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Title of Study: Determining Structural Influence on Depositional Sequences in        

Carbonates Using Core-Calibrated Wireline Logs: Mississippian, Mid-

Continent, U.S.A. 

 

Major Field: GEOLOGY 

 

Abstract:  

 

Identifying stratigraphic surfaces and correlating depositional packages is 

problematic in proximal ramp settings where argillaceous carbonates with distinct 

wireline log signatures are absent due to non-deposition or post depositional erosion. In 

southern Kansas, packages were defined based on petrophysical similarities as expressed 

by the neutron and density porosity logs. Based on the examination of core-calibrated 

wireline logs, depositional packages were established that could be correlated up to 25 

miles (~40 km).  Examination of the geometry of these packages indicated that they 

prograded to the south and thinned both landward and basinward. The apparent direction 

of progradation changed near the Pratt Anticline from southwesterly to southeasterly.  

Furthermore, packages thinned and terminate against the Pratt Anticline and Central 

Kansas Uplift. This thinning and apparent change in direction of progradation is 

interpreted as evidence of syndepositional uplift of both features during Mississippian 

deposition. 

Attempts to tie packages in the Bartel #1-16 core in Reno County, Kansas to the 

Bann #1-14 core in Woods County, Oklahoma were not successful. The predominantly 

log-based correlation was interpreted to show that most packages in the Bartel #1-16 core 

terminate before the Kansas-Oklahoma border. The packages/sequences in the Bann #1-

14 are interpreted to be younger and more distal as increases in gamma-ray signature 

interpreted as flooding surfaces become apparent.  Establishing a method for correlating 

depositional packages in proximal settings and understanding the relative ages of 

packages in a regional context increases our understanding of the complex Mississippian 

carbonate section.  Considering the influence of uplift on the direction of package 

progradation could be useful in aligning horizontal wellbores to intersect reservoir facies. 

 

Full sized cross sections are available as supplementary files. 
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CHAPTER I 
 

 

INTRODUCTION 

SUMMARY OF THE PROBLEM 

Mississippian sequence stratigraphy is not well defined in southern Kansas and northern 

Oklahoma. In particular, electrofacies-defined units, as utilized during the recent wave of 

unconventional drilling (horizontal well bores) in Kansas and Oklahoma, are typically not core 

constrained. While Mississippian strata have been drilled both Kansas and Oklahoma, there has 

been a high concentration of horizontal drilling activity around the Pratt Anticline and southern 

Central Kansas Uplift due to the frequency and variety of traps. Prior studies that included the 

Pratt Anticline addressed regional scale paleo-depositional modeling (Lane and DeKyser, 1980) 

and lithostratigraphic specific topics (Goebel, 1968a, Harris, 1975, Watney et al., 2008; Mazzullo 

et al., 2009) Studies that address the specific influence of the Pratt Anticline and the Central 

Kansas Uplift on depositional processes and facies distribution are not known, but the influence 

of structure on a carbonate systems is generally understood (Tucker and Wright, 1990).  It was 

believed the Pratt Anticline and the Central Kansas Uplift became tectonically active post-

Mississippian time (Merriam, 1963), but when more closely examined, the structural-stratigraphic 

complexities examined in this study suggested that it was active either continually or sporadically 

during Mississippian deposition. If the Pratt Anticline or Central Kansas Uplift was uplifting 

during Mississippian deposition, these features could have influenced depositional geometries 

and scale, evolution and distribution of facies and ultimately reservoir potential. As a result of the 

uplift of the Pratt Anticline and Central Kansas Uplift, Mississippian strata dip easterly, southerly, 
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and westerly off the anticline, to form a high concentration of pre-Pennsylvanian subcrops in 

southern Kansas.  

FUNDAMENTAL QUESTIONS AND HYPOTHESES 

The primary hypothesis is that the Pratt Anticline and Central Kansas Uplift were 

positive structural features during Mississippian deposition and influenced depositional processes. 

In a carbonate system, a relative sea level change of only a few meters in shallow water 

carbonates, regardless of the mechanism, can significantly influence depositional facies and their 

distribution (Grammer, 2014). This has an impact on the location and size of reservoirs that are 

tied to facies. 

The fundamental questions to be answered by this research are as follows:  

1) Are the top and bottom of sequence/packages identified within Mississippian core 

expressed as clearly definable log signatures? 

 

2) Can these log signatures be traced in multiple wells distributed across tens of miles to 

allow correlation of these package sequences and establish package geometry and 

scale? 

 

3) Do the geometries of sequence/packages in the area of the Central Kansas Uplift and 

the Pratt Anticline provide evidence of structural uplift concurrent with deposition? 

 

OBJECTIVES 

The principal objective of the thesis is to better understand if syndepositional uplift of the 

Pratt Anticline or Central Kansas Uplift influenced deposition of Mississippian sediments. The 

goal of this project is to examine the geometry of depositional sequences to determine if evidence 

of uplift is expressed in sequence geometry, thickness, and distribution around the Pratt Anticline 

or Central Kansas Uplift. This will be accomplished by identifying sequences in cores and using 

this information to see if depositional surfaces that mark the boundaries of sequences are 

expressed on wireline logs as clearly definable log signatures. If so, surfaces that can be 

correlated will then be traced on cross-sections until they terminate. The resulting geometry of 
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each sequence will then be used to determine a direction of sequence progradation as an 

indication of paleotopography and structural influence in the area during deposition. 

Understanding this relationship between structure and deposition will improve the ability to 

predict the occurrence of reservoirs by refining the expected distribution of facies belts.  

GEOLOGIC BACKGROUND 

REGIONAL GEOLOGY AND DEPOSITIONAL FACTORS 

 Deposition of Mississippian sediments in the Mid-Continent was aerially extensive and is 

represented predominantly as a carbonate system comprised of limestone, dolomite, chert, and 

shale (Merriam, 1963). The Mississippian depositional system of the Mid-Continent spanned 

thousands of square miles and comprises parts or all of the present states of Kansas, Oklahoma, 

Nebraska, Missouri, Colorado, Texas, and Arkansas (Fig 1). Depositional strike of the Mid-

Continent Mississippian carbonate system trends approximately east-west with shallow water 

facies found in Kansas and progressively deeper water facies occurring southward in Oklahoma 

(Lane and DeKyser, 1980) (Fig. 2). The system is bounded to the east by the Ozark Uplift, the 

south by the ancestral Anadarko and Arkoma (Oklahoma) Basins, and the north and northwest by 

the Transcontinental Arch. (Fig 1) The system was oriented between approximately between 20-

30° south of the paleo-equator (Gutschick and Sandberg, 1983, Witzke, 1990) (Fig. 3). Prevailing 

winds and surface currents are interpreted to have been from a present-day east-northeast 

direction (Witzke, 1990). The earth at the time of Mississippian deposition was in a transitional 

period going from the greenhouse conditions of the Devonian to icehouse conditions in the upper 

Mississippian, Pennsylvanian and Permian (Read, 1995).  

The Mississippian depositional system of the Mid-Continent was described by Lane 

(1978) and Lane and DeKyser (1980) as a shelf like environment with a clearly definable shelf 

margin (Fig 2). The term “shelf” has continued to be used as a label for the system even after 
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Gutschick and Sandberg (1983) described a broad gentle foreslope at the margin grading into 

deep water starved facies (Fig 3). While many depositional systems can be labeled differently 

depending on the orientation of proximal to distal transects, this Mississippian system in the 

recent literature is described as a distally steepened ramp even though the term “shelf” is still 

used (Mazullo et. al.,2009) 

 Biostratigraphic (conodont) zonation shows that prograding sediment wedges built out 

across the ramp towards the basin in the Lower to Middle Mississippian (Boardman et al., 2010). 

This recognition of time-transgressive lithofacies within the Mississippian carbonate system 

supports the ramp model and clarified lateral facies relationships within prograding wedges. 

These prograding wedges resulted in evolution of the geometry of the system from a nearly 

Figure 1: Illustration of the Mid-Continent region showing the major structural features and 

the present day aerial extent of the Mississippian in both the subsurface and surface. (Image 

modified from Reed, 1948; Merriam, 1983; Adler, 1971; Haley et al, 1993; Johnson, 2008)  
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homoclinal ramp during the early Mississippian to a distally steepened ramp during the middle 

Mississippian (Wilhite et al., 2011). The morphologic change of geometry over time is not 

uncommon within carbonate dominated systems. Unlike siliciclastic sediments, carbonate 

sediments cement quickly both in water and when subaerially exposed, thus they are able to resist 

erosion and result in packages of sediments that are resistant to reworking during low sea levels 

(Grammer, 2014).  
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Figure 2: Generalized Early Mississippian depositional model of the Mid-Continent. This 

overgeneralized model is labeled with terms for a shelf carbonate depositional environment. 

This figure is still commonly referenced even though it is generally accepted that deposition 

of Mississippian carbonates occurred in a distally steepened ramp setting. Modified from Lane 

and DeKyser (1980). 
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 SEA LEVEL CONTROLLING CARBONATE CYCLICITY 

 Second, third, fourth and fifth order cycles in carbonates are controlled by cyclicity in the 

rise and fall of sea level and different driving forces for each cycle order control these 

fluctuations in sea level (Read, 1995). The frequency for each subsequent cycle is shorter than its 

predecessor. The frequency of 2nd order cycles range 10-15 million years. Driven by tectonics, 

ocean volumes, and occasionally glacial fluctuations, they create packages of rock hundreds to 

several thousands of meters thick that can be regionally correlated (Read, 1995). Found within the 

Figure 3: Paleodepositional model of the Mid-Continent representative of the Early 

Mississippian time. The system trends west-east in Kansas, with shallower water 

environments to the north and progressively deeper water settings to the south. Carbonate 

system geometries are highly dynamic through time. Models like this can only represent a 

carbonate system for a single slice of time and do not represent the changes a carbonate 

system undergoes with time. Modified from Gutschick and Sandberg (1983). 
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2nd order cycles are smaller scale 3rd order cycles. The 3rd order cycles are not as well understood 

compared to the 2nd order cycles. There is still debate between researchers over the driving force 

behind the 3rd order cycles. Plint, et. al. (1992) attributed the driving force to tectonics and sea 

floor spreading. Read (1995) attributed the driving force to the more plausible advance and retreat 

of large continental ice sheets. As a result, the frequency is very broad ranging from one to ten 

million years (Plint, et. al., 1992).  

