.� − �V,-VL?
 

where xfront, yfront, and zfront are the coordinates of a point on the front tire and xrear, yrear, and zrear 

are the coordinates or an identical point on the rear tire on the same side.  The actual height of 

the truck and distance between the wheels was measured with a measuring tape. 

 

Figure 47 - an example of the available points for measuring the distance between the tires.  The identical points on 

the front and back tires were selected. 

 Height (m) % Error Length (m) % Error 

Actual 1.651 (65 in) N/A 3.175 (125 in) N/A 

 1.700354 2.99% 3.293478 3.73% 

 1.742197 
 

5.52% 

 
 

3.507677 10.48% 
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 1.475936 
 

10.60% 
 

3.148269 0.84% 

Mean 1.639495 
 

0.70% 
 

3.316475 4.46% 

Table 8 - Structure from Motion errors from Pix4D measurements 

This chapter satisfies objectives 2 and 4.
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CHAPTER V 
 

 

CONCLUSION 

1. RECOMMENDATIONS 

 

A UAS is capable of surveying a large area with visual and infrared sensors in order to determine 

variations in fuel type, load, and condition.  NIR and color information can be combined to 

calculate a “greenness” index that can indicate the fire danger within small fuel cells when 

compared with historical information.  Infrared reflectance information could also be used for 

broad fuel type classification, or potentially region-specific species identification using machine 

learning techniques.  The test results show that SfM volumetric outputs can also give strong 

indications of the presence of crown fuels within small (600 m2 in the experiment) cell.  This 

process could give a fast estimate of the location of isolated trees and other fuels far from the 

surface which could influence the effectiveness of a flame spread model.  This information can 

then be turned into a GIS compatible fuel map that can be combined with ground slope and 

weather information to create a very fine scale fire danger map for implementation of effective 

fire prevention measures. 

A small instrumented UAS also has the ability to perform several tasks that would make 

firefighters more effective and efficient at observing and containing wildland fires.  LWIR 

spectral information, when combined with color information for scene identification, can be 

extremely effective at locating hot spots that could indicate a fire line, a new spot fire, or humans  
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and animals that are in harm’s way.  Aerial surveys of a recently burned area could be used to 

confirm or disprove the presence of surface or subsurface fires that could flare up into new fires if 

not extinguished.  Finally, video smoke detection provides the possibility of discovering new fires 

autonomously at great distances and around obstacles that would obscure ground observation. 

 

2. OBJECTIVES 

 

The first objective of this paper was to determine the specific situational awareness needs of an 

incident commander responding to a wildfire that can be solved using image processing 

techniques.  This objective was completed by interviews with firefighters and fire trainers at 

Oklahoma State University, Stillwater, OK municipal fire department, and various other fire 

departments across Oklahoma.  An incident commander needs information related to where the 

fire is and where it is going.  He also needs to know where his firefighting resources are to ensure 

they are where he wants them.  Topographic hazards, natural fire breaks, and any nearby 

wildland-urban interface are also critical for the placement and maneuver of resources. 

Category Specific Need Small UAS solution 

Resources Location of Resources 

Communication 

Visual beacons on vehicles and firefighters 

Extend line-of-sight radio range with airborne repeater 

Terrain Hazards 

Natural Fire Breaks 

GIS hazard overlay on incident commander’s electronic maps 

GIS overlay of roads, water,  and recognized bare soil 

Fire Fire Location 

Fire behavior 

Smoke and Fire detection 

Fuel maps for predictive models 

Fire Danger Fuels Fuel maps from regular SfM surveys 
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Ground Slopes 

Weather 

SfM or LiDAR DEM of ground level 

Wind estimates in flight at various altitudes 

High Risk Areas Wildland Urban Interface 

Dangerous Fuels 

Manual or semi-autonomous recognition from regular surveys 

Fuel maps of type, density, height, and moisture content 

Table 9 - Situational Awareness needs of an incident commander that can be addressed by a small UAS with image 

processing capability 

The second objective was to evaluate the capabilities of image processing to increase an incident 

commander’s situational awareness.  Autonomous flame detection from color video was 

evaluated, but it was found to be much less effective than thermal infrared sensors currently used.  

Autonomous smoke detection was evaluated, and showed some real promise with a down-facing, 

zero distortion camera.  Optical flow discontinuity and wavelet transforms were the most 

effective of the techniques tested.  bNDVI maps were created from georeferenced mosaics and 

volumetric analysis was evaluated using SfM point clouds, but a full evaluation of fuel load 

mapping was not completed because it would require creating a history of values for each plot.   

Plant identification using multispectral sensors was investigated under the second objective, and 

SfM programs gave some strong indicators which could determine whether a plot contained trees, 

tall shrubs, or only surface fuels.  Spectral analysis of plant type would also require historical 

values to delineate annuals versus perennials or evergreen versus deciduous trees. 

The third objective was to evaluate multiple UAS platforms in order to determine the best one for 

firefighting.  The DJI Phantom was evaluated extensively for usefulness in this study.  The short 

flight time and small payload capacity would limit this aircraft from use in fighting active 

wildfires.  Larger hexcopter platforms were identified for this study, but unsuccessful test flights 

prevented information gathering flights in the field.  A successful firefighting UAS would require 

some onboard processing and ground communication capability to provide the incident 

commander with useful information in real time.  Additionally, range should be increased through 

the use of a first person view camera and semi-autonomous waypoint navigation. 
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The fourth objective was to evaluate the effectiveness of information gained through various 

sensors when applied to firefighting.  The GoPro camera and the modified NIR/G/B camera were 

evaluated for use in fire spotting.  GoPro imagery is difficult to use for optical flow calculations 

because of its fish-eye distortion.  Though NIR was shown to be a weak indicator of the presence 

of a smoke plume, information from the NIR/G/B camera was useful for identifying smoke when 

it was pointed down.  A  LiDAR active sensor is identified below as a potential sensor for 

determining ground height for fuel mapping, though it was not evaluated specifically in this 

paper. 

