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CHAPTER 1

INTRODUCTION

Having adequate system maintenance is critical to avoid costs associated with un-

planned shut downs and loss of production as well as to increase safety, improve

equipment availability and extend useful life, as mentioned by Kutanoglu et al. [1].

Because system maintenance is of concern to both small and large companies, com-

panies take a variety of measures to reduce the amount of system downtime. These

include: system redundancy, appropriate preventive maintenance before systems fail

and effective corrective maintenance after failure, as stated by Kutanoglu et al. [1].

According to Nikolopoulos et al. [2], maintenance can be classified as: Emer-

gency (or breakdown) Maintenance where work must be done immediately; Routine

Maintenance where work must be done in the finite, foreseeable future; and Pre-

ventive Maintenance where work must be carried out on a planned schedule. It is

not always feasible to have back up equipment in place to be used in the event of

breakdowns. This issue is specially critical in capital intensive industries such as the

aviation industry.

Several factors are necessary to have effective equipment maintenance. These in-

clude: adequate maintenance policies, technicians with required training, and avail-

ability of spare parts among others. These elements are critical for any enterprise,

however, this dissertation will concentrate and discuss the availability of spare parts

only.
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1.1 Motivation

Determining an adequate quantity of spare parts is challenging because spare parts

encompass intermittent demand (Willemain et al. [3]). This type of demand is of

variable size and occurs at irregular intervals (Shale et al. [4]). Predicting which

materials will be required for the next time period is challenging, and, in most cases,

it is prohibitively expensive to have large quantities of all the different types of spare

parts used. One of the most critical effects of demand uncertainty according to

Kalchschmidt et al. [5] is the simultaneous increase in inventories and decrease of

customer service. For instance, Ghobbar and Friend [6] stated that when Eastern

Airlines went into the bankruptcy which eventually grounded its fleet, it had spare

parts inventory in excess of $700 million. That is $700 million of assets that generated

no revenue nor produced capital according to the authors. They also mentioned that

Pan Am had in excess of $200 million in spare parts when it collapsed. The aviation

industry is a capital intensive business, with daily operations characterized by high

fixed cost components and excessive inventory that affect the quality of service and

the effectiveness of its maintenance and repair (Ghobbar and Friend [6]). For example,

according to Canaday [7], a late flight departure could cost $10,000 per hour, a flight

cancelation anywhere from $25,000 to $150,000 and an engine shutdown $500,000 per

incident.

Another factor that increases the complexity of forecasting intermittent demand

is lack of data. Scarf [8] mentioned that too little attention is paid to data collection,

and there is not enough consideration of the usefulness of models for solving real

problems through model fitting and validation.

In general, the service parts industry is a $1.5 trillion business worldwide (Muck-

stadt [9] and Kranenburg and Houtum [10]). This creates an incentive to manage the

supply chain of these parts in a very efficient way. The aviation industry invests large

amounts of money in spare parts as reflected by the market volume of the Mainte-
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nance, Repair and Overhaul (MRO) industry that was $34B in 2004, $38.8B in 2005

and which is expected to have increased to $62B in 2014, according to Cohen and

Wille [11], and Flint [12]. North America accounts for 37% of the MRO market as

shown in Figure 1.1. In some companies, the after sales-service and parts business

accounts for more than 25% of total business, while in other companies it can account

for 50% or more of total revenue generated (Kranenburg and Houtum [10]).

Figure 1.1: MRO Spending by Region, Flint[12]

Another important point mentioned by Cohen and Wille [11] is that the worldwide

active air transport fleet was projected to expand by a growth rate of 5%, from 16,500

in 2006 to 24,000 by 2012. All of these airplanes require maintenance, which is one

of the largest operational cost categories after fuel. So, maintenance becomes a great

opportunity for cost reduction efforts.

The above-mentioned statements support interest in the current dissertation topic

of determining inventory base stock levels of expendable spare parts under service level

agreement for on-time delivery. More research is still needed in this area in order to

benefit companies, customers, and society in general.
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1.2 Background of Maintenance, Repair, and Overhaul in the Aviation

Industry

An MRO could provide two types of services (Srinivasan et al. [13]): The first is

Program Depot Maintenance (PDM), which is a heavy repair and overhaul of an

aircraft following the recommendation of the aircraft manufacturer, the policies of

the aircraft operators and/or the regulations of aviation authorities. The second type

of service is Unscheduled Depot Level Maintenance (UDLM) which is maintenance

that is required immediately for the aircraft to become serviceable again or to avoid

potential problems in the near future.

This dissertation addresses expendable spare parts used during heavy maintenance

services or PDM. A macro level view of the different phases followed during a PDM

is depicted by Srinivasan et al. [13] and is adapted in Figure 1.2. The PDM phases

are:

• Strip phase: Workers remove arms and fuel from the aircraft and remove and

inspect major components.

• Order Parts/Route Components: Workers order parts and route major compo-

nents to the back shops for repair.

• Inspection and Repair Phase: Inspection and repair activities on the aircraft

are performed to the extent possible while awaiting parts and components.

• Buildup Phase: As parts become available workers continue to reassemble the

aircraft.

• Rig Phase: Systems are reconnected, and manually operated and checked.

• Paint Phase: Workers scuff and paint aircraft, and perform check and balance

procedures.

4



• Operational Phase: Workers power the aircraft and perform operational tests.

• Quality Assurance (QA) Audit: Aircraft is subject to quality assurance

• Functional Test Phase: Pilots perform flight tests, and mechanics prepare the

aircraft and deliver it to the customer

Figure 1.2: A Drill down into the different phases followed during a PDM. Adapted

from Srinivasan et al. [13]

Each phase contains a different number of tasks to be performed on the aircraft as can

be seen in Figure 1.3. Some organizations call each task “Work Control Document”

(WCD) and others call it “Task Cards” (TC). This dissertation will refer to tasks

as WCD. Some of the WCD have predecessors; some have antecessors; and some

WCD have both predecessors and antecessors. The sequence in which each WCD is

scheduled depends on the availability of materials, pre-work needed, tools, previous

WCD (Predecessors), technicians of different skills, and the judgment and experience

of supervisors, among other factors. Each WCD contains a description of the steps

to perform the job, a list of tools to be used, a list of possible consumable and

repairable materials, the type of technical skill required, etc. shown in Figure 1.4.

Depending upon the type of findings when performing a WCD, additional WCDs

can be generated based on specific needs. These new WCD’s are not planned but

5



Figure 1.3: A Drill down into a phase

they might have to be completed during the maintenance check. These new WCDs

could also require additional resources such as tools, materials and specific manpower.

There are different types of WCDs. Some are required to clean places of the aircraft,

Figure 1.4: A Drill down into a Work Control Document

others specify the lubrication of certain parts, and still others specifically require the

replacement of parts. However, most WCDs are related to the inspection of specific

places of the aircraft, and part replacement is dependent upon inspection results.

According to Cohen and Wille [14], 94% of the WCDs performed in Airbus A320 are

inspections and, after they are completed, the technician will recommend replacing

parts or not. If there is no available stock on hand, this creates the need to expedite

orders (which is more costly than placing normal orders) in order to avoid late aircraft

6



Figure 1.5: Average Inventory per Check vs Expedited Orders per Check, Cohen and

Wille [14]

delivery. This issue increases uncertainty related to the parts that will be replaced

in every maintenance check. This is supported by the fact that 40%-60% of spare

parts used in an aircraft maintenance check are determined after the maintenance has

started (Cohen and Wille [14]).

Cohen and Wille [14] present two different strategies followed by two different

airline companies to deal with the nature of demand of expendable spare parts. The

first company is called ‘on-shore MRO’ because of its geographical location and has

about half of the inventory levels as the second company, the ‘off-shore MRO’. How-

ever, during maintenance checks, the ‘on-shore MRO’ places 2.5 times more expedited

orders than the ‘off-shore MRO’, as shown in Figure 1.5. It is also mentioned that

the company that places more expedited orders has a higher number of late deliveries

compared to the second company. There is no mention of which company has the

overall lowest costs.
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1.3 Expendable Spare Parts

According to KLMAutomation Training [15], non-repairable parts or consumables/expendables

are materials that are considered to be consumed when issued and are characterized

by any of the following:

• Can be used only once or cannot be repaired

• Can be re-used without rework

• Have a limited lifetime according to technical information

• From Federal Aviation Authorities (FAA) or vendor direction the material can-

not be repaired

• Calculated cost of repair (including costs of organization, administration, freight,

etc.) should not exceed the new price plus purchase costs (Uneconomical to re-

pair)

Sleptchenko et al. [16] mentioned that 27.2% of the parts in stock at a company

are repairable and the rest are expendable/consumable. However, repairable parts

account for the biggest proportion of the total investment. In other words, expendable

items account for the highest volume of items in stock and the lowest investment, but

the impact of not having them on hand at the moment requested could be as critical

as an expensive repairable if the essentiality code is 1 even though the expendable

might be cheap. The challenge is managing large quantities of different part numbers

that have intermittent demand.

Nearly 800 hundred different maintenance checks of A320 aircrafts and their mate-

rial consumption have been provided by Airbus within the context of a non-disclosure

agreement. Figure 1.6 shows that 36% of the part numbers have been used in only

one maintenance check out of the 800 possible checks. Further, it is observed that

8



nearly 80% of the part numbers have been used in 10 different maintenance checks

or fewer out of the 800 possible checks. Because of this, it can be concluded that

predicting part replacement is a very challenging issue with which companies have to

deal.
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Figure 1.6: A320 Expendable Parts Usage for 800 Maintenance Checks

As we have seen, spare parts have sporadic demand; on Chapter 2, we will review

some relevant literature addressing forecasting methods, classification approaches and

optimization methods used to manage spare parts. Chapter 3 discusses the gaps

identified in the current literature, it also describes the problem this dissertation

is addressing, the research goals and expected contributions. Chapter 4 presents

the data analysis of a large data set of 795 different maintenance checks provided

by Airbus, this data will be used to feed the optimization model to be developed

and discussed on Chapter 5. Chapter 5 also discussed the pre-processing techniques

developed in order to solve large optimization models. Chapter 6 presents several

cases where the optimization model is used, some of those cases are small ones and

have been developed just to prove the validity of the model; it is also discussed the
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solution of the data set presented on chapter 4. Finally, we present the contributions

of the model on Chapter 7.
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CHAPTER 2

LITERATURE REVIEW

The objectives of this chapter are to identify current methodologies available to man-

age expendable spare parts, recognize opportunities for improvement and address

spare part needs faced by the industry at this moment.

A survey of airline operators and maintenance organizations regarding their main-

tenance and inventory procedures was performed by Ghobbar and Friend [17]. One

hundred and fifty-two (152) out of 175 respondents were using the reorder point sys-

tem while the remaining 23 companies were using the material requirements planning

(MRP) system. It is important to remember that the MRP objective is to provide

“the right part at the right time” to meet the schedules as stated by Vollmann et al.

[18]; so, it is not surprising that very few companies are using MRP because demand

predictability is very challenging for spare parts.

Some of the criteria or control characteristics that need to be taken into consider-

ation when managing spare parts are criticality, specificity, demand pattern and the

value of the parts (Huiskonen [19]). The description of each of these characteristics

is as follows:

• Criticality relates to the consequences caused by the failure of a part on the

process in the event a replacement is not readily available.

• Specificity refers to whether the part is standard (i.e., used by many users) or

if the part is tailored and only used by a particular user.

• Demand Pattern includes the aspects of volume and predictability. Predictabil-

11



ity means the failure process of a part and the possibilities to estimate failure

patterns and rates by statistical means.

• Value of Parts refers to the price of the spare parts.

Not all methodologies used to manage spare parts take into account all of the above

characteristics. Some of them concentrate on demand pattern while others take into

account characteristics like criticality and value of parts. In the following sections, a

brief description of the methodologies used to manage spare parts is described.

2.1 Forecasting Methods

In Ghobbar and Friend [20], the experimental results of 13 forecasting methods in-

cluding those used by aviation companies, are examined using historical data from

components of an airline operator. A brief description of the methods provided by

Ghobbar and Friend [20] is presented below:

• Additive Winters: Assumes that seasonal effects are of constant size.

• Multiplicative Winters: Assumes that seasonal effects are proportional to the

local de-seasonalized mean level.

• Seasonal Regression Model: Used in time series for modeling data with seasonal

effects.

• Component Service Life: Estimates the service life characteristics of the part

(Mean Time Between Removal, MTBR) derived from historical data (Flying

hours or numbers of landings).

• Weighted Calculation of Demand Rates: The total demand for a given part

during an experience period divided by the total activity of the aircraft during

the same period, providing an average forecast rate.
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• Weighted Regression Demand Forecasters: Considers forecasts based on moving

regressions in terms of flying hours.

• Croston: Forecasting in circumstances of low and intermittent demand.

• Single Exponential Smoothing: Forecasting in circumstances of low and inter-

mittent demand.

• Exponentially Weighted Moving Average: An effective forecasting tool for time

series data that exhibit a linear trend.

• Trend Adjusted Exponential Smoothing: Forecasting time series data that have

a linear trend.

• Weighted Moving Averages: A simple variation on the moving average technique

allowing for weighting to be assigned to the data being averaged.

• Double Exponential Smoothing: Forecasting time series data that have a linear

trend.

• Adaptive-response-rate Single Exponential Smoothing: Allows the smoothing

parameter to be changed in a controlled manner as changes in the pattern of

data occur.

According to the authors, the methods that showed superiority in the study are

the weighted moving average, the exponential weighted moving average, and Croston.

A classification of the patterns of demand for forecasting purposes is described in

Cavalieri et al. [21], where the two measures used are:

• The average time between two consecutive orders of the same part calculated by

dividing the number of periods with no demand by the total number of periods

(ADI).
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• The variation of the demand size evaluated through the square of the coefficient

of variation (CV). Periods with no demand are excluded from the calculation

of CV since the presence or not of demand is captured by ADI.

Depending on the results of ADI and CV, the demand pattern can be classified in

four categories as depicted in Figure 2.1. Smooth demand is the demand that occurs

randomly, with few time periods with no demand and modest variation in demand

size. Intermittent demand appears randomly with several time periods not having

demand. Erratic demand is shown by part numbers with highly variable demand size,

and Lumpy demand appears randomly and is highly variable with many time periods

having no demand (Cavalieri et al. [21]). The authors also mention that time-

series-based forecasting methods (Exponential smoothing and derivatives, ARMA

models) are suitable for the smooth demand and the erratic demand quadrants. For

lumpy demand and intermittent demand quadrants, the authors recommend Croston

methods and derivatives.

Figure 2.1: Classification of Demand Patterns, Cavalieri et al. [21]
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As mentioned previously, the Croston method is used to forecast in circumstances

of low and intermittent demand. This method treats the size of orders and the

intervals between them as two separate series, and combines their averages to achieve

a forecast of the demand per period (Shale et al. [4]). There are different derivations

of the Croston method. For example, Shenstone and Hyndman [22] describe the

usage of log transformations of both demand and interarrival times to restrict the

sample space of the underlying model to be positive. Another variation is when

interarrival times are assumed to have an independent and identically distributed

(i.i.d.) geometric distribution.

The Bayesian approach is also used to manage spare parts. This approach assumes

an a priori distribution of demand rate. As the demand process goes on, corrections

of parameters of the a priori distribution are made according to the accumulated

knowledge of past demand (Popovic [23]). Another application is done by Aronis et

al. [24] where the Bayesian approach is used to specify the initial a priori distributions

of failure rates. Then based on the priors, the distribution of demands for spare parts

are determined and calculated for the required stock level. In Azoury and Miller [25],

a comparison of the optimal ordering levels of Bayesian and non-Bayesian inventory

models is performed, showing that the quantity ordered under the non-Bayesian policy

would be greater than or equal to that under Bayesian policy.

There are some other approaches used to forecast spare parts. For example, Hua

et al. [26] developed an approach for forecasting the intermittent demand of spare

parts using a mechanism that integrates the demand autocorrelation process and the

relationship between explanatory variables and nonzero demand. Another approach

presented by Foote [27] discusses the philosophy, mathematical principles, and system

design features of a forecasting system implemented at the Aviation Supply Office

(ASO). The author concluded that the usage of statistical control techniques is a

very important tool in forecasting for replenishment demand.
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As a result of this literature review, we can conclude that there was no forecast-

ing algorithm that considered all of the control characteristics mentioned (criticality,

specificity, demand pattern, and value of parts). Most methods concentrate on the

demand pattern, but not on the other control characteristics.

2.2 Classification Approaches

According to Cohen and Ernst [28], the number of stock-keeping units (SKU) is so

large that it is not computationally feasible to set stock and service control guidelines

for each individual item. For this reason, items are grouped together and generic

control policies are set for each group. Service level, safety stock, etc., are applied to

each item in a group under those policies.

The ABC classification scheme is the most frequently used method for item aggre-

gation as mentioned by Cohen and Ernst [28]. It consists of separating the inventory

items into three groupings according to their annual cost volume usage (unit cost x

annual usage). These groups are: A, items having a high dollar usage; B, items having

intermediate dollar usage; and C, items having a low dollar usage (Vollmann et al.

[18]). ABC helps to identify the items that will make the largest impact on the firm’s

overall inventory cost performance when improved inventory control procedures are

implemented.

Even though the ABC methodology is easy to implement, this process alone does

not take into account other managerially significant variables such as lead time, ob-

solescence, availability, criticality and substitutability, among others as stated by

Vollmann et al. [18]. This is why multi-criteria ABC management policies are used

as well. Al Kattan and Bin Adi [29] apply ABC and 123-analysis to classify materials

based on unit price in order to get better classification results. This methodology is

performed to identify if high total annual cost of an item is coming from a high unit

price or from a high volume of demand. Also, Cohen and Ernst [28] introduced a
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blend of statistical clustering procedures and operational constraints which allow the

use of any collection of operational relevant attribute items. Some of the operational

attributes used are price, volume of part, lead time, demand pattern per time, and

criticality index.