Milankovitch cyclicity is the attributed driving force behind the shorter duration, higher 

frequency 4th and 5th order cycles (Read, 1995). Milankovitch cycles are the most predictable of 

all the cycles because they result from three predictable variations of the earth’s position around 

the sun; eccentricity, obliquity, and precession (Fig 4). These three movements affect the amount 

of solar radiation received by the Earth. Variability in the amount of solar radiation is shown to 

dramatically affect global climate and glaciation (Read, 1995).  Eccentricity is change in the 

shape of the earth’s orbit around the sun and controls glaciation over the corresponding 100 – 400 

thousand year 4th order cycles (Read, 1995). Obliquity is the change in the earth’s axis controlling 

seasonal variability over 40 thousand year 5th order cycles (Read, 1995). Precession is the wobble 

of the earth’s axis and produces 5th order cycles with frequencies of approximately 21 thousand 

years (Read, 1995).  
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 Greenhouse and icehouse conditions for the Earth determine which Milankovitch variable 

is dominant and the amount of sea level change that is to be expected. As mentioned above, these 

changes in the amount of glaciation are associated with eccentricity. During greenhouse times 

with low continental ice volumes, precession dominated cycles result in sea level variations of 

10m or less (Read, 1995). Icehouse conditions are times when higher frequency sequential 

glaciation and deglaciation events dominate Earth’s climate. The resulting large removal of water 

from the ocean to the land and subsequent replacement of that water back into the ocean can 

create sea level changes as large as 100m (Read, 1995).  Deglaciation happens much more rapidly 

than glaciation and results in rapid transgression and gradual regression of sequences (Read, 

1995). Obliquity appears to be the dominant cycle during icehouse times as well as transitional 

times between icehouse and greenhouse conditions (Read, 1995). Since the Earth at the time of 

Mississippian deposition is interpreted to be in a transitional period going from the greenhouse 

Figure 4: Visualization of the variations in the Earth’s orbit and axis that create Milankovitch 

cyclicity. Modified from Kerans and Tinker (1997). 
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Figure 5: Diagram illustrating the distribution of icehouse and greenhouse conditions. Paleo-

latitudes of ice-rafted glacial deposits data (gray boxes with black outline) and marine ice-

rafted deposits data (gray boxes with no outline) coupled with climatic change due to variation 

in CO2 and solar intensity data (solid line) indicate that the Mississippian represents a 

transitional period from greenhouse conditions that existed during the Devonian to icehouse 

conditions that were well established by the Pennsylvanian. Modified from Read (1995). 

 

conditions of the Devonian to established icehouse conditions of the Pennsylvanian, it is expected 

that the frequency and magnitude of sea level change in the early Mississippian would differ from 

those of the late Mississippian (Fig. 5).
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 POTENTIAL PROBLEMS IN CORRELATING CYCLES USING WIRELINE 

LOG EXPRESSIONS 

 While it is common practice to use wireline log expressions to correlate carbonate 

sections, many characteristics of carbonates make this practice inherently difficult and prone to 

many false correlations. One of the more notable issues is the scale of subsurface studies. 

Carbonates are characterized by both lateral and vertical heterogeneity (Tucker and Wright, 

1990). Studies of modern day carbonates show that facies changes can occur over short (tens of 

feet) and that facies can phase in and out over a distance of less than 660 feet, a distance 

equivalent to the distance between well bores at standard 10 acre well spacing (Fig 6) The result 

is that although the same facies may occur in two wells 660 feet apart, it is possible that they are 

not continuous (Grammer, 2013). With this type of complexity, it is easy to visualize how much 

detail cannot be resolved using data from wells drilled on tight 10 acre well spacing patterns.  

While using log expressions to correlate cycles has serious shortcomings, it can still be 

valuable. Some of the issues mentioned above can be mitigated by using core to identify cycle 

boundaries and tying those surfaces to log expressions.  This method helps to reduce the risk of 

correlating a meaningless “phantom” log expression that has no geologic value. The confidence 

in the correlation does however decrease rapidly with distance from the core. It is important to 

keep these issues in perspective and not over represent results based on log correlations.  
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STRATIGRAPHY 

 The lowermost boundary of the Mississippian system in the Mid-Continent occurs within 

the Late Devonian to Early Mississippian Woodford Shale. This boundary is not discernible on 

logs or in core and must be obtained using conodont biostratigraphy. The lower boundary of the 

Mississippian carbonate section is characterized on wireline gamma-ray logs as a change from the 

highly radioactive Woodford Shale or less radioactive Kinderhookian “Shale” to the very low 

radioactive (low gamma-ray value) Mississippian carbonate. The Mississippian-Pennsylvanian 

unconformity separates the Mississippian from the overlying Pennsylvanian section, which is 

shale dominated and provides an easily recognized boundary. This boundary is characterized on 

gamma-ray logs as an abrupt change from the “clean” gamma-ray signature of the Mississippian 

carbonate to the more radioactive shale of the Pennsylvanian.      

Figure 6: Google image of the Lighthouse Reef System near Belize, Central America with 
simulated ~10 acre (660’) well spacing (red dots) and ~40 acre (1320’) well spacing (orange 

dots) and the likely depositional facies encountered at the surface. Even with extremely tight 

10 acre well spacing, the petrophysical or core data that would be acquired from each well 

would be insufficient to create an accurate image of the distribution of facies. Modified from 

Grammer, (2015).   
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Mississippian stratigraphic nomenclature is not uniform across the Mid-Continent. 

Subsurface nomenclature is different from outcrop nomenclature and both change across state 

boundaries. To further complicate stratigraphy, informal terms such as “Miss Lime”, “Miss 

Chat”, and “Miss Solid” are used extensively in industry. The subsurface Mississippian 

nomenclature in Kansas was set by Goebel (1968a, 1968b) and is still used today with minor 

changes (Fig 7). The Mississippian is broken into four stages; Kinderhookian, Osagean (spelled 

Osagian by the Kansas Geological Survey {see Kansas Geological Survey, 2015}), Meramecian, 

and Chesterian.  The Kinderhookian and Osagean Stages comprise the Lower Mississippian 

Series and the Meramecian and Chesterian Stages comprise the Upper Mississippian Series. The 

Kinderhookian Stage contains the Chouteau Limestone (called the Compton in southeast Kansas), 

Sedalia Dolomite (Northview Shale equivalent), and the Gilmore City Limestone. The Osagean 

Stage contains the Fern Glen Limestone, which has two members, the St. Joe Limestone Member 

and the Reeds Spring Limestone Member, and the Burlington Limestone and Keokuk Limestone 

undifferentiated (Geobel, 1968b). The Meramecian Stage is subdivided into the Warsaw 

Limestone, Salem Limestone, St. Louis Limestone, and St. Genevieve Limestone. The Chesterian 

Stage is not subdivided and is only present in southwestern Kansas and western Oklahoma 

(Geobel, 1968b).   
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Figure 7: The current accepted stratigraphic nomenclature for subsurface Mississippian rocks 

in Kansas. This nomenclature is different from the nomenclature of the Mississippian outcrops 

in the Tri State Region of southeastern Kansas, northwestern Arkansas, and northeastern 

Oklahoma. Modified from the Kansas Geological Survey (2015).   
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CHAPTER II 
 

 

METHODOLOGY AND RESULTS 

INTRODUCTION 

 The primary goal of this study is to determine whether core-calibrated depositional 

sequences/packages identified on wireline logs can be traced far enough laterally to observe the 

effects of structural influence on depositional geometry and scale. To test the principal 

hypothesis, two cores were utilized, one each from a proximal and distal position on what has 

been interpreted as a regionally extensive ramp. Both cores are near either the Pratt Anticline or 

Central Kansas Uplift (Fig. 8). The interpretation of these cored intervals and the consistency or 

variability in the geometry of depositional packages represented in cross sections will be crucial 

to determining whether structural uplift was concurrent with Mississippian deposition. 

Furthermore, the methodology is designed to determine the influence these uplifts may have had 

on the direction of sequence/package progradation and change the expected trend of facies.  

DATA AND METHODS 

CORE 

Two cores were used to establish depositional facies and correlate depositional surfaces 

to wireline logs. Both cores are four inches in diameter and were cut and polished as library 

samples, which facilitated the description. The Blueridge Petroleum Corporation’s Bartel #1-16, 

which contains 225 feet of Mississippian section, is located in S16-T24S-R4W, Reno County, 
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Kansas (Fig 8). Based on the wireline logs, the Bartel #1-16 core is missing 2 feet of 

Mississippian section at the top and 9 feet of Mississippian section at the base of the core. The 

second core is the Chesapeake Energy Corporation’s Bann #1-14 contains 147 feet of 

Mississippian section and is located in S14-T28N-R14W, Woods County, Oklahoma (Fig 8). The 

Bann #1-14 captures the Mississippian-Pennsylvanian contact, but is missing 295 feet of 

Mississippian below the core. It is also missing approximately 15 feet of the core near the top that 

was unable to be recovered.  

These cores were chosen based on their north/south alignment, distance from each other 

and position near the Pratt Anticline and the Central Kansas Uplift (Fig. 8). Their proximity to the 

structures and completeness should allow core-calibration to wireline logs, the ability to trace 

internal surfaces in the Mississippian sequences and to test the hypothesis that the Pratt Anticline 

and/or Central Kansas Uplift influenced Mississippian deposition. The cores are also located in an 

area that has historical Mississippian production and in recent years has been a focal point for the 

application of unconventional drilling techniques to Mississippian reservoirs. This historical and 

recent activity provided the large number of wireline logs necessary to generate cross-sections.  

WIRELINE LOGS 

It is common practice in the Mid-Continent to run an open hole wireline log suite for 

every well drilled. For this reason there are abundant wireline logs available for data acquisition 

in a mature region like the Mid-Continent. For regional correlation purposes, gamma-ray logs are 

the dominant type used and were preferred for this study. The quality of the data produced by 

wireline logs has increased significantly over the years and the modern (post 2000) logs provide 

the best data for this type of work since they contain combinations of gamma-ray curves with 

other curves (i.e. neutron/density porosity, resistivity, caliper, etc.) (Schlumberger, 2015).  
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Gamma-ray tools measure the amount of natural radiation emitted by sedimentary rocks 

(Beaty, 2014). This radiation occurs from the presence of radioactive potassium (K), thorium 

(Th), and/or uranium (U). Radiation is typically measured in American Petroleum Institute (API) 

units with a scale from 0 – 200 or 0 - 150.  For correlation purposes, the actual quantitative 

measurement of radiation is ignored in favor of looking for repetition of patterns created by the 

relative difference in natural radioactivity. Carbonates and sandstones generally present a “clean” 

or low API reading (15 API -40 API), whereas shales typically present a “hot” or higher API 

value (40 API or higher). While the above is generally true, this tool cannot be used to determine 

lithology. Most gamma-ray tools measure approximately 6-12 inches into the rock surrounding 

the borehole and have a vertical resolution of approximately 2-3 feet (Schlumberger, 2015). Older 

gamma-ray tools (pre 1960’s) did not measure as deep and averaged a larger package of rock; if a 

well was logged in the 1960’s and today, the results from the older tool would show less gamma-

ray variation and a smoother curve. Besides the age of the wireline log, both the depth of 

investigation and vertical resolution are dependent on the logging speed (Beaty, 2014).  
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Wireline logs are considered petrophysical data and as with any petrophysical data there 

are limitations to the quality of data for a specific use based on how the tools take measurements 

(Beaty, 2014). Potential problems with carbonates in particular include very low gamma-ray 

readings over tens to hundreds of feet and insufficient vertical resolution of the logging tools. If a 

carbonate presents a very low gamma-ray reading with little to no variation over the entire 

formation, it is difficult or impossible to correlate internal surfaces. Another potential problem 

arises when brines flow through the rock and precipitate mineral deposits including uranium salts 

that leave portions of the rock artificially “hotter” (i.e. higher total GR) than the original 

Figure 8: Map depicting the study area that includes eight Kansas counties and two Oklahoma 

counties that are outlined and labeled in the inset box. The two cored wells, the Bartel #1-16 and the 

Bann #1-14, are indicated with red stars. The inset view shows the study area in relationship to the 

Central Kansas Uplift where Mississippian strata are currently absent and the Pratt Anticline. 
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sediment. While this phenomenon could indicate porosity in that section of the rock, it may not 

have value for correlations unless it reflects a porous facies, which in turn could be correlatable. 