The fifth objective was to evaluate Commercial-Off-The-Shelf (COTS) products for their 

usefulness.  Several commercial-off-the-shelf platforms and sensors would be appropriate for 

firefighting or fuel mapping purposes.  An industry SfM survey product designed for similar 

work was quoted at $30,000, including equipment, training, and software.  A cost this low or 

lower should be a requirement for a product marketed to a volunteer fire department.  

The final objective was to evaluate the minimum crew requirement for a wildfire UAS by 

determining the amount of information that could be gained by a single operator UAS.  A single 

operator system could be useful for firefighting or fuel mapping given a sufficient degree of 

onboard processing or post processing is acceptable.  Current FAA rules require visual line of 

sight between the operator or an observer and the UAS during the entire flight, but single-

operator control is practical for the short ranges required by a firefighting or fuel mapping 

mission. 

 

3. PLATFORMS 
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A larger platform with more endurance and payload capacity will be needed to expand on these 

experiments.  The current platform, a DJI Phantom, lacks the ground clearance or lifting capacity 

to carry more than one sensor at a time, or to protect that sensor from foreign object damage 

(FOD) in harsh environments.  Another DJI platform, the S900 folding arm hexcopter, is being 

developed for subsequent tests.  This platform would have the ability to carry more than one 

sensor and the ground clearance to mount sensors to a stabilized gimbal.  It will also have the 

lifting capacity to carry more than one battery, potentially increasing the flight time significantly. 

 

 

 

4. SENSORS 

 

Color cameras like the GoPro could potentially be used for autonomous smoke detection, which 

would give firefighters an early warning of fire without a direct human observer.  This paper 

shows the ineffectiveness of many techniques that attempt to detect smoke within a single frame.  

Current video smoke detection programs require the observation of a scene over time, with 

minimum camera ego-motion.  The low endurance and constant motion of a hovering UAS 

prevents continuous monitoring of a specific scene, and therefore eliminates many effective 

smoke detection techniques developed for use in fire towers.  Gimbal stabilization and optical 

flow show some potential for minimizing camera ego-motion so that more effective techniques 

can be tested.  Down-facing video also provides some potential for smoke detection by finding 

discontinuities in the optical flow. 
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The Canon SX260 HS, modified to provide interval NIR/G/B imagery, performed very well in 

gathering imagery for SfM mapping.  NIR imagery identified stark differences in reflectance 

characteristics of different trees within the plot, which did not appear in color imagery.  This 

information could be used by land managers for fuel type classification (i.e. annuals versus 

perennials, deciduous versus evergreen trees) when comparing 12-month historical imagery.  

bNDVI observations compared to satellite imagery were inconclusive, but this disagreement was 

expected given the difference in plot sizes, spectral bands, bandwidths, and time of acquisition.  

The tests do confirm that detailed bNDVI maps can be produced from imagery taken by this 

camera; however much more detailed analysis of the effects of the previous variables is required 

before this information could be used for actual fire danger.  Potentially, historical bNDVI 

surveys could be used to produce very high resolution fire danger maps similar to the process 

EROS uses to convert NDVI observations into nation-wide “relative greenness” maps. 

The modified Canon SX260 HS NIR/G/B camera performed well in the absence of large 

vibrations, however at high power settings the camera’s internal clock would malfunction, 

causing the interval picture process to fail.  This phenomenon was not noticed in any of the tests 

after the operator was notified of the problem and became more intentional about reducing abrupt 

control inputs.  The importance of avoiding abrupt maneuvers should be communicated to 

operators of VTOL platforms in all future tests. 

The LWIR sensor evaluated suffered from lack of reliable temperature information and loss of 

situational awareness when landmarks were not identifiable in the scene.  A small FOV camera 

like this could potentially be used for identifying firelines, spot fires, and humans and animals 

during observation, containment, and mopping-up operations, assuming an accurate calibration of 

the camera and other situational awareness information (i.e. GPS position and/or color imagery) 

is also used. 
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As infrared sensors become smaller and cheaper in the future, UAS mounted sensors like this are 

only going to become more effective at sensing fire, smoke, and fuel conditions.  A promising 

sensor for future tests is the FLIR ONE, an IPhone or Android phone-mounted multispectral 

sensor.  This sensor weighs just 110 grams, and contains both a Lepton thermal imager for 

reading temperatures between 0-100o C and a color camera.  [FLIR]  This sensor could gather 

color information for a SfM analysis and visible reflectance measurements during the day and at 

the same time identify hot spots on the ground.  A similar infrared-only smartphone camera, Seek 

Thermal, advertises a temperature detection range of -40-300o C.  [Seek Thermal]  Calibrated 

thermal infrared cameras like these, when coupled with smartphone GPS and orientation 

information, could potentially produce highly-detailed GIS compatible thermal maps for use in 

wildfire fighting, observation, and mopping-up operations. 