Braglia et al. [30] present an inventory policy matrix that links the different

classes of spare parts with the possible inventory management policies to identify the

best control strategy for spare stocks. The basic idea of their procedure is to define

a decision diagram which guides the analyst toward the best criticality classification

for each type of spare part.

2.3 Optimization Models

There are different optimization models addressing spare parts management from

different perspectives. For example, some literature describes models with one or

multiple items, one or multiple echelons, and one or multiple locations at each echelon.

Some other factors considered are lateral transshipment, emergency shipments, and

different demand classes, among others. Below is a brief summary of the most relevant

literature.

A model of an (s,S) inventory system in which there are two priority classes of cus-

tomers is presented in Cohen et al. [31] which treat excess demand as lost sales. The

model minimizes expected costs subject to a service level constraint. The single prod-

uct and single location of this model is embedded into a multi-echelon, multi-product

framework. When faced with insufficient stock to meet normal replenishment orders

and emergency shipment orders, priority is given to demand associated with emer-

gency shipments and direct customer requirements. Another approach is presented in

Kocaga and Sen [32], where an inventory system that consists of two demand classes

is studied. The orders in the first class need to be satisfied immediately, whereas the

orders in the second class are to be filled in a given lead time. The model assumes a
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single location, using a one-for-one policy, and Poisson demand arrivals for both type

of classes. The service level for the critical class is an approximation. However, the

other class is exact.

According to Kranenburg and Houtum [10], one of the features required by the

market is to provide differentiated service levels to different groups of customers.

Critical level policies are used to exploit the differences in target service levels by

inventory rationing. The model is a multi-item, single location model that minimizes

the spare parts provisioning costs under the condition that aggregate mean waiting

time constraints for all customer groups are met. A multi-echelon, multi-item inven-

tory system is implemented in Cohen et al. [33] where prioritized demand classes

are considered. The objective of the model is to determine stock control policies

for each location and part that would minimize expected costs (replenishment costs,

emergency cost and inventory holding costs) for the whole system while satisfying

the service constraints for products. In another paper, a stocking policy where some

of the stock is reserved for critical demand is proposed by Dekker et al. [34]; in this

model, the demand is assumed to be a Poisson process and a lot by lot stocking

policy with deterministic replenishment lead time assumed. The model produces an

approximation for the service level for both classes of demand.

A two-echelon multi-item spare parts inventory system in which supply flexibility

through both lateral transshipment and direct deliveries is considered by Wong et al.

[35]. A multi-item, multi-echelon model is developed to minimize total system cost

subject to a target level for the average waiting time across the items at each local

warehouse. The authors conclude that the presence of lateral transshipment improves

the performance of the single-echelon system considerably. In different literature, a

single-echelon, N-locations, continuous review inventory system in which complete

pooling of stock is permitted among the locations is studied in Kukreja et al. [36]. In

this study, proactive transshipment is used as an element of inventory control policy
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which can significantly reduce the total inventory needed through the entire collection

of stocking points.

Si et al. [37] study an optimization model and simulation algorithm for a two-

echelon spare parts inventory system which includes one central warehouse and one

distributive inventory system involving N sub-warehouses. The distributive inventory

system optimizing model, which considers the random horizontal replenishment of

spare parts among sub-warehouses, can give an optimal set of inventory policies (s,S)

for each sub-warehouse while satisfying an agreed service level. On the other hand, an

analysis of a multi-item, continuous review model of a two-location inventory system

for repairable spare parts subject to high availability is studied in Wong et al. [38].

Lateral and emergency shipments occur in response to stock outs with the objective of

minimizing the total costs of inventory holding, lateral transshipment and emergency

shipments subject to a target level for the average waiting time per demanded part

at each of the two locations. The authors provide a summary of the literature on

multi-location inventory systems. Another study is presented by Mehrotra et al.

[39], where consolidation of spare parts is modeled to reduce the overall inventory

by storing parts of several locations together, taking advantage of risk pooling. The

objective of the model is to minimize total cost of the spares as well as the cost of

opening cluster sites. The constraints satisfied are that each location is assigned to a

cluster if it is open and each location is assigned to exactly one cluster only.

Another approach to manage spare parts is presented by Yoon and Sohn [40],

where the inventory level of concurrent spare parts (CSP) is determined. The model

uses a two stage approach. In the first stage, a random effects model is used to predict

the expected demand in a multi-echelon system consisting of depot and bases based

on CSP’s varying characteristics of time. In the second stage, the optimal inventory

level of CSP is found while satisfying budget constraints. Similarly, Kranenburg and

Houtum [41] studied the benefits of exploiting commonality for a number of groups
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of machines where some of the used parts are similar. A multi-item, single site spare

parts inventory model is formulated with the objective of minimizing holding and

transportation costs while satisfying service level constraints for each group.

In different research, Kutanoglu and Lohiya [1] presented an optimization-based

model for a single-echelon, multi-facility service parts logistics with time-based ser-

vice level constraints. The goal was to minimize inventory and transportation costs.

The model has different transportation options and service responsiveness that can

be achieved using alternate modes (slow, medium and fast). Caggiano et al. [42],

describe and validate a practical method for computing channel fill rates in a multi-

item, multi-echelon service parts distribution system. The goal is to determine base

stock level for all items at all locations so that the service level requirements are met

with minimum investment. The authors stated that the model does not consider the

possibility of multiple part failures at once. Caglar et al. [43] developed a continuous

review, base stock policy for a two-echelon, multi-item spare parts inventory system

that minimizes system-wide inventory cost subject to a response time constraint at

each field depot with no lateral transshipment allowed.

Another study is presented by Graves and Willems [44] where the supply chain

places strategic safety stocks to provide a high level of service to the final customer

with minimum cost. The model for stationary demand is extended to the case of non-

stationary demand for products with short life cycle. The model considers a constant

service time policy for which the safety stock locations are stationary but the actual

safety stock changes as demand changes. Related to the behavior of the demand,

Axsater and Zhang [45] present a recursive evaluation of order-up-to-S policies for a

two echelon inventory system with compound Poisson demand. It is assumed that

unfilled demand is backordered and the shortage costs are a linear function of the

time until delivery.

According to Lau et al. [46], repairable inventory models assume that the demand
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for items is independent of the number of working systems, but this assumption can

introduce a serious underestimation of availability when the number of working sys-

tems is small. For this reason, the authors study a multi-echelon, single-indenture

repairable item inventory system under the phenomenon of passivation (system failure

rate is equal to zero during repair) to compute time-varying availability. Liu and Lee

[47] propose an evaluation approach to multi-item base-stock inventory policies where

unidirectional substitutions are allowed (For example, a transformer with higher ca-

pacity can be used instead of one needed with a lower capacity but not vice-versa).

This is considered a continuous review inventory system using base-stock policy which

is frequently applied in spare parts provisioning where most items are slow-moving.

Some other models developed to manage spare parts deal specifically with re-

pairable items. One is the Multi-Echelon Technique for Recoverable Item Control

(METRIC) and its derivatives. According to Sherbrooke [48], the METRIC the-

ory calculates for every item in a system the optimal stock level at each of several

bases with the objective of minimizing the backorders across all bases. Minimizing

backorders is equivalent to maximizing product availability when there is no canni-

balization. Later, other authors improved the METRIC model. For example, the

VARI-METRIC has the advantage of being easier to implement and reduces the

METRIC’s 11% gap as the optimal solution to 1%.

Sleptchenko et al. [49] states that the VARI-METRIC aims to determine initial

stock levels assuming that all failed items are either repaired or replaced by new

items if repair is impossible. In other words, the VARI-METRIC assumes that the

original number of items remain circulating throughout the network. One deficit of

the VARI-METRIC is the assumption that repair shop capacities are infinite. In

Sleptchenko et al. [49], the VARI-METRIC is extended and the authors model re-

pair shops by multi-class, multi-server priority queues which may lead to a significant

reduction in the inventory investment required to attain target system availability
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(usually 10%-20%). Similarly, Sleptchenko et al. [16] modified the VARI-METRIC

method to allocate service part stocks in the network where the repair shops are mod-

eled by (single or multi-class) multi-server queueing systems. The authors state that

under finite capacity, item throughput times can be influenced using an appropriate

priority setting. For example, expensive items can be given high priority, to shorten

throughput times; hence the stock level required for those items remains low. In the

same way, Dı́az et al [50] introduce approximations that deal with limited repair facil-

ities under the scenarios of single-class exponentially distributed repair distributions,

single-class general repair distribution, and multi-class general repair distributions.

According to the authors, the assumption of ample repair capacity introduces a se-

rious underestimation of spare part requirements in systems with high repair facility

utilization.

Also, a very interesting case is presented by Smith et al. [51], where a model is

formulated for optimizing multi-item inventories for repair of field equipment based

on holding costs and the probability of job completion without stockout. The model

determines the appropriate collection of parts to be carried by crews when they are

sent to different locations to repair equipment. Overstocking increases inventory

holding costs, while understocking decreases service efficiency and increases costs

because equipment remains down due to unavailable parts. According to the authors,

using ’job-fill’ rate (fraction of jobs without stockout) is a more appropriate measure

in many applications. Some of the assumptions of the model are that restock is

possible between jobs, so the stocking decision is a one period inventory problem that

the penalty for shortage is essentially independent of the number of unavailable parts;

and that, at most, one part of each type is used on a given job.

The problem formulation of the previous model can be stated as follow: Suppose

there are n possible parts that a serviceman might carry and that the fraction of jobs

that require each of the parts is pi, i = 1,2,...,n. It is assumed that part failures of
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different part types are independent and at most, one part of each type is used on a

given job. Therefore, for any subset S of the n parts, P { parts S and no other parts

are required for a given job } = Πi∈S pi Πi/∈S (1−pi). The serviceman performs N jobs

per year, and whenever some parts are unavailable, a penalty cost L is incurred, which

corresponds to the machine downtime, lost repairman time and other costs. For each

part i that is carried, there is an inventory cost Hi, i = 1,2,...,n per serviceman per

year; M corresponds to the stocked items. The expected cost per year per serviceman

with policy M is:

C(M) =
∑
i∈M

Hi +NL[1− Πi/∈S (1− pi)] (2.1)

The optimal policy M∗ is therefore defined by C(M∗)= MinM C(M), where M ⊆

{1, 2, ..., n}

Similarly, a multiple-item inventory model with a job completion criterion is pre-

sented in Graves [52]. The model determines the optimal mix of components to be

carried by a service representative in order to achieve the desired job completion rate.

The same assumptions are made as in Smith et al. [51]: that service representatives

can restock between repair visits; components fail independently; and, at most, one

unit of each component type may be needed for a repair. However, in Graves [52],

no penalty cost is assigned to the failure to complete a repair on the first visit by

the service representative. Rather, the objective is to know the stocking policy that

would guarantee a specified job completion rate with the minimum inventory holding

cost. The author states that this model doesn’t dominate the one presented by Smith

et al. [51], but it provides additional insight into the problem and structure solution.

The problem formulation given by Graves [52] is stated as follows: It is assumed

there are n components with pi, i = 1,2,...,n, being the probability that component i

has failed and needs to be replaced. It is defined hi, i = 1,2,...,n, as the annual holding

cost for a unit of component i and α is the desired completion rate (0 ≤ α ≤ 1). Let

xi, i = 1,2,...,n, being a zero-one variable which denotes the stockage of component i.
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The model is as follow:

Min

n∑
i=1

hi xi (2.2)

subject to Πn
i=1(1− pi)

1−xi ≥ α (2.3)

xi = 0, 1 i = 1, 2, ..., n (2.4)

The objective of the model is to minimize inventory holding cost subject to a con-

straint on the job completion rate. The model is transformed into a binary knapsack

problem in order to be solved to optimality.

Similarly, Cohen et al. [53] consider a periodic review or order up-to model that

determines base stock policies for each part to minimize expected inventory costs

across all parts while satisfying some service constraints on total completed customer

repair services. The basic problem structure is similar to the tool-kit problem where

it is considered that the recommended stock levels at the facility is complete at the

beginning of the next time period. This problem is a generalization of the tool-kit

problem studied in Smith et al. [51] where the repairer’s kit is the equivalent of the

facility for the current model.

Some of the assumptions of the model developed in Cohen et al. [53] are: 1) The

repair network is single-echelon; 2) Stocking policy used by the facility is a periodic

review base stock or order-up-to policy; 3) It is possible to restock to the base at

the end of each period; 4) A homogeneous customer class is assumed but the model

is extended to include low and high priority customer classes; 5) Primary analysis is

on products that use mutually exclusive groups of parts; 6) The primary model is

formulated for multiple, dependent failures across parts; 7) Service is at the product

level not at the part level. The model developed is shown below:

MinG(S
¯
) =

∑
i∈N

Gi(Si) (2.5)

where S
¯
= (S1, ..., Sn) and Gi(Si) are the expected costs per period associated with

part i ∈ N , with ordering cost, holding cost, transportation cost, and shortage cost
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respectively as shown below:

Gi(Si) = E{Ki δ(Di) +
Cih

2
[Si+(Si−Di)

+] +Citmin[Si, Di] +Cis(Di−Si)
+} (2.6)

where Ki is the fixed ordering cost, Di is the demand, Si is the stock at the begin-

ning of each period, Cih is the holding cost per unit, Cit is the per unit transportation

cost, and Cis is the cost per unit short. The model is subject to chance constraints

meaning that, in the long run, excess demand should be greater than zero, for at

most, a predefined fraction of the periods for which demand is nonzero; and a part

availability constraint which is the required part availability level for parts in the

product as a whole.

Another study addressing the problem of minimizing total inventory investment

subject to constraints on the delay of the equipment due to part outage is presented

in Hopp et al. [54]. The constraints ensure that the average total delay falls below a

specified level. The authors describe the model as:

MinimizeAnnual inventory investment (2.7)

Subject to:

Average order frequency per year per itemat theDistributionCenter ≤ F (2.8)

Average total delay at facility mper year ≤ Tm, m = 1, ...,M (2.9)

Where F is the target order frequency at the Distribution Center, Tm is the total

delay per year allowed at facility m, and M is the number of facilities. Some of the

assumptions of the model are:

• Demand is Poisson and constant lead time.

• Demand that cannot be fulfilled immediately is backordered.

• Each part replacement represents a separate incident. This means that if several

different parts cause delays it is assumed that the total delay is given by the

sum of the individual delays
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• The distribution center makes use of a continuous review policy (Q, r) while

the facilities use base stock policies (i. e. Q=1)

• Lateral transshipment is not allowed

2.4 Item Approach vs. System Approach

According to Canaday [7], there are two main approaches to manage spare parts:

Item approach and System approach. Item approach is the conventional inventory

practice that focuses on individual items that seek to keep the probability of stock-

out below some specified value. According to the author, it is easy to implement;

however, when there is a stock-out of a needed item, it doesn’t matter how much

the item cost, companies get it because it is still cheaper than having the stock-out

and system down for additional time. Priority shipment, cannibalization, alternative

spare, etc. could be used to solve this situation. One of the major shortcomings of

the item approach is that system availability is an uncontrolled outcome of the item

decisions, according to the author.

Alternatively, the system approach asks the question: how can we ensure that,

x% of the time, the plant/equipment will not be shut down/delayed for lack of spare

parts? The author states that, at the end of the day, the performance of spare parts

inventory is measured by its success in minimizing the loss of benefits that result

from system operation. It is necessary to take into account that some parts affect

the system performance more than others, some cost more than others, some fail

more often, some have longer lead times than others, etc. A system approach ensures

that a demand-weighted average fill rate is achieved at a low inventory investment by

assigning low fill rates to parts with high costs and high fill rates to parts with low

costs, as stated by Thonemann et al. [55]. An item approach does not vary fill rates

by parts but assigns identical fill rates to all parts.
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For instance, according to Kim et al. [56], performance-based contracting is re-

shaping service support supply chains in capital-intensive industries such as aerospace

and defense. Performance-based contracting is also known as “power by the hour” in

the private sector and as “performance-based logistics” (PBL) in defense contracting.

This approach aims to replace traditionally used fixed-price and cost-plus contracts

to improve product availability and reduce cost of ownership by tying supplier com-

pensation to the output value of the product generated by the customer. As is stated

in Kim et al. [56] and taken from the U.S. Department of Defense (DoD) guidelines,

“The essence of PBL is buying performance outcomes, not the individual parts and

repair actions. Instead of buying a set level of spares, repairs, tools, and data, the

new focus is on buying a predetermined level of availability to meet the customers

objective.”

Some of the assumptions of the model developed in Kim et al. [56] are: Failure of

the subsystem ’i’ is assumed to occur at a Poisson rate, and it is independent from

failures of other components; each supplier maintains an inventory of spares and a

repair facility; a one-for-one base stock policy is employed for spares inventory con-

trol; a failed unit is immediately replaced by a working unit and if a replacement is

unavailable, a backorder occurs, and the affected system becomes inoperable. Ac-

cording to the authors, a common assumption in the literature is that the probability

of two or more systems being down within the same system at any point in time is

negligible.

According to Kutanoglu and Lohiya [1], service parts are often supplied via a

multi-echelon distribution network in order to have a quick response time and the

need for stock centralization to reduce holding costs. However, as mentioned by the

authors, there is a trend to reduce the number of echelons for stock centralization as

well as the number of locations per echelon in order to reduce fixed location costs

and service parts obsolescence costs. This seeks to result in an efficient network by
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stocking essential parts close to customers and using fast transportation modes which

vary in time and cost. The author considers that inventory stocking decisions should

be integrated into the transportation mode choice decisions in order to achieve the

required time-based service level.