This is why correlating increases in gamma-ray readings as boundaries in carbonates without 

tying that increase to an actual surface in a core could lead to correlating “phantom” features. 

Thin-section analysis is valuable in visualizing finer-scale rock properties that define boundaries 

or stratigraphic surfaces. However, with the highest resolution gamma-ray tool having a minimal 

vertical resolution of 1 foot to 3 feet in most cases, it becomes impractical to use this tool to 

correlate high-order surfaces such as fourth or fifth order sequences in some cases if the thickness 

of the packages are thinner than the vertical resolution of the tools. Third-order depositional 

packages are generally thick enough and have adequately distinct surfaces to be useful for 

gamma-ray wireline log correlation as shown by Bertalott (2014).  

Log data was acquired from the Kansas Geological Survey and the Oklahoma 

Corporation Commission. Forty three wells were selected from a larger data set to generate four 

cross sections. These logs consist mostly of density/neutron porosity logs with gamma ray curves.  

BARTEL #1-16 

Blueridge Petroleum Corporation drilled the Bartel #1-16 in December of 2011 in the 

Burrton field in S16-T24S-R4W of Reno County, Kansas (Fig 9). The well was cored from 3292 

feet to 3517 feet (225 feet/68.6 meters). The entirety of the core is in the Mississippian carbonate 

section. Based on correlations to the open-hole logs, it is interpreted that the Bartel #1-16 is 

missing 2 feet of Mississippian section on the top and 9 feet of the lowermost Mississippian 

carbonate above the Kinderhookian Shale section (Fig 10). The Mississippian carbonate section is 

235 feet thick in this well and spans from 3525 feet to 3290 feet. Superior Well Services, Hays, 

Kansas, logged the well and ran four open hole logs: compensated density/neutron log, sonic log, 

micro log, and dual induction log. All logs were run in conjunction with a gamma-ray tool. 
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Figure 9: Map showing the location of the Bartel #1-16 in relationship to Pratt Anticline and 

the Central Kansas Uplift. 
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Figure 10: Section of the wireline log for the Blueridge Petroleum Bartel #1-16. The gamma-

ray curve is in track one to the left of the depth track. The density/neutron curve is located on 

the right in track two. The box right of the log indicates the cored interval. The top of the 

Mississippian carbonate and the surfaces within the carbonate interval are indicated with red 

lines and labeled to the right. The bottom of the Mississippian carbonate/top of the 

Kinderhookian “Shale” is indicated with a blue line. Gamma-ray curves typically used to 

establish depositional boundaries for regional correlations are not apparent in this well on a 

proximal position of the ramp. Distinct packages of similar porosity do occur and can be used 

as a proxy for correlations over short distances (tens of miles).  
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DESCRIPTION 

The core was described as eight large petrophysically distinct packages separated by 

stratigraphic surfaces. The core description was obtained by examining the polished library set 

using a hand lens. The gamma-ray log survey across the Mississippian carbonate displayed no 

distinctive increase in radioactivity that could be used to identify stratigraphic surfaces. Package 

boundaries on logs were established using the compensated density/neutron curves. Using the 

density/neutron logs for regional correlations proved to be effective in the proximal ramp setting 

(Fig. 11). In recent Mid-Continent Mississippian studies, Leblanc (2014) and Bertalott (2014) 

demonstrated that well to well correlation of sequence boundaries were accomplished using 

gamma-ray curves. The study areas of both Leblanc (2014) and Bertalott (2014) were located in 

areas interpreted as being in distal ramp settings, with deeper water facies, on a distally steepened 

ramp where correlations can be performed with gamma-ray (Fig. 12). In more proximal positions, 

higher energy facies have proven to hinder the ability for flooding surfaces to form (Price, 

2014).The outcrop study produced no variations in gamma-ray usable for regional correlation 

purposes (Price, 2014).  

Package one is the lowermost package in the core and covers the footages 3517-3494.2 

feet. It consists of approximately 17 higher frequency packages that fine upwards and are 

approximately one foot thick. Each smaller package is bounded at the top and the bottom by a 

sharp contact (Fig. 13). From the base up each smaller package is dark grey, grain-rich matrix 

with centimeter to millimeter scale crinoid fragments and centimeter to millimeter scale slightly 

darker grey rounded clasts that grade upward into a dark grey muddy matrix (Fig. 13). Grains, 

other than crinoid grains, were not discernable in the matrix using the hand lens. The dark grey 

clasts only occur in the lowermost portions of the higher frequency packages and no grains could 

be identified in the clasts by hand lens. There are no visible burrows or porosity in package one. 

There is also little variability between the smaller packages and they are not detected on wireline 
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logs. Package one is characterized on porosity logs as the lowest porosity of the Mississippian 

carbonate section and has density/neutron porosity values that generally range from 1-3% (Fig. 

14).  

Package two covers the footage 3494.2-3455.6 feet. It is a mud-rich matrix to grain-rich, 

matrix and consists of light tan and green to olive green carbonate with fine to medium sand sized 

carbonate grains and millimeter to rare centimeter scale crinoid fragments (Fig. 15). Package two 

also contains grey to blue-grey chert and rare white chert that consists of less than 5% of the 

package. There are no visible burrows or porosity evident in hand sample. Package two exhibits 

1-10% density/neutron porosity which is an increase in the upper range of the porosity measured 

in package one (Fig. 16). 

Figure 11: A short cross section showing how the density/neutron porosity curves were able 

to be used to correlate the packages described in the Bartel #1-16. 
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Figure 12: Cross section from Bertalott (2014) showing correlations based on increases in 

gamma-ray signatures at flooding surfaces. 
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Package three is divided into package 3A and package 3B. Package 3A is from 3455.6-

3439.5 feet and varies from a dark tan to brown mud-rich to grain-rich matrix and contains fine- 

to medium-sand-sized carbonate grains and a several millimeter-scale crinoids (Fig. 17). Package 

3A contains blue-grey chert with a centimeter to millimeter scale dark tan alteration rind. Package 

3A is about 50% chert and has no visible burrows or porosity. Porosity curves on wireline logs 

indicate a marked increase in porosity from approximately 8% at the bottom to near 18% at the 

top (Fig. 20).  

Package 3B extends from 3439.5-3395.8 feet. It varies from a light tan to off white grain-

rich matrix and contains fine to coarse sand sized carbonate grains and sub millimeter scale to 

rare centimeter scale crinoid fragments (Fig 18). It also contains white-light grey chert with 

occasional crinoid fragments preserved within the chert. The distribution of silicification in 

package 3B indicates that chert preferentially replaced the grain-rich portions. Package 3B is 

approximately 40% chert and has no visible burrows or obvious porosity, but exhibits an increase 

in the range of wireline log porosity across the package and peaks around 20% (Fig. 20).  



26 
 

 

0 1 2 

INCHES Figure 14: Gamma-ray and density/neutron porosity curves for package one in Blueridge 

Petroleum Corporation, Bartel #1-16. Contact between package one and the underlying 

Kinderhook “Shale” (blue line) is characterized by a steep decrease in gamma-ray values from 

~70 API to ~30 API in package one. Contact between package one and two (red line) is sharp.  
 

Figure 13: An annotated drawing (left) and core photograph (right) of a representative cycle 

found in package one. No grains are discernible other than crinoid fragments and clasts in the 

lower portions of the smaller cycles. Blueridge Petroleum, Bartel #1-16. Depth 3515. 

0 1 2 

INCHES 
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Figure 16: Gamma-ray and density/neutron porosity curves for package two in Blueridge 

Petroleum Corporation, Bartel #1-16. Package two shows an overall higher porosity signature 

compared to package one; 2-6% increase in density porosity and 4-15% increase in neutron 

density. Upper and lower boundary of package two is represented by red lines. 
 

0 1 2 

INCHES 
Figure 15: Stylized representation (left) and three core photographs (right) showing variation 

found in package two. Note the abundance of crinoid fragments in the darker carbonate matrix 

at the bottom of the figure and grain rich, cemented carbonate at the top. Blueridge Petroleum, 

Bartel #1-16. Top photo depth 3462 feet, middle photo depth 3477 feet, bottom photo 

depth 3483 feet. 
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Figure 17: Stylized representation (left) and core photograph (right) of a representative 

section of package 3A. This package is characterized by approximately 40% chert. Blueridge 

Petroleum, Bartel #1-16. Depth 3445 feet. 

0 1 2 

INCHES 

Package four covers the footages 3395.8-3365.1 feet. It varies from a white to off-white 

grain-rich matrix with fine to coarse (rare) sand-sized grains and rare horizontal burrows that are 

millimeter scale wide by sub millimeter scale tall (burrows are not evident in core photographs) 

(Fig. 19). White to pale grey chert comprises approximately 30% of package four. Visible 

interparticle porosity and millimeter scale dissolution porosity are evident. Light oil staining 

occurs predominantly in the sections that contain small (millimeter-scale) burrows. The oil 

staining glows dull yellow under ultraviolet light. There are no visible fossil fragments in this 

package. On wireline logs, package four is marked by a large increase in porosity over the values 

observed for package 3B with the lowermost portion of package four having 22-24% 
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density/neutron porosity that decreases towards the top where porosity values range from 15-17% 

(Fig. 20).  