A gimbal mount which could maintain a nadir orientation at all times would improve the 

photogrammetry measurements, especially at the edges of the search area where the aircraft 

would be in steep banking turns.  No COTS gimbals are designed for cameras like the Canon 

SX260 HS; however several gimbals are available for carrying various GoPro cameras on 

aircraft, especially underneath multirotor UAS.  Gimbal-stabilized GoPro color cameras should 

be utilized for future testing of color smoke detection techniques of hovering aircraft.  As more 

ego-motion of the camera is removed from the video, smoke detection algorithms should produce 

more conclusive results with fewer false positives. 

 

5. GROUND CONTROL 

 

Ground control, other than manual aircraft control by visual line of sight though a hand-held 

transmitter controller, was not evaluated in this study.  A more complex ground control system 
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would be required to increase the operating range substantially beyond the 500 meters observed 

in the test flights.  Some improvements in the ground control would include autonomous flight of 

preprogrammed waypoints, First Person View (FPV) video transmitted to the pilot in flight, and 

an On Screen Display (OSD) that can give the pilot information critical to safe flight.  Current 

FAA rules require the operator of an observer to be within visible line-of-sight of the aircraft at 

all times, and flight tests with the DJI Phantom show that the maximum range for line-of-sight 

control in the presence of smoke is 500 m.  Therefore, observers (i.e. firefighters) should be 

spaced throughout the flight area at no more than 1 km intervals, as the following diagram 

illustrates. 

 

Figure 48 - The maximum range between observers when using a small VTOL UAS at an active burn. 
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Figure 49 - Example map overlay provided to the incident commander during a controlled burn 

The observations of the last three sections satisfy objective 3. 

 

6. ALGORITHMS 

 

The smoke detection algorithms tested had very little success when applied to imagery taken from 

a UAS platform.  Techniques for detecting smoke in a single image produce an excessive number 

of false positives, and most of the techniques for video stoke detection break down in the 

presence of significant ego-motion of the camera.  One technique that shows significant potential 

is applying optical flow to a down-facing camera with no distortion (pinhole camera).  Because 

the Phantom is designed to maintain a magnetic heading in flight, there is very little rotation in 

down facing video except in a turn.  This condition results in nearly constant optical flow results 

across all pixels in the image.  If the aircraft flies over a smoke plume, the movement of the 

smoke creates a large discontinuity in the otherwise continuous flow field.  Taking the Laplacian 

of the flow field will highlight the discontinuity, allowing for autonomous detection of smoke in a 
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color video.  More work is required to evaluate the discontinuities found by moving rigid objects, 

moving people, or wind-blown objects in order to validate the technique. 

SfM analysis was able to produce very high resolution, georeferenced mosaics for input into GIS.  

The spatial accuracy of these mosaics cannot currently be verified, and significant rotation was 

found in DEMs produced by geotagged imagery input into Agisoft Photoscan.  Without ground 

reference points, these DEMs will be unusable for volumetric analysis, and even with ground 

reference points the interpolation errors cannot currently be verified.  However, chromatic 

analysis of a manually oriented photomosaic in a program like MATLAB can produce non-

georeferenced NDVI or color fuel maps that could be compared qualitatively. 

 

7. FUTURE WORK 

 

This study has found a number of roadblocks to progress that need to be addressed before a 

reliable tool can be put in the hands of the end user.  Passive sensors, such as color or infrared 

imagery, are limited to observing the vegetation canopy only.  They are unable to find the ground 

through the vegetation.  If accurate height or volume assessments are desired then some type of 

active sensor needs to be used as well.  One solution to this problem comes from canopy 

penetrating LiDAR.  These devices act as laser rangefinders which use the aircraft position and 

attitude and the direction to the target to find the exact location of the target in three dimensions. 
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Figure 50 - the PulsedLight mini LiDAR device 

The device above is an example of a short range LiDAR device designed for small UAS.  In order 

to find the ground, the system would have to filter out any reflections off of canopy or surface 

fuels and only keep the reflections from the ground.  The information from the LiDAR would 

need to be timed with position and orientation information in order to calculate a DEM.  

Calibration with objects of known distance and a comparison with SfM calculations would also 

be needed to ensure the DEM is at least as reliable as the DEM produced by SfM.  If possible, the 

LiDAR and the camera need to get their position and orientation information from the same 

source in order to minimize the errors associated with GPS and inertial sensors.  Finally, the 

corrections to camera position and orientation applied by the SfM program will also need to be 

applied to the LiDAR information, if significant.  If successful, the LiDAR data could potentially 

increase the accuracy of fire spread models by determining local ground slopes and combining 

with SfM point clouds to directly measure certain canopy characteristics. 
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More work is required to correlate NDVI (or bNDVI) measurements from an aircraft sensor to 

actual fire danger analysis.  During this process, the investigators should research the ongoing 

OKFIRE update, since the OKFIRE administrators are currently evaluating MODIS imagery as a 

higher-resolution alternative to the AVHRR imagery currently being used.  Additionally, the 

effects of illumination levels and angles should be evaluated so a consistent methodology can be 

applied to correct for these differences, if necessary.   

Another method for evaluating fire risk would be to compare current measurements of a well-

defined plot to historic evaluations, similar to the way EROS produces their weekly “relative 

greenness” maps.  Because the mosaics are being produced by imagery with spatial resolutions 

on the order of centimeters, they could generate a fuel map with any practically small cell size.  

However, more analysis would be needed to determine the true spatial accuracy of SfM over a 

variety of conditions before super-high-resolution fuel maps could be compared to determine 

historic trends.  Alternatively, fuel cells delineated by permanent ground reference points could 

be used to confirm the accuracy of high resolution fire danger maps without determining the 

exact errors in SfM spatial analysis.  Flights performed at different times of the day and different 

times of the year could be normalized over time using weekly EROS greenness readings and 

compared to each other. 