In Kutanoglu and Lohiya [1], a model that minimizes total system cost is devel-

oped. The costs and constraints considered in the model are:

• Holding cost, which is the cost of stocking the service part at all facilities

• Transportation costs, which is the cost of transporting the parts from facility

to customers

• Emergency shipment cost, which is the cost of fulfilling the demand from the

central warehouse through direct emergency shipments, needed when the main

facility responsible for customer’s demand is out of stock at the time of the

demand

• The constraints try to meet and fulfill customer demand by one mode and satisfy

target time-based service levels.

One example presented by the authors is summarized in Figure 2.2 where we can see

that as the total holding cost increases (more inventory in stock), emergency total

cost decreases. Similarly, as discussed in Chapter 1, Cohen and Wille [14] present

two different strategies followed by two different companies. The company with the

highest inventory level places the lowest orders per aircraft during maintenance check

(lowest emergency orders) and has the lowest late deliveries (See Figure 1.5).

It is important to consider not only purchasing and inventory costs, but also

hidden costs which arise from part unavailability of MRO material (Cavalieri et al.

[21]). As seen in Figure 2.3, as inventory stock level increases (Inventory holding

costs increases), unavailability costs decrease. So, there is a tradeoff between them.
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Figure 2.2: Different Costs and Service Level, taken from Kutanoglu and Lohiya [1]

Figure 2.3: Inventory Holding Cost vs Unavailability Cost Cavaliere et al. [21]

According to the authors, when managing spare parts, it is necessary to take into

account the following characteristics of the different parts: demand, criticality, value

and specificity of the parts; these will help assess the most suitable stock management

policy.

According to Denton [57], airframe manufacturers have developed classification

systems to manage the criticality of a defective component called Essentiality Code.

The detailed description of the Essentiality Codes that could be assigned to a part is

presented as follow:

• Essentiality 1: No Go - Aircraft is grounded if this unit is unserviceable
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• Essentiality 2: Conditional Go - aircraft is only grounded under certain condi-

tions if this unit is unserviceable, e.g., freezing weather.

• Essentiality 3: Passenger convenience - aircraft is not grounded but this un-

serviceable unit causes great inconvenience to customers, e.g., toilets or coffee

makers

• Essentiality 4: Minimum Equipment List (MEL) A - aircraft can fly at least

one additional flight leg with the unit unserviceable

• Essentiality 5: MEL B - aircraft may fly up to three days with the unit unser-

viceable

• Essentiality 6: MEL C - aircraft may fly up to 10 days with the unit unservice-

able

• Essentiality 7: This unit does not have to be serviceable for the aircraft to be

flight worthy, or 120 day MEL dispensation

In summary, we have discussed different methodologies used to manage spare

parts, some of those are forecasting methods, classification approaches, and opti-

mization methods. The area of this dissertation is in the area of the Job Completion

criteria using optimization methods. In the next chapter, we will discuss the problem

we want to solve, the current gaps identified based on literature available, and the

expected contributions of this dissertation.
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CHAPTER 3

PROBLEM DEFINITION

The previous chapter provided a brief description of some of the methodologies used

to manage spare parts. It also mentioned some relevant characteristics of spare parts

that are useful to take into account when managing inventory levels. The following

section presents the gap between current available literature and the problem that is

going to be addressed in this dissertation.

3.1 Problem Identification and Gap

After careful consideration of the available literature in spare parts management, the

author of this dissertation believes there is no available research in the MRO industry

that solves the problem of determining base stock level of spare parts under service

level agreement for on-time delivery during a preventive maintenance check. Some of

the characteristics which together make this problem different than the previous ones

studied are:

• Problem has multiple types of part failures. After the technician inspects spe-

cific areas of the equipment, he/she is going to decide if parts need to be re-

placed.

• Quantity of pieces of a part to be replaced could be more than one. The same

type of part could be located in different places of the aircraft and it will be

decided how many are going to be replaced after findings are made.

• Even though a part is needed and it is not available, it might not delay the

31



system availability if it comes before scheduled delivery. It may be necessary

to place an expedited order to avoid delay, or it could happen that normal lead

time is short and the part will arrive before scheduled system delivery.

• Penalty cost for late delivery is a linear function of the number of times units

the equipment is delayed. There is a penalty fee greater than or equal to zero

for late delivery.

• Several items could overlap and cause late delivery, but penalty fee effect is not

additive. It is calculated based on the item that causes the longest delay in

equipment delivery.

• Every type of part has its own replenishment lead time (either Normal or Ex-

pedited), and instantaneous replenishment is not assumed.

• The schedule of the preventive maintenance to be performed is known in ad-

vance, but not all spare parts to be used in each case are known.

• Service level for on-time delivery is defined at the equipment level, not the item

or part level. We are interested in measuring performance at the system level,

not at the item level.

• The model is a multi-item, single echelon model.

On the previous chapter we discussed the most relevant literature addressing job

completion criterion can be found on Smith et al. [51], Graves [52], Cohen et al. [53]

and Hopp et al. [54]. In Figure 3.1 we present a summary of the main characteristics

and hence current gaps this dissertation is trying to close and below is presented a

discussion of it:

• Due to the nature of the characteristics of the problem, this dissertation uses a

multi-period optimization model. All the four other authors are able to use a
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single time period given the assumptions they have made and the characteristics

of the problem they are addressing.

• Three of the other authors assume that replenishment can happen between jobs,

this dissertation and Hopp et al. [54] assume replenishment is not instantaneous

and it depends on the lead time.

• Smith et al. [51] and Graves [52] assume that at most, only 1 part can be used.

Cohen et al. [53], Hopp et al. [54] and this dissertation assume demand is

stochastic.

• From all the other authors, only Smith et al. [51] assumes that the penalty

cost is independent of the number of parts which is a valid characteristics of

the problem we are addressing. Cohen et al. [53] and Hopp et al. [54] assumes

penalty cost is additive.

• Emergency shipment is an important strategy used in the aerospace industry.

Only Cohen et al. [53] and this dissertation considers emergency shipment as

an alternative.

• All the four authors as well as this dissertation measure service level at the

product level, not part level.

• All the four authors rely in some heuristics to solve the problem they are address-

ing. On this dissertation, to solve the mathematical problem we uses Xpress-

MP, at the beginning, this software uses a heuristics, but later, it is able to

solve the problem using branch and bound.

As mentioned in Cohen and Wille [14], 40% to 60% of the parts needed during

preventive maintenance are determined after the maintenance has started because

more than 90% of the tasks to be performed are inspections. After those tasks are
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Figure 3.1: Job Completion Criterion Literature and Dissertation Comparison

completed, the technician will recommend if parts need to be replaced or not. If there

is no stock available and the part is needed, an order needs to be placed most likely an

expedited order as the normal lead time of the order may well make it arrive after the

expected delivery date of the aircraft. The penalty fee for late delivery is calculated

based on the item that arrives latest. For example, in Figure 3.2, the penalty cost is

calculated based on the arrival time of ’Part 4’ minus the original expected delivery

date of the equipment.

3.2 Problem Definition

Even though the schedule for preventive maintenance is known in advance, the ma-

jority of the parts and respective quantities to be used in each aircraft is not known

until the maintenance has started. This causes great uncertainty and companies need

to either have large quantities of stock, which increases the holding costs, or they have

to place expedited orders while the aircraft is in maintenance, which increase costs, or

companies have to pay penalty fees for late aircraft deliveries. All these could cause

customer dissatisfaction and decreased loyalty, low employee morale and/or compa-

nies could become unprofitable. Based on the foregoing problem identification, the

topic of this dissertation can be stated as follow:

”Determine inventory base level for all the parts in set I, in order to minimize total
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Figure 3.2: Multiple Parts Failures during Maintenance

costs (penalty cost for late delivery, holding cost and shipment cost) while satisfying

an agreed service level for on-time equipment delivery.”

According to Ghobbar and Friend [20], demand for air transport varies with time.

So, in a competitive market, operators are trying to meet peak demand insofar as

is reasonably possible. Therefore, aircraft availability has to be maximized during

those peaks and maintenance must be fitted into tied slots when the planes are not

required, as be seen in Figure 3.3.

In addition to incorporating several characteristics together in one model as men-

tioned in the previous section, the current model will be able to recalculate stock

levels once the company has identified that the number of preventive maintenance

checks will change significantly, or it has acquired more MRO contracts or it the
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High flying season –

few aircraft in maintenance

Figure 3.3: Expected Preventive Maintenance Schedule for a Time Period T (i.e. 1

year)

aircrafts are flying more frequently.

3.3 Research Goals and Objectives

In this section, the research goals and objectives are presented.

Goals:

• Develop a more realistic model addressing the MRO preventive maintenance

problem while considering all the characteristics of it.

• In spite of the sporadic nature of spare parts, develop a robust model that is

able to solve a large scale MRO problem within reasonable time

• Able to solve a large scale MRO problem within a reasonable time.

Objectives:

• Develop a mathematical model that minimizes costs (Penalty cost, holding cost

and shipment cost) while satisfying an agreed service level for on-time equipment
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delivery by recommending a base stock level for each part.

• The solution of the model should be feasible over multiple scenarios with random

generation or assignment of demand.

• Develop some pre-processing techniques that reduce the size of the mathematical

model which will decrease the time to solve it.

3.4 Expected Contribution

We expect to develop a more realistic model to help manage spare parts in a more

efficient way while minimizing total costs and satisfying service levels at the equipment

level. We expect this research will be useful to airline companies and MRO operators

by minimizing costs and retaining customers.

We also believe this research will have applications in other areas. In health care,

for example, once a surgery has been scheduled, the health care facility could identify

the need for critical devices or critical substances. Those additional items could

be requested under the highest priority, if not available at the health care facility.

Resources are limited, so it is not always possible to have all type of devices, or rarely

used and expensive medicines, in all echelons and all locations.

On this dissertation, a case study is done using data from the commercial aviation

industry. This data was provided by Airbus Industries, and in the next chapter, the

main variables driving the maintenance of aircraft, as well as the characteristics of

the data are being discussed.
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CHAPTER 4

DATA METHODOLOGY

This chapter discusses the data collection methodology used in this research. This

data relies mainly on a project implemented by Airbus. We also received additional

information from an airline company in order to fill out a few data gaps. Second, the

data provided is analyzed and segmented, and its groups of behavior are discussed.

Third, it addresses how extra shipment cost is determined, a parameter that is critical

in the model.

4.1 Data Collection

As discussed previously, a large percentage of spare parts have sporadic demand,

which creates a major forecasting challenge for companies to have all the necessary

parts available before a maintenance check. The majority of the parts and respective

quantities to be used in each check is not known until the maintenance has started.

In fact, Airbus estimates that no more than 30% of the parts are known in advance.

In an effort to help the MRO and airline companies keep inventories low, limit critical

orders and meet on-time completion of checks, Airbus implemented a program called

Consumption Data Analysis Services (CDA). This service is free of charge, but it

requires that participants share maintenance consumption data for a type of check

called C-checks.

The CDA process is as follows:

• Customer requests Airbus to provide a consumption analysis list for its next

maintenance check.

38



• Airbus, based on the latest data, performs an analysis and determines the ex-

pected materials that could be used.

• Customer receives the list and prepares for maintenance.

• Customer reports actual consumption back to Airbus.

• Airbus does some data cleaning and consolidation.

• Airbus compares actual consumption against data provided to customer.

An example of the recommended list provided by Airbus is presented below. The

table contains the following data: part number, part description, material group,

average consumption, usage rate, standard deviation, and the quantity recommended

by Airbus. Average consumption is calculated by dividing the total consolidated

demand for the part across all maintenance checks by the number of checks that

have had demand. The usage rate is calculated by dividing the number of checks

where demand is greater than zero by the total number of checks available in the

consolidated data. The part numbers presented on Table 4.1 have been changed due

to confidentiality agreements.

Part Number Description Mat Group Avg Qty Usage Rate Std Dev Rec Qty

ABCDE Seal STD 16 75.21 % 3.73 19

FGHIJ Seal STD 16 75.21 % 4.76 19

KLMNO Packing STD 3 64.46 % 1.89 4

PQRST Washer STD 27 59.50 % 13.97 31

Table 4.1: Example of Recommended List Provided to Customers

Upon signing a non-disclosure agreement, Airbus provided nearly 800 different

maintenance check reports for the A320 aircraft that have been compiled in this

program. The data comes from more than 25 different countries participating in the
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study. In some cases, we found more than one airline and/or MRO per country. At

the time of data collection, Airbus stated they had around 4,000 A320s in operation

worldwide.

The data provided contains more than 26,000 different part numbers among ex-

pendable, repairable and rotable parts, with some or all of the following attributes:

part number, part description, material type, flight hours, flight cycles, lead time,

price, demand consumption per maintenance check, date of maintenance, type of

check, and essentiality code. However, we are only interested in the 21,000 parts that

are expendable. It is also important to mention that close to 9,200 parts do not have

unit price associated with them. Furthermore, 1,054 of the remaining parts, do not

have supplier lead times. As such, our part population is reduced to 11,724 different

parts.

In order to complete some of the missing information such as lead time and price,

additional data was provided by an airline company. The data contains several thou-

sand parts with all or some of the following parameters: part number, unit price,

supplier name and address, and lead time. This data is needed by the methodology

selected to solve the problem. As mentioned previously, the current dissertation con-

siders a ”system view” approach rather than an ”item view” approach. In this sense,

the model developed in this work is trying to minimize the total cost which includes

holding cost, transportation cost and penalty cost while satisfying an agreed service

level for on-time delivery. Based on this consideration and a given maintenance sched-

ule, the model determines the recommended base stock level that the company needs

to have.

After consolidating both databases, we were able to identify an additional 2,523

parts with unit price and lead time. As such, our part population was increased to

14,247 parts.
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Figure 4.1: Number of Checks per Geographical Region

4.2 Data Analysis

At the time the data was provided (August, 2007), the data set contained 795 different

maintenance checks from across the globe. The number of checks in each geographic

region is shown in Figure 4.1. The main contributors to the data are airlines and

MROs from America and Europe, with more limited participation from the other

continents.

Aircraft age, flight hours and flight cycles are some of the main variables used to

schedule maintenance checks for aircrafts. Based on the Maintenance Planning Doc-

ument (MPD) from Airbus, the required maintenance check should be done twenty

months after the previous maintenance, after 6,000 flight hours, or after 4,500 flight

cycles (Table 4.2).

In order to understand the characteristics of the data set population, histograms

showing flight hours, flight cycles and age of the aircraft are presented as follows:

Figure 4.2 shows that around 96% of the aircraft were between 18 months to 167

months old. In other words, aircraft with demand between 18 months and 167 months
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Criteria Range

Flight Hours 6,000

Flight Cycles 4,500

Months 20

Table 4.2: Maintenance Check Interval Criteria
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Figure 4.2: Aircraft Age in Months

is well represented on the data set provided.

Another important variable is flight hours. Figure 4.3 depicts the flight hours the

aircraft had at the time of the maintenance checks; at the time of the maintenance

checks, 85% of the aircraft had flown between 5,000 and 40,000 hours.

The last variable is flight cycles. Close to 89% of the data set ranges 2,300 and

23,350 flight cycles, as represented in Figure 4.4. As can be seen in all these figures,

the range within each of the main variables is quite wide. The data provided can

be used to represent maintenance checks for aircraft where main variables are in the

ranges shown in Table 4.3.

The aircraft population is divided into three different groups in order to under-
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Figure 4.3: Aircrafts Flight Hours
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Criteria Lower Bound Upper Bound

Flight Hours 5,000 40,000

Flight Cycles 2,300 23,350

Months 18 167

Table 4.3: Aircraft Maintenance Variables

stand if there are differences in demand consumption among them. The first variable

used to identify the groups is the age of the aircraft at the time of the check; and

the groups are divided based on the percentile of aircraft in this category. The first

group contains all aircraft from percentile 0 through the 33rd percentile; the second

group contains the aircraft from percentile 33rd percentile through percentile 66th

percentile; and the last group contains the remaining aircraft.

The groups are well represented with 278 aircraft in the first group, 257 aircraft

in the second group and 260 aircraft in the third group. As seen in table 4.4, as the

percentile increases, the average number of parts used on the check increases. Addi-

tionally, the standard deviation increases. In fact, the mean and standard deviations

almost double, double or more than double in the second and third groups compared

to the first group.

Criteria Lower Percentile Upper Percentile Avg No Parts Std Dev Parts

First Group 0% 33% 165 121

Second Group 33% 66% 330 208

Third Group 66% 100% 447 274

Table 4.4: Groups based on Age - Average and Standard Deviation of Parts used

During Maintenance

A similar analysis is done using flight hours as the main criteria and the results are

similar when compared to the prior analysis. Population is well represented among
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the three groups, with Group 1 having 269 aircraft, Group 2 having 271 aircraft and

Group 3 having 255 aircraft. In Group 1, the average number of parts as well as the

standard deviation are a little bit higher compared to the prior analysis; Group 2 has

a slightly lower average; and Group 3 has similar values as seen in table ??. It can

also be stated that as the percentile increases, the mean and standard deviation of

the number of parts used in maintenance increases.

Criteria Lower Percentile Upper Percentile Avg No Parts Std Dev Parts

First Group 0% 33% 183 158

Second Group 33% 66% 304 205

Third Group 66% 100% 452 266

Table 4.5: Groups based on Flight Hours - Average and Standard Deviation of Parts

used During Maintenance

As discussed before, there are differences in the average number of parts used in

each maintenance check based on the groups described above. On the large prob-

lem we will solve in this dissertation, we will assume that the aircraft coming to

maintenance are equally distributed among the different groups presented before.