 

 

 

Figure 18: Stylized representation (left) and core width photograph (right) of a representative 

section of package 3B.  Note the large amount light-colored chert and what appears to be the 

beginning of a tripolitic rind on the outside edge. Crinoid fragments become rare and decrease 

in size compared to pervious packages. Blueridge Petroleum, Bartel #1-16. Depth 3415 feet. 
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Package five covers the footages 3365.1-3340 feet. It is tan with light green wisps and is 

a grain-rich matrix (Fig 21). There is also white to light grey chert that composes approximately 

30-40% of the package and contains interparticle porosity. Interparticle porosity occurs 

throughout package five in the grain-rich matrix. Oil staining is associated with both types of 

porosity found in package five and glows dull yellow under ultraviolet light.  Porosity in package 

five ranges between 30% and 40% (Fig. 22). 

0 1 2 

INCHES 
Figure 19: Stylized representation (left) and core width photograph (right) of a representative 

section of package 4.  Note the oil stained carbonate matrix. Small (mm-scale) horizontal 

burrows are seen in this package with a hand lens but are not apparent in core photographs. 

Blueridge Petroleum, Bartel #1-16. Depth 3375 feet. 

0 1 2 

INCHES 
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Package six is a white to light tan tripolite that extends from 3342-3307.9 feet (Fig. 23). 

The percentage of tripolite increases from around 30% at the bottom of the package to 100% 

towards the top. Abundant oil staining occurs in this package and the section glows dull yellow 

under ultraviolet light. The low density of this tripolitic rock is noticeable in hand sample when 

similar sized pieces are compared. Average porosity measurements on the density/neutron curve 

exceed 30% and reaches maximum values greater than 40%. (Fig. 24). High porosity and 

permeability are evident in hand sample as the rock readily absorbs water. 

Figure 20: Gamma-ray and density/neutron porosity curves for packages 3A, 3B, and 4 in 

Blueridge Petroleum Corporation, Bartel #1-16. Package 3A shows a transition from the ~7% 

porosity of package two to the higher overall porosity signature of package 3B (7-20%). 

Package 4 has higher porosity (~15-23%) than package 3B. Boundaries of packages are 

represented by red lines.  
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Figure 21: Annotated drawing (left) and two core photographs (right) of a representative 

section of package five. Note the large amount of oil staining found in this package. This is 

the first package that contains a significant amount of oil staining. Blueridge Petroleum, Bartel 

#1-16. Top photo depth 3356 feet, lower photo depth 3358 feet.  

0 1 2 

INCHES 

Figure 22: Gamma-ray and density/neutron porosity curves for package five in the Blueridge 

Petroleum Corporation, Bartel #1-16. Package five marks the highest porosity values of the 

carbonate (non tripolitic) section with a range of 23-33% porosity. Upper and lower boundaries 

of package five are represented by red lines. 
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The section above package six is dominated by karst features and extends from 3307.9-

3290 feet. Due to weathering, this section of the core has variable lithology and fabric. Karst 

features seen include solution pipes, cavity filling breccias, and a light green sandy shale infill 

(Fig 25). This interval provides the only substantial variation in the gamma-ray curve response 

observed in the Mississippian carbonate interval as the gamma-ray curve contains two small 

increases from 3307.9 to 3290 feet (the top of the Mississippian). The increase in gamma-ray 

signature is attributed to the sediment infill in solution cavities generated during the exposure of 

the Mississippian during the pre-Pennsylvanian unconformity. This infill of sandy and shaly 

sediments reduces porosity values and the karst section has 15-20% porosity compared to 30-40% 

porosity in tripolitic package six (Fig. 26). 
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Figure 23: Stylized representation (left) and two core photograph (right) of a representative 

section of package six. Tripolitic chert in this package contributes to the high 30-40% 

porosity. The high porosity is also accompanied by a high permeability as evidenced by the 

inability to keep the rock surface wet due to rapid absorption. Blueridge Petroleum, Bartel #1-

16. Top photo depth 3316 feet, lower photo depth 3313 feet.   

  Figure 24: Gamma-ray and density/neutron porosity curves for package six in the Blueridge 

Petroleum Corporation, Bartel #1-16. Package six has the highest porosity values in the 

Mississippian carbonate section and is attributed to the tripolitic chert in this package. Upper 

and lower boundaries of package six are represented by red lines. 
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Figure 26: Gamma-ray and density/neutron porosity curves for the karsted/weathered package 

above package six in Blueridge Petroleum Corporation, Bartel #1-16. Infill of sandy and shaly 

sediments into the weathered carbonate is the cause of a large range in porosity and the only 

noticeable variation in gamma-ray signature within the Mississippian carbonate. Upper and 

lower boundaries of the karsted package are represented by red lines.  
 

Figure 25: Annotated drawing (left) and core photograph (right) of a representative section of 

the karsted/weathered package. The extensively weathered rock has sediment infill and lower 

porosity values than the porous tripolitic chert found in package six. Blueridge Petroleum, 

Bartel #1-16. Depth 3303 feet. 
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INTERPRETATION 

The sedimentary packages observed in the Bartel #1-16 core exhibit an upward cleaning 

or shallowing upward signature. From package one to package five the carbonates exhibit an 

overall shoaling upwards trend. Package one with its high frequency fining-upward cycles is 

interpreted to have been deposited in a restricted distal position on the ramp below the storm 

wave base and received clasts and crinoid fragments from farther up the ramp in pulses associated 

with storms (Fig. 27 and 29). Package two is interpreted to represent a slightly proximal shift on 

the ramp to a depth fluctuating from slightly above to slightly below normal wave base 

corresponding to the increase in grain size and the more evenly distributed crinoid fragments 

(Fig. 27 and 29). Package 3A is interpreted to be part of a lower shoreface as evidenced by a 

mixture of mud-rich to grain-rich packstone composed of fine to medium sized carbonate grains 

(Fig. 27 and 29). Package 3B is interpreted to have been deposited in a shoreface environment 

similar to 3A but slightly more proximal corresponding to a decrease in mud and a slight increase 

in grain size (Fig. 27 and 29). Package four is slightly less muddy and has slightly larger grains as 

compared to 3B and is interpreted have been deposited in a foreshore environment (Fig. 27 and 

29). Package five is interpreted to represent deposition in a supratidal zone as evidenced by the 

fine grains (Fig. 27 and 29). Packages three (A and B) and four are extensively altered with much 

of the original sediment replaced by chert making depositional features in much of the packages 

unrecognizable. Without diagnostic features to correlate to depositional process or a particular 

depositional environment it was very difficult to interpret. Package six was near completely 

replaced by chert that was subsequently weathered to tripolite, resulting in no diagnostic 

depositional features. All section above package six is too extensively weathered and brecciated 

to be of any use in the interpretation of original depositional features.  

It is interpreted that the cored Mississippian carbonate section in the Bartel #1-16 

represents a proximal position on the distally steepened ramp (Fig. 27). When the location is 
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compared to the current pre-Pennsylvanian subcrop map, it seems logical that the Mississippian 

section at this location represents early to middle Mississippian sedimentation (Fig. 28)  The 

occurrence of supratidal sedimentation in package five and possibly package six suggests a 

proximal depositional setting with minimal accommodation. With that in mind, it is possible that 

during the deposition at this location accommodation controlled Mississippian thickness and may 

have influenced subsequent deposition as the lack of accommodation forced younger sediments 

towards the basin axis. As a result, younger sedimentation prograded away from the proximal 

position of the Bartel #1-16 and into the basin.  

 

 

While the gamma-ray signature did not exhibit enough variation in the Bartel #1-16 or 

surrounding wells to be used to correlate the surfaces identified in the core, other log tracks, 

especially the compensated density/neutron porosity log, were useful in identifying the 

depositional packages and were the basis for log correlations across the area. 

 

 

 

 

Figure 27: Cross section of a carbonate ramp with stars that indicate  interpreted depositional 

environment for each package. Modified from Kaufman and Jameson (2002). 
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(Central Kansas Uplift) 

Figure 28: Map showing the location of the Bartel #1-16 in relationship to the current Pre-

Pennsylvanian subcrop map. Modified from Sandridge (2013). 
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Figure 29: Section of the wireline log for the Blueridge Petroleum Bartel #1-16. The gamma-

ray curve is in track one to the left of the depth track. The density/neutron curve is located on 

the right in track two. The black box right of the log indicates the cored interval. The 

interpreted depositional environments for the packages are posted to the right of the core.  
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BANN #1-14 

Chesapeake Energy Corporation drilled the Bann #1-14 in September of 2007 in S14-

T28N-R14W of Woods County, Oklahoma (Fig. 30). The well was cored from 5205 feet to 5355 

feet (150 feet). Of the cored interval, fifteen feet of core was not recovered from 5230 feet to 

5243 feet. The core is composed of 147 feet of the Mississippian carbonate and 3 feet of the 

shale-dominated Pennsylvanian section. Approximately 295 feet of Mississippian carbonate 

section was not cored. The entire Mississippian section is 442 feet thick in this well and extends 

from 5208 feet to 5650 feet (Fig. 31). Two open-hole logs were used, compensated 

density/neutron log and a dual induction log. Both resistivity and porosity suites were run in 

conjunction with the gamma-ray tool. 
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Figure 30: Map showing the location of the Bann #1-14 in relationship to Pratt Anticline and 

the Central Kansas Uplift. 
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Figure 31: A section of the wireline log for the Bann #1-14. The gamma-ray is to the left of the 

depth track and the density/neutron are to the right. Right of the density/neutron curves a box 

indicates the cored interval. The top of the Mississippian carbonate and the surfaces within the 

carbonate interval are indicated with red lines and labeled to the right. The bottom of the 

Mississippian carbonate and top of the Kinderhookian “Shale” are indicated with a blue line 

below package one. The Woodford Shale is present below the Kinderhook “Shale”. 
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DESCRIPTION 

The description of the Chesapeake Energy Corporation’s, Bann #1-14 was provided by 

Jaeckel (2015) who is establishing a high-resolution sequence stratigraphic framework for the 

cored interval. The description included in this study concentrates on the petrophysically 

significant packages determined by core and wireline logs. The Mississippian section in this well 

is divided into 9 petrophysically significant packages. In this well correlations from the core to 

the well log and from well log to well log in cross section were done using the gamma-ray curve 

(Fig. 32). Due to the large section of Mississippian that was not cored, only packages F, G, H, and 

the karsted package are represented in the core, whereas packages A-E are divided solely based 

on gamma-ray and porosity log characteristics. The core description was obtained using the 

polished library set and thin sections.  