Flights in the vicinity of prescribed grass fires have shown the potential of SfM mosaics for post-

burn and post-disaster assessment.  For instance, this mosaic was produced from images taken 

during mopping-up operations after a 60-acre grass fire.  The image shows clearly the extent of 

the burn and the position of the fireline.  Coupling camera locations and orientations with 

thermal infrared information could give firefighters exact locations and intensities of local hot 

spots to extinguish. 
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Figure 51 - Mosaic produced from imagery taken during mopping-up operations after a prescribed grass fire. 
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Similar mosaics were produced during a 2000 acre prescribed grass fire.  The first image is a 

mosaic of images from the first flight, before the fire spread into the area of interest.  The 

second image is a mosaic of images from all three flights, illustrating the extent of the fire 

spread in approximately 20 minutes.  Future research should look into methods of producing 

mosaics like these over large areas quickly, in order to aid firefighters in locating and containing 

rapidly spreading firelines. 

(a)  (b)  

Figure 52 - Mosaics of (a) single image set and (b) all three image sets at a controlled burn.
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APPENDIX A 
 

 

 

CONSTANT ARC LENGTH CAMERA 

 

High-altitude airborne and satellite volume sensors (like calibrated cameras or multi- or 

hyperspectral sensors) often give their resolution in degrees or radians rather than in width and 

height at a certain focal length.  Taken literally, this definition of field of view by an arc length 

would produce the type of distortion commonly referred to as “fish-eye effect.”  Since the GoPro 

camera produces a similar distortion effect, this appendix will investigate the advantages or 

disadvantages of this type of representation and whether the GoPro imagery would be useful for 

certain wildfire missions. 

As stated in Chapter 3, the fish-eye effect of a GoPro would not be appropriate for creating a 

stitched photomosaic or a Structure from Motion point cloud from nadir images because of the 

nonlinear distortion, but it may have some uses where certain types of distortion would be 

preferable to a pinhole camera.  In the pinhole camera model, an undistorted image of a 3-D 

world is projected onto a 2-D focal plane, giving the appearance of something like the center of a 

human eye’s field of view.
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Figure 53 - A simple pinhole camera, [Wikipedia.org] 

If a camera followed a different model, where a pixel swept out a certain angle of space rather 

than a distance in the focal plane, then it could more effectively portray very wide fields of view  

– even 360o panoramas – easily.  This model would curve the focal plane so that it is an equal 

distance from the camera at every point.  This effect is essentially the same as combining the 

center pixels of several pinhole cameras at different orientations. 

 

 

                    Image Plane                                                                                            Curved Focal “Plane”  

                                                                                                                                          in the 3-D World 

                            θ                                                                                                 θ 

 

 

 

 
Figure 54 - a representation of the distortion apparent with a constant arc length camera. 
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There may be two distinct advantages to this approach, from an image processing point of view. 

First, if a constant arc length camera is rotated in-plane (pitch or roll, if the x axis is perpendicular 

to the center of the focal plane); the image is simply translated vertically or laterally, with no 

other distortion.  See the simulations below for a demonstration of a constant arc length camera 

looking forward and down (45o) at a square grid mat from 4 inches above the mat.  As the camera 

is rotates in pitch or roll, the lines would not change shape.  They would simply translate up, 

down, left, or right.  If a pinhole camera was used to create a panorama it would have to distort 

each image to match each adjacent image, and the result would be similar to this model. 

 

Figure 55 - a 90 degree FOV, constant arc length looking forward and down.  The horizon is at the top of the image. 

Therefore, while the pinhole camera is a better model for stitching nadir images into a 

photomosaic, the constant arc length camera may be a better model for stitching images of the 

horizon into a panorama. 
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The second advantage of the constant arc length camera involves measurement of radiation 

intensity at the edges of the image.  In a pinhole camera, a certain area in the image covers a 

similar area in the focal plane.  As the distance from the center of the image grows, the 

orientation of the object changes relative to the camera, reducing the intensity of the radiation 

seen by the camera.  The following diagram and equation is from [Çengal, 2007]. 

 

Figure 56 - An illustration of View Factor [Çengal, 2007] 

The difference in radiant heat transfer due to orientation is demonstrated by the view factor, F. 
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MhU��→U�� = ��U��→U����U��
= cos �4 cos �?�%? M�? 

For a nadir camera looking at flat ground, θ1 = θ2 = θ and r = d/cos(θ), where d is the 

perpendicular distance from the ground to the camera and dA2 is a pixel’s projection on the 

ground.  So, 

MhU��→U�� = cos
 ��M? M�? 

This reduction in apparent intensity could be minimized by increasing the size of a pixel’s 

projection far from the image center.  This distortion is apparent in a camera with fish-eye effect, 

where the pixels on the edge seem compressed compared to the pixels in the center.  The area in 

the focal plane covered by the pixel in a constant arc length camera is described below: 

 

 

 

                                            dθ            
                                                           θ           
 
 
                                     ds 
 

 

M� = M�tan�� + M�� − A(����� 

where “d” again is the perpendicular distance from the ground to the camera, and ds is the length 

of a single pixel’s projection on the ground.  Using a Taylor series expansion 

Figure 57 - An illustration of the correlation between a distance along the ground and the arc length that covers that 

distance. 
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tan�� + M�� − A(���� = M tan �M�  M� + >C: ≈ sec? � M� = M�cos? � 

M�? = M�? = b M M�cos? �f?
 

