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Abstract:

Lossy video compression lowers fidelity and can leave visual artifacts. Current
video compression algorithms are guided by quality assessment tools designed around
subjective data based on aggressive video compression. However, most consumer
video is of high quality with few detectable visual artifacts. A better understanding
of the visual detectability of such artifacts is crucial for improved video compression.
Current techniques of predicting artifact detectability in videos have been largely
guided by studies using no masks or using still-image masks. There is limited data
quantifying the detectability of compression artifacts masked by natural videos. In
this paper, we investigate the effect of natural video masks on the detectability of
time-varying DCT basis function compression artifacts. We validate the findings
from Watson et al. [JEI 2001], who found that as these artifacts increase in spatial
and temporal frequency, detection contrast thresholds tend to increase. We extend
this work by presenting compression artifacts with natural videos; when artifacts are
shown with natural videos, this relationship between artifact spatial frequency and
threshold is reduced or even reversed (our data suggests that some natural videos
make targets easier to detect). More generally, our results demonstrate that differ-
ent videos have different effects on artifact detectability. A model using target and
video properties to predict target detection thresholds summarizes these results. We
expand these results to examine the relationship between mask luminance, contrast,
and playback rates on compression artifact detectability. We also examine how the
detectability of targets that are spatially correlated with mask content differ from
the detectability of uncorrelated targets. This paper’s data serves to fill-in an un-
derstanding gap in natural-video masking, and it supports future video compression
research.
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CHAPTER 1

INTRODUCTION

Video compression enables digital media deliveries to the board room, the living

room, and everywhere in-between. Digital video availability is a well-established part

of everyday life, and the problems associated with large video files seem almost as

well-established for engineers. At this time, about 300 hours of video are uploaded

to youtube every minute.1

Understanding of video compression artifact detectability is vital for future video

compression research. Aggressive but lossy compression can adversely effect the video

appearance, often producing unsightly artifacts. Under-compressing files is wasteful,

and may result in files too large to be useful. Because of the vast amount of video

generated in the world each day, even small advances in video compression efficiency

can have substantial impacts over time. It is imperative that we understand the

detectability thresholds of compression artifacts.

The most common video and image artifacts come from discrete cosine transform

(DCT) based compression [1, 2, 3]. In general, images in the spatial domain are trans-

formed to the frequency domain using the DCT [4]. Individual DCT components are

rounded, and then transformed back into the spatial domain [5]. Video compression

is slightly more complex.

DCT basis function artifacts appear as differences between the original and com-

pressed digital media, and are due in part to rounding of DCT components in the

frequency domain. Artifact spatial frequencies in the digital media frames corre-

1https://www.youtube.com/yt/press/statistics.html
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spond to the DCT components in the frequency domain. Various individual DCT

components are rounded differently, and the amount of rounding for each DCT com-

ponent should be related to artifact detectability. The detectability of DCT basis

function artifacts caused by rounding should be the focus of ongoing research. Unfor-

tunately, there is a significant gap in the understanding of video compression artifact

detectability. Other than our previous work on the subject, no data has been gath-

ered to specifically quantify the detectability of dynamic DCT noise when presented

with natural videos.

This gap in understanding of artifact detectability is bounded on both sides by

mountains of excellent research. On the functional side, engineers have successfully

used DCT compression to reduce file sizes of images and videos. Engineers have

continued research on the functional side, working with compressed videos as their

benchmark. Many researchers and developers of compression algorithms use results of

quality prediction algorithms as development aides. These useful tools were developed

to predict more broad mean opinion scores. The opinion score is a subject’s general

personal assessment of a video viewing experience, usually given as a score from

some scale. The score provides some assessment of how good or bad the results

of the compression seem to the subject. Because personal opinions may vary, the

scores of many subjects are averaged together to form a mean opinion score. Finally,

because the scores are usually comparing the quality of several videos and video

treatments, the scores are recorded as differential mean opinion scores, signifying how

much better some videos are than others in overall quality. Several algorithms are

able to provide predictions that fit the available data reasonably well, with little room

for great improvement. Compression algorithm developers work to provide methods

to reduce file sizes while maintaining better quality prediction algorithm scores. The

direct investigation of the functional side of this problem has bore fruit quickly and

abundantly, with great efficiency. This process has been successful in providing the
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tools to build a vast empire of video data, with millions of videos delivered around

the world everyday.

Unfortunately, these types of efforts are beginning to reach an asymptotic point

in research, where greater efforts are required to provide only marginal improvements

in video compression technology. Because of the size of the digital video market, even

these marginal gains have significant impact around the world; however, there are

other options to seek greater understanding of how to improve video processing. The

other side of this gap in understanding of video compression artifact detectability is

bounded by research from the areas of visual Psychology and visual Psychophysics.

From this community comes the rigorous tools for the fundamental investigation of the

simple question, “What is detectable to the eye?” Specifically, these tools allow the

objective measurement of DCT compression artifact detectability thresholds. Our

research path measures the level of contrast at which these targets are detectable,

how the different spatial and temporal frequencies of the targets change detectability

thresholds, and how that detectability changes from video to video. This is a much

more time consuming path for data collection and analysis, requiring a great level of

effort just to ensure the results are meaningful, but the outcome of such structured

and dedicated research will help close the current gaps in video compression artifact

detectability research.

Unfortunately, few studies have measured the relationship between compression

artifact detectability and target spatial and temporal frequencies. The discrete cosine

transform has seen vast applications in compression because of its effectiveness, not

because of the depth of study of the eye’s response to the resulting compression arti-

facts. One of the most complete studies was completed by Watson, Hu, and McGowan

[6], who quantified the detectability of unmasked compression artifacts with temporal

properties in support of their video quality metric development. They measured the

detectability of an unmasked target they referred to as dynamic DCT noise, which
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are DCT basis functions controlled for both spatial and temporal frequency. These

targets are patterns of 8×8 pixel DCT basis functions, replicated to form a 256×256

pixel block, modulated in time.

The data on unmasked video compression artifacts presented by Watson, Hu, and

McGowan [6] showed that unmasked compression artifact detectability thresholds fol-

lowed previous trends shown with unmasked targets, unmasked compression artifacts,

and unmasked targets with temporal properties. As with traditional targets, such as

sine wave gratings [7], targets with higher spatial frequencies had higher detectability

thresholds. Targets with higher temporal frequencies also had higher detectability

thresholds [8]. Watson, Hu, and McGowan [6] described their data as generally low

pass in form when plotting target detection thresholds versus either increasing spa-

tial or temporal target frequencies. Watson, Hu, and McGowan [6] also provided a

linearly separable model to summarize their data.

Although the body of related work is substantial, there have been no previous

studies directly quantifying the detectability of video compression artifacts masked

by natural videos. Watson, Hu, and McGowan [6] provide an excellent description

of unmasked compression artifact detectability, however, they did not measure target

detectability contrast threshold elevations due to presenting these targets with natu-

ral video masks. Other researchers have examined masking of compression artifacts

with natural images [9, 10, 11, 12, 13]. However, these studies did not quantify the

relationship between target detectability thresholds and target temporal frequencies.

Nor have these related studies measured threshold elevations due to masking with

natural videos, which also have temporal properties.

To help fill in this gap in knowledge, our research extends the work of Watson, Hu,

and McGowan [6] to investigate how DCT basis function detectability changes when

targets are presented with natural video masks. Our research applies principles from

visual psychophysics to validate the detectability thresholds of dynamic DCT noise
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in the unmasked condition. The data collected for this dissertation was from using

the same process to extend what is known about compression artifact detectability

by quantifying how target detectability thresholds change when dynamic DCT noise

targets are presented in the presence of natural video masks.

Our study validates many of the previous conclusions for unmasked video com-

pression artifacts, and extend these findings to quantify masked elevations due to

presenting compression artifacts with natural video masks. Our measurements in

this dissertation appear to suggest that presenting dynamic DCT noise targets with

natural video masks can reduce or reverse trends seen in unmasked target research. A

linear regression model summarizes our data from this dissertation for use by future

researchers.

Our results represent a logical progression beyond the results of Watson, Hu,

and McGowan [6], but do have notable limitations due to the time requirements of

the experiments. To measure target detectability thresholds for the target spatial

and temporal frequencies examined for this paper, each natural video was viewed as

much as a few thousand times by each subject. As subjects complete experiments,

they grow more familiar with the targets and masks, age, can have slight changes in

attitude towards data collection, or even changes in vision, all of which can change

a subject’s results over time. Limiting the size of the dataset reduced the required

collection time, and thus reduced the amount of change in each subject’s results.

It should be noted that some in the visual Psychology field hold the DCT com-

pression artifact as a radical target, and would rather this exploration be based on

more controlled and more familiar targets such as the Gabor transform. Because

DCT compression is so widely used, knowledge about the detectability of this target

is vital. The study led by Watson provided one key stepping stone for our research

to build on. The data from Watson on dynamic DCT noise is the best set of data to

build off for this next step in video compression research.
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There are several key differences between natural video masked dynamic DCT

noise and the compression artifacts experienced by common consumers of digital

videos. This target has only one spatial frequency, while most compression algo-

rithms change multiple spatial frequencies. Dynamic DCT noise does not capture

video motion prediction errors which are common with most compression algorithms.

Finally, these targets are not spatially correlated with mask content. As this dis-

sertation will show, even small changes in the target will result in changes in target

detectability. Changing the dynamic DCT noise target to be spatially correlated with

mask content results in slight changes in target detectability thresholds. Thus it was

important that we first showed that we had properly recreated the targets used by

Watson, and then presented them with masks.

The sample size for the data used in this dissertation was selected to ensure consis-

tent and repeatable results from the volunteer subjects considering the time required

to gather each data point, while providing an important next step beyond the research

of Watson, Hu, and McGowan [6]. Our masked results in this paper are limited to

eight 0.75 second, gray-scale videos which are four degrees of viewing tall and wide,

with only a choice number of target spatial and temporal frequencies examined. Also,

the data in this dissertation is restricted to detectability measurements at the thresh-

old level using targets with only one DCT basis function. Given these limitations,

this dissertation still provides a logical and meaningful extension of the findings of

Watson, Hu, and McGowan [6].

We had previously shown some of our data in a conference paper; however, that

work was provided without an analysis [14] . We later provided more of this work

as a journal paper [15]. For the journal paper, we added data from a third subject,

presented extensive analyses, and we investigated the efficacies of various models for

predicting the data. For this dissertation, we have included a new set of experiments,

controlling mask luminance, contrast, and playback rate. We also examined a new
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type of target, correlated dynamic DCT noise, which is spatially correlated to the

natural video mask content at the target spatial frequency.

Data collection followed internationally accepted principles and practices related

to the ethical conduct of research involving the use of human subjects. Data collec-

tion methods were approved by the Oklahoma State University Institutional Review

Board, under application number EG096. Informed consent was obtained from all

subjects.

Chapter 2 provides a review and critique of related literature. Chapter 3 describes

the data collection methodology. Chapter 4 presents our results and data reliability.

Chapter 5 presents analysis and discussion of our data Chapter 6 presents modeling for

the prediction of our results. Chapter 7 provides our results from experiments using

masks controlled for luminance, contrast, and playback rate, as well as thresholds for

targets spatially correlated with mask content. Chapter 8 summarizes our results and

presents our conclusions.
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CHAPTER 2

LITERATURE REVIEW

This chapter presents a review of literature related to the subject of natural-video

masked video-compression-artifact detectability. Relevant literature provides context

for the research presented in this dissertation. This chapter provides reasonable ex-

pectations for research results based on previously published articles. This chapter

also details the gaps and limitations in previous research, describes which knowledge

deficits this dissertation addresses, and summarizes which questions remain open for

future research.

2.1 Targets with higher spatial frequencies tend to have higher

unmasked thresholds

Many video compression algorithms are built on an assumed contrast sensitivity func-

tion. In general, human eyes can most easily detect targets with a spatial frequency

of about one cycle per degree (c/deg) of viewing angle. One degree of viewing angle

is about the width of a human finger at human arm’s length. When targets have a

higher spatial frequency, they are more difficult to detect. Said differently, higher spa-

tial frequency targets are correlated with higher detection thresholds. Based on this

assumed contrast sensitivity function, many compression algorithms compress lower

spatial frequencies very little, and compress higher spatial frequencies aggressively.

This section explains some of the research this assumption is based upon.

Comprehension of video compression artifact detectability is rooted in image com-

pression artifact detectability [16]. Additional knowledge about compression artifact
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detectability comes from research using other more controlled stimuli [7]. Our current

understanding of DCT basis function artifact detectability has come from the vast

research disciplines of visual psychology [17], physiology [18], and psychophysics [19].

Many of these studies focus on the detectability of various controlled visual stimuli,

known as targets, which can be similar to DCT artifacts. An unmasked target is one

presented against a blank background devoid of texture, and the brightness of both

target and background are controlled. Human subjects identify the level of target

brightness making the targets perceptible, or the detectability threshold.1 The con-

trast between the target and background at this perceptibly level is known as the

unmasked target detectability contrast threshold. Higher unmasked target detectabil-

ity contrast thresholds signify greater differences in brightness between targets and

backgrounds were necessary to make targets perceptible.

Unmasked targets, which can be similar to compression artifacts, have been shown

to have detectability thresholds that vary as a function of target spatial frequency.

Generally, humans have the lowest target detectability contrast thresholds for targets

near one cycle per degree (c/deg), and have higher detectability contrast thresholds

for targets with higher spatial frequencies. Relationships between target detectability

and target spatial frequency have been measured with square-wave gratings [20],

various other traditional targets [21], and even DCT basis functions [22]. Although

the relationship between target detectability and target spatial frequency can be

slightly altered by changing either target or background properties, in general, lower

target spatial frequencies correspond to lower target detectability contrast thresholds,

while higher spatial frequency targets have higher thresholds.

Campbell and Green [23] observed that as the spatial frequency of a target in-

creases, observer sensitivity to that target decreases.2 Campbell and Green were using

1Several animals have also participated in this type of objective study, including cats and mon-

keys.
2sensitivity is the inverse of the detectability threshold.
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a neon-helium gas laser to produce an image on the retina. Although this method

may seem a little unnatural, the results have held for many more natural viewing

conditions.

In Psychophysics, understanding begins with simple and controlled stimulus, no

matter how unnatural, and then builds on accepted truths towards more natural set-

tings. Some researchers suggest that the human eye has been tuned for increased

sensitivity to lower spatial frequencies because this is what typically occurs in nat-

ural scenes. Other studies have found that independent of many other variations in

experiments, either by adding a mask, adding motion to the target, using only one

eye instead of two, or even changing the brightness of the display itself, in general,

finer details are harder for the human visual system to detect.

These related works suggest that higher spatial frequency dynamic DCT noise

should have higher detectability contrast thresholds. Also, presenting a natural video

mask with the targets should result in some change in target detectability contrast

thresholds. However, the relationship between target detectability contrast thresholds

and target spatial frequencies has not been previously quantified for dynamic DCT

noise masked by natural videos.

2.2 Targets with higher temporal frequencies tend to have higher

unmasked target thresholds

An important property of video, which separates it from work with images, is showing

motion over time. This temporal component enables different relationships between

target detectability and target temporal properties. Some of these relationships have

been quantified by previous research. Expectations for unmasked video compression

artifact detectability can be found in the related field of visual psychology. A trav-

eling wave stimulus has the appearance that a sine wave is passing over the display.

Examining a single point in space over time will result in a brightness that rises and
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falls according to a sine wave pattern. The frequency of this pattern is measured in

cycles per second or Hertz (Hz) and describes the temporal frequency of a stimulus.

Just as changing the spatial features of a stimulus from coarse to ultra-fine can

increase target detectability contrast thresholds, making the target move or flicker

quickly can also change detectability. There has been some disagreement and consen-

sus about the models that explain the data over the past half century on this topic.

Most of the contention in this discussion is about the narrowly tuned frequency mech-

anisms underlying the general shape of an overlying envelope of sensitivity. However,

the data that defines this overlying envelope has been mostly consistent [24].

Two notable researchers, Kelly [25], Robson [8], and several others have shown

that when the target is changed to a traveling wave, the speed of that wave can change

contrast detection thresholds. In general, targets with higher temporal frequencies

have higher detectability thresholds [19, 8, 26, 27]. When the temporal frequency of a

stimulus gets high enough, target detectability contrast thresholds go up, no matter

what the spatial frequency of the target. 1

When target detectability thresholds increase, it is sometimes referred to as a

threshold elevation. For instance, when a target temporal frequency is significantly

increased, a significant threshold elevation will often result. Likewise, when a target

spatial frequency is significantly increased, a significant threshold elevation will often

result. Robson observed that the elevation due to a significant increase in target

spatial frequency was largest when the target had little to no temporal frequency [8].

When target temporal frequencies increased, threshold elevations due to changing

target spatial frequencies from low to high were reduced [8]. The data presented by

Robson also suggests that the inverse of this relationship is true. As target spatial

frequencies increase, target detectability threshold elevations due to changing target

1It is also important to note that when the spatial frequency is high enough, no matter what the

temporal frequency, target detectability contrast thresholds increase.
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temporal frequencies from low to high are also reduced [8].

Interestingly, when either the spatial or temporal frequency of the target is low

enough, the stimulus is difficult to see. Kelly explored this in greater detail [25].

It is easiest for observers to see targets at a central range of temporal and spatial

frequencies. High and low spatial or temporal frequencies are hard to see.

De Lange Dzn explored how flicker rate changed contrast sensitivity [28]. De

Lange Dzn showed that some targets displayed a critical flicker frequency, where the

target was most sensitive. One work that validated these principles was from Kelly

[25], who showed a combined plot of models based on sensitivity to the coarseness

and flicker rate of a stimulus.

Indeed, support for the general shape of the plots of target sensitivities at different

spatial and temporal frequencies is even found in mammalian physiology. Tolhurst

and Movshon [29] documented their recordings of visual neuron responses of an adult

cat.

Schade [30] demonstrated a circuit meant to mimic the eye. The behavior Schade

mimicked was spatiao-tempoarl sensitivity. Schade showed that a drifting sine wave

was detected differently than a stationary one. The findings of Schade and de Lange

Dzn are in agreement with those of Kelly.

Tolhurst [31] explored how target sensitivity changed as its temporal properties

changed through different types of flicker modulation. Tolhurst found that a station-

ary grating was harder to see than a continuously moving grating, but a grating that

had a sinusoidal modulation was the easiest of all three distortions to see. These

findings were further supported by Kulikowski and Tolhurst [32].

Koenderink and van Doorn [33] made the claim that the underlying model of

spatiotemporal sensitivity needs to be bimodal. Robson and Kelly had suggested that

the underlying model was unimodal [8, 25]. However, Koenderink and van Doorn did

not suggest that the data describing the response behavior for spatiotemporal target
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detection was incorrect.

Cropper and Derrington [34] explored detection thresholds for unmasked targets

with different temporal properties. Cropper and Derrington explored both detection

of beat patterns and discrimination of motion direction. Cropper and Derrington

found that it was easier for subjects to detect the beats than it was to determine

their motion. Cropper and Derrington also found that the less time they displayed a

stimulus, the harder it was for the subject for both the detection and discrimination

task.

Unfortunately, few studies have measured the relationship between compression

artifact detectability and target spatial and temporal frequencies. One of the most

complete studies was completed by Watson, Hu, and McGowan [6], who quantified

the detectability of unmasked compression artifacts with temporal properties in sup-

port of their video quality metric development. They measured the detectability of

an unmasked target they referred to as dynamic DCT noise, which are DCT basis

functions controlled for both spatial and temporal frequency. These targets are pat-

terns of 8×8 pixel DCT basis functions, replicated to form a 256×256 pixel block,

modulated in time.

The data on unmasked video compression artifacts presented by Watson, Hu, and

McGowan [6] showed that unmasked compression artifact detectability thresholds fol-

lowed previous trends shown with unmasked targets, unmasked compression artifacts,

and unmasked targets with temporal properties. As with traditional targets, such as

sine wave gratings [7], targets with higher spatial frequencies had higher detectability

thresholds. Targets with higher temporal frequencies also had higher detectability

thresholds [8]. Watson, Hu, and McGowan [6] described their data as generally low

pass in form for both increasing spatial and temporal target frequencies. Watson,

Hu, and McGowan [6] provided a linearly separable model to summarize their data.

The general expectation from previous research is that targets with higher tem-
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poral frequencies should have higher detectability contrast thresholds. Additionally,

targets with higher temporal frequencies should also be associatted with smaller el-

evations due to either masking or significant increases in target spatial frequencies.

Although the work of Watson, Hu, and McGowan [6] provides data to verify for un-

masked target detectability contrast thresholds, the relationships between target tem-

poral frequency and natural video masked dynamic DCT noise contrast detectability

thresholds has yet to be quantified.

2.3 Presenting masks with targets can effect target detectability

Studies with unmasked targets have provided useful guidance for compression arti-

fact detectability. However, in video compression, artifacts are shown with natural

videos. The detectability of targets presented against backgrounds with a texture,

pattern, image, or video is known as masked detectability, and masks influence target

detectability contrast thresholds [7, 35, 36, 37]. The difference in detectability thresh-

olds between the masked and unmasked targets is known as the masked threshold

elevation. Studies show that the mask contrast [38], mask spatial frequency, mask

phase with respect to the target [7], and mask orientation with respect to the target

[39] can all influence masked threshold elevations. In general, the largest changes

in target detectability occur when the targets and masks are most similar. Also,

masks with higher contrast cause larger elevations [38]. Targets with higher un-

masked detectability thresholds tend to have smaller elevations due to masking [5].

The relationships between mask and target properties and detectability thresholds

appear to hold true for masked compression artifact detectability [5].

Masks and targets more similar in temporal frequency have larger changes in target

detectability due to masking [40]. Lehky [40] showed that as target temporal frequen-

cies increased, the masks that resulted in the greatest target detectability threshold

elevations were the ones that also had increased temporal frequencies. Fredericksen
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and Hess reported similar results [41]. The relationship between mask and target

temporal frequencies is similar to the relationship observed with targets and masks

with similar spatial frequencies [38].

Previous investigations have suggested masking has many forms. One example

is noise masking, where target detectability decreases because the mask corrupts the

visual image [35, 42, 43, 44]. Contrast masking is where the contrast of the mask

changes detection thresholds of the target [45, 38, 46, 47, 48, 49]. While exploring

contrast masking, Swift and Smith [50] used two different types of experiments to

measure detection thresholds and obtained different results. A further study of these

differences found that the main deviations in the data could be explained by familiar-

ity of the subjects with the masks. Familiarity with the mask or target, or lack there

or, is sometimes examined under the heading of entropy masking [51, 52]. Apparent

motion in a mask or target can also effect target detectability contrast thresholds

[53].

Several papers exist on different types of masking [54]. However, measuring how

noisy or how surprising a mask is can be a difficult task. Measuring the mask contrast

is a more direct task, and has been studied in greater detail [45, 38, 48, 52, 55, 56,

57, 58, 59, 60, 61, 62].

Legge and Foley [38] explored contrast masking in human vision. When the mask

has low contrast, the target is as easy to see as if no mask were present. However,

as the mask contrast increases, target detectability contrast thresholds decrease, but

only under certain circumstances. This is known as facilitation. In general, the most

facilitation occurs when the mask has light contrast, and the mask and target are

very similar in other measures. For example, the target used by Legge and Foley had

a spatial frequency of 2 c/deg. When the mask had a spatial frequency of 1.0 c/deg,

no facilitation was observed. However, when both target and mask have the same

spatial frequency, there is a significant dip in the curve, signifying facilitation at some
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low mask contrast levels. The area of the curve where the mask facilitates target

detection is sometimes referred to as the dipper effect [35]. One observation from the

work by Legge and Foley is that when the target and mask are most similar, masks

with very little contrast are associated with target visibilities near the unmasked

level. Increasing mask contrast slightly lowers target detectability, or causes slight

facilitation. As mask contrast continues to increase, the effect of facilitation also

increases up to a certain point. After that certain point, increasing mask contrast

increases the target detectability contrast thresholds. That is, after a certain level

of mask contrast, there is a positive correlation between mask contrast and target

detectability contrast thresholds.

Swift and Smith [50] found similar results, and raised some questions about how

the methods in the experiment could alter the detection thresholds. In general, target

detection thresholds from most types of experiments have a similar shape. One of

the seminal papers on the subject of contrast masking was by Campbell and Robson

[21]. The plots of their data continue to be explored in greater detail. One example

is from Bird et al. [63]. In general the findings from Bird et al. are the same as from

Campbell and Robson. The reason for the exploration of the curves is a search for

an explanation of why it is that the subjects generate the curves they do. And also,

researchers explore the use of these types of curves to predict or understand what

other related curves should look like. Some researchers even compare these types of

threshold versus contrast of mask curves to similarly shaped curves resulting from

different types of experiments [64].

One of the more popular contrast masking models by Watson and Solomon [45]

applies the concept that neurons have the ability to control their own gain depending

on the inputs they get from other neurons. This model helps predict how the eye

sees distortions. Specifically, they suggest that the eye can adapt to a high or low

contrast stimulus to avoid saturation.
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Many different aspects of contrast masking have been explored. Peli et al.[65]

explored peripheral contrast thresholds. This was a study of how contrast sensitivity

changes as the target is more and more offset from the center field of view. There

are other ways to study the interaction of stimulus contrast and sensitivity. One such

method is adaptation.

Many studies from the world of Psychophysics have focused on controlled masks

and controlled targets. The advantage of such experiments is that calculations for

modeling are much more straight forward. The disadvantage is that the natural world

is not made up of these straight forward masks and targets. And, as researchers

such as Field [66] have suggested, the human visual system has been developed for

observing the natural world, and so, research on human vision should also involve

the natural world. Petrov [67] showed that human eyes are optimized to be most

sensitive to ecologically useful information encoded with the luminance patterns of

natural scenes. As we will see, many other fundamental aspects of human vision

appear tuned to be most sensitive to the natural world.

The study of masked target detectability thresholds is more similar to the study of

video compression artifact detectability thresholds, however, captures of the natural

world have proven to be special types of masks [68]. Natural images cause unique

masked threshold elevations [69, 10, 11, 12, 13]. Generally, natural scenes cause larger

threshold elevations for low spatial frequency distortions, and threshold elevations

are reduced for high spatial frequency distortions, although the specific amount of

masking depends on image content.

Several algorithms utilize properties of natural scenes masks during image and

video compression [70, 71, 72, 73, 74, 75, 76, 77], however, little data is available to

quantify the effectiveness of natural scenes as masks [78, 69]. Watson, Borthwick,

and Taylor [51, 79] measured the level of compression detectable in dental images in

support of image compression algorithm development. Nadenau, Reichel, and Kunt
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[12] measured the relationship between image compression detection probability and

the level of image compression, and used this information to evaluate masking models.

Eckstein et al. [80] described how models of contrast gain control mechanism and

background random variations made it harder for humans to detect targets. Eckstein

et al. explain that in many practical tasks, target detection happens against a complex

and spatially varying background. As masks or backgrounds, Eckstein et al. employed

samples from patient digital x-ray coronary angiograms. Eckstein et al. found that

detection performance is best against a uniform background. Detection is degraded

against repeated samples of structured backgrounds, and detection performance is

the lowest when backgrounds are not repeated but different samples of structured

backgrounds. The work of Eckstein et al. appears to suggests that the complexity of

the natural video should play a part in elevating detection thresholds.

Chandler and Hemami [11] showed compression artifact detection thresholds for

masked targets were significantly different from unmasked targets. The data reported

by Chandler and Hemami [11] suggested unmasked compression artifact detection

thresholds were monotonically increasing in relation to increasing target spatial fre-

quencies. When the same compression artifacts were presented in the presence of a

natural image mask, the relationship was mostly similar. Masked threshold elevations

were significant at lower target spatial frequencies, but reduced for higher target spa-

tial frequencies. Near a target spatial frequency of 1.15 c/deg, the masked threshold

elevation was nearly one log unit for both images tested. However, at a target spatial

frequency of 18.4 c/deg, the error bars of some of the subjects’ detection thresholds

overlap for the masked and unmasked targets.

Chandler et al. [81] showed that the spatial correlation between masking images

and targets should be considered when measuring the quality of distorted images.

Hemami et al. [82] reviewed some of the related literature on what research from

controlled masks and targets suggest to expect in related experiments with natural
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image masks. Hemami et al. also showed how using an improved masking model,

based on natural images, can improve masking predictions for detection thresholds

in homogeneous natural image patches.

Chandler et al. [10] examined patch based masking in natural images. This

was an effort to compare an accepted masking model with human observers. They

controlled the patch content, as well as the patch contrast. Chandler et al. found

that increasing the contrast of the mask would increase its ability to hide wavelet

subband compression artifacts. Chandler et al. also showed that the content of the

mask mattered more as contrast increased. At low mask contrast, what was in the

mask did not make much of a difference in threshold elevations. However, when the

contrast of the mask was increased, the patches that Chandler et al. classified as

textures were best at hiding the distortions, followed by the structures. The patches

classified as edges did not show a strong increase in detection thresholds as contrast

of the patch increased. Chandler et al. attribute this to structural masking. A follow

on study by Alam et al. [69] showed that the classification of masking ability by

image content in a natural image would benefit from better masking models.

Chandler and Hemami [83] measured additivity and natural image masking. Ad-

ditivity, or summation, is when the combination of two targets is easier to detect than

either of the targets separately. Chandler and Hemami examined both threshold de-

tection and above threshold discrimination. They used quantized wavelet distortions

as the targets. What Chandler and Hemami found is that this type of target against

a natural image background produced similar results to other studies using more

controlled targets and stimulus. These results were expanded later by Chandler and

Hemami [11].

Webster and Miyahara [84] found that natural images produced larger masking

elevations for lower spatial frequency targets. Chandler and Hemami [59] suggested

a transmission model based on the ability of natural images to mask lower spatial
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frequencies more than higher spatial frequency artifacts. These works were extended

by Chandler and Hemami [11].

Chandler and Hemami made a comparison of masked and unmasked detection

thresholds of spatially correlated distortions. For the unmasked conditions, the most

sensitivity exhibited was for distortions near 1.15 c/deg. Chandler and Hemami point

out that this was not the typical frequency of highest sensitivity for unmasked sine

wave gratings, which is more commonly in the range of 2-6 cycles per degree. Chan-

dler and Hemami suggested that although a sine wave grating has only one spatial

frequency, the wavelet transform distortions have an octave of spatial frequencies.

The results of Chandler and Hemami were more similar to other results from un-

masked experiments using targets that had a range of spatial frequencies near an

octave.

Chandler and Hemami [11] observed that in most controlled masks and targets,

it is most difficult to see the target when it is closely matched to the mask in spatial

frequency. Most of the natural images have predominantly lower spatial frequency.

During the experiments, it is seen that going from an unmasked condition to a masked

condition, the largest elevations are seen at low thresholds, while higher frequency

targets are not as dramatically more difficult to see against natural backgrounds as

compared to the unmasked condition.

The general expectations from previous research on masked target detectability

is that presenting targets with masks should cause some change in target detectabil-

ity contrast thresholds. Using natural videos as masks should result in larger target

detectability elevations for targets with lower spatial frequencies. Increasing masked

target spatial frequencies from low to high should still result in an increase in target

detectability contrast thresholds, however, this elevation should be less than the ele-

vation due to the same change in spatial frequency for unmasked targets. Similarly,

increasing masked target temporal frequencies from low to high should still result in
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an increase in target detectability contrast thresholds, however, this elevation should

be less than the elevation due to the same change in temporal frequency for unmasked

targets.

2.4 Masked target detectability has a similar response to unmasked

target detectability for increasing target spatial and temporal

frequencies

Watson, Solomon, Ahumada, and Peterson [5, 45, 76, 58, 77, 22] explored DCT com-

pression artifact detectability. Ahumada and Peterson [85] provide a detection model

for DCT quantization artifacts. This model is based off principles from Psychophys-

ical findings, and has some variation to meet the specific detection curves of DCT

quantization coefficients. Watson et al. [58] extend this model to incorporate dif-

ferences in viewing distance. Watson et al. also explored contrast masking. They

employed a DCT quantization artifact as the mask, and then used another DCT

quantization artifact as the target. They found that as the contrast of the mask

increased, after a certain level, thresholds would increase when the mask and target

were similar in spatial frequency. However, the elevations due to masking were not

as large when the target and mask were significantly different in spatial content.

The general expectation from previous research is that masked target detectability

contrast thresholds should increase as target spatial frequencies increase. This was

similar to the behavior

The study of static images continues to be an active area of study by prominent

researchers, who constantly make significant contributions to the understanding of the

human visual system. One example is the work of Ahumada and Watson [86], who

have applied the concept of contrast energy to account for viewing duration required

for viewing detection and discrimination in static images. As seen in sensitivity

to targets by themselves, the ability to hide a target can also depend on temporal
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properties of the mask. Several studies explored how changing temporal properties

of the target or mask would change detection thresholds [8, 40]. A common goal in

these works is the drive to find a model of temporal vision for humans.

Kelly [87] provides a summary of expectations from a few classic visual contrast

sensitivity experiments. Most of these experiments were for the detection of sine wave

targets [87]. An unmasked target that is not too wide, not too narrow, and flickering

some, but not too much is easiest to see. However, it can be made even easier to

see if there is a mask present that is similar in flicker rate and spatial frequency, and

just the right amount of very light contrast. In general, the hardest thing to detect

is a high spatial and temporal frequency target against a high spatial and temporal

frequency mask with high contrast. 1

Burbeck and Kelly [88] explored masked detection threshold elevations for verti-

cal targets with horizontal gratings. Burbeck and Kelly found that at low temporal

frequency, there was not much elevation in detection thresholds across spatial frequen-

cies as the contrast of the mask increased. However, as temporal frequency increased,

lower spatial frequencies showed more increase in detection elevation as contrast in-

creased. This trend held for temporal frequencies of 1.4 Hz through 30 Hz. Pantle [89]

found similar behavior when the background had a spatial frequency three times the

target frequency. However, Pantle only explored two steady state conditions against

one 15 Hz temporal condition. Pantles results did not show that targets were easier

to detect at all contrast levels when they had flicker.

Breitmeyer et al. [90] explored how the temporal frequency of the mask changed

detection thresholds. Breitmeyer et al. explored many different components of vi-

sion, such as the ability to detect targets against steady backgrounds or backgrounds

flickering at 6 Hz. Breitmeyer et al. showed that humans were most sensitive to

1Kelly was an excellent researcher who worked in visual sciences for over forty years and made

several notable contributions to the field.
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flickering targets at low spatial frequencies against steady backgrounds. However, as

was common with most other related studies, a high enough target spatial frequency

made most targets equally difficult to see, independent of target temporal frequency.

Green [91] explored the relationships between motion and flicker through adapta-

tion. This effort was focused on the development of a model for motion perception.

Because their interest was model development, Green [91] explored such controlled

tests as using one eye versus using two eyes. Adapting the eye to flicker raised detec-

tion thresholds for drifting gratings, and low frequencies behave differently than high

frequencies in the spatial and temporal domain. Smith had similar findings [92].

Lehky presented a study of purely temporal mechanics [40]. Lehky showed that

when target and mask spatial frequencies were the same, the temporal frequency of

the mask that would cause the most elevation in detection thresholds was the one

that was more similar to the temporal frequency of the target.

Henning explored masking [93]. Henning used two targets, one low spatial fre-

quency, and one high spatial frequency. Henning used low pass and high pass noise to

mask the targets. The targets were presented with temporal frequencies of 0 Hz, 2 Hz,

and 10 Hz. Results were similar to other researchers using static targets. However,

Henning also incorporated a drifting stimuli, where the target and mask could have

the same or opposite direction. Henning observed when the target and mask drift

in opposite directions, the subject thresholds are similar to the unmasked condition.

Henning examined this for a drifting velocity of 2.7 degrees per second as well as at

10.9 degrees per second. At the higher drift rate, there was no significant different

between the same or opposite drift direction or the unmasked condition. This sug-

gests that for one item to mask another, they need to move with similar speed. Said

another way, the relative apparent velocity of the motion for the target measured

against the velocity of the mask should be low in order to lead to masking.

Hess and Snowden [94] provide an exploration of a model for vision with contrast
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masking. They show that target sensitivities are highest when the mask and target

are closer in flicker rate. They show that this holds across many different spatial

frequencies. These findings provide further conformation of the work of Robson and

Kelly [8, 25].

Eckstein et al. [95] examined noise that has spatiotemporal properties. Eckstein

et al. used dynamic noise to mask a temporally modulated signal. Eckstein et al.

found that as the contrast of the masking noise increased, difficulty in detecting the

target also increased. Eckstein et al. made comparisons between an ideal Bayesian

observer and human observers. Eckstein et al. provided additional information to

both humans and the ideal observer in the form of a cue. Eckstein et al. found that

providing a cue helped the performance of the humans some, but the ideal observer

more. Eckstein et al. concluded that this means that the humans incorporate the cue

into the task, but not in an ideal manner.

Lu and Sperling [96] use a fixed background to test detection thresholds for targets

with drifting luminance or targets with modulated texture contrast. Lu and Sperling

measured both detection thresholds and discrimination thresholds. Lu and Sperling

showed that as the mask contrast increased, the difficulty in detecting the target also

increased in a manner suggested by Webers law.

Fredericksen and Hess [41] explored the concept of stimulus energy. They con-

firmed that when using a noisy mask with temporal component, the most masking

occurs when the target and mask are similar in temporal frequency. They also show

that increased mask contrast makes detection more difficult. Masking effects are less

pronounced when the mask has the lowest contrast, or the mask temporal frequency

is very high or the target temporal frequency is very low. Similar results with an

additional observer are shown by Fredericksen and Hess [97].

Boynton and Foley [98] explored Gabor target detection against full field sine

wave maskers. Boynton and Foley showed the greatest threshold elevation when the
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temporal frequency of the sinusoidal mask was twice the temporal frequency of the

Gabor patch.

Meier and Carandini [99] presented an excellent summary of previous work on

drifting gratings. Meier and Carandini also provided a meaningful exploration of how

drifting masks hide drifting targets. They showed that drifting masks hide best when

they have more contrast and are closely matched in drifting rate to the target.

