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Date of Degree: May, 2015

Title of Study: DEVELOPING A HOME SERVICE ROBOT PLATFORM FOR
SMART HOMES

Major Field: Electrical Engineering

Abstract: The purpose of this work is to develop a testbed for a smart home environ-
ment integrated with a home service robot (ASH Testbed) as well as to build home
service robot platforms. The architecture of ASH Testbed was proposed and imple-
mented based on ROS (Robot Operating System). In addition, two robot platforms,
ASCCHomeBots, were developed using an iRobot Create base and a Pioneer base.
They are equipped with capabilities such as mapping, autonomous navigation. They
are also equipped with the natural human interfaces including hand-gesture recog-
nition using a RGB-D camera, online speech recognition through cloud computing
services provided by Google, and local speech recognition based on PocketSphinx.
Furthermore, the Pioneer based ASCCHomeBot was developed along with an open
audition system. This allows the robot to serve the elderly living alone at home. We
successfully implemented the software for this system that realizes robot services and
audition services for high level applications such as telepresence video conference,
sound source position estimation, multiple source speech recognition, and human
assisted sound classification. Our experimental results validated the proposed frame-
work and the effectiveness of the developed robots as well as the proposed testbed.
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CHAPTER 1

INTRODUCTION

In this thesis, a home service robot platform is developed and integrated into smart

homes to assist the elderly who live independently in their own residence. In this

chapter, the motivation, the related works, the objectives, and the outline of this

thesis are presented as an overall introduction.

1.1 Motivation

Mobile robots have already come into human environments in recent years. They

have been used in many places such as homes, offices, hospitals, battlefields, and

emergency-response sites. The home service robots are expected to live with humans

and do chores around their homes. They can provide simple services, such as vacu-

uming the floor. Also, they can do more complex tasks, such as serving drinks, or

even entertaining guests by dancing or playing instruments.

The elderly population around the world is increasing. The number of people

60 years old and above had increased to almost 810 million in 2012 and is forecast

to reach 2 billion by 2050 [2] [3]. Elderly people are an important asset to society.

The life experience and wisdom they have gained over the years make them a vital

social resource [4]. However, along with these benefits there are added challenges.

Providing olders with age-friendly physical and social environments helps them live

an independent life and also improves their active participation, maximizing their

contribution to the society [3]. Although services such as adult day care, long term

care, nursing homes, hospice care, and home care can provide elders with all the
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supports of the health, nutritional, social support, and daily living needs of adults,

the feeling of independence is lost. Elders would prefer to stay in the comfort of

their home where they feel more confident than moving to any expensive adult care

or healthcare facility. Hence if old adults are able to complete self-care activities on

their own, encouraging them in their efforts in maintaining independence can provide

them with a sense of accomplishment and ability to enjoy independence longer [5].

The best way to support them is to provide a physical environment that promotes

active ageing through the use of innovative technologies, such as smart homes [3].

The most recent survey on smart homes was presented by Alam et al. [6]. A

smart home environment is defined as a ubiquitous computing application that is

able to provide users with context-aware automated or assistive services in the form

of ambient intelligence, remote home control, or home automation. Moreover, smart

homes provide comfort, healthcare, and security services to their inhabitants. In a

robot-integrated smart home environment, the mobile robots can utilize the smart

home sensor networks as their own sensors, therefore they could be smarter and could

effectively assist and collaborate with humans. The complexity could shift from the

mobile robot into the environment and into the model knowledge [7]. Therefore, the

robot-integrated smart home environment would be the perfect use of technology to

achieve the goal of caring for the elderly at their own home. The goal of this thesis is

to develop an open home service robot platform that not only is equipped with some

basic services and applications but also is integrated into a smart home environment

to support further research in elderly care.

1.2 Related Work

In recent years, assistance for the elderly living alone at home has been receiving

growing interest. There are already some commercial assistive social robots for el-

derly care, such as Aibo, Pearl, Care-o-bot I, Care-o-bot II, Care-o-bot III, Homie,
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iCat, Paro, Huggable, etc. [8]. Some robots, for example Pearl and Care-o-bots, can

recognize words, synthesize speech, work as autonomous guiding robots or telepres-

ence robots, and remind people about routine activities such as eating, drinking,

taking medicine, and using the bathroom, but they do not have the auditory learn-

ing capability which enables the robots to understand both voice and environmental

sounds. Most previous researches have focused on human-robot interaction and nav-

igation in the development of personal service robots for elderly care. Johnny [9], a

research and development platform robot for domestic environments, was equipped

with multi-modal human robot interaction including speech and gesture, SLAM (Si-

multaneous Localization and Mapping) and navigation, object detection, and sound

localization. The European FP7 CompanionAble project [10] aimed at developing a

mobile home robot companion that has friendly GUI, SLAM, different task-oriented

navigation behaviours, speech recognition, dialogue manager, and human detection

and tracking through smart-home infrared sensors. In 2009, The Honda humanoid

ASIMO robot was controlled to a limited degree by the operator’s thoughts. The

experimental system combines EEG with near-infrared (NIR) spectroscopy and the

operator wears a helmet featuring NIR and EEG (Electroencephalography) sensors

which monitor and decode electrical brainwaves and cerebral blood flow [11]. The

personal robot platform PR2 was programmed to help a severely disabled man [12].

The HealthBot robot [13] can interact with a user via the touch screen and synthe-

sized speech, navigate and avoid obstacles, remind about schedules, detect falls, and

assist in taking blood pressure and blood oxygen saturation (SPO2) measurements.

Recently, Robotics and cloud computing have been integrated to develop health-

care systems. The architecture of ROSCHAS [12] (Robotics and Cloud-assisted

Healthcare System) was designed to enable the system to provide pervasive health-

care services and especially the mental healthcare for empty nesters. However, many

challenges need to be addressed, especially on high bandwidth and energy efficient
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Figure 1.1: Existing assistive social robots [Source: Internet]

communication protocols, low cost robot, interoperability between robot and cloud

platform, and physiological sensor networks, etc.

A smart home along with a domestic robot can be used to take care of the el-

derly [10] [14]. Georgia Institute of Technology has constructed Aware Home Research

Initiative (AHRI) that includes a three-story 5,040 square-foot house to address the

social challenges the elderly face at home. In this research facility, the human’s loca-

tion is identified using RFID tags worn below the knee. This system provides room

level occupancy accuracy. In order to improve accuracy and to recognize the hu-

man activity, a series of unobtrusive cameras were installed on the first floor of the

Aware Home. By using location, gestures, and interaction with other objects, the

behavior of the human is recognized [15]. Another similar work is Gator Tech Smart

House [16] in The University of Florida that helps aged and disabled people. Gator

Tech Smart House is fitted with various smart devices to help day to day activities
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of the occupant. Ultrasonic transceivers are placed on the ceiling corners of each

room and the user has to wear a vest with an ultrasonic tag. The location of the

resident is detected using triangulation in detecting occupant’s movements, location

and orientation. Smart floors embedding pressure sensors are used to identify and

track the location of all house occupants. They are also used to detect if occupants

fall. Smart cameras are used for video surveillance and motion detection.

Smart home environments offer a better quality of life by employing automated

appliance control and assistive services. Integration of mobile robots into smart home

environments brings more benefit to our lives, specially for elderly care. It also helps

to shift complexity from the mobile robots into the environment. The technologies

which are present in smart homes can be used to improve mobile robots in terms of

costs, performance and safety. This work aims to set up a small testbed for doing ex-

periments of researches on Robot-integrated Smart Home Environment. The testbed

has the following features:

• Simulate a smart home environment that includes physical spaces, sound sources,

and sensor networks, etc.

• Be integrated with the different kinds of domestic robots (home service robots,

surveillance robots, healthcare robots, etc.)

• Have open software infrastructure ready for high-level researches.

Moreover, future home service robots for the elderly who live independently in

their own residence should play as a tool to serve the human, an avatar to represent the

remote caregiver, and a social companion to collaborate and interact with the human.