MhU��→U�� = cos
 ��M? M�? = M�?
�  

And, therefore, the view factor is the same for all pixels in the image.  Therefore, the intensity 

sensed in the pixel is proportional to the actual average reflectance of the surface projected on the 

ground by that pixel.  To determine if the GoPro used a constant arc length camera model, a 

calibration image was taken from four inches above a grid sheet on the floor.  A ruler was used to 

ensure the camera was four inches away, and a bubble level was laid across the back of the 

camera to ensure the camera remained level in at least one axis.

 

Figure 58 - A GoPro image of a grid mat 4 inches away from the camera lens.  The heavy dotted lines represent 1 inch 

squares. 



136 

 

 The image shows that the field of view is 12.5 inches wide and 8 inches tall.  At four inches, this 

equates to 115o wide and 90o tall.  A constant arc length image was also calculated in Excel, with 

the angles θ and φ calculated by the following formula: 

� = sinq4 De%G 

¡ = sinq4 D8%G 

% = ¢)? + *? + M? 

Where “d” is four inches, y is the vertical distance from centerline on the grid mat, and x is the 

horizontal distance from the centerline on the grid mat.  The following simulation was made for a 

constant arc length camera with a field of view like the one determined from the calibration 

picture.  The camera is 4 inches from an 8 inch x 8 inch grid mat. 
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Figure 59 - A representation of a constant arc length looking down on a grid mat from 4 inches away.  The lines 

represent 1 inch squares. 

Therefore, a nadir oriented or gimbaled GoPro camera could be a lightweight and low-cost 

alternative to expensive calibrated spectral sensors.
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APPENDIX B 
 

 

 

WEATHER DATA 

 

This appendix includes all weather information collected by the Marena Mesonet station during 

the flights performed at the OSU test plots and the surrounding burn sites.  The satellite imagery 

presented here was compiled weekly by the U.S. Geological Survey EROS lab from AVHRR 

multispectral satellite imagery of the United States, and was collected from the OKFIRE website.  

OKFIRE is currently changing the imagery source from AVHRR satellites to the higher 

resolution MODIS imagery.  Future visitors of the OKFIRE website will likely see the data 

presented in a slightly different format.  The equations for determining fire danger indices from 

the new spectral bands will likely change as well.  The following tables and maps were taken 

from the OKFIRE website for the weeks of relevant test flights.  For more information how these 

values are calculated refer to [Carlson, 2002, Carlson 2003]. 
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Site-Specific Table for Marena           

(NFDRS Fuel Model T - Tallgrass with brush)        

                
DATE TIME BI SC ERC IC 1-

HR 
10-
HR 

100-
HR 

1000-
HR 

HERB WOODY KBDI TAIR RELH WSPD RAIN_
24H 

Jan 30 2:00 pm 13 5 5 5% 9% 11% 9% 9% 74% 102% 252 45°F 43% 4 mph 0.00 in
. 

Jan 30 3:00 pm 20 9 7 7% 8% 11% 10% 9% 74% 102% 252 45°F 41% 4 mph 0.00 in
. 

Jan 30 4:00 pm 23 10 8 9% 8% 11% 10% 9% 74% 102% 252 46°F 40% 5 mph 0.00 in
. 

Feb 12 10:00 am 7 5 1 1% 14% 12% 11% 9% 38% 87% 208 33°F 62% 11 mph 0.00 in
. 

Feb 12 11:00 am 19 19 3 6% 11% 11% 11% 8% 38% 87% 208 35°F 46% 15 mph 0.00 in

. 
Feb 12 9:00 am 0 0 0 0% 17% 12% 11% 9% 38% 87% 208 29°F 76% 10 mph 0.00 in

. 
Mar 20 1:00 pm 9 5 2 3% 11% 18% 19% 11% 16% 77% 203 56°F 61% 5 mph 0.14 in

. 
Mar 20 2:00 pm 9 4 3 4% 10% 17% 18% 11% 16% 77% 203 58°F 64% 4 mph 0.14 in

. 
Mar 20 3:00 pm 16 9 4 6% 10% 16% 18% 11% 16% 77% 203 58°F 56% 5 mph 0.13 in

. 
Mar 20 4:00 pm 13 4 6 5% 9% 15% 18% 12% 16% 77% 203 59°F 56% 1 mph 0.10 in

. 
Mar 27 1:00 pm 25 19 5 9% 10% 11% 11% 10% 32% 84% 234 51°F 50% 10 mph 0.00 in

. 
Mar 27 2:00 pm 37 23 10 13% 8% 11% 11% 10% 32% 84% 234 52°F 43% 7 mph 0.00 in

. 
Mar 27 3:00 pm 40 21 13 16% 7% 10% 11% 10% 32% 84% 234 55°F 38% 7 mph 0.00 in

. 