Something important to mention is that due to the sporadic nature of the demand,

it would be challenging to split the data into two or more groups to generate scenarios

only for aircraft which are in the same category. For instance, 44% of the parts have

been used in more than one of the groups mentioned as can be seen in Figure 4.5;

and 56% of the parts have been used in only one of the groups, but could have been

consumed multiple times within it. For the parts used only in one of the groups,

close to 42% of those parts fall into Group 2 (age criteria) and 45% fall into Group 3

(age criteria). More over, there is only one aircraft that contains maintenance records

where all the parts were used in the same group. The majority of the aircraft, 772

out of the 795 aircraft, have parts that had been used by aircraft falling into any of
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Figure 4.5: Parts and groups where they have been used

the three groups. In other words, 99.9% of the aircraft have parts that have been

used by aircraft falling in two or three groups as shown in Figure 4.6. Given this

information, it is better to utilize all the data together rather than splitting it into

different groups.

Other important data gathered for this project includes shipment cost. In order

to get estimated shipment costs, data from FEDEX was downloaded from its website

(www.Fedex.com) on June 16, 2010. It is assumed that all parts are sent from the

suppliers to an airline’s logistics center in Miami, FL. Also, the airline provided the

list of the suppliers and the list of parts supplied by them. For the cases where a part

has multiple suppliers, the supplier with the greatest number of purchase orders was

selected. There are some parts on the Airbus file that do not match the parts provided

by the airline and, hence, do not get a supplier assigned. For these cases, a supplier is

randomly assigned based on percentages of purchase orders placed to each supplier.

The importance of the supplier assignment to each part is due to of its location, as a

way to estimate the shipment cost from the supplier to the company’s logistics center.
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Figure 4.6: Aircrafts and groups where their parts have been used to

Table 4.6 shows the quantity and percentage of purchase orders placed to the top 10

suppliers by the company, including data used to randomly assign suppliers to parts

that do not match between both files. The addresses and zip codes of the suppliers

were found using the Internet. In this way, we were able to identify the table from

the FEDEX site that provided the cost from supplier to the logistics center.

Another piece of data needed to calculate the shipment cost is the weight of each

package. Since the parts we are dealing with are expendable items, we assume the

weight for each part is between 5 to 15 pounds; and we randomly generate it for

each part. Now we have all the necessary information and are able to identify the

cost of shipping a part with a specific weight from one zip code (supplier) to another

(company’s logistics center). This research assumes both, a normal delivery method

and an expedited delivery method and as experience might suggest, the expedited

method is more expensive but faster.
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Supplier No. POs Ind % Cum %

Supplier 1 46503 23.52 % 23.52 %

Supplier 2 17864 9.03 % 32.55 %

Supplier 3 12109 6.12 % 38.67 %

Supplier 4 10194 5.15 % 43.83 %

Supplier 5 10181 5.15 % 48.98 %

Supplier 6 8156 4.12 % 53.1 %

Supplier 7 6886 3.48 % 56.58 %

Supplier 8 5474 2.77 % 59.35 %

Supplier 9 3452 1.75 % 61.1 %

Supplier 10 3113 1.57 % 62.67 %

Table 4.6: Purchase Orders Placed to the Top 10 Suppliers

4.3 Collaboration

Collaboration is one of the key components of this research. As discussed in sec-

tion 4.2, based on the Maintenance Planning Document (MPD) from Airbus, the re-

quired maintenance check should be done once the aircraft completes twenty months

after the previous maintenance, or 6,000 flight hours, or 4,500 flight cycles, as de-

scribed in Table 4.2. Let’s assume that the majority of aircraft reach the next main-

tenance based on the 20 months criteria. In a 5 year period, a company would be

able to gather only 3 maintenance checks, or 6 maintenance checks every 10 years.

So, for a company like JetBlue that has 130 aircraft of this type in use, according

to wikipedia.com [58], it will take 10 years to get close to the total amount of data

compiled by Airbus, 130 ∗ 6 = 780.

Moreover, not all the companies participating in Airbus’s worldwide data collec-

tion program are as large as Jet Blue. Some regional companies are small, and, in all
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likelihood, would be unable to compile data such as Airbus is providing or take ad-

vantage of applications such as the one proposed in this research. Their participation

grants them access to valuable information.

In the next chapter, we will discuss the methodologies to be used to solve the

problem addressed in this dissertation. One key aspect of this problem is the sporadic

and uncertain demand of the spare parts. We address this problem using a scenario

optimization technique. One aspect of scenario optimization is that the problem size

increases dramatically as the number of scenarios increase. In order to have a more

tractable optimization model, some pr-processing techniques to remove unnecessary

constraints are developed and discussed.
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CHAPTER 5

MODELING METHODOLOGY

In this chapter, first, the scenario-based approach is introduced as the method to be

used in this research due to the nature of the problem it is able to handle. Second,

the mathematical model of this dissertation is developed. The model determines

the inventory base stock level for all parts in set I in order to minimize total cost

(penalty cost for late delivery, holding cost and extra shipment cost) while satisfying

a service level for on-time equipment delivery. Also, all assumptions behind the model

are explained, and descriptions of the parameters, variables and the meaning of the

constraints are provided. Lastly, some pre-processing techniques are developed in

order to be able to solve the model.

5.1 Scenario-Based Approach

Throughout this work, it has been shown that spare part demand is sporadic in

nature, representing a big challenge for companies. One methodology that address

uncertainty is the scenario-based approach. This methodology is based on two stages:

The first consists of identifying the scenarios to be considered, and the second solves

the optimization model based on those scenarios.

According to Sitompul and Aghezzaf [59], uncertainty is present at all levels in

a production system, and until recently, sensitivity analysis has been used in post-

optimality studies to discover the impact of data variability on the model’s recom-

mendation. However, the authors state that this approach doesn’t solve the issue

because it is a passive approach. As such, something more proactive is needed in
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order to produce solutions that are less sensitive to data variability.

Scenario-based optimization is an approach where the exact values of some pa-

rameters of the optimization problem are not known with absolute certainty, but may

vary to a larger or lesser extent depending on the nature of the factors they represent,

as mentioned by Better and Glover [60]. One advantage of this approach is that it is

effective in finding a solution that is feasible for all the scenarios considered and, at

the same time, minimizes the deviation of the overall solution for each scenario. One

disadvantage of this methodology (Better and Glover [60]) is that this approach con-

siders a very small subset of possible scenarios, and the size and complexity of models

it can handle is quite limited. In the same paper, the authors show an approach

used by Dembo [61] for solving stochastic programs based on a method for solving

deterministic scenario subproblems and combining the optimal scenario solutions into

a single feasible decision.

As stated by Dembo [61], the ‘scenario optimization’ approach to stochastic pro-

gramming can be described as:

• Stage 1 : Compute a solution to the (deterministic) problem under all scenarios.

• Stage 2 : Solve a coordinating or tracking model to find a single, feasible policy.

This author mentioned that Stage 1 may be viewed as a sampling of the solu-

tion space of the underlying stochastic model; and Stage 2 attempts to find a single

“feasible” policy that best “fits” the behavior of the system under uncertainty.

In other words, as described by Sitompul and Aghezzaf [59], the problem can

be formulated as a deterministic mathematical problem for a single scenario s (the

scenario sub-problem, SP) as follow:

SP:

Zs = minimize

n∑
j=1

csj ∗ xj (5.1)
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Subject to:
n∑

j=1

asij ∗ xj = bsi ∀i = 1, 2, ...,m (5.2)

xj ≥ 0 ∀j = 1, 2, ..., n (5.3)

where: cj is the cost of producing item j, aij is the amount of resource i needed

to manufacture item j, and bi is the amount of resource i available.

So, the model SP needs to be solved for each scenario s, and then it is necessary to

solve a tracking model to find a single, feasible decision for all scenarios. A tracking

model could be formulated as follows:

Minimize
∑
s

ps(
∑
j

csj ∗ xj − Zs)2 +
∑
s

ps(
∑
s

asij ∗ xj − bsi )
2 (5.4)

xj ≥ 0 j = 1, 2, ..., n (5.5)

As it is stated by Better and Glover [60], the purpose of this tracking model is

to find a solution that is feasible under all scenarios, and which penalizes solutions

that differ greatly from the optimal solution under each scenario. The authors also

mention that the objective functions are squared to avoid non-negativity and also

that there are more sophisticated tracking models.

In our case, the parameter that is unknown is the demand given its sporadic

nature; however, based on historical data we know what values it has taken. Given

the nature of problems that the scenario-based approach is able to address, and

together with the nature of the problem we are addressing in this dissertation, the

scenario-based approach has been selected as part of the method to determine the

base stock level for on-time equipment delivery while minimizing cost. In the next

sections of this chapter, we develop the optimization model, discuss the assumptions

and the pre-processing techniques developed.
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5.2 Model Assumptions

The characteristics of the problem addressed by this research were listed on section

3.1. Even though the majority of the assumptions behind the mathematical model

developed in this dissertation are similar to the ones presented by the tool kit problem

[52], some of the characteristics of the nature of the problem are different. Below are

listed the assumptions of the mathematical model:

• It is assumed that the company knows the maintenance schedule of its equip-

ment for a given time frame T (e.g., two months). The start and delivery due

dates of the equipment from maintenance are known.

• Demand scenarios are assigned based on historical data for each part number

for each equipment.

• The model assumes that late delivery is due to parts only; manpower and tools

are considered available with unlimited capacity.

• The stocking policy used is a continuous review order-up-to level policy. Every

time there is demand, an order is placed for the same quantity either to satisfy

the demand or to replenish inventory.

• It is assumed that lead times are reliable and there are only two different types

of them, normal and expedited. Expedited lead time is shorter than normal

lead time but has a higher cost.

• Each part number has its own lead times and the parts lead times are constant

across different scenarios.

• It is assumed one type of equipment is used (i.e., A320 aircraft family).

• It is assumed that replenishment orders are received at the end of the day and

material is consumed at the beginning of the day.
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5.3 Model Parameters and Variables Definition

In this section, the parameters and variables used in the mathematical model are

described:

• N : Total equipment to be scheduled in the selected time frame T.

• a: Set of N equipment to be scheduled in maintenance during time frame T,

a={1,2,...,N }.

• R: Total number of different types of parts or SKUs to be included.

• i : Set of part numbers that potentially could be used in maintenance. i =

{1,2,..., R}.

• P : Penalty cost for late delivery per time unit.

• Da: Delivery due time of aircraft a from maintenance.

• hi: Holding cost for part number i.

• C : Total number of different scenarios that are modeled.

• z : Set of scenarios that are modeled. z = {1,2,..., C}.

• t: Current time.

• λa,t
i,z : Demand of part number i for equipment a at time t for scenario z.

• ωi,z: Total expected demand of part number i at scenario z ; mathematically, it

is represented by
∑N

a=1

∑T
t=1 λ

a,t
i,z

• χt
i,z: Demand of part number i at scenario z that is expected to happen from

time t to the end of the time horizon; mathematically, it is represented by∑N
a=1

∑T
t λa,t

i,z
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• υt
i,z: Contains the demand for part number i, in scenario z that has already hap-

pened from time zero to time t’ ; mathematically it is represented by
∑N

a=1

∑t′

t=0 λ
a,t
i,z

• ra : Scheduled maintenance start time for equipment a.

• τNi : Normal lead time for part number i.

• τEi : Expedited lead time for part number i.

• M: A big number.

• Gi: Incremental price of placing an expedited shipment order for item i instead

of a normal order.

• Probz: Probability that scenario z will occur.

Even though the main objective of the problem is to identify the recommended

base stock level for each part, several other auxiliary variables are also used. The

variables used in the model are described as follows:

• Si: Base stock level for part number i - main variable.

• Qt
i,z: On hand inventory of part number i available in stock at the local MRO

at time t for scenario z

• αa,t
i,z : Gets the value of 1 if on hand quantity of part number i at time t in

scenario z is assigned to equipment a; otherwise gets the value of 0.

• Ea,t
i,z : Gets the value of 1 if an emergency shipment is placed for part number i,

equipment a at time t for scenario z ; otherwise gets the value of 0.

• fa,z: Actual delivery time for equipment a from maintenance in scenario z.

• Qasgt,ai,z : Inventory quantity of part number i assigned to aircraft a at time t in

scenario z.
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• ϕt
i,z: Total quantity on order placed as expedited shipment for part number i,

at time t in scenario z.

• ρti,z: Total quantity on order placed as normal shipment for part number i, at

time t in scenario z.

• γt
i,z: Total received quantity of part number i at time t in scenario z ; includes

expedited and normal replenishment.

• θti,z: Received quantity of expedited orders of part number i at time t in scenario

z.

• ηti,z: Received quantity of normal orders of part number i at time t in scenario

z.

• IT t
i,z: In transit inventory of part number i at time t in scenario z.

• La,z:Number of time units that equipment a is delivered tardy in scenario z.

• βa,z: Gets the value of 1 if equipment a is delivered tardy in scenario z ; otherwise

gets the value of 0.

5.4 Model Development

In this section, the mathematical model that this dissertation deals with is developed.

This section also explains the meaning of the constraints that the model needs to

satisfy.

In words, the mathematical model can be stated as follows:

Objective:

Minimize {Penalty Cost for Tardy Delivery + Inventory Holding Cost +

Shipment Cost}

Subject to:
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% On-time Equipment delivery ≥ Service Level

Even though the model can be described in two lines, the mathematical model

requires several constraints to address inventory balancing, replenishment orders, aux-

iliary variables, etc.

The mathematical model is presented below. In the objective function, the first

term calculates the total cost for tardy equipment delivery; the second term pro-

vides the total cost for holding inventory, and the third term provides the additional

shipment costs incurred when expedited orders are placed.

Objective:

Min
N∑
a=1

C∑
z=1

P ∗Max(0, fa,z −Da) ∗ Probz +
R∑
i=a

hi ∗ Si +

N∑
a=1

R∑
i=1

T∑
t=1

C∑
z=1

Gi ∗ Ea,t
i,z ∗ Probz ∀ z = 1, 2, ..., C (5.6)

In equation 5.6, the first term is used to calculate tardiness. In order to avoid the

‘Max’ that appears on it, the term is changed as follows:

Min

N∑
a=1

C∑
z=1

P ∗ La,z ∗ Probz +
R∑
i=a

hi ∗ Si +

N∑
a=1

R∑
i=1

T∑
t=1

C∑
z=1

Gi ∗ Ea,t
i,z ∗ Probz∀z = 1, 2, ..., C (5.7)

The new objective function shown in Equation 5.7 has replaced the termMax(0, fa,z−

Da) by the term La,z which provides the time units that equipment ‘a’ is delivered

tardy. It is necessary to add new constraints in order to ensure that the penalty

cost is applied only if equipment is delivered tardy. This is done with equations 5.8

and 5.9. Constraint 5.8 is used to modify the objective function and avoid the ‘Max’

in the first term. It states that the tardiness of equipment a (La,z) is greater than

or equal to the difference between the actual delivery date (fa,z) and the expected

delivery date (Da). Constraint 5.9 states that equipment tardiness (La,z) is equal to

or greater than zero.

La,z ≥ fa,z − Da ∀ a = 1, 2, ..., N ; z = 1, 2, ..., C (5.8)
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La,z ≥ 0 ∀ a = 1, 2, ..., N ; z : 1, 2, ..., C (5.9)

At this moment, it is a good place to introduce some binary variables and its con-

straints. As mentioned previously, Ea
i is a binary variable that gets the value of 1

if an expedited order for part number i is placed, this order will satisfy demand for

equipment a for scenario z at time t. Constraint 5.10 is used to indicate that Ea
i is a

binary variable.

Ea,t
i,z isBinary ∀ ∃ λa,t

i,z

∀ a = 1, 2, ..., N ; i = 1, 2, .., R; t = 0, 1, 2, ..., T z = 1, 2, ..., C (5.10)

αa,t
i is a binary variable that gets the value of 1 if on hand quantity of part number

i at time t in scenario z is assigned to equipment a; otherwise gets the value of 0.

Constraint 5.11 is used to indicate that αa,t
i is a binary variable.

αa,t
i,z isBinary ∀ ∃ λa,t

i,z

∀ a = 1, 2, ..., N ; i = 1, 2, .., R; t = 0, 1, 2, ..., T z = 1, 2, ..., C (5.11)

Constraint 5.12 is used to calculate the tardiness (La,z) if demand for equipment a at

scenario z is satisfied by placing a normal replenishment, in other words, it does not

rely on any on hand inventory nor expedited order.

La,z +Da ≥ t + τNi −M(Ea,t
i,z + αa,t

i,z) ∀ ∃ λa,t
i,z

∀ a = 1, 2, ..., N ; i = 1, 2, .., R; t = 0, 1, 2, ..., T ; z = 1, 2..., C (5.12)

Constraint 5.13 states that part number i for equipment a at time t during scenario

z, can trigger only one type of shipment, either emergency or normal but not both at

the same time.

Ea,t
i,z + αa,t

i,z ≤ 1 ∀ ∃ λa,t
i,z

∀ a = 1, 2, ..., N ; i = 1, 2, .., R; t = 0, 1, 2, ..., T ; z = 1, 2, ..., C (5.13)
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The following two constraints deal with actual delivery date. Constraint 5.14 states

that the actual delivery date (fa,z) for equipment a at scenario z is equal to or

greater than the delivery due date (Da). Constraint 5.15 is used to determine the

actual delivery date of equipment a (fa,z) at scenario z assuming an expedited lead

time is placed to satisfy demand. It is read as as follows: If an expedited shipment

order was placed (Ea,t
i,z = 1), the arrival time of equipment a plus the expedited lead

time for part number i is equal or less than the actual delivery date of the equipment.

fa,z ≥ Da ∀ a = 1, 2, ..., N ; z = 1, 2..., C (5.14)

fa,z ≥ ra + τEi − M(1− Ea,t
i,z ) ∀ ∃ λa,t

i,z

∀ a = 1, 2, ..., N ; i = 1, 2, .., R; t = 0, 1, 2, ..., T ; z = 1, 2, ..., C (5.15)

The following three constraints are used when on-hand inventory is assigned to an

equipment. Constraint 5.16 assigns the value of 1 to αa,t
i,z if there is enough inventory

of part number i at the local warehouse during scenario z and it is allocated in

quantity Qasga,ti,z to the equipment a at time t ; otherwise αa,t
i,z gets the value of 0.