Laird et al. [100] expanded on previous work by Kelly [26], where they explored

contrast sensitivity as a function of velocity across the retina. Daly offered a revised

version of Kelly’s work [24]. These works were an extension of previous explorations

from Sekuler and Ganz [101]. Laird et al. [100] explored detection of Gabor patterns

to populate a two dimensional spatio-velocity contrast sensitivity function. Laird et

al. explored the relationship between eye velocity on target sensitivity. Similar to

the target spatial and temporal velocity relationship, if a target has enough apparent

motion velocity, or if the target has a high enough spatial frequency, the human visual

system sensitivity to that target is negligible.

Watson [102] extended the work of DCT compression artifacts. Watson showed

that given a sufficiently high target temporal frequency, a DCT compression artifact,

without masking, can have a higher target detectability contrast threshold. Watson

showed that the DCT compression artifacts detectability contrast threshold trends

follow the general detection trends of other controlled targets seen previously in other

visual Psychophysics experiments.

The general expectation from previous works on targets and masks with temporal

properties is that the masks most similar in temporal frequency to the targets will

result in the greatest elevations. Targets with lower spatial frequencies should still see

the largest elevations due to masking. Also, targets with higher temporal frequencies

should be associated with smaller elevations due to masking.
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2.5 Mask luminance has some effect on target detectability

Watanabe et al. [103] showed that the mean luminance of sine waved gratings can

cause a significant difference in the detectability of unmasked sine wave targets. Ahu-

mada and Peterson [77] show that the luminance of the target could change detection

thresholds as much as the spatial frequency of the target itself. In general, there is

a negative correlation between increased target luminance and increased target de-

tectability contrast thresholds. Said differently, targets are easier to see when they

are brighter.

Snowden et al.[104] explored the relationship between luminance and detection

thresholds. They found that brighter targets are harder to hide, and that detection

curves for low luminance targets were not always simply scaled down versions of the

higher luminance curves. Snowden et al. also note that as temporal frequency of the

target increased, sensitivity decreased, no matter what the luminance of the target.

Although these researchers have not examined the effects of changing mask lumi-

nance explicitly, the general expectation is that increased luminance increases visibil-

ity.

2.6 Mask temporal content has some effect on target detectability

Graham [105] explored the drift rate of gratings using adaptation. Graham found

that as the velocity of the grating increased, the sensitivity to the grating decreased.

This was for a spatial frequency range from close to zero to about 20 c/deg. Grahams

findings also supported the idea that higher spatial frequencies are harder to see, no

matter what the grating velocity.

Kelly [106, 26] presents an exploration of a stabilized stimulus. Kelly wanted

to show how much difference eye motion makes. Kelly presents several figures that

showed how much the eye moves or does not move with respect to the stimulus can
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dramatically change sensitivities.

Kelly [106] presented the image stabilization tool, as well as some measurements

of stagnant target thresholds. The data from Kelly showed that eye stabilization

greatly reduced spatial contrast sensitivity. Kelly showed that increased eye motion

tends to increase target detectability contrast thresholds. When the eye is free to

move around a stagnant stimulus, detectability thresholds were higher. When the

eye motion is taken away, or when the view of the eye is matched with the stimulus,

the sensitivity to the stimulus decreases.

In the second addition of the series, Kelly [26] provides a few more details to

explain the relationship of eye movement and sensitivity. Kelly showed that even

with stabilized images, higher spatial frequencies made targets harder to see. Kelly

also showed that higher temporal frequencies, that is faster flickering, also made

targets harder to see. Kelly showed that adding a little bit of motion to a target, that

is to make it drift or travel a little, made the target easier to see.

Kelly showed that for a stabilized image, there is a certain target spatial frequency

that excites the eye the most. The velocity of the target is going to change what the

target spatial frequency curve looks like. For very small apparent motion velocities,

adding a little target temporal frequency or flicker just makes the target stand out

more. After a certain point, the faster the target is moving, the lower the spatial

frequency the eye is going to be most sensitive to. Similar results were found by

Watanabe et al. [103].

Levinson and Sekuler [107] provided reports to support the notion that direc-

tionally selective channels in human vision are independent of contrast detectors.

Watson et al. [108] did a similar study to Levinson and Sekuler, but with gratings as

the target. Watson et al. showed that in the middle range of spatial and temporal

frequencies, it was as Levinson and Sekuler suggested. However, at the edges, where

spatial frequency is high and temporal frequency is low, the data varied slightly from
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the suggestions by Levinson and Sekuler.

Van Doorn and Koendrick [109] explored masked noise moving at two different

velocities. They examined how the signal to noise ratio altered with detection thresh-

olds. They also examined how the duration of stimulus display impacted thresholds.

Van Doorn and Koendrick showed that in general, faster moving targets were harder

to see.

Burr and Ross [110] took the study by Van Doorn and Koendrick one step further.

They explored drifting gratings and moving bars. Burr and Ross showed that at high

velocities, it is hard to see high spatial frequency targets. The slower the target would

move, the higher the spatial frequency they could detect.

Watson and Ahumada [111] examined how fast a capture rate on a video camera

needs to be or how fast a monitor needs to refresh. Watson and Ahumada measured

this through a Two Interval Forced Choice (2IFC) method where the subject would

select the stimulus that looked sampled. The control stimulus was a moving line, and

the target stimulus was a sampled and flashed video of that same moving line. The

sampled line was presented in two methods, one where it was simply flashed on and

off, and the other was a stair case motion. First, the line would be on in one point,

and held there. At some time later, the line would be displayed in a new location,

without any significant duration of off time in between. Watson and Ahumada use this

experiment to show that there is a certain window of detectability, and inside a certain

spatial and temporal response window, people can see what is going on. However,

when a change occurs beyond that window, the human eye has a hard time discerning

any differences. Their model suggested a critical sampling frequency, the threshold

where the user could distinguish between sampled and continuous movement. Watson

and Ahumada showed that this had to do with the apparent motion velocity, or how

fast the object was moving in c/deg.

Daly [24] converted the stabilized detection thresholds presented by Kelly [26],
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and present them in terms of unstabilized detection thresholds. Daly suggests that

this is more natural for modern display viewing.

Though there is considerable related work, no experiments prior to ours were ex-

pressly designed to measure the detectability of dynamic DCT noise when masked by

natural videos. The general expectation from related work is that the mask temporal

content can have some influence over target detectability. However, the amount of

influence the mask temporal content can have is dependent on the target spatial and

temporal frequencies.

2.7 Full-reference quality assessment algorithms can be useful for

predicting compression artifact detectability

Watson and Nachmias [112] explored how contrast threshold data changed with dif-

ferent temporal properties of gratings to understand the model of visual detection.

Watson and Ahumada [111] presented a model for visual-motion sensing. Watson

[73] showed a very popular model of how to optimize DCT quantization matrices

to adapt to individual images. Watson and Ahumada [113] examine several models

of vision, stratify them in comparison to a large set of data, known as ModelFest,

and then present a model they suggest as a possible standard for contrast sensitivity

predictions.

Sachs et al. [114] presented a model of human vision that suggested different

channels which are sensitive to different ranges of spatial frequencies. Georgeson

and Sullivan [115] propose a model, like that of Sachs et al. made up of multiple

channels. However Georgeson and Sullivan add that there seems to be some feedback

mechanism that inhibits some of the spatial frequencies in such a way that makes

images more clear. Peli et al. [65] further expanded on this model.

Sperling [116] presented a model of contrast detection. Quick [117] proposed a

popular vector-magnitude model for contrast discrimination. Legge and Foley [38, 47]
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shows that discrimination thresholds follow a power law. Pelli [118] described a differ-

ent model of vision based on uncertainty. This model appears to be related to entropy

masking. These models are based on psychophysical data, as well as physiology. One

example is from De Valois et al. [119], who made physical measurements of what

spatial frequencies a primate could see.

Daly [24] presented a spatiovelocity and spatiotemporal visual model for the pur-

pose of understanding requirements for display design. Much of this effort is based

on measurements provided by Kelly [26]. Fredericksen and Hess [41] present their

model for temporal vision. This model iteration builds on other models by these

authors, and describes the relationship between temporal sensitivity and target spa-

tial frequency. Lee and Blake [120] presented a model of spatiotemporal vision. They

suggest that phase dependent detectability in targets is not based on local luminance,

luminance changes, or contrast. They suggest that the strongest responses happen

when several features of a target are synchronized in amplitude, direction, and time.

Carrasco et al. [121] used contrast sensitivity to show support for the signal

enhancement model of attention. This model explained some of the mechanisms

underlying covert spatial attention. The focus of [121] is to understand how attention

can impact contrast sensitivity. Jarvis and Wathes [122] addressed how the visual

model of vertebrates needs adjustment based on how eyes see when light is low and

primarily, how the cones in the retinal provide visual responses.

Watson and Malo [123] present the idea of a Standard Spatial Observer (SSO)

tuned to predict video quality measures. This did not receive as much attention as

Watsons other projects, such as DCTune [74], or the model of visual contrast gain

control and pattern masking [45]. However, this was billed as Watsons simplified

model that could predict just noticeable distortions. Watson has presented the idea

of a standard observer in other forms [124, 125, 126, 127]

Watson had presented the concept of using a biologically plausible model of human
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vision to evaluate an image and then make a measurement of its masking potential.

The SSO was a low-complexity metric. Watson and Malo [123] present the SSO with

a few enhancements and show its ability to reproduce some of the objective quality

ratings from a large database from the Video Quality Experts Group (VQEG). At

that time, this model was said to be as good as the best model that the VQEG

group was offering. The interesting thing is that, although this model was designed

to estimate the perceptual differences between a pair of 2D contrast patterns and

assess the detectability of the differences between an original and distorted sequence,

Watson and Malo did not provide validation data.

The ModelFest group [128] discussed the ModelFest project. In the first para-

graph of the abstract, the group explained that models for a narrow class of stimuli

are popular, but they want to make more general-purpose models to improve image

processing algorithms, and that the Psychological measures used in the past have

been too costly to gather.

One of the more simple precursors to the Watson SSO was the simple model by

Legge and Foley [38]. Legge and Foley explored how detection threshold elevations

changed as masking contrast increased. Legge and Foley used controlled stimulus for

the mask and target, and were able to build a frequency specific model that could

predict the upper linear range of a contrast versus threshold plot based on a specific

fitting parameter for each frequency. In addition, Legge and Foley found that in the

upper linear range of the contrast elevation plots, a constant slope of 0.62 would

suffice for all different frequencies.

Foley presented an extension of the original Legge and Foley model [129]. In this

model, Foley added an inhibitory channel to the image. Teo and Heeger presented a

more simplified model [130]. These were the two papers that Watson and Solomon

based their work off of [45]. The standard spatial observer has many similarities to

these models. An extension of these models was presented by Watson et al. [6, 131].
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Watson and Malo extended these ideas in a conference paper [123]. However, Watson

and Malo [123] only presented the model as a way to estimate mean opinion scores

for the video quality experts group database. The basic models of Watson et al. has

not been validated with sound Psychophysical experiments measuring natural video

masked dct compression artifact detectability.

In another interesting turn of events, current research in the non-biologically plau-

sible area of research has came back to this same question of estimating noticeable

differences in stimuli due to compression. Dr. Alan Bovik has recently published a

work with Mittal and Moorthy on visually lossless compression [132]. The goal of this

effort was to use high end statistics based off of models of human vision to measure

video properties, then map those video properties into estimates of distortion de-

tectability using machine learning. In essence, they were now using a non-biologically

plausible model to predict if the eye can see a distortion or not.

How all of this ties together is that now there is a strong desire to figure out exactly

what the eye can and can not see. The DCT based compression artifact is still a very

common place occurrence in video compression. The expectations of how this artifact

should be masked has not changed. The biologically suggested model has not been

verified via Psychophysics in the predictability of the detectability thresholds. And

now we see the non-biologically plausible camp coming back around to the same

question.

This is not to say that any of the previous researchers have done anything wrong.

However, the publication history seems to suggest that without a proper Psychophys-

ical evaluation of how video of natural scenes mask DCT distortions, the two camps

are on hold. First, the world of Psychophysics does not have the data to improve

the models of how the eye perceives the DCT based compression artifact when it

looks at natural videos. Second, the world of Engineering does not have the data

to understand which higher order statistics are necessary to include during feature
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extraction from an image to properly estimate other responses with machine learning

techniques. To be clear, this is the question this dissertation hopes to provide insight

for.

The data, analysis, and modeling provided in this dissertation quantifies the de-

tectability of dynamic DCT noise when masked by natural videos. The data provided

by Watson, Hu, and McGowan [6] serves as a launch pad for our experiment. We

begin by validating the results of Watson, Hu, and McGowan [6], and then expand

on their work to examine how presenting eight natural-video masks with the tar-

gets changes detectability thresholds. Based on previous research, it is expected

that masked target detectability should be similar to unmasked detectability. The

detectability of targets lower in spatial and temporal frequencies should be more in-

fluenced by natural-video masking. Additionally, the biologically inspired contrast

gain control model [45] should be able to provide a reasonable prediction of masked

dynamic DCT noise detectability.
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CHAPTER 3

METHODOLOGY

In Chapter 1, we stated there is no previous data quantifying dynamic DCT noise

detectability in the presence of natural video masks. This section describes our proce-

dure for gathering the data to help fill in that knowledge gap. Our methods generally

follow those described by Watson, Hu, and McGowan [6] whenever possible. Section

3.1 describes our procedure for data collection. The targets and masks are described

in Section 3.2.

3.1 Procedure and subjects

This Section describes the data collection task, describes our subjects, and explains

the order of data collection. Multiple subjects participated in data collection, as

discussed in Sect. 3.1.1. Subjects completed a two interval forced choice (2IFC) task,

as described in Sect. 3.1.2. Subjects provided target detectability threshold estimates

for various masking conditions and targets, as described in Sect. 3.1.3.

3.1.1 Subjects

Here we describe the multiple subjects used for data collection. Collecting data from

humans is time consuming and can produce unreliable or unrepeatable data. Often,

multiple subjects are used as a way to reduce collection time, as well as to provide a

means to validate results.

Our initial data set included measurements for 297 target detectability thresholds,

from a combination of nine masking conditions, nine target temporal frequencies, and
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eleven spatial frequencies. For the main data set, at least three subjects completed

two sets of trials for each estimate, resulting in at least six sets of trials for each

estimate. The six estimates for each target detectability contrast threshold were then

combined with a weighted mean, x, defined [133] as

x =

∑
(xi/σ

2
i )∑

(1/σ2
i )

, (3.1)

were xi is the mean from a single set of trials, and σ2
i is the standard deviation of a

single set of trials. The weighted standard deviation, σ2
x, is defined [133] as

σ2
x =

1∑
(1/σ2

i )
. (3.2)

All 297 detectability threshold estimates had two subjects in common, J.E. and

K.J., with a third expert subject from the CPIQ lab at Oklahoma State University.

The first observer for all data was J.E., the first author, a 32-year-old male with

normal vision, who was experienced in detectability threshold experiments. The

second observer for all data sets was K.J., a 25-year-old female with corrected to

normal vision, who was a novice subject. The third observer was one of four subjects

from the CPIQ lab at Oklahoma State University. All CPIQ subjects were males,

had normal or corrected to normal vision, were in their 20s or 30s, and had extensive

experience in detection experiments

3.1.2 Task for the subjects

This Sect. describes the 2IFC task completed by each subject. Each subject com-

pleted two sets of 32 trial 2IFC tasks for their portion of the data set. Data collection

was aided by the use of the Psychtoolbox [134, 135] and the QUEST staircase method

[136].

The 2IFC task is where a subject views one video after another, watching for

the target, and makes an indication of which video contained the target. Video

presentation was computer controlled. The computer would randomly select the
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order of the mask only and mask plus target, and control the presentation. The

subject would enter their selection by pressing keys on the computer keypad, and

receive audio feedback indicating either a correct or incorrect response.

The computer utilized the presentation software Psychtoolbox [134, 135] and

employed the QUEST staircase tool by Watson and Pelli [136] to adjust target contrast

levels for each trial. At the beginning of the set of trials, the target had high contrast.

A correct response was followed by a stimulus with lower target contrast, while an

incorrect response was followed by a stimulus with a higher target contrast. Subjects

completed sets of 32 trials, and the target contrast levels were adjusted in such a way

that the probability of a correct answer from the subject was 75% for the next trial.

For the Weibull function to estimate thresholds, β was 3.0, δ was 0.02, and γ was

0.5. At the end of the experiment, Psychtoolbox and QUEST would provide a final

target detectability contrast threshold estimate as a mean with a standard deviation.

Subjects completed two sets of 32 trials. If the difference in means from the two sets

was over 0.5 log units, the subject was asked to complete a third set of 32 trials, after

which, the two closest measurements were kept.

It should be noted that during the presentation of initial data at the Asilomar

conference, there was some concern about the size of the error bars of the data. One

suggestion to combat this was to use a different monitor that allowed 14 bits of control,

allowing 16,384 shades of gray to be displayed, instead of the 256 used for our current

setup. This is expected to be most helpful during very low contrast experiments.

During experiment setup, it was observed in examining some preliminary data, that

indeed, a better monitor control could have helped provide a more controlled display of

the target. However, this was only for the unmasked condition, and only at contrast

levels that were far below detectability. For contrast levels near the detectability

threshold for most combinations of targets and masks, the LCD monitor was able to

sufficiently reproduce results with acceptable repeatability.
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A different option to limit the size of the standard deviation of the data from

the subjects would have been to control for their data standard deviation. Each

trial resulted in a mean and standard deviation. Much as the subjects were asked to

complete a third trial if the first two trials were not close enough in mean, subjects

could have been asked to complete a third trial if either of the first two trials had a

standard deviation that was determined to be too large. This was not done; however,

this would appear to be an option that would be more similar to home viewing

conditions by regular consumers.

The timing of each trial was closely controlled to ensure reliable presentation of

the masks and targets. Each video was 90 frames in duration, and shown at 120

frames per second, resulting in a video length of 0.75 seconds. Each set of trials

began with instructions written in black text against a gray screen. This told the

subject what to do, and allowed their eyes time to adapt. Each trial started with

a gray screen for 0.15 seconds, followed by a the first audio cue and the first video.

Between the first and second video, the gray screen would be shown again for 0.15

seconds. A second audio cue would indicate the start of the second video. After the

end of the second video, a final gray screen would be presented for 2.5 seconds.

The subject could enter a response any time after the beginning of the first video,

but before the end of the final gray screen. If the subject did not enter a response

during the appropriate time, the trial response would be counted as incorrect. Audio

feedback would indicate if the subject response was correct or incorrect on each trial.

The timing of each trial was kept short to limit the amount of time required to

complete the task. The first video of a new trial would begin 0.15 seconds after the

subject response for the previous trial. The subjects would often respond during the

first video or start of the second video. If the subjects waited until after the video to

respond, the wait was usually less than a second. This rapid presentation allowed the

subjects to complete the task quickly, but did raise subject anxiety. The 2.5 seconds
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allowed after the second video was available to the subject, and reduced subject

anxiety [17] because they felt they had sufficient time to respond. This additional

time was rarely utilized.

3.1.3 Completion order of the sets of trials

The subjects completed at least two sets of 32 trials for each of the 297 mask and target

combinations. This Sect. describes the order of completion of those combinations.

The goal of this completion order was to reduce subject fatigue.

Each subject was assigned a list of mask and target combinations. The subject

would complete 32 trials of the 2IFC task for the first mask and target combination

in the list, then proceed to the next combination in the list. After completing the

list of combinations the first time, the subject would start back at the top of the list,

completing a second set of the 32 trials of the 2IFC task for the first mask and target

combination. After completing the list of combinations a second time, the means for

each combination were compared. A new list of mask and target combinations was

formed, containing the list of of combinations were the means were larger than 0.5

log units.

The list of mask and target combinations was sorted by mask, target spatial

frequency, and target temporal frequency. As the subject worked through the list,

the mask would change least often, and target temporal frequency would change most

often. Target temporal and spatial frequencies were sorted in ascending order, and

masks were sorted in alpabetical order. This ordering of target and mask combinations

reduced subject fatigue and improved data repeatability [17].

One limitation of this target and mask ordering is it allows the possibility of unde-

sirable or uncontrolled influences of learning or adaptation during the data collection

process. Presenting the same mask repeatedly and slowly changing target spatial

frequency could have allowed either learning or adaptation. Indeed, by the end of
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data collection, a subject was likely to see every video a few thousand times.

A process to shuffle mask and target combinations to reduce the likelihood of learn-

ing or adaptation was attempted. The initial results from the shuffled list provided

similar means, but with larger standard deviations. The shuffled list took longer for

subjects to complete, and subjects complained of fatigue, and required shorter data

collection periods. Regan suggested [17] an increase in subject fatigue can lead to

decreased data reliability.

3.2 Stimuli and apparatus

This section describes the videos presented to the subjects during the 2IFC task.

The stimulus videos consisted of masks and targets, while the control videos were the

masks alone. The targets are described in Sect. 3.2.1, while the masks are described

in Sect. 3.2.2. Section 3.2.3 describes the measurement of the contrast between the

target and mask. The display apparatus is described in Sect. 3.2.4.

3.2.1 Targets

This Section describes the targets subjects watched for during the 2IFC task. For our

study, the targets were DCT basis functions modulated in time, which Watson, Hu,

and McGowan [6] called dynamic DCT noise. The same target spatial and temporal

frequency was used for a set of 32 trials, while target contrast was controlled according

to the process described in Sect. 3.1.

For each trial, the target was 90 frames long, and each frame was a 128×128

pixel square. Each frame was divided into 8×8 pixel blocks. Each 8×8 pixel block is

formed using a DCT noise template.

The DCT noise template is a DCT basis function. The DCT noise template is

defined by the DCT component for the set of trials selected from the list of mask and

target combinations, as described in Sect. 3.1.3. Target DCT components included
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DCT [0,0], [0,1], [0,2], [0,3], [0,5], [0,7], [1,1], [2,2], [3,3], [5,5], and [7,7].

Generation of the DCT noise template, NT , begins in the frequency domain. The

initial matrix NT0 is an 8×8 matrix of zeros, representing the 8×8 matrix of DCT

components for an 8×8 pixel block, NT0 = 08,8. The desired DCT component, (j, k),

of NT0 is set to one thousand, NT1 = NT0|(j,k)=1,000. This matrix is converted from

the frequency domain into the spatial domain, NT2 = DCT−1(NT1).
1 This matrix

is then normalized to have a maximum value of one, NT = NT2/max(NT2).

The final target, FT , is formed by combining the noise template blocks after

scaling them by the Gabor function. The contrast of each block, FT is defined for

each frame by the Gabor function, a multiplication of a Gaussian window and a sine

wave, as

FTi = Gi × Si × α×NT, (3.3)

were i is the frame number. G is a Gaussian window equal to the number of frames

in length with a standard deviation of 1/3. The Gaussian window gently transitioned

the target contrast up to its peak, and then gently back to zero contrast over the

duration of the 90 frames of the target. 2

S, the sine wave, allowed control of the target temporal frequency over target

frame number i, according to

Si = sin

(
π

2
+

[
2π ×Q× i

m

]
+ P

)
, (3.4)

were m is the frame rate of 120 frames per second. Q is the target temporal frequency

of 0, 1, 2, 4, 6, 10, 12, 15, or 30 Hz, as defined for the set of trials selected from the list

of mask and target combinations, as described in Sect. 3.1.3. P is a random phase

value for each block, distributed from 0 to 2π. A unique value of P was assinged to

each 8×8 pixel block at the start of each trial, and used for all 90 frames of the target

1This was completed using the inverse two dimensional DCT function idct2 inside MATLAB.
2The Gaussian window was generated using the MATLAB function gausswin.
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for that trial. The purpose of P is that multiple blocks close together spatially were

not likely to change in contrast in phase with each other.

The scaling variable α allowed the contrast of the target to be set close to the

level suggested by QUEST, as described in Sect. 3.1.2. Each mask had unique content

at the target spatial frequency, and that content changed over time. Thus, each

mask required a unique value of α for each target temporal frequency, target spatial

frequency, and contrast level. Because of a non-linear relationship between α and

target contrast, a look up table was formed before data collection, and during data

collection a polynomial fit of the data helped predict the α that would provide a

contrast level close to that suggested by QUEST.

Special considerations are necessary to calculate target spatial frequency. A typ-

ical human subject has about two degrees in their focal area. The viewing distance

was controlled so that the display was viewed at 32 pixels per degree of viewing angle.

Each block is only 8 pixels wide. Measured horizontally across the target, the highest

spatial frequency possible would be sixteen c/deg. However, the 8× 8 pixel blocks of

the target also change vertically within the focal area of the subject. So to report the

target spatial frequency, fs, as a number that represents both the target horizontal

frequency, fh, and target vertical frequency, fv, a combined spatial frequency was

found according to,

fs =
√
f 2
h + f 2

v . (3.5)

For the given apparatus, the minimum target spatial frequency is 2.8 c/deg for the

target DCT [0,0], and the maximum target spatial frequency is 22.6 c/deg for the

target DCT [7,7]. Figure 3.1 shows a few frames from three example unmasked

targets.
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b.       DCT [0,7]      6 Hz

a.       DCT [0,0]      0 Hz

c.          DCT [3,3]      12 Hz

Figure 3.1: Example target frames. The top row shows frames 45 through 49 of an

unmasked target, using the DCT basis function [0,0], with a target temporal frequency

of 0 Hz. Note that the targets are made of small blocks, and in all five frames in

row a, moving to left to right, the individual blocks don’t change in contrast. The

second row, b, shows frames 45 through 49 of unmasked targets, using the DCT basis

function [0,7], with a target temporal frequency of 6 Hz. Observe that the distortions

look like little vertical lines. Also note that across the five frames, not all 8×8 pixel

blocks keep the same contrast. Finally, c, the bottom row shows frames 45 through 49

for the unmasked target, using the DCT basis function [3,3], with a target temporal

frequency of 12 Hz. These distortions look more like dots than lines, and change in

contrast just a little faster than those in row b. The unmasked condition used a gray

source frame of with luminance of 45.1 cd/m2, which would stand out from the rest

of the background which had luminance of 43.5 cd/m2. At the right of each row is

a close up view of the upper left corner of frame 49 for each target, showing nine of

the 8× 8 target blocks.
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3.2.2 Mask

This Sect. describes the natural video masks. An effort was made to use videos

that were less controlled for content, contrast, luminance, and quality, but were more

natural. Public domain high-quality color videos were subjectively chosen with a

variety of content for a majority of the videos. Three videos, Cactus, Kimono, and

Flowervase are standards videos, which are familiar to many video quality assessment

researchers. These three videos are not available on the public domain, however, can

be made available to researchers in this area.

Videos were converted to the bitmap file type, then converted to from three chan-

nel color videos to monochromatic videos according to

Z = 0.2989×R + 0.5870×G+ 0.1140×B, (3.6)

were Z is the pixel input in the range of 0 to 255, and R, G, and B were the red,

green, and blue channels of the initial color image. Videos were subjectively cropped

to be equal in height and width around a main subject, maintaining a size larger than

128×128 pixels, and then resized down to 128×128 pixels using bicubic interpolation.3

The native frame rates for the masks were 30 frames per second, so each frame was

repeated four times to display properly at 120 frames per second.

Videos were subjectively chosen with a variety of content. Figures 3.2 shows a

few frames from each of the natural video masks. Figure 3.2 presents frames from the

natural videos Waterfall, Cactus, Kimono, Hands, Timelapse, Lemur, Typing, and

Flowervase. The natural video Waterfall, has fine texture with fast vertical motion

in the center, while the spray on the sides of the scene has little texture or perceptible

motion [137]. Cactus has fine texture and fast horizontal motion [138]. The natural

video Kimono has little texture or motion in the center of the scene, which is a female

3The default usage of the commands rgb2gray and imresize inside MATLAB made the

monochromatic videos, and then resized them.
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head and shoulders, with considerable texture and limited horizontal motion in the

background [139]. Like the natural video Kimono, the natural video Hands contains

familiar human features [140]. The hands counting in sign language in Hands have

significant motion against a mostly blank background.

Figure 3.2 presented a few frames of natural videos that were captured at a natural

frame rate from a fixed position, a few frames from one natural video captured with

time lapsed exposure, and another with a moving camera perspective. The natural

video Timelapse shows clouds with limited texture quickly moving across a sky devoid

of texture [141]. Lemur shows a lemur with significant texture quickly jump into

the scene against a highly textured but mostly still background of foliage and a

second lemur [142]. The natural videos Typing and Flowervase contain modern man

made structures. Typing shows hands with some texture quickly moving across a

stationary keyboard background that has considerable texture [143]. The natural

video Flowervase presents a moving camera perspective, were the viewer seems to

move closer to a flower vase sitting on a table in front of wall containing a fire place

[144]. The scene has significant texture, but is devoid of motion other than the

changing camera perspective.

In Fig. 3.2, it can be seen that the eight masks have significantly different content.

The scenes in the natural videos contain different types and levels of texture in the

fore and background, as well as different types of motion. This variety of natural

video types was subjectively chosen to examine if any types have significantly better

or worse masking ability.

3.2.3 Contrast measurement

This Sect. describes how contrast between the target and mask was calculated. Wat-

son, Hu, and McGowan [6] reported the log of contrast energy detection thresholds

for unmasked dynamic DCT noise. Watson et al. described contrast energy [145]
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Figure 3.2: Frames 1, 22, 45, 68, and 90 from the natural video masks. Row a shows

five frames for the mask Waterfall. Row b is from Cactus, while c is Kimono, d is

Hands, e is Timelapse, f is Lemur, g is Typing, and h is Flowervase.
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as the integral of the square of the contrast over all dimensions in which it varies.

Discrete contrast energy, CE, can be represented by

CE =
m∑
i=1

CRMS(i)
2, (3.7)

were m is the number of frames. CRMS, the root mean square (RMS) contrast of the

stimulus frame, was calculated according to

CRMS =

(
1
n

∑n
j=1(L(Ej)− µL(E))

2
) 1

2

µL(I)

, (3.8)

where n is the number of pixels, E is the mean-offset stimulus frame, and µL(I) is the

mean luminance, L, of the mask frame, I. E is calculated according to

E = Ì − I +
1

n

n∑
k=1

Ik, (3.9)

were n is the number of pixels. Ì is defined as Ì = B+ I, where B is the target frame

and I is the mask frame. 4 The luminance of the mean-offset stimulus frame, L(E),

and the luminance of the mask frame, L(I), were calculated from the pixel values of

the mean-offset stimulus frame and mask frame according to Eq. 3.10. As with the

work by Watson, Hu, and McGowan [6], the final threshold was reported as the log10

of CE.

3.2.4 Apparatus

This section describes the physical setup for data collection. As this current research

is an extension of the work by Watson, Hu, and McGowan [6], an effort was made

to examine the same phenomenon. The data collection apparatus was configured to

match the work by Watson, Hu, and McGowan [6] as closely as possible.

In this experiment, as well as in the work by Watson, Hu, and McGowan [6],

viewing of the display was binocular with natural pupils. Data was collected in a

4All contrast calculations were carried out in MATLAB using double precision.
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darkened room. Watson, Hu and McGowan used a cathode ray tube (CRT) display

with a display frame rate of 120 Hz. The data for this paper was collected with an

ACER gd235hz liquid-crystal display (LCD) with a refresh rate of 120 screens per

second and a resolution of 1920×1080 pixels. Given the size and resolution of the

LCD, a viewing distance of 51.5 cm was maintained to ensure subjects viewed 32

pixels in every degree of vision, as was used by Watson, Hu and McGowan.

The display was controlled with a dual-link digital visual interface (DVI) cable

with 8-bit precision, allowing integer pixel-value inputs from 0 to 255. For this display,

the luminance response yielded minimum and maximum luminance of 0.21 and 200

candela per square meter (cd/m2), and luminance saturated after pixel-value inputs

of 245. All videos, were clipped to ensure no pixel value was above 245. The videos

were presented against a gray background with a constant luminance of 43.5 cd/m2.

For calculating contrast, stimulus pixel values, v, were mapped to luminance values

via

L(v) = (0.084 + 0.037× v)2.41. (3.10)
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CHAPTER 4

RESULTS FROM PRIMARY PSYCHOPHYSICAL DATA

COLLECTION EXPERIMENT

This chapter presents the primary results of our research study measuring the de-

tectability of dynamic DCT noise when masked by natural videos. This main set

of data represents the weighted average of at least six target detectability contrast

threshold estimates. The six estimates came from at least three subjects completing

two sets of trials for each target detectability contrast threshold. Weighted averages

were calculated according to Eq. 3.1 and Eq. 3.2. The chapter also includes analysis

of the main data set’s reliability.

Plots of masked and unmasked target detectability contrast thresholds over target

spatial and temporal frequencies suggest there are noticeable and significant differ-

ences between masked and unmasked thresholds. Figure 4.1 plots target detectability

thresholds over increasing target spatial frequencies at three target temporal frequen-

cies. Fig. 4.2 plots target detectability thresholds over increasing target temporal fre-

quencies at three target spatial frequencies. These figures show that presenting masks

with targets changes target detectability contrast thresholds. Different masks resulted

in different elevations in target detectability contrast thresholds. Also, changing tar-

get spatial or temporal frequency changes the effectiveness of the mask in altering

target detectability contrast thresholds.
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4.1 Target spatial frequency and masked target detectability

This Section discusses the relationships between target spatial frequencies and target

detectability contrast thresholds. In general, targets with higher spatial frequencies

have higher detectability contrast thresholds, which was expected based on previ-

ous research. Also as expected, when targets are higher in temporal frequencies,

the target detectability contrast threshold elevations due to large increases in target

spatial frequencies are reduced. This Sect. also shows that presenting natural video

masks with targets can reduce or even reverse the effects of changing target spatial

frequencies on target detectability contrast thresholds.

Figure 4.1 shows how target detectability contrast thresholds change as target

spatial frequencies increase, for both masked and unmasked targets. The top row of

plots in Fig. 4.1 show target detectability contrast thresholds when using DCT basis

functions of [0,0], [0,1], [0,2], [0,3], [0,5], and [0,7], corresponding to target spatial

frequencies of 2.8, 4.5, 6.3, 8.2, 12.2, and 16.1 c/deg, which are targets with vertical

alignment. The bottom row of plots in Fig. 4.1 show thresholds for targets that

have a diagonal alignment, and thus the horizontal axis of the bottom row of plots is

different from the top row of plots for Fig. 4.1. The bottom row of plots in Fig. 4.1

show target detectability contrast threshold estimates when using basis functions of

DCT [0,0], [1,1], [2,2], [3,3], [5,5], and [7,7], corresponding to target spatial frequencies

of 2.8, 5.7, 8.5, 11.3, 17.0, and 22.6 c/deg. The first, second, and third column of plots

in Fig. 4.1 show threshold estimates when using targets with temporal frequencies of

0 Hz, 6 Hz, and 30 Hz, respectively.

The solid black lines in Fig. 4.1 denote unmasked target detectability contrast

thresholds. Observe from Fig. 4.1 that generally, for unmasked targets, as target

spatial frequencies increase, target detectability contrast thresholds increase. This

is in agreement with previous research on unmasked target detectability contrast

thresholds and target spatial frequency [20, 21, 22, 6],
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Figure 4.1: Target detectability contrast thresholds versus target spatial frequencies

for masked and unmasked targets. The vertical axis shows the log10 of contrast energy

of target detectability thresholds, the horizontal axis shows target spatial frequencies

in c/deg, and the graph legend shows masking conditions used for each plot. The

target temporal frequencies used in each plot are shown in the upper left hand corner

of each plot.
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The data in Fig. 4.1 suggests the relationships between masked target detectability

contrast thresholds and increasing target spatial frequencies do not always match the

relationships between unmasked target detectability contrast thresholds and target

spatial frequencies. In Fig. 4.1 (a) and (d), it can be seen that at low target temporal

frequencies and low target spatial frequencies, the different masks caused markedly

different target detectability contrast thresholds. From Fig. 4.1 (d), it can be seen

that the difference in masked and unmasked target detectability contrast thresholds

reduces some at higher target spatial frequencies. This is in agreement with previous

research on natural image masking of compression artifacts. Chandler and Hemami

[11] had shown that unmasked quantization distortion detectability was similar to

other unmasked target detectability; however, when masked with natural scenes,

lower target spatial frequencies had considerable elevations, while higher target spatial

frequencies experienced little to now change in detectability thresholds. This lower

spatial frequency elevation is most noticeable for the mask Cactus, in Fig. 4.1 (d),

where, at lower target spatial frequencies of 2.8 c/deg, there was about a two log

unit difference in target detectability contrast thresholds; however, at higher target

spatial frequencies of 22.6 c/deg, the unmasked thresholds are nearly the same as the

thresholds for targets presented with the mask Cactus.

It was not expected that some natural video masks would reduce target detectabil-

ity contrast thresholds. Observe in Fig. 4.1 (b), (c), (d), (e), and (f) that there are

masked target detectability contrast thresholds markedly lower than unmasked target

detectability contrast thresholds. This was not expected based on previous research,

and is discussed further in Sect. 5.8 and 5.9.

4.2 Target temporal frequency and masked target detectability

This Sect. details our findings on the relationships between target detectability con-

trast thresholds and target temporal frequencies. The plots in this Sect. show that,
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as expected, targets with higher temporal frequencies have higher detectability con-

trast thresholds. Also as expected, when targets have higher spatial frequencies, the

elevation due to changing target temporal frequencies from 0 Hz to 30 Hz is reduced.

Presenting a natural video mask with the targets can reduce the effects of a large

change in target temporal frequency.

Figure 4.2 shows how target detectability thresholds change as target temporal

frequencies are increased, for both masked and unmasked targets. The first, second,

and third columns of plots in Fig. 4.2 show contrast thresholds when using target basis

functions DCT [0,0], DCT [0,7], and DCT [3,3], respectively. Like Fig. 4.1, which

plotted target detectability contrast thresholds versus target spatial frequencies, Fig.