Table 10 - Weather data from all flights, collected by the Marena Mesonet station.  [OKFIRE] 
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Figure 60 - Relative Greenness and Visual Greenness maps for all flights.  [OKFIRE] 
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APPENDIX C 
 

 

 

MATLAB CODE 

 

% Nondimensional Difference Vegetative Index (NDVI)  is the ratio of the 
difference between visible and NIR light to their s um.  This program 
calculates the NDVI image pixel-by-pixel, the avera ge NDVI value, and 
the NDVI value from the average visible and average  NIR values in the 
image.  It separates the image into foreground and background so that 
odd shapes, such as SfM photomosaics, can also be c alculated.  This 
program uses the blue channel to measure visible re flectance, but the 
red channel can also be used. 
% by Dustin Gabbert, Oklahoma State University, 201 5 
 
CIR=imread( 'C:\Users\dgabber\Desktop\March 27 plots flight 4.p ng' );  
  
[rows, cols, chans] = size(CIR);  
  
NIR = im2single(CIR(:,:,1));  
green = im2single(CIR(:,:,2));  
blue = im2single(CIR(:,:,3));  
  
foreground = zeros(rows, cols, chans);  
% background = zeros(rows, cols, chans);  
  
counter = 0;  
NDVItotal = 0;  
  
NDVI = (NIR - blue) ./ (NIR + blue);  
  
for  i = 1:rows  
    for  j = 1:cols  
        if  NIR(i,j) > 0 && NIR(i,j) < 1 && blue(i,j) > 0 && b lue(i,j) < 
1 && green(i,j) > 0 && green(i,j) < 1  
            foreground(i,j,1) = NIR(i,j);  
            foreground(i,j,2) = blue(i,j);  
            foreground(i,j,3) = green(i,j);  
            NDVItotal = NDVItotal + NDVI(i,j);  
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            counter = counter + 1;  
        else  
%             background(i,j,1) = NIR(i,j);  
%             background(i,j,2) = blue(i,j);  
%             background(i,j,3) = green(i,j);  
        end  
    end  
end  
  
figure  
imshow(index, 'DisplayRange' ,[-1 1])  
% title('Normalized Difference Vegetation Index')  
  
NIRtotal = sum(sum(foreground(:,:,1)));  
avgNIR = NIRtotal/counter 
bluetotal = sum(sum(foreground(:,:,3))); 
angblue = bluetotal/counter 
imageNDVI = (NIRtotal-bluetotal)/(NIRtotal+bluetota l) 
NDVIavg = NDVItotal/counter 
 

 

% dark channel is the assumption that the smallest channel of any  
% pixel in a non-smoke non-sky block is very small or zero,  
% whereas all smoke pixels have at least a small va lue in every  
% channel because of their gray color. 
% by Mehran Aldalibi 
 
 
clear all; clc; close all; 
 
img1=imresize(imread('dc_bg.png'),[280 360],'bicubi c'); 
img2=imresize(imread('dc_img.png'),[280 360],'bicub ic'); 
 
% using overlapping windows and setting the value f or the  
% window's center   
 
% window's size (use odd numbers) 
wh=7; 
ww=9; 
 
% pre-allocation 
dc_img1=255*ones(size(rgb2gray(img1))); 
dc_img2=dc_img1; 
 
% some boundary pixels will be left with 255 
for i=1:280-wh+1 
    for j=1:360-ww+1 
         
        tmp1=img1(i:i+wh-1,j:j+ww-1); 
        tmp2=img2(i:i+wh-1,j:j+ww-1); 
         
        dc_img1(i+fix(wh/2),j+fix(ww/2))=min(tmp1(: )); 
        dc_img2(i+fix(wh/2),j+fix(ww/2))=min(tmp2(: )); 
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    end 
end 
 
% displaying results  
figure;subplot(2,1,1);imshow(img1);title('backgroun d 
image');subplot(2,1,2);imshow(dc_img1,[]);title('Da rk Channel of the 
background image'); 
figure;subplot(2,1,1);imshow(img2);title('smoked 
image');subplot(2,1,2);imshow(dc_img2,[]);title('Da rk Channel of the 
smoked image'); 
figure;imshow(dc_img2-dc_img1,[]);title('Change in the Dark Channel'); 
 

 

% Optical flow is found by finding the magnitude of  change in greyscale 
illumination between two images in the u and v dire ctions.  This 
program is designed to work with the dense optical flow software 
developed by Deqing Sun, Department of Computer Sci ence, Brown 
University. 
% by Mehran Aldalibi 
 
clear all ; clc; close all ;  
  
img1=imresize(imread( 'smoke111.png' ),[256 512], 'bicubic' );  
img2=imresize(imread( 'smoke112.png' ),[256 512], 'bicubic' );  
  
uv = estimate_flow_interface(img1, img2, 'classic+nl-fast' );  
u=uv(:,:,1);  
v=uv(:,:,2);  
  
% orientation of optical flow  
theta=atan2(u,v);  
 
% filt1=[-1 0 1];  
% filt2=[-1;0;1];  
 
% second-order horizontal and vertical derivative f ilters (Laplacian 
Operator)  
filt1=[-1 16 -30 16 -1];  
filt2=[-1 ;16 ;-30; 16 ;-1];  
  
ux=conv2(u,filt1, 'same' );  
uy=conv2(u,filt2, 'same' );  
  
vx=conv2(v,filt1, 'same' );  
vy=conv2(v,filt2, 'same' );  
  
% optflow_smooth_img=(ux.^2)+(uy.^2)+(vx.^2)+(vy.^2 );  
  
% magnitude of Laplacian operator for optical flow components  
optflow_smooth_img=abs(ux)+abs(uy)+abs(vx)+abs(vy);  
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% displaying results  
figure;subplot(2,1,1);imshow(img1);title( 'image 
1' );subplot(2,1,2);imshow(img2);title( 'image 2' );  
figure;imshow(abs(double(rgb2gray(img2))-
double(rgb2gray(img1))),[]);title( 'image difference' );  
figure;quiver(u,v);title( 'optical flow quiver plot' );  
% figure;imshow(w,[]);title('optical flow magnitude ');  
figure;imshow(theta,[]);title( 'optical flow orientation' );  
 

 

 