Package A is the lowermost package contained in the well and extends from 5650 to 

5630 feet. Package A is characterized by a low gamma-ray value (<20 API) and by low 1-4% 

density/neutron porosity (Fig. 33). Package B in the Bann #1-14 extends from 5630 to 5550 feet 

and is characterized with the highest gamma-ray signature in the Mississippian carbonate section 

and 8-10% porosity (Fig. 34).  Package C begins at 5550 feet and ends at 5494 feet. It represents 

the transition from the higher gamma-ray values of package B to the consistently lower gamma-

ray values of package D. Package C has density/neutron porosity from 7-12% and gamma-ray 

values of 75-30 API (Fig. 35). Package D (5494 to 5412 feet) is characterized by slight decrease 

in gamma-ray across the package and gamma-ray values of <40 API. Density/neutron porosity 

ranges from 7-12% with higher porosity near the base at 5494 feet and lower values towards the 

top at 5412 feet (Fig. 36). Package E begins at 5412 feet and ends at 5362 feet. It represents the 

lowest gamma-ray values observed in the Mississippian section and changes very little from the 

base of package E to the top of package H (Fig. 37). Package E is characterized by 

density/neutron porosity values from 5-11% (Fig. 37).  
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Figure 32: Cross section showing the correlation of packages using gamma-ray curves with 

the Bann #1-14 located in the center. Packages A-D are the better correlations because of the 

presence of the similarity in gamma-ray profiles. Packages E-H have lower confidence in 

correlations because this portion of the section has few distinctive features in the gamma-ray 

or the density/neutron porosity that are correlatable. This made the correlations for E-H more 

tenuous.   
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Package F extends from 5362 to 5334 feet. Only the uppermost portion of package F was 

cored. It is a light to medium grey, grain-rich packstone to grainstone that contains sub-millimeter 

scale crinoid fragments, mildly bioturbated and contains centimeter scale clasts in the upper 9 feet 

(5343-5334) (Fig. 38). Package F is composed of approximately 10% blue grey chert. On logs it 

is characterized by a clean gamma-ray signature with very little variation and porosity ranging 

from 5-8% (Fig. 39). The portion of package F captured in the core, 5355 feet to 5334, is heavily 

oil stained and glows bright yellow under ultraviolet light.   

 

 

 

 

 

 

Figure 33: Gamma-ray and density/neutron porosity across package A in the Chesapeake 

Energy Corporation, Bann #1-14. Contact between package A and the Kinderhookian “Shale” 

(blue line) below is characterized by a decrease in gamma-ray and porosity values from the 

Kinderhookian shale to package A.  
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Figure 34: Gamma-ray and density/neutron porosity across package B in the Chesapeake 

Energy Corporation, Bann #1-14. Contact between package A and B is represented by a sharp 

increase in gamma-ray values from <15 API to >75 API and an increase in density/neutron 

porosity to mostly >7%.  
 

Figure 35: Gamma-ray and density/neutron porosity curves across package C in the 

Chesapeake Energy Corporation, Bann #1-14. Gamma-ray steadily decreases across package C 

from ~75 API at the base to ~50 API near the top of the package. Density/neutron porosity 

increases from slightly <7% near the base to ~9% at the top of the package. 
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Figure 36: Gamma-ray and density/neutron porosity across package D in the Chesapeake 

Energy Corporation, Bann #1-14. Gamma-ray decreases slightly across package D from ~50 

API to <40 API at the top of the package. Density/neutron porosity values decrease from ~12% 

to ~7%. 
 

Figure 37: Gamma-ray and density/neutron porosity across package E in the Chesapeake 

Energy Corporation, Bann #1-14. Gamma-ray has no noticeable variation in package E. 

Density/neutron porosity values decrease from ~8% to ~6%.  
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Figure 38: Stylized representation (left) and corresponding core photograph (right) of a 

representative section of package F. The mildly bioturbated rock has few distinguishable 

features and is heavily oil stained. Chesapeake Energy Corporation, Bann #1-14. Depth 5343 

feet.  
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Figure 39: Gamma-ray and density/neutron porosity curves across package F in the 

Chesapeake Energy Corporation, Bann #1-14. Gamma-ray is relatively constant around 30 

API, whereas density/neutron porosity ranges from 5-7%. 
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Package G is the second in the cored interval and covers 5334 to 5280.3 feet. The entirety 

of package G is represented in the core and contains a light to dark tan mud-rich packstone that 

grades upwards into grain-rich packstone with sub millimeter scale crinoid fragments and mild to 

heavy bioturbation (Fig. 40). Package G contains approximately 20-40% dark-blue grey chert that 

occurs as bedded and irregular nodular forms. On logs, the well is characterized by a clean 

gamma-ray signature (~30 API) with little to no fluctuation and porosity ranging from 5-16% 

(Fig. 41). The uppermost section of package G is heavily oil stained and glows bright yellow 

under ultraviolet light.  

Package H extends from 5280.3 to 5244 feet and is entirely cored. It is an off white to 

dark tan grain-rich packstone to grainstone with sub-millimeter scale crinoid fragments and is 

mildly to heavily bioturbated (Fig. 42). It is composed of approximately 30-50% of dark blue 

grey chert. On logs, this package is characterized as the cleanest gamma-ray signature (<30 API) 

with no fluctuation and porosity ranging from 4-12% (Fig. 43). Package H is heavily oil stained 

and glows bright yellow under ultraviolet light. 

Above package H is a karsted section from 5244-5208 feet. The lowermost portion of this 

package (5243-5230 feet) represents the 15 feet of core that was unrecoverable. It is assumed that 

this unrecoverable portion has similar exposure features that are seen in the section of core above 

it. The karsted section is highly variable because of weathering features including solution pipes, 

karst associated breccias, and eroded mobilized blocks (Fig. 44). This portion of the core has an 

increasing gamma-ray signature and is represented by a range of porosity values from 10-18% 

(Fig. 45). The caliper curve from 5218-5202 feet shows the bore hole is larger than bit size and 

due to poor quality tool responses this portion of the log was not used. 
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Figure 40: Stylized representation (left) and two core photographs (right) of a representative 

section of package G. The mildly to heavily bioturbated rock has few distinguishable features 

and is heavily oil stained. Chesapeake Energy Corporation, Bann #1-14. Top photo depth 5289 

feet, lower photo depth 5290 feet.  

Figure 41: Gamma-ray and density/neutron porosity curves across package G in the 

Chesapeake Energy Corporation, Bann #1-14. Gamma-ray is relatively constant around 30 

API, whereas density/neutron porosity ranges from 5-15%. 
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Figure 42: Annotated representation (left) and two core photographs (right) of a 

representative section of package H. The mildly to heavily bioturbated rock has few 

distinguishable features and is heavily oil stained. Chesapeake Energy Corporation, Bann #1-

14. Top photo depth 5255 feet, lower photo depth 5274 feet.  
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Figure 43: Gamma-ray and density/neutron porosity curves across package H in the 

Chesapeake Energy Corporation, Bann #1-14. Gamma-ray is slightly less than 30 API. 

Density/neutron porosity decreases from ~11% to ~4%.  
 



52 
 

 

Figure 45: Gamma-ray and density/neutron porosity across the karsted package in Chesapeake 

Energy Corporation, Bann #1-14. Gamma-ray and porosity increases across this package from 

>30 API to ~80 API and 6% to 17% porosity respectively. Due to the washout of the wellbore 

(as indicated by the caliper log not pictured), wireline log responses are not reliable above 5218 

feet.  

Figure 44: Stylized representation (left) and core photograph (right) of a representative 

section of the karsted/weathered package above package H. Oil stained porous blocks have 

eroded green shaly sediment infill between. Chesapeake Energy Corporation, Bann #1-14. 

Depth 5219 feet.  
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INTERPRETATION 

Overall the Mississippian section in this well shows a shoaling upwards trend. The 

interpretation for the portion of the Mississippian section not represented in core is based on other 

Mississippian core descriptions (LeBlanc, 2014) (Bertalott, 2014), interpretations of wireline log 

curves and an understanding of carbonate sedimentation patterns. Package A is interpreted to be 

the initial transgression over the Kinderhookian “Shale” (Fig. 46 and 47). As the transgression 

continued, water depth increased and conditions became more restricted. Sediment deposition 

slowed and the increased presence of clay generates the higher gamma-ray signature of package 

B. It is interpreted that package B was deposited below storm wave base due to the higher 

gamma-ray signature indicating sedimentation in a low energy environment (Fig. 46 and 47). 

Package C represents the depositional environment beginning to shallow and approach storm 

wave base (Fig. 46 and 47). Package D is interpreted to have been deposited at or slightly above 

storm weather wave base (Fig. 46 and 47). Package E is interpreted to have deposited between 

storm weather wave base and fair weather wave base (Fig. 46 and 47). Package F is interpreted to 

represent sedimentation at or above fair weather wave base (Fig. 46 and 47). The burrows and 

grainy textures observed in core support this interpretation. Package G is interpreted to have 

formed in a slightly shallower environment as compared to package F (Fig. 46 and 47). Package 

H is interpreted to represent another slight shallowing of the depositional environment as 

compared to package G (Fig. 46 and 47). 

Figure 46: Cross section of a carbonate ramp with stars that indicate the interpreted location 

and depositional environment for each package. Modified from Kaufman and Jameson (2002). 
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Figure 47: A section of the wireline log for the Bann #1-14. The gamma-ray track is in track 

one and the density/neutron porosity curves are located in tracks two and three. The black 

rectangle indicates the cored interval. The interpreted depositional environments for the 

packages are posted to the right of the core. 
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There is no indication that the accommodation was fully filled in this location. This 

interpretation is based on the lack of depositional textures suggesting shallow water high energy 

environments (i.e. shoreface, beach, or supratidal) deposition. As such, it is interpreted that this 

location is located on the distally steepened portion of the distally steepened ramp. 

CROSS SECTION ANALYSIS 

DISCRIPTION 

 Four cross sections were constructed for this project consisting of 43 wells (Fig. 48). 

Only representative logs are shown for the four cross sections. Approximately 160 logs were used 

for correlation purposes. Wireline logs were found in publically available sources from the 

Kansas Geological Survey and the Oklahoma Corporation Commission. Density/neutron porosity 

logs were used when available. Correlations were made using a combination of gamma-ray and 

density/neutron porosity curves. Most logs shown on the cross section are spaced approximately 

six miles apart. The longest cross section (A-A’) was constructed parallel to the Central Kansas 

Uplift/Pratt Anticline and extends approximately 100 miles from McPherson County in central 

Kansas southwesterly to Woods County in northwestern Oklahoma. Cross Section A-A’ 

represents an oblique regional dip cross section. Two of the shorter cross sections (B-B’ and C-

C’) are each approximately 30 miles long and intersect A-A’ at the position of the two cored 

wells (Bartel #1-16, and Bann #1-14 respectively). Cross Sections B-B’, C-C’ and D-D’ were 

constructed perpendicular to the Central Kansas Uplift/Pratt Anticline and run oblique to regional 

depositional strike. All four cross sections were constructed as structural cross sections and as 

stratigraphic cross sections flattened either on the base of the Mississippian carbonate datum or 

the top of the Mississippian. Each cross section includes wireline logs that show the 

Mississippian-Pennsylvanian unconformity (red line), the Mississippian carbonate section, and 
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the point where gamma-ray abruptly increases indicating the contact between Mississippian 

carbonate and the underlying Kinderhookian aged “shale” (blue line). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48: A map showing the locations of the four cross sections used in this project to 

represent stratigraphic and structural relationships. Each square represents a township. Cross 

section B-B’ intersects A-A’ at the cored well Bartel #1-16. Cross section C-C’ intersects A-

A’ at the cored well Bann #1-14. A total of 43 wells were selected for these cross sections. 
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CROSS SECTION A-A’ 

 Cross Section A-A’ extends from McPherson County in central Kansas southwesterly to 

Woods County in northwestern Oklahoma. Cross Section A-A’ trends north-northeast/south-

southwest and is slightly oblique to the regional depositional dip. It is located approximately 25 

miles east of the eastern edge the Central Kansas Uplift/Pratt Anticline where the Mississippian 

section is absent. Correlations of packages between wells in the north were primarily 

accomplished using density/neutron porosity curves. The high energy environments on the 

proximal position of the ramp hindered the deposition of clay minerals making correlations with 

gamma-ray difficult. To the south in Woods County, Oklahoma, gamma-ray curves facilitated 

correlation as these wells were drilled in Mississippian carbonate deposited in a more distal 

position on the distally steepened ramp. 

 A number of depositional wedges are identified on Cross Section A-A’ that appear to 

prograde in a generally southerly direction (Fig. 49 and 50). These progradational packages 

extend approximately 25 miles.  In the northernmost portion of the Cross Section A-A’ there is 

evidence of backstepping of packages, which is interpreted as a transgressional period. The few 

most southerly wells in Kansas and all of the wells in Oklahoma in A-A’ show a change from dip 

to strike geometries. This important observation is described further in the description of Cross 

Section C-C’. 

 The patterns interpreted from Cross Section A-A’ supports the concept that depositional 

wedges were prograding in a mostly southern direction towards the pre-Pennsylvanian Oklahoma 

Basin. This observation is supported by the geometry of the identified packages and their overall 

shape. Packages tend to downlap on older surfaces and the wedges become younger as 

sedimentation progrades in the basinward direction (Fig. 49)  
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Figure 49: Cross section A-A’ that is flattened at the 

base of the Mississippian carbonate section (blue line). 

The red star in the cross section closest to (A) is the 

cored well Bann #1-14 and marks the intersection of the 

cross section C-C’. The red star in the cross section 

closest to (A’) is the cored well Bartel #1-14 and marks 

the intersection of the cross section B-B’. Progradational 

dip geometries are dominant from the north (A’) to four 

wells north of the Kansas/Oklahoma border where the 

geometries appear to be from a strike oriented cross 

section. An expanded view of this cross section is 

available in the appendix that better illustrates well to 

well correlations.    
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Figure 50: Structural representation of Cross Section A-

A’ showing the relationship between the total thickness 

of the Mississippian carbonate section and the present 

day Anadarko Basin. 
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CROSS SECTION B-B’ 

 Cross Section B-B’ extends from the eastern edge of the Central Kansas Uplift in 

northwest Reno County, Kansas southeast to the point it intersects Cross Section A-A’ at the 

cored well, the Blueridge Petroleum, Bartel #1-16. Cross Section B-B’ is oriented west-

northwest/east-southeast approximately parallel to depositional strike and perpendicular to the 

western limit of the eroded Mississippian section on the Central Kansas Uplift.  

All but the uppermost depositional packages appear to thin as wells approach the Central 

Kansas Uplift (Fig. 51 and 52). Weathering associated with the Mississippian-Pennsylvanian 

unconformity makes correlation much more difficult at the top of the Mississippian carbonate 

section as compared to the lower part. Evidence of westward thinning of packages in the lower 

portion of the Mississippian carbonate section and onlap on the Kinderhookian “Shale” is 

interpreted to indicate that the Central Kansas Uplift was a positive feature post-Kinderhookian. 

This also suggests that not all of the Mississippian section was deposited across the Central 

Kansas Uplift and the missing sediments could be due to non-deposition and not all the result of 

post-Mississippian erosion of a full Mississippian section. While there is evidence that the uplift 

influenced deposition as shown on Cross Section B-B’;  it is apparent from the Cross Section A-

A’ that the Central Kansas Uplift did not change the direction of progradation in the vicinity of 

the Bartel #1-16.  
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Figure 51: Cross section B-B’ flattened 

at the top of the Mississippian section 

(red line). The red star in the cross 

section represents the cored Blueridge 

Petroleum Bartel #1-16. Thinning of the 

depositional packages is evident as the 

representative wells approach the 

Central Kansas Uplift (B). Correlation 

of packages beneath the Pennsylvanian 

unconformity is difficult due to 

weathering enhanced alteration.  
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Figure 52: Cross section B-B’ as a structural cross 

section. 
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CROSS SECTION C-C’ 

Cross Section C-C’ extends from the southern Central Kansas Uplift/Pratt Anticline in 

Barber County, Kansas to east-central Woods County, Oklahoma where it intersects Cross 

Section A-A’ at the location of the Chesapeake Energy Corporation, Bann #1-14. Cross Section 

C-C’ is oriented north-northwest/south-southeast oblique to depositional strike/dip and 

perpendicular to the orientation of the Pratt Anticline (NE-SW).  

On Cross Section C-C’, the patterns represented shows that in southern Kansas, near the 

Pratt Anticline, depositional wedges are prograding in a southeasterly direction (Fig. 53 and 54). 

This direction of progradation is supported by patterns apparent in the southern half of Cross 

Sections A-A’. In Cross Section A-A’, a shift in the direction of the prograding wedges is evident 

by a change in the patterns. The geometry of the depositional packages intersected by the cross 

section shift from dip-oriented progradational geometries to geometries associated with strike-

oriented cross sections. This shift from a dip-oriented section to a strike-oriented section occurs at 

a location between the fourth and fifth well north of the Kansas/Oklahoma border. The shift seen 

in geometries in Cross Section A-A’ could be interpreted as a poor correlation. However, the 

perpendicular cross section, C-C’, showing dip-oriented geometries supports what is seen in 

Cross Section A-A’ (Fig. 41). 
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Figure 53: Cross section C-C’ 

flattened at the base of the 

Mississippian carbonate section (blue 

line). The red star in the cross section 

represents the cored well Bann #1-14 

and the intersection of cross section A-

A’. Progradational geometries can be 

seen from the north (C) towards the 

SSE (C’). 
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Figure 54: Cross Section C-C’ as a 

structural cross section showing 

tectonic dip to the southeast of the 

Pratt Anticline. 
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CROSS SECTION D-D’ 

Cross Section D-D’ extends from the northern well in cross section C-C’ on the southern 

Central Kansas Uplift/Pratt Anticline in Barber County, Kansas to central Alfalfa County, 

Oklahoma. Cross Section D-D’ is oriented northwest/southeast oblique to the regional 

depositional strike/dip and roughly perpendicular to the crest of the Pratt Anticline (NNE-SSW).  

The patterns on Cross Section D-D’, show that in southern Kansas, around the Pratt 

Anticline, depositional wedges are prograding in a southeasterly direction (Fig. 55 and 56). This 

direction of progradation is supported by patterns apparent in the southern half of Cross Sections 

A-A’ and in the parallel cross section C-C’. In Cross Section A-A’, a shift in the direction of the 

prograding wedges is evident by a change in the geometries. The geometry of the depositional 

packages intersected by the cross section shift from dip-oriented progradational geometries to 

strike-oriented geometries with uniform thickness. This shift from a dip oriented section to a 

strike oriented section occurs at a location between the fourth and fifth well north of the 

Kansas/Oklahoma border. The shift seen in geometries in Cross Section A-A’ could be 

interpreted as a poor correlation. However, the perpendicular cross sections, C-C’, showing dip-

oriented geometries supports what is seen in Cross Section A-A’ (Fig. 49). The geometries in 

cross section D-D’ are oblique to both strike and dip. This cross section intersects cross section 

A-A’ where the shift from dip to strike oriented geometries and is supported by the geometries 

seen in D-D’. 
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Figure 55: Cross section D-D’ 

flattened at the base of the 

Mississippian carbonate section (blue 

line). Oblique progradational 

geometries can be seen from the north 

(D) towards the SSE (D’). There are 

not as pronounced progradational 

geometries evident in cross section C-

C’; supporting the idea that the shift in 

geometries is more prominent to the 

south. 
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Figure 56: Cross Section D-D’ as a 

structural cross section showing 

tectonic dip to the southeast of the 

Pratt Anticline. 
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CHAPTER III 
 

 

DISCUSSION 

 

POSITION ON RAMP AND AFFECT ON CORRELATIONS  

Position on the distally steepened ramp greatly influenced the effectiveness of specific 

log curves in correlating surfaces in the Mississippian carbonate section. The gamma-ray 

signature showed no variation in the Bartel #1-16 that was useful for correlation purposes. This 

lack of gamma-ray variation is due to the higher energy found in the proximal depositional 

environments observed in the Bartel #1-16. The higher energy found in proximal locations at and 

above fair weather wave base moves finer grained muddy material down the ramp leaving behind 

only larger grains. The increase in gamma-ray signature at flooding surfaces is generally 

associated with finer grained or muddy material that is removed by the higher energy in proximal 

settings. This is why the flooding surfaces are not evident in logs from this location. The log 

curves whose patterns most closely matched rock fabric in core were the density/neutron porosity 

curves.  

The Bann #1-14 was in a more distal position on the ramp and showed little variation in 

the density/neutron porosity curve that could be used for correlations. Wells in this portion of the 

project had to be correlated using the gamma-ray signature. While there were no distinctive 

increases of gamma-ray signature observed in the upper part of the Bann #1-14 the lower half of 

the Mississippian carbonate section has a bell shaped curve that was able to be correlated to 
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nearby wells in the area. Confidence in correlations became less as the amount of variation 

evident in the gamma-ray signature decreased progressively upward through the Mississippian 

carbonate section.  

 

Using the porosity curves for correlations compared to using the gamma-ray curve 

introduces a few problems that must be considered. Correlating increases in gamma-ray 

associated with flooding surfaces means that correlations are being made on a surface that 

signifies an event that should have affected the entire basin. This is why these sharp increases in 

gamma-ray are favored for regional or basin wide correlations. When correlations are made using 

porosity it is assumed that these porosity trends tie to depositional environments or facies. 