4.2 shows how target detectability contrast thresholds change over the range of target

temporal frequencies from 0 to 30 Hz. The top row of plots in Fig. 4.2 presents

target detectability contrast thresholds for targets masked by Cactus, Flowervase, and

Timelapse, while the bottom row of plots presents detectability contrast thresholds

for targets masked by Hands, Kimono, and Typing. The solid black lines in Fig. 4.2

show unmasked target detectability contrast thresholds.

As shown in Fig. 4.2, as target temporal frequencies increase, unmasked tar-

get detectability contrast thresholds increase. When target spatial frequencies are

increased from 2.8 c/deg to either 16.1 c/deg or 11.3 c/deg, target detectability con-

trast threshold elevations due to changing target temporal frequencies from 0 Hz to

30 Hz are reduced. Previous research on unmasked target detectability and target

spatial frequencies supports these observations [19, 8, 26, 27, 6].

4.3 Data reliability and repeatability summary

As this was the first data quantifying dynamic DCT noise detectability in the presence

of natural video masks, there is no existing data set to directly compare our results to.

For each threshold, we had two sets of trials from each of three subjects to compare
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Figure 4.2: Target detectability contrast thresholds versus target temporal frequen-

cies. The vertical axis shows the log10 of contrast energy of target detectability

thresholds. The horizontal axis shows target temporal frequencies in Hz. The graph

legend in the upper right hand corner of the left plot in each row shows the masking

conditions used for each plot line for that row.
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across. We determined reliability and repeatability by computing and measuring intra

and intersubject agreement.

This Sect. provides a summary of intra and intersubject agreement. The detailed

results of our reliability and repeatability analysis can be found later in this chapter.

Table 4.1 shows the averages of several measures of data repeatability between sets

of trials for individual subjects, as well as between subjects, averaged over all target

frequencies, masking conditions, and subjects. These measures assessed how well a

single subject’s first sets of trials matched their second sets, or, how well the results

from one subject matched another. Both Pearson correlation coefficients (PCC) and

Spearman rank-order correlation coefficients (SROCC) quantify the predictability of

a second set of data based on a first set of data. 1 For both PCC and SROCC, the

best possible score is 1. Root of the mean squared errors (RMSE) provide a summary

of the differences between groups of data. 2 For RMSE, the best possible score is

0. Additionally, a linear model summarized the relationship between the first and

second groups of data. 3 For this measure, an ideal slope is 1 and the best possible

intercept would be 0.

As shown in Table 4.1 there is a strong agreement between the first and second

runs of data for individual subjects, as well as a strong agreement between subjects,

suggesting the data collected was repeatable. The agreement between the first and

second run of individual subjects was stronger than the agreement between subjects.

Taken together, all of the scores suggest this is a useful set of data, considering the

general noisiness of data from human subjects completing psychophysics experiments.

1Calculations completed using the MATLAB function corr, using the types of Pearson and

Spearman
2RMSE measurement was found by finding the square root of the mean of the square of the

difference between the two groups of data, using the MATLAB functions sqrt, mean, and element-

wise-power.
3The slope and intercept assessment was formed using the MATLAB function LinearModel.fit
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Table 4.1: Average goodness of fit for intra- and intersubject agreement. The first

column to the left lists the repeatability measures of the data. The second and

third columns show the mean and standard deviation of the measures comparing

the thresholds from first set of trials for each subject to their second set of trials.

The forth and fifth columns show the mean and standard deviation of the measures

comparing the thresholds of one subject to the thresholds of another subject.

Intrasubject Intersubject

mean ± mean ±

PCC 0.93 0.06 0.87 0.08

SCOCC 0.94 0.05 0.85 0.10

RMSE 0.31 0.13 0.58 0.23

Slope 0.94 0.08 0.90 0.11

Intercept -0.13 0.17 -0.04 0.42

Data repeatability and reliability is examined more closely in the next two sections.

4.4 Intrasubject agreement

This section examines data reliability and repeatability in greater detail. This section

presents data repeatability and reliability graphically, and quantifies the agreement

between the first and second experiment of each subject.

The data was broken into several groups to ease the burden on subjects during data

collection, [17]. These groupings focused on relationships between target detectability

contrast thresholds and either target temporal frequencies or target spatial frequen-

cies. The relationships between target spatial frequency and target detectability are

further broken down into vertical and diagonal target spatial frequencies. The four

groups of data are named Temporal 1, Temporal 2, Spatial Vertical, and Spatial Diag-

onal. The first and second subject for all four groupings was the same, but the third

55



subject for each grouping was a different expert from the Oklahoma State University

CPIQ lab. Intra and intersubject agreement plots and performance are broken down

into these groups. Combined contrast threshold estimates are also broken down into

these groups for plotting.

This Sect. details intra-subject agreement. One way to assess data repeatability

is to plot the subjects results from their second set of trials against their first, as seen

in Fig. 4.3. Figure 4.3 provides a scatter plot of the first and second trial from each

subject, broken down by data grouping.

Observe from Fig. 4.3 the mostly linear relationship between the first and second

set of trials for each subject. The plots in Fig. 4.3 suggest that the data collection

process produced threshold estimates that were repeatable over time. Although Fig.

4.3 does show that some error bars were large, and that not all data fell directly into

a line, overall, the second set of trials for each subject provided a reasonable match

to the estimates from their first set of trials.

Graphical representations, such as Fig. 4.3, provide an efficient means to quickly

assess data repeatability between sets of trials for a single subject, however, the

controversial findings of this paper merit closer scrutiny of repeatability. The following

Tables quantify the relationship between the first and second set of trials for individual

subjects. The letters next to the subject numbers in Tables 4.2 through 4.5 correspond

to the labels for Fig. 4.3. The data in Table 4.2 is for the data group Temporal 1 and

corresponds to the first row of plots in Fig. 4.3, a-c. The data in Table 4.3 is for the

data group Temporal 2 and corresponds to the second row of plots in Fig. 4.3, d-f.

The data in Table 4.4 is for the data group Spatial Vertical and corresponds to the

third row of plots in Fig. 4.3, g-i. The data in Table 4.5 is for the data group Spatial

Diagonal and corresponds to the fourth row of plots in Fig. 4.3, j-l.

Observe from Tables 4.2, 4.3, 4.4, and 4.5 that there is significant repeatability

between the first and second set of trials for each subject. Although the correla-
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Figure 4.3: Intrasubject agreement. This figure shows how well the second trial of

each subject agreed with their first trail. Plots a-c are for the data grouping Temporal

1. Plots d-f are for the data grouping Temporal 2. Plots g-i are for the data grouping

Spatial Vertical. Plots j-l are for the data grouping Spatial Diagonal. Plots a, d, g,

and j are for subject J.E. Plots b, e, h, and k are for subject K.J. Plot c was for M.A.,

f was for Y.Z., i was for P.V., and l was for T.P. Tables 4.2 through 4.5 quantify

numerically how well the second set of trials from each subject agreed with their first

set of trails. 57



Table 4.2: Intr-subject agreement for data set Temporal 1. The first row shows the

PCC between sets of trials for subject 1 for the data group Temporal 1. The second

row is the PCC for the second subject’s trials, and the third row shows this infor-

mation for the third subject’s trials. The fourth and seventh rows show the SROCC

and RMSE between trials for subject 1. The tenth row shows the slope of the line

mapping the first set of trials from subject 1 to their second set of trials, and the

eleventh row shows the intercept. The third column to the left, Overall, quantifies

the repeatability between the first and second sets of trials for all masking conditions,

while the fourth through seventh columns quantify repeatability for individual mask-

ing conditions. The letters next to the subject numbers in the second column from

the left correspond to the plots in Fig. 4.3.

Intrasubject correlation Overall Unmasked Cactus Kimono Timelapse

PCC a. Subject 1 0.971 0.984 0.914 0.978 0.943

PCC b. Subject 2 0.877 0.693 0.825 0.953 0.880

PCC c. Subject 3 0.946 0.950 0.779 0.911 0.943

SROCC a. Subject 1 0.960 0.987 0.924 0.977 0.844

SROCC b. Subject 2 0.910 0.736 0.840 0.963 0.890

SROCC c. Subject 3 0.950 0.946 0.755 0.844 0.905

RMSE a. Subject 1 0.209 0.168 0.237 0.157 0.255

RMSE b. Subject 2 0.482 0.742 0.359 0.257 0.426

RMSE c. Subject 3 0.302 0.310 0.319 0.309 0.269

Slope a. Subject 1 0.995 0.932 0.859 0.957 0.947

Intercept a. Subject 1 -0.006 -0.155 0.016 -0.148 -0.097

Slope b. Subject 2 0.860 0.501 0.909 1.109 0.960

Intercept b. Subject 2 -0.230 -0.983 -0.074 0.135 -0.013

Slope c. Subject 3 0.993 1.023 0.890 0.865 1.029

Intercept c. Subject 3 -0.043 -0.091 -0.072 -0.212 0.022
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Table 4.3: Intrasubject agreement for data set Temporal 2. Please see the caption of

Table 4.2 for additional details.

Intra Subject Correlation Overall Unmasked Flowervase Hands Typing

PCC d. Subject 1 0.978 0.984 0.977 0.960 0.986

PCC e. Subject 2 0.781 0.693 0.806 0.884 0.859

PCC f. Subject 3 0.946 0.980 0.914 0.930 0.930

SROCC d. Subject 1 0.970 0.965 0.966 0.962 0.969

SROCC e. Subject 2 0.798 0.736 0.825 0.866 0.720

SROCC f. Subject 3 0.955 0.938 0.939 0.960 0.868

RMSE d. Subject 1 0.153 0.167 0.157 0.176 0.102

RMSE e. Subject 2 0.503 0.742 0.448 0.371 0.351

RMSE f. Subject 3 0.257 0.204 0.265 0.317 0.228

Slope d. Subject 1 0.998 1.032 1.010 0.959 0.968

Intercept d. Subject 1 -0.014 0.059 -0.020 -0.098 -0.033

Slope e. Subject 2 0.713 0.501 0.819 0.997 0.855

Intercept e. Subject 2 -0.617 -0.983 -0.460 -0.079 -0.361

Slope f. Subject 3 0.942 0.968 0.838 0.917 1.079

Intercept f. Subject 3 -0.106 -0.071 -0.194 -0.146 0.023
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Table 4.4: Intrasubject agreement for data set Spatial Vertical. Please see the caption

of Table 4.2 for additional details.

Intra Subject Correlation Overall Unmasked Cactus Typing Waterfall

PCC g. Subject 1 0.964 0.984 0.854 0.954 0.970

PCC h. Subject 2 0.916 0.924 0.901 0.933 0.832

PCC i. Subject 3 0.958 0.974 0.934 0.964 0.900

SROCC g. Subject 1 0.967 0.948 0.920 0.963 0.944

SROCC h. Subject 2 0.917 0.891 0.876 0.862 0.761

SROCC i. Subject 3 0.952 0.913 0.926 0.913 0.926

RMSE g. Subject 1 0.231 0.165 0.300 0.239 0.197

RMSE h. Subject 2 0.418 0.405 0.280 0.334 0.587

RMSE i. Subject 3 0.288 0.250 0.324 0.256 0.316

Slope g. Subject 1 0.956 1.058 0.683 1.008 0.909

Intercept g. Subject 1 -0.104 0.108 -0.302 0.066 -0.269

Slope h. Subject 2 0.896 0.829 0.923 0.896 0.821

Intercept h. Subject 2 -0.073 -0.348 0.026 -0.235 -0.009

Slope i. Subject 3 0.961 1.085 0.870 0.925 1.176

Intercept i. Subject 3 -0.151 0.126 -0.273 -0.242 0.231
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Table 4.5: Intrasubject agreement for data set Spatial Diagonal. Please see the caption

of Table 4.2 for additional details.

Intra Subject Correlation Overall Unmasked Cactus Lemur Timelapse

PCC j. Subject 1 0.990 0.989 0.981 0.947 0.993

PCC k. Subject 2 0.909 0.933 0.879 0.773 0.849

PCC l. Subject 3 0.951 0.969 0.964 0.947 0.915

SROCC j. Subject 1 0.989 0.988 0.979 0.955 0.983

SROCC k. Subject 2 0.928 0.940 0.847 0.868 0.886

SROCC l. Subject 3 0.955 0.959 0.917 0.907 0.874

RMSE j. Subject 1 0.132 0.166 0.119 0.132 0.105

RMSE k. Subject 2 0.456 0.485 0.313 0.472 0.526

RMSE l. Subject 3 0.284 0.324 0.168 0.226 0.372

Slope j. Subject 1 0.976 0.974 0.934 0.899 0.980

Intercept j. Subject 1 -0.018 -0.017 -0.004 -0.116 -0.051

Slope k. Subject 2 0.961 0.923 1.062 0.775 0.798

Intercept k. Subject 2 -0.159 -0.249 0.126 -0.557 -0.539

Slope l. Subject 3 0.985 1.095 0.961 0.832 0.954

Intercept l. Subject 3 0.012 0.002 -0.001 -0.118 0.035
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tion coefficients for individual masking conditions for some subjects are lower than

others, the average over all subjects and data groups was higher than 0.9, and the

lowest correlation coefficient was 0.693 from Subject K.J. on the first data group they

completed.

Taken together, the data in Fig. 4.3 and Tables 4.2, 4.3, 4.4, and 4.5 show strong

agreement between the first and second trials of the subjects. Broken down by mask-

ing conditions, in general, the best agreement was for unmasked target detectability,

however the difference is not large in comparison to any of the masked conditions.

The best intrasubject agreement came from the first author, subject J.E., who had

the most experience with the experiment. Some of the outliers from subject K.J. seen

in Fig. 4.3 can also be noted in Tables 4.2, 4.3, 4.4, and 4.5. Subject K.J. was not an

experienced target detection threshold subject before data collection for this paper.

Additionally, although the scores for subject K.J. are not as close to perfect as the

other two subjects, the performance still suggest the data is useful.

4.5 Intersubject agreement

This Sect. presents the agreement between subjects. The analysis from Sect. 4.4 has

been repeated to examine the agreement of the estimates between subjects. Because

each subject produced two sets of trials for each target detectability threshold esti-

mate, the two estimates were combined into a single mean according to Eq. 3.1 for

this analysis, and the standard deviation for each target detectability threshold was

calculated according to Eq. 3.2. Figure 4.4 is the scatter plot of target detectabil-

ity thresholds from one subject versus target detectability thresholds from another

subject.

Observe from Fig. 4.4 that there is strong agreement between subjects. Because

the weighted mean of each target detectability threshold is now calculated from two

pieces of data, there is more confidence in the measurement, and appropriately, the
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Figure 4.4: Intersubject agreement. This figure shows how well the subjects agreed

with the other subjects. Each plot shows one subject’s data plotted against the

horizontal axis, with another subject’s data plotted against the vertical axis. All

data in a line of y = x would represent perfect intersubject agreement. Plots m-o

are for the data grouping Temporal 1. Plots p-r are for the data grouping Temporal

2. Plots s-u are for the data grouping Spatial Vertical. Plots v-x are for the data

grouping Spatial Diagonal. Plots m, p, s, and v were for subject J.E vs subject K.J.

Plots n, q, t, and w were for subject J.E. vs M.A, Y.Z, P.V, and T.P. Plots o, r, u,

and x were for subject K.J. vs M.A., Y.Z., P.V., and T.P. The letters next to the

subject numbers in Tables 4.6 through 4.9 correspond to the labels for this figure.
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weighted standard deviations based on two measurements are also smaller. Also, the

data shown in Fig. 4.4 appears to fall along a mostly straight line, suggesting the

different subjects are in agreement with each other.

As with intra subject agreement, inter subject agreement is also assessed numer-

ically. The following Tables quantify the relationship between individual subjects.

The letters next to the subject numbers in Tables 4.6 through 4.9 correspond to the

labels for Fig. 4.3. The data in Table 4.6 is for the data group Temporal 1 and

corresponds to the first row of plots in Fig. 4.4, m-o. The data in Table 4.7 is for the

data group Temporal 2 and corresponds to the second row of plots in Fig. 4.4, p-r.

The data in Table 4.8 is for the data group Spatial Vertical and corresponds to the

third row of plots in Fig. 4.4, s-u. The data in Table 4.9 is for the data group Spatial

Diagonal and corresponds to the fourth row of plots in Fig. 4.4, v-x.

Observe from Tables 4.6, 4.7, 4.8, and 4.9 that most of the correlation coefficients

are reasonably close to one when comparing entire data groups. The correlation coef-

ficients are lower when examining agreement between subjects for individual masking

conditions. The average of the mask specific correlation coefficients was about 0.8,

but the lowest coefficient was a SROCC of 0.377 between subjects 1 and 3 in the data

group Temporal 1 for the mask Cactus. The average PCC for the mask Cactus for

intra subject agreement was 0.89, but for inter subject agreement it was reduced to

0.73. These averages are below the averages for all masks, suggesting that there was

less agreement between sets of trials for individual subjects, as well as less agreement

between subjects when targets were presented with the mask Cactus.

Taken together, the data shown in Fig. 4.4 and presented in Tables 4.6, 4.7,

4.8, and 4.9 suggest a reasonable agreement between subjects. Although there was

stronger agreement between estimates from sets of trials from individual subjects,

the data presented in this subsection still suggests reasonable repeatability across

subjects. The averages of the measures of repeatability presented in Tables 4.6, 4.7,
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Table 4.6: Intersubject agreement for data set Temporal 1. See caption for Table 4.2

for additional information. For ease of reference and comparison, the letters next to

the subject numbers correspond to the plots in Fig. 4.4

Inter Subject Correlation Overall Unmasked Cactus Kimono Timelapse

PCC m. Subject 1 & 2 0.871 0.818 0.631 0.793 0.871

PCC n. Subject 1 & 3 0.843 0.805 0.481 0.775 0.838

PCC o. Subject 2 & 3 0.916 0.930 0.692 0.863 0.919

SROCC m. Subject 1 & 2 0.875 0.755 0.568 0.766 0.891

SROCC n. Subject 1 & 3 0.834 0.733 0.377 0.762 0.813

SROCC o. Subject 2 & 3 0.918 0.949 0.672 0.900 0.904

RMSE m. Subject 1 & 2 0.552 0.637 0.472 0.586 0.495

RMSE n. Subject 1 & 3 0.499 0.560 0.486 0.453 0.489

RMSE o. Subject 2 & 3 0.441 0.396 0.450 0.563 0.321

Slope m. Subject 1 & 2 0.959 0.806 0.733 0.779 0.957

Intercept m. Subject 1 & 2 -0.355 -0.721 -0.300 -0.826 -0.361

Slope n. Subject 1 & 3 0.879 0.790 0.456 0.804 0.857

Intercept n. Subject 1 & 3 -0.253 -0.523 -0.314 -0.338 -0.470

Slope o. Subject 2 & 3 0.867 0.926 0.563 0.911 0.855

Intercept o. Subject 2 & 3 -0.016 0.063 -0.174 0.236 -0.222
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Table 4.7: Inter-subject agreement for data set Temporal 2. See caption for Table 4.2

for additional information. For ease of reference and comparison, the letters next to

the subject numbers correspond to the plots in Fig. 4.4

Inter Subject Correlation Overall Unmasked Flowervase Hands Typing

PCC p. Subject 1 & 2 0.723 0.782 0.787 0.678 0.570

PCC q. Subject 1 & 3 0.773 0.811 0.898 0.759 0.869

PCC r. Subject 2 & 3 0.779 0.898 0.794 0.746 0.704

SROCC p. Subject 1 & 2 0.634 0.696 0.667 0.573 0.523

SROCC q. Subject 1 & 3 0.703 0.647 0.846 0.747 0.798

SROCC r. Subject 2 & 3 0.746 0.948 0.703 0.757 0.673

RMSE p. Subject 1 & 2 0.717 0.708 0.673 0.656 0.819

RMSE q. Subject 1 & 3 0.800 1.121 0.492 0.871 0.553

RMSE r. Subject 2 & 3 1.202 1.432 0.974 1.211 1.147

Slope p. Subject 1 & 2 0.728 0.764 0.726 0.790 0.607

Intercept p. Subject 1 & 2 -0.908 -0.837 -0.893 -0.732 -1.188

Slope q. Subject 1 & 3 0.810 0.904 0.756 1.015 0.793

Intercept q. Subject 1 & 3 0.320 0.781 0.037 0.720 0.148

Slope r. Subject 2 & 3 0.811 1.025 0.725 0.855 0.603

Intercept r. Subject 2 & 3 0.702 1.419 0.359 0.787 0.207
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Table 4.8: Inter-subject agreement for data set Spatial Vertical. See caption for Table

4.2 for additional information. For ease of reference and comparison, the letters next

to the subject numbers correspond to the plots in Fig. 4.4

Inter Subject Correlation Overall Unmasked Cactus Typing Waterfall

PCC s. Subject 1 & 2 0.939 0.956 0.806 0.924 0.919

PCC t. Subject 1 & 3 0.963 0.974 0.960 0.961 0.916

PCC u. Subject 2 & 3 0.923 0.942 0.734 0.952 0.860

SROCC s. Subject 1 & 2 0.931 0.961 0.827 0.870 0.858

SROCC t. Subject 1 & 3 0.958 0.920 0.944 0.938 0.920

SROCC u. Subject 2 & 3 0.923 0.928 0.763 0.833 0.870

RMSE s. Subject 1 & 2 0.354 0.313 0.333 0.441 0.314

RMSE t. Subject 1 & 3 0.371 0.443 0.411 0.274 0.330

RMSE u. Subject 2 & 3 0.530 0.541 0.584 0.512 0.477

Slope s. Subject 1 & 2 1.082 1.122 0.989 1.084 1.162

Intercept s. Subject 1 & 2 0.026 0.216 -0.057 -0.124 0.215

Slope t. Subject 1 & 3 1.056 1.126 1.353 1.024 0.909

Intercept t. Subject 1 & 3 0.363 0.646 0.641 0.202 0.073

Slope u. Subject 2 & 3 0.879 0.927 0.843 0.865 0.675

Intercept u. Subject 2 & 3 0.169 0.258 0.237 0.154 -0.282
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Table 4.9: Inter-subject agreement for data set Spatial Diagonal. See caption for Table

4.2 for additional information. For ease of reference and comparison, the letters next

to the subject numbers correspond to the plots in Fig. 4.4

Inter Subject Correlation Overall Unmasked Cactus Lemur Timelapse

PCC v. Subject 1 & 2 0.944 0.961 0.903 0.727 0.942

PCC w. Subject 1 & 3 0.883 0.956 0.656 0.804 0.807

PCC x. Subject 2 & 3 0.894 0.974 0.719 0.674 0.835

SROCC v. Subject 1 & 2 0.938 0.957 0.874 0.765 0.928

SROCC w. Subject 1 & 3 0.866 0.967 0.649 0.719 0.738

SROCC x. Subject 2 & 3 0.859 0.979 0.723 0.668 0.794

RMSE v. Subject 1 & 2 0.506 0.584 0.374 0.539 0.505

RMSE w. Subject 1 & 3 0.450 0.348 0.543 0.323 0.537

RMSE x. Subject 2 & 3 0.529 0.470 0.447 0.610 0.571

Slope v. Subject 1 & 2 1.012 1.060 0.841 0.986 0.869

Intercept v. Subject 1 & 2 -0.377 -0.392 -0.318 -0.416 -0.595

Slope w. Subject 1 & 3 0.875 0.942 0.703 1.104 0.823

Intercept w. Subject 1 & 3 -0.226 -0.173 -0.286 0.176 -0.341

Slope x. Subject 2 & 3 0.826 0.870 0.829 0.681 0.922

Intercept x. Subject 2 & 3 0.045 0.144 -0.024 -0.131 0.179
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4.8, and 4.9 are within 0.2 of ideal, with the exception of RMSE, which had an average

of 0.57.

Subjects were asked to repeat sets of trials when the first two sets did not produce

target detectability thresholds that were within half a log unit of each other. It is

possible that the inter subject agreement scores could have been improved if subjects

were also asked to repeat sets of trials when multiple subject target detectability

thresholds did not match as well as desired. Even without this additional data col-

lection step, the data in these sections still suggests that useful conclusions can be

drawn from this data set.

Professor Le Callet of the IRCCyN lab with Polytech’Nantes of the University de

Nantes, attended a discussion of the preliminary data collected in the development of

these experiments [146]. Professor Le Callet had expressed a concern over the large

error bars in the initial data, and suggested one possible way of reducing the size of the

error bars would be to re-conduct the experiments employing something in line with

the Cambridge Research System’s Bits# stimulus processor. Because of the ability

to control CRT displays down to 14 bits of brightness instead of only 8, the ability

to make smaller changes in brightness of the display is clearly superior. We feel this

is necessary for some later experiments to fine tune models, and vital to furthering

the understanding of specific details of human vision. However, after further analysis

with the current experiment setup, it appears that the range in which masked data

was collected is not severely impacted by the levels of quantization for the display.

Indeed, it appears that the largest error bars are only from one subject that was

inexperienced at the data collection process. These large standard deviations can

be decreased through running more trials per experiment, obtaining more than two

experiments per subject, using more subjects, or being more selective about outlier

removal. Taken together, the data in Fig. 4.4 and Tables 4.6, 4.7, 4.8, and 4.9

suggest that there was good agreement from one subject to the next. Examining the
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performance measures in Tables 4.6, 4.7, 4.8, and 4.9, the strongest agreement appears

to be for the data set Spatial Vertical, while the weakest agreement appears to be for

the data set Temporal 2. This can be also be seen in Fig. 4.4, were the best looking

data set, Spatial Vertical, is the third row of plots and the worst looking data set,

Temporal 2, is the second row of plots. One possible explanation for the differences

in performance may be due to the orthogonality of the thresholds in those datasets,

due to the masks and targets used. Figures 4.1 and 4.2 make this point visibly. As

will be discussed further in Chapter 5, changing target flicker rate from 0 Hz up to

6 Hz or even 10 Hz does not cause much of a difference in target detectability, and

would not cause markedly different thresholds. The noisy data in a flat line is likely to

have worse rank order correlation than data in a concave up, and more monotonically

increasing line. So it is expected that the data sets Temporal 1 and Temporal 2

would have worse correlation than the spatial data sets, Spatial Diagonal and Spatial

Vertical. Also, the mask Cactus is significantly different from the masks Kimono and

Timelapse in masking ability, providing significant separation in target detectability

thresholds. However, the masks Flowervase, Hands, and Typing appear to be similar

in performance to the unmasked condition, resulting in these data being jumbled

together. This is a possible explanation why the correlation for the data grouping

Temporal 1 was better than the grouping Temporal 2. Looking at the two spatial sets,

the change in target spatial frequency across the data set Spatial Diagonal is larger

than it is for the data set Spatial Vertical. It is possible that the larger difference in

the target spatial frequency improved the separability of the data, and thus improved

the correlation of the results. The differences between various masks and targets

might account for the difference in overall repeatability between the four data sets.
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CHAPTER 5

ANALYSIS AND DISCUSSION

This chapter presents an analysis and discussion of our results. The chapter begins

with a validation of previous findings on unmasked target detectability. The un-

masked data are extended by examining natural video masked target detectability.

A simple linear model provides a summary of those data, as well as further analysis.

The differences between target detectability are elevations. Positive elevations

signify the later target had a higher detectability contrast threshold. Elevations were

calculated according to

Threshold Elevation = x2 − x1 ±
(

σ2
2

n2 − 1
+

σ2
1

n1 − 1

)
, (5.1)

where, n1 and n2 are the number of sets of trials that were used to compute the

means x1 and x2. Although in some cases, more than three subjects completed two

sets of trials, the value three was used for n1 and n2 to provide a more conservative

estimate of the target detectability contrast threshold elevation standard deviations

for the data presented in this chapter. When averages of target detectability contrast

threshold elevations are reported, the standard deviations reported are the standard

deviations of the elevations that were used to calculate those averages.

We developed a linear regression based model to predict dynamic DCT noise

detectability in log units, V CT . 1 The model development loosely followed a template

suggested by the excellent work by Watson, Hu, and McGowan [6]. Watson, Hu, and

McGowan [6] provided an elegant separable model for unmasked target detectability

that was dependent only on target temporal and spatial frequency.

1The coefficients for this model were found using the MATLAB tool LinearModel.fit.
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k-fold-cross-validation, with a k of 10, was employed to find model coefficients and

avoid over fitting of our limited data set. For the selection of model coefficients, our

dataset was randomly divided into k equal parts. Model coefficients were found using

linear regression to provide the smallest total error between the model prediction and

measurements for k − 1 parts, also known as the training set. The coefficients from

training were used to predict the remaining part of the data, which is also known

as the validation set. This process was repeated k times, each time withholding a

separate part of the data. Multiple models were compared by their average goodness

of fit scores over all k validation sets. For reporting of results, the average of the k

sets of coefficients with the best performance was then used to predict the entire data

set. The goodness of fit between model predictions and measured data was calculated

after a non-linear transformation of the model prediction.

To emphasize the relationships between model inputs, and for easy comparison

of their significance to model performance, all inputs were normalized to range from

one to two. Positive model coefficients suggest that larger input values are correlated

with higher target detectability. A model coefficient larger in magnitude suggests

that the associated model input has more influence on target detectability.

The linear regression modeling process has many limitations, and is not the next

best model of human vision for estimating all compression artifact detectability. Our

data set does not sufficiently span a large range of all videos or enough types of

compression artifacts to make a truly general model of masked target detectability.

The form of our model was chosen because of its simplicity, which eased modification

and interpretation of results. Additionally, the signs of the coefficients of the linear

model describe the relationship between model inputs and target detectability. The

functional models presented do not have biological plausibility, but rather, are best

fits of measured target detectability, and provide a useful extension of the work by

Watson, Hu, and McGowan [6].

72



5.1 Unmasked target detectability

This section provides our findings on unmasked target detectability. Fig. 4.1 and

4.2 show our unmasked target detectability thresholds are in line with data and

suggestions from previous research. Linear regression models with normalized inputs

quantify the significance of target spatial and temporal frequencies in predicting target

detectability.

Our results are in line with previous research. The work by Watson, Hu, and

McGowan [6] was with unmasked dynamic DCT noise, and was in line with previous

research on unmasked targets, such as that by Robson [8]. The general expectation

from previous research is that either higher target spatial or temporal frequencies can

increase target detectability thresholds. Fig. 4.1 plots unmasked target detectability

thresholds over increasing target spatial frequencies at three target temporal frequen-

cies. Fig. 4.2 plots unmasked target detectability thresholds over increasing target

temporal frequencies at three target spatial frequencies. The unmasked data in these

two figures suggest our data is a confirmation of the findings of previous researchers.

Large changes in target spatial and temporal frequencies result in large changes in

target detectability. Fig. 5.1 shows target elevations due to changing target spatial

frequencies from 2.8 c/deg to 22.6 c/deg. When the target temporal frequency is

0 Hz, and the target is unmasked, the elevation due to changing the target from

DCT [0,0] to [7,7] is 2.65 ± 0.04 log units. Fig. 5.2 shows target elevations due to

changing target temporal frequencies from 0 Hz to 30 Hz. When the target is DCT

[0,0], and the target is unmasked, the elevation due to changing the target temporal

frequency from 0 Hz to 30 Hz is 1.87 ± 0.02 log units. These data suggest that

higher target spatial frequencies are correlated with significantly higher unmasked

target detectability thresholds, and that higher target temporal frequencies are also

correlated with significantly higher unmasked target detectability contrast thresholds.

A simple linear model can predict most of the variation in unmasked target de-
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tectability due to increases in either target spatial or temporal frequency. Watson,

Hu, and McGowan [6] suggested a linearly separable model that was a function of

only target spatial and temporal frequencies. However, this model had nine parame-

ters, and the model coefficients did not clearly quantify the importance of each model

input for model performance. Table 5.1 shows several linear models that can predict

most or nearly all variation in unmasked target detectability.

The linear model inputs included target spatial frequency, target temporal fre-

quency, and a third input which was the product of the first two. The data from

Robson [8] suggested that at sufficiently high target temporal frequencies, target spa-

tial frequency did not influence target detectability as much, and that the inverse of

this statement was also true. This may suggest the inclusion of a third term to ac-

count for the interactions of high target frequencies, as observed by Robson. 1 Based

on this observation, a third input was considered, which was target spatial frequency

times target temporal frequency, (TSF × TTF ).

As shown in Table 5.1 (a) and (b), the two coefficients for TSF and TTF are

positive, suggesting that increasing either target spatial or temporal frequencies would

also increase unmasked target detectability. Note in Table 5.1 that the coefficients

for TSF were larger than the coefficients for TTF. This may suggest that TSF is

a more significant target property in determining target detectability for this data

set. However, the magnitude of the TTF coefficients suggest that target temporal

frequencies still have a significant contribution to unmasked target detectability.

In column (e) of Table 5.1, the model coefficient for (TSF × TTF ) is smaller in

magnitude and negative in sign. When the target spatial or temporal frequencies are

small, the contribution of this term is small. However, when both target spatial and

temporal frequencies are large, this third input will have a more significant input. At

1Our data also confirms this observation. This interaction is examined more closely in Fig. 5.1

and 5.2.
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Table 5.1: Linear models of unmasked target detectability. The top half of the table

provides goodness of fit scores, and the bottom half shows the model coefficients

for normalized inputs. Column (a) shows the fit scores and coefficients for a linear

model with only target spatial frequency, (TSF), as an input. Column (b) is for a

linear model with only target temporal frequency, (TTF) as an input. Column (c)

is for a model with a combined input that is the product of target spatial frequency

and target temporal frequency, (TSF × TTF ). Column (d) shows the fit scores and

coefficients for a linear model with two inputs: TSF, and TTF. Column (e) is for a

linear model with three inputs: TSF, TTF, and (TSF × TTF ).

(a) (b) (c) (d) (e)

PCC 0.702 0.642 0.792 0.961 0.964

SROCC 0.689 0.583 0.721 0.958 0.961

RMSE 0.688 0.741 0.590 0.266 0.258

Constant -4.955 -3.949 -5.568 -7.169 -7.012

TSF 2.358 2.348 2.762

TTF 1.670 1.656 2.286

(TSF × TTF ) 3.337 -1.359
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these higher target spatial and temporal frequencies, the small negative coefficient

may use this input as a regulation term. This might suggest that, as suggested by

Robson [8], when the targets have sufficiently high spatial frequencies, increasing

target temporal frequency does not have as much influence on target detectability,

and vise versa.

Observe in Table 5.1 that the worst model performance came from the models that

had only one input. This suggests that a single input model is not sufficient to predict

variations in target detectability. As the unmasked target detectability were gathered

for multiple target spatial and temporal frequencies, it would seem reasonable that

models to predict those thresholds would also need to be functions of both target

spatial and temporal frequencies. When target spatial and temporal frequencies are

combined as a product and used as a single input, the model prediction provided a

better fit of the data than either the target spatial or temporal frequencies alone.

As shown in Table 5.1, both the two and three input models provide reasonable

predictions of unmasked target detectability. It should be noted that, due to the

variations from trial to trial and subject to subject, it is difficult for a model to

capture all the randomness of human subjects. That being said, it appears that

either the two or three input model reasonably fit the unmasked target detectability

contrast threshold data. 2

Also observe in Table 5.1 that (TSF × TTF ) was important as a single input,

but did not significantly improve the goodness of fit as the third model input. One

measure of the importance of an input in the overall fit of model prediction to mea-

sured data is the pValue of model inputs, where the smaller a pValue is, the more

significant the input to the fit of the model. For the two input model in Table 5.1

2The model provided by Watson, Hu, and McGowan [6] could have been tuned to provide a

better fit of the unmasked data than this simple model. However, the focus of our modeling effort

is to provide further analysis of the masked target detectability.
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(d), the largest pValue was for the TTF coefficient, which was 8E − 14, suggesting

the least significant term in the two input model still had considerable influence on

the goodness of fit to the data. For the three input model in Table 5.1 (e), the largest

pValue was for the (TSF ×TTF ) coefficient, which was 2E−02, suggesting the least

significant term in the three input model had marginal influence on the goodness of

fit to the data. 3

In summary, our unmasked data appear to be in line with results from previous

researchers. Higher target spatial frequencies are associated with higher target de-

tectability, and higher target temporal frequencies are also associated with higher

target detectability. Simple models of target spatial and temporal frequencies can

predict unmasked target detectability. Target spatial frequency appears to be more

significant in predicting unmasked target detectability for this data set.

5.2 Masked target detectability

This section details the differences in target detectability due to presenting targets

with natural video masks. Not all masks have the same effects on target detectabil-

ity contrast thresholds. Simple models that do not consider mask content do not

sufficiently explain all variations in masked target detectability contrast thresholds.

Plots of masked and unmasked target detectability contrast thresholds over target

spatial and temporal frequencies suggest there are noticeable and significant differ-

ences between masked and unmasked thresholds. Figure 4.1 plots target detectability

thresholds over increasing target spatial frequencies at three target temporal frequen-

cies. Fig. 4.2 plots target detectability thresholds over increasing target temporal

frequencies at three target spatial frequencies. These figures show that presenting

masks with targets changes target detectability contrast thresholds. Different masks

3Some suggest omitting model inputs with a pValue larger than 0.05, while other more conser-

vative guidance suggests omitting model inputs with pValues larger than 0.01.
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have result in different elevations in target detectability contrast thresholds.

Large changes in target spatial and temporal frequencies result in large changes

in target detectability contrast thresholds, however masks reduce the effects of these

changes. Fig. 5.1 shows target elevations due to changing target spatial frequencies

from 2.8 c/deg to 22.6 c/deg. The effects of target spatial frequency on target de-

tectability contrast thresholds are examined more closely in Sect. 5.3. When the

target temporal frequency is 0 Hz, the average elevation due to changing the target

from DCT [0,0] to [7,7] is 2.65± 0.04 log units for unmasked targets; however, when

targets are presented with natural videos, the average elevation due to this large

change in target spatial frequency is reduced to 0.93± 0.86 log units. Fig. 5.2 shows

target elevations due to changing target temporal frequencies from 0 Hz to 30 Hz.