Constraint 5.17 is used to indicate that the quantity (Qasga,ti,z ) of part number i

assigned to equipment a at time t during scenario z could only get one of two values:

the value of the demand (λa,t
i,z) or zero. Constraint 5.18 is used to indicate that

the quantity of part number i assigned to equipment a at time t during scenario z

(Qasga,ti,z ) is equal to or greater than zero.

Qasga,ti,z ≥ λa,t
i,z − M ∗ (1− αa,t

i,z) ∀ ωi,z > 0

∀ a = 1, 2, ..., N ; i = 1, 2, .., R; t = 0, 1, 2, ..., T ; z = 1, 2, ..., C (5.16)

Qasga,ti,z ≤ λa,t
i,z ∗ α

a,t
i,z ∀ ωi,z > 0

∀ a = 1, 2, ..., N ; i = 1, 2, .., R; t = 0, 1, 2, ..., T ; z = 1, 2, ..., C (5.17)
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Qasga,ti,z ≥ 0 ∀ ωi,z > 0

∀ a = 1, 2, ..., N ; i = 1, 2, .., R; t = 0, 1, 2, ..., T ; z = 1, 2, ..., C (5.18)

Constraints 5.19 and 5.20 are used to indicate that the quantity of part number i

assigned to all equipment at time t during scenario z is equal to or less than the on

hand quantity available at the local warehouse at the beginning of the day.

Qt−1
i,z ≥

N∑
a=1

Qasga,ti,z ∀ ωi,z > 0

∀ a = 1, 2, ..., N ; i = 1, 2, .., R; t > 0 and t ≤ τNi ; z = 1, 2, ..., C (5.19)

Qt−1
i,z ≥

N∑
a=1

Qasga,ti,z ∀ ωi,z > 0;χ
t−τNi
i,z > 0

∀ a = 1, 2, ..., N ; i = 1, 2, .., R; t > τNi ; z = 1, 2, ..., C (5.20)

The following two constraints deal with expedited orders. Constraint 5.21 is used to

determine the total quantity of part number i placed as an expedited order at time

t during scenario z. Constraint 5.22 is used to set the expedited order term (ϕt
i,z) as

zero at time t for part number i during scenario z when at time t demand has not

yet started (υt
i,z=0).

ϕt
i,z =

N∑
a=1

(λa,t
i,z ∗ E

a,t
i,z ) ∀ ωi,z > 0;χt

i,z > 0; υt
i,z > 0

∀ a = 1, 2, ..., N ; i = 1, 2, .., R; t = 0, 1, 2, ..., T ; z = 1, 2, ..., C (5.21)

ϕt
i,z = 0 ∀ ωi,z > 0;χt

i,z > 0; υt
i,z = 0

∀ i = 1, 2, .., R; t = 0, 1, 2, ..., T ; z = 1, 2, ..., C (5.22)

The next two constraints are related to normal orders. Constraint 5.23 determines

the total quantity of part number i placed as a normal order at time t during scenario

z. Constraint 5.24 is used to set the normal order term (ρti,z) as zero at time t for

part number i during scenario z when at time t demand has not yet started (υt
i,z=0).

ρti,z =
N∑
a=1

[λa,t
i,z ∗ α

a,t
i,z ] ∀ ωi,z > 0;χt

i,z > 0; υt
i,z > 0

∀ a = 1, 2, ..., N ; i = 1, 2, .., R; t = 0, 1, 2, ..., T ; z = 1, 2, ..., C (5.23)
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ρti,z = 0 ∀ ωi,z > 0;χt
i,z > 0; υt

i,z = 0

∀ i = 1, 2, .., R; t = 0, 1, 2, ..., T ; z = 1, 2, ..., C (5.24)

The next two constraints calculate the quantities received from expedited orders.

Constraint 5.25 determines the received quantities coming on expedited orders for

part i, received at time t during scenario z. These orders received at time t were

placed t-τEi time units earlier. Constraint 5.26 is used to set the received quantities

from expedited orders as zero at time t for part number i during scenario z because

elapsed time t is shorter than expedited lead time (τEi ). Hence, we do not expect any

receipts at this time.

θti,z = ϕ
t−τEi
i,z ∀ ωi,z > 0;χ

t−τEi
i,z > 0

∀ i = 1, 2, .., R; t > τEi ; z = 1, 2, ..., C (5.25)

θti,z = 0 ∀ ωi,z > 0

∀ i = 1, 2, .., R; t ≤ τEi ; z = 1, 2, ..., C (5.26)

The next two constraints calculate the quantities received from normal orders. Con-

straint 5.27 determines the received quantity coming on normal orders for part i,

received at time t during scenario z. These orders received at time t were placed t-τNi

times units earlier. Constraint 5.28 is used to set the received quantities from normal

orders at zero at time t for part number i during scenario z because elapsed time t

is shorter than normal lead time (τNi ). Hence, we do not expect any receipts at this

time.

ηti,z = ρ
t−τNi
i,z ∀ ωi,z > 0;χ

t−τNi
i,z > 0

∀ i = 1, 2, .., R; t > τNi ; z = 1, 2, ..., C (5.27)

ηti,z = 0 ∀ ωi,z > 0

∀ i = 1, 2, .., R; t ≤ τNi ; z = 1, 2, ..., C (5.28)
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Constraints 5.29 and 5.30 calculate the total received quantity of part number i at

time t in scenario z, including expedited (θti,z) and normal (ηti,z) replenishment. The

only difference between these constraints is the time frame covered. Constraint 5.29

includes t > 0 and t ≤ τNi while constraint 5.30 includes t > τNi . Also, con-

straint 5.30 is only added if more expected demand happens at time t−τNi or beyond

(χ
t−τNi
i,z > 0).

γt
i,z = θti,z + ηti,z ∀ ωi,z > 0

∀ i = 1, 2, .., R; t > 0 and t ≤ τNi ; z = 1, 2, ..., C (5.29)

γt
i,z = θti,z + ηti,z ∀ ωi,z > 0;χ

t−τNi
i,z > 0

∀ i = 1, 2, .., R; t > τNi ; z = 1, 2, ..., C (5.30)

Constraints 5.31 and 5.32 state that on hand inventory (Qt
i,z) of part number i at

time t in scenario z is equal to on hand inventory at t-1 minus total assigned quantity

(Qasga,ti,z ) at time t for all equipment, plus total received quantities minus orders placed

as expedited because parts will get consumed immediately and wont be part of any

inventory. Also, constraint 5.32 is only added if more expected demand happens at

time t− τNi or beyond (χ
t−τNi
i,z > 0). The only difference between these constraints is

the time frame they cover. Constraint 5.31 covers t > 0 and t ≤ τNi , and constraint

5.32 covers t > τNi .

Qt
i,z = Qt−1

i,z −
N∑
a=1

Qasga,ti,z + γt
i,z −

N∑
a=1

λa,t
i,z ∗ E

a,t
i,z ∀ ωi,z > 0

∀ a = 1, 2, ..., N ; i = 1, 2, .., R; t > 0 and t ≤ τNi ; z = 1, 2, ..., C (5.31)

Qt
i,z = Qt−1

i,z −
N∑
a=1

Qasga,ti,z + γt
i,z −

N∑
a=1

λa,t
i,z ∗ E

a,t
i,z

∀ ωi,z > 0;χ
t−τNi
i,z > 0; a = 1, 2, ..., N ; i = 1, 2, .., R; t > τNi ; z = 1, 2, ..., C (5.32)

The following three constraints calculate in-transit inventory. Constraint 5.33 states

that in-transit inventory (IT t
i,z) of part number i at times t= 0,1 is equal to expe-
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dited and normal purchase orders (ϕt
i,z and ρti,z) placed at time t. Constraints 5.34

and 5.35 state that in-transit inventory (IT t
i,z) of part number i at time t during

scenario z is equal to the in-transit inventory at t-1, plus expedited and normal pur-

chase orders (ϕt
i,z and ρti,z) placed at time t, minus received quantity (γt

i,z) at time t.

Constraint 5.35 is only added if more demand is expected to happen at time t− τNi

or beyond (χ
t−τNi
i,z > 0).

IT t
i,z = ϕt

i,z + ρti,z ∀ωi,z > 0; i = 1, 2, .., R; t ≤ 1; z = 1, 2, ..., C (5.33)

IT t
i,z = IT t−1

i,z + ϕt
i,z + ρti,z − γt

i,z ∀ ωi,z > 0

∀ i = 1, 2, .., R; t > 1 and t ≤ τNi ; z = 1, 2, ..., C (5.34)

IT t
i,z = IT t−1

i,z + ϕt
i,z + ρti,z − γt

i,z ∀ ωi,z > 0;χ
t−τNi
i,z > 0

∀ i = 1, 2, .., R; t > τNi ; z = 1, 2, ..., C (5.35)

Thee next three constraints calculates the base stock level. Constraint 5.36 states that

base stock level (Si) of part number i is equal to or greater than zero. Constraint 5.37

states that base stock level (Si) of part number i is equal to or greater than on-hand

inventory (Qt
i,z) at any time t for any scenario z. Constraint 5.38 states that base

stock level (Si) is equal to the on-hand inventory at time t= 0 at any scenario z for

part i.

Si ≥ 0 ∀ i = 1, 2, .., R (5.36)

Si ≥ Qt
i,z ∀ωi,z > 0; i = 1, 2, .., R; t = 1, 2, ..., T ; z = 1, 2, ..., C (5.37)

Si = Qt
i,z ∀ωi,z > 0; i = 1, 2, .., R; t = 0; z = 1, 2, ..., C (5.38)

The following four constraints calculate the service level for on-time equipment de-

livery. Constraint 5.39 and 5.40 are used to assign the value of 1 to the auxiliary

variable βa,z if equipment has been delivered tardy; otherwise the auxiliary variable

is valued at 0. Constraint 5.41 states that the service level for on-time equipment
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delivery should be equal to or greater than agreed service level (SL). Constraint 5.42

indicates that βa,z is a binary variable.

βa,z ≤ La,z ∀ a = 1, 2, ..., N ; z = 1, 2, ..., C (5.39)

La,z ≤ M ∗ βa,z ∀ a = 1, 2, ..., N ; z = 1, 2, ..., C (5.40)

N −
∑N

a=1 βa,z

N
≥ SL z = 1, 2, ..., C (5.41)

βa,z is binary ∀ a = 1, 2, ..., N ; z = 1, 2, ..., C (5.42)

5.5 Model Discussion

As presented, the objective of the optimization model is to minimize total cost by

determining the base stock level for each part while satisfying an agreed upon on-

time equipment delivery from maintenance. In order to accomplish this objective,

several inventory balancing constraints and artificial variables are added. All these

constraints and variables, together with the multiple scenarios, increase the columns

and rows generated by the problem.

The model has three binary variables Ea
i , α

a,t
i and βa,z, but the rest of the con-

straints have no restrictions regarding integrality. The base stock level should be a

positive integer, however, we rely on the demand data to be positive and integral to

achieve this objective. The rest of the variables are not required to be integers, so,

the problem we have can be categorized as Mixed Integer Linear Program, or MILP.

Some algorithms used to solve these problems are cutting plane algorithms, branch

and bound, and branch and cut. These types of problems are well studied and known

to be NP-Hard (Non-Deterministic Polynomial-time Hard).

Given that columns and rows increase when multiple scenarios are created, we need

to introduce pre-processing techniques in order to reduce the size of the optimization

model. According to Wolsey [62], pre-processing detects and eliminates redundant
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constraints and variables and tighten bounds where possible, and the resulting lin-

ear/integer program is smaller/tighter, and it will typically be solved quickly. The

author mentions that pre-processing is very important in the case of branch and

bound because of the large quantity of linear programs that may need to be solved.

Based on the literature, one of the pre-processing techniques used is to remove

rows when all the coefficients are zero (A). By removing the row, it has no impact on

the solution of the problem because most likely the right hand side (b = 0) is zero,

or if not, the problem is infeasible Ax = b. In our case, each row is a different part

number, but given that our problem is multi-period and multi-scenario, we utilize

this technique at each scenario across all time periods. The parameter checking this

criteria is ωi,z.

Other novel ideas on pre-processing techniques are developed on this dissertation.

Given that our model is multi-period, and the demand is known, one of the novel

pre-processing technique validates if there is more demand to happen from time t to

the end of the horizon. If so, the constraint is added, otherwise, the constraint is

avoided. Similar to that approach, the other novel technique validates if the demand

has already started. In other words, it validates if the demand from time zero to time

t is greater than zero. If so, the constraint is added, otherwise, it is avoided. All

these concepts are discussed in more details below.

ωi,z: As mentioned in the previous section, ωi,z represents the total demand across

all time periods and all equipment of part number i at scenario z. This parameter

is used to avoid adding unnecessary constraints into the model. Basically, given that

spare parts have sporadic demand, many parts don’t have demand at all in a complete

scenario. For this reason, there might be no need to add some constraints into the

model. In other words, if ωi,z is greater than zero, we allow constraints to be added

into the model. This parameter is used widely and, in fact, is applied from constraint

5.16 through constraint 5.38.
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As an example, one of the constraints that uses ωi,z is the constraint that tracks

orders needed to either satisfy demand or to return the base stock level to the rec-

ommended planned quantity. But if there is no demand in the complete scenario for

a given part, there is no need to add the constraint. The same can be said for the

constraints that track inventory in transit and many others use this parameter to

restrict the generation of more constraints.

χt
i,z: This parameter represents the demand of part number i at scenario z that

is expected to happen after time t. It is worth mentioning again that we assume that

demand is known in advance. Thus, we are capable of identifying if there will be

more demand for part number i at scenario z after time t. In other words, if χt
i,z is

greater than zero, we allow some constraints to be added into the model, otherwise,

we avoid creating them.

The main difference in the usage of parameters χt
i,z and ωi,z is that with the latter,

we only check if there is demand or not; if there is demand, we add all the constraints

for each time t. However, it could be that demand only happened at the beginning,

and if we add constraints beyond that time t, there may be no benefit because they are

loose, and we are simply increasing the size of the problem which will then take more

time to solve. On the other hand, when we use χt
i,z > 0 as part of the criteria to decide

whether we add a constraint or not at time t, we are potentially reducing unnecessary

constraints and the size of the optimization model to be solved. As an example, some

of the constraints that use χt
i,z are some that track replenishment orders to be placed,

either expedited or normal (i.e., constraints 5.21 and 5.23, respectively). For instance,

if demand only happens in time 1, the model will stop adding constraints 5.21 and

5.23 from time 2 and beyond without causing any issues in the final result.

υt
i,z: Following the same logic to reduce unnecessary constraints, another parame-

ter is added, υt
i,z, that contains all demand for part number i, in scenario z from time

t=0 to current time t. When using υt
i,z, constraints are added only if υt

i,z > 0 (only if
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demand has started). Similar to the previous cases, two of the constraints that use

the parameter υt
i,z to limit constraints added into the model are constraints 5.21 and

5.23.

λa,t
i,z : Demand is also used to determine if a constraint is added into the model.

Basically, if λa,t
i,z > 0, then a constraint might be added into the model if it satisfies any

other criteria that the constraint might be subject to. As an example, constraint 5.16

helps to assign the quantity of pieces for part number i at scenario z for equipment a

during time t. However, we only need to add that constraint when we have demand

or λa,t
i,z > 0.

To illustrate the application of the parameters discussed above (λa,t
i,z , ωi,z, χ

t
i,z and

υt
i,z), a simple example is presented with one scenario, two equipments to be scheduled

for maintenance and four different part numbers. As seen in Figure 5.1, equipment

1 will start maintenance during time 1, hence, demand will be reflected in this time

period; equipment 2 will start maintenance during time 4, hence, demand is reflected

in that time period. In this figure, lead times, holding and extra shipment costs can

also be seen.

Based on the demand presented on Figure 5.1, we can confirm that all part num-

bers except the last one (PN4) have demand in either one or both of the equipment.

The first restriction we will discuss is λa,t
i,z > 0. Constraints 5.10- 5.13 and 5.15

are conditioned to be added into the model only if demand exist for that specific part

number i, for equipment a, at scenario z at time t. As we know, demand happens

only during the arrival time of the equipment, so, for the example we are considering,

the model could create a maximum of four constraints for each of the 6 equations

mentioned above, for a total of 24 constraints. The indices for which constraints

will be created are (a=1, t=1, i=1, z=1 ); (a=1, t=1, i=2, z=1 ); (a=2, t=4, i=2,

z=1 ); (a=2, t=4, i=3, z=1 ). As seen in Figure 5.1, equipment 1 has demand only

for two parts, PN1 and PN2. Similarly, equipment 2 has demand for 2 parts, PN2
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Figure 5.1: Example to Illustrate Parameters used to Limit Constraints

and PN3. Those will be the constraints added into the optimization model. If we

did not add the restrictions λa,t
i,z > 0 to generate constraints, the model would have

created 72 constraints for each of the constraints 5.10- 5.13 and 5.15, for a total of

360 constraints. As added detail, the four equations generated from the constraint

5.11 are presented below:

α1,1
1,1 isBinary (5.43)

α1,1
2,1 isBinary (5.44)

α2,4
2,1 isBinary (5.45)

α2,4
3,1 isBinary (5.46)

Following the optimization model, the second parameter helping constraint reduction

is ω4,1 > 0, as all constraints but one, from 5.16 to 5.38, use ωi,z > 0 for validation
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before generating constraints. A simple example is demonstrated by constraint 5.17,

Qasga,ti,z ≤ λa,t
i,z .α

a,t
i,z , since we know that ω4,1 = 0, PN4 at scenario 1 has no demand

in any of the equipments. As a consequence, a total of 16 constraints will be avoided:

8 constraints avoided related to equipment 1 - Qasg1,14,1, Qasg1,24,1, ...Qasg1,84,1; and 8 con-

straints avoided related to equipment 2 - Qasg2,14,1, Qasg2,24,1, ...Qasg2,84,1. We will be only

generating constraints for PN1, PN2 and PN3 but not for PN4 because the last one

doesn’t have demand for any equipment across all the scenarios. If we consider the

other constraints from the optimization model where we have this restriction, we are

reducing the total number of constraints for this small example by eight for each

constraint. Given that 13 constraints were used (some constraints from 5.16 through

5.38 are mutually exclusive), we avoid 13x8 = 104 constraints.