Expectations are that as these porosity trends are followed away from the control well with the 

core calibrated wireline log, correlations would quickly become hard to follow in the matter of 

just a few miles. This would be expected because moving in a dip direction (landward or 

basinward) different depositional environments or facies would be crossed. It was observed when 

porosity trends were correlated that correlations did not become difficult to follow, but rather 

could be followed to the top of the Mississippian carbonate section in the landward direction and 

the base of the carbonate section in the basinward direction. This resulted in the construction of 

an apparent dip-oriented cross-sectional geometry of prograding depositional wedges.  

A possible explanation for the ability to correlate porosity logs is that the porosity trends 

are following specific depositional environments. Depositional environments are generally 

associated with the amount of energy the location receives from the wind and waves. In a shallow 

inclination ramp (<5°) a strip of the ramp miles wide in the dip direction would be subjected to 

similar amounts of energy, generating a similar depositional environment. The shallower the 

inclination of a ramp the wider the depositional environments would be expressed on the ramp 
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(Fig. 57). These wide depositional environments would appear even wider on cross sections that 

are oriented oblique to depositional strike and dip (Fig. 58). These factors may explain the ability 

to follow the porosity trends much farther than expected and could mean that prograding wedges 

evident in cross section could represent smaller-scale facies belts in a larger prograding wedge.  
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Figure 58: A map view of a carbonate ramp with an arbitrary depositional environment (X) 

belt (green rectangle). Four cross sections are depicted intersecting depositional environment 

X at different angles. Cross section 1 intersects the depositional environment perfectly 

perpendicular to strike creating the shortest representation of the environment. Cross sections 

2, 3, and 4 progressively intersect the depositional environment at more oblique angles to dip. 

The oblique cross sections create the longest representations of the depositional environment 

and should still show dip oriented geometries. The cross sections have been oriented at the 

bottom of the figure to show the difference in length depositional environment X could be 

represented as. It is likely that cross section A-A’ is best represented as one of the three 

oblique cross sections shown here. 

Figure 57: A cross sectional view of several carbonate ramps at different angles (A-G). The 

top line represents sea level and the bottom line represents fair weather wave base. This 

column of water would have high environmental energy and create a high energy depositional 

environment. This depositional environment would be represented in map view as a “belt” 

parallel to strike (see figure 58). Ramp A is the steepest ramp shown and would have the 

smallest width of the depositional environment represented on the ramp.  Ramp G is the 

shallowest dipping ramp and would have the largest width of this depositional environment 

represented on the ramp. If the Mississippian in the study area was deposited on a shallow 

dipping ramp like G (or shallower) depositional environments/facies would be represented by 

large “belts”. This could explain why porosity trends are able to be traced farther than 

expected.   
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STRUCTURAL FEATURES EFFECTS ON DEPOSITIONAL WEDGES 

Previous studies have observed progradation of depositional wedges in the Mid-

Continent Mississippian. Boardman, et al. (2010) saw prograding wedges in outcrop studies using 

conodont biostratigraphic zonation and Bertalott (2014) observed prograding wedges in a 

subsurface study similar to this study. Progradation was also observed in this study. It was 

observed that the depositional wedges shifted their direction of progradation from a southern 

direction to a southeast direction. This shift in the direction of progradation could be due to the 

positive structural features created by the Central Kansas Uplift and the Pratt Anticline. In the 

northern portion of the study, Cross Section B-B’ shows that depositional packages in the lower 

portion of the Mississippian carbonate section thinned as they approached the Central Kansas 

Uplift. This thinning is interpreted as indicating that the structure was a positive feature during 

the Mississippian and influenced sedimentation, but not so much as to shift the direction of 

prograding wedges. The geometries seen in B-B’ are not purely indicative of either strike or dip 

geometries. This may be explained by the Central Kansas Uplift only having a small impact on 

deposition this far north. A shift in geometries is evident on Cross Section A-A’ near where the 

cross section crosses the Kansas/Oklahoma border. In wells immediately north of the border, 

patterns on Cross Section A-A’ depict a shift from dip-oriented geometries to strike oriented 

geometries. This change is supported by the apparent dip-oriented geometries evident on Cross 

Section C-C’ and D-D’, which are perpendicular to A-A’. This shift in the direction of 

progradation is likely due to the positive presence of the Pratt Anticline and the southern portion 

of the Central Kansas Uplift. The degree of influence these structures exerted on deposition 

increased as the wedges prograded to a more distal position on the distally steepened ramp. 

Similar water depths should have approximately the same rate of sedimentation in a 

regional carbonate system, as the ocean floor at a depth should be subjected to similar 

environmental factors (Tucker and Wright, 1990). It can be concluded that bathymetric variations 
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influence the direction depositional wedges prograde. In a carbonate system on a hypothetically 

perfect ramp (a single plane with no variation set at a slight angle) depositional wedges should be 

perfectly parallel to strike (Fig. 59). Any interruptions, in the form of a positive structure, to this 

plane would force the depositional wedges to wrap around the structure in an effort to maintain 

the same water depth. It is expected the shallowing generated by the structure would shift facies 

basinward (Fig. 60). A slight positive structural interruption of the plane, similar to what is shown 

in Cross Section B-B’, would force a thinning of the wedges against the structure and most likely 

create a “hook” at the end of a depositional wedge. A large positive structural interruption of the 

plane, like the one shown in the southern part of the project, would force the depositional wedges 

to shift direction to account for the perturbation in the directions of dip and strike caused by the 

structure. An interpretation of arbitrary depositional wedges applied to the study area helps to 

explain the changes evident in cross sections (Fig. 61). 

Many carbonate reservoirs are related to bathymetry and consequently are associated 

with depositional environments that are oriented parallel with depositional strike. When a 

structure such as the Central Kansas Uplift or the Pratt Anticline changes that strike direction 

locally, it likely forces depositional environments basinward that are regionally found in a more 

proximal position on the distally steepened ramp. As seen in cross section A-A’, C-C’ and D-D’ 

the structures altered the direction of progradation, which is turn was reflected in package 

geometry. Knowing this impacts the way exploration would occur around the structures and also 

the direction of horizontal well bores in that region. 
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Figure 59: An idealized and simplified block model of a ramp with simple prograding 

wedges. The ramp represented here is a perfect plane with no variation. The dip angle is 

exaggerated to show detail. Applying a carbonate depositional system to the plane, with the 

assumption that the same water depth across the model would have the same sedimentation 

rate due to receiving the same amounts of different inputs (energy, light, etc.), the direction of 

progradation would occur parallel to regional dip and would be oriented parallel to strike as 

depicted above.  
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Figure 60: An idealized and simplified block model of a ramp with simple prograding 

wedges. The dip angle is exaggerated to show detail. The ramp represented here is a perfect 

plane with the exception of the positive structural feature in the middle of the plane 

(represented in green). The black dotted lines extending across the top of the structure help to 

illustrate the deviation by showing where the wedges would be if there was no structure. Red 

arrows indicate the direction of progradation. Applying a carbonate depositional system to the 

plane, with the assumption that the same water depth across the model would have the same 

sedimentation rate due to receiving the same amounts of different inputs (energy, light, etc.), 

the direction of progradation would occur in the dip direction. In the proximal position of the 

ramp the structure doesn’t affect the wedge except close to the structure. In order for the 

wedge to stay parallel with the strike of the structure it is forced to deflect basinward.  In the 

distal position, the structure is more dominant and affects the depositional wedge further from 

the structure. For the wedge to stay parallel to the structure it must start moving basinward 

farther from the structure. As the wedge goes around the nose it becomes parallel to regional 

strike again, but in a more basinward position. In the vicinity of the structure carbonate 

wedges are oriented oblique to regional strike and dip.  
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Figure 61: The ramp model from figure 60 applied to the study area using arbitrary 

progradation lines (red lines) in an attempt to explain why a shift in geometries can be seen in 

cross section A-A’ and supported in cross sections C-C’ and D-D’. Red arrows show the 

direction of progradation.  
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AGE OF DEPOSITIONAL WEDGES  

In cross section A-A’, multiple wedges are evident that prograde from the northeast 

(proximal ramp) to the southwest (distal ramp) (Fig. 62). When the law of superposition is 

applied the arrangement of the wedges and the direction of progradation being predominantly 

towards the south indicates that the Mississippian sediment in Kansas is older than the 

Mississippian sediment in Oklahoma. Depositional wedges begin to prograde basinward when 

sediment begins to fill accommodation in the proximal position on the ramp. As the wedges 

prograde basinward each subsequent wedge is younger than the previous. As a result, the 

youngest material is deposited towards the basin axis. The current Pre-Pennsylvanian subcrop 

map of the study area also supports this as the younger aged Mississippian sediments are found in 

the south and do not appear in the north except in the central part of the present day Sedgwick 

Basin (partly seen on the right side of the inset map) (Fig. 63).  

It should be noted that in cross section A-A’ (Fig 62), the bounding surfaces that appear 

as black lines on the landward side of the cross section (A) show what could be interpreted as 

apparent backstepping. This apparent backstepping appears nowhere else in the study area. 

Unfortunately the Bartel #1-16 core does not capture any of these surfaces and they are picked 

solely from logs. Confidence in this interpretation is questionable without a core with preserved 

facies that document a landward shift in facies.  

EROSION VS NON-DEPOSITION  

The relative ages of the prograding depositional wedges indicates that the Mississippian 

sediment in the south is younger than the Mississippian sediment in the north. Cross sections also 

show that the wedges found in the southern part of the project are not represented in the northern 

part of the project. The younger wedges that do not extend to the northern part of the  



79 
 

 

Figure 62: Cross section A-A’ flattened on 

the Kinderhook “Shale” with the two cored 

wells designated with red stars; the Bartel 

#1-16 on the right and the Bann #1-14 on 

the left. The top of the Mississippian in 

colored red and the top of the Kinderhook 

“Shale” is colored blue. The bounding 

surfaces of depositional wedges found in 

the Bann #1-14 are colored purple. The 

bounding surfaces of depositional wedges 

found in the Bartel #1-16 are colored green. 

Only one surface appears in both wells. It 

appears in the top of the Bartel #1-16 and 

the bottom of the Bann #1-14. Due to the 

distance between these two wells in the dip 

direction and the lack of a full 

Mississippian core in the Bann, confidence 

in correlations over this distance is 

moderate. 

The bounding surfaces that appear as black 

lines on the right hand side of the cross 

section show an apparent backstep in the 

system but appear nowhere else in the study 

area. Note how they downlap onto surfaces 

below them. 
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(Central Kansas Uplift) 

Figure 63: Map showing the location of the two cored wells (Bartel #1-16 and Bann #1-16) in 

relationship to the current Pre-Pennsylvanian subcrop map. Modified from Sandridge (2013). 
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project could be absent due to erosion, non-deposition or both. Due to the low accommodation in 

the proximal position on distally steepened ramps, it is reasonable to assume that accommodation 

was filled by older sediments around the Bartel #1-16 and younger sedimentation was forced 

basinward. Younger Mississippian sediments in the northern part of the project, if deposited, were 

likely thin and subsequently could have been removed by erosion.  

A large area over the crest of the Central Kansas Uplift has no Mississippian section (Fig. 

63). Absence of Mississippian section could be the result of erosion, non-deposition or a 

combination of these processes (Fig. 64). In cross section B-B’ the lower half of the packages 

have strong correlations and show thinning as they approach the uplift. This piece of evidence 

suggests that the area of the Central Kansas Uplift was a positive feature during Mississippian 

deposition. As a result is it possible Mississippian sediments were not deposited across the crest 

of the uplift. How much section is missing due to erosion or non-deposition cannot be determined 

with the data set from this study. Better well log coverage and additional cores closer to the uplift 

could help to answer this question. Applying high-resolution sequence stratigraphy to several 

cores in the area could help determine if the missing Mississippian on the uplift if due to erosion 

or non-deposition. The high-resolution sequence stratigraphy could help determine if the upper 

half of the packages seen in cross section B-B’, where correlations in this study were poor, also 

thin towards the uplift like the lower packages do. In the high resolution work, if the missing 

section on the uplift was the result of erosion, it would be expected that as you get closer to the 

uplift parts of the top packages would disappear whereas if the sediment is missing because of 

non-deposition it would be expected that the top packages would thin dramatically before 

disappearing.     
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Figure 64: Illustrations of erosion versus non-deposition where the end result is no 

representation of the two depositional wedges in core 1. Each depositional wedge contains a 

blue and red triangle in core two representing transgression and regression respectively. If a 

third core was placed between core 1 and 2 and examined using concepts in high resolution 

sequence stratigraphy, the absence of wedges in core one could be explained. In the case of 

erosion it would be expected that little change in the thickness of the transgressive and 

regressive cycles would be seen because they continued onto the structure during deposition. 

In the case of non-deposition, it is expected that the transgressive and regressive cycles would 

thin towards the structure in response to less accommodation. 
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LIMITATIONS ON STUDY  

 There are limitations to the procedures used in this study that affect confidence in the 

correlations. First, with every step in the methodology, the data is farther removed from the 

original rock data. Starting with the data acquired from the core itself being translated to that 

wells wireline log. This calibrated log then becomes the starting point for correlations in the cross 

sections. As the correlations move farther from the cored well, the confidence in the correlations 

decreases. This limitation is unavoidable because it is unpractical to core every well and to make 

the correlations there must be correlations to un-cored wells. Including more core calibrated 

wireline logs to the cross sections is one way to increase the confidence in the correlations.  

The width of the prograding wedges in this study (~30 miles) made it where the two cored 

wells were too far apart to strengthen the correlations between them. Only one surface appeared 

in both wells. This surface appears at the base of the Bann #1-14 in the southern portion of the 

project and in the upper portion of the Bartel #1-16. With only one surface appearing in both 

wells, that surface not cored in the Bann #1-14, and the distance between the two wells being ~85 

miles, the confidence in this surface being the same is low. If the wells were 30 miles apart or less 

(the approximate width of depositional wedges) it would be expected that multiple surfaces 

would appear in both wells. Having multiple surfaces in both wells would strengthen the 

correlations between them. 

Wireline logs also introduce limitations to the study. Limits in the resolution of logging tools 

can cause complications. The vertical and horizontal resolution is different for different logging 

tools, but generally the finest vertical resolution is greater than one foot under the best conditions. 

The speed the tool is pulled through the well bore during logging and the quality of the well bore 

itself can also affect quality.  
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The spacing of the wireline log data also creates limitation to the correlations. Most logs that 

are available occur in clusters from productive oil and/or gas fields. Between the different oil and 

gas fields the density of wells drilled is much less. Making correlations between the oil and gas 

fields can force correlation across several miles. Ideally correlations would be best with spacing 

between wells of a half mile or less; with less being better. This close spacing greatly reduces the 

chances of miscorrelations. The best chance for this type of data density would be in a field sized 

study with cross sections only being a few miles long. In this regional study with the smallest 

cross sections being 30 miles long and the longest being over 100 miles, correlations across 

several miles were unavoidable.   
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CHAPTER IV 
 

 

CONCLUSIONS 

 

This study identified petrophysically significant rock packages in the Mississippian 

carbonate section in two cores that represent proximal and distal positions respectively on a 

distally steepened ramp. Core-calibrated electrofacies package geometries were used to determine 

if the Central Kansas Uplift and/or the Pratt Anticline were positive features that influenced 

deposition of Mississippian sediments.  

Key findings from this study are: 

1) Petrophysically correlatable packages were identified in both the proximal and distal core 

locations. The top package in both wells consisted of weathered/karsted Mississippian 

carbonate of variable thickness with infiltration of Pennsylvanian sediments. 

2) Multiple wireline log curves were required for correlation as a single type was not 

sufficient to correlate depositional packages across the distally steepened ramp from the 

proximal to distal positions. Flooding surfaces, with their characteristic increase in 

gamma-ray curve signature usually used in regional correlations are not present in the 

proximal high-energy positions on the distally steepened ramp. The high-energy 

environments found in the proximal position of the distally steepened ramp hindered the 

deposition of clays that contribute to the increase in   
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gamma-ray value and produce stratigraphically important flooding surfaces. Other log 

tracks (i.e. density/neutron porosity, resistivity, etc.) were used to correlate packages of 

similar type rock rather than the surfaces that bound them as is done with gamma-ray 

correlations.   

3) Depositional geometry defined package limits and determined how far surfaces or 

packages could be traced. Most surfaces identified in the cored wells were only able to be 

traced 20-25 miles before they downlapped and disappeared. The Bartel #1-16 and the 

Bann #1-14 are approximately 85 miles apart, with the Bann #1-14 in a dip direction 

from the Bartel #1-16. Only one package appeared in both wells and was found near the 

top of the Bartel #1-16 and near the base of the Bann #1-14. Due to the distance between 

the two cored wells and the package not being cored in the Bann #1-14, there is low 

confidence in the correlation.   

4) Based on the prograding carbonate wedge model, the Mississippian section in the Bann 

#1-14 is younger than the section in the Bartel #1-16. 

5) Both thinning of depositional packages and an apparent change in the direction of 

progradation were observed and attributed to a positive structural influence by the Central 

Kansas Uplift and the Pratt Anticline. 

6) Supratidal facies present near the top of the Bartel #1-16 (the proximally located well) in 

association with the thinning of these packages as they approach the Central Kansas 

Uplift strongly suggests that in the proximal area, accommodation was filled or nearly 

filled and sedimentation moved basinward.  If this inference is confirmed, much of the 

Mississippian section missing on the crest and flanks of the Central Kansas Uplift could 

be the result of non- or limited deposition and not totally the result of pre-Pennsylvanian 

erosion.  
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APPENDIX A 

 

BARTEL #1-16 WHOLE CORE PHOTOGRAPHS 

DRY 

WHITE LIGHT
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box #1 

3292 feet to 3302 feet. 

Karst 

Package 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box #2 

3302 feet to 3312 feet. 

Package #6 

Karst 

Package 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box #3 

3312 feet to 3322 feet. 

Package 

#6 



95 
 

 

 
Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box #4 

3322 feet to 3332 feet. 

Package 

#6 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box #5 

3332 feet to 3342 feet. 

Package #5 

Package #6 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box #6 

3342 feet to 3352 feet. 

Package 

#5 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box #7 

3352 feet to 3362 feet. 

Package 

#5 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box #8 

3362 feet to 3372 feet. 

Package #4 

Package #5 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box #9 

3372 feet to 3382 feet. 

Package 

#4 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#10 3382 feet to 3392 feet. 

Package 

#4 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#11 3392 feet to 3402 feet. 

Package #4 

Package #3B 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#12 3402 feet to 3412 feet. 

Package 

#3B 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#13 3412 feet to 3422 feet. 

Package 

#3B 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#14 3422 feet to 3432 feet. 

Package 

#3B 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#15 3432 feet to 3442 feet. 

Package #3A 

Package #3B 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#16 3442 feet to 3452 feet. 

Package 

#3A 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#17 3452 feet to 3462 feet. 

Package #3A 

Package #2 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#18 3462 feet to 3472 feet. 

Package 

#2 



110 
 

 

 

 

Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#19 3472 feet to 3482 feet. 

Package 

#2 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#20 3482 feet to 3492 feet. 

Package 

#2 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#21 3492 feet to 3502 feet. 

Package #1 

Package #2 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#22 3502 feet to 3512 feet. 

Package 

#1 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#23 3512 feet to 3517 feet. 

Package 

#1 
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APPENDIX B 

 

BARTEL #1-16 WHOLE CORE PHOTOGRAPHS 

WET 

WHITE LIGHT 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box #1 

3922 feet to 3302 feet. 

Karst 

Package  
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box #2 

3302 feet to 3312 feet. 

Package #6 

Karst 

Package 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box #3 

3312 feet to 3322 feet. 

Package 

#6 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box #4 

3322 feet to 3332 feet. 

Package 

#6 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box #5 

3332 feet to 3342 feet. 

Package #5 

Package #6 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box #6 

3342 feet to 3352 feet. 

Package 

#5 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box #7 

3352 feet to 3362 feet. 

Package 

#5 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box #8 

3362 feet to 3372 feet. 

Package #4 

Package #5 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box #9 

3372 feet to 3382 feet. 

Package 

#4 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#10 3382 feet to 3392 feet. 

Package 

#4 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#11 3392 feet to 3402 feet. 

Package #4 

Package #3B 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#12 3402 feet to 3412 feet. 

Package 

#3B 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#13 3412 feet to 3422 feet. 

Package 

#3B 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#14 3422 feet to 3432 feet. 

Package 

#3B 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#15 3432 feet to 3442 feet. 

Package #3A 

Package #3B 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#16 3442 feet to 3452 feet. 

Package 

#3A 
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 Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#17 3452 feet to 3462 feet. 

Package #3A 

Package #2 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#18 3462 feet to 3472 feet. 

Package 

#2 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#19 3472 feet to 3482 feet. 

Package 

#2 



135 
 

 

 
Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#20 3482 feet to 3492 feet. 

Package 

#2 
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 Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#20 3492 feet to 3502 feet. 

Package #1 

Package #2 



137 
 

 

 
Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#22 3502 feet to 3512 feet. 

Package 

#1 
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Bartel #1-16, Blueridge Petroleum Corporation, S16-T24S-R4W, Reno County, Kansas. Box 

#23 3512 feet to 3517 feet. 

Package 

#1 
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APPENDIX D 
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APPENDIX E 

CROSS SECTION A-A’: Example of Downlapping Depositional Wedge 
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