When the target is DCT [0,0], the elevation due to changing the target temporal fre-

quency from 0 Hz to 30 Hz is 1.87± 0.02 log units for unmasked targets; however, for

targets presented with natural videos, the average elevation is reduced to 0.88± 0.31

log units. The effects of target temporal frequency on target detectability contrast

thresholds are examined more closely in Sect. 5.5 .

Although the simple two and three input models were effective in explaining vari-

ations in unmasked target detectability contrast thresholds, they were not so effective

in predicting masked target detectability contrast thresholds. Using the k-fold-cross-

validation method to select from over twenty candidates each for two and three input

models, coefficients were selected, and fit scores calculated. Table 5.2 shows model co-

efficients and fitness scores for two and three input models on masked and unmasked

data.

Observe in Table 5.2 that neither the two or three input model provide a reasonable

fit of the masked target detectability contrast thresholds. This appears to suggest

that masked target detectability contrast thresholds are influenced by more than just

changes in target spatial and temporal frequencies. However, some of the variation in
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Table 5.2: Summary of model fit performance and model coefficients for the two and

three input models on masked and unmasked data.

Unmasked Masked

2 input 3 input 2 input 3 input

PCC 0.961 0.964 0.684 0.690

SROCC 0.958 0.961 0.672 0.673

RMSE 0.266 0.258 0.554 0.550

constant -7.169 -7.012 -4.460 -4.355

TSF coeff 2.348 2.762 1.182 1.387

TTF coeff 1.656 2.286 1.040 1.356

(TSF × TTF ) coeff -1.359 -0.703

masked target detectability contrast thresholds can be explained by changes in target

spatial and temporal frequencies, suggesting the target still has a significant role in

determining masked target detectability contrast thresholds.

Also shown in Table 5.2, for all models, the largest model coefficient in magnitude

was for target spatial frequency. This may suggest that target spatial frequencies

are more important in predicting target detectability contrast thresholds than target

temporal frequencies. However, note that all coefficients are smaller for models of the

masked data. This may suggest that target spatial and temporal frequencies matter

less when predicting masked target detectability contrast thresholds.

5.3 Target spatial frequency and masked target detectability

This Sect. discusses the relationships between target spatial frequencies and target

detectability contrast thresholds. In general, targets with higher spatial frequencies

have higher detectability contrast thresholds, which was expected based on previ-

ous research. Also as expected, when targets are higher in temporal frequencies,
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the target detectability contrast threshold elevations due to large increases in target

spatial frequencies are reduced. This Sect. also shows that presenting natural video

masks with targets can reduce or even reverse the effects of changing target spatial

frequencies on target detectability contrast thresholds.

The data in Fig. 4.1 suggests the relationships between masked target detectabil-

ity contrast thresholds and increasing target spatial frequencies do not always match

the relationships between unmasked target detectability contrast thresholds and tar-

get spatial frequencies. In Fig. 4.1 (a) and (d), it can be seen that at low target

temporal frequencies and low target spatial frequencies, the different masks caused

markedly different target detectability contrast thresholds. From Fig. 4.1 (d), it can

be seen that the difference in masked and unmasked target detectability contrast

thresholds reduces some at higher target spatial frequencies. This is in agreement

with previous research on natural image masking of compression artifacts [11]. This

is most noticeable for the mask Cactus, in Fig. 4.1 (d), were at lower target spatial

frequencies of 2.8 c/deg, there was about a two log unit difference in target detectabil-

ity contrast thresholds, however, at higher target spatial frequencies of 22.6 c/deg,

the unmasked thresholds are nearly the same as the thresholds for targets presented

with the mask Cactus.

It was not expected that some natural video masks would reduce target detectabil-

ity contrast thresholds. Observe in Fig. 4.1 (b), (c), (d), (e), and (f) that there are

masked target detectability contrast thresholds markedly lower than unmasked target

detectability contrast thresholds. This was not expected based on previous research,

and is discussed further in Sect. 5.8 and 5.9.

Observe also in Fig. 4.1 that changing the target basis functions from DCT [0,0] to

DCT [7,7] greatly increases unmasked target detectability contrast thresholds. The

change in target basis functions from DCT [0,0] to DCT [7,7] does not cause the

same increase in masked target detectability contrast thresholds. Additionally, when
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target temporal frequencies are increased to 30 Hz, the change in target basis functions

from DCT [0,0] to DCT [7,7] does not cause the same increase in target detectability

contrast thresholds. The elevation due to changing the target basis functions from

DCT [0,0] to DCT [7,7] is plotted in Fig. 5.1 against target temporal frequencies for

both masked and unmasked targets.

It can be seen from Fig. 5.1 that changing the target basis functions from DCT

[0,0] to [7,7] always has some effect on target detectability contrast thresholds. The

solid black plots in Fig. 5.1 show these elevations are most significant when targets

have low temporal frequencies and presented without masks. The other plots in

Fig. 5.1 suggest that masked target detectability contrast threshold elevations due to

changing target basis functions from DCT [0,0] to DCT [7,7] are less than unmasked

target detectability contrast threshold elevations.

Observe also in Fig. 5.1 that when target temporal frequencies are high enough,

target detectability contrast threshold elevations due to changing target basis func-

tions from DCT [0,0] to DCT [7,7] are also reduced. Although the target detectability

contrast threshold elevations for target temporal frequencies of 0 Hz and 6 Hz are

similar, the contrast threshold elevations at 30 Hz in Fig. 5.1 are lower. This is in

line with the findings of previous research for unmasked targets [8]. The target de-

tectability contrast threshold elevation plots for masked targets in Fig. 5.1 appear to

be reasonable extrapolations of the unmasked data. Further effects of target temporal

frequencies on target detectability contrast thresholds are presented in Sect. 5.5 and

5.6.

Based on previous research and other plots of both masked and unmasked target

detectability contrast threshold elevations due to changing the target basis functions

from DCT [0,0] to DCT [7,7], it was not expected that this significant change in target

spatial frequencies would ever cause negative elevations. However, observe in the lower

left hand corner of Fig. 5.1 that when targets have temporal frequencies of 30 Hz, and
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Figure 5.1: Target detectability contrast threshold elevations due to changing target

basis functions from DCT [0,0] to [7,7], when masking conditions and target temporal

frequencies remain constant. The vertical axis reports the target detectability con-

trast threshold elevations due to the change in target spatial frequencies, calculated

according to Eq. 5.1. The horizontal axis shows temporal frequencies used for both

the DCT [0,0] and DCT [7,7] targets. The graph legend in the lower left corner shows

the masking conditions used for both the DCT [0,0] and DCT [7,7] targets for each

plot line.
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are presented with the mask Lemur, the higher spatial frequency targets have lower

detectability contrast thresholds than targets with lower spatial frequencies. This can

also be observed in the data presented in Fig. 4.1 (f). This was not expected based

on previous research, and is discussed further in Section 5.8.

5.4 Discussion of target spatial frequencies and target detectability

contrast thresholds

This Sect. discusses the relationships our data suggest between target spatial frequen-

cies and target detectability contrast thresholds, for both the masked and unmasked

targets. In Chap. 4, it was shown in Fig. 4.1 that target spatial frequencies have an

effect on target detectability contrast thresholds. In general, targets with higher spa-

tial frequencies have higher detectability contrast thresholds, and masked detectabil-

ity contrast thresholds were reasonable extensions of unmasked target detectability

contrast thresholds. This is in agreement with previous research on unmasked target

detectability thresholds [20, 21, 22, 6], as well as masked target detectability threshold

research [10].

Figure 5.1 in this Sect. detailed target detectability contrast threshold elevations

due to large changes in target spatial frequencies, and presented the target detectabil-

ity contrast threshold elevations due to changing DCT basis functions from [0,0] to

[7,7], which changes the target spatial frequencies from 2.8 c/deg to 22.6 c/deg. When

target temporal frequencies were 30 Hz, there was less of an effect on target detectabil-

ity contrast thresholds due to large changes in target spatial frequencies. When the

targets were presented with natural video masks, large changes in target spatial fre-

quencies were less effective in changing target detectability contrast thresholds. Table

5.3 presents the target detectability contrast threshold elevations due to changes in

target spatial frequencies from DCT [0,0] to DCT [7,7] for three target temporal

frequencies for the unmasked condition, as well as averages for all masked conditions.
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Table 5.3: Average target detectability contrast threshold elevations due to changes

in target basis functions from DCT [0,0] to DCT [7,7]. Target detectability contrast

threshold elevations are reported for the unmasked condition, while averages of the

elevations are reported for masked conditions. The average was taken across all

masked elevations available, and the standard deviation reported is of the elevations

that were used in calculating that average.

Unmasked Masked average

elev. ± elev. ±

0 Hz 2.65 0.04 0.93 0.86

6 Hz 2.56 0.03 1.28 0.78

30 Hz 1.09 0.03 0.29 0.60

Average 2.10 0.88 0.83 0.78

Observe in Table 5.3 that increasing target temporal frequencies to 30 Hz reduced

the effectiveness of changing target spatial frequencies in influencing target detectabil-

ity contrast thresholds. Robson [8] suggested that when the target detectability con-

trast thresholds became higher, due to higher target temporal frequencies, target

spatial frequencies would matter less in determining target detectability thresholds,

and that the inverse of this relationship would be true for sufficiently high target

spatial frequencies. The unmasked column of Table 5.3 confirms this suggestion by

Robson [8]. Table 5.3 shows this trend is continued for masked targets.

As shown in Table 5.3, presenting targets with masks can greatly reduce the

change in target detectability contrast thresholds due to large changes in target spatial

frequencies. This was expected based on previous research [10]. Also, Table 5.3

shows that when targets with high temporal frequencies are presented with masks,

the change of target DCT basis functions from [0,0] to [7,7] makes less than half a

log unit difference in target detectability contrast thresholds.
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The data for this dissertation suggest that knowing the spatial frequency of DCT

basis functions alone is not sufficient to predict target detectability contrast thresh-

olds, and that mask content also needs consideration. Furthermore, the data for this

dissertation supports the assumptions that there are strong connections between DCT

basis functions and target detectability contrast thresholds. However, as suggested

by previous research, both masking the targets and making the target temporal fre-

quencies higher can make low spatial frequency DCT basis functions have just as high

of detectability contrast thresholds as high spatial frequency DCT basis functions.

Table 5.5 showed that when the mask Lemur was presented with a target with a

temporal frequency of 30 Hz, the DCT [7,7] target had a lower detectability contrast

threshold than the DCT [0,0] target. Although this is only one point out of twelve

with a negative target detectability contrast threshold elevation, it is still an inter-

esting finding. Many compression algorithms are based on the assumption that the

DCT [0,0] frequency content should be maintained with high fidelity, while the DCT

[7,7] frequency content can be severely quantized. Our finding with respect to targets

masked by Lemur with temporal frequencies of 30 Hz suggests that the assumption

about what to compress more is not always accurate. Furthermore, most compres-

sion algorithms quantize much more than the highest frequency DCT basis function.

Table 5.5 also showed that near this spatial frequency, threshold elevations caused

by smaller target spatial frequency changes are more likely to be negative, thus not

fitting previous assumptions.

In order to support the complicated field of video compression and the messy world

it captures, additional research is required. Different combinations of target spatial

frequencies should be measured in summation studies. Different masks should also

be examined, possibly allowing for control of mask spatial content, or even chromatic

studies. Future work is discussed in Chapter 8.
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5.5 Target temporal frequency and masked target detectability

This Sect. details our findings on the relationships between target detectability con-

trast thresholds and target temporal frequencies. The plots in this Sect. show that,

as expected, targets with higher temporal frequencies have higher detectability con-

trast thresholds. Also as expected, when targets have higher spatial frequencies, the

elevation due to changing target temporal frequencies from 0 Hz to 30 Hz is reduced.

Presenting a natural video mask with the targets can reduce the effects of a large

change in target temporal frequency.

As shown in Fig. 4.2, as target temporal frequencies increase, unmasked tar-

get detectability contrast thresholds increase. When target spatial frequencies are

increased from 2.8 c/deg to either 16.1 c/deg or 11.3 c/deg, target detectability con-

trast threshold elevations due to changing target temporal frequencies from 0 Hz to

30 Hz are reduced. Previous research on unmasked target detectability and target

spatial frequencies supports these observations [19, 8, 26, 27, 6].

Observe also in Fig. 4.2 that presenting natural video masks with targets results

in large increases in target detectability contrast thresholds at low target temporal

frequencies, however, these effects are reduced at higher target temporal frequencies.

This is most noticeable for the mask Cactus in Fig. 4.2 (a). At 0 Hz, there is

over a two log unit difference in target detectability contrast thresholds. However,

at 30 Hz, unmasked target detectability thresholds are only about half a log unit

less than the detectability contrast thresholds for targets presented with the mask

Cactus. Presenting the targets with the other masks resulted in some difference in

detectability contrast thresholds at low target temporal frequencies, but nearly no

difference in detectability contrast thresholds for targets with temporal frequencies

more than 4-6 Hz.

Figure 4.2 shows that, in general, the largest changes in target detectability con-

trast thresholds are due to the changes between the lowest and highest target temporal
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Figure 5.2: Target detectability contrast threshold elevations due to changing tar-

get temporal frequencies from 0 Hz to 30 Hz. The vertical axis reports the target

detectability contrast threshold elevations calculated according to Eq. 5.1. The hor-

izontal axis shows the target spatial frequencies used for both the 0 Hz and 30 Hz

targets. The graph legend in the upper left corner shows the masking conditions used

for each line.

frequencies measured, 0 Hz and 30 Hz. However, it appears in Fig. 4.2 that either

presenting targets with natural video masks, or increasing target spatial frequencies

can reduce this contrast threshold elevation. Figure 5.2 shows the target detectability

contrast threshold elevations due to changing target temporal frequencies from 0 Hz

to 30 Hz, while keeping masking conditions and target spatial frequencies constant.

Figure 5.2 shows these target detectability contrast threshold elevations for masked

and unmasked targets for the target DCT basis functions of [0,0], [1,1], [2,2], [3,3],

[5,5], and [7,7]. The solid black line in Fig. 5.2 shows unmasked target detectability

contrast elevations.

Observe from Fig. 5.2 that changing target temporal frequencies from 0 Hz to 30

Hz always has some effect on target detectability contrast thresholds. The solid black

plot in Fig. 5.2 shows detectability contrast threshold elevations are largest when

targets are presented without masks. The other plots in Fig. 5.2 show that when the
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targets are presented with masks, the change in target temporal frequencies cause

less of a change in target detectability contrast thresholds.

As shown in Fig. 5.2, when target spatial frequencies increase, the detectability

contrast threshold elevations due to changes in target temporal frequencies are also

reduced. Although the detectability contrast threshold elevations for targets using

the DCT basis functions [0,0] through [3,3] are similar, the elevations for DCT [7,7]

in Fig. 5.1 are lower. Previous research supports this observation for unmasked

target detectability contrast thresholds [8]. The plots in Fig. 5.2 for masked target

detectability contrast threshold elevations appear to be reasonable extrapolations

of the unmasked data. Effects of target spatial frequencies on target detectability

contrast thresholds were presented in Sect. 5.3 and are discussed further in Sect. 5.6.

5.6 Discussion of target temporal frequencies and target detectability

contrast thresholds

This Sect. discusses our findings on the importance of target temporal frequencies

in determining target detectability contrast thresholds. In Sect. 4.2, it was shown in

Fig. 4.2 that increasing target temporal frequencies could make targets have higher

detectability contrast thresholds, as long as the target temporal frequencies were

sufficiently high. Figure 5.2 highlighted how changing target temporal frequencies

from 0 Hz to 30 Hz caused targets to have significantly higher contrast thresholds

in the unmasked condition, but this effect could be reduced by either increasing the

spatial frequencies of the targets, or presenting targets with masks.

Table 5.4 shows how the effect of changing target temporal frequencies from 0 Hz to

30 Hz on target detectability contrast thresholds is effected by presenting targets with

masks or increasing target spatial frequencies. The left half of Table 5.4 shows target

detectability contrast threshold elevations due to greatly increasing target temporal

frequencies, sorted by increasing vertical target spatial frequencies, while the right
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half of the table is for diagonal target spatial frequencies. The left and right pair of

of columns on each half show the differences in target detectability contrast threshold

elevations for masked versus unmasked targets.

Table 5.4: Target detectability contrast threshold elevations due to changes in target

temporal frequencies from 0 Hz to 30 Hz for individual target spatial frequencies for

unmasked targets, as well as averaged across all masks. The average was taken across

all masked elevations available, and the standard deviation is of the elevations used

to calculate that average. The overall unmasked average target detectability contrast

threshold elevation due to changes in target temporal frequencies from 0 Hz to 30

Hz was 1.63±0.51 log units, while the equivalent masked average was 0.98±0.57 log

units.

Vertical Unmasked Masked average Diagonal Unmasked Masked average

c/deg elev. ± elev. ± c/deg elev. ± elev. ±

2.8 1.87 0.02 0.88 0.31 2.8 1.87 0.02 0.88 0.31

4.5 1.67 0.03 1.26 0.27 5.7 1.90 0.04 1.13 0.39

6.3 2.07 0.04 1.30 0.06 8.5 1.55 0.04 0.88 0.19

8.2 1.97 0.08 1.64 0.38 11.3 2.02 0.03 1.27 0.49

12.2 1.90 0.03 0.99 0.85 17.0 1.30 0.04 0.35 0.20

16.1 1.33 0.02 0.78 0.92 22.6 0.31 0.04 0.38 0.05

Average 1.80 0.27 1.04 0.61 1.49 0.64 0.90 0.46

Observe from Table 5.4 that making target temporal frequencies 30 Hz makes

target detectability contrast thresholds higher by more than a log unit for nearly

all target spatial frequencies, and nearly a log unit for many masking conditions.

Table 5.4 does show that for two high target spatial frequencies, DCT basis functions

[0,7] and [7,7], this target detectability contrast threshold elevation is diminished.

However, in general, making target temporal frequencies 30 Hz makes detectability

contrast thresholds higher than a target detectability contrast thresholds for targets
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with temporal frequencies of 0 Hz.

Recall from Sect. 4.1, Fig. 4.1 showed target detectability thresholds versus target

spatial frequencies at three different target temporal frequencies. The top left plot,

Fig. 4.1 (a), shows how target detectability contrast thresholds change as targets

change from large blocks to vertical lines when the target temporal frequency is 0 Hz.

The top right plot, Fig. 4.1 (c), shows the effects of the same change in target spatial

frequencies when target temporal frequencies are 30 Hz. Observe from Fig. 4.1 (a) and

(c) that, in general, targets with higher temporal frequencies have higher detectability

thresholds. For the unmasked targets, the targets with a temporal frequency of 0 Hz

and a basis function of DCT [0,7] had higher detectability thresholds than the DCT

basis function [0,0] with a temporal frequency of 30 Hz. The targets made from

single pixel wide vertical lines had higher detectability thresholds than the targets

made from 8×8 pixel blocks when the blocks had a temporal frequency of 30 Hz and

the lines had a temporal frequency of 0 Hz. This was not expected.

As shown in Fig. 4.1, both target spatial frequency and masking condition can

still have an effect on target detectability thresholds. However, the changes due to

either changing target spatial frequencies or masks are slightly reduced when the

target temporal frequencies are 30 Hz. The data in this dissertation suggest that

it is possible that targets with sufficiently high temporal frequencies have higher

detectability contrast thresholds, independent of either target spatial frequencies or

masking conditions. Although two entries in Table 5.6 (a) were negative, this was only

3.5% of the target detectability threshold elevations due to changing target temporal

frequencies from 0 to 30 Hz. In general, making target temporal frequencies higher

will make target detectability thresholds higher, however, the amount of change is

still dependent on target spatial frequencies and mask content.

Further research is necessary to understand target temporal frequencies and target

detectability thresholds. What target temporal frequencies makes compression arti-
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fact detectability thresholds the highest? From Table 5.6, it is evident that increasing

target temporal frequencies only slightly is not helpful, as nearly half the times tar-

gets with temporal frequencies of 6 Hz had lower detectability thresholds than targets

with temporal frequencies of 0 Hz. One may ask if the limit of increasing compression

artifact detectability thresholds is only limited by hardware capabilities. As with all

applications of research, to truly bear fruit, such findings would eventually need to be

implemented in the real world, which is often messy and complicated. The question

would then become if the cost of necessary changes in video compression technology

would be worth the benefit. Future work is discussed in Chapter 8.

5.7 Natural video masking and target detectability contrast thresholds

This Sect. details our findings on how detectability thresholds change when targets

are presented with natural video masks. As seen in Sect. 4.1 and 4.2, in Fig. 4.1 and

4.2, presenting targets with masks can change target detectability contrast thresh-

olds. However, this influence appears to be dependent on which masks are used, and

masking effectiveness is diminished as target spatial and temporal frequencies are

increased.

Figure 5.3 shows target detectability contrast threshold elevations due to present-

ing targets with masks for various target temporal and spatial frequencies. Figure

5.3 (a) shows how detectability contrast threshold elevations due to masking change

as target temporal frequencies increase. Figure 5.3 (b) and (c) show how detectabil-

ity contrast threshold elevations due to masking change as target spatial frequencies

increase.

Observe in Fig. 5.3 that at low target spatial and temporal frequencies, target

detectability contrast threshold elevations due to presenting targets with masks are

large. However, Fig. 5.3 (c) also shows that when the target spatial frequencies

are high enough, masking the target results in reduced elevations, or can even make

91



Figure 5.3: Target detectability contrast threshold elevations due to masking for var-

ious target temporal and spatial frequencies. (a) shows target detectability contrast

threshold elevations due to masking for DCT basis function [0,0] targets for six dif-

ferent masks at temporal frequencies of 0, 1, 2, 4, 6, 10, 12, 15, and 30 Hz. (b) shows

the target detectability contrast threshold elevations due to presenting three different

masks with targets using DCT basis functions of [0,0], [0,1], [0,2], [0,3], [0,5], and

[0,7] and temporal frequencies of 0 Hz. (c) shows the target detectability contrast

threshold elevations due to presenting three different masks with targets using DCT

basis functions of [0,0], [1,1], [2,2], [3,3], [5,5], and [7,7] and temporal frequencies of

0 Hz. The vertical axis reports the target detectability contrast threshold elevations

calculated according to Eq. 5.1. The legend for each plot is in the lower left corner,

and shows the masking conditions used for each plot line.
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the target detectability threshold elevations negative, as with the mask Lemur. A

reduction in target detectability contrast thresholds due to presenting a target with a

mask is known as facilitation. Although the mask Cactus makes a two log unit target

detectability threshold elevation when the DCT basis function is [0,0], it makes nearly

no difference when the basis function is changed to [7,7]. These results were expected

based on previous research [11].

As shown in Fig. 5.3 (a), when target temporal frequencies are high enough,

masking targets makes little difference in detectability contrast thresholds. Above

target temporal frequencies of 4 Hz - 6 Hz, many of the masks have little effect on

target detectability contrast thresholds. At target temporal frequencies of 30 Hz, the

mask Cactus makes about half the difference it makes at 0 Hz for target detectability

contrast threshold elevations. Changes in target detectability contrast thresholds due

to natural video masks are discussed further in Sect. 5.9.

5.8 Masked target detectability contrast thresholds that were not

expected based on previous research

This Sect. discusses our results that did not meet expectations based on previous

research. Previous research suggested that targets higher in spatial frequency and

temporal frequency should have higher detectability contrast thresholds. For un-

masked targets, these assumptions were generally true, however, presenting masks

with targets sometimes reduced or even reversed these trends. Additionally, previ-

ous research suggests presenting targets with natural videos should make target de-

tectability contrast thresholds higher, however, our data suggests this was not always

the case.
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5.8.1 Negative target detectability contrast threshold elevations due to

increased target spatial frequencies

Table 5.5 is a summary of negative target detectability contrast threshold elevations

due to increasing target spatial frequencies. Table 5.5 provides the average of the

differences in target detectability contrast thresholds when targets with higher spatial

frequencies had lower detectability contrast thresholds than targets with lower spatial

frequencies. These were target detectability contrast threshold elevations calculated

for changes in DCT basis function from [0,0], with spatial frequencies of 2.8 c/deg,

to [7,7], [0,7], and [3,3], which correspond to spatial frequencies of 22.6 c/deg, 16.1

c/deg, and 11.3 c/deg.

Table 5.5: Negative target detectability contrast threshold elevations due to chang-

ing target basis function from DCT [0,0]. The first column to the left signifies what

the DCT basis functions were changed to. The second column to the left shows the

average of only the negative target detectability contrast threshold elevations due

to changes in target spatial frequencies. This average was over all target temporal

frequencies and masking conditions. The third column tells the fraction of negative

contrast threshold elevations out of the total population for each change in spatial

frequencies, and the fourth column gives this fraction as a percent for ease of com-

parison. What is noteworthy is that there was one case were changing target spatial

frequencies from 2.8 c/deg to 22.6 c/deg made the targets have lower detectability

contrast thresholds. This special case occurred when target temporal frequencies were

30 Hz, and the targets were shown with the mask Lemur.

elevation count percent

DCT [7,7] -0.36 ± 0.05 (1/12) 8.3%

DCT [0,7] -0.17 ± 0.13 (10/66) 15.2%

DCT [3,3] -0.19 ± 0.19 (9/66) 13.6%
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Observe from Table 5.5 that for the three increases in target spatial frequencies

examined, there was always at least one case were target detectability contrast thresh-

olds were decreased. Table 5.5 shows that for a majority of the data, targets with

higher spatial frequencies will have higher detectability contrast thresholds. Addi-

tionally, on average, the negative target detectability contrast threshold elevations

are small. Also shown in Table 5.5, when the difference in target spatial frequencies

is smaller, the probability of finding a negative elevation is higher.

5.8.2 Negative target detectability threshold elevations due to increased

target temporal frequencies

This subsection describes the exceptions to the expectation that increased target

temporal frequencies results in higher target detectability contrast thresholds. Ta-

ble 5.6 is a summary of negative target detectability contrast threshold elevations

due to increased target temporal frequencies. Table 5.6 provides the average tar-

get detectability contrast threshold elevations of the events where higher temporal

frequency targets had lower detectability contrast thresholds.

Observe from Table 5.6 that very few targets have lower detectability contrast

thresholds when temporal frequencies are changed from 0 Hz to 30 Hz. However,

comparing target temporal frequencies of 6 Hz with target temporal frequencies of

0 Hz, keeping target spatial frequencies and masking conditions constant, 42.1% of

the higher temporal frequency targets had lower detectability contrast thresholds.

For the 24 targets with higher temporal frequencies and lower detectability contrast

thresholds, out of a population of 57, the average of the negative target detectability

contrast threshold elevations only was -0.28±0.28 log units, but when examining all

target detectability contrast threshold elevations due to changing target temporal

frequencies from 0 Hz to 6 Hz, the average elevation was -0.02±0.31 log units. To say

it differently, nearly half of the time when the target temporal frequencies are changed
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Table 5.6: Negative target detectability contrast threshold elevations due to changing

target temporal frequencies from 0 Hz. The first column to the left signifies what

target temporal frequencies were changed to. The second column to the left shows

the average of only the negative target detectability contrast threshold elevations due

to changes in target temporal frequencies. This average was over all target spatial

frequencies and masking conditions. The third column from the left provides the

fraction of negative target detectability contrast threshold elevations out of the total

population available for the changes in target temporal frequencies, and the fourth

column from the left provides this fraction as a percent for ease of comparison. The

only negative target detectability contrast threshold elevations due to changing target

temporal frequencies from 0 Hz to 30 Hz were for the DCT basis functions [0,7] shown

with the masks Cactus and Timelapse, for elevations of -0.58±0.02 log units and -

0.45±0.05 log units.

elevation count percent

30 Hz -0.51 ± 0.09 (2/57) 3.5%

6 Hz -0.28± 0.28 (24/57) 42.1%
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from 0 Hz to 6 Hz, there is a decrease in detectability thresholds. On average, looking

at all elevations due to changing target temporal frequencies from 0 Hz to 6 Hz, the

positive elevations are so small that they are essentially canceled out by the negative

elevations, and the net result is the average elevation due to increasing the target

temporal frequency from 0 Hz to 6 Hz is nearly zero. The largest negative target

detectability contrast threshold elevation due to increasing target temporal frequency

from 0 Hz to 6 Hz was -0.83±0.05 log units for the DCT basis function [0,0] presented

with the mask Flowervase. This was also discussed in Sect. 5.6.

5.8.3 Negative target detectability threshold elevations due to presenting

targets with masks (Facilitation)

This Sect. summarizes the exceptions to the expectation that presenting targets

with masks should make target detectability contrast thresholds higher. Table 5.7

lists the events when masked targets had lower detectability contrast thresholds than

unmasked targets, sorted by mask, presented with the average of all the negative

target detectability contrast threshold elevations associated with each mask. The

bottom of Table 5.7 presents the average of all masking conditions. Table 5.7 shows,

by mask, the portion of the population available for comparison, the population

with negative target detectability contrast threshold elevations, that measure as a

percentage, and the average of all the negative contrast threshold elevations for each

mask.

Observe from Table 5.7 that most of the time, presenting a mask with a target will

make target detectability contrast thresholds higher. However, Table 5.7 also shows

that every mask makes some target detectability contrast thresholds lower. The mask

Cactus rarely makes target detectability contrast thresholds lower, while the mask

Kimono makes most of the target detectability contrast thresholds lower. Overall,

there is about a one in three probability that presenting targets with masks will make
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Table 5.7: Negative target detectability contrast threshold elevations due to present-

ing targets with masks, sorted by mask. For each mask, the average of all negative

target detectability contrast threshold elevations due to presenting targets with masks

are reported in the second column, along with the standard deviation of the elevations

used in that average calculation in the third column. The fourth and fifth column

report the negative target detectability contrast threshold elevation count over the

total population available for comparison for that mask. The right column reports

the percentage of the population with negative target detectability contrast thresh-

old elevations by mask. The average negative target detectability contrast threshold

elevations due to changing masking condition for all masking conditions, as well as

that population as a fraction and percentage are at the bottom of the table.

Average Count Percentage

Cactus -0.13 ±0.05 3/51 5.9%

Flowervase -0.17 ±0.13 7/27 25.9%

Hands -0.27 ±0.12 9/27 33.3%

Kimono -0.43 ±0.26 21/27 77.8%

Lemur -0.83 ±0.42 9/18 50.0%

Timelapse -0.43 ±0.33 20/39 51.3%

Typing -0.20 ±0.14 16/39 41.0%

Waterfall -0.31 ±0.16 4/18 22.2%

Overall Average -0.38 ±0.31

Total count 89/246 36.2%
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target detectability contrast thresholds lower.

5.9 Discussion of natural video masking and target detectability

contrast thresholds

This Sect. discusses our findings on changing target detectability contrast thresholds

by presenting targets with natural video masks. The mask Cactus appears to be most

effective in increasing target detectability contrast thresholds. The data presented in

Fig. 4.1 shows that the natural video Cactus can often make target detectability

contrast thresholds higher as in Fig. 4.1 (d). However, Fig. 4.1 (d) also shows

that the abilities of masks to change target detectability contrast thresholds are also

dependent on the targets’ spatial frequencies and temporal frequencies.

Observe also from Fig. 4.1 (a) that natural videos can make a significant difference

in target detectability contrast thresholds, and that difference changes from mask to

mask, as suggested by Chandler and Hemami [11]. Figure 4.1 (d) shows that masking

effectiveness in elevating target detectability contrast thresholds is also dependent on

target spatial and temporal frequencies. In Sect. 5.8.3, Table 5.7 showed that nearly

half the natural videos made target detectability contrast thresholds lower about half

the time.

The range of effectiveness in raising target detectability contrast thresholds by

presenting targets with masks is shown in Fig. 5.4. Figure 5.4 shows the average tar-

get detectability contrast threshold elevations due to presenting targets with masks,

averaged across target spatial and temporal frequencies. Figure 5.4 (a) shows the

average target detectability contrast threshold masking elevations averaged across all

masks and all target spatial frequencies, and how those elevations change as the target

temporal frequencies increase. Figure 5.4 (b) shows the average target detectability

contrast threshold masking elevations averaged across all masks and all target tempo-

ral frequencies, and how those elevations change as the target basis functions change
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Figure 5.4: Average target detectability contrast threshold elevations due to changes

in masking conditions sorted by target frequency. Plot (a) shows target detectability

contrast threshold elevations due to masking for targets at different temporal fre-

quencies. The average represents elevations across all masks and all target spatial

frequencies at each target temporal frequency. The maximum and minimum plot

represents the outer most target detectability contrast threshold elevations due to

masking, across all masks and target spatial frequencies for each target temporal fre-

quency. Plots (b) and (c) represent the same information, only grouped by target

spatial frequencies and examined across all masks and target temporal frequencies.

Plot (b) examines the vertically oriented targets, while plot (c) represents the diago-

nally oriented targets.

from blocks to lines, while plot (c) shows elevation changes as targets go from blocks

to dots.

Observe from Fig. 5.4 that masks have a range of effects on target detectability

contrast thresholds and that different natural videos do have different masking ca-

pabilities. Figure 5.4 (a) shows that masks can make target detectability contrast

thresholds a little lower or much higher at about any target temporal frequency,

however the average target detectability contrast threshold elevations above target

temporal frequencies of 6 Hz is close to zero. Figure 5.4 (b) and (c) show that masks

can make target detectability contrast thresholds a little lower or much higher for any

DCT basis function. Figure 5.4 (c) may suggest that as the targets become higher
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in spatial frequencies, the masks are less likely to raise target detectability contrast

thresholds, or may be more likely to lower target detectability contrast thresholds.

This is quantified more clearly in Table 5.8, which shows at what target spatial and

temporal frequencies negative elevations were likely to occur.

Table 5.8 shows the averages of the negative target detectability threshold ele-

vations due to presenting targets with masks, sorted by target spatial and temporal

frequency. The top of Table 5.8 shows the negative threshold elevations due to mask-

ing sorted by target temporal frequency. The two lower parts of Table 5.8 show the

negative threshold elevations due to masking sorted by target spatial frequency, with

the middle part sorting the data across vertical targets, and the lower part of Table

5.8 sorting the data by diagonal targets.

Observe from Table 5.8 that targets higher in spatial or temporal frequencies are

more likely to have lower detectability contrast thresholds when targets are presented

with natural videos. This appears to suggest that when unmasked target detectability

contrast thresholds are high, due to either sufficiently high target spatial or temporal

frequencies, presenting them with natural videos makes their detectability thresholds

lower. This has not been suggested by previous research, and encourages further

investigation. Future work is discussed in Chapter 8.

101



Table 5.8: Negative target detectability contrast threshold elevations due to pre-

senting targets with masks, averaged across masks for individual target spatial and

temporal frequencies. Table 5.8 shows, as a percentage, how many negative elevations

were associated with each target spatial or temporal frequency. The elevations are

averaged across all masks for each target frequency.

Average Count Percentage

0 Hz -0.45 ±0.46 6/46 13.0%

1 Hz -0.32 ±0.24 8/18 44.4%

2 Hz -0.30 ±0.22 3/18 16.7%

4 Hz -0.35 ±0.26 5/18 27.8%

6 Hz -0.33 ±0.34 16/46 34.8%

10 Hz -0.40 ±0.25 9/18 50.0%

12 Hz -0.30 ±0.26 10/18 55.6%

15 Hz -0.39 ±0.16 5/18 27.8%

30 Hz -0.44 ±0.36 27/46 58.7%

Average Count Percentage

DCT [0,0] -0.10 ±0.07 6/60 10.0%

DCT [0,1] 0.00 ±0.00 0/9 0%

DCT [0,2] -0.21 ±0.04 2/9 22.2%

DCT [0,3] 0.00 ±0.00 0/9 0%

DCT [0,5] -0.11 ±0.07 5/9 55.6%

DCT [0,7] -0.40 ±0.24 30/57 52.6%

Average Count Percentage

DCT [0,0] -0.10 ±0.07 6/60 10.0%

DCT [1,1] -0.35 ±0.22 3/9 33.3%

DCT [2,2] -0.51 ±0.28 3/9 33.3%

DCT [3,3] -0.36 ±0.27 27/57 47.4%

DCT [5,5] -0.48 ±0.49 6/9 66.7%

DCT [7,7] -0.84 ±0.46 6/9 66.7%102



CHAPTER 6

MODELING

This chapter presents a modeling effort to predict our measured detectability contrast

thresholds for natural-video masked dynamic DCT noise. A simple linear regression

model provides a summary of those data. These results were also compared against

predictions from full reference image and video quality algorithm predictions.

6.1 No-reference linear regression modeling of masked target

detectability with a single measure of mask content

This Sect. examines the influence of mask content in predicting target detectability

contrast thresholds. In Chap. 4, it was shown that presenting targets with masks had

an effect on target detectability contrast thresholds. In Sect. 5.2 , it was shown that

target spatial and temporal frequencies mostly define unmasked target detectability

contrast thresholds. However, the variations in masked target detectability contrast

thresholds were not as fully explained by target spatial and temporal frequencies.

This Sect. details how single measures of mask content can be used to improve

fit performance of linear regression models predicting masked target detectability

contrast thresholds. Table 6.1 lists several measures of mask content which were

considered for inputs to the linear model. 1 These were either standard measures of

mask content, common in many image and video processing tools, or simple extensions

1Note that the four DCT band specific measures all have the same time. For more efficient

calculations, the four measurements were calculated at the same time, and the resulting time required

for the calculation was divided equally between the calculations.
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or modifications of these common measures.

Observe in Table 6.1 that seventeen measures of mask content are spatial, while

only four are temporal. This may suggest the larger body of research on the spatial

content of images. Several measures are defined in other literature [69]. The three

temporal statistics are simple variations of spatial statistics often used to measure

image content. Instead of calculating standard deviation, skewness, and kurtosis of

a two dimensional frame for the spatial measures, these measures were calculated on

the one dimensional temporal luminance of single pixels. The two recently published

sharpness measures have been shown to be useful measures of image content, and

are available from the CPIQ lab home page [147, 148]. The Magnitude spectra slope

and intercept represent the amount of mask content at different spatial frequencies.

The DCT band measurements were found by converting the frames to the frequency

domain and removing all content that was not in either the DCT basis function of the

target, or one more or less than the horizontal or vertical components of the target

for the nearest neighbor case, then returning the frame to the spatial domain and

calculating either RMS contrast or kurtosis.