%Grayness 
%Dustin Gabbert 
 
% clear all  
% close all  
% clc  
  
fire=imread( 'C:\Users\dgabber\desktop\fire.png' );  
  
[rows, cols, chans] = size(fire);  
  
smokeonly = uint8(zeros(rows,cols,chans)); %black background  
  
for  i = 1:rows  
    for  j = 1:cols  
        maxcolor = max(fire(i,j,:));  
%         if maxcolor > 150 % brightness check  
            mincolor = min(fire(i,j,:));  
            colorspread = maxcolor - mincolor; % greyness check  
            if  colorspread < 20  
                smokeonly(i,j,1) = fire(i,j,1);  
                smokeonly(i,j,2) = fire(i,j,2);  
                smokeonly(i,j,3) = fire(i,j,3);  
            end  
%         end  
    end  
end  
  
figure;  
subplot 211 ;imshow(fire); title( 'original image' );  
subplot 212 ;imshow(smokeonly);title( 'segmented image' ); 
 
 
 
%Wavelet transform separates the high frequency and  low frequency 
features in the horizontal and vertical directions to make four images.  
The Low pass, Low pass image is the approximate ima ge, and the High 
pass, High pass image should have less energy in th e area obscured by 
smoke. 
%Dustin Gabbert 
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fire = imread( 'C:\Users\dgabber\Desktop\fire.png' );  
[rows, cols, chans] = size(fire);  
  
I = rgb2gray(fire); % grayscale conversion  
     
wname = 'sym4' ;  
[CA,CH,CV,CD] = dwt2(I,wname, 'mode' , 'per' );  
  
subplot(211)  
imagesc(CD); title( 'Highpass Image' );  
colormap gray ;  
subplot(212)  
imagesc(CA); title( 'Lowpass Approximation' );  
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APPENDIX D 
 

 

 

TEST PLOTS 

 

The information gathered from the five tests at the OSU test plots has been collected in this 

appendix.  For information on how this information was gathered refer to the applicable sections 

of Methodology and Results.  The photomosaics below are organized by flight, in the following 

order: Agisoft PhotoScan mosaic, Agisoft Photoscan bNDVI mosaic, Pix4D photomosaic, Pix4D 

bNDVI mosaic. 
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Agisoft Photoscan: 

Pix4D: 

 

Figure 61 – Comparison image 
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Agisoft Photoscan: 

 

Pix4D: 

 

Figure 62 - Comparison image 
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Agisoft Photoscan: 

 

Pix4D: 

 

Figure 63 - Comparison image 
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Agisoft Photoscan: 

 

Pix4D: 

 

Figure 64 - Comparison image 
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Agisoft Photoscan: 

 

Pix4D: 

 

Figure 65 - Comparison image 
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Plot 1 – burned October 17, 2014 

Date Enclosed 3D Area Terrain 3D Area Total Volume 

Jan 30, 2015 1809.59 m2 2999.30 m2 201.24 m3 

Feb 12, 2015 2116.15 m2 6947.78 m2 375.58 m3 

March 20, 2015 754.23 m2 1297.31 m2 -57.75 m3 

March 27, 2015 931.36 m2 1416.82 m2 -15.19 m3 

March 27, 2015 814.72 m2 1129.11 m2 21.15 m3 

Table 11 - Pix4D geometric values for Plot 1. 

Plot 2 – check plot, unintentionally burned April 7, 2009 

Date Enclosed 3D Area Terrain 3D Area Total Volume 

Jan 30, 2015 2030.75 m2 4015.43 m2 851.48 m3 

Feb 12, 2015 2132.72 m2 9501.38 m2 1537.21 m3 

March 20, 2015 860.59 m2 1883.93 m2 196.62 m3 

March 27, 2015 967.78 m2 1477.81 m2 104.96 m3 

March 27, 2015 876.18 m2 1280.36 m2 100.06 m3 

Table 12 - Pix4D geometric values for Plot 2. 

Plot 3 – burned June 3, 2013 

Date Enclosed 3D Area Terrain 3D Area Total Volume 

Jan 30, 2015 1716.93 m2 3303.96 m2 760.75 m3 

Feb 12, 2015 2046.09 m2 9119.82 m2 1009.91 m3 

March 20, 2015 720.75 m2 1288.00 m2 147.15 m3 

March 27, 2015 892.63 m2 1434.71 m2 84.16 m3 

March 27, 2015 784.19 m2 1182.89 m2 88.35 m3 

Table 13 - Pix4D geometric values for Plot 3. 
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Plot 4 – burned December 2, 2014 

Date Enclosed 3D Area Terrain 3D Area Total Volume 

Jan 30, 2015 1771.50 m2 3808.71 m2 895.80 m3 

Feb 12, 2015 1896.12 m2 12132.57 m2 961.25 m3 

March 20, 2015 728.05 m2 1825.13 m2 109.85 m3 

March 27, 2015 898.77 m2 1545.99 m2 44.86 m3 

March 27, 2015 794.47 m2 1383.45 m2 83.36 m3 

Table 14 - Pix4D geometric values for Plot 4. 