The robots could mainly overcome challenges in performing home tasks, co-operating

with the remote caregivers or doctors to take care of elderly adults, who may be non-

experts in technology, communicating with them in a natural and intuitive way, as well

as understanding their intentions and activities. Therefore, those robots first have the
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capability to interact with humans through natural human interface, understand the

home environments through both visual and auditory sensing, collaborate with remote

caregivers in performing tasks. Such a human-aware capability frees the robot to do

its daily routine work, while being able to attend the human more proactively and

effectively. Therefore it is important to develop an open home service robot platform

that is equipped with natural human interface, audition system, and human-robot

collaboration capability. Such a platform can provide basic services and application

to develop high-level applications for home service robots that can effectively serve

the elderly at home.

1.3 Objectives

The objective of this thesis is to implement a testbed for smart home environment

and particularly to develop an open and flexible home service robot platform for

further researches in future robot-integrated smart homes. It is desirable to equip the

robot platform with some basic services such as 2D SLAM, autonomous navigation,

and other related functionalities. This robot platform will be integrated into the

smart home environment through connection to the environmental sensor network,

the body sensor network, as well as cloud servers. The robot platform is also capable

of natural human interfaces such as gesture recognition, voice recognition, and sound

event recognition. Such a platform can benefit the robotics research community due

to its open architecture in both hardware and software.

1.4 Outlines

This thesis is organized as follow:

• This chapter presents the motivation, related works, and the objective of this

work.
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• Chapter II covers the development of a testbed for robot-integrated smart homes

and the hardware and software implementation of the home service robots.

• Chapter III demonstrates the natural human interfaces for the home service

robot.

• Chapter IV explains the audition system developed for the robot.

• Chapter V gives conclusion and potential future work.
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CHAPTER 2

SMART HOME TESTBED INTEGRATED WITH A HOME SERVICE

ROBOT

This chapter presents the development of a testbed for robot-integrated smart homes.

The testbed includes a smart home environment, remote caregivers, cloud servers, and

an experiment environment. An open layered architecture is proposed for software

implementation of the testbed. This chapter also describers the hardware and soft-

ware implementation of the home service robots that are integrated in the smart home

environment.

2.1 Introduction

In order to develop and test our proposed home service robot, we need set up a home

environment. Modifying a real apartment can cost a significant amount of money

and time. Hence, a small-scale smart home testbed is preferred for initial study

and reliability tests in a laboratory environment before conducting the experiment in

real apartments. This smart home consists of a living room, a bedroom, a kitchen

and a bathroom. The floor plan design and 3D view of the home are shown in

Fig. 2.1. Furniture is set up in different rooms, such as a chair in the living room

and a bed in the bedroom. The tesbed combines the small apartment with a network

of an environmental sensors, a home service robot, a gateway, a mobile device, a

sound simulation system, as well as an indoor localization system that provides the

ground truth of the robot, the human, and other target objects. The design and

implementation of this testbed are described in the following sections.
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Figure 2.1: The floor plan and 3D view of the smart home

Figure 2.2: Structure of the ASCC Smart Home Testbed

2.2 The ASCC Smart Home (ASH) Testbed

The overall architecture of the ASCC Smart Home testbed is shown in Fig. 2.2.

This testbed consists of four parts: a Smart Home environment, a remote caregiver,

9



Figure 2.3: ASCC Smart Home testbed

cloud servers, and an experiment environment that provides ground truth and sound

simulation. The Smart Home environment consists of five parts: a small apartment

equipped with environmental sensors, a home service robot, a human subject with

wearable body sensors, a mobile device such as a smartphone, and a home gateway.

The Smart Home can be connected to the cloud server through the home gateway.

The remote caregiver can provide health care to the elderly as well collaborate with

the home service robot to take care of the elderly. The experiment environment

includes a sound simulation system that generates various sounds related to human

activities at home and the OptiTrack motion capture system that provides ground

truth of locations. The Smart Home environment has been developed in our lab

and it is shown in Fig. 2.3. The size of the Smart Home is about 16 feet by 22

feet. The components of the Smart Home environment are explained in the following
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Figure 2.4: A prototype of body sensor network [1]

subsections.

2.2.1 Home service robots

Several home service robots are developed. They are based on the Pioneer robot

base [17] and the iRobot Create base [18], respectively. Each robot is capable of

holding other attachments which feature a laser rangefinder (LRF) for 2D navigation,

an RGB-D camera for 3D perception and gesture-based applications, a microphone

array to build the audition system, and a touch screen. The robot can be used as a

telepresence robot, an elderly healthcare robot, or a companion. The hardware and

software implementation of those robots will be presented later.
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2.2.2 Body sensor network

The human body sensor network consists of physiological sensors, motion sensors, and

a wearable e-Health unit [1]. The elderly carries this network for self-health check up

through mobile devices or for remote healthcare provided by a doctor. A prototype

of a body sensor network is shown in Fig. 2.4. The wearable e-Health unit, or the

e-Health Sensor Shield, allows to develop biometric and medical applications by using

9 different sensors: pulse, blood pressure (sphygmomanometer), body temperature,

oxygen in blood (SPO2), airflow (breathing), electrocardiogram (ECG), glucometer,

galvanic skin response (GSR - sweating), and motion (accelerometer).

2.2.3 Mobile devices

A mobile device such as a smart phone or a tablet is used as a user interface to control

the home service robot. It can also be used to collect the data from the body sensor

network. Furthermore, the caregiver can use other mobile devices to remotely control

the robot, remotely connect to the body sensor network, as well communicate with

the elderly at their homes.

2.2.4 Home sensor network

The home sensor network consists of PIR sensors and GridEye sensors connected

through XBee protocol. The installation of the sensors is shown in Fig. 2.3. The

GridEye sensor node can provide 64 pixel temperature data in its field of view. The

PIR sensor node can provide binary motion information in its field of view by detecting

the IR radiation emitted by the target. The sensor nodes were strategically placed

at different places inside the apartment. The GridEye sensor nodes were placed in

larger rooms such as the living room and the bedroom, which enables better tracking

performance. While PIR sensors were placed in the kitchen and the bathroom. Data

from these nodes are transmitted through XBee protocol to the home gateway.

12



2.2.5 Home gateway

The home gateway is a local hub for data collection and processing in the Smart Home.

It also enables the communication with the cloud server and the remote caregivers.

The home gateway receives sensor data from the robot, the body sensor network and

the home sensor network. Data processing that requires less computational power

and more realtimeness can be done locally on the home gateway. However, if the

data processing requires more powerful computation, such as visual and audio un-

derstanding, human health diagnosis, anomaly detection, etc. it is more desirable to

outsource the processing to the cloud servers.

2.2.6 Indoor localization system

The indoor localization system is used to provide the ground truth of the robot, the

human, and other target objects. We adopted an OptiTrack motion capture system

from Natural Point Inc. [19]. This system consists of twelve OptiTrack V100:R2

cameras that can capture images within the range of 18 to 433 inches. The cameras

were placed around the testbed to be able to cover the whole testbed area at the

heigh from 4 feet to 6 feet. Each camera includes 26 Infrared (IR) LEDs which can

emit an IR beam. The IR beam is reflected back to the cameras by the silver markers

so that the system can localize the markers accurately. Each group of markers in a

specific shape can be recognized in the system, be represented by a rigid body, be

tracked at more than 95% accuracy, as well as be localized at millimeter accuracy in

real-time.

2.2.7 Sound simulation system

The sound simulation was developed to simulate various sound events like those in

a typical apartment. Multiple sound cards were installed in a desktop computer to

connect to multiple speakers. The sound events in the bathroom, kitchen, living room,

13



Figure 2.5: Layered architecture of ASH

and bedroom were recorded or collected from the Internet to build a sound library

(SoundLib) for development of the robot audition system which will be discussed

later.

2.3 Layered architecture of the ASCC Smart Home

In order to achieve modularity, extensibility, customizability, and reusability, the ASH

testbed software was developed based on a layered architecture shown in Fig. 2.5. This

architecture, extended beyond the collaborative architecture proposed in [20], allows

remote caregivers and a home service robot to collaborate in serving the elderly. The

architecture consists of five layers including the physical layer, device layer, service

layer, communication layer, and application layer.

The physical layer is the hardware of ASH which includes hardware of the home

service robot, human body sensor network, home sensor network, OptiTrack system,

and sound simulation system, as well mobile devices or computers used by the care-
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givers. The robot hardware includes various sensors such as an RGB-D camera, a

laser range finder (LRF), encoders, and a microphone array.

The hardware is handled by the device layer that provides the device drivers for

the sensors and actuators on the robot, and the graphical user interface (GUI) for

the caregiver and the elderly, and the drivers for other systems and sensor networks

in ASH.

The service layer contains basic services provided by the robot, the audition sys-

tem, the caregiver, the home sensor network and the body sensor network. The robot

services include the SLAM(Simultaneous Localization and Mapping) and navigation.

The audition services include sound localization, sound separation, and voice/non-

voice recognition. The caregiver services include remote control, audio stream, and

sound labelling. The home sensor network provides indoor localization service. The

body sensor network service includes health monitoring, motion detection, etc.

The application layer contains high level functions such as anomaly detection,

activity recognition, telepresence conference, local awareness control, sound source

position estimation, multiple source speech recognition, human-assisted sound clas-

sification. Human-assisted sound classification provides a new way to enable the

caregiver and the robot to work together to detect and classify sounds.

Based on the Robot Operating System (ROS) network [21], the communication

layer provides a seamless connection between the different modules in the service layer

and the application layer.

2.4 Home service robots

The ASCC Home Service robot is built with preexisting mobile platforms, which in-

clude a Pioneer mobile robot base and an iRobot Create robot base. Besides basic

features such as SLAM and autonomous navigation based on 2D/3D maps, the robots

allow a remote caregiver to achieve telepresence through audio and video communi-
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Figure 2.6: ASCC Home Service Robots

cation with the elderly. The robots also have the capability to collaborate with the

remote caregiver to recognize sound events. Moreover, the robots robots are used

to develop natural human-robot interaction and applications of collaborative sound

event recognition.
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2.4.1 Hardware platform

iRobot Create based home service robot

As shown in Fig. 2.6-(a), the home service robot, named ASCCHomeBot1, is built

on an iRobot Create base with approximately 1.20m-long PVC pipes holding up a

tablet used for video communication and online speech recognition. Mounted on it

are an RGB and Depth (RGB-D) camera, a laser range finder (LRF) and a FitPC2

minicomputer [22]. It also has batteries onboard to power these devices. The iRobot

Create and FitPC2 are powered by an Advanced Power System 14.4V/3000mAh

NiMH battery and Powerizer 9.6v/4200mAh batteries respectively. The lifetime of

the batteries was evaluated in both continuously fully-functional operation mode and

standby mode. The FitPC2’s battery can last for approximately 2 hours in the

operation mode and more than 10 hours in the standby mode and the iRobot Create’s

battery can last for more than 5 hours in the operation mode and more than a week

in the standby mode. The RGB-D camera mounted on top of the robot is an ASUS

Xtion PRO LIVE [23] which enables to develop 3D modeling applications, gesture-

based applications, etc. In addition, it is able to capture video with 24-bit true

color and a resolution of 640x480 at 30 frames per second. The LRF is a Hokuyo

URG-04LX-UG01 [24] which is used to build the 2D map of the environment around

the robot. It is a low-power LRF with a wide range up to 5600mm x 2400, and an

accuracy of ±30mm. The FitPC2 minicomputer running ROS on Ubuntu 10.04 is

used as the main computing system on the robot. It has a dual-core 1.6 GHz Intel

Atom processor, and 1 GB of memory. It controls the robot motion and collects

sensory data from the camera, the laser range finder, as well as the robot odometry.

It also communicates with the remote mobile devices for tele-operation.
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Figure 2.7: Software platform for ASCC Home Service Robots

Pioneer based home service robot

As shown in Fig. 2.6-(b), the home service robot, named ASCCHomeBot2, was built

on a Pioneer P3-DX base with approximately a 1.5m-long aluminium frame holding

up a touch screen monitor used for video communication and graphical user interface.

Mounted on it are a RGB and Depth (RGB-D) camera, a laser range finder (LRF), a

FitPC2 minicomputer that are the same as those on the ASCCHomeBot1. In addi-

tion, ASCCHomeBot2 was equipped with an auditory system built on a microphone

array and a Microsoft Windows netbook.

2.4.2 Software platform

Software platform for the robots

The software for the robots was developed based on ROS. ROS Electric was installed

on Ubuntu 10.04 in the FitPC2 mini computer to run the robot software. ROS,
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a Linux based software framework, is an open-source, meta-operation system for

robots [21]. It uses the concept of packages, nodes, topics, messages, and services and

provides services similar to real operation systems, including hardware abstraction,

low-level device control, implementation of commonly-used functionalities, message-

passing between processes, and package management. The distributed computing

feature of it can also facilitate multi-agent applications in a wireless network. In ROS,

a program can be divided into different nodes which can be distributed to different

computers in the same network. The driver of one component of the hardware can be

treated as a node, while a data processing method can be made as one node as well.

The information transferred between nodes is called a message. A node which sends

messages on a topic is called a publisher and the receiving node called a subscriber

has to subscribe the topic to receive that message. Currently, in ROS, all the nodes

share one ”ROS master”. Nodes connect to other nodes directly. The ROS master

only provides lookup information, much like a DNS server.

The software platform for the robots is shown in Fig. 2.7-(a). For the most basic

functions in the driver layer of the robot, we utilized existing packages from ROS

repositories [21] for interfacing with hardware, processing, and computing, such as

irobot create 2 1 for driving the iRobot Create or RosAria for driving the Pioneer,

hukoyo node for interfacing the hokuyo LRF, openni node and openni tracker for talk-

ing to the ASUS Xtion PRO LIVE camera, and tf for coordinate transformations. In

the service layer, three main services including SLAM, navigation, and data stream-

ing were developed based on existing ROS packages which consist of slam mapping

(the implementation of grid-based Simultaneous Localization and Mapping (SLAM)

using Rao-Blackwellized particle filters [25]) for simultaneously creating an occupancy

grid map and localizing the robot, move base for motion planning and autonomous

navigation using the particle filter based localization method [26] and amcl for the

adaptive (or KLD-sampling) Monte Carlo localization [27].
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Software for Mobile Devices

We used mobile devices to control the home service robots, both locally by the elderly

and remotely by the caregiver. Android tablets are low cost and portable computing

platforms that can be used for this purpose. Two Motorola XOOM tablets [28] are

used. The first is used on the robot as the local user interface, and the second is used

at the remote end as the remote user interface. The tablet at the remote user end runs

Android applications implemented with the Android SDK [29] and the rosjava core

library [30] to control the robot, subscribe to the video stream, and recognize voice

commands, etc.

The software on the Android tablet combines two key libraries. The first library is

the Android SDK. It is a free development kit which provides APIs and development

tools for the Android operating system. We create an Android application to run our

software. This way it can be easily integrated into any Android tablet, and could

eventually be downloaded from the Android marketplace.

The second library that we used is rosjava, which is a complete implementation

of ROS in pure Java. It also has Android support. To use rosjava with Android,

the android core package must also be included as part of the development kit. The

combination of these two allows for complete integration with both ROS nodes and

the Android SDK.

We also developed a graphical user interface (GUI) as shown in Fig 2.8 for robot

control. Android has a series of prebuilt views that we can take advantage of, in-

cluding an ImageView for the video, and MapView for displaying the 2D map, and

JoystickView for controlling the robot, etc.

2.5 Situation awareness control based on natural human interface

The robot gateway could provide different interfaces to control the robots such as

virtual joystick on GUI node, speech recognition, gesture recognition, etc. The com-
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Figure 2.8: The user interface of rosjava-based Android software

Figure 2.9: Local situational awareness control software architecture

mands from those should be fused to generate only one command to control the

robot. This avoids the conflict between the interfaces, makes the controlling more

natural and easier, as well as keeps interaction between the human and the robot

more stable and reliable. Currently, this node has been developed by using a simple

way though setting different priority levels on commands. The voice commands have

higher priority than gesture commands. The further work should improve this node.

Furthermore, to help the remote user and the local user control the robot in

a seamless way at the same time, the local situational awareness control (LSAC)

software architecture as shown in Fig. 2.9 will be developed. It aims to find a velocity

command (modified command) that integrates the commands from both the remote
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user and the local user. The remote commands consist of virtual joystick commands

and speech commands. The local commands consist of speech commands and gesture

commands. Basically, each command tries to control the robot according to specified

direction and speed. The LSAC control algorithm will evaluate each command based

on the probability of collision with the obstacles in the local obstacle map, which is

derived from the sensor data. The command that results in the minimum probability

of collision will be selected as the modified commands. There are also other ways

to combine the multiple commands. We will investigate them in the future. This

function is important because it enables the elderly and the remote care givers to

tell the robot where to go and it will automatically move to that location in home

environments. This frees up the user’s time because they no longer have to drive

the robot around all the time. Also, along with local situational awareness control,

assisted navigation should be integrated into the robot. This assistance allows the

user to drive the robot in complex environments more easily. Seamless integration of

arm gesture recognition, speech recognition, and autonomous navigation could make

the robot more reliable, smarter, more natural and social in behaviors, as well as

easier to use.
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CHAPTER 3

NATURAL HUMAN INTERFACE FOR HOME SERVICE ROBOT

This chapter describes the development of a natural human interface for ASCCHome-

Bots. Our goal is to add some natural human robot interface (HRI) features to the

robot. It can recognize local user’s hand gestures and recognize voice commands of

both local and remote users.

3.1 Introduction

3.1.1 Motivation

People expect to interact with robots by natural interfaces just as they interact with

other humans. Hence, natural human robot interaction has great values in developing

home service robots [31]. Desai et al. [32] recommended a set of guidelines for design-

ing personal service robots. Besides providing audio and video for communication and

navigation, user interface for remote controlling, and suitable physical features, the

robots should be easy to use and also be capable of autonomous navigation. They also

should be designed with natural human interfaces. For example, it is important to

have the capability of recognizing human’s arm gestures and voice commands. These

capabilities make the robots behave more socially when interacting with humans.

Besides voice-based interaction, the most effective way of communication and

interaction between humans, gesture-based interaction also has wide applications in-

cluding Human Machine Interaction (HMI), Human Robot Interaction (HRI) and

Social Assistive Robotics (SAR). Since this technology has the potential to change

the way users interact with computers or robots by eliminating input devices such
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as joysticks, mouse and keyboards. Moreover, the social anthropologist Edward T.

Hall claims that 60% of all our communications are nonverbal [33], because gestures

are widely used for expressing emotions and conveying information. Therefore we

chose to develop natural human interfaces including speech recognition and gesture

recognition into our robots. These technologies make home service robots effective in

interacting with both the elderly and remote caregivers.

3.1.2 Related Works

In the last few years, natural human interfaces have been receiving growing interest in

researches of human-robot interaction. Natural multimodal human-robot interaction

using speech, head pose, and pointing gesture was integrated on a mobile robot plat-

form for real-time human-robot interaction in a kitchen scenario [34]. However, the

performance of this system seems not so high with low speech recognition accuracy

less than 70% and the limited number of pointing gestures. Some researchers [35] [36]

have been developing natural interfaces for tour-guide robots that have interaction

functions different from those of home service robots. Moreover, cloud robotics has

been receiving growing interest. Several research projects have been conducted to

connect robots to the web and provide cloud services for robot control purposes.

These projects include building the web-service infrastructure for robotics [37], and

implementing a cloud computing framework for service robots based on ROS. As a

result, the cloud can substantially improve the implementation speed of SLAM [38].

The European RoboEarth project [39] develops World Wide Web services for robots.

This project provides a large cloud-enabled database where robots can share infor-

mation about objects, environments, and tasks. Another example is the Google

Cloud Robotics project [40] that creates robot-friendly cloud services for Android

platforms. Besides developing local speech recognition, we will also develop natural

human robot interaction through cloud-enabled speech recognition. Particularly, we
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Figure 3.1: Control the robot using hand gesture

will utilize Google’s speech to text service to issue commands to the robot.

Popular approaches for gesture recognition are based on visual information. Most

appearance-based algorithms have used 2D images or videos for direct interpreta-

tion [41]. However, the skeleton-based gesture recognition algorithms using 3D infor-

mation could benefit from identifying key elements of the body parts such as palm

position or joint angles. In this work, we perform temporal human gesture recogni-

tion using an RGB-D camera. Through using this sensor, the features of the human

gestures can be extracted based on depth images. Therefore, the features are not

sensitive to changing of lighting condition and ordinary image noise.

In addition, we designed and implemented the hmm node to recognize arm gestures

based on Hidden Markov Models (HMMs) [42], voice cmds node to recognize voice

based on both CMU Sphinx and Google cloud computing, and cmd fusion node to

efficiently handle the robot’s motion from a virtual joystick, voice commands, and

arm gesture commands.
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3.2 Gesture Recognition using RGB-D camera

Hand gestures can be used to control the robot as shown in Fig. 3.1. The ASUS

Xtion PRO LIVE camera gives us an RGB image as well as the depth at each pixel.

Using the openni tracker node, a human subject can be tracked as a rigid skeleton

with fifteen joints. Gesture features are extracted from the following four joint angles:

left elbow yaw and roll, left shoulder yaw and pitch. Our gesture recognition system

adopts HMM for modeling the dynamics of the gestures. The detailed recognition

algorithm can be found in our previous work [43], which has the following advantages:

• Easy to train: the user can simply train the system by recording the gesture to

be detected.

• Person independent: the system can be trained by one person and used by

others with acceptable performance.

• Orientation and distance independent: the system can recognize gestures even if

the trained and recorded gestures do not have the same orientations or distance

with respect to the sensor.

• Flexible speed: the system is able to recognize gestures if they are performed

at a different speed compared to the training data.

We also evaluated the human interface, which includes both hand gesture recogni-

tion and voice recognition. Five arm gestures are defined in our experiments: 1: move

forward, 2: turn right, 3: move back, 4: turn left, 5: stop, 6: unknown. The real-time

recognition results are shown in Fig 3.2. It is shown that when the user does multiple

repetitions of the same gesture (Gesture 1) consecutively without any pause, all the

gestures can be detected. The user can change the gesture from 1 to 5 successively

and consecutively switch the gesture from 5 to 3 to 2 to 1 and then ends up with the

initial position. The overall results show that none of the gestures misses detection
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Figure 3.2: Online recognition results. The user keeps doing gesture 1 without any

pause. (images are from the sensor view) [41]

and no false alarm occurs. Except for the minor delay in detection, the recognition

performance is robust. The processing time of the recognition is trivial compared

to that of the data collection; therefore it won’t cause data missing problems while

executing the recognition algorithm. A sliding window of size 20 with 50% overlap is

used. A majority voting rule is applied to the results of three consecutive windows

to generate one gesture recognition decision. We were able to achieve around 85%

accuracy for the subject who provided training data and 73% for the non-trainer,

resulting in Table 3.1 and Table 3.2.

3.3 Speech Recognition

Speech Recognition, also known as Automatic Speech Recognition (ASR), is the pro-

cess to find the most probable sequence of words W given the speech signal X by

means of an algorithm. By applying Bayes’s theorem on conditional probabilities,

the problem can be written in the following form [44]:
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Table 3.1: Gesture Recognition with Non-Trainer

Ground

Truth

Gestire recognized Test

Accuracy1 2 3 4 5 6

1 17 0 0 0 0 4 0.8095

2 0 19 0 0 0 7 0.7307

3 0 0 15 0 0 7 0.7241

4 0 0 0 21 0 8 0.7241

5 0 0 0 0 14 5 0.7368

Table 3.2: Gesture Recognition with Trainer

Ground

Truth

Gestire recognized Test

Accuracy1 2 3 4 5 6

1 34 0 0 0 0 7 0.8262

2 0 36 0 0 0 8 0.8182

3 0 0 35 0 0 6 0.8573

4 0 0 0 42 0 8 0.8400

5 0 0 0 0 45 5 0.9000

Figure 3.3: Basic model of Automatic Speech Recognition (ASR) [43]
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Ŵ = arg max
W
{P (W |X)} = arg max

W
{P (X|W )P (W )} (3.1)

The likelihood P(X|W) is determined by an acoustic model (AM) based on an

HMM and the prior P(W) is determined by a lexicon model and a language model

(LM) based on graph search [44].

The basic model of ASR is shown in Fig. 3.3. The phonetic recognition process

starts by first preprocessing and transforming the speech signal into feature vectors.

The preprocessing process reduces noise, emphasizes higher frequencies, segments

speech signal into adjacent frames with the length within the range of 20 to 40 msec.

The feature vectors such as common MFCC (Mel-Frequency Cepstrum Coefficient)

feature vectors, LPC (Linear Predictive Encoding), PLP (Perceptual Linear Predic-

tion coefficient extraction), and statistical parameters (first-order and second-order

derivatives) are computed for each frame. Then, phoneme recognition and graph

search processes are applied [45].

English words are comprised of a sequence of phoneme. Every phoneme including

mono-phonemes, diphthong-phonemes, and triphthong-phonemes is modelled with a

Hidden Markov Model. The AM provides a mapping between a phoneme and an

HMM. The HMM-based phoneme recognition can provide an acoustic description

of the signal and transform into a set of phoneme hypotheses. The lexicon model

provides pronunciations or dictionaries for words. The pronunciations break words

into sequences of sub-word units found in the AM. The language model provides word-

level language structure that is include graph-driven grammars of stochastic N-Gram

models. The graph-driven grammar represents a directed word graph where each node

represents a single word and each arc represents the probability of a word transition

taking place. The stochastic N-Gram models provide probabilities for words given

the observation of the previous n-1 words [45].

Such a speech recognizer has been well researched and provided by open libraries
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or cloud servers.

3.3.1 Online speech recognition

The voice command recognition is implemented by using speech recognition services

provided through Google cloud server. The models are trained and the speech rec-

ognizer runs on cloud server. Communicating with mobile devices through speech

recognition has been attracting great attention recently. In other words, users can

use voice to place calls, dictate text messages, start or terminate an application, set

alarms etc. on their mobile devices. This idea was popularized by Apple’s Siri on

their iOS devices. Android tablets are becoming ever more popular [3]. They are

becoming faster, more efficient, and easier to use with time.

Android, as one of the vastly used and highly maintained platforms for mobile

devices, has also come a long way in implementing voice recognition capabilities.

Moreover, Android devices are becoming ever more popular, faster, more efficient, and

easier to use [46]. Furthermore, latest Android devices are now capable of performing

enormous tasks through speech to text techniques. This voice interface operates by

connecting to Google’s speech recognizer cloud service which converts the spoken

word into text and afterwards the text is downloaded by the device and translated to

a command or simply a set of keywords to search on the web.

For issuing commands to the robot, we utilize Google’s reliable and efficient speech

to text service and convert voice into ROS commands. The converted text is then

mapped to a valid command. Additionally, by offloading the processing to Google’s

cloud computing services, we do not need very sophisticated computing platforms on

the remote user’s end.

The speech recognition interface is capable of detecting specific keywords and

acting upon them. For instance, if the user tells the robot to go forward the command

is processed and since it’s a move forward command, the robot will initiate a forward
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Table 3.3: Accuracy of Online Speech Recognition

Distance Accuracy

3 Feet 97%

4 Feet 87%

5 Feet 20%

Table 3.4: Accuracy of the local Speech Recognition

Distance Accuracy

3 Feet 97%

4 Feet 91%

5 Feet 62%

movement. However if the user sends the command Don’t go forward!, the robot

will check the current state of the transition, and it will stop provided that it has

been moving forward. To state more clearly, let’s assume that the robot is rotating

clockwise and the user sends the command Don’t go forward. The speech recognition

module will look up its current state (rotating) and since it is not moving forward, it

will simply ignore the newly issued command and will keep its rotational movement.

In contrast if the robot indeed has been moving forward and either of the command

stop or Don’t go forward is issued, the robot will halt its movement.

To evaluate the accuracy of the speech recognition on the robot, we increase

the distance between the speaker and the tablet and observe the accuracy of the

recognition process, which results in Table 3.4. The results were satisfactory provided

that the distance of the speaker from the tablet is not more than 3 feet. From 3 feet

onwards, the accuracy drops significantly and at 5 feet the tablet is almost unable

to recognize the words due the low sensitivity of internal microphones of mobile

devices. Moreover, the latency of online speech recognition depends on the speed of
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the network. In our experiments, although the latency of online speech recognition

is large at around 1 second, it can recognize a wide range of words, phrases, and

sentences that were trained by the cloud computing providers.

3.3.2 Local speech recognition

We also implemented local voice recognition based on Pocketsphinx library [47]. Cur-

rently, the recognizer requires a language model, a lexicon model, and a language

model. These can be automatically built from a corpus of sentences using the Online

Sphinx Knowledge Base Tool [47]. The voice navigation node controls a mobile robot

using commands such as move forward, turn left, turn right, or stop. It is easy to

create a new vocabulary or corpus as it is referred to in PocketSphinx. First, we need

create a simple corpus file with one word or phrase per line. The list of phrases is

as follows: stop, panic, shut down, slow down, speed up, ahead, back, go back, rotate

left, rotate right, turn left, left, turn right, right, quarter speed, quarter, half, half

speed, full speed, full, pause speech, continue speech. Before we can use this corpus

with PocketSphinx, we need to compile it into special dictionary and pronunciation

files. This can be done using the online CMU language model (lm) tool located at:

http://www.speech.cs.cmu.edu/tools/lmtool-new.html. The online tool returns the

files that define vocabulary as a lexicon model and a language model that Pocket-

Sphinx can understand.

The voice navigation node was developed using python to recognize speech com-

mands and map those commands to control the robot. Another feature of this node is

that it will respond to the two special commands pause speech and continue speech. If

you are voice controlling your robot, but you would like to say something to another

person without the robot interpreting your words as movement commands, just say

pause speech. When you want to continue controlling the robot, say continue speech.

Local speech recognition can produce results very fast. The latency is less than
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0.5 seconds. In addition, to evaluate the accuracy of the local speech recognition

on the robot, we increase the distance between the speaker and the microphone and

observe the accuracy of the recognition process, which results in Table 3.4.
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CHAPTER 4

DEVELOP THE AUDITION SYSTEM FOR THE HOME SERVICE

ROBOT

This chapter designs and implements an audition system for a home service robot.

The hardware of the audition system was set up using microphones. We success-

fully implemented the software for this system that realizes audition services for high

level applications such as sound source position estimation, multiple source speech

recognition, and human assisted sound classification.

4.1 Introduction

One important communication channel in human daily life is sound including voice

and non-voice. Therefore it is desirable to equip home service robots with sound

processing capability. The robot needs to know where the sounds are coming from

even when multiple sound sources exist. This can help the robots respond to human

commands and events more accurately and quickly. For example, a service robot for

elderly care needs to be able to respond to the request for help by quickly localizing

where the request voice comes from in the house. Moreover, it is very important

for the home service robots to be able to understand human speech even with the

existence of other sound sources. It is also critical that the robots have the capability

to understand the sounds generated by human’s daily activities, such as using toilet,

washing hands, cooking, etc. Such a human-aware capability frees the robot to do

its daily routine work, while being able to attend the human more proactively and

effectively. Therefore, the home service robots need to be equipped with such auditory
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capability to better service the elderly. Such a capability can also be extended to other

applications such as surveillance, reconnaissance, search and rescue etc.

Humans have strong auditory capability which enables them to not only under-

stand the voice and the environmental sounds, but also use their listening and re-

peating skills to sort through the incoming information [48]. The home service robots

should also have such auditory ability. As discussed in the previous chapter, speech

recognition has been well researched and there are even open source software available,

such as Pocketsphinx [47] and Julius [49]. However, speech recognition in a multiple

sound sources environment is still challenging. On the other hand, environmental

sound event recognition is even harder, due to the diversity of the sounds associated

with the same event. For example, even the same event of an elderly falling on the

floor can create different sounds, depending on where the fall occurs. This makes it

extremely hard to preprogram the robot with a small set of training data from an

existing database. This example tells us that such a robot should gradually learn

the auditory events in its unique environment, and whenever possible, get assistance

from humans who can provide guidance on the auditory learning process.

We propose that by putting a human in the loop of the auditory learning process,

a robot can better understand and adapt to its environment more quickly. Using a

microphone array, the robot is able to separate multiple sound sources. Then the

robot classifies the separated sounds into voice and non-voice. The voice sound can

be recognized locally. The non-voice sound can be sent to a human, for example,

the care giver, for recognition and labelling. Since only non-voice sound is sent to

outside, the privacy of the elderly can be protected. With more and more labelled

environmental sound data, the robot can train its sound recognition algorithm to

achieve better accuracy.

This chapter proposes and implements an open hardware/software platform for

the above described auditory learning for a home service robot.
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Figure 4.1: Audition System for home service robot

4.2 Hardware and Software of the Audition System

Audition Software

The hardware of audition system as shown in Fig. 4.1 was built on 4 G.R.A.S IEPE

(Integrated Electronic Piezoelectric) microphones and an NI USB-9234 DAQ (Data

Acquisition). This set of microphones has high-sensitivity at 50mV/Pa, a wide fre-

quency range up to 20 kHz, and a large dynamic range topping at around 135 dB.

The DAQ is a USB-based four-channel C Series dynamic signal acquisition module

for high-accuracy audio frequency measurements from IEPE and non-IEPE sensors.

It can deliver 102 dB of dynamic range, incorporate programmable AC/DC coupling

and IEPE signal conditioning for accelerometers and microphones, as well as digi-

tize signals at rates up to 51.2 kHz per channel with built-in antialiasing filters that

automatically adjust to the sampling rate. The DAQ is connected to a Windows 7

netbook running the DAQ driver.

The audition software in the device layer and service layer was based on HARK [50].

Developed at Kyoto University, HARK, first released in Apr. 2008, is an open-source
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Algorithm 1: Audio Data Collection

1. Initialization phase:

- Initialize: Sensitivity, Frame length, Sampling rate, Number of channels,

cut-off frequencies, FIR filter type.

2. Design FIR filter (Highpass/Lowpass/Bandpass):

- Compute filter coefficients using the window method

- Compute FFT of filter coefficients

3. Create a channel and a data acquisition section for NI USB9234:

- Create a task: taskHandle

- Create channels that use microphones and add the channels to the task

4. Set up the TCP/IP socket connections to HARK program:

- Create a client socket to control the data recovering proceeds through control

messages

- Create a client socket for sending audio data out.

- Wait for the recording request.

5. Recording, filtering, sending data out until receiving the

stop-recording message from AudioStreamFromMic:

- Read the buffer inside NI USB-9234 board and write to data buffer

- Do the filter in frequency domain

- Send the filtered data to AudioStreamFromMic via data socket

6. Stop the task and close socket connections.

robot audition software consisting of acoustic signal processing module, sound source

localization module, sound source separation module, and automatic speech recog-

nition module for various microphone array configurations. In the hardware layer,

the DAQ is connected to a netbook running Windows 7 and NI-DAQmx9.7 software

including its driver. NI-DAQmx9.7 provides APIs to develop the program to inter-

actively create channels and tasks, write to or read data from DAQs. Developed in
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Figure 4.2: Audition Services

Visual C++ based on NI-DAQmx C Library, the data collection program captures

the data from the microphone array and sends it to the HARK program running on

another Ubuntu computer through WiFi TCP/IP socket. This Ubuntu computer is

installed with HARK and HARK-ROS to develop audition software in the service

layer. As shown in Algorithm 1, the data collection module reads data from the

microphone array, establishes the WiFi TCP/IP socket to communicate with the Au-

dioStreamFromMic block in HARK, filters them out, and sends them to that block

for further processing.

4.3 Audition services

As shown in Fig. 4.2, audition services perform sound localization, separation, and

voice/non-voice recognition from the four-channel audio stream coming from the data

collection module. Those services are developed based on HARK.

4.3.1 Sound Localization

Direction-of-arrival (DOA) in the horizontal plane is estimated by the Multiple Sig-

nal Classification (MUSIC) method [51], which has shown the best performance.

This method localizes sound sources based on source positions and impulse responses

(transfer function) of microphones. The transfer function generally varies depending

on the shape of the room and the positional relations between microphones and sound

sources [52]. Therefore it is difficult to estimate it. However, when ignoring acous-
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tic reflection and diffraction, in the case that the relative position of microphones

and sound sources is known, the transfer function is limited only to the direct sound

HD(ki) calculated by the following Equation [52]:

HDm,n(ki) = exp(
−j2πωi

c
rm,n) (4.1)

where c is the speed of sound; ωi is the frequency in the frequency bin ki; rm,n is the

difference between the distance from the microphone m to the sound source n and

the distance from the reference point of the coordinate system to the sound source n.

Sound localization implemented the GEVD (Generalized EigenValue Decomposi-

tion) method [53] that is based on MUSIC, but a noise correlation matrix is addi-

tionally used in order to suppress environmental noises. More details about sound

localization can be found in [53] [54].

4.3.2 Sound Separation

The sound that is emitted from N sound sources is affected by the transfer function

H(ki) in space and observed through M microphones as expressed by Equation 4.2.

X(ki) = H(ki)S(ki) +N(ki) (4.2)

where S(ki) is the sound source complex spectrum corresponding to the frequency

bin ki; N(ki) is the additive noise that gets into each microphone.

The matrix of a complex spectrum of separated sound Y (ki) is obtained from the

following equation:

Y (ki) = W (ki)X(ki) (4.3)

The separation matrix W (ki) is estimated by Geometric-Constrained High-order

Source Separation (GHDSS) [55], which has the highest total performance in various

acoustic environments. With the source direction from the sound localization, the

separated sound Y (ki) is likely close to its sound source S(ki).
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4.3.3 Voice/Non-voice Recognition

The separated sounds are recorded into files and classified into voice and non-voice

by the voice/non-voice recognition (VNR) algorithm. Recently, the support vector

machine (SVM) algorithm has proved highly successful in a number of binary clas-

sification problems. SVM discriminates the data by creating boundaries between

classes rather than estimating class conditional densities, it may need considerably

less data to perform accurate classification. The boundary is the optimal decision

hyperplane that has the largest distance to the nearest training data points of any

class. These points are called support vectors. In order to apply SVM, the kernel

function is applied to transform non-linear and high-dimensional feature vectors into

simpler feature vectors that can be classified by the optimal decision hyperplane using

linear discriminant functions. The kernel function most popularly used in SVM for

audio applications is the Gaussian radial basis function (RBF) as follows:

K(xi, xj) = exp(−γ‖xi − xj‖
2) (4.4)

where γ is a control parameter estimated from the variance of the distribution function

of training data. RBF-VSM aims to construct the decision function for the data point

x based on N support vectors {xk}
N
k=1

and labels {yk}
N
k=1

as follows:

y(x) = sign[
N∑

k=1

αkykK(xk, x) + b] (4.5)

where αk is the weight assigned to the support vector xk, b is a constant bias.

The above decision function can be trained based on least-square method [56]

implemented in the Matlab statistics toolbox.

The radial basis function (RBF)-based SVM using Mel Frequency Cepstral Coef-

ficients (MFCC) feature was implemented for VNR based on Voice Active Detection

proposed in [57]. As shown in Fig. 4.3, VNR includes the training process and the

recognition process. The audio training data consist of voice and non-voice segments
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Figure 4.3: Voice/Non-voice recognition based on Voice Active Detection proposed

in [54]

that are labelled (-1) and (1), respectively. In the training process, audio training

data are decomposed into frames. The 36-MFCC feature vectors are computed for

the frames based on the MFCC algorithm from the Auditory Toolbox by Slaney [58].

The RBF-SVM is trained using these feature vectors and their class labels. This

trained SVM model can classify frames of separated sounds into voice or non-voice.

Voice/Non-voice decision can classify separated sounds into voice data or non-voice

data based on the rates of voice and non-voice frames in each sound. The sound is

classified into voice data if its voice frames dominate, otherwise it is classified into

non-voice data.

4.4 Auditory Applications

4.4.1 Sound source position estimation

The sound direction can be estimated using the above sound localization method.

Using only one stationary microphone array, it is hard to estimate the sound source

position. However, the home service robot can move around and therefore it is pos-

sible to use triangulation to localize the sound. Fig. 4.4 shows an example of using

triangulation to estimate the positions of two sound sources. If the robot can mea-
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Figure 4.4: Sound position estimated by triangulation

Algorithm 2: Sound Source Position Estimation

1. Measure direction data in N steps:

for step = 1 to N do

- Do sound localization in T seconds

- Compute average and Root-Mean-Square error (RMSE) of the direction

data

- Remove data with large errors

- Generate the goal point based on the direction data and the map

- Navigate the robot to the goal point

2. Calculate intersection points:

- Calculate intersection points by triangulation between the N groups of

direction.

- Remove the intersection points outside the map.

3. Random and select data:

for n = n0 to Number of Intersection Points do

- Pick up n random points in intersection point groups

- Calculate RMSE for each of n-point subgroups

- Search n-point subgroups to find the one with the least RMSE

4. Calculate sound positions from average of the subgroups with the

least RMSE.

sure the sound direction at two different positions on the 2D map that was created

by SLAM, the sound position can be estimated by calculating the intersection of two
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sound-direction vectors. This method may create a undesired intersection point like

point P as shown in Fig. 4.4. However, this point moves when the robot measures

at another position. Therefore it can be eliminated since we assume that the sound

sources are stationary. With multiple steps, the robot can improve the accuracy of po-

sition estimation using the RANdom SAmple Consensus (RANSAC) algorithm [59].

The sound source position estimation algorithm is shown in Algorithm 2.

4.4.2 Multiple source speech recognition

The voice sounds that are separated and classified in the service layer are sent to

the recognizer which is implemented based on the Pocketphinx [60] and has been

presented in chapter 3. Similarly, common commands such as move forward, turn

left, turn right, go back, stop, come here, etc were tested to drive the robot around

using voice commands in the background of another sound such as music, TV sound.

4.4.3 Human assisted sound recognition

Many non-voice sounds relate to human activities at home, such as taking shower,

flushing a toilet, soaping hands, washing hands, or brushing teeth in the bathroom;

using a microwave oven, boiling water, or frying pan in the kitchen; or sorting dishes

or pouring water into a cup in the dinning room. Recognizing these sounds can help

robot understand human activities. However, due to the lack of sufficient training

samples in the individual home environment, it is very hard to achieve satisfactory

non-voice sound recognition. Therefore we propose to let the robot and the human

care giver collaborate to recognize it. Basically, the robot sends the segment of non-

voice sound to the care giver, who then recognizes it and labels it through a user

interface. Such an interface can be on a computer, or a mobile device such as a tablet

or smart phone.
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Figure 4.5: Sound recorded by the audition system

4.5 Experiments and Results

4.5.1 Audio Data Collection

On the data collection module, the microphones were tested at different sensitivity

levels from 50mV/Pa to 200mV/Pa. Different FIR filters (HPF - High Pass Filter,

LPF - Low Pass Filter, and BPF - Band Pass Filter) also were tested at different

cut-off frequencies. The system can work in real-time at a highest sampling rate up

to 51.2 Khz. However, the sampling rate is fixed at 17066 Hz to be compatible with

HARK. The other parameters can be set beyond background noise level and sound

source power level. In our Smart Home testbed, the sensitivity is set at 100mV/Pa
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Figure 4.6: Sound simulation inside the smart home

and BPF with frequency range from 50 Hz to 8 kHz is utilized. The audition system

working at this configuration can filter out the background noise and pick up the

sound signal at low power as shown in Fig. 4.5.

4.5.2 Sound Simulation System

We developed a system to simulate the multiple sound events in the smart home

testbed. The various sounds in the bathroom, kitchen room, living room, bedroom

were recorded or collected from the Internet. Our sound library (SoundLib) has 50

sound event files, 50 speech files including 30 clean files of 30 sentences in NOIZEOUS

database [61]. A GUI shown in Fig. 4.6 was developed to play multiple sound event

files at the same time on different speakers. Currently, it can play different sounds

simultaneously in four channels. For example, it can play both the TV sound in the

living room and the shower sound in the bathroom, or play a sequence of multiple

sound events related to the cooking activity in the kitchen. The script or schedule

for playing sound events was written in JSON (JavaScript Object Notation) format.
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The following script plays in the speaker 1 the five speech sentences from sp11 48k.wav

to sp15 48k.wav and in the speaker 2 the washing hands sound from wahsing-hands-

1.wav:

{ ”ch1”:{

”file1”:{”filename”:”sp11 48k.wav”, ”delay”:0, ”repeat”:1},

”file2”:{”filename”:”sp12 48k.wav”, ”delay”:0, ”repeat”:1},

”file3”:{”filename”:”sp13 48k.wav”, ”delay”:0, ”repeat”:1},

”file4”:{”filename”:”sp14 48k.wav”, ”delay”:0, ”repeat”:1},

”file5”:{”filename”:”sp15 48k.wav”, ”delay”:0, ”repeat”:1},

},

”ch2”:{”file1”:{”filename”: ”washing-hands-1.wav”,”delay”: 0, ”repeat”:1

},

”ch3”: {},

”ch4”: {}}

4.5.3 Sound Localization and Separation

Sound localization and separation was tested using the sound simulation system and

OptiTrack system. In the experiments, we used transfer functions that were estimated

by geometrical calculation based on the microphone array configuration as shown in

Fig. 4.7.

The sound sources can be localized in 360◦ at reasonable accuracy. As shown in

Table 4.1, the Mean Absolute Error (MAE) of sound source localization is less than

1.6◦ at 0.5 m and less than 3.5◦ at 3 m away from the robot.

As shown in Fig. 4.8, two voice and non-voice sources can be separated. In this

experiment, the speaker 1 and the speaker 2 placed at -45◦ and 45◦, respectably, played

the five speech sentences from sp11 48k.wav to sp15 48k.wav and the washing-hands

sound, respectively. The system is able to localize and track both sources correctly
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Figure 4.7: Graphic representation of the microphones position, source location, and

transfer functions

Table 4.1: Mean Absolute Error (MAE) of sound localization

Direction Distance

0.5m 1m 2m 3m

0◦ 1.2◦ 1.8◦ 2.6◦ 3.4◦

±45◦ 1.5◦ 1.6◦ 2.2◦ 3.2◦

±90◦ 1.3◦ 1.7◦ 2.4◦ 3.3◦

±135◦ 1.4◦ 1.7◦ 2.3◦ 3.2◦

and then separate them into two sounds that have the similar waveforms as their

original sounds. Although each sound is still interfered by the other, the separated

sounds can work with voice/non-voice and multiple-source speech recognition.
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Figure 4.8: Results of sound localization and separation

4.5.4 Voice/Non-voice Recognition

Event sound and voice sound in our Soundlib are randomly divided into training

and testing data. The input signal is segmented with the frame length of 512 sam-

ples, extracted into 36-MFCC feature vectors. Those MFCC vectors are used for

SVM. We labelled non-voice for all frames in event sounds and voice for all frames in

voice sounds. The event sounds and voice sounds in testing data were divided into

voice/non-voice pairs that were simultaneously played by two speakers. The robot

successful separated each pair into two different sounds. Those sounds were used to

test our SVM-based VNR algorithm. The percentage of correctly recognized frames

of 95% voice and non-voice sounds is from 70% to 80%. Therefore, when the thresh-

olds of voice/non-voice decisions are set below 70%, the voice/non-voice recognition

results of the robot can reach the accuracy of 95% for the whole separated sound

segment. As shown in Fig. 4.9 and Fig. 4.10, more than 75% frames of the sepa-
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Figure 4.9: Voice/Non-voice Recognition of Separated voice-sentences

Figure 4.10: Voice/Non-voice Recognition of Separated washing-hand sound

rated voice-sentence sound are voice, and more than 72% frames of the separated

washing-hand sound are non-voice.
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Figure 4.11: Sound position estimation by triangulation

Table 4.2: Mean Absolute Error (MAE) of Sound Source Positions

Direction Distance

1m 2.0m 3.0m

0◦ 213mm 313mm 417mm

30◦ 146mm 257mm 341mm

45◦ 123mm 225mm 278mm

90◦ 102mm 141mm 195mm

150◦ 228mm 309mm 397mm

180◦ 291mm 366mm 423mm

4.5.5 Sound Source Position Estimation

Two speakers in the living room and the kitchen simultaneously played voice sound

and non-voice sound continuously. Fig. 4.11 presents the results of sound positions

estimated by the robot using triangulation. The ground truth positions of the two

speakers are tracked by OptiTrack and are represented by the red dots in the 2D
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Table 4.3: Accuracy of Speech Recognition without Separation

Degree 0.5m 1.0m 1.5m 2.0m 2.5m 3.0m

0◦ 21% 15% 5% 0% 0% 0%

45◦ 15% 0% 0% 0% 0% 0%

90◦ 21% 15% 5% 0% 0% 0%

135◦ 26% 18% 5% 0% 0% 0%

180◦ 27% 21% 5% 0% 0% 0%

Table 4.4: Accuracy of Speech Recognition with Separation

Degree 0.5m 1.0m 1.5m 2.0m 2.5m 3.0m

0◦ 81% 76% 52% 40% 20% 0%

45◦ 25% 16% 7% 0% 0% 0%

90◦ 81% 76% 52% 40% 20% 0%

135◦ 79% 69% 48% 37% 28% 0%

180◦ 82% 64% 44% 33% 15% 0%

map that was created by the robot. The red arrow and the cyan arrow represent the

robot poses in the 2D map at the begin and the end of the triangulation step. The

estimated positions are presented in the map by the blue dot for the non-voice source

and the green dot for voice-source. The error of estimated positions depends on the

initial position of each sound source as shown in Table 4.2.

4.5.6 Multiple Source Speech Recognition

In our experiment, the speech recognizer produced poor results of recognizing speech

played from a speaker because of accumulated distortion and noise. However it worked

relatively well with the real human voice. We tested some common human voice
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Figure 4.12: The user interface for human labelling of non-voice sound

commands such as move forward, turn left, turn right, go back, stop, come here, slow

down, speed up, help me at different locations with background sound of the TV or

music played by the speaker that was placed at 3.0m and 45◦ from the robot. The

accuracy of speech recognition without separation and with separation is shown in

Table 4.3 and Table 4.4, respectively. Without separation the accuracy is only around

20%, although the human is very close to the robot. The robot can not recognize the

commands of the human at more than 1.0m away from the robot. The result is better

if sound separation is utilized. The accuracy is around 80% at 0.5 m and around 40%

at 2 m. However, the speech recognizer produced poor results when the human is

at 45◦, the same direction as the speaker. In this direction, the human voice could

not be separated from background sound since two sound source were at the same

directions.
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4.5.7 Human Assisted Sound Classification

In our experiment, we were able to successfully assist the robot in labelling non-voice

sounds from another lab room. The GUI on a computer as shown in Fig. 4.12 was

developed based on TCP/IP socket peer-to-peer connection between the robot and

the care giver. Each of separated non-voice sounds was sent to the care giver in

five-second segments that were saved into .wav files for offline playing. They also

autonomously played on the GUI and the care giver selected the label by clicking

on the combobox or input the new labels. The labelling results were sent back to

the robot using JSON format files that can be used as further training data set.

The separated non-voice sounds were sent to the GUI with the latency less than 0.5

seconds. Therefore, this application can be improved for human-robot collaboration

in exploring abnormal sounds in home environments.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions

In this work we have proposed a robot-integrated smart home environment testbed

called the ASCC Smart Home Testbed and developed two home service robot plat-

forms. The testbed consists of four components: the robot-integrated smart home

environment, the caregivers, the cloud servers, and the experiment environment. The

open layered architecture was proposed for the development of the software platform.

Furthermore, this thesis proves that it is possible to create an affordable home service

robot platform that can be controlled with the natural human interfaces including

both voice recognition and gesture recognition. Using ROS repositories, Android API,

rosjava core, and Google cloud computing services, the robot platform was equipped

with local and remote user interface, gesture recognition, speech recognition, etc.

Moreover, the open platform of audition system of the home service robot was de-

veloped. In addition, three functionalities of the audition system were implemented:

sound source position estimation based on triangulation, multiple speech recognition

based on the voice/non-voice recognizer and speech recognition, and human assisted

non-voice sound classification. We tested and evaluated the above three function-

alities. We proved that human and robot can collaborate to facilitate non-voice

classification. Overall, the testbed and the home robot platforms have the potential

to be deployed into the real world and have impact on developing social intelligence

for robot companions.
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5.2 Future Works

In the future, the testbed will be fully implemented and the home service robots will be

improved in 3D mapping and autonomous navigation. Additionally, cooperation and

collaboration between the robot and the remote caregiver is a challenging task due to

the limited information provided to the remote caregiver, such as the limited field of

view, and the communication delay and unreliable connection. Future researches will

address these problems by equipping the robots with capabilities of local situational

awareness control (LSAC) that integrates autonomous navigation, assisted driving,

obstacle avoidance, combination of commands from both the remote caregiver and the

local human for collision-free navigation. The future work will also develop algorithms

for the robot to understand and predict the human activities and intentions through

sound events and speech which will make the robot more efficient in serving the elderly

at their homes.

55



BIBLIOGRAPHY

[1] C. Hacks, “e-health sensor platform for arduino and rasp-

berry pi [biometric / medical applications],” http://www.cooking-

hacks.com/documentation/tutorials/ehealth-v1-biometric-sensor-platform-

arduino-raspberry-pi-medical/, 2014.

[2] World Health Organization, “10 facts on ageing and the life course,” in

http://www.who.int/features/factfiles/ageing/ageingfacts/en/,Oct.2014.

[3] UNFPA (United Nations Population Fund), “Ageing in the

twenty-first century: A celebration and a challenge,” in

https://www.unfpa.org/public/home/publications/pid/11584, Oct. 2014.

[4] D. C. KALLUR, “Human Localization and Activity Recognition using Dis-

tributed Motion Sensors,” Master’s thesis, Oklahoma State University, 2014.

[5] J. Secker, R. Hill, L. Villeneau, and S. Parkman, “Promoting independence: but

promoting what and how?,” Ageing and Society, vol. 23, no. 03, pp. 375–391,

2003.

[6] M. Alam, M. Reaz, and M. Ali, “A Review of Smart Homes—Past, Present,

and Future,” IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), vol. 42, no. 6, pp. 1190–1203, 2012.

[7] M. Arndt and K. Berns, “Mobile Robots in Smart Environments: The Current

Situation,” Autonomous Mobile Systems, pp. 39–47, 2012.

56



[8] J. Broekens, M. Heerink, and H. Rosendal, “Assistive social robots in elderly

care: a review,” Gerontechnology, vol. 8, 2009.

[9] T. Breuer, G. R. Giorgana Macedo, R. Hartanto, N. Hochgeschwender, D. Holz,

F. Hegger, Z. Jin, C. Müller, J. Paulus, M. Reckhaus, J. A. Álvarez Ruiz,
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