To collapse these measurements into single numbers describing mask content, we

calculated either the mean, 2-norm, 5-norm, or maximum of individual measurements.

2 As shown in Table 6.1, the list of candidates contained both spatial and temporal

measures of video content. Spatial measures were calculated on a frame by frame ba-

sis, while temporal measures were calculated on a pixel by pixel basis. The exception

is the VQEG Temporal Perceptual Information, where the calculation is based on the

standard deviation of the difference image [149]. This measure is then collapsed like

other spatial measurements.

Each measurement, after collapsing, was evaluated as a model input after some

treatment. In Fig. 5.3, the data appears to suggest that when target spatial or

2Selecting the maximum value out of a set of measurements was suggested by VQEG. [149]
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Table 6.1: List of video measurements explored as additional inputs for a linear

regression model to predict masked target detectability thresholds. The right column

presents the processing time in seconds to calculate each measurement on all 90 frames

of each of the eight masks on a standard desktop computer.

Measurement name Time (sec)

VQEG Spatial Perceptual Information 2.50

Spatial Standard Deviation 1.58

Spatial Skewness 2.78

Spatial Kurtosis 2.74

Spatial Edge Density 15.33

Spatial Entropy 1.73

Spatial Local Entropy 17.69

Spatial Magnitude Slope 7.77

Spatial Magnitude Intercept 7.75

Spatial FISH Sharpness 4.52

Spatial S3 Sharpness 918.54

Spatial Michaelson Contrast 1.37

Spatial RMS Contrast 1.58

Spatial DCT Band RMS Contrast 108.05

Spatial DCT Band Kurtosis 108.05

Spatial DCT Band RMS Contrast Nearest Neighbor 108.05

Spatial DCT Band Kurtosis Nearest Neighbor 108.05

VQEG Temporal Perceptual Information 1.65

Temporal Standard Deviation 2.54

Temporal Skewness 6.25

Temporal Kurtosis 6.22
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temporal frequencies increase, masking the targets appears to have less effect on

detectability contrast thresholds. Considering this, measurements of video content

were evaluated as inputs after dividing them by either target spatial frequency alone,

or the sum of the target temporal and spatial frequency. 3 The other two model

input treatments were either as is, or squared.

Video content measures, collapsing methods, and measurement treatments, were

included in a four input model, using one video content measure in addition to TSF ,

TTF , and (TSF × TTF ). Coefficients for these models were found using a single

pass of the k-fold-cross-validation method, and the resulting average coefficients were

used to predict all masked target detectability contrast thresholds. Goodness of fit

for the various models is reported in Appendix B.

From Appendix B, the single mask content measure resulting in the best fit of

the measured data was spatial standard deviation. Table 6.2 repeats the spatial

standard deviation table from Appendix B. Table 6.2 shows the PCC, SROCC, and

RMSE between model predictions and target detectability contrast thresholds for a

four input model for all collapsing methods and measurement treatments.

Observe in Table 6.2 that adding a single measure of mask content could make a

significant improvement to the agreement between model predictions and measured

data. However, this improvement is dependent on both how the measurement was

collapsed over time, as well as how the measurement was treated before inclusion in

the model. The data in Table 6.2 also suggests that the addition of one mask content

measure may not fully explain all variations in masked target detectability contrast

thresholds.

As shown in Table 6.2, changing how the frame by frame measurements were col-

lapsed into a single measurement did not make a significant difference in overall model

3The sum, and not the product, of the target temporal and spatial frequencies was used as the

denominator to avoid division by zero.
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Table 6.2: Goodness of fit between masked target detectability contrast thresholds

and no reference linear regression model predictions using model inputs of TSF , TTF ,

(TSF × TTF ), and the mask measurement of video spatial standard deviation. The

first column identifies how the measure was collapsed. For spatial standard deviation,

the measure of each frame was found, and then this measurement was collapsed over

time by calculating either the mean, 2-norm, 5-norm, or maximum of all individual

frame measurements. The third column lists the fitness scores when the measurement

was considered as the fourth input to the linear model without any additional treat-

ment. The fourth column lists the fitness scores when the measurement was squared

before inclusion in the model. The fifth column lists fitness scores when the measure-

ment was divided by target spatial frequency before inclusion. The sixth column lists

fitness scores when the measurement was divided by the sum of the target spatial

frequency and target temporal frequency.

Video Spatial Standard Deviation

Clock Time (sec): 1.58

x x2 x/TSF x/(TSF + TTF )

Average PCC 0.81 0.76 0.74 0.70

SROCC 0.81 0.75 0.74 0.70

RMSE 0.44 0.50 0.51 0.54

2-Norm PCC 0.81 0.76 0.74 0.70

SROCC 0.80 0.75 0.74 0.70

RMSE 0.44 0.50 0.51 0.54

5-Norm PCC 0.81 0.76 0.74 0.70

SROCC 0.80 0.75 0.74 0.70

RMSE 0.45 0.50 0.51 0.54

Max PCC 0.80 0.75 0.73 0.69

SRCOO 0.79 0.74 0.73 0.69

RMSE 0.46 0.50 0.52 0.55
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performance. This can also be seen in Appendix B. Taking the average PCC scores

across all video measurements and all measurement treatments, using the average to

collapse measurements provided correlations that were better than using the 2-Norm

method by 0.002, 5-Norm method by 0.003, and maximum method by 0.006.

Observe in Table 6.2 that changing the measurement treatment can change the

ability of the model to use the measurement to predict target detectability contrast

thresholds. For the video spatial property of frame standard deviation, squaring the

measurement was the least detrimental. However, when frame spatial standard devi-

ation was first collapsed over time by finding selecting the maximum measurement,

then divided by the sum of target spatial and temporal frequencies, the result was a

model prediction that was little better than the prediction using only target proper-

ties. As shown in Appendix B, looking at the average PCC scores across all video

measurements and all collapsing methods, using the measurement without a treat-

ment was better than squaring the measurement by 0.003, better than dividing by

the target spatial frequency by 0.022, and better than dividing by the product of the

target spatial and temporal frequencies by 0.017.

Some useful insights can be found by examining this four input model more closely,

after all model inputs were normalized. The k-fold-cross-validation method was used

to compare more than twenty versions of three and four input linear models that

included the video content measure of spatial standard deviation averaged over time

as an input. The best coefficients and fit scores from this comparison are listed in

Table 6.3. 4 Table 6.3 shows model fit performance on masked and unmasked target

detectability contrast thresholds, and provides the coefficients for normalized inputs

for those linear models. The data in Table 6.3 suggests that information about mask

content may be useful in predicting masked target detectability contrast thresholds.

4There was a slight improvement in model fit performance scores in comparison to Table 6.2

when there were more than 20 models of the same form to choose from.
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Table 6.3: Summary of no reference linear regression model coefficients and goodness

of fit between model predictions and measured data for both masked and unmasked

target detectability. The variable P in the two right columns signifies the mask prop-

erty measurement of video spatial standard deviation. Note that the two and three

input models using only target property information can explain most of the variation

in unmasked target detectability thresholds. Also note that the four input model that

includes video spatial standard deviation as an input does well for explaining most

of the variation in masked target detectability thresholds. However, the four input

model does not perform as well in predicting masked thresholds as the two input

model does in prediction unmasked thresholds.

Unmasked Masked

input count 2 3 2 3 2 + P 3 + P

fit PCC 0.961 0.964 0.684 0.690 0.812 0.818

SROCC 0.958 0.961 0.672 0.673 0.806 0.807

RMSE 0.266 0.258 0.554 0.550 0.444 0.437

coefficient constant -7.169 -7.012 -4.460 -4.355 -2.901 -2.793

TSF 2.348 2.762 1.182 1.387 1.154 1.364

TTF 1.656 2.286 1.040 1.356 1.076 1.397

(TSF × TTF ) -1.359 -0.703 -0.714

P -1.079 -1.080
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Observe from Table 6.3 that the target property coefficients are similar for all

models of masked target detectability contrast thresholds. However, the model co-

efficients for the mask property inputs are negative in sign. This suggests that as

the average frame standard deviation increases, masked target detectability contrast

thresholds are going to decrease. Said differently, this appears to suggests that videos

that have a more narrow distribution of brightness are more likely to cause masked

target detectability contrast thresholds to be higher. This seems somewhat counter

intuitive. The mask Cactus has a larger average frame standard deviation than the

blank gray frame used for the unmasked condition, however, target detectability con-

trast thresholds for targets presented with the mask Cactus were generally higher.

Figure 6.1 shows the scatter plot of target detectability contrast thresholds over

average video spatial standard deviation. Observe from Fig. 6.1 that targets shown

with masks having higher average video spatial standard deviation tend to have lower

masked target detectability contrast thresholds.

As shown in Fig. 6.1 (a), average video spatial standard deviation by itself does

not provide a very clear explanation of the variations in target detectability contrast

thresholds. It is possible that this is in part due to variations in masked target de-

tectability contrast thresholds due to changes in target spatial and temporal frequen-

cies. However, when only one target spatial and temporal frequency is considered,

the relationship between target detectability contrast thresholds and average video

spatial standard deviation is not much more evident. Figure 6.1 (b) shows the scatter

plot of target detectability contrast thresholds over average video spatial standard

deviation for only one target, DCT [0,0], with a temporal frequency of 0 Hz. Note

that target detectability for this target spatial and temporal frequency should be the

most influenced by mask content.

Observe from Fig. 6.1 (b) that for a single target spatial and temporal frequency,

target detectability contrast thresholds do not appear to be clearly dependent on
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Figure 6.1: Target detectability contrast threshold estimates plotted over average

video spatial standard deviation. Plot (a) shows thresholds for all targets, while (b)

is for the target DCT [0,0] at 0 Hz. The equation for the line in (a) is Threshold

= -0.009 × average spatial standard deviation + -1.17, and the adjusted R2 of this

model to the data was 0.06. The equation for the line in (b) is Threshold = 0.002 ×

average spatial standard deviation + -1.93, and the adjusted R2 of this model to the

data was -0.14.
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average video spatial standard deviation. The R2 values shown in both figures are

quite low, and the slope of the trend lines through the data is also quite small. The

data in Fig. 6.1 appear to suggest that, although including average video spatial

standard deviation as a fourth input to the linear model improves the model fit

of masked target detectability contrast thresholds, the mask content measurement

by itself may not be an effective predictor of masked target detectability contrast

thresholds.

6.2 Complexity analysis of no-reference linear regression modeling of

masked target detectability with multiple measures of mask content

This Section shows how well models including target properties and multiple measures

of video content can predict measured masked target detectability contrast thresh-

olds. This is an extension of the linear model loosely fashioned after the work of

Watson, Hu, and McGowan [6]. A form of the greedy algorithm was employed to se-

lect additional mask content measures as model regressors that would most increase

goodness of fit, including higher correlations coefficients and lower prediction errors.

The starting point for the summary model was a three input model, with inputs of

target spatial frequency, target temporal frequency, and average video spatial stan-

dard deviation. The n + 1 model used the previous inputs, as well as the additional

input that most improved the model prediction goodness of fit. Table 6.4 reports

PCC, SROCC, and RMSE, as well as an overall fitness score, OFSt, for models with

two to fourteen inputs.

The time weighted overall fitness score, OFSt, was a cost function, with discounts

for higher correlation scores, and penalties for larger RMSE and processing time. The

time weighted cost function was defined as: OFSt = 2−PCC−SROCC+RMSE+

ω × EFR, where ω was a fitting factor of 1/1000, and EFR was the effective frame

processing frequency of video content measure calculations. The parameter ω was
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subjectively chosen to benefit models who had an EFR above the frame rate at

which experiment stimuli were shown, which was 120 Hz. OFSt represents the cost

for performance, where the goal is the best ratio of performance to cost. OFSt could

be reduced by having a larger PCC, larger SROCC, smaller RMSE, or smaller required

processing time for calculations.

Observe in Table 6.4 that every additional measure of mask content improved the

goodness of fit of the model predictions to the masked target detectability contrast

threshold data. When the number of model inputs was smallest, the improvement

due to adding another term was larger. However, as the number of inputs grew, the

improvement due to additional terms was reduced. The diminishing returns on model

performance improvement for increasing model complexity is shown more clearly in

Fig. 6.2.

Also shown in Table 6.4, the best overall fitness score, OFSt, came from the

four input model. The four inputs for this model were the target spatial frequency,

target temporal frequency, and two different collapsing methods and treatments of the

video content measurement spatial standard deviation. Model inputs were selected by

choosing the input resulting in the largest increase in PCC, SROCC, and RMSE, and

the first two measures of video content resulting in the largest improvement happened

to both be variations of spatial standard deviation. Because only the processing

time due to the frame by frame measurement was considered, no additional time

penalty was added for the collapsing or treatment of measures. The model prediction

improved without a decrease in the effective frame rate. Because the remaining

additions to the model came at a significant measurement calculation time penalty,

the four input model had the most preferred OFSt. Figure 6.2 shows how the model

fit of the measured data improved as the number of model inputs increased.

Figure 6.2 plots two measures of model performance over model complexity. The

first measure is the combination of PCC + SROCC - RMSE. The second measure is
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Table 6.4: Goodness of fit for predictions from no reference linear regression models

with 2 to 14 inputs. The left column shows the number of inputs for the no reference

linear regression model, beginning with two target property inputs, TSF and TTF .

Using the greedy method to chose the next model input that would most increase

goodness of fit, the model was grown by adding one video content measure at a time as

an additional model input. Each additional input is listed in the second column from

the left. The third column from the left lists video content measurement type, either

spatial, (s), or temporal (t). The fourth column from the left lists the measurement

collapsing method. The fifth column from the left lists the regressor treatment. The

four right columns list the goodness of the model fit. These were found by first using

a single pass through the k-fold-cross-validation method to find one set of model

coefficients, and then using those coefficients to fit the model to the entire data set.

video property type collapse treatment PCC SROCC RMSE OFSt

2 n/a n/a n/a 0.684 0.672 0.554 n/a

3 std. deviation s mean none 0.812 0.806 0.444 0.370

4 std. deviation s 5 norm squared 0.859 0.858 0.388 0.215

5 edge density s mean /(SF+TF) 0.887 0.890 0.350 0.531

6 std. deviation t max squared 0.892 0.896 0.343 0.518

7 VQEG P I t 2 norm /SF 0.897 0.900 0.336 0.505

8 kurtosis s 5 norm /SF 0.905 0.911 0.323 0.477

9 std. deviation s 2 norm squared 0.907 0.913 0.320 0.471

10 Michaelson cont. s mean /(SF+TF) 0.908 0.913 0.318 0.468

11 edge density s max none 0.910 0.915 0.314 0.460

12 DCT band RMSC s mean squared 0.911 0.916 0.313 0.480

13 DCT band RMSC s max /SF 0.913 0.917 0.310 0.475

14 skewness t mean /(SF+TF) 0.914 0.918 0.309 0.472
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OFSt, the cost function that incorporates goodness of fit and processing time.

Observe in Fig. 6.2 that the plot of goodness of fit versus model complexity

appears to be somewhat asymptotic. This may suggest that there is no combination

of model inputs that would provide the ideal PCC of 1, SROCC of 1, and RMSE of 0.

This may be due to the lack of proper model inputs. This may also be due to noise in

the collected data from human subjects. This may also indicate that the form of the

model being used is incorrect, and may require the consideration of other interactions

between measures of mask content and target properties.

Also shown in Fig. 6.2, the plot of OFSt versus model complexity also appears to

be somewhat asymptotic. The calculation of frame by frame edge density took about

fifteen seconds for all eight videos. Edge density was the third additional property,

and because of the significant decrease in the EFR, after four inputs, OFS essentially

became 2-PCC - SROCC + RMSE.

The selection of the best summary model still remains an open question. Table 6.3

presents four possible equations to summarize the masked target detectability contrast

thresholds. Depending on the application, this list of model inputs and coefficients

may be most useful. Table 6.4 presented a list of inputs that would result in the

fastest improvement in the goodness of fit of the model prediction to the measured

data. Although the list in Table 6.4 may provide a reasonable fit of the measured

data, the greedy algorithm selections based on PCC, SROCC, and RMSE only may

not provide the most efficient summaries of the measured data.

Using a modification of the greedy method to select additional inputs based on

largest improvements to the OFSt would provide a slightly more efficient list of in-

puts. The data in Table 6.4 appears to suggest the first four inputs should be target

spatial frequency, target temporal frequency, average spatial standard deviation, and

the 5-norm of spatial standard deviation squared. Using spatial standard deviation

as the fifth term allows an improvement of model fit to the measured data without
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calculating a new measure of video content. Using the maximum frame spatial stan-

dard deviation divided by the sum of target spatial and temporal frequencies as the

fifth model input provides a PCC of 0.882, SROCC of 0.879, and RMSE of 0.359,

and an OFSt of 0.143.

Given that every collapsing method and measurement treatment provides a slightly

different input vector, and thus would result in a slight improvement in goodness of

fit, the next additional inputs are likely to be only slight variations of average spatial

standard deviation. 1 This is not to say that spatial standard deviation is the best

measure of video content to predict variations in masked target detectability contrast

thresholds. 2 This data may only suggest that spatial standard deviation could be

a useful tool in a more detailed examination of masked target detectability contrast

thresholds. Also, the repetition of a single measure of mask content with different

collapsing methods and measurement treatments might suggest that collapsing meth-

ods and measurement treatments may provide useful information about the human

visual system for later consideration.

A better summary of the data might come from a choice that is somewhere between

the model with the best PCC, SROCC, and RMSE scores and the model that makes

most efficient use of video content measures. A better combination of model inputs

could have come from an optimization search that could change all model inputs at

once, that was not limited to only adding one input at a time. Other measures of

mask content not included in Table 6.1 may also be more useful in quantifying mask

content. Other forms of models, such as neural networks, could have provided better

fits of the data. However, even the perfect selection of model form and the best set

1The sixth input suggested by the OFS greedy method was the maximum frame spatial standard

deviation divided by target spatial frequency, and the resulting six input model provided a PCC of

0.882, SROCC of 0.879, and RMSE of 0.358, and an OFSt of 0.142.
2It should be noted that other measures, such as RMS contrast, have some commonality in

calculations with spatial standard deviation.

117



of inputs should not be tuned to provide an exact fit of the data, given the natural

variations that occur in such data, collected from experiments with human subjects.

6.3 Summary of masked target detectability with a no-reference linear

regression model

The first seven inputs listed in Table 6.4 appear to provide a reasonable fit of the data.

The effective frame rate to calculate these measures is more than 30 Hz on a typical

desktop machine. The list includes measures of both mask spatial and temporal

content. This list does not define the only measures important to classifying mask

content. Using the k-fold cross validation method to chose between at least twenty

different sets of coefficients for this model form, the set of coefficients providing the

best fit were

V CTmasked = −5.801 + 1.703× TSF + 1.316× TTF + ...

−3.084× P1 + 2.299× P2 + 1.322× P3 +−0.270× P4 + 0.476× P5, (6.1)

where P1 throup P5 are the first five properties listed in Table 6.4.

Observe the coefficients in Eq. 6.1. The coefficients for TSF and TTF are

positive, suggesting that larger target spatial or temporal frequencies predict higher

masked target detectability contrast thresholds. The coefficients for P1 and P2 are

opposite in sign. P1 and P2 were different collapsing methods and treatments of

spatial standard deviation. This may suggest that the modeling process is using the

minor differences in these two vectors to balance each other out. Perhaps if these

two measurements were combined into a single input, the coefficient of this single

term would be smaller. Note also from Table 6.3 that when only one spatial standard

deviation input was included, the coefficient for spatial standard deviation was smaller

than the coefficients for the target property terms.
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Also shown in Eq. 6.1, for the five coefficients for the video content measures,

two coefficients are negative. This might also suggest that the modeling process may

not provide coefficients that clearly signify the importance of the individual inputs in

predicting masked target detectability thresholds. The modeling process might only

be using the small differences in video content measures to make slight improvements

in the fit of the model, without providing explicit identification of key predictors for

masked target detectability contrast thresholds.

For all video property calculations, each natural video mask pixel value was first

converted to luminance using Eq. 3.10. P1 and P2 were based on video spatial

standard deviation, V SSD, which was calculated on a frame by frame basis according

to

V SSD =

(
1

n− 1

n∑
i=1

(xi − x̄)2

) 1
2

, (6.2)

were n is the number of pixels in each frame, and x̄ was the average luminance of

each frame of the mask. 1 For P1, this value was then average standard deviation

over all frames. For P2, the 5-norm of the standard deviation from all frames for each

mask was then squared.

P3 was video spatial edge density, V SED, which was calculated on a frame by

frame basis. To calculate V SED, pixels belonging to edges were identified using

Canny edge detection. 2 For P3, the average V SED over all the frames was divided

by the sum of target spatial and temporal frequency.

P4 was the standard deviation of the luminance over time for all pixels. 3 Temporal

1Standard deviation of the frames was calculated using the MATLAB function std2.
2The Canny edge detection was performed using the MATLAB function edge, employing the

Canny method, with sensitivity thresholds of [0.08, 0.2], and a standard deviation of the Gaussian

filter of 4.5.
3The luminance of each pixel over the duration of the 90 frames was converted into a vector. The

standard deviation of this vector was calculated using the MATLAB function std.
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standard deviation was as defined by

V TSD =

(
1

q

q∑
i=1

(PLi − P̄L)2

)1/2

, (6.3)

were q was the number of pixels in each frame, PL was the luminance of each pixel

in each frame, and P̄L was the average luminance of each pixel over all frames of the

mask. For P4, the maximum V TSD for each mask was squared.

P5 was the video quality experts group measure of temporal perceptual informa-

tion, V QEG P It. This measure is the standard deviation of the pixel luminance of

each difference frame, where the difference frame is the next frame minus the cur-

rent frame in a sequence of frames for a video [149]. For P5, the 2 norm of all these

measurements for each mask was then divided by target spatial frequency. 4

The information in Table 6.4 suggests a strong correlation between several model

predictions and measured target detectability contrast thresholds. From Table 4.1,

the PCC from one subject to the next on average was 0.87±0.08. Table 6.4 shows the

PCC for models with five or more inputs to be above that score. The SROCC from

one subject to the next on average was 0.85±0.10, and models with four or more

inputs had better scores for SROCC. The RMSE from one subject to the next on

average was 0.58±0.23, and all models of masked data had better scores for RMSE.

This comparison suggests that there is as much agreement between subjects as there

was agreement between the modeled and measured data. This may suggest that the

proposed seven input model may be at the upper limit of correlation and lower limit

of prediction error that can be justified by this set of target detectability contrast

thresholds.

Although this model provides a PCC of 0.897, SROCC of 0.900, and RMSE of

0.336, it is possible that not all model inputs significantly improve the prediction’s fit

4Before normalization, the maximum measure for P1 was 75.5, and the minimum was 11.08. The

maximum and minimum for P2 were 5,743.71 and 164.30, for P3 were 394.25 and 7.19, for P4 were

48.29 and 6.28, and for P5 were 6.74 and 0.10.
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of modeled data. The pValue for P4 was 0.004, and the pValue for P5 was 0.07, and

the coefficients for P4 and P5 were also the smallest in Eq. 6.1. This suggests these

two additions to the equation were the least significant in matching the measured

data. This can also be seen in Table 6.4, were the first five additional model inputs

resulted in increases of PCC of 0.128, 0.048, 0.028, 0.005, and 0.004 respectively. This

may suggest that the first five terms provide as good of a summary of the data as this

form of model can provide. However, this may suggest that target properties are most

important in predicting target detectability contrast thresholds, while spatial mask

content is still significant, but less important, and finally mask temporal content may

not be significant in predicting masked target detectability contrast thresholds.

Figures 6.3 and 6.4 show how well the model predictions matched masked tar-

get detectability contrast thresholds. Figure 6.3 demonstrates how predictions and

measurements of masked target detectability change as target spatial frequencies in-

crease. The horizontal axis for the top row of plots in Fig. 6.3 are target spatial

frequencies, increasing from DCT [0,0] to DCT [0,7], representing targets with verti-

cal orientation. The horizontal axis for the bottom row of plots in Fig. 6.3 are target

spatial frequencies, increasing from DCT [0,0] to DCT [7,7], representing targets with

diagonal orientation.

Observe in Fig. 6.3 that the seven input model provides a reasonable prediction

of the measured target detectability thresholds. The shape and elevation of many of

the plots in Fig. 6.3 appear to be similar for both measurements and predictions.

Note that the model predicts a significant difference in thresholds when masks are

presented with the mask Cactus. This is in line with observations from Sections 4.1

and 4.2.

Also shown in Fig. 6.3, there is noticeable separation between plots of predictions

and measured data in all three plots. At some target spatial and temporal frequencies,

predictions are quite good. However, in Fig. 6.3 (c) and (f), there appears to be
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Figure 6.3: Measured and modeled target detectability contrast thresholds plotted

over target spatial frequency, measured in c/deg. This figure shows the measured

target detectability contrast thresholds in black and modeled threshold estimates in

gray. The specific target temporal frequency examined for each plot is listed in the

upper right corner of each plot. The model predictions come from the model described

in Eq. 6.1.
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nearly a log unit of difference between the predicted and measured thresholds for the

masking condition Cactus at temporal frequencies of 30 Hz and spatial frequencies of

16.1 cyc/deg and 22.6 cyc/deg. The seven input model does not perfectly predict all

target spatial frequencies for any masking condition. However, the model was able to

correctly predict some differences in the masking abilities of these natural videos.

Figure 6.4 plots measured and modeled target detectability contrast thresholds

versus target temporal frequencies. Thresholds for three masking conditions are plot-

ted for three target basis functions, DCT [0,0], [0,7], and [3,3] in Fig. 6.4 (a) and

(d), (b) and (e), and (c) and(f) respectively. The axis in the top and bottom rows of

Fig. 6.4 are the same. The plots for Fig. 6.4 were split into two rows to more clearly

display differences between masking conditions.

Observe in Fig. 6.4 that the model predictions appear to be in line with measured

masked target detectability contrast thresholds. The plots in Fig. 6.4 suggest the

model does not perfectly predict target detectability contrast thresholds for any one

masking condition or target temporal or spatial frequency. Rather the model pro-

vides a reasonable prediction of measured data for all target properties and masking

conditions.

Also shown in Fig. 6.4, there are significant differences in model predictions and

measured thresholds. In Fig. 6.4 (b), for a target temporal frequency of 30 Hz, the

prediction for a threshold masked by Cactus is nearly a long unit higher than the

measurement. Some of the jagged plots of measured target detectability contrast

thresholds may suggest that some of these differences may be due to noise from the

data collection process. However, it is also possible that the seven input model is

not sufficient to adequately capture all the interactions between target properties

and mask content measures to properly predict masked target detectability contrast

thresholds.

As shown in Fig.s 6.3 and 6.4, the model predictions do not appear to match any
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Figure 6.4: Measured and modeled target detectability contrast threshold estimates

plotted over target temporal frequency, measured in Hz. This figure shows the mea-

sured target detectability contrast thresholds in black and modeled threshold esti-

mates in gray. The specific target spatial frequency examined for each plot is listed

in the upper right corner of each plot. The model predictions come from the model

described in Eq. 6.1.
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one mask perfectly, however the model appears to predict most of the thresholds for

various masking conditions reasonably well. This is also demonstrated by the data

presented in Table 6.5. Table 6.5 shows correlation scores between model predictions

and measured data for individual masks.

Table 6.5: Goodness of fit between measured masked target detectability and predic-

tions from no reference linear regression model defined by Eq. 6.1. The left column

lists the masking condition. The first row of scores is for all masking conditions, while

remaining rows are for individual masking conditions.

PCC SROCC RMSE slope intercept

Overall 0.90 0.90 0.34 0.00 1.00

Flowervase 0.91 0.82 0.25 -0.56 0.68

Cactus 0.85 0.83 0.28 -0.15 0.76

Hands 0.88 0.86 0.29 -0.57 0.64

Kimono 0.90 0.89 0.27 -0.43 0.74

Lemur 0.85 0.84 0.24 0.10 1.02

Timelapse 0.90 0.82 0.34 -0.60 0.59

Typing 0.90 0.90 0.30 -0.87 0.53

Waterfall 0.90 0.73 0.27 -0.52 0.73

Observe in Table 6.5 that all values for PCC and SROCC between predictions and

measurements are mostly equal. Also shown in Table 6.5, RMSE for all individual

masking conditions was mostly equal. The masking condition Timelapse was asso-

ciated with the highest RMSE, while the masking condition Lemur was associated

with the smallest RMSE. Predictions and measurements associated with these two

masking conditions can be seen in Fig. 6.3 (d)-(f). The predictions and measurements

were obviously closer for the masking condition Lemur, however, the predictions were

not perfectly matched to the measurements. Also, for the masking condition Time-
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lapse, the predictions and measurements had similarly shaped plots for some ranges

of target spatial frequencies. This suggests the modeling process did not favor any

one masking condition more than others.

It is interesting that the mask Lemur was associated with the smaller SROCC

values and at the same time, smaller RMSE values. This suggests that for some

masking conditions the process was able to be closer in magnitude, but off more in

rank order. Also note that for the mask Waterfall, while the PCC value was near

the highest in Table 6.5, the SROCC value was the lowest. This may be in part due

to the unique concave up shape of the plots of Waterfall masked target detectability

thresholds, as shown in Fig. 6.3 (a) and (b). This also suggests the modeling process

did not optimize coefficients for any one particular measure of goodness of fit.

The models presented in this Sect. provide a reasonable summary of the masked

target detectability contrast threshold data collected for this dissertation. The mod-

eling process discussed in this Sect. also provides some useful underlying information

from the measured data. It appears that the measure of spatial standard deviation

may be of significance. Further examination of masked target detectability may bene-

fit from experiments that control mask standard deviation, which would provide more

direct information about the relationships between mask content, target spatial and

temporal frequency, and target detectability. Additionally, the data from this Sect.

appears to suggest that the question of how to collapse video content measurements

into single scores may also merit closer examination.

The seven input linear model provided more meaningful analysis of our data,

and provided a concise summary of our results. However, additional research is

needed in the area of target detectability prediction. Table 6.1 listed the 21 video

content measurements we considered. Several different combinations of video content

measurement were able to produce similar results to the ones detailed in this Sect.

Additionally, different models with different numbers of inputs were also able to
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produce similar results.

6.4 No-reference modeling discussion

This Sect. discusses our findings on linear regression model predictions of masked

target detectability contrast thresholds. Observe from Fig. 6.3 and 6.4, and Table 6.5

that a linear regression model provided a reasonable prediction of the measured target

detectability contrast thresholds. Masks associated with similar target detectability

contrast thresholds had similar model predicted contrast thresholds. Targets shown

with mask Cactus typically had higher detectability contrast thresholds, and this is

also reflected in model predicted contrast thresholds. Table 6.5 shows that, although

the model generalized to the group well, it did not provide an excellent fit for any

particular mask. Additionally, the model did not provide exact fits for all plots of the

data versus either target spatial or temporal frequencies

There are some clear differences between some of the measured and modeled target

detectability contrast thresholds in Fig. 6.3 and 6.4. The most noticeable differences

are for the contrast thresholds associated with the most exceptional mask tested, Cac-

tus. In some cases, the difference between modeled and measured contrast thresholds

suggests there may be suspect measurements due to the noisy nature of data col-

lected from live subjects. But in general, there was no single relationship between

masked target detectability contrast thresholds and target temporal frequencies or

target spatial frequencies. The data in Fig. 6.3 and 6.4 show there was no simple

curve to plot all target detectability contrast thresholds over all target temporal fre-

quencies or spatial frequencies that would match well for all masks. This can also

be seen in Fig. 5.3, which shows that the different masks caused different target de-

tectability contrast threshold elevations at different target frequencies. This suggests

that the target detectability contrast threshold model may need to be a more com-

plicated function of target temporal properties, target spatial properties, and mask
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properties. It is also possible that better models would be piecewise defined based on

many target and mask properties.

There are many approaches to data modeling, including functional models, bio-

logically inspired models, and physiologically plausible models. This is a reflection

of the level of effort that necessary to provide the proper models used in the many

different areas related to human vision and media processing. The functional model

provided is only a starting point down this path. This model uses the inputs to best

predict masked target detectability contrast thresholds, and does not always use the

inputs in the most intuitive manner.

As important as what type of model to implement is the decision of what inputs

to use for the model. It should be noted that any single measure, such as either of

the useful measures provided by the video quality experts group (VQEG) to estimate

video temporal and spatial content [149], may not sufficiently explain the changes in

target detectability contrast thresholds due to differences in natural video masks. Fig-

ure 6.5 shows the temporal perceptual information measurement from VQEG plotted

against the spatial perceptual information measurement from VQEG for each video,

and provides a rough classification of the content in each natural video.

Observe from Fig. 6.5 that the eight masks have a range of spatial and temporal

content. The data in Fig. 6.5 suggest that the mask Cactus is not unique in either

spatial or temporal content. This does not appear to be in agreement with our

previous results, where the mask Cactus appeared to possess unique masking abilities.

The data in this Sect. appear to suggest that individual measures of mask content

are not yet well defined. The plots in this chapter show that masked target detectabil-

ity contrast thresholds will change depending on target spatial frequencies and target

temporal frequencies. Any model that does not consider the target being masked may

not be able to effectively predict masking capabilities. Although future measures of

mask content will help quantify effectiveness in raising target detectability contrast
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thresholds, due to the complexity of the interactions between the spatio-temporal tar-

get properties and the content of the natural video masks, target properties appear to

always play a vital role in predicting target detectability contrast thresholds. These

results suggest a need for further research in measuring mask content and modeling

of natural video masked target detectability thresholds. Future work is discussed in

Chapter 8.

6.5 Full reference image and video quality assessment algorithm

predictions of masked target detectability contrast thresholds

Full-reference quality assessment algorithms were also used to predict target de-

tectability contrast thresholds. The algorithms provided quality scores for distorted

videos. For each algorithm, a single score was selected as a presumed quality thresh-

old score. Using a bisection search method, a level of target contrast for each video

was found that would provide the appropriate quality threshold score, and the target

contrast of that distorted video was recorded as the prediction. To select the desired

quality threshold scores, the algorithms were first used to provide quality scores for

all masked distortion videos at the target detectability contrast threshold level, as

measured by the human subjects. The quality threshold score was set as the average

of all quality scores from all mask and target combinations.1

The bisection search had three possible terminations: if the measured quality

score was within 0.5% of the threshold quality score, except for SSIM, where the

limit was 0.01%; if the target contrast was less that 2% of the possible range of

target contrast, usually amounting to about one or two tenths of a dB; and if the

quality threshold score was outside the range of possible quality scores for the range

of possible target contrast. At the lower limit of target contrast, so few pixels in so

1Because the tools used are not adaptive, using them two produce multiple quality scores did not

result in any adaptation or tuning allowing improvement in prediction performance.

130



few frames had distortions that rounding errors would consume any measured target

contrast. The upper limit of target contrast is when the distortions were so severe

that they saturate the capabilities of the display, allowing no further increase in target

contrast. To begin the bisection search, the algorithms provided quality scores for

distortions at the upper and lower limits of target contrast. If the quality threshold

score was not bounded by the upper and lower limit quality scores, the search was

terminated, and a target contrast prediction was made using only the maximum and

minimum quality scores and contrast thresholds.

Full reference quality assessment algorithms of varying complexity were examined.

The mean squared error, (MSE) score was calculated according to

MSE =
1

m

m∑
i=1

(
n∑

j=1

L(Ì − I)

)2

, (6.4)

where m is the number of frames, n is the number of pixels, L signifies that the pixel

differences were converted to luminance differences according to Eq. 3.10, and Ì is

defined as Ì = B + I, were B is the target frame and I is the mask frame. The peak

signal-to-noise ratio, (PSNR) score was calculated according to

PSNR =
1

m

m∑
i=1

(20 ∗ log10(245)− 10 ∗ log10(MSE)), (6.5)

where 245 was the maximum pixel value allowed in any stimuli.2 The scores for

structural similarity, (SSIM)3, [150] visual signal-to-noise ratio (VSNR)4, [151] most

apparent distortion, (MAD)5, and a contrast gain control model, (CGCM)6[69, 45],

were calculated on a frame by frame basis, and then collapsed over time by averaging

2The calculations for MSE and PSNR were based on wikipedia.org/wiki/Peak signal to noise

ratio
3The SSIM Matlab code is available from: https://ece.uwaterloo.ca/ z70wang/research/ssim/
4The VSNRMatlab code is available from: http://foulard.ece.cornell.edu/dmc27/vsnr/vsnr.html.

Any VSNR score greater than 100 was clipped to 100.
5The MAD Matlab code is available from: http://vision.okstate.edu/mad/
6The CGCM was provided by Mushfiq Alam, as described in their recent publications. Any

CGCM score less than -100 was clipped to -100.
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the frame by frame scores. Due to time required to complete calculations, scores

for MAD and CGCM were calculated on frames 40-50 of the 90 frame stimuli. The

command line video quality metric (VQM) scores were calculated on .avi video files.

For VQM, the NTIA General Model score was calculated, the meaning of which, as

well as a comparison between PSNR, SSIM, and VQM, is summarized by Vranjes,

Rimac-Drlje, and Zagar. [152] 7

Table 6.6 provides a summary of the goodness of fit of the full reference qual-

ity assessment algorithm predictions and the measured target detectability contrast

thresholds. The fitness of these full reference quality assessment models was assessed

by measuring PCC, SROCC, and RMSE between quality assessment predictions and

measured target detectability log10 RMS contrast energy thresholds. 8 The second

column from the right of Table 6.6 details how many times the threshold score was

not bounded by the QA scores for the upper and lower limits of target distortion

levels. The right column of Table 6.6 details the full reference quality assessment

threshold quality score used for predicting target contrasts.