Plot 5 –August 18, 2014 

Date Enclosed 3D Area Terrain 3D Area Total Volume 

Jan 30, 2015* 1888.94 m2 3880.54 m2 441.54 m3 

Feb 12, 2015 2180.26 m2 7714.58 m2 336.20 m3 

March 20, 2015 801.79 m2 1038.46 m2 58.39 m3 

March 27, 2015 962.38 m2 1335.72 m2 22.47 m3 

March 27, 2015 819.88 m2 1084.51 m2 20.16 m3 

*A truck was in this plot, giving a larger than normal volume 

Table 15 - Pix4D geometric values for Plot 5. 
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Plot 6 – burned January 30, 2015 

Date Enclosed 3D Area Terrain 3D Area Total Volume 

Jan 30, 2015* 1926.30 m2 4572.88 m2 1239.13 m3 

Feb 12, 2015 2070.58 m2 15550.51 m2 321.35 m3 

March 20, 2015 807.82 m2 1979.89 m2 114.80 m3 

March 27, 2015 951.67 m2 1760.56 m2 68.81 m3 

March 27, 2015 874.80 m2 1539.55 m2 88.34 m3 

*A truck was in this plot, giving a larger than normal volume 

Table 16 - Pix4D geometric values for Plot 6. 

Plot 7 – burned January 30, 2015 

Date Enclosed 3D Area Terrain 3D Area Total Volume 

Jan 30, 2015* 1783.48 m2 5211.23 m2 670.66 m3 

Feb 12, 2015 2103.36 m2 8091.77 m2 277.47 m3 

March 20, 2015 753.94 m2 1208.57 m2 60.44 m3 

March 27, 2015 922.24 m2 1273.42 m2 22.50 m3 

March 27, 2015 795.43 m2 1095.65 m2 45.65 m3 

*This plot was burning during the test. 

Table 17 - Pix4D geometric values for Plot 7. 
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Plot 8 – burned August 18, 2014 

Date Enclosed 3D Area Terrain 3D Area Total Volume 

Jan 30, 2015 1686.26 m2 3020.89 m2 159.61 m3 

Feb 12, 2015 1990.34 m2 10472.11 m2 217.49 m3 

March 20, 2015 761.74 m2 1058.59 m2 4.18 m3 

March 27, 2015 890.79 m2 1250.65 m2 -6.25 m3 

March 27, 2015 817.36 m2 1198.33 m2 23.94 m3 

Table 18 - Pix4D geometric values for Plot 8. 

Plot 9 – check plot, never burned, 3 trees 

Date Enclosed 3D Area Terrain 3D Area Total Volume 

Jan 30, 2015 1765.74 m2 6056.30 m2 2660.14 m3 

Feb 12, 2015 2059.17 m2 17785.02 m2 1380.12 m3 

March 20, 2015 786.03 m2 3437.96 m2 638.17 m3 

March 27, 2015 916.92 m2 4302.39 m2 545.81 m3 

March 27, 2015 806.05 m2 3161.46 m2 575.30 m3 

Table 19 - Pix4D geometric values for Plot 9. 

Plot 10 – burned March 26, 2013 

Date Enclosed 3D Area Terrain 3D Area Total Volume 

Jan 30, 2015 1804.23 m2 3651.80 m2 565.25 m3 

Feb 12, 2015 2057.66 m2 19151.46 m2 697.39 m3 

March 20, 2015 799.68 m2 1614.99 m2 118.71 m3 

March 27, 2015 921.67 m2 1488.15 m2 62.70 m3 

March 27, 2015 798.45 m2 1344.43 m2 90.57 m3 

Table 20 - Pix4D geometric values for Plot 10. 
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Plot 11 – burned December 2, 2014 

Date Enclosed 3D Area Terrain 3D Area Total Volume 

Jan 30, 2015 1883.76 m2 3086.43 m2 594.95 m3 

Feb 12, 2015 2143.44 m2 13445.88 m2 1190.04 m3 

March 20, 2015 804.35 m2 1243.73 m2 108.81 m3 

March 27, 2015 961.41 m2 1347.22 m2 119.00 m3 

March 27, 2015 892.03 m2 1557.79 m2 134.47 m3 

Table 21 - Pix4D geometric values for Plot 11. 

Plot 12 – burned June 3, 2013, 3 trees 

Date Enclosed 3D Area Terrain 3D Area Total Volume 

Jan 30, 2015 1870.04 m2 4618.52 m2 1069.82 m3 

Feb 12, 2015 2155.92 m2 11553.18 m2 536.17 m3 

March 20, 2015 811.39 m2 1973.40 m2 239.46 m3 

March 27, 2015 971.87 m2 1841.75 m2 209.33 m3 

March 27, 2015 852.55 m2 1606.18 m2 190.39 m3 

Table 22 - Pix4D geometric values for Plot 12. 

Plot 13 – burned March 26, 2013 

Date Enclosed 3D Area Terrain 3D Area Total Volume 

Jan 30, 2015 2013.55 m2 4150.89 m2 1106.18 m3 

Feb 12, 2015 2252.17 m2 9172.80 m2 1127.16 m3 

March 20, 2015 892.15 m2 1636.60 m2 219.80 m3 

March 27, 2015 1018.03 m2 1302.26 m2 185.57 m3 

March 27, 2015 931.49 m2 1484.13 m2 168.62 m3 

Table 23 - Pix4D geometric values for Plot 13. 
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Plot 14 – burned October 17, 2014, 4 trees 

Date Enclosed 3D Area Terrain 3D Area Total Volume 

Jan 30, 2015 1893.62 m2 13009.53 m2 3346.42 m3 

Feb 12, 2015 2307.90 m2 14020.99 m2 1324.27 m3 

March 20, 2015 824.33 m2 9142.37 m2 718.86 m2 

March 27, 2015 992.66 m2 8054.81 m2 455.02 m3 

March 27, 2015 949.72 m2 5285.82 m2 265.54 m3 

Table 24 - Pix4D geometric values for Plot 14
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