The impact of using these parameters to restrict the generation of constraints is

larger as the data set increases. As we discussed in Tables 4.4 and 4.5, the number of

parts used for each maintenance check is low compared to the total part population

and data used in this research, and applied to the larger case. For instance, in both

tables, the third group is the one that has the highest number of parts used per check,

447 and 452, with standard deviations of 274 and 266, respectively. As such, we will

be avoiding a large number of constraint because the majority of the 4,000 parts have

no demand.

The third parameter used to reduce the numbers of constraints is χt
i,z. Again,

this parameter determines if there is still demand pending from current time to the

future. Since our optimization model is a multi-period model, we could potentially

add many more constraints that might be loose and not needed because there are

other constraints that, at that time, better describe the model. For the example under

discussion, as seen in Figure 5.2, at time 1, all the parts except PN4 have demand that

is going to happen during time 1 or beyond. For this reason, in the constraints where

the parameter χt
i,z > 0 is used, PN4 won’t be able to generate constraints because
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Figure 5.2: Example to Illustrate Parameters χt
i,z

it doesn’t satisfy this criteria. This restriction is used on constraints 5.20 through

5.25 as well as in constraints 5.27, 5.30 and 5.35. So, for this small example, we

won’t generate approximately 9 constraints per time period for PN4. And, if we use

six time periods, that will avoid several more constraints being added into the model.

However, for the specific part number PN4, the results from using χt
i,z > 0 would be

the same as if we used ωi,z > 0. The main benefit of this restriction χt
i,z > 0 can be

seen in the next time period for PN1 to PN3, and are discussed next.

For example, PN1 is not going to generate constraints from time period two

through six because the restriction is not satisfied as there is no more expected de-

mand beyond time period 1. In other words, χ2
1,1 = 0, χ3

1,1 = 0, χ4
1,1 = 0, χ5

1,1 = 0

and χ6
1,1 = 0 as can be seen in Figure 5.2. This way, the restriction is going to impact

9 constraints per time period. More constraints are avoided on PN2 and PN3, since

the restriction is not satisfied for time periods five and six for each. As a result, we

avoid the generation of an additional constraints. Again, on the large data set used

for our industry case study, the impact of these restrictions is of great benefit.

The last parameter used to restrict the generation of constraints is υt
i,z > 0. As

discussed previously, this parameter indicates if demand has started at any given time

by measuring demand from time zero to current time, and it helps avoid generating

constraints for cases where demand has not yet started. For this small example, as

depicted in Figure 5.3, PN3 and PN4 have cases where υt
i,z = 0; hence, constraints

won’t be generated for those cases. This parameter is used on constraints 5.21

through 5.24, so, for the case of PN4, it won’t generate 4 constraints per time
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Figure 5.3: Example to Illustrate Parameters υt
i,z

period. As we have seen before, this behavior is similar to that produced by ωi,z > 0.

The main contribution can be seen on PN3, as the model won’t generate constraints

from time 1 to time 3 because υ1
1,1 = 0, υ2

1,1 = 0 and υ3
1,1 = 0. As a result, the model

is avoiding the generation of 12 constraints in each of the three time periods, one

through three.

Another important aspect of the model that is worth discussing is related to the

tracking model presented by Dembo [61]. The approach and model presented by

Dembo [61] assumes that the scenarios probabilities evolve over time making them

difficult to predict or model using stochastic process, for this reason, the model is

solved periodically (model solved for one period only) to readjust the policy over time.

The tracking model helps to select the policy for the immediate future scenarios and

their associated probabilities. In our case, we assume that we know the probability

for each scenario in advance, and it does not change over time.

5.5.1 Non Essentiality Constraints

As discussed before, we are looking for ways to reduce the size of the problem, hence,

it can be solved quicker. After inspecting the optimization model, there are some

constraints that have been identified as non-essentials and can be removed without

affecting the solution of the model.

• The first constraint that can be removed is constraint 5.9. Given that constraint

5.14 indicates that fa,z ≥ Da, the later one will dominate constraint 5.9, so, it

can be dropped.
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• Also, by default, Xpress-MP assumes non-negativity in the decision variables,

for this reason, the later constraint and the following ones can also be dropped

from the model, as well as constraints 5.18 and 5.36.

• Last, the in-transit constraints are not needed to calculate the base stock level,

they can be used only if there is a need to track inventory. For this reason,

constraints 5.33, 5.34, and 5.35 can be dropped.

In summary, we have discussed the optimization model, parameters and variables,

and we presented examples of how to limit the generation of unnecessary constraints.

In the following chapter, we will continue discussing the optimization model from

a more numerical perspective by presenting small cases to prove its accuracy and a

large case to prove its application in actual industry cases. The large case uses the

data discussed in Chapter 4, and it is also intended to prove that the pre-processing

techniques are able to help generating and solving large scale spare parts optimization

models.
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CHAPTER 6

CASE STUDIES

In this chapter, we are going to discuss two types of case studies, each with a different

purpose. The first types of case studies are small, obvious examples to show that the

model behaves as expected. The second type is based on a large data set where an

industry case is solved. The software used to run the optimization model is Xpress-

IVE Version 1.24.02 64 bit.

6.1 Small and Obvious Examples

In this section, small data sets are used to show the behavior of the model. Some of

the data sets we are going to analyze are: examples with different replenishment lead

times, examples with and without penalty cost for late delivery, examples with and

without on-time service level agreement, examples with differences in shipment costs,

examples with different holding costs, and small examples with multiple scenarios.

It is important to mention that the changes that will be done in the following cases

are to illustrate how the model behaves. We also want to clarify that the model does

not support cases where one scenario could have penalty cost ’x’ and the other has

penalty cost ’y’; or, one scenario has one replenishment lead time for a specific part

and the other scenario has a different replenishment lead time for the same part. The

penalty cost, lead times and holding costs are the same across all scenarios, however,

they could differ by part. In the following examples, we change the parameters only

to show that the model is behaving as expected.

In order to illustrate this case and many that follow, our basis is the example
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presented in the previous chapter and depicted in Figure 5.1. The model is trying to

identify the recommended stock level for the 4 parts in order to minimize cost and

satisfy 95% on-time delivery of the equipment. If equipment is delayed, there is a

penalty cost of $1,000 per time unit. Demand, lead time and shipping cost are also

depicted by Figure 5.1. This small example assumes only one scenario.

6.1.1 Case 1: ”Replenishment Lead Times”

In this case, we illustrate that if replenishment arrives before the next expected de-

mand, the model will take that into account when it recommends the base stock level

to carry at the warehouse.

Following the example depicted on Figure 5.1, two equipment are expected to

have maintenance, one at time 1 and the other at time 4. Each needs three different

parts but in different quantities. The part PN2 is used by both equipment, 3 pieces

by equipment 1 and 2 pieces by equipment 2. As can be seen, the replenishment

lead time for PN2 is 5 time units. Given that demand happens in time 1 and 4,

any replenishment placed in time 1 won’t be able to satisfy any demand at time 4.

Additional actions need to be taken. Based on current parameters, in order to satisfy

on-time delivery and minimize cost, the model results can be seen in Table 6.1 and

are described below:

• For PN1, 5 pieces are needed at time 1, so the model recommends having no

base stock level because normal replenishment lead time is one unit. That is,

parts can come before the equipment leaves maintenance. Thus, we don’t invest

in any holding cost or expedited shipments.

• For PN2, the model recommends having 5 units in stock, 3 pieces to be used at

time 1, and 2 at time 2, as it is cheaper to pay a holding cost of $116 for the 5

pieces rather than paying two expedited costs of $80.65 each.
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• For PN3, 5 pieces are needed at time 4. Given that the holding cost is high at

$36.80/piece/year, the model recommends placing an expedited shipment at a

cost of $80.65 for the whole order, rather than having any on hand because the

holding cost would be $184. Thus, the base stock level recommended is 0.

• For PN4, given that there is no expected demand for this part, the model does

not recommend having it in stock. As a result, the base stock level recommended

is 0.

• Given the current results, the model is able to satisfy on-time delivery greater

than 95%. In the case, both equipment are delivered on time with a total cost

of $196.65 ($116 is the holding cost of PN2 and $80.65 is for expediting PN3).

Part Number Base Stock

PN1 0

PN2 5

PN3 0

PN4 0

Table 6.1: Small Example - Case 1: Baseline Results

Now that we have seen results with the current parameters, let’s do a small change

on the replenishment lead time for part PN2 to show model behavior with replen-

ishment. PN2’s lead time will be changed from 5 units to 2 units, with post-model

results presented in Table 6.2. As expected, the only change is a reduction of the

base stock level of PN2. After PN2 is consumed at time 1, a replenishment order

is placed, and given a lead time of 2 time units, it will be available for equipment 2

consumption when it arrives for maintenance at time 4. Just as in the baseline case,

both equipment are delivered on time satisfying the 95% on-time delivery, but in this
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case, the total cost decreased to $150.25 because PN2’s holding cost decreased from

5 pieces to only 3.

Part Number Base Stock

PN1 0

PN2 3

PN3 0

PN4 0

Table 6.2: Small Example - Case 1: Lead Time Changed - Results

6.1.2 Case 2: ”Changes to the Extra Shipment Cost”

In this case, we illustrate the model behavior when extra shipment cost or holding

cost is modified.

Continuing with the base example used in the previous case, we change the extra

shipping cost for the three parts that have demand in order to validate the model.

The new values can be seen in Table 6.3. Basically, the extra shipment costs for PN1

and PN2 are reduced while PN3 in increased.

Part Number Extra Shipping Cost (Before) Extra Shipping Cost (After)

PN1 $80.65 $5

PN2 $80.65 $10

PN3 $80.65 $200

PN4 $80.65 $80.65

Table 6.3: Small Example - Case 2: Extra Shipment Cost updates

After running the model, and in order to minimize cost and satisfy the on-time

delivery of at least 95%, the results are presented in Table 6.4 and discussed as follows:
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• For PN1, the model continues recommending base stock 0 because the part can

arrive before maintenance is finished because of the short normal lead time.

• For PN2, the model recommends a base stock level of 0 because it is cheaper to

place two expedited orders at $10 each compared to a holding cost of $23.20 a

piece.

• For PN3, the recommendation for base stock level is 5 pieces because the holding

cost is $184 which is cheaper than an expedited order at $200 per order.

• For PN4, there is no change.

• Given the current results, the model is able to satisfy the on-time delivery

greater than 95%. In this case, both equipment are delivered on time, and the

total cost is $204. The cost breakdown is $20 for expediting part PN2 and $184

for the holding cost of PN3.

Part Number Base Stock

PN1 0

PN2 0

PN3 5

PN4 0

Table 6.4: Small Example - Case 2: Extra Shipping Cost Changed - Results

6.1.3 Case 3: ”Changes to the Holding Cost”

In this case, we illustrate the model behavior when holding cost is changed.

We continue with the same baseline example used in our previous cases, only

changing the holding cost for PN2 from $23.20 to $30. As a reminder, this part has

an expected demand at time 1 for 3 pieces and at time 4 for 2 pieces. After running
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the model and comparing results from the baseline model, the only part that changes

is PN2. Results are presented in Table 6.5 and discussed as follows:

• For PN1, as expected, base stock level is the same, 0.

• For PN2, the model is suggesting a base stock level of 2 pieces of PN2 (previously

it was recommending 5 pieces). In order to minimize cost and satisfy on-time

delivery, the model recommends placing an expedited order for equipment 1

and using the 2 pieces in stock to satisfy the demand of equipment 2.

• For PN3, the base stock level is the same as the baseline example (0) and the

model recommends an expedited order.

• For PN4, as expected, base stock level stays the same at 0.

• Given the model recommendations, total cost is $221.30, part of which is for the

holding cost of 2 pieces of PN2 ($60) plus one expedited order to satisfy demand

of equipment 1 ($80.65); the remaining amount is the same as the baseline case

where PN3 is expedited ($80.65).

As we can see, the model is able to detect the best strategy to satisfy on-time

delivery while minimizing cost, and similar to the PN2 case, it relies on a combination

of base stock levels and the best use of the different types of replenishment.

Part Number Base Stock

PN1 0

PN2 2

PN3 0

PN4 0

Table 6.5: Small Example - Case 3: Holding Cost Changed - Results
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6.1.4 Case 4: ”Penalty Cost for Late Delivery and Service Level Agree-

ment for On-time Delivery”

In this case, we show how the penalty cost for late delivery and service level agreement

affects the results of the model.

We continue using the same baseline example with current parameter values, and

only decreasing the penalty cost from $1,000 to $0. After running the model, the

results do not change: the only part with recommended base stock levels is PN2 with

5 pieces; and total cost remains the same. The main reason why the results didn’t

change is because the model still needs to satisfy the 95% of on-time delivery, and

given that this example only has two equipment, we need to deliver both of them

on-time.

When keeping the penalty cost at $0, and modifying the service level agreement

from 95% to 45%, the model satisfies only 1 equipment. The results are presented in

table 6.6 and discussed below.

• For PN1, base stock level continues to be 0 given the short lead time of the

part.

• For PN2, the model recommends keeping only 3 pieces, which will be used to

satisfy demand from equipment 1. For equipment 2, the model places a normal

order.

• For PN3, no base stock level is recommended.

• For PN4, as expected, there is no demand, and therefore, and no base stock

level is recommended.

• Based on current requirements that need to be satisfied, the results allow an

on-time delivery of only one equipment, and the total cost is $69.60.
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Part Number Base Stock

PN1 0

PN2 3

PN3 0

PN4 0

Table 6.6: Small Example - Case 4: Penalty Cost and Service Level Changed - Results

The strategy followed by the model to minimize cost and satisfy on-time delivery

is presented in Figure 6.1. As can be seen, equipment 1 is the only equipment being

delivered on time; since the specified service level is 45%, this requirement is being

satisfied. In order to guarantee the on-time delivery of equipment 1, the model needs

to have 3 pieces of PN2 in stock at a cost of $23.20/each. And, PN1 is delivered at

no extra cost due to its shorter lead time and arrival by the time the equipment is

expected to depart.

The demand requirements for equipment 2 still need to be satisfied, but not its

on-time delivery. The requirements for PN2 and PN3 are satisfied by placing normal

orders. Given lead time of 5 time units, those orders will arrive at time 9; since the

expected delivery date was at time 5, equipment 2 is delivered late by 4 time units,

however, no additional cost is incurred.

One of the questions that might arise is whether equipment 1 was the cheapest

equipment to deliver on time, and the answer is yes. To understand why this is the

case, let’s assume we want to deliver equipment 2 on time. Some options would be:

• Option 1 would have a base stock level for both parts used by equipment 2.

The holding cost for PN2 is $23.20. Given that 2 pieces are needed, the total

holding cost is $46.40. The holding cost for PN3 is $36.80, and given that 5

pieces are needed, the total holding cost for PN3 is $184. Thus, the total cost

for this option would be $207.20, which is greater than the cost provided by the
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Figure 6.1: Small Example - Case 4: Penalty Cost and Service Level Changed

model.

• Option 2 would expedite both parts. Given an incremental cost for expediting

an order of $80.65 each, the total cost for this option would be $161.30 which

is greater than the cost provided by the model.

• Option 3 would be to combine of the alternatives above. PN2 is satisfied by

having a base stock level of 2 pieces, for a total holding cost of $46.40; PN3 is

satisfied by placing an expedited order at an incremental cost of $80.65. The

total cost of this option is $127.05. As have shown, delivering equipment 1 on

time is the right option from the model.

6.1.5 Case 5: ”Multiple Scenarios - Same Demand”

In this case, we validate model results using multiple scenarios. Just as in the previous

cases, the same baseline example will be used.

The first validation that we are going to do is very simple – we are going to

create multiple scenarios using the same demand as the baseline scenario, as shown

in Figure 6.2. Given that most parameters are the same, with the exception of the
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Figure 6.2: Small Example - Case 5: Example using Multiple Scenarios

number of scenarios and probabilities, we expect to have the same results compared

to the baseline case. However, the model will generate more rows and columns. The

probability will have the same value across the multiple scenarios, adding to 1.

First, we run a model with two scenarios. As seen in Figure 6.3, the optimal

solution is exactly the same as our baseline. However, the number of rows increased

from 259 to 518 and the number of columns from 272 to 540, an increase of 259 and

268, respectively. Results are as expected: with the same recommended base stock

level as the baseline, the model is able to satisfy on-time delivery for at least 95% of

the equipment by scenario while minimizing cost.

Next, we run the model with three scenarios, each using the same baseline demand.