What Table 6.6 shows is that some of the full reference quality assessment al-

gorithms are able to provide an acceptable estimate of target detectability contrast

thresholds. The correlation coefficients for MAD are considerably better than SSIM,

however SSIM was significantly faster to compute. The current configuration of the

CGCM was the slowest score to calculate. However, it should be noted that the

7bitmaps were converted to .avi files using software from ffmpeg.org generat-

ing raw video with a UYVY422 pixel format. VQM software was downloaded from

http://www.its.bldrdoc.gov/resources/video-quality-research/guides-and-tutorials/cvqm-

overview.aspx. Because the command line software requires at least four seconds of video,

seven copies of the stimuli were generated, and then looped one after another.
8The PCC reported was a linear Pearson correlation coefficient calculation after a logistic fitting.

This was based on the work by N.D. Narvekar and L. J. Karam, CPBD Sharpness Metric Software,”

http://ivulab.asu.edu/Quality/CPBD.
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Table 6.6: Goodness of fit between measured masked target detectability contrast

thresholds and predictions from full reference quality assessment algorithms. The left

column lists the full reference quality assessment tool used to make the predictions.

The next three columns list the goodness of fit measurements PCC, SROCC, and

RMSE. The second column from the right lists how many times the desired threshold

quality score was not bounded by the quality scores provided by the quality assessment

algorithm for the upper and lower limits of displayable and measurable contrast. The

right column lists the threshold quality score used for each algorithm.

PCC SROCC RMSE outside threshold

MAD 0.67 0.65 0.94 0 (0%) 0.1087

CGCM 0.52 0.44 0.65 0 (0%) 1.000

SSIM 0.49 0.59 0.91 0 (0%) 0.9836

VSNR 0.12 -0.13 1.33 0 (0%) 45.5182

VQM 0.25 0.50 41.18 12 (4.9%) 0.0108

MSE 0.54 0.62 20.95 155 (63.0%) 1998.5102

PSNR 0.54 0.45 11.78 162 (65.9%) 20.0419

133



parameters inside the contrast gain control model could have been adjusted to per-

form faster, and to better fit the data. Also, the contrast gain control model has the

best biological plausibility out of the full reference models considered here. Further-

more, the contrast gain control model was not tuned to incorporate any temporal

information about the masks.

It should be noted for the full-reference quality assessment algorithms, as shown in

Table 6.6, that the best correlation coefficients and prediction errors for full-reference

quality assessment algorithms are worse than those for the two-regressor no-reference

model for fitting masked data. This may suggest the importance of target spatiotem-

poral information in predicting target detectability. This may also suggest that mod-

els tuned to the specific task of predicting target detectability perform better at

predicting target detectability than models that are tuned more for predicting more

general video quality. Also, this may suggest that our data relating masked thresh-

olds to target spatiotemporal frequencies could be used to improve the performance

of full-reference video quality assessment tools. Many consumers view either medium

or high quality video, in which few distortions are perceptible. It may be that the

automated video quality assessment algorithm research community would put our

target detectability threshold contrast data to good use.
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CHAPTER 7

FURTHER INVESTIGATIONS

This chapter presents a further investigation of some previous findings from this

dissertation. The chapter begins with a closer examination of how mask properties

can change target detectability contrast thresholds, including mask luminance, mask

contrast, and mask playback rate. Next, the chapter shows how a slight modification

of the targets to make them spatially correlated with mask content changes target

detectability contrast thresholds. Finally, the chapter revisits the examination of

mask playback rate with respect to the detectability of targets that are spatially

correlated with mask content. The data in this chapter came from: three sets of

trials for one expert subject; three sets of trials from one expert subject and two sets

of trials from an experienced subject; or three sets of trials from an expert subject,

two sets of trials from an experienced subject, and two sets of trials from a novice

subject. Weighted averages were still calculated according to Eq. 3.1 and Eq. 3.2.

The results of the modeling chapter show some correlation between mask content

and target detectability. The meaning of this chapter is to find more of a cause and

effect relationship between mask content and target detectability. To be clear, the

modeling chapter showed how a few details about masks helped explain variations in

target detectability, while this chapter examines how changing a few details about

the masks varies target detectability.
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7.1 Variations of mask properties and masked target detectability

This Sect. examines relationships between the individual mask properties of lumi-

nance, contrast, and playback rate and variations in masked target detectability con-

trast thresholds. The data in this section were collected using masks with controlled

contrast and luminance, as described in Subsect. 7.1.1. Previous work by Watson

[72], Chandler, Gaubatz, and Hemami [10], and Kelly [26] and Daly [24] suggest that

there are a few key mask properties to examine first. The three mask properties

that appear in many different models of vision are luminance, contrast, and motion.

This Sect. more closely examines the relationships between mask luminance, contrast

and playback rate and variations in masked target detectability contrast thresholds.

The method of this examination is to control these three properties while measuring

masked target detectability contrast thresholds.

7.1.1 Mask contrast and luminance adjustment

This Sect. describes how mask luminance and contrast are adjusted. Stimulus pre-

sented on a two dimensional display, such as an LCD screen, are luminance defined

form. The gray scale images in the masks used in this dissertation form shapes on the

display by making some points brighter than others. All stimuli used for our research

were luminance defined form.

To quantify mask luminance, first the mask pixel values were converted to lumi-

nance according to equation 3.10. Next, the average luminance of each mask frame

was found using the MATLAB function mean2. The average over all the frames for

each mask was then found using the MATLAB function mean. This was the measure

of average luminance for each mask. This information is plotted as the horizontal

axis of Fig. 7.1.

A closely related property to luminance is contrast. To quantify the contrast of

the masks, the RMS contrast of each frame of each mask was averaged together. The
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Figure 7.1: Mask average frame RMS contrast plotted over mask average frame lu-

minance. The horizontal axis has units of cd/m2. The vertical axis is average RMS

contrast of each mask. This plot shows how mask contrast and luminance are dis-

tributed.
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average contrast of each mask is plotted as the vertical axis of Fig. 7.1. The mask

RMS contrast for each frame is the standard deviation of the mask frame luminance

divided by the mean luminance of the mask frame. The standard deviation of the

mask frame was found using the MATLAB function std2. The mean luminance of

each mask frame was found using the MATLAB function mean2.

Fig. 7.1 shows that the average contrast and luminance of each video is different.

The mask Cactus consistently reduced target detectability more than any other mask.

However, Fig. 7.1 shows that the mask Cactus has average contrast and low luminance

in comparison to the other masks. It is interesting to note that although Lemur and

Kimono caused the same average elevation in detection thresholds, in Fig. 7.1 they

are at opposite ends of the graph. Also, the mask Lemur and Waterfall are close

in Fig. 7.1, however, Lemur was tied for the least average elevation, while the mask

Waterfall caused the second highest average elevation. There were no graphs with

both high luminance and high contrast.

The average contrast and average luminance of each mask from the experiment

is different. These differences make it difficult to discern if either of these properties

were related to masking elevations, or if there was some different factor contributing

to the differences in elevations due to individual masks. To quantify the effect of

mask luminance and contrast on target masking, all the masks were adjusted to have

the same average luminance and contrast values.

To adjust mask luminance, a single integer constant, αLuminance, was added to the

pixel value of each frame, according to

Luminance Adjusted Mask = αLuminance +Original Mask. (7.1)

The appropriate constant for each mask and average luminance was found by a direct

search method. When the constant became significant, and caused a sizable shift in

pixel values, either positive or negative, some pixels would saturate, and have values

outside the display capabilities of the monitor. These values would be clipped to stay
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within display limits. Pixel values less than 0 were made 0, and pixel values more

than 245 were made 245.

Changing average mask luminance can also change mask average contrast. Mask

contrast is a known contributor to masking effectiveness, and a resulting change in

thresholds may not be solely a factor of luminance unless mask contrast was also

controlled. Mask average contrast was adjusted according to

Contrast Adjusted Mask =

αContrast(Original Mask− original mask average)+

original mask average, (7.2)

as described by Chandler, Gaubatz, and Hemami [10]. In this method, first, the

average pixel value of each frame is calculated using the MATLAB function mean2.

Then the average of this number over all the frames is found. This is the original

mask average pixel value. To scale the contrast, first each frame pixel value has the

original mask average subtracted from it. Next each frame pixel value is multiplied by

the constant αContrast. Finally, the original mask average is added back to each scaled

frame pixel value. The advantage of equation 7.2 is that while contrast is scaled up

or down, mean luminance will change less.

The scaling factors αContrast and αLuminance were adjusted at the same time by

the method of direct search. In the direct search method, a luminance constant

and a contrast constant were selected. The luminance and contrast of each frame

were adjusted. The pixel values outside the displayable range were clipped to the

displayable limits. The luminance and contrast of the frame was calculated and

stored into vectors. This was repeated for all frames in the mask. The average of

the frame luminance and contrast vectors was found. If the either the luminance or

contrast were too high, a smaller constant was saved for the next iteration. Likewise,
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if either were too low, a larger constant was loaded for the next iteration. The step

sizes of the changes in constants were reduced in later iterations of the search.

In initial experiment setup, it was found that over adjusting mask luminance and

contrast can make the masks seem artificial, losing many finer spatial details, and

appearing cartoon like. This was most pronounced when contrast and luminance

were above average for the masks. Increasing the luminance of a mask caused less

of this unnatural distortion, and masks could still look mostly natural even with

mask average luminance values adjusted past 120 cd/m2. However, the same was not

true for contrast. Adjusting masks to a lower contrast level left the masks looking

washed out, but not cartoon like. Adjusting masks to a higher contrast level left

the mask looking like a binary cartoon of the original mask, made of only white

and dark pixels, with no pixel values in between 0 and 245. Also, when the masks

were adjusted to a higher luminance level, the contrast level resulting in the cartoon

appearance was lower. After an initial subjective evaluation of all masks at different

contrast and luminance levels, an acceptable set of contrast and luminance values

were selected for both the luminance and contrast experiments. All masks for the

luminance experiment were adjusted to an average luminance of 7.5, 15, 30, 60, and

120 candles per meter squared (cd/m2), with an average contrast of 0.3. All masks

for the contrast experiment were adjusted to an average contrast of 0.075, 0.15, 0.30,

0.60, and 0.120, and had a luminance of 30 cd/m2. All masks for for the playback rate

experiment had a luminance of 30 cd/m2 and a contrast of 0.3. Target detectability

contrast thresholds were measured for basis functions of DCT [0,0], [0,7], and [3,3],

with temporal frequencies of 0 Hz, 6 Hz, and 30 Hz.

It should be noted that there are other ways to measure and adjust mask luminance

and contrast. Also, summarizing the visual properties of an entire video with only two

numbers is a crude way to boil down a significant amount of information. However,

these are the methods that have been used by previous researchers, and are simple
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and effective ways to help find answers to the direct questions of how mask luminance

and contrast can change artifact detectability.

7.1.2 Mask luminance and masked target detectability

This Sect. presents our measurements of the relationship between mask luminance

and masked target detectability contrast thresholds. Two popular models on hu-

man vision, Daly’s visual difference predictor, [153] and Watson’s DCT quantization

optimizer [72], include luminance masking and adaptation components. Daly in-

corporated a luminance adaptive nonlinearity as the first component of the visible

differences predictor [153], stating that it was well known that visual sensitivity varies

with luminance. These assumptions were based on previous work measuring photo-

receptor responses [154]. It should be noted that in that work, Normann et. al [154]

used an adaptation study, and the this study was not on compression artifact mask-

ing. Watson [72] also included luminance in a model for quantization matrices for

images. This was based off of data from the detectability of unmasked DCT blocks.

[77]

Several image compression standards (JPEG, MPEG, H.261) are based on the Dis-

crete Cosine Transform (DCT). However, these standards do not specify the actual

DCT quantization matrix. Both Ahumada and Watson have provide mathematical

formulae to compute a perceptually lossless quantization matrix. The data presented

by Watson [75] showed that increasing the luminance of the background made DCT

distortions more difficult to see. Specifically, a brighter background should be associ-

ated with higher target detectability contrast thresholds. This data and model were

attributed to Ahumada and Peterson [77] and Peterson, Ahumada, and Watson [16].

Ahumada and Peterson [77] used data from Peterson et. al [70], which described a

forced choice experiment where observers stated if they could detect a single mag-

nified DCT basis function or not. This experiment measured detectability of DCT
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blocks in an unmasked condition.

Chandler [155] summarized previous findings on luminance masking [17, 156].

The general expectation is that when luminance of the mask increases, the target

detectability contrast thresholds should increase. The previous works lead to the ex-

pectation that mask luminance and DCT compression artifact like target detectability

contrast thresholds should be positively correlated. However, none of the previous

data found measured how dynamic DCT noise detectability changes as natural video

mask luminance changes.

This Sect. provides the result of an experiment to quantify the relationship be-

tween mask luminance and masked target detectability contrast thresholds. Fig. 7.1

shows that the average luminance of the different masks ranged from about 10 cd/m2

to nearly 110 cd/m2. The data presented by Watson [75] ranged from darkness to

100 cd/m2. To examine if these differences in luminance contributed to masking ef-

fectiveness, the masks were adjusted in luminance to five levels with a logarithmic

spacing. All masks for the luminance experiment were adjusted to an average lumi-

nance of 7.5, 15, 30, 60, and 120 cd/m2. At the same time, the average RMS contrast

of these masks was adjusted to 0.30. Detection thresholds were measured for masks

Cactus, Waterfall, Kimono, and Timelapse. The unmasked condition was also tested

for these luminance values. Subject J.E. recorded three sets of 32 trials each for each

data point shown in Fig. 7.2. Subject K.J. recorded two sets of 32 trials each for

each data point shown in Fig. 7.3.

The testing procedures described in Chapter 3 were used again in this experiment,

with the modification that the masks were changed in contrast and luminance. For the

masks Cactus, Waterfall, Kimono, and Timelapse, as well as the unmasked condition,

thresholds were measured for targets DCT [0,0], [0,7], and [3,3] with a temporal

frequency of 0 Hz. For the masks Cactus andWaterfall, thresholds were also measured

for targets DCT [0,0], [0,7], and [3,3] with a temporal frequency of 6 and 30 Hz.
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Figure 7.2: Contrast detection thresholds versus luminance for subject J.E. All masks

for the luminance experiment were adjusted to an average luminance of 7.5, 15, 30,

60, and 120 cd/m2. At the same time, the average RMS contrast of these masks was

adjusted to 0.30. Detection thresholds were measured for masks Cactus, Waterfall,

Kimono, and Timelapse. The unmasked condition was also tested for these luminance

values. Subject J.E. recorded at least three sets of 32 trials each for each data point.

The results of these sets were combined using equation 3.1. Detection thresholds were

measured for targets of DCT [0,0], [0,7], and [3,3] and a target temporal frequency

of 0 Hz for all masks and the unmasked condition. To understand how the target

temporal frequency interacts with luminance, target temporal frequencies of 6, and 30

Hz were presented with masks Cactus and Waterfall and target detectability contrast

thresholds were measured.
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To show the agreement between the two subjects, their data has been plotted

separately. Figure 7.2 and Fig. 7.3 show that the results of the two subjects are in

basic agreement. Most of the error bars in the both plots appear to be reasonable.

Most of the data for individual masks and targets appear to fall in straight lines with

little slope.

From previous research, it was expected that as luminance of the mask increased,

target detectability contrast thresholds should increase. This would mean that the

slope of the plots in Fig. 7.2 and Fig. 7.3 should be positive. The masked target

detectability contrast thresholds for targets presented with high luminance masks

should be higher than those presented with low luminance masks. To quantify this,

Table 7.1 shows the difference when the threshold measured with the lowest luminance

masks subtracted from the threshold measured with the highest luminance masks. In

Table 7.1, positive values represent a positive slope. This was calculated for each

subject and each target, then the difference for the two subjects was combined using

a simple average. According to the previous research, all numbers in Table 7.1 should

all be positive numbers.

In Table 7.1, most of the numbers are negative. The data in Table 7.1 suggests

that increasing mask luminance lowers target detectability contrast thresholds in most

cases. For the mask Cactus, as target spatial and temporal frequency increased, this

difference increased. This was true for most other masks, as well as the unmasked

condition.

The exception to this was the mask Kimono and the target DCT [0,0] at 0 Hz.

This combination was one of only three positive elevations due to increased mask

luminance, and by far the largest elevation. For negative elevations, the largest came

from the combination of the mask Cactus and target DCT [3,3] at 30 Hz.

Another way to quantify the relationship between mask luminance and masked

target detectability contrast thresholds is with a linear model of normalized target
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Figure 7.3: Contrast detection thresholds versus luminance for subject K.J. This set

of plots is the same axis and experiments as presented in Fig. 7.2, except for subject

K.J.
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Table 7.1: Target detectability contrast threshold elevation due to significantly in-

creasing mask luminance from 7.5 to 120 cd/m2. This table shows the differences in

target detectability contrast thresholds for targets presented with the highest mask

luminance and lowest mask luminance. To generate the data in this table, first the

results from the two subjects was combined with a simple average. Next, the eleva-

tion for each masking condition, as well as the unmasked condition was calculated

for each target. This elevation was calculated by subtracting the threshold associated

with the lowest luminance from the threshold associated with the highest luminance

for each mask. Negative numbers in this table signify that increasing the luminance

of the mask made the target easier to see. The average elevations across masks or

target frequencies are shown in italics. The average of all elevations is shown in the

lower right hand corner in bold italics.

Cactus Waterfall Unmasked Kimono Timelapse Average

0 Hz DCT [0,0] -0.11 0.13 -0.22 0.34 0.04 0.04

0 Hz DCT [0,7] -0.16 -0.32 -0.20 -0.44 -0.35 -0.30

0 Hz DCT [3,3] -0.25 -0.45 -0.50 -0.41 -0.50 -0.42

6 Hz DCT [0,0] -0.31 -0.30 -0.31

6 Hz DCT [0,7] -0.46 -0.44 -0.45

6 Hz DCT [3,3] -0.52 -0.41 -0.46

30 Hz DCT [0,0] -0.38 -0.68 -0.53

30 Hz DCT [0,7] -0.57 -0.54 -0.55

30 Hz DCT [3,3] -0.77 -0.22 -0.50

Average -0.39 -0.36 -0.31 -0.17 -0.27 -0.30
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spatial and temporal frequencies and mask luminance. There are a total of 116

thresholds to fit from this data set. Simple models of the form

V CTLuminance = C + α1 × TSF + α2 × TTF + α3 × (TSFxTTF ) + α4 × P1, (7.3)

where P1 was mask luminance, were fit to the luminance adjusted masked target

detectability data. For the three input model, α4 and P1 were omitted. k-fold cross

validation was employed to chose between at least forty different sets of coefficients

for each model form. Table 7.2 provides the goodness of fit measures and model

coefficients for the winning models. Again, all model inputs were normalized to range

from 1 to 2.

Table 7.2: Goodness of fit between measured masked target detectability using lumi-

nance controlled masks and predictions from a three and four input no reference linear

regression model. The 3 input column reflects a model using only target spatial and

temporal frequencies to predict the data. The 3 + P1 column represents a four input

model, including three target spatio-temporal property inputs and mask luminance,

for predicting target detectability contrast thresholds.

3 input 3+P1 input

fit PCC 0.790 0.794

SROCC 0.758 0.768

RMSE 0.456 0.452

coefficient constant -4.298 -4.058

TSF 1.009 1.009

TTF 1.640 1.642

(TSF x TTF) -0.774 -0.774

P -0.179

Observe from Table 7.2 that the addition of mask luminance information did not

result in a significant increase in model prediction performance over the model that
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was a function of only target properties. This suggests that, although the masks were

adjusted to have a range of luminance levels, the differences in target spatial and

temporal frequency account for most of the variation in target detectability contrast

thresholds. Also note from Table 7.2 that the coefficient for the luminance measure-

ment is close to zero. This also suggests that the mask luminance did not have a

significant role in predicting variations in target detectability contrast thresholds.

It is interesting to note from Table 7.2 that the coefficient for the luminance

measurement is negative. This is not in line with previous research, which suggested

that masks with higher luminance should result in higher target detectability contrast

thresholds. However, for these data, there is little correlation between mask luminance

and target detectability contrast thresholds on average. The model coefficients are in

agreement with the data from Table 7.1 which suggested that for extreme increases

in mask luminance, target detectability contrast thresholds also decreased.

This data was not expected. One possible explanation for this is that the previous

studies were not looking at the complex question of masking compression like artifacts

with natural videos. Specifically, because this is the first study to measure target

detectability contrast thresholds in the presence of natural videos, the responses may

be primarily driven by some other factors not accounted for. Another possibility is

that the way luminance and contrast were adjusted resulted in changes in the images

that were not accounted for. Specifically, natural-video mask contrast and luminance

had to be adjusted at the same time. This was not a consideration for the previous

research cited.

The expectation from Sect. 6.1 was that a simple model should be able to perform

reasonably well, but the addition of a meaningful measurement should substantially

increase the goodness of fit between model predictions and measured thresholds. In

Table 6.3, a three regressor model produced a PCC of 0.690 and RMSE of 0.550,

and the addition of the measurement of mask spatial standard deviation increased
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the goodness of fit to a PCC of 0.818 and RMSE of 0.437. In this subsection, we see

a the addition of luminance as a regressor for the model improves PCC and RMSE

scores from 0.790 and 0.456 to 0.794 and 0.452. The target property only model

provides a better fit of the data in this subsection. However, the additional mask

property measurement input does not significantly improve the model fit of the data.

This may suggest that for this data set, mask luminance is not an effective regressor.

Table 7.1 suggested that large changes in mask luminance resulted in little change in

target detectability contrast thresholds. Considering that mask luminance does not

help improve predictions of masked target detectability, and that mask luminance

does not appear to effect masked target detectability, the data appear to suggest that

for the range of mask luminance examined, mask luminance is not that significant to

the perception of masked target detectability contrast thresholds. It should also be

noted that all of the masks had the same luminance. Unless the mask luminance was

dominating target detectability contrast thresholds, and all masks produced similar

target detectability, the addition of mask luminance may not have been helpful to the

prediction. Specifically, a plot of the four input model would generate only 1 line for

all five plots in Fig. 7.3. Because the plots show a range of target detectability that

depends on what mask was used, the addition of a property that assumes all plots

should be the same is not significantly beneficial.

This Sect. examined the effect of mask luminance on masked target detectability

contrast thresholds. The data suggests that increasing mask luminance results in

little change in target detectability, and if any, lower masked target detectability

contrast thresholds. This was not what was predicted by previous research. However,

none of the previous research was measuring the effectiveness of natural videos in

masking dynamic DCT noise. The differences between the unadjusted masks and

the luminance adjusted masks may be possibly due to changes in the mask contrast,

which was adjusted at the same time as the luminance. This was to ensure that all
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masks in the luminance experiment had the appropriate luminance and fixed contrast.

The next Sect. explores the effect of mask contrast on dynamic DCT noise detection.

7.1.3 Mask contrast and masked target detectability

This subsection examines how mask contrast can change masking effectiveness. Con-

trast sensitivity functions and contrast masking have been a part of many masking

models. Daly’s visual difference predictor, [153] included a contrast sensitivity func-

tion as an integral part. The Watson Solomon classic model on the human visual

system [45] also takes into consideration contrast sensitivity and masking. From the

classic masking experiment by Legge and Foley [38], to the more specific publication

by Chandler, Gaubatz, and Hemami [10] on masking of compression artifacts with

still images, the expectation is that as the mask contrast increases past a certain

point, the target detectability contrast thresholds should also increase. It should

be noted that none of the previous data found measured how dynamic DCT noise

detectability changes as video mask contrast changes.

To explore if the differences in mask contrast contributed to masking effective-

ness, the masks were adjusted in contrast to five levels with a logarithmic spacing.

All masks for this experiment were adjusted to an average RMS contrast of 0.075,

0.15, 0.30, 0.60, and 1.20. Average RMS contrast means that the RMS contrast for

each frame were calculated, and then that number was averaged over all frames for

each individual mask. At the same time, the average luminance of these masks was

adjusted to 30 cd/m2. For the masks Cactus, Waterfall, Hands, Kimono, and Time-

lapse thresholds were measured for targets DCT [0,0], [0,7], and [3,3] with a temporal

frequency of 0 Hz. For the masks Cactus, Waterfall, thresholds were also measured

for targets DCT [0,0], [0,7], and [3,3] with a temporal frequency of 6 and 30 Hz. De-

tection thresholds were also measured by subject J.E. for targets masked by random

frames of gray scale Pink Noise, an ideal mask considered to have a power spectral
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density that is more similar to natural images. Subject J.E. recorded three sets of 32

trials each for each data point shown in Fig. 7.4. Subject K.J. recorded two sets of 32

trials each for each data point shown in Fig. 7.5. Data for Fig. 7.4 and Fig. 7.5 were

combined for individual subjects according to equation 3.1. The testing procedures

used in Chapter 3 were used again in this experiment. Only the masks were changed

to the new contrast and luminance adjusted masks.

The previous works by Chandler, Gaubatz, and Hemami [10] lead to the expec-

tation that when the mask has higher contrast, dynamic DCT noise targets should

have higher detectability contrast thresholds. The graph of target detectability con-

trast thresholds plotted versus mask contrast should have a positive slope. Again, the

individual results from subjects J.E. and K.J. have been plotted separately to allow

visual comparison of their results.

Fig. 7.4 and Fig. 7.5 show that the results of the two subjects are in basic

agreement. Most of the error bars in both Figs. appear to be reasonable, and not

too large. Most of the data for individual masks and targets appear to fall in straight

lines, with few exceptions.

Observe in Fig. 7.4 (a) the thresholds associated with the targets presented with

the masks of Timelapse and Pink Noise. At a contrast of 0.075, when the patterns

in the images are faint, there is a little over a log unit of difference between the

two masks. However, when mask contrast is increased to 1.2, the difference between

the two masks is nearly three log units. This may suggest that the contrast of the

mask is an indicator of how much the content of the mask is going to effect target

detectability. When the masks have very low contrast, there is little difference in

what is shown in the mask. However, when the mask has high contrast, the image

that forms the mask is more important.

The correlation between mask contrast and differences in masks is repeated for

other target spatial and temporal frequencies, but at a reduced level. This may
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Figure 7.4: Contrast detection thresholds versus mask video contrast for subject J.E.

These plots show how target detectability changes with mask contrast. Data in each

plot was combined from three sets of trials by J.E. according to equation 3.1. The

horizontal axis shows the average RMS contrast of the mask. This was calculated by

first finding the RMS contrast of each frame in the mask and taking the average of

that number over all frames in each mask. The luminance value of each mask was

adjusted to 30 cd/m2. Luminance and contrast were adjusted according to equation

7.1 and equation 7.2
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Figure 7.5: Contrast detection thresholds versus mask video contrast for subject K.J.

This figure is very similar to Fig. 7.4 except that the subject for this figure is K.J.

Subject K.J. completed two sets of trials for each threshold. The data from those sets

of trials were combined according to equation 3.1.
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suggest that unmasked targets with higher unmasked target detectability thresholds

will tend to be less influenced by natural video masking. It is interesting to note

that targets with 0 Hz temporal frequencies appear to still have divergent plots of

thresholds versus contrast for all spatial frequencies examined. However, when target

temporal frequency is increased to 30 Hz, the plots of thresholds versus contrast are

more parallel. This may suggest that sufficiently large target temporal frequencies

may be somewhat disconnecting or disassociating for the relationship between target

detectability and mask contrast.

From previous research, it was expected that as contrast of the mask increased,

target detectability contrast thresholds should increase. This would mean that the

slope of the plots in Fig. 7.4 and Fig. 7.5 should be positive. The data in Fig. 7.4

and Fig. 7.5 mostly met these expectations. Target detectability contrast thresholds

for targets presented with high contrast masks should be higher than those presented

with low contrast masks. To quantify this, Table 7.3 shows the difference between

detection thresholds when the target was presented with the masks with the highest

and lowest contrast. In Table 7.3, positive values signify that the higher contrast

mask had a higher resulting detection threshold, as expected. The data in Table 7.3

was calculated using a simple average of the thresholds of the two subjects.

According to the previous research, these should all be positive numbers, and

mostly, they are. What Table 7.3 shows is that, in general, increasing contrast of the

mask makes the target more difficult to see. The average effect of increasing average

RMS contrast of the masks from 0.075 to 1.2 was an increase of 0.32 log units. The

largest elevations were seen by adjusting the contrast of the mask Cactus, resulting

in an average of 0.89 log units. The single combination of target frequency and mask

resulting in the largest increase was for Cactus and DCT [0,0] at 0 Hz, resulting in

an elevation of 1.77 log units. The mask Waterfall, had the least elevation due to

increasing contrast, which, when averaged over all targets was -0.07 log units. The
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Table 7.3: Target detectability contrast threshold elevation due to significantly in-

creasing mask contrast from 0.075 to 1.20. This table shows target viability contrast

thresholds elevations when average RMS mask contrast was changed from the lowest

level for this experiment, 0.075 to the highest level, 1.2. The values in this table are

calculated using simple averages of the data from both subjects. The row headings

list the target spatial and temporal frequency tested. The column headings list the

mask that was adjusted. Pink noise was not included in this table, as it is not a

natural video mask, and only an ideal mask.

Cactus Waterfall Hands Kimono Timelapse Average

0 Hz DCT [0,0] 1.77 0.69 0.62 0.55 0.78 0.88

0 Hz DCT [0,7] 0.96 -0.33 -0.17 -0.10 -0.08 0.05

0 Hz DCT [3,3] 0.90 -0.26 -0.02 -0.09 0.12 0.13

6 Hz DCT [0,0] 1.00 0.57 0.78

6 Hz DCT [0,7] 0.30 -0.39 -0.04

6 Hz DCT [3,3] 1.03 -0.04 0.50

30 Hz DCT [0,0] 0.96 0.37 0.67

30 Hz DCT [0,7] 0.61 -0.52 0.04

30 Hz DCT [3,3] 0.48 -0.69 -0.11

Average 0.89 -0.07 0.14 0.12 0.28 0.32
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single combination of target frequency and mask resulting in the largest decrease was

for Waterfall and DCT [3,3] at 30 Hz, resulting in an elevation of -0.69 log units. On

average, the target DCT [0,0] at 0 Hz had the largest elevation of all targets tested,

which may suggest that mask contrast had the largest influence over targets that had

the lowest unmasked detectability thresholds. Said differently, the easier targets are

to see when they are unmasked, the more likely they are to be made much harder to

see by masks with high contrast.

Table 7.3 suggests that increasing the contrast of the mask will usually increase

target detectability contrast thresholds on average. It is interesting to note that the

target DCT [0,0] always was paired with larger positive numbers in Table 7.3. How-

ever, other than the mask Cactus, targets DCT [0,7] and DCT [3,3] were paired with

negative numbers in all but one case. This suggests that, although on average, the

higher contrast levels resulted in higher target detectability contrast thresholds, this

was not always the case. This was not expected. One important consideration is that

increasing contrast made the lower frequency targets have higher target detectability

contrast thresholds. That is, the targets that had lower unmasked target detectability

contrast thresholds were the ones that had the largest increases in target detectability

contrast thresholds due to increasing contrast. However, the targets with higher un-

masked target detectability contrast thresholds showed a negative correlation between

their detectability contrast thresholds and mask contrast. Said differently, it is pos-

sible that high spatial and temporal frequency targets are more likely to experience

facilitation with high contrast masks.

Another way to quantify the relationship between mask contrast and masked tar-

get detectability contrast thresholds is with a linear model of normalized target spatial

and temporal frequencies and mask contrast. There are a total of 180 thresholds to

fit from this data set. Simple models of the form

V CTContrast = C + α1 × TSF + α2 × TTF + α3 × (TSFxTTF ) + α4 × P1, (7.4)
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where P1 was contrast, were fit to the contrast adjusted data. For the three input

model, α4 and P1 were omitted. k-fold cross validation was employed to chose between

at least forty different sets of coefficients for each model form. Table 7.4 provides

the goodness of fit measures and model coefficients for the models with the best

performance. Again, all model inputs were normalized to range from 1 to 2.

Table 7.4: Goodness of fit between measured masked target detectability using con-

trast controlled masks and predictions from a three and four input no reference linear

regression model. The left column of numbers details the model fit using only target

properties, while the right column represents a model that includes mask contrast as

an input.

3 input 3+P1 input

fit PCC 0.628 0.669

SROCC 0.594 0.634

RMSE 0.726 0.693

coefficient constant -3.640 -4.415

TSF 0.538 0.538

TTF 1.697 1.689

(TSF x TTF) -0.553 -0.542

P 0.573

The expectation from Sect. 6.1 was that a simple model should be able to perform

reasonably well, but the addition of a meaningful measurement should substantially

increase the goodness of fit between model predictions and measured thresholds. In

Table 6.3, a three regressor model produced a PCC of 0.690 and RMSE of 0.550, and

the addition of the measurement of mask spatial standard deviation increased the

goodness of fit measurements PCC and RMSE to 0.818 of 0.437. In this Sect., we see

the addition of contrast as a regressor for the model improves PCC and RMSE scores
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from 0.628 and 0.726 to 0.669 and 0.693. The target property only model provided

a better fit of the main data set presented earlier. This may suggest that the quality

of data in this set is reduced, and more noisy.

The additional mask property measurement does not significantly improve the

model fit of the data. This may suggest that for this data set, mask contrast is not

an effective regressor. This may also suggest that this set of data is a representation

of data collection error and not the response of mask contrast adjustment on masked

target detectability contrast thresholds. Another possibility is that RMS contrast

and luminance are not the most meaningful measures of mask content. As all the

masks were adjusted to the same contrast levels, how close the plots of target de-

tectability versus mask contrast collapse into a single line, determines how effective it

is to add mask contrast as a target detectability predictor. When most of the deter-

mining factors are controlled for all masks, they will all have the same plots of target

detectability versus whatever measure of mask content. Until all mask properties

that cause variance in target detectability are controlled, and all masks produce the

same target detectability thresholds, target detectability predictions based only on

the controlled experiment parameters will be less than perfect.

It is interesting to note how the model coefficients change when mask contrast is

included as a regressor. The target property coefficients are essentially unchanged,

and only the constant is shifted. However, the magnitude of the coefficient for the

contrast regressor is larger than the regressor for target spatial frequencies. The in-

clusion of contrast in the regression does not improve the goodness of the fit, however,

the size of the coefficient suggests that mask contrast is significant in predicting target

detectability thresholds.

The contrast coefficient is positive, suggesting that increasing mask contrast is

likely to result in increasing target detectability contrast thresholds. Table 7.3 sug-

gested that large changes in mask contrast resulted in some change in target de-
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tectability contrast thresholds.

Observe from Table 7.4 that the addition of mask contrast information did not re-

sult in a significant increase in model performance over the model that was a function

of only target properties. Granted, either the model including or excluding contrast

as a regressor did not perform very well on this data set. This suggests that, al-

though the masks were adjusted to have a range of contrast levels, the differences in

target spatial and temporal frequency account for as much of the variation in target

detectability contrast thresholds as the mask contrast. Also note from Table 7.4 that

the coefficient for the contrast measurement is about the same as the target spatial

frequency coefficient. This would also suggest that the mask contrast did have a sig-

nificant role in predicting variations in target detectability contrast thresholds, but

the model fit was not improved by placing more emphasis on mask contrast and less

emphasis on target spatial frequencies.

Note from Table 7.4 that the coefficient for the contrast measurement is positive.

This is in line with previous research, and suggested that masks with higher contrast

should result in higher target detectability contrast thresholds. However, for these

data, there is not as much correlation between mask contrast and target detectability

contrast thresholds on average. The model coefficients are in agreement with the data

from Table 7.4 which suggested that for extreme increases in mask contrast, target

detectability contrast thresholds also increased.

The poor model fitness score data was not expected. One possible explanation is

that by controlling mask contrast, some of the more obvious differences in videos have

been stripped away, leaving behind data that shows true differences in the content

of these natural videos, and not only differences in how they are presented. Another

possibility is that the way luminance and contrast were adjusted resulted in changes

in the images that were not accounted for. Specifically, contrast and luminance had to

be adjusted at the same time. This was not a consideration for the previous research
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cited. A third possibility is that this data set is too small to work with, and there

was too much disagreement between subjects.

7.1.4 Mask lower playback rate and masked target detectability

This subsection examines relationships between mask temporal content and masked

target detectability. For this experiment, mask playback rate was controlled. This

is a crude measure of motion in mask content. Other measures of mask temporal

content are available. For example, Watson discuses apparent motion velocity. This

is a definition of how fast an object moves across a scene, that is, how fast something

appears to be moving. This measurement is straight forward for a single target

moving across a scene, such as a drifting sine wave grating. However, for a mask

such as Cactus, there are multiple points contributing to the motion in the scene.

Each tip of each spine of the cactus would have its own apparent motion velocity.

Because the cactus is turning on a pedestal, each spine’s apparent velocity across the

viewing plane would change as the spine motion vector changed through the course

of its revolution. Thus, to quantify the apparent motion velocity of the mask Cactus

with a single number would at best have to be some sort of an average after lengthy

calculations for each pixel of each object in the video.

Daly [24] discuses stimulus retinal velocity. Like the apparent motion velocity

discussed by Watson, this is also based on calculations of individual objects moving

across a scene. However, this measurement is slightly more complicated because it

requires not only knowing how each pixel of each object is moving, but also requires

knowing what the subject is looking at in the scene at all times during testing. This

information is not available for the current data set.

The goal of visual psychophysics is to explore the human visual system and quan-

tify what is detectable and what the eye is most sensitive to. To facilitate this explo-

ration, and to reduce errors in measurements, researchers have employed controllable
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stimulus that are readily defined by mathematical properties [28, 30]. One question

visual psychophysical research explores is what is detectable to the eye. This is the

quantifiable detectability of a target without the presence of a mask. For example,

Robson [8] documented the detectability of unmasked vertical sine wave gratings.

Robson showed that stimulus detectability is dependent on the stimulus spatial fre-

quency, that is, how broad the bright and dark lines from the sine wave grating are, as

well as the stimulus temporal frequency, or how fast the sine wave gratings flickered.

Kelly [25] provided a summary of this information. As Daly [24] summarized, the

general shape of these results suggests the general sensitivity of the eye. The eye is

most sensitive to targets that are neither too fine or too coarse, and don’t flicker too

quickly.

Kelly [26] then extended this work to ask how detectability changed as a function

of velocity. Specifically, Kelly built an apparatus to control the velocity of a stimulus

across the retina. This allowed Kelly to measure how sensitivity to stimulus changes

as a function of retinal velocity. Daly [24] also provided a summary of this data. In

general, when the stimulus is stopped or nearly stopped in front of the eye, it is more

difficult to see. However, when the stimulus has movement, starting from as little as

what is common when the eye is looking at a stationary object, the general shape of

the sensitivity curve has about the same shape. As the velocity of the stimulus across

the retina increases, the sensitivity curve tends to peak over more coarse targets.

That is, the faster the target moves across the eye, the harder it is to see fine details.

Laird et al. extended Kelly’s work [100]. The work of Kelly asked how sensitivity

changed as the target moves across the eye. The work of Laird et al. asked how

sensitivity changed as the eye moved to track the target. Laird et al. measured the

velocity of an eye with an eye tracker as an observer watched a target move across

a monitor. This work confirmed that sensitivity was a function of retinal velocity,

however, eye movement did not affect sensitivity. Specifically, the observers could
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track a target moving up to 7.5 degrees per second with smooth eye movement,

resulting in no change in sensitivity compared to a stationary target.

A more simple way to quantify the temporal properties of a mask is to simply

discuss its playback rate. So if a video is modified to play back at half the frame

rate as the original, the objects in the modified video should have half the apparent

motion velocity as in the original video. Also, this experiment assumes that, because

the spatial information of the mask is not edited, the subjects should look in mostly

the same locations in each scene. This assumption suggests that by cutting the frame

rate in half, the apparent motion velocity and retinal velocity should be halved as

well.

This Sect. describes an experiment to quantify how video playback rate effects

target detectability. For this experiment, the original masks were first modified in

contrast to an average RMS contrast of 0.3, and in luminance to an average luminance

of 30 cd/m2. Then the masks were modified to appear to play back slower through

frame duplication. The stimulus duration is 0.75 seconds. Ninety frames are presented

in that time. For the data reported in Chapter 4, the forty five images of masks

Cactus,Waterfall, and Timelapse would display in those ninety frames. Each image of

the source frame would be displayed for two frames. For the other masks, twenty three

images would be displayed in the same time, where each image was repeated over four

frames. In this Sect., for the first experiment, this playback rate is categorized as 30

frames per second (fps), which was the playback speed used in all other experiments.

The set of masks for the second playback rate, 15 fps, was created by doubling

the number of frames each image was repeated. Because doubling how many frames

an image is held for means that fewer images can be shown, the 15 fps set of images

is a subset of the images used from the 30 fps set of masks. That is, only the

middle images were kept. The images at the start and the end were not displayed.

Likewise, the set of masks for the third playback rate, 7.5 fps, was created by doubling
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the number of frames each image was repeated. Again, the images in the middle

were repeated to ensure that the same basic spatial features were shown at all mask

temporal frequencies. For the mask playback rate of 1 fps, only the middle image

from each mask was repeated for all 90 frames.

Figure 7.6, Fig. 7.7, and Fig. 7.8 show the results for this experiment. All masks

for this playback rate experiment were adjusted to an average RMS contrast of 0.30.

As described previously at the start of this section, average RMS contrast means that

the RMS contrast for each frame was calculated, and then that number was averaged

over all frames for an individual mask. At the same time, the average luminance of

these masks was adjusted to 30 cd/m2. This calculation was made only once using

all 90 frames. After setting the mask contrast and luminance, the masks were then

edited for playback rate and length. For the masks Cactus, Waterfall, Kimono, and

Timelapse thresholds were measured for targets DCT [0,0], [0,7], and [3,3] with a

temporal frequency of 0, 6, and 30 Hz. Subject J.E. recorded three sets of 32 trials

each for each data point shown in Fig. 7.6. Subject K.J. recorded two sets of 32

trials each for each data point shown in Fig. 7.7. Subject J.P. recorded two sets of

32 trials each for each data point shown in Fig. 7.8. Data for Fig. 7.6, Fig. 7.7,

and Fig. 7.8 were combined for individual subjects according to equation 3.1. The

testing procedure described in Chapter 3 was used again in this experiment, with the

exception that the masks were changed to the new contrast and luminance adjusted

masks, and for the masks at 15, 7.5, and 1, fps playback rates were also adjusted.

First, Fig. 7.6, Fig. 7.7, and Fig. 7.8 show that all three subjects are in relatively

good agreement. This data is summarized in Table 7.5. The data in table 7.5 are

based off a simple average for all seven threshold estimates for each data point in Fig.

7.6, Fig. 7.7, and Fig. 7.8.

What table 7.5 shows is that slowing down the playback rate does not always

make a consistent change in elevations. From table 7.5, on average across all targets,
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Figure 7.6: Target detection thresholds plotted versus mask playback rate for subject

J.E. This figure shows how target detectability changes as the playback rate of the

mask changes. The data at 30 fps shows the same mask speed as used in all previous

experiments. The data at 1 fps represents target detectability against a stationary

image. For this experiment, all masks were adjusted in average luminance to 30 cd/m2

and average RMS contrast of 0.30.
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Figure 7.7: Target detection thresholds plotted versus mask playback rate for subject

K.J. This figure is similar to Fig. 7.6 except this data is from subject K.J.
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Figure 7.8: Target detection thresholds plotted versus mask playback rate for subject

J.P. This figure is similar to Fig. 7.6 except this data is from subject J.P. It should

be noted that this visual psychophysics data is the first set of data subject J.P. had

ever collected.
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Table 7.5: Target detection threshold elevation due to change in playback rate from

1 fps to 30 fps. This table shows the target detection threshold when the mask had

a playback rate of 30 fps minus the threshold when the mask was at 1 fps. These

elevations were based on a simple average on the seven estimates available from the

three subjects.

Target Cactus Waterfall Kimono Timelapse Average

0 Hz DCT [0,0] 0.67 0.22 0.49 0.06 0.36

0 Hz DCT [0,7] 0.91 -0.04 -0.21 1.04 0.42

0 Hz DCT [3,3] -0.22 0.06 -0.12 0.40 0.03

6 Hz DCT [0,0] 0.75 0.52 0.12 0.27 0.41

6 Hz DCT [0,7] 0.65 0.07 -0.03 1.01 0.43

6 Hz DCT [3,3] 0.03 -0.09 -0.16 0.14 -0.02

30 Hz DCT [0,0] 0.34 0.49 0.22 0.26 0.33

30 Hz DCT [0,7] -1.01 -0.02 -0.10 -0.85 -0.49

30 Hz DCT [3,3] -0.52 -0.10 -0.25 -0.62 -0.37

Average 0.18 0.12 0.00 0.19 0.12
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masks, and subjects, changing the playback rate from 1 fps to 30 fps results in an

elevation of 0.12 log units. The maximum elevation is for the mask Timelapse with

the target DCT [0,7] at 0 Hz at 1.04 log units. The minimum elevation, mostly equal

in magnitude, is for the mask Cactus with the target DCT [0,7] at 30 Hz -1.01 log

units.

Looking at the averages for each mask across target spatial and temporal frequen-

cies, the largest jump is associated with the mask Timelapse, which is 0.19 log units.

However, for the average across all targets shown with the mask Kimono, there was

essentially no change in target detectability when the playback rate was changed from

a still image to a video at normal playback rate. This suggests that, considering all

the targets presented with the mask at the same time, increasing the playback rate

does not seem to make a very consistent difference.

Linear regression can also examine the data. Table 7.6 shows the results of fitting

two linear regression models to the playback rate manipulated data. The first model

considers only target properties in predicting the data. The second model uses four

inputs, including mask playback rate, to predict target detectability thresholds.

Observe from Table 7.6 that the three regressor model provides a reasonable fit of

the data. Table 7.6 shows that the three coefficients are in line with previous models

in that the higher target spatial and temporal frequencies are associated with higher

target detectability contrast thresholds, and that the third regressor, (TSF x TTF),

which acts as a limiting factor at high target spatiotemporal frequencies is negative.

Table 7.6 shows that extending the model to include the property of mask playback

rate was able to provide a significant improvement in the model fit in both correlation

coefficients and RMSE. The coefficient for the mask playback rate regressor is positive.

This suggests that there is a positive correlation between faster mask playback rates

and higher target detectability contrast thresholds.

It is interesting to note that the coefficient for the third regressor for (TSF x TTF)
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Table 7.6: Goodness of fit between measured masked target detectability using play-

back rate controlled masks and predictions from a three and four input no reference

linear regression model. Mask playback rates for the data modeled were 1, 7.5, 15,

and 30 Hz. The left column of numbers details the model fit using only target prop-

erties, while the right column represents a model that includes mask playback rate

as an input.

3 input 3+P input

fit PCC 0.790 0.870

SROCC 0.758 0.830

RMSE 0.456 0.396

coefficient constant -4.296 -4.932

TSF 1.010 0.851

TTF 1.641 1.265

(TSF x TTF) -0.777 0.130

P 0.126
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had a significant change. For the three regressor model, this coefficient was negative

and only slightly smaller in magnitude than the other two target property regressor

coefficients. For the four regressor model, this coefficient was positive and significantly

smaller in magnitude than the other two target property regressor coefficients. The

magnitude for the other two property spatiotemporal regressor coefficients were also

slightly reduced in magnitude. This may suggest a unique relationship between mask

playback rates and target detectability contrast thresholds.

On average, across all targets and masks, the data does not suggest that there is

much difference when the playback rate goes from a normal speed to a still image.

When looking at individual masks, over all targets, again, there is not a consistently

significant increase in target detectability when the mask is moving at normal speed

compared to when the mask is stationary. However, looking at the coefficients of

linear regression models for this data, there is a slight positive correlation between

mask playback rates and target detectability contrast thresholds. A slightly different

question is if these elevations would change if playback rates were increased above

normal rates. This question is explored in the next Sect.

7.1.5 Mask higher playback rate and masked target detectability

In Sect. 7.1.4, it was seen that detection thresholds are mostly similar when targets

are presented with masks that are either stationary or moving at normal speeds. But

what happens if videos are played back at a faster rate? This experiment was set up

to ask this different question. Do these thresholds change when the mask is moving

faster than normal playback rates? Although this is a slightly unnatural viewing

condition, it does help explore the temporal properties of vision.

To explore this, the mask Cactus was modified to appear to move faster than

normal. The playback rates measured for this experiment were 60, 120, 180, 240, and

300 frames per second. To achieve the normal 30 fps second rate, each image of the
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mask was repeated in two frames. To build the 60 fps mask, each image was shown in

only one frame. The 120 fps mask would skip every other image from frame to frame.

That is, the first image of the source video would show in the first frame of the mask,

and then the third image of the source video would show on the second frame of the

mask. The 180 fps mask would skip two images from the source video, 240 fps would

skip three, and 300 fps would skip 4 images of the source video between frames of the

mask. This data is summarized in Table 7.7.

Table 7.7: Image and frame information for mask Cactus for high speed playback rate

experiment. This table shows how each different playback rate was obtained. For the

slowest playback rate, a single frame was held. For the fastest playback rate, four

images from the original mask were skipped between frames. Faster playback rates

for this mask were not possible because of the limited number or frames available

from the original video. Column [b] lists the range of source video frames covered

in the 0.75 second video. Column c lists this number as an effective frame rate.

However, because the frames for the mask Cactus were shown twice, column d shows

the recorded frame rate, where 30 fps corresponds to the normal frame rate used for

previous data collection.

Name [b] c d Video modification

Still [1 ] 1.33 1 Repeat one image for ninety frames

Quarter speed [11] 14.67 7.5 Repeat each image for eight frames

Half Speed [22] 29.33 15 Repeat each image for four frames

Normal Speed [44] 58.67 30 Repeat each image for two frames

Double speed [89] 118.67 60 Each image is its own frame

4 x speed [178] 237.33 120 Skip one image between frames

6 x speed [267] 356.00 180 Skip two images between frames

8 x speed [356] 474.67 240 Skip three images between frames

10 x speed [445] 593.33 300 Skip four images between frames
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Because of the limited number of frames available in the original video, it was not

possible to examine a playback rate faster than 300 fps. But is this fast enough to

test the visual capabilities of the eye? Some previous research provides guidance on

this matter. As discussed in subsection 7.1.4, Kelly [26], Daly [24], and Laird et al.

[100] have looked at related questions. Kelly [26] began this discussion by asking how

detectability changed as a function of target velocity across the retina. Kelly found

that when the stimulus has movement, starting from as little as what is common when

the eye is looking at a stationary object, the general shape of the target detectability

curve has about the same shape. As the velocity of the stimulus across the retina

increases, the detectability curve tends to peak over more coarse targets. That is,

the faster the target moves across the eye, the harder it is to see fine details. Laird

et al. extended Kelly’s work [100]. The work of Kelly asked how sensitivity changed

as the target moves across the eye. The work of Laird et al. asked how sensitivity

changed as the eye moved to track the target. Laird et al. measured the velocity of

an eye with an eye tracker as an observer watched a target move across a monitor.

This work confirmed that sensitivity was a function of retinal velocity, however, eye

movement did not affect sensitivity. Specifically, the observers could track a target

moving up to 7.5 degrees per second with smooth eye movement, resulting in no

change in sensitivity compared to a stationary target.

So how fast is the apparent motion velocity when the mask Cactus is played back

at 300 fps? Does this mask have components that exceed the range tested by Laird

et al.? A rough calculation of apparent motion velocity will help answer this. The

stimulus used in all experiments is 128 pixels wide. The viewing distance is 32 pixels

per degree. So the current stimulus is 4 degrees of viewing wide. To be close the

threshold of 7.5 degrees per second, an object would have to go from one side of the

scene to the other in half a second. The current playback rate is 120 frames per

second, so in under 60 frames, an object would need to move from one side of the

172



scene to the other. Fig. 7.9 provides a view of frame 30 through 52 of the mask

Cactus when played at 300 fps. In Fig. 7.9, the leading edge of a turning cacti is

highlighted with a black line.

Fig. 7.9 shows one of the difficulties in calculating apparent motion velocity for

this mask. Because the leading edge of the cactus begins by moving to the front of

the scene, and then moves across it, due to the fact that it is revolving about the

center of the pedestal, the velocity across the visual plane is not constant. To further

complicate the issue, the difference in distance from an object in the scene to the pivot

point of the pedestal will dictate the angular velocity, which sets the velocity across

the viewing plane. Even though the leading edge appears to move across nearly 4

degrees of visual plane in about a twelfth of a second, or an apparent motion velocity

of nearly 48 degrees per second, other parts of the scene will be moving faster still,

while others may have effectively no apparent motion, similar to the leading edge

of the cactus from frame 32 to 36. Also, it should be noted from the end of the

conclusions section by Laird et al. [100], that they only tested up to 7.5 degrees per

second for eye tracking abilities, but suggested that higher rates be tested to find

the limit of human vision. Young [157] had suggested that smooth pursuiant eye

movement could be up to 30 c/deg. Daly [24] mentioned that this velocity was often

for perfect tracking, and that in tracking objects that occur in nature, and about 80

c/deg is a better estimate of what the eye can track. So it is possible that, although

parts of the scene played back at 10 times its normal speed may be above the ability

of the human eye to track, there will be points in an objects motion that will be

slow enough that the eye may still track it accurately. In which case, as suggested

by Laird et al. [100], the contrast sensitivity will not be changed by the motion of

the video because, if the eye is able to track the motion, the retinal velocity stays

low enough that the contrast sensitivity function is not shifted to favor sensitivity to

larger objects.
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Frame 30

Frame 44

Frame 52Frame 50Frame 48Frame 46

Frame 36Frame 34Frame 32

Frame 42Frame 40Frame 38

Figure 7.9: Frame 30 through 52 of mask Cactus when played back at 300 fps. This

image shows a black line on the leading edge of one of the cacti spinning on a pedistal

in the scene. Near frame 36 or 38, the leading edge stops moving toward the front

of the scene and begins its motion to the left. This is the beginning of its sideways

movement which would result in apparent motion velocity. Near frame 46, the leading

edge has moved out of view. So in about 10 frames, the leading edge has moved across

the scene. Given the playback rate of 120 frames per second, 10 frames will pass in

a twelfth of a second. Given the viewing distance of 32 pixels per degree, and the

stimulus is 128 pixels wide, the leading edge of the cactus covers nearly 4 degrees of

the viewing plane in a twelfth of a second, resulting in an apparent motion velocity

of nearly 48 degrees per second.
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Figure 7.10: Contrast detection thresholds versus mask video playback rate for subject

J.E. for higher playback rates than normal viewing conditions.

The mask for this playback rate experiment was adjusted to an average RMS

contrast of 0.30. At the same time, the average luminance of this mask was adjusted

to 30 cd/m2. For the masks Cactus, thresholds were measured for targets DCT [0,0],

[0,7], and [3,3] with a temporal frequency of 0, 6, and 30 Hz. Subject J.E. recorded

three sets of 32 trials each for each data point shown in Fig. 7.10. The data for

subject J.E. in Fig. 7.6 has been repeated for ease of comparison. Because only one

mask was measured for this experiment, three different target temporal frequencies

are shown in each plot.

Looking at the plots in Fig. 7.10, no apparent trends are obvious. That is, as the

playback rate of the mask increases, there does not appear to be a consistent result.

Table 7.8 details some of the measurable information about this data set.

What Table 7.8 shows is how changing the playback rate of the mask changes

target detectability. The second column of Table 7.8 shows the how much target

detectability decreases when the mask playback rate goes from a stationary image

to 300 fps. Averaged across all targets, this causes an increase of 0.43 log units.

However, because the plots are not monotonic, the biggest increases do not occur

when going from one extreme to the other.

The last column of table 7.8 is the slope of a line of best fit for plot of each target
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Table 7.8: Elevations due to change in mask playback rate. This table shows how

changing the mask playback rate changes target detectability. The first column lists

the target spatial and temporal frequency. The second column lists the elevation due

to changing the mask playback rate from 1 fps to 300 fps. That is, the second column

is the elevation corresponding to the mask played at 300 fps minus the elevation

corresponding to the mask played at 1 fps. The third column is the slope of the

least squares estimate for a line of best fit for the detection threshold versus mask

playback rate. Because this slope is so small, the slope was multiplied by 1,000 for

ease of comparison.

Target Elevation Slope ×1000

DCT [0,0] at 0 Hz 0.40 -0.26

DCT [0,0] at 6 Hz 1.71 4.60

DCT [0,0] at 30 Hz 1.45 3.95

DCT [0,7] at 0 Hz 1.11 4.82

DCT [0,7] at 6 Hz 0.47 4.02

DCT [0,7] at 30 Hz -1.03 -1.60

DCT [3,3] at 0 Hz -0.33 0.74

DCT [3,3] at 6 Hz 0.10 0.88

DCT [3,3] at 30 Hz -0.05 -0.18

Average 0.43 1.89
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frequency. Because the rise in elevations was small and the change in playback rate

was large, the slope of this line was mostly zero for all plots. For ease of comparison,

the slope of the best fitting line was multiplied by 1,000. What this last column

shows is that, on average over all target frequencies, the plots generally have an

upward trend. The largest slope was for the target frequency that also had the

largest difference. There are three negative slopes, however, there magnitudes are

not as large as some of the positive slopes. About four of the slopes were close to

zero. This would suggest for nearly half the target frequencies, changing the playback

rate of the mask did not make a significant difference.

Linear regression can also examine the data. Table 7.9 shows the results of fitting

two linear regression models to the playback rate manipulated data. The left column

of numbers present the fit of a target property only model, while the right column

presents the goodness of fit for a model that included the mask playback rate as an

input. All inputs were normalized to range from one to two. This allows an apples

to apples comparison of the contributions of target spatial and temporal frequencies

to target detectability with the contributions of mask playback in predicting target

detectability.

Observe from Table 7.9 that the three regressor model uses the target spatiotem-

poral properties to provide a useful fit of the data, and the regressor coefficients are in

line with most of the previous three and four regressor models shown in this section.

Table 7.9 also shows the coefficients for the four regressor model of the faster play-

back rate data. Observe that the target property coefficients are mostly unchanged

by the addition of the mask property regressor. However, the additional regressor

accounting for mask playback rate does result in some improvement of the model fit

of the measured data.

It is also interesting that the coefficient for the mask playback rate regressor is

positive and significant in magnitude. This suggests a positive correlation between
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Table 7.9: Goodness of fit between measured masked target detectability using play-

back rate controlled masks and predictions from a three and four input no reference

linear regression model. The data modeled was from the use of masks with playback

rates of 1, 7.5, 15, 30, 60, 120, 180, 240, and 300 Hz. The left column of numbers

details the model fit using only target properties, while the right column represents

a model that includes mask playback rate as an input.

3 input 3+P input

fit PCC 0.660 0.744

SROCC 0.611 0.723

RMSE 0.537 0.478

coefficient constant -3.258 -4.111

TSF 1.114 1.109

TTF 1.341 1.333

(TSF x TTF) -1.019 -1.012

P 0.639
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faster mask playback rates and higher target detectability contrast thresholds. How-

ever, examining the plots of the data in Fig. 7.10 and in the second column of Table

7.8, it appears that the significance given to mask playback rate by the modeling

effort is not so obvious to see in the data.

Observe from Table 7.9 that the goodness of the model fit for this data set is lower

than what has been seen with the slower playback rate set, as shown in Table 7.6,

where the three regressor RMSE was 0.46. The high speed data was only collected

by one subject, J.E., and for only one mask, Cactus. To better understand the

relationship between mask playback rate and target detectability contrast thresholds,

this data set may need to be expanded to include results from more subjects, as well

as additional masks.

There are still noticeable differences in the plots showing the relationship between

mask playback rate and target detectability, and the data in these plots do not fall in

straight lines. The analysis in this Sect. suggests that the changes in the plots may

not be related only to changes in the mask playback rate. One possible explanation

for these differences is entropy masking. Watson, Borthwick, and Taylor [51], present

the idea of entropy masking. Watson, Borthwick, and Taylor describe this as the

amount of unknown in the mask. Watson, Borthwick, and Taylor show that this

should be included into calculations on masking. Watson, Borthwick, and Taylor

point out that this idea has been shown in the past. Swift and Smith describe a

learning process in their experiments that supports the theory of entropy masking

[50]. Daly also incorporated this notion of mask learning [153].

For this experiment, subject J.E. would watch each stimulus twice, and decide

which mask was presented with dynamic DCT noise. This would happen 32 times for

each trial. Each measurement represented three trials. And all of this was repeated

for the 9 target frequency combinations. This means for a single threshold, subject

J.E. could watch the mask as many as 1,728 times for the 300 fps playback rate. This
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may seem like a large number of times to watch the same 0.75 second clip, and should

have been ample time to learn the mask at that rate enough to not be surprised by

it. However, there were 8 other temporal frequencies explored for the mask Cactus.

Also, subject J.E. watched the mask Cactus at 30 fps as many as 1,728 times for each

of the five contrast levels, each of the other 4 luminance levels, as well as all the times

for the data from Chap. 4. It is likely that for every one time subject J.E. watched

the mask Cactus at 300 fps, they watched it at least 10 times at 30 fps. This means

that subject had to unlearn the expectations from the 30 fps mask and then learn the

300 fps mask. This, perhaps, is a special case of entropy masking, as described by

Watson, Brothwick, and Taylor, Swift and Smith, and Daly, where the subject has

learned to expect one action, and is not able to get their mind ready for the different

action, no matter how many times they see this. Because learning, relearning, and

unlearning occurred throughout the experiment, it is possible that the differences in

thresholds only represent how difficult the masks were to learn. The upward slope

may simply be accounted for by the fact that subject J.E. was able to learn the slower

moving masks faster than they could learn the faster moving masks.

All this being considered, it does not appear that changing the mask playback

rate has any consistent effect on target detectability. This is consistent with the

findings of the previous subsection, where three subjects were tested. It should be

noted that subject J.P. had not participated in any other experiments, and had seen

the slow moving masks an equal number of times to the normal moving masks, and

the data suggests that the results from subject J.P. were similar to the results from

subject J.E. who had seen the mask moving at 30 fps thousands of times for other

experiments as well as developing the data collection tool tools. Table 7.8 does not

show any clear pattern for elevations, differences, or slopes. Some of these measures

are larger than others, but it is not consistent across target frequencies. Generally,

increasing the mask playback rate does appear to mostly make targets more difficult
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to see.

7.2 Detectability of targets spatially correlated with mask content

As seen in the previous sections, one consistent way to increase target detection

thresholds is to change the target properties of spatial and temporal frequency. This

Sect. explores the relationships between target detectability and a different target

property, target spatial correlation with the mask. Typically in DCT based com-

pression, the artifacts are correlated in space with the image. During compression,

after an image is transformed to the DCT domain, some rounding occurs for some

DCT coefficients, resulting in slight errors and imperfections when the image is trans-

formed back to the spatial domain. This is usually done in a block wise fashion, and

each block has different imperfections or artifacts, based on what spatial content was

present in the scene before compression. The resulting artifact or distortion is then

spatially correlated with the image being compressed and localized to each block. If a

particular DCT band is not present in a particular block, there will be no component

to round, and thus, no artifact that looks like that band. However, when a block

has a certain DCT band present, then and only then is it possible for an artifact

that looks like that DCT band to show up after quantization or rounding. If there is

nothing to round, there can be no rounding error. Thus common DCT artifacts or

distortions are spatially correlated with the image, and distortions can only appear

where that DCT band is present in the image.

The advantage of using uncorrelated dynamic DCT noise for previous studies is

that our results could be tied back to the results from Watson, Hu, and McGowan

[6]. The disadvantage is that correlated targets are more similar to the compression

artifacts seen in many modern video compression algorithms. This section expands

our results by examining this more realistic target, and compares our results using un-

correlated dynamic DCT noise as targets with correlated target detectability contrast
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thresholds.

Dynamic DCT noise, as described by Watson, Hu, and McGowan [6], as well as

in Chapter 3, is evenly distributed over the entire stimulus. In Chapter 3, building

dynamic DCT noise began in the DCT domain with all DCT bands for an 8×8 pixel

block set to zero. The appropriate DCT band was selected for the spatial frequency of

the target, and set to a thousand. Then the spatial DCT block was formed by taking

the inverse DCT transform. This 8×8 pixel block then had its amplitude normalized

to one. This normalized block was then repeated over the entire 128 × 128 target

image. A random phase offset was added to each block while it was modulated in

time with a Gabor function. The random phase offset reduced the likelihood that

blocks closer together would change target amplitude in phase with each other. Then

a scaling factor changes the amplitude of each target frame to ensure the desired

contrast energy for each trial in the experiment.

The targets for this subsection are slightly modified to make the targets spatially

correlated with the spatial content of the mask. First, the mask frame is separated

into 8 × 8 pixel blocks. Then each block is transformed to the DCT domain. The

appropriate DCT band for the selected spatial frequency of the target is set to 0. The

inverse DCT transform of this block produces the difference block. The original 8×8

pixel block is then subtracted from the difference block to produce the target block.

Then the target blocks are stitched back together to from the entire 128× 128 target

image. This process is repeated for each frame of the mask to form a unique set of

target frames for each mask. After this point, the rest of the process is the same as

was used for the previous dynamic DCT noise. A random phase offset is added to

each block, and the amplitude of the block is controlled with a Gabor function. A

scaling factor stored in a look up table ensures that at each trial the target amplitude

is correct to get the desired contrast energy.

The result of this change is that the distortions will be correlated with the spatial
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content of the mask. For example, in the mask Timelapse, where most of the sky

has no texture, resulting in nothing in certain DCT bands to round, and thus no

distortions will appear in those areas of the sky. However, along the leading edge of

the clouds in the mask Timelapse, most of the distortions will appear in that localized

area. In one way, the correlated dynamic DCT noise is more difficult to see because

the artifacts only appear in areas of the mask that contain the same spatial frequency.

However, the correlated target can be easier to see because now there is less area of

the patch where the artifact can show up. Fig. 7.11 shows a few sample frames from

the mask Timelapse, as well as an example corresponding correlated target and the

combined stimulus consisting of both the mask and the correlated target.

Fig. 7.11 shows how different the new targets are from the previously used dy-

namic DCT noise. In Chapter 3, Fig. 3.1c showed the original dynamic DCT noise

for the target DCT [3,3] at 0 Hz. The difference between these two targets is that

in Chapter 3, Fig. 3.1c, the dynamic DCT noise is equally likely to appear in all

8× 8 pixel blocks, but in Fig. 7.11, the noise is more likely to show up in blocks that

have noticeable content. Areas with more noticeable features, such as edges in Fig.

7.11 tend to have more pronounced artifacts, while smooth regions tend to be left

undistorted. However, as with many other examples in this paper, correlated targets

are also something that changes from mask to mask. Fig. 7.12 shows a few frames

with correlated targets for mask Cactus.

In Fig. 7.12, the targets are more evenly distributed. The mask Cactus has more

going on all over the scene, and thus more blocks of content that would have DCT

[3,3] band content that can be rounded off to generate artifacts. Note that the targets

in Fig. 7.12 look more like the target from Chapter 3 Fig. 3.1c.
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a. Frame 40 

b. Frame 44 

c. Frame 48 

mask target 

Stimulus = 

mask + target 

Figure 7.11: Frames from the mask Timelapse, along with example correlated targets

presented both in the unmasked condition, as well as with the mask. This figure

provides an example of correlated target frames. The target shown is for DCT [3,3]

at a temporal frequency of 0 Hz. Moving from panel a through c, the figure shows

how the target changes to match the spatial content of the mask. Note in this figure

that the targets now only appear in the areas that have clouds in the mask Timelapse.
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a. Frame 40 

b. Frame 44 

c. Frame 48 

mask target 

Stimulus = 

mask + target 

Figure 7.12: Frames from the mask Cactus, along with example correlated targets

presented both in the unmasked condition, as well as with the mask. This figure

provides an example of correlated target frames. This figure is similar to Fig. 7.11,

except that this figure employs the mask Cactus. The target shown is for DCT [3,3]

at a temporal frequency of 0 Hz. Moving from panel a through c, the figure shows

how the target changes to match the spatial content of the mask. Note in this figure

that the targets now appear in more areas, and are most pronounced in the areas

that have spines in the mask Cactus.
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7.2.1 Detectability of unmasked targets spatially correlated with mask

content

One of the first questions relating a change in the target is how unmasked target de-

tectability contrast thresholds change because the difference in targets. As Fig. 7.11

and Fig. 7.12 show, the differences are unique to each mask. An experiment was con-

ducted to quantify how much of a difference in target detectability can be attributed

to a change in targets. This experiment was designed to measure the detectability of

this new target in an unmasked condition. A set of correlated targets was presented

against the gray background used for the unmasked condition to examine how differ-

ent detection thresholds are for the new target. To generate these unmasked stimuli,

a set of target images was created that was correlated with masks Typing, Timelapse,

and Cactus, and then presented against the gray background used for the unmasked

conditions. The results of this experiment are shown in Fig. 7.13 and Fig. 7.14. Fig.

7.13 shows the results for subject J.E. Fig. 7.14 shows the results for subject K.J.

For this measurement, subject J.E. completed three sets of 32 trials each for

each threshold. Subject K.J. completed two sets of 32 trials each for each threshold.

Because this is a target spatial property, additional target spatial frequencies were

explored.

Fig. 7.13 and Fig. 7.14 show good agreement between subjects. The error bars

in Fig. 7.13 and Fig. 7.14 are reasonable. Fig. 7.13 and Fig. 7.14 also show good

agreement between the two types of targets, when both are presented in the unmasked

condition. The general shapes and trends of the plots of the new correlated targets

match those of the previous uncorrelated targets in the unmasked condition. The

plots of the correlated targets have slightly different threshold elevations than the

uncorrelated targets for some target spatiotemporal frequencies, but not for all.

The unmasked target detectability contrast threshold differences between uncorre-

lated and correlated targets is quantifiable. Table 7.10 presents fitness scores between
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Figure 7.13: Detection contrast thresholds versus target spatial frequency for subject

J.E. for spatially correlated unmasked targets. This plot shows that changing the tar-

get from uncorrelated to spatially correlated did not significantly change the general

trends seen in unmasked target detection.
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Figure 7.14: Detection contrast thresholds versus spatial frequency for subject K.J.

This plot shows that changing the target did not significantly change the general

trends seen in unmasked target detection.
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the unmasked correlated and unmasked uncorrelated target detectability contrast

thresholds. The PCC reported was a linear Pearson correlation coefficient calcula-

tion after a logistic fitting. This was based on the work by N.D. Narvekar and L. J.

Karam, CPBD Sharpness Metric Software,” http://ivulab.asu.edu/Quality/CPBD.

For both PCC and SROCC, the best possible score is 1. Root of the mean squared

errors (RMSE) provide a summary of the differences between groups of data. For

RMSE, the best possible score is 0.

Table 7.10: Correlation between unmasked correlated and unmasked uncorrelated

target detectability contrast thresholds. The data was broken into targets with verti-

cal and diagonal alignments. For the vertically aligned targets, the masks Cactus and

Typing were used as templates for the targets. For the diagonally aligned targets,

the masks Cactus and Timelapse were used as templates for the targets. Eleva-

tion was the average of correlated target detectability contrast thresholds minus the

uncorrelated target detectability contrast thresholds.

Unmasked Vertical Unmasked Diagonal

Cactus Typing Cactus Timelapse

PCC 0.974 0.982 PCC 0.926 0.945

SROCC 0.899 0.858 SROCC 0.889 0.913

RMSE 0.211 0.179 RMSE 0.406 0.353

Elev. -0.503±0.532 -0.445±0.329 Elev. -0.250±0.493 -0.459±0.424

Observe from Table 7.10 that there is a strong correlation between the uncor-

related and correlated target detectability contrast thresholds. The goodness of fit

scores show the match between the two types of unmasked targets is reasonable. The

correlation coefficients are similar to the correlations shown between subjects. It is

interesting to note from the elevations in Table 7.10 that the correlated targets gener-

ally had higher detectability contrast thresholds. It is also important to note that the
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elevations due to changing the target from uncorrelated to correlated were different

between the two target spatial orientations, as well as the two different masks the

targets were correlated with.

The data reported in this Sect. suggests that the change in the target, from being

evenly distributed to being present only where the masks have spatial content at the

target spatial frequency, had little effect on target detectability contrast thresholds.

The spatially correlated targets tend to have slightly higher contrast detectability con-

trast thresholds, however the differences are small. The differences between correlated

and uncorrelated target detectability contrast thresholds do appear to be dependent

on both the target spatial orientation as well as which mask the targets are correlated

with.

7.2.2 Detectability of masked targets spatially correlated with mask con-

tent

This section examines how spatial correlation changes target detectability for masked

targets. The previous subsection showed that, in general, correlated targets are eas-

ier to see than uncorrelated targets. The differences between target visibilities were

small, but appear to dependent on which mask targets are correlated with, as well as

the target spatial orientation. Figures 7.15 and 7.16 provide plots of experiment re-

sults, showing correlated target detectability contrast thresholds versus target spatial

frequencies.

Observe in Fig.s 7.15 and 7.16 that the two subjects appear to provide consistent

results. In general, the correlated target detectability contrast thresholds appear to

be similar to uncorrelated target detectability contrast thresholds. The error bars

from both subjects appear to be reasonable. Note that, as in Section 5.7, targets

presented with the mask Cactus had significantly higher target detectability contrast

thresholds than unmasked targets.
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Figure 7.15: Detection contrast thresholds versus target spatial frequency for subject

J.E. This shows masked detection thresholds for correlated targets.
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Figure 7.16: Detection contrast thresholds versus target spatial frequency for subject

K.J. This shows masked detection thresholds for correlated targets.
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One question is how similar the results from correlated targets are to results from

uncorrelated targets. Table 7.11 presents fitness scores between the two datasets.

Scores are presented for the entire data set, as well as for individual masking condi-

tions.

Table 7.11: Similarities between masked target detectability contrast thresholds for

correlated and uncorrelated targets. Elevation is the average of the correlated target

detectability target contrast thresholds minus the uncorrelated target detectability

contrast thresholds.

PCC SROCC RMSE elevation (±)

Overall 0.833 0.830 0.451 0.147 (0.460)

Cactus 0.795 0.729 0.338 0.027 (0.360)

Lemur 0.722 0.686 0.321 0.252 (0.373)

Timelapse 0.950 0.928 0.251 -0.039 (0.335)

Typing 0.887 0.787 0.372 0.102 (0.588)

Waterfall 0.892 0.834 0.280 0.492 (0.503)

Observe in Table 7.11 that the correlated and uncorrelated target detectability

contrast thresholds have a strong similarity. Note from Table 7.11 that the mask

Timelapse showed the strongest similarity between the two target types. Recall from

Fig. 5.3 in Sect. 5.7 that presenting uncorrelated targets with the mask Timelapse

resulted in target detectability contrast thresholds similar to unmasked uncorrelated

target detectability contrast thresholds.

Figure 5.3 in Sect. 5.7 showed that the mask Cactus had a stronger influence on

masked uncorrelated target detectability contrast thresholds. Table 7.11 shows the

second lowest PCC and SROCC scores between correlated and uncorrelated target

detectability was for targets presented with the mask Cactus. This may suggest that

the difference in masked target detectability between correlated and uncorrelated
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targets is proportional to the ability of the mask to effect target detectability.

The lowest PCC and SROCC scores between correlated and uncorrelated target

detectability contrast thresholds came from targets presented with the mask Lemur.

Figure 5.3 in Sect. 5.7 did not suggest that the mask Lemur had any outstanding

ability to effect target detectability contrast thresholds. This may suggest that the

difference in masked target detectability between correlated and uncorrelated targets

is not proportional to the ability of the mask to effect target detectability. However,

it is clear that the differences between uncorrelated and correlated masked target

detectability contrast thresholds is mask dependent.

The data in Table 7.11 suggests there is significant similarity between the masked

uncorrelated and correlated target detectability contrast thresholds. The elevation

of the uncorrelated target detectability contrast thresholds over the correlated target

detectability contrast thresholds was 0.147± 0.460. This suggests that on average, the

masked correlated targets had slightly lower target detectability contrast thresholds,

however, that difference was usually small. The data in Table 7.11 also suggests the

target detectability contrast threshold differences between correlated and uncorrelated

targets varies from mask to mask.