The results are as expected and presented in Figure 6.4. The optimal solution is the

same as the baseline case and the two scenarios, however, the number of rows increases

by 259 and columns increase by 268 by going from two scenarios to three scenarios.
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Figure 6.3: Small Example - Case 5: Two Scenarios - Demand as Baseline

 

Figure 6.4: Small Example - Case 5: Three Scenarios - Demand as Baseline
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6.1.6 Case 6: ”Multiple Scenarios - Demand, Cost and Service Level

Changes”

We continue using multiple scenarios, making several changes to the small example

in order to show that the machines being delivered on-time could be different from

one scenario to another; it all depends of the parameters.

In order to present the model behavior with multiple scenarios, we use the example

presented in Figure 6.2 as our baseline. Several minor changes are made to the

parameters:

• First, service level is changed from 95% to 45%.

• Second, penalty cost is decreased to zero.

• Third, the demand of PN2 for equipment 1 is changed from 3 to 33 in scenario

3.

• Last, the extra shipment cost for PN2 is updated from $80.65 to $800.65.

Since the service level has changed, we only need to satisfy 1 equipment per

scenario, however, as mentioned before, the example being used has two equipment

per scenario. At the same time, we need to update the penalty cost to zero or the

model would try to satisfy all equipment deliveries to avoid any high penalty costs.

The demand for PN2 by equipment 1 is increased to 33 in scenario 3 in order to

reduce any motivation for having any in stock due to the large total holding cost.

Similarly, the extra shipment cost for PN2 is increased to reduce any motivation for

placing expedited orders.

Post-model results are presented in Figure 6.5. As can be seen on the right hand

side, the optimal solution that satisfies at least 45% on-time delivery while reducing

cost is $96.49. On the left hand side, we see a table representing the values of variable

βa,z, which takes the value of 1 if the equipment is delivered late; otherwise, it takes
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Figure 6.5: Small Example - Case 6: Three Scenarios - Demand, Service Level and

Cost Changes

the value of 0. For this example, we see that in scenario 1 and scenario 2, equipment

2 is being delivered late (β2,1 = 1 and β2,2 = 1); however, in scenario 3, equipment 1

is being delivered late (β1,3 = 1).

As we have seen, the equipment being delivered on-time could be different among

the scenarios as the only criteria that the model needs to satisfy is a specific service

level while minimizing cost. The results are similar to the ones presented in Table 6.6

which are from Case 4. However, the total cost differs. In Case 4, the total cost was

$69.60, and in the current case total cost is $96.49. Next, we are going to analyze

the strategy recommended by the solution in this case to validate the accuracy of the

model.

• For scenario 1 and scenario 2, the model is able to deliver equipment 1 on time

by placing a normal replenishment of PN1 at no additional cost. As a reminder,

PN1 has a normal lead time capable of delivering the part before the equipment

departs. For PN2, the model recommends a base stock level of 3 pieces.

• For scenario 1 and scenario 2, given that equipment 1 is being delivered on time,
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and since there is no penalty cost for late deliveries, the model recommends

placing normal orders for equipment 2 at no additional cost.

• For scenario 3, the model recommends delivering equipment 2 on time. PN2 is

satisfied by the base stock level of 3 pieces being carried by the model. Since,

equipment 1 is requiring 33 pieces, we are not going to use any of the base stock

level of PN2; instead, an exclusive order will be place for equipment 1. PN3

for equipment 2 will be satisfied by placing an expedited order. This way the

model achieves the optimal strategy.

• For scenario 3, given that equipment 2 is being delivered on time, the model

recommends to satisfy demand for equipment 1 by placing normal orders at no

additional cost, hence, equipment 1 is delivered late.

• For scenario 3, should equipment 1 be delivered on time, it would be more

expensive because we only had two options: 1) Have a PN2 base stock level of

33 pieces, for a total holding cost of $765.60; or, 2) place an expedited order at

a cost of $800.65. Given that the probabilities for this to happen are 1/3 (each

scenario has the same probability), the total cost contribution to the total cost

of the model would be an increase of $266.88, meaning neither of these options

is optimal.

• By following this strategy, the model warrants that the minimum cost is achieved

while satisfying 45% on-time delivery. The total cost of $96.49 is comprised of

holding cost and extra shipment cost: PN2 has a base stock level of 3 pieces

with a holding cost of $23.20 per piece. This means total holding cost is $69.60

(all scenarios share the same cost); the other piece is the extra shipment cost for

PN3 in scenario 3. This impact is (1/3)($80.65) for a total cost of approximately

$96.49.
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6.2 Industry Case Example

In this section, we are going to test the model using a large data set which was

discussed in sections 4.1 and 4.2. We will use almost all of the historical data provided

and discuss the variables, constraints generated and results of this case.

6.2.1 Industry Example Description

First, let’s describe the example we are going to use. We have a company that is

able to perform preventive maintenance on a specific type of commercial airplane.

This company has three production lines, and thus able to schedule three airplanes

for maintenance at the same time. The company is able to schedule the following

8 weeks of maintenance with a high degree of certainty. There are periods with

low maintenance, especially during holidays because aircraft are being used to move

passengers; but during periods of low passenger demand, the company is busy with

three full production lines. It is assumed that the aircraft maintenance variables at

the time of arrival are contained in the ranges presented in Table 4.3 and, further,

that each has the same probability to be within any of the three groups discussed in

Tables 4.4 and 4.5.

The company wants to satisfy on-time equipment delivery from maintenance of

at least 95%, but at the same time, it wants to minimize cost. If the company

delivers an equipment late, it must pay a penalty fee of $10,000 per week. The type

of maintenance that will be scheduled typically takes 1 week to complete, so, an

equipment will be considered late if it is delivered more than 1 week after its arrival.

Part lead times and shipment costs are provided in the data set discussed in

sections 4.1 and 4.2. The lead times provided by Airbus and the airline are the ones

we treat as normal replenishment. Given that the company has its logistics center in

a very strategic area, and due to several flights per day to its maintenance location,

we consider that any expedited lead time arrives during the time of maintenance. As
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mentioned previously, the optimization model is going to utilize the incremental cost

between normal and expedited lead times. Another important piece of information

needed in the model is holding cost. For our analysis, we assume a holding cost of

20% of the unit price of the part.

As discussed earlier, the original data set provided by Airbus contains about 21,000

different expendable parts. The current optimization model uses a lot by lot policy,

which is typically applied to parts that are not low cost. Our initial intention with

this model was to apply it to the most expensive parts, for example, the ’A’ class

from a typical Pareto analysis. This would typically account for 20% of the parts

(4,200 parts in this case), and about 80% of the total demand value.

Given that we had missing data (discussed in section 4.2), an ABC analysis is

performed based only on the 14,247 parts that have a unit price. The ABC is based

on the total demand the parts have had across the 795 maintenance checks, and this

value is multiplied by the unit price. Categories A and B account for 95% of the total

demand value, and the total number of parts in these two categories is 3,208. It is

noted that some normal lead times for fewer than a hundred parts are less than the

duration of the maintenance. For this reason, we are not going to include them in

the analysis, because the model would recommend a normal order anyway, and this

way, we can save some computational time.

In order to increase the sample size and get closer to our initial targeted estimate

of 20%, we continue looking for the data. It is noted that some parts with essentiality

code 1, with valid price and lead time are being left out mainly because they are

category C. As discussed in section 2.4, if a part is categorized with code 1, it must

be replaced before the aircraft can fly; hence, this part is critical and its absence could

carry a high penalty cost for late delivery. Some parts with essentiality code 1 are

left out due to having a normal lead time that is shorter than the total duration of

aircraft in maintenance. After the C parts with essentiality code 1 are added into our
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sample part population, we are ready to test the model with a total of 4,149 parts.

One of the leading spare parts planning software companies was willing to share

the total quantity of different parts for which its customers plan for the same brand of

airplane, and it is between 2,780 and 7,535, including all categories A, B and C. Based

on some of the airline’s data, we were able to detect that the database of the 795

maintenance checks has more than 1,400 alternative parts, probably with the same or

different operators getting parts from different suppliers. Thus, there is difference in

the part number even though the functionality is the same. Cases like this one might

help with the decreased number of parts reported by the software company. In fact,

in my current company, it is common to decrease the number of parts being planned

by rolling up demand for alternate parts. This way the forecast accuracy increases

and the planning workload decreases. It is not surprising to have some parts from

specific commodities have as many as 40 parts rolling up demand together.

In order to reduce computational time, and given that maintenance checks are

performed in a week’s time, our time unit will be in weeks; hence, all part lead times

are converted into this time unit. The planning horizon will be 8 weeks, and we are

going to assume the busiest schedule where 3 aircraft are maintained weekly, for a

total of 24 aircraft in the planning horizon, as seen in Figure 6.6.

Since we are using scenario-based methodology, the maintenance schedule is re-

peated several times as seen in Figure 6.7. The difference among the different scenarios

is demand; though each scenario is assigned the same probability of occurrence.

6.2.2 Scenario Based on Random Generation of Part Demand

In this approach, given the historical data of maintenance checks provided by Air-

bus, the discrete distribution of each part was calculated. Based on the discrete

distribution, 25 random values per aircraft are generated, in other words, 25 different

scenarios per aircraft are generated as it can be seen on Figure 6.8. As discussed
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Maintenance Schedule 

Figure 6.6: Large Example - Maintenance Schedule

  t0        t1              t2   …….            t8 

Scenario 1 

… 
  t0        t1              t2   …….            t8 

Scenario 2 

  t0        t1              t2   …….            t8 

Scenario K 

Figure 6.7: Large Example - Multiple Scenarios
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Figure 6.8: Large Example - Random Generation of Part Demand

before, a total of 24 aircrafts are coming into maintenance, so, the same process is

performed for all of them.

The first observation we have in this approach is that over five hundred parts are

not generating demand given the low probabilities of them. Nonetheless, we are going

to discuss the most relevant results of this approach, and we are going to compare it

against another approach to generate the scenarios.

The model is able to find the first feasible solution in 90 seconds, with a gap

between primal and dual of 11.39%. The model quickly is able to reduce the gap to

less than 1% in around 30 minutes, being the best solution $91,011.58 and the best

bound $90,144.08. After running for a total of 6 hours, the gap gets reduce to 0.86%

and keeps in that range even after the model is let run for long period of time.

Given that there were a significant number of parts that did not generate demand,

we decided to solve the model again, but this time using a different approach. Instead

of generating random demand of each part, we randomly choose an aircraft to repair.

Accordingly, we assign the whole maintenance check randomly for each aircraft. This

is explained in more details on the next section. Later on, we will also discuss how

the results from both approaches compare.
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6.2.3 Scenarios Based on Random Assignment of Historical Demand Checks

In this approach, we are going to utilize almost all of the historical demand data

available. As a reminder, the demand historical data contains 795 different mainte-

nance checks. Given that the original schedule shown in Figure 6.6 has 24 aircraft,

we have the ability to populate 33 scenarios (24*33=792).

When the historical data was sorted by time, it was noticed that many mainte-

nance checks landing close to each other were performed and reported by the same

company. This may well have been related to a ”catch up” period, where companies

were trying to report as much data as they had available when joining the program.

For our data modeling, in order to avoid assigning similar data to the same aircraft,

we randomly assign the maintenance checks to the aircraft to be scheduled as seen

in Figure 6.9. This random assignment is without replacement, each check can only

be used once. The main difference between the first approach and this one is that

the first approach randomly generated demand values based on historical demand

of the parts. In the approach of this section, we are randomly assigning the whole

historical data to the aircraft that will be scheduled. As discussed, we are utilizing

792 maintenance checks out of the 795 available, keeping three for later use as more

data becomes available.

Variables and Constraints Generated

In order to validate the robustness of the model, we run 10 different trials. In each

of the trials, the maintenance checks are randomly assigned to one of the aircraft

to be scheduled. Before discussing results, let’s discuss the variables and constraints

generated by the model. Figure 6.10 shows that the model generates an average of

17.69M constraints and 46.58M variables with a confidence interval of 95% of the

values being [17.28M, 18.098M] and [46.19M, 46.97M] respectively. Even though

the constraints are in the millions, the maximum number of possible constraints
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Figure 6.9: Large Example - Historical Data Assignment

generated could be around 246M, however, given the pre-processing techniques we

discussed previously, we are only generating around 7% of them. The impact of

avoiding around 93% of the constraints is substantial because we are able to solve the

model efficiently as we will discuss in the next section.

The optimization model was presented in section 5.4 (page 57), and below we

discuss the average number of constraints generated by the 10 trials:

• Constraints 5.8 is a function of the 33 scenarios and the 24 aircraft, with a

maximum possible number of constraints of 792. In fact, that is the number

of constraints generated by the model for that equations. Constraint 5.9 is

non-essential, thus, it is not used in the model.

• Constraints 5.10 and 5.11 are a function of 24 aircraft, 4,149 different parts, 9

time units (from 0 to 8) and 33 scenarios. The maximum possible number of

constraints that each could each generate is 29.6M. Based on the restrictions in

place, each is generating only 58,413 different constraints.

• Constraints 5.12 and 5.13 are a function of the 24 aircraft, 4,149 different parts,

9 time units (from 0 to 8), and 33 scenarios. So, the maximum possible number
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Figure 6.10: Large Example - Constraints and Variables
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of constraints that they could generate is 29.6M. As discussed in section 5.5,

we only allow constraints to be generated under certain conditions. For this

reason, these equations are only generating 58,413 constraints.

• Constraint 5.14 also is also a function of 33 scenarios and 24 aircraft, hence the

maximum possible number of constraints that could be generated is 792; and

that is the number of constraints that the model is actually generating.

• Constraint 5.15 is a function of 24 aircraft, 4,149 different parts, and 33 scenar-

ios. However, it is only a function of 8 time periods (from 1 to 8). As a result, it

is able to generate a maximum of 26.2M constraints, but given the restriction,

it only generated 58,413 constraints.

• Constraints 5.16 is function of 24 aircraft, 4,149 different parts, 33 scenarios and

9 time periods. The maximum possible number of constraints that each could

each generate is 29.6M. Based on the restrictions in place, each is generating

only 7,165,267 different constraints.

• Constraint 5.17 also is function of 24 aircraft, 4,149 different parts, 9 time

periods and 33 scenarios. Given that the restriction in place, the model is

generating 8,060,926. Constraint 5.18 is non-essential, thus, it is removed from

the model.

• Constraint 5.19 and 5.20 are a function of 8 time periods (from 1 to 8), 33

scenarios and 4,149 parts. Together these can generate a maximum of 1,095,336

constraints. Based on current restrictions, each is generating 256,404 and 36,329

constraints, respectively.

• Constraint 5.21 is a function of 9 time periods, 33 scenarios and 4,149 parts,

with a maximum number of constraints of 1,232,253. However, this constraint

is only generating 82,547 constraints because of the restrictions placed.
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• Constraint 5.22 is similar to the prior constraint. In theory, it could generate

1,232,253 different constraints, but given the restrictions and intent for this

constraint, it is generating only 107,770.

• Constraint 5.23 is a function of 9 time periods, 33 scenarios and 4,149 parts.

So, it could generate 1,232,253 different constraints. However, based on the

restrictions assigned, it is generating only 82,547 constraints.

• Constraint 5.24, in theory, could generate 1,232,253 different constraints. Given

the restrictions and intent for this constraint, it is generating only 107,770

constraints.

• Constraints 5.25 and 5.26 together could generate a maximum of 1,232,253

constraints. Given current restrictions, they are generating 190,317 and 37,319

constraints respectively.

• Constraints 5.27 and 5.28 present similar dependency as the previous two con-

straints. Together they could generate a maximum of 1,232,253 constraints.

Based on the restrictions placed, 5.27 generates 36,329 and 5.28 generates

293,723 constraints. However, this latter constraint simply assigns values to

variables given its form ηti,z = 0.

• Constraints 5.29 and 5.30, depend on 8 time periods (from 1 to 8), 33 sce-

narios, and 4,149 parts; together could these generate a maximum of 1,095,336

constraints. Based on the restrictions given, 5.29 generates 256,404 constraints

and 5.30 generates 36,329 different constraints.

• Constraints 5.31 and 5.32, similar to the prior constraints, could generate a

maximum of 1,095,336 constraints. However, given the restrictions in place,

these constraints generate 256,404 and 36,329 different constraints, respectively.
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• Constraints 5.33, 5.34 and 5.35 are a function of 9 time periods, 33 scenarios

and 4,149 parts. All together, these could generate a maximum of 1,232,253

constraints, however, since they are non-essential they are removed from the

model.

• Constraint 5.36 only depends on the number of parts. Thus, the maximum

number of constraints it could generate is 4,149. Given that this constraint is

non-essential, we removed it from the model.

• Constraint 5.37 depends on 9 time periods, 33 scenarios and 4,149 parts. Thus,

it could generate a maximum of 1,232,253 constraints; for this case, it is gener-

ating 335,872 constraints.

• Constraint 5.38 is a function of 1 time period (time 0), 33 scenarios and 4,149 dif-

ferent parts. The maximum number of constraints it could generate is 136,917,

and in fact, it is generating all these constraints.

• Constraints 5.39 and 5.40 depend on 33 scenarios and 24 aircraft, so the maxi-

mum number of constraints that each could generate is 792. For this example,

each is generating 792 different constraints.

• Constraint 5.41 depends on each scenario, so the maximum number of con-

straints it could generate is 33, which is the number being generated.

• Constraint 5.42 depends on 33 scenarios and 24 aircraft, for a maximum of 792

different constraints. This is the maximum being generated.
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Table 6.7: Large Example - Possible No. of Constraints

vs. Avg. Constraints Generated

Constr. No. Possible No Constr. Avg. Generated Std. Dev.

5.8 792 792 0

5.9 792 Non-Esse. Non-Esse.

5.10 29,574,072 58,413 0

5.11 29,574,072 58,413 0

5.12 29,574,072 58,413 0

5.13 29,574,072 58,413 0

5.14 792 792 0

5.15 26,288,064 58,413 0

5.16 29,574,072 7,165,267 54,809

5.17 29,574,072 8,060,926 61,660

5.18 29,574,072 Non-Esse. Non-Esse.

5.19 and 5.20 1,095,336 292,733 2,242

5.21 1,232,253 82,547 1,238

5.22 1,232,253 107,770 4,582

5.23 1,232,253 82,547 1,238

5.24 1,232,253 107,770 4,582

5.25 and 5.26 1,232,253 227,636 4,152

5.27 and 5.28 1,232,253 330,052 2,526

5.29 and 5.30 1,095,336 292,733 2,242

5.31 and 5.32 1,095,336 292,733 2,242

5.33, 5.34, 5.35 1,232,253 Non-Esse. Non-Esse

Continued on next page
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Table 6.7 – continued from previous page

Constr. No. Possible No Constr. Avg. Generated Std. Dev.

5.36 4,149 Non-Esse. Non-Esse.

5.37 1,232,253 335,872 2,569

5.38 136,917 136,917 0

5.39 792 792 0

5.40 792 792 0

5.41 33 33 0

5.42 792 792 0

Total 246,596,451 17,811,561 134,761

As we have seen, the possible number of constraints that could be generated by

the model is more than 246M. However, thanks to the addition of the restrictions

discussed in section 5.5, the model is able to avoid the creation of about 93% of

constraints, or close to 228M constraints.

If we had not been able to eliminate all those constraints, the computational time

to create the model and solve it would be intractable. For this large example, in

order to read the data and create the model, the maximum memory Xpress-MP was

utilizing from the server was close to 60 GB, as seen in Figure 6.11. It took close to

3 hours and 30 minutes for the entire process of reading and creating the model; had

we not been able to avoid the creation of constraints, the process would have required

more memory and more time.

In order to further reduce the number of constraints and variables, we also rely on

the presolve functions of the optimization software used. As we know, presolve is able

to eliminate redundant constraints, eliminate fixed variables and substitute them in

constraints, enable coefficient tightening, etc. After the software presolved the model,
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Figure 6.11: Large Example - Server Utilization when Reading and Creating the

Model

the number of constraints is reduced to 170,900 and the number of variables is reduced

to 129,990.

As an example of the presolving process, let’s consider the following constraints:

c1 + ax ≤ b1 (6.1)

ax = b2 (6.2)

The software will keep constraint 6.2 as is, but will transform equation 6.1 as

shown below, this is done in order to reduce coefficients:

c1 + b2 ≤ b1 (6.3)

As an example of presolving, similarly, in our optimization model we have con-

straints 5.28 and 5.29 both needing to satisfy the following criteria: ∀ ωi,z > 0;

i = 1, 2, .., R; t ≤ τNi ; z = 1, 2, ..., C. The first constraint, 5.28, is used to set

the received quantities from normal orders at zero at time t because elapsed time is
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shorter than normal lead time; and the following constraint, 5.29, calculates the total

received quantity including expedited and normal orders.

ηti,z = 0 Constraint 5.28

γt
i,z = θti,z + ηti,z Constraint 5.29

For this specific case, presolving will identify an opportunity for reducing coef-

ficients by substituting zero instead of the term ηti,z in constraint 5.29. Obviously,

for this specific constraint, we could still modify the mathematical model developed.

The new constraint is shown below:

γt
i,z = θti,z + 0 (6.4)

Similar to the previous case, there are other cases where the model was simplified,

however, not all of those cases are as obvious as this one. As discussed in section

5.5.1, we were able to identify other constraints that are non-essential and can reduce

the model size.

6.2.4 Model Performance and Results

In this section, we analyze the results for the large example we have been discussing.

The model performs an LP relaxation. Basically, it ignores all integer require-

ments, and concurrently starts solving the Dual, Primal and Barrier methods. As an

example, we present the results from trial 1, however, the rest of trial present similar

behavior. Based on the results presented in Table 6.8, it can be seen that the Dual

method is the first method able to find a solution. The results of the Dual are shown

in Figure 6.12 with a value of $87,065.54. This solution is found in 93,381 iterations

and around 4.3 seconds. As we know, the value of the objective function with ignored

integer requirements will be a lower bound on the optimal integer program objective

value in a minimization problem.

101



Table 6.8: Large Example - Results from Dual in Trial 1

Dual Obj Dual Inf Primal Objective Primal Inf Barrier: p.obj. d.obj

dual crash

dual crash factorizing

D .0000000 .0000000 factorizing

D .0000000 .0000000 p 730332.83 21191.494 factorizing

D .0000000 .0000000 p 730332.83 21191.494 B -4.694E+08 .0000000

D .0000000 .0000000 p 730332.83 21191.494 B -1.181E+09 38271935.

D .0000000 .0000000 p 730332.83 21191.494 B -1.407E+09 61764211.

D .0000000 .0000000 p 730332.83 21191.494 B -1.498E+09 61074373.

D 40797.859 .0000000 p 730332.83 21191.494 B -1.498E+09 61074373.

D 40797.859 .0000000 p 730332.83 21191.494 B -1.137E+09 52547491.

D 40797.859 .0000000 p 932865.31 3136.7645 B -1.137E+09 52547491.

D 40797.859 .0000000 p 932865.31 3136.7645 B -1.043E+09 51429846.

D 40797.859 .0000000 p 932865.31 3136.7645 B -8.867E+08 48971764.

D 40797.859 .0000000 p 932865.31 3136.7645 B -6.829E+08 43129436.

D 40797.859 .0000000 p 932865.31 3136.7645 B -5.088E+08 29225551.

D 85453.182 .0000000 p 932865.31 3136.7645 B -5.088E+08 29225551.

D 85453.182 .0000000 p 932865.31 3136.7645 B -3.216E+08 16249239.

D 85453.182 .0000000 p 286083.13 .0000000 B -3.216E+08 16249239.

D 85453.182 .0000000 p 286083.13 .0000000 B -1.544E+08 7994421.6

D 85453.182 .0000000 p 286083.13 .0000000 B -60888065. 3969346.5

D 85453.182 .0000000 p 286083.13 .0000000 B -16313894. 1764326.0

——- optimal ——– —– interrupted —— —– interrupted ——
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Figure 6.12: Large Example - LP Relaxation Dual Results from Trial 1

Figure 6.13: Large Example - Gap between Primal and Dual over Time

Given the value of the dual, the software is able to identify an integer solution

with a value of $99,418.56. The gap between Dual and Primal is 12.43% as seen in

Table A.1 in Appendix A. This same table shows that by using root cutting and

heuristics, the software is able to find 5 feasible integer solutions, with a minimum

gap between Dual and Primal of 1.64%, this is done in about 13 minutes.

In order to understand if the gap can further decrease, we let the model run for

more additional time. At this point, the process started doing branch and bound,

with the initial gap between Primal and Dual of 1.64%. Figure 6.13 shows the gap

between Primal and Dual over time; and Figure 6.14 shows the objective function

over time.

As we can see in Figure 6.13, we let the model run for over 10 hours in total.

For 9hr and 50 minutes the model utilized branch and bound, finding 22 additional

integer feasible solutions, for a total of 27 feasible solutions. During the branch and

bound procedure, the gap reduction is very minimum, it goes from 1.64% to 1.19%.
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Figure 6.14: Large Example - Objective Value vs Time

After this point, the model is not able to make much progress on gap reduction. In

fact, in the last 7 hours running, it is only able to go from a 1.22% gap to a 1.19% gap.

At this point, the running process is manually terminated and the final results are

presented in Figure 6.15; the data supporting these graphs is included in Appendix B

in Table B.1.

We need to emphasize again that the model was able to reach less than 2% gap

between Dual and Primal in around 12 minutes, and close to 1% (1.25%) in an 70

minutes, confirming that the model formulation is very strong. From an industry

perspective, and as a practitioner, the gap is within a reasonable tolerance, and

without a doubt, could help companies to model cases where the overall system

needs to be considered. These results are repeated across all the different trials.

Furthermore, the following results also show the robustness of the model because

standard deviation is very small.

In Figure 6.16 it is shown the results from the 10 different trials. As it can be seen,

all the values are very close, for this reason the standard deviation is small. Another

thing to notice is that penalty cost for late delivery is zero, probably it is because

the high penalty fee and the high service level it needs to satisfy. Another important

thing we need to mention is that the total cost is close to the value resulted on the first

approach, however, it is outside the confidence interval; the main difference between

both approaches is on the shipment cost being larger on the second approach.
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Figure 6.15: Large Example - Final Results Trial 1

The model is recommending to have base stock level only for about 924 parts,

the number of parts varies depending on the trial but goes from 915 to 932. The

average number of pieces recommended to stock is 11,397. Even though the total

dollar amount in base stock level is very close from one trial to the other one, only

252 parts have the exact same quantity across all trials.

Let us now discuss the results for all the scenarios from one of the trials. Table C.1,

available in Appendix C.1, shows the results from each scenario. As seen in Table C.1,

the values of emergency delivery are widely spread ranging from $36,473 to $145,562.

It is necessary to drill down into each scenario to understand the individual results.

Intuitively, we know that this is related to the different part numbers required per

check, hence, we organize the data from small cost to higher cost for each check

modeled. Next, we add the number of different part numbers used in each check. The

results are shown in Figure 6.17: as the number of parts increases, the incremental
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Figure 6.16: Large Example - Summary Results All Trials
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Figure 6.17: Large Example - Extra Shipment Cost and Parts per Check

cost for expediting increases.

Furthermore, we perform a linear regression analysis to understand the correlation

between the number of parts used and the total expedited cost. As can be seen

in Figure 6.18, the majority of the data points are around a straight line. Also,

Figure 6.19 shows an RSquare of 95%, meaning that 95% of the variance can be

explained. In other words, it is a very strong indicator of the correlation (97%)

between both variables.

Figure 6.19 also shows the Analysis of Variance for both variables. The null

hypothesis (Ho) is set as: the number of parts and the expedited cost are not lin-

early related, and H1 is set as the two variables are linearly related; and we use

an alpha value of 0.05. The results show the F Ratio 16,731.74 and the F Critical

F(0.95,1,782)=3.84. Thus, F Ratio > F Critical implying with at least 95% confidence

that the variables are related.

107



Figure 6.18: Large Example - Linear Regression Analysis

Figure 6.19: Large Example - Linear Regression Analysis
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Also, the linear fit is provided and presented by equation 6.5, where Extra Cost

is the total extra shipment cost incurred by each equipment and Parts is the total

number of parts with demand by each equipment. In the parameter estimates section,

an analysis is presented for the members of this linear equation. Given that the

probability is lower than 0.05, we conclude that the parameter is significant (different

than zero) and we can keep the terms in the equation. In order words, as documented

in JMP help, the probability of getting by chance a t-ratio greater, in absolute value,

than the computed value is less than 0.0001.

ExtraCost = −899.7515 + (56.487858)x(Parts) (6.5)

We see that the model is able to predict well at the beginning of the range, however,

it gets distant at the end of it, as shown in Figure 6.18. We perform one more analysis

to validate if a linear model is the best fit for our data set. First, we estimate the

predicted value by using the equation 6.5; second, we determine the residuals (e) by

substracting the Extra Cost result predicted value as shown in equation 6.6; third,

we standardize the residuals (e∗) by dividing them by their standard deviation (σe)

as seen in equation6.7. Last, we plot the results against the different number of parts

with demand.

e = ExtraCostResult − ExtracCostPredicted (6.6)

e∗ = (e − 0)/ σe (6.7)

As can be seen in Figure 6.20, the residuals are not horizontally and randomly disperse

across the mean (zero). In fact, it is seen that after the value of 200, all the residuals

are on the positive side of y. This behavior indicates that linear regression might not

be the best model to describe the relationship between the two variables. As a result,

we tried a polynomial fit, and for this specific case we use a quadratic fit.
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Figure 6.20: Large Example - Linear Regression Residuals plot

The results from the quadratic fit can be seen in Figure 6.21. It is noticed that

this fit better describes the data points across almost the entire range whereas the

linear fit was strong at the beginning, but less so at the end of the range.

The visual improvement seen on the quadratic fit is confirmed by the increase in

the variation explained by the model. R square has increased to 97.7%. ANOVA is

testing the same null hypothesis as before, and for this case, we also conclude that the

variables are related because F ratio is greater than F critical (same value as before),

FRatio = 16, 575.91 > FCrit(0.95, 1, 782) = 3.84.

The equation fitting the data set is shown by 6.8. Extra cost is the total extra ship-

ment cost incurred when utilizing emergency shipment, and Parts is the total number

of parts with demand by each equipment in maintenance. As before, the parameter

estimates section shows that all the parameters on the equation are significant, and

we keep them in the equation.

ExtraCost = −351.72 + (45.24)(Parts) + 0.055(Parts− 74.48)2 (6.8)

Also, we perform a residual analysis test, and this time, we get the expected result:
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Figure 6.21: Large Example - Polynomial Fit Degree = 2

Figure 6.22: Large Example - Polynomial Fit Analysis
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Figure 6.23: Large Example - Polynomial Fit Residuals

data points at both sides of the mean (zero) across the range as seen in Figure 6.23.

As before, there is one outlier that falls outside the group, but other than that the

residual is good, so, we conclude that equation 6.8 describes the relationship between

the two variables.

How can we use the results of the equation discussed above? From an budgeting or

quoting perspective, the previous equation can be used to estimate the total expedited

cost that the company will incur in order to provide maintenance to the equipment.

As we know, the three main variables used to determine the maintenance check for

an aircraft are flight hours, flight cycles and age of the aircraft as seen in Table 4.2.

We need to determine a model that is able to predict the numbers of part that need

replacement depending on either one of the variables mentioned before.

In order to determine a predictive model that identify the number of parts to be

used, we follow the same approach as before. Given that each company could be

triggering maintenance relying in one variable more than another one, and, in order

to reduce as much noise as possible, we develop a model using only the maintenance

checks for the airline we are using as example. On the 795 checks provided, we are
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Figure 6.24: Large Example - Predicting No of Parts

able to identify 65 checks performed by the airline used in the case study.

As seen on Figure 6.24, we perform an analysis using the three variables. The

correlation between flight hours and parts gives a result of 63.7%, between flight cycles

and parts results in 65.6% and the correlation between age of the aircraft and parts is

64.8%. The best results are obtained with flight cycles and parts, and the relationship

between both of them is presented in equation 6.9. Same as in the previous cases,

we use an alpha value of 0.05. The results show that F Ratio is above 43 for the

three cases, and the F Critical F(0.95,1,65)=3.988, hence, F Ratio > F Critical which

implies with at least 95% confidence that the variables are related.

Parts = −1.476641 + 0.0051508 ∗ FlightCycles (6.9)

We also noticed there are three outliers data points; the company has more access

to additional data to understand the reason of those points, however, we are not able

to validate if they are special cases or not. If we remove those outliers, we are able to

improve the predictive model as shown in Figure 6.25. The correlation between flight
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Figure 6.25: Large Example - Predicting No of Parts, Outliers Removed

hours and parts is 71.6%, between flight cycles and parts is 72.7%, and between age

of the aircraft and parts is 73.7%. Based on this analysis, the best variable to predict

parts is Age of the aircraft, and it is presented in equation 6.10. The results show that

F Ratio is above 63 for the three cases, and the F Critical F(0.95,1,62)=3.995, hence,

F Ratio > F Critical which implies with at least 95% confidence that the variables

are related.

Parts = 0.7462979 + 0.5344511 ∗ Age (6.10)

As shown before, we have been able to developed a method (equation 6.10) to

identify the potential numbers of parts to be replaced based on the flight hours of the

aircraft. Since the part prediction can be done before the aircraft is in maintenance,

it can be used to estimate the expected shipment cost provided by equation 6.8 and

use for budgeting or quoting perspective.

In summary, we have been able to validate the mathematical model proposed in
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this research. We discussed some obvious examples to show it is valid. We also tested

it in a real case scenario and were able to reach close to a 1% gap between dual

and primal within a reasonable amount of time. We also were able to identify some

predictive models that can estimate the total expedited cost based on the number of

parts that will be changed replaced. Also, we were able to identify a predictive model

that can estimate parts to be replaced based on the age of the aircraft; this result,

can be used to improve the budgeting of the company.

In the next chapter, we present the conclusions of this research as well as some

future work that could be done.
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CHAPTER 7

CONCLUSIONS

In this section, conclusions about the present research are presented as well as some

ideas about future work and expansion of this research.

7.1 Sporadic Demand and Optimization Model

The majority of service parts have sporadic demand, a characteristic that makes it

challenging to predict demand and have adequate inventory levels. The problem

is even more complex when the quantity of parts to be used in each check varies,

depending on the technician’s skill determining whether to replace the part(s) and on

the environmental conditions in which the equipment has been operating. In order to

consider the different possible quantities of each part used, a scenario based approach

is utilized. One of the objectives of the dissertation was to develop a robust model,

we are achieving it by using scenario-based approach. As discussed before, scenario-

based approach is able to find a feasible solution for all the scenarios considered while

assessing uncertainty, this address one of the objectives of the research. However,

some limitations are related to the very small subset of possible scenarios it could

handle due to the size and complexity of models.

As demonstrated in previous chapters, by taking advantage of the sporadic de-

mand characteristic of spare parts, we can limit the number of constraints and vari-

ables being created: for the large case example, we avoided the creation of 93% of

possible constraints. We were also able to develop a model by using only three binary

variables. The rest of the variables do not have any type of integer restrictions, how-
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ever, we rely on the integrity of the demand being fed into the optimization model in

order for the base stock level to be an integer as well.

7.2 Results

The MILP optimization model developed is very strong as it was able to find several

solutions in a short time. In fact, it was able to close the gap between dual and primal

to less than 2% in around 12 minutes; and in