7.2.3 Discussion of targets spatially correlated with mask content

The results of this section present a new data point to help map the landscape of video

compression artifact detectability understanding. From previous sections, unmasked

uncorrelated target detectability contrast thresholds are similar to other unmasked

target detectability contrast thresholds for more controlled targets which are more

common in visual Psychophysics. Presenting natural videos with uncorrelated targets

resulted in target detectability contrast thresholds that were reasonable extrapola-

tions from the unmasked data, and masked target detectability contrast thresholds

were generally higher than unmasked target detectability contrast thresholds. The
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changes in uncorrelated target detectability contrast thresholds varied from mask to

mask, and were dependent on target spatio-temporal frequencies.

From this section, unmasked correlated target detectability contrast thresholds

are mostly similar to unmasked uncorrelated target detectability contrast thresholds,

and the differences appear to be dependent on both which mask the targets are corre-

lated with, as well as the target spatial properties. In general, correlated targets had

lower target detectability contrast thresholds than uncorrelated targets. When corre-

lated targets were presented with natural video masks, target detectability contrast

thresholds showed strong similarity with masked uncorrelated target detectability

contrast thresholds. In general, when targets are presented with natural video masks,

correlated target detectability contrast thresholds tended to be slightly lower than un-

correlated target detectability contrast thresholds. However, the differences appear

to vary from mask to mask.

The modeling results in Sect. 5.2 showed that a simple model could capture

most of the variations in unmasked target detectability contrast thresholds due to

changes in target spatial and temporal frequencies. In that Sect., in the same Table

5.2, it was shown that using only target spatial and temporal frequencies to predict

masked target detectability contrast thresholds was not nearly as effective, but still

contributed useful information. Now, in this Sect., it is shown that changing the

target from uncorrelated to correlated does not result in a large change in target

detectability contrast thresholds, but the changes in detectability vary from mask to

mask.

There are two next logical extensions of the current work. One extension would be

to move towards compression artifacts with multiple target spatial frequencies. Many

modern compression algorithms compress multiple spatial frequencies at different

levels. Another reasonable extension would be to measure the detectability of artifacts

due to prediction error. Based on the results from this chapter, it is reasonable to
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Figure 7.17: Detection thresholds versus mask video playback rate for subject J.E.

for higher playback rates than normal viewing conditions, using a correlated target.

assume that the results from both areas of research can be summarized as follows:

Changing the target to be more like artifacts experienced by the common consumer

produced results similar to those seen with more controlled targets, however, some

differences are significant, and the level of difference varies depending on the mask

content and the target spatio-temporal properties.

7.3 Detectability of masked targets spatially correlated with mask

content at higher mask playback rates

In Sect. 7.1, it was shown that controlling mask playback rates had some effect

on target detectability contrast thresholds. In Sect. 7.2, it was shown that targets

correlated with mask content are slightly different than uncorrelated targets. This

section examines the relationship between mask playback rates and correlated target

detectability contrast thresholds. Subject J.E. completed three sets of trials mea-

suring correlated target detectability contrast thresholds for targets presented with

masks with playback rates from 1 to 300 frames per second. Fig. 7.17 shows the

results of this experiment.

Observe from Fig. 7.17 that as target spatial frequencies increased, target de-

tectability contrast thresholds increased. This is in line with previous observations

from this chapter. Similarly, as target temporal frequencies increased, target de-
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tectability contrast thresholds increased. Although changing target temporal fre-

quencies from 0 Hz to 6 Hz resulted in little difference, target temporal frequencies of

30 Hz were generally associated with higher target detectability contrast thresholds.

As in Sect. 7.1.5, a linear regression model was formed around the data. Model

coefficients were found using only target properties as regressors, as well as including

mask playback rate as a regressor. Table 7.12 presents measures of model goodness

of fit as well as model coefficients.

Table 7.12: Model fit and coefficients of data from the experiment using masks con-

trolled for playback rate and correlated targets. The left column of numbers details

the model fit using only target spatial and temporal properties, while the right column

represents a model that includes mask playback rate as an input.

3 input 3+P input

fit PCC 0.457 0.569

SROCC 0.422 0.557

RMSE 0.568 0.525

coefficient constant -2.267 -3.114

TSF 0.437 0.442

TTF 1.136 1.145

(TSF x TTF) -0.884 -0.896

P 0.590

Observe from Table 7.12 that the correlation between model predictions and mea-

sured thresholds is poor. This suggests that conclusions based on this data are merely

speculative. The coefficients for the three and four regressor models are similar to

those listed in Table 7.9, as well as other models listed in the dissertation. The coef-

ficient for target spatial frequency is smaller than the coefficient for target temporal

frequency. This may suggest that for playback controlled masks and correlated tar-
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gets, target temporal frequency now has a larger role in predicting target detectability

contrast thresholds. The data in Table 7.12 suggests that including mask playback

rate as a regressor improves the correlation between model predictions and measured

target detectability contrast thresholds. However, even the four regressor model does

not provide a prediction with strong correlation with measured thresholds.

The results from Table 7.12 can be compared to the results from Table 7.9. The

plots shown in Fig.s 7.10 and 7.17 may not suggest a clearly monotonic relationship

between target detectability contrast thresholds and mask playback rate. The cor-

relations between model predictions and measured data reported in Tables 7.9 and

7.12 may not suggest the models perfectly reflect the variations in target detectability

contrast thresholds due to changes in mask playback rates.

The data from this section, as well as from Sect. 7.1 suggest that increasing mask

playback rate will generally result in increased target detectability contrast thresholds.

Neither the results in Table 7.9 or 7.12 have such strong correlations with measured

data as to suggest either model is perfectly capturing relationships between mask

playback rates and target detectability contrast thresholds. However, both models

appear to suggest that mask playback rate can effect target detectability contrast

thresholds. The noise of the data plotted in Fig.s 7.10 and 7.17 do not appear to

make this point as clearly as the model coefficients.

Finally, changing the target type, from uncorrelated to correlated, does not appear

to have a significant influence on the relationship between target detectability contrast

thresholds and mask playback rate. Although the size of the data sets are small,

and the clarity of their meanings is limited, neither set suggests that mask playback

rate can be eliminated from a list of factors that effects target detectability contrast

thresholds. The data does appear to support further examination of this topic.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

This chapter presents the conclusions supported by our work. This chapter also lists

promising future work based on our research. The chapter ends with a summary of

results from our research.

8.1 Conclusions

We extended the work of Watson, Hu, and McGowan [6] by investigating the masking

of dynamic DCT distortions by natural videos. We measured the log10 of the contrast

energy of detectability thresholds for compression like artifacts that ranged from 0-30

Hz in temporal frequency and from 2.8-22.6 cyc/deg in spatial frequency. Target

detectability contrast thresholds were measured in the unmasked condition as well as

masked by eight gray-scale videos, 0.75 seconds long. Later, a subset of those videos

were modified in luminance, contrast, and playback rate, and target detectability

contrast thresholds were measured again. Additionally, the target was later modified

to be spatially correlated with mask content.

The conclusions from our research are as follows:

1. Masking targets with natural videos can impact target detectability. For tar-

gets with low unmasked detectability thresholds, natural video masking is more

likely to elevate target detectability thresholds; however, the amount of eleva-

tion is dependent on mask content. For targets with high unmasked detectabil-

ity thresholds, especially due to high target spatial frequencies, natural video

masking is most likely to have little influence on target detectability thresholds;
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however, some mask content was associated with facilitation for targets with

higher spatial frequencies, and the amount of facilitation is dependent on mask

content.

2. Target spatial frequency has an important role in determining target detectabil-

ity. Increasing target spatial frequency tends to increase target detectability

thresholds significantly. The elevations in target detectability due to increasing

target spatial frequency can also be significantly reduced by changing the target

masking condition or the target temporal frequency. Targets with the highest

spatial frequencies examined seem to be more susceptible to facilitation.

3. Target temporal frequency has an important role in determining target de-

tectability. Increasing target temporal frequency tends to increase target de-

tectability thresholds. The elevations in target detectability due to increasing

target temporal frequency can be significantly reduced by changing the masking

condition or the target spatial frequency. In general, a target with a temporal

frequency of 30 Hz is going to have a higher detectability threshold than a target

with a temporal frequency of 0 Hz.

4. Target spatial and temporal frequencies can be used to predict most variation

in unmasked target detectability contrast thresholds and most variation in nat-

ural video masked target detectability contrast thresholds. The addition of

video content measurements as model inputs can significantly improve predic-

tions of target detectability contrast thresholds. No reference models tuned to

predict natural video masked dynamic DCT noise target detectability thresh-

olds predict variations in masked target detectability better than more general

full reference quality assessment algorithms tuned to provide general quality

assessment scores.

5. Some properties of natural-video masks can influence masked target detectabil-

ity thresholds. The level of influence is dependent on target spatial and tempo-
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ral frequencies, as well as mask content. Increasing mask luminance appears to

cause a slight decrease in masked target detection thresholds. Increasing mask

playback rate appears to cause a slight increase in masked target detection

thresholds. Increasing mask contrast appears to cause a considerable increase

in masked target detection thresholds.

6. Changing the target, from dynamic DCT noise evenly distributed over the entire

frame to spatially correlated dynamic DCT noise, only present in regions of the

mask that contained spatial content at the frequency of the target, resulted

in some significant changes in masked target detectability thresholds; however,

changes in target detectability varied from natural video to natural video.

8.2 Future research

In order to support the complicated field video compression and the messy world it

captures, additional research is required. We feel there are several other experiments

necessary to tie these data more closely to modern video viewing experiences. Other

extensions of this work would to be to measure: target sensitivity above detectability,

at the supra-threshold level; the interaction of multiple target spatial frequencies in

a summation study; the relationship between block size and target detectability; and

the interaction of color masks and color targets.

Professor Le Callet of the IRCCyN lab with Polytech’Nantes of the University

de Nantes suggested another possible direction for this research. Professor Le Callet

suggested that the current data in this paper was a necessary first step for other

researchers to have. [146] Professor Le Callet suggests the type of data collected so

far only considers part of the artifacts possible during compression. Another piece

of the human vision and video compression puzzle is motion prediction. Professor

Le Callet suggested the measurement of the detectability thresholds of errors due to

incorrect motion prediction, as this is a key part of modern video compression.
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This data, as well as the data presented by Robson [8] and Watson, Hu, and Mc-

Gowan [6], have shown that target temporal frequencies have played an important role

in effecting target detectability contrast thresholds. Although artifact temporal fre-

quency is not commonly controlled in video compression, this could be a valuable tool

for either improving compressed video fidelity, or easing aggravations related to more

aggressive compression rates. The maximum target temporal frequency displayable is

limited by the refresh rate of the display, and the maximum target temporal frequency

precipitable is limited by the mechanics of the eye. In the future we hope to quantify

how these limits relate to the ability to mask targets with natural video masks. Tables

5.3 and 5.4 show that large changes in target temporal frequency cause significant

changes in masked target detectability contrast thresholds. Table 5.6 also shows that

small changes in target temporal frequency make masked target detectability contrast

thresholds lower half the time. We plan to measure what refresh rates are necessary

to make target temporal frequencies high enough to maximize target detectability

contrast thresholds when targets are masked by natural video masks. As with all ap-

plications of research, to bear fruit, such findings would then need to be implemented

in the real world, which is often messy and complicated. The question would then

become if the cost of necessary changes in video compression technology would be

worth the benefit.

There are many approaches to data modeling, including functional models, bio-

logically inspired models, and physiologically plausible models. This is a reflection

of the level of effort that necessary to provide the proper models used in the many

different areas related to human vision and media processing. The functional model

provided in Chapter 6 is only a starting point down this path. This model uses the

regressors to best predict masked target detectability contrast thresholds, and does

not always use the regressors in the most intuitive manner.

After gathering additional data, modeling efforts should be revisited. It appears
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that the measure of spatial standard deviation may be of significance. Further ex-

amination of masked target detectability may benefit from experiments that control

mask standard deviation, which would provide more direct information about the

relationships between mask content, target spatial and temporal frequency, and tar-

get detectability. Additionally, the data from Chapter 6 appears to suggest that the

question of how to collapse video content measurements into single scores may also

merit closer examination. These additional data should be most useful in understand-

ing target detectability contrast thresholds for normal video viewing and compression

research.

8.3 Summary of results

The following list details our main results from our data analysis of our main data

set:

1. Changing from the CRT monitor used by Watson, Hu, and McGowan [6] to

a LCD monitor did not change the trends observed with dynamic DCT noise

targets presented in the unmasked condition.

2. Unmasked targets higher in spatial and temporal frequencies had higher de-

tectability contrast thresholds, as suggested by the results from Robson [8] and

Watson, Hu, and McGowan [6].

(a) Large changes in unmasked target spatial frequencies resulted in large de-

tectability elevations when target temporal frequencies were small.

(b) Large changes in unmasked target spatial frequencies resulted in reduced

detectability elevations when target temporal frequencies were near 30 Hz.

(c) Large changes in unmasked target temporal frequencies resulted in large

detectability elevations when target spatial frequencies were small.

(d) Large changes in unmasked target temporal frequencies resulted in reduced
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detectability elevations when target spatial frequencies were large.

3. Masked target detectability trends had reasonable similarity to unmasked target

detectability trends, however:

(a) Presenting targets with natural video masks can reduce or eliminate ele-

vations due to large changes in target spatial or temporal frequencies.

(b) Different masks caused unique changes in relationships between target de-

tectability and target spatiotemporal properties at different target spatial

and temporal frequencies.

(c) Large increases in target spatial frequencies can sometimes result in nega-

tive elevations in target threshold detectability for some masked targets.

(d) Smaller increases in target spatial frequencies are more likely to result in

negative elevations for masked target detectability.

(e) Large increases in target temporal frequencies can sometimes result in little

to no elevation in target threshold detectability for some masked targets.

(f) Smaller increases in target temporal frequencies are more likely to result

in negative elevations for masked target detectability.

4. Natural video masks appear to be most effective in reducing detectability thresh-

olds for targets with lower spatial frequencies.

5. Natural video masks were also effective in reducing detectability thresholds for

targets with lower temporal frequencies.

6. All natural video masks examined were capable of producing facilitation, how-

ever:

(a) Some masks caused significant elevations in target detectability thresholds

most of the time, and rarely resulted in facilitation.

(b) Some masks were most likely to cause facilitation, and rarely caused sig-

nificant elevations in target detectability thresholds.
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The following list details our main results from our modeling efforts using our

main data set:

1. A no reference linear model with only two regressors was able to predict un-

masked target detectability thresholds with a PCC of 0.961.

2. Including a third regressor, based on observations from our data, as well as from

Robson [8] only resulted in a PCC increase of 0.003 for unmasked thresholds.

3. The two regressor model to was able to predict masked target detectability

thresholds with a PCC of 0.684, and the third regressor improved PCC by

0.006.

4. Including a fourth regressor measuring mask spatial standard deviation, aver-

aged over all frames, improved the prediction PCC from 0.690 to 0.818.

5. The normalized model coefficients showed that mask spatial standard deviation

was possibly only a best candidate for a data fitting exercise, and not a intuitive

indicator of natural video masking ability.

6. A model with twelve regressors measuring mask content had a prediction to

measured threshold PCC increase of 0.102 over a model with only one mask

measurement regressor.

7. A seven regressor model provided an acceptable prediction of all masked target

detectability thresholds that was on par with how well one subject could produce

the results of another subject during data collection.

8. Full reference models were less effective in predicting masked target detectability

contrast thresholds than the no reference linear models.

The following list details our main results from our expanded investigations using

natural video masks controlled for luminance, contrast, and playback rate:

1. Our data appears to suggest that mask luminance has a limited influence over

target detectability thresholds, and that a significant increase in mask luminance
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is correlated with only a slight decrease in target detectability thresholds. Al-

though modeling coefficients predicting target detectability thresholds based on

target spatial and temporal frequencies and mask luminance suggest a weak re-

lationship, plots of detectability thresholds versus mask luminance suggest this

relationship is more difficult to discern.

2. Our data appears to suggest that mask playback rate has a limited influence over

target detectability thresholds, and that a significant increase in mask playback

rate is correlated with only a slight increase in target detectability thresholds.

Although modeling coefficients predicting target detectability thresholds based

on target spatial and temporal frequencies and mask playback rate suggest a

weak relationship, plots of detectability thresholds versus mask playback rate

suggest this relationship is questionable. Because of the poor correlation be-

tween mask playback rates and target detectability thresholds, data from ad-

ditional subjects may be necessary to quantify this relationship more clearly.

From our data, it appears that detectability thresholds for targets with lower

spatial frequencies can be increased by increasing mask playback rate; however,

thresholds for targets with higher spatial frequencies are more likely to have

lower detectability thresholds for masks with higher playback rates.

3. Our data suggests that mask contrast has considerable influence over target

detectability thresholds, and that a significant increase in mask contrast is cor-

related with an increase in target detectability thresholds. It appears that

detectability thresholds for targets with lower spatial frequencies can be in-

creased significantly by increasing mask contrast. Thresholds for targets with

higher spatial frequencies are less likely to have higher detectability thresholds

for masks with higher contrast.

4. Our data appears to suggest that changing the target from dynamic DCT noise

evenly distributed over the entire frame to spatially correlated dynamic DCT
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noise, only present in regions of the mask that contained spatial content at the

frequency of the target, resulted in some significant changes in target detectabil-

ity thresholds for masked targets. Correlated unmasked targets had similar

detectability thresholds to uncorrelated unmasked targets, however correlated

targets tended to have slightly higher detectability thresholds. The masked

target detectability of correlated targets was slightly different from masked un-

correlated targets. Masked correlated targets tended to have slightly lower de-

tectability thresholds, however the elevations due to changing target correlation

varied from natural video to natural video.

5. Our data appears to suggest that when targets are spatially correlated with

masks, significant increases in mask playback rates are correlated with minor

increases in target detectability thresholds.
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APPENDIX B

MODEL FIT PERFORMANCE FOR FOUR INPUT MODELS

Please see Sect. 6.1 and Table 6.2 for additional details. This section presents quan-

tification of four input model performance. Tables in this section provide the PCC,

SROCC, and RMSE between model predictions and measured masked target visi-

bility contrast thresholds. Each table has twelve rows of data, corresponding to the

three performance measures for four different methods to collapse multiple measures

into a single measure. In each table, the four left columns correspond to the four

measurement treatments applied before including the measure in the model.

For the spatial video content measurements, each frame was measured, and then

the frame measurements were collapsed over time into a single measurement. Like-

wise, for the temporal video content measures, statistics were calculated on a pixel

by pixel basis and then collapsed over all pixels. The four methods to collapse mea-

surements, were a simple average, the 2-Norm, 5-Norm, and finally, selecting the

maximum measure. Selecting the maximum over all frames was suggested by the

VQEG. [149]
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Table B.1: Goodness of fit between measured masked target detectability and pre-

dictions from a four input no reference linear regression model with inputs of target

spatial and temporal properties, as well as mask content measure VQEG Spatial

Perceptual Information.

Clock Time (sec) 2.50

x x2 x/TSF x/(TSF + TTF )

Average PCC 0.751 0.725 0.713 0.693

SROCC 0.749 0.722 0.713 0.688

RMSE 0.501 0.523 0.533 0.547

2-Norm PCC 0.751 0.725 0.712 0.693

SROCC 0.749 0.723 0.714 0.688

RMSE 0.502 0.523 0.533 0.547

5-Norm PCC 0.750 0.725 0.712 0.693

SROCC 0.748 0.723 0.713 0.687

RMSE 0.502 0.523 0.533 0.548

Max PCC 0.747 0.724 0.709 0.690

SROCC 0.745 0.720 0.709 0.685

RMSE 0.505 0.524 0.536 0.550
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Table B.2: Goodness of fit between measured masked target detectability and pre-

dictions from a four input no reference linear regression model with inputs of target

spatial and temporal properties, as well as mask content measure VQEG Temporal

Perceptual Information.

Clock Time (sec) 1.65

x x2 x/TSF x/(TSF + TTF )

Average PCC 0.689 0.692 0.685 0.682

SROCC 0.677 0.679 0.675 0.673

RMSE 0.550 0.548 0.553 0.555

2-Norm PCC 0.709 0.700 0.689 0.682

SROCC 0.699 0.690 0.684 0.666

RMSE 0.535 0.543 0.551 0.555

5-Norm PCC 0.708 0.695 0.689 0.683

SROCC 0.698 0.686 0.683 0.665

RMSE 0.537 0.546 0.551 0.554

Max PCC 0.704 0.693 0.688 0.684

SROCC 0.695 0.684 0.682 0.665

RMSE 0.540 0.547 0.551 0.554
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Table B.3: Goodness of fit between measured masked target detectability and pre-

dictions from a four input no reference linear regression model with inputs of target

spatial and temporal properties, as well as mask content measure Spatial Standard

Deviation.

Clock Time (sec) 1.58

x x2 x/TSF x/(TSF + TTF )

Average PCC 0.812 0.755 0.742 0.702

SROCC 0.806 0.750 0.740 0.700

RMSE 0.444 0.498 0.509 0.541

2-Norm PCC 0.811 0.756 0.741 0.701

SROCC 0.804 0.749 0.738 0.699

RMSE 0.444 0.497 0.510 0.541

5-Norm PCC 0.809 0.755 0.738 0.699

SROCC 0.800 0.749 0.736 0.696

RMSE 0.447 0.498 0.512 0.543

Max PCC 0.797 0.753 0.727 0.693

SROCC 0.789 0.745 0.727 0.688

RMSE 0.458 0.500 0.521 0.548
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Table B.4: Goodness of fit between measured masked target detectability and pre-

dictions from a four input no reference linear regression model with inputs of target

spatial and temporal properties, as well as mask content measure Spatial Skewness.

Clock Time (sec) 2.78

x x2 x/TSF x/(TSF + TTF )

Average PCC 0.722 0.738 0.700 0.738

SROCC 0.724 0.739 0.705 0.744

RMSE 0.525 0.513 0.543 0.512

2-Norm PCC 0.725 0.747 0.698 0.736

SROCC 0.725 0.747 0.700 0.742

RMSE 0.523 0.505 0.544 0.514

5-Norm PCC 0.711 0.725 0.691 0.718

SROCC 0.707 0.723 0.685 0.725

RMSE 0.534 0.523 0.549 0.529

Max PCC 0.693 0.691 0.685 0.698

SROCC 0.682 0.681 0.674 0.700

RMSE 0.547 0.549 0.553 0.544
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Table B.5: Goodness of fit between measured masked target detectability and pre-

dictions from a four input no reference linear regression model with inputs of target

spatial and temporal properties, as well as mask content measure Spatial Kurtosis.

Clock Time (sec) 2.74

x x2 x/TSF x/(TSF + TTF )

Average PCC 0.797 0.813 0.718 0.763

SROCC 0.796 0.812 0.722 0.769

RMSE 0.459 0.442 0.528 0.491

2-Norm PCC 0.782 0.802 0.709 0.750

SROCC 0.778 0.798 0.711 0.757

RMSE 0.473 0.454 0.536 0.503

5-Norm PCC 0.742 0.754 0.694 0.726

SROCC 0.737 0.751 0.689 0.733

RMSE 0.509 0.499 0.547 0.523

Max PCC 0.707 0.705 0.686 0.701

SROCC 0.696 0.692 0.674 0.705

RMSE 0.537 0.539 0.553 0.541
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Table B.6: Goodness of fit between measured masked target detectability and pre-

dictions from a four input no reference linear regression model with inputs of target

spatial and temporal properties, as well as mask content measure Spatial Edge Den-

sity.

Clock Time (sec) 15.33

x x2 x/TSF x/(TSF + TTF )

Average PCC 0.740 0.732 0.699 0.751

SROCC 0.742 0.733 0.701 0.752

RMSE 0.511 0.518 0.543 0.501

2-Norm PCC 0.745 0.737 0.701 0.754

SROCC 0.747 0.739 0.702 0.755

RMSE 0.507 0.513 0.542 0.499

5-Norm PCC 0.754 0.750 0.705 0.758

SROCC 0.755 0.752 0.707 0.759

RMSE 0.499 0.503 0.539 0.495

Max PCC 0.784 0.790 0.715 0.770

SROCC 0.787 0.793 0.721 0.773

RMSE 0.472 0.465 0.531 0.485
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Table B.7: Goodness of fit between measured masked target detectability and pre-

dictions from a four input no reference linear regression model with inputs of target

spatial and temporal properties, as well as mask content measure Spatial Entropy.

Clock Time (sec) 1.73

x x2 x/TSF x/(TSF + TTF )

Average PCC 0.682 0.685 0.684 0.687

SROCC 0.672 0.673 0.675 0.684

RMSE 0.555 0.554 0.554 0.552

2-Norm PCC 0.682 0.684 0.684 0.687

SROCC 0.672 0.671 0.675 0.684

RMSE 0.555 0.554 0.554 0.552

5-Norm PCC 0.682 0.684 0.684 0.688

SROCC 0.672 0.671 0.675 0.685

RMSE 0.555 0.554 0.554 0.551

Max PCC 0.684 0.683 0.685 0.692

SROCC 0.674 0.671 0.678 0.692

RMSE 0.554 0.555 0.553 0.548
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Table B.8: Goodness of fit between measured masked target detectability and pre-

dictions from a four input no reference linear regression model with inputs of target

spatial and temporal properties, as well as mask content measure Spatial Local En-

tropy.

Clock Time (sec) 17.69

x x2 x/TSF x/(TSF + TTF )

Average PCC 0.687 0.683 0.687 0.697

SROCC 0.681 0.676 0.683 0.700

RMSE 0.552 0.555 0.552 0.545

2-Norm PCC 0.687 0.683 0.687 0.697

SROCC 0.682 0.675 0.683 0.700

RMSE 0.552 0.554 0.552 0.544

5-Norm PCC 0.687 0.684 0.687 0.699

SROCC 0.682 0.676 0.685 0.702

RMSE 0.552 0.554 0.552 0.543

Max PCC 0.690 0.686 0.689 0.703

SROCC 0.685 0.679 0.688 0.708

RMSE 0.550 0.553 0.550 0.540
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Table B.9: Goodness of fit between measured masked target detectability and pre-

dictions from a four input no reference linear regression model with inputs of target

spatial and temporal properties, as well as mask content measure Spatial Magnitude

Slope.

Clock Time (sec) 7.77

x x2 x/TSF x/(TSF + TTF )

Average PCC 0.720 0.713 0.694 0.681

SROCC 0.720 0.715 0.694 0.661

RMSE 0.527 0.532 0.547 0.556

2-Norm PCC 0.720 0.713 0.693 0.681

SROCC 0.720 0.715 0.694 0.661

RMSE 0.527 0.533 0.547 0.556

5-Norm PCC 0.719 0.713 0.693 0.681

SROCC 0.720 0.715 0.694 0.661

RMSE 0.527 0.533 0.547 0.556

Max PCC 0.704 0.702 0.690 0.682

SROCC 0.704 0.702 0.690 0.666

RMSE 0.539 0.541 0.550 0.555
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Table B.10: Goodness of fit between measured masked target detectability and pre-

dictions from a four input no reference linear regression model with inputs of target

spatial and temporal properties, as well as mask content measure Spatial Magnitude

Intercept.

Clock Time (sec) 7.75

x x2 x/TSF x/(TSF + TTF )

Average PCC 0.686 0.688 0.684 0.696

SROCC 0.673 0.673 0.674 0.694

RMSE 0.552 0.551 0.554 0.545

2-Norm PCC 0.686 0.688 0.684 0.696

SROCC 0.673 0.673 0.674 0.694

RMSE 0.552 0.551 0.554 0.545

5-Norm PCC 0.686 0.688 0.684 0.696

SROCC 0.673 0.673 0.674 0.694

RMSE 0.552 0.551 0.554 0.545

Max PCC 0.686 0.688 0.684 0.696

SROCC 0.673 0.673 0.674 0.694

RMSE 0.552 0.551 0.554 0.545
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Table B.11: Goodness of fit between measured masked target detectability and pre-

dictions from a four input no reference linear regression model with inputs of target

spatial and temporal properties, as well as mask content measure Spatial FISH Sharp-

ness.

Clock Time (sec) 4.52

x x2 x/TSF x/(TSF + TTF )

Average PCC 0.707 0.710 0.690 0.679

SROCC 0.698 0.703 0.683 0.669

RMSE 0.537 0.535 0.550 0.557

2-Norm PCC 0.707 0.710 0.690 0.679

SROCC 0.698 0.702 0.683 0.669

RMSE 0.537 0.535 0.550 0.557

5-Norm PCC 0.707 0.710 0.690 0.679

SROCC 0.698 0.703 0.683 0.669

RMSE 0.537 0.535 0.550 0.557

Max PCC 0.703 0.706 0.688 0.681

SROCC 0.695 0.697 0.679 0.672

RMSE 0.540 0.538 0.551 0.556
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Table B.12: Goodness of fit between measured masked target detectability and pre-

dictions from a four input no reference linear regression model with inputs of target

spatial and temporal properties, as well as mask content measure Spatial S3 Sharp-

ness.

Clock Time (sec) 918.54

x x2 x/TSF x/(TSF + TTF )

Average PCC 0.758 0.719 0.723 0.700

SROCC 0.753 0.720 0.725 0.696

RMSE 0.496 0.528 0.525 0.542

2-Norm PCC 0.755 0.718 0.720 0.698

SROCC 0.750 0.720 0.722 0.694

RMSE 0.498 0.528 0.527 0.544

5-Norm PCC 0.750 0.718 0.716 0.695

SROCC 0.746 0.719 0.717 0.691

RMSE 0.502 0.529 0.530 0.546

Max PCC 0.744 0.719 0.710 0.690

SROCC 0.740 0.717 0.710 0.685

RMSE 0.507 0.528 0.535 0.550
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Table B.13: Goodness of fit between measured masked target detectability and pre-

dictions from a four input no reference linear regression model with inputs of target

spatial and temporal properties, as well as mask content measure Spatial Michaelson

Contrast.

Clock Time (sec) 1.37

x x2 x/TSF x/(TSF + TTF )

Average PCC 0.683 0.683 0.683 0.713

SROCC 0.677 0.677 0.669 0.713

RMSE 0.555 0.555 0.555 0.532

2-Norm PCC 0.683 0.683 0.683 0.713

SROCC 0.677 0.677 0.669 0.713

RMSE 0.555 0.555 0.555 0.532

5-Norm PCC 0.683 0.683 0.683 0.713

SROCC 0.677 0.677 0.669 0.713

RMSE 0.555 0.555 0.555 0.532

Max PCC 0.683 0.683 0.683 0.712

SROCC 0.678 0.678 0.672 0.713

RMSE 0.555 0.555 0.554 0.533
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Table B.14: Goodness of fit between measured masked target detectability and pre-

dictions from a four input no reference linear regression model with inputs of target

spatial and temporal properties, as well as mask content measure Spatial RMS Con-

tras.

Clock Time (sec) 1.58

x x2 x/TSF x/(TSF + TTF )

Average PCC 0.693 0.768 0.685 0.687

SROCC 0.678 0.765 0.672 0.674

RMSE 0.547 0.487 0.553 0.552

2-Norm PCC 0.765 0.765 0.730 0.720

SROCC 0.765 0.760 0.728 0.718

RMSE 0.489 0.489 0.519 0.527

5-Norm PCC 0.759 0.763 0.724 0.712

SROCC 0.760 0.759 0.723 0.712

RMSE 0.495 0.491 0.524 0.533

Max PCC 0.683 0.745 0.683 0.681

SROCC 0.672 0.745 0.673 0.673

RMSE 0.555 0.506 0.555 0.556
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Table B.15: Goodness of fit between measured masked target detectability and pre-

dictions from a four input no reference linear regression model with inputs of target

spatial and temporal properties, as well as mask content measure Spatial DCT Band

RMS Contras.

Clock Time (sec) 432.20

x x2 x/TSF x/(TSF + TTF )

Average PCC 0.684 0.684 0.684 0.689

SROCC 0.674 0.670 0.683 0.687

RMSE 0.554 0.554 0.554 0.550

2-Norm PCC 0.684 0.684 0.684 0.689

SROCC 0.674 0.670 0.681 0.686

RMSE 0.554 0.554 0.554 0.550

5-Norm PCC 0.684 0.684 0.684 0.689

SROCC 0.674 0.669 0.681 0.686

RMSE 0.554 0.554 0.554 0.550

Max PCC 0.684 0.684 0.684 0.689

SROCC 0.675 0.669 0.681 0.684

RMSE 0.554 0.554 0.554 0.550

251



Table B.16: Goodness of fit between measured masked target detectability and pre-

dictions from a four input no reference linear regression model with inputs of target

spatial and temporal properties, as well as mask content measure Spatial DCT Band

Kurtosis.

Clock Time (sec) 432.20

x x2 x/TSF x/(TSF + TTF )

Average PCC 0.725 0.726 0.688 0.713

SROCC 0.726 0.728 0.682 0.718

RMSE 0.523 0.523 0.551 0.532

2-Norm PCC 0.723 0.724 0.687 0.709

SROCC 0.722 0.722 0.682 0.716

RMSE 0.525 0.524 0.552 0.536

5-Norm PCC 0.714 0.713 0.686 0.702

SROCC 0.710 0.708 0.677 0.708

RMSE 0.532 0.532 0.552 0.541

Max PCC 0.723 0.730 0.689 0.712

SROCC 0.717 0.725 0.684 0.722

RMSE 0.525 0.519 0.550 0.533
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Table B.17: Goodness of fit between measured masked target detectability and pre-

dictions from a four input no reference linear regression model with inputs of target

spatial and temporal properties, as well as mask content measure DCT Band RMS

Contrast Nearest Neighbor.

Clock Time (sec) 432.20

x x2 x/TSF x/(TSF + TTF )

Average PCC 0.683 0.684 0.684 0.688

SROCC 0.674 0.669 0.684 0.687

RMSE 0.555 0.554 0.554 0.551

2-Norm PCC 0.684 0.684 0.683 0.686

SROCC 0.674 0.669 0.681 0.686

RMSE 0.554 0.554 0.554 0.552

5-Norm PCC 0.684 0.684 0.684 0.686

SROCC 0.673 0.669 0.681 0.686

RMSE 0.554 0.554 0.554 0.552

Max PCC 0.683 0.684 0.682 0.687

SROCC 0.674 0.670 0.678 0.684

RMSE 0.554 0.554 0.555 0.552
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Table B.18: Goodness of fit between measured masked target detectability and pre-

dictions from a four input no reference linear regression model with inputs of target

spatial and temporal properties, as well as mask content measure DCT Band Kurtosis

Nearest Neighbor.

Clock Time (sec) 432.20

x x2 x/TSF x/(TSF + TTF )

Average PCC 0.716 0.718 0.688 0.706

SROCC 0.703 0.706 0.678 0.706

RMSE 0.531 0.529 0.551 0.538

2-Norm PCC 0.714 0.717 0.686 0.702

SROCC 0.701 0.704 0.674 0.700

RMSE 0.532 0.529 0.552 0.541

5-Norm PCC 0.710 0.711 0.685 0.698

SROCC 0.697 0.699 0.675 0.694

RMSE 0.535 0.534 0.553 0.544

Max PCC 0.715 0.712 0.688 0.703

SROCC 0.702 0.699 0.678 0.698

RMSE 0.531 0.533 0.551 0.540
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Table B.19: Goodness of fit between measured masked target detectability and pre-

dictions from a four input no reference linear regression model with inputs of target

spatial and temporal properties, as well as mask content measure Temporal Standard

Deviation.

Clock Time (sec) 2.54

x x2 x/TSF x/(TSF + TTF )

Average PCC 0.705 0.693 0.693 0.685

SROCC 0.698 0.686 0.691 0.678

RMSE 0.539 0.547 0.548 0.553

2-Norm PCC 0.741 0.711 0.708 0.689

SROCC 0.735 0.702 0.709 0.685

RMSE 0.510 0.534 0.536 0.551

5-Norm PCC 0.782 0.752 0.719 0.689

SROCC 0.776 0.745 0.719 0.685

RMSE 0.474 0.501 0.528 0.550

Max PCC 0.798 0.783 0.716 0.686

SROCC 0.798 0.783 0.715 0.682

RMSE 0.458 0.472 0.530 0.552
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Table B.20: Goodness of fit between measured masked target detectability and pre-

dictions from a four input no reference linear regression model with inputs of target

spatial and temporal properties, as well as mask content measure Temporal Skewness.

Clock Time (sec) 6.25

x x2 x/TSF x/(TSF + TTF )

Average PCC 0.756 0.799 0.720 0.764

SROCC 0.749 0.788 0.725 0.767

RMSE 0.497 0.457 0.527 0.490

2-Norm PCC 0.687 0.689 0.684 0.693

SROCC 0.675 0.675 0.668 0.689

RMSE 0.552 0.551 0.554 0.547

5-Norm PCC 0.702 0.700 0.688 0.682

SROCC 0.698 0.693 0.683 0.671

RMSE 0.541 0.543 0.551 0.555

Max PCC 0.694 0.695 0.688 0.685

SROCC 0.694 0.694 0.684 0.677

RMSE 0.546 0.546 0.551 0.553
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Table B.21: Goodness of fit between measured masked target detectability and pre-

dictions from a four input no reference linear regression model with inputs of target

spatial and temporal properties, as well as mask content measure Temporal Kurtosis.

Clock Time (sec) 6.22

x x2 x/TSF x/(TSF + TTF )

Average PCC 0.695 0.696 0.684 0.714

SROCC 0.691 0.693 0.674 0.716

RMSE 0.546 0.545 0.554 0.532

2-Norm PCC 0.685 0.685 0.683 0.690

SROCC 0.668 0.669 0.673 0.690

RMSE 0.553 0.553 0.554 0.550

5-Norm PCC 0.687 0.688 0.686 0.682

SROCC 0.680 0.681 0.679 0.668

RMSE 0.552 0.551 0.552 0.555

Max PCC 0.682 0.683 0.685 0.685

SROCC 0.672 0.675 0.677 0.674

RMSE 0.555 0.554 0.554 0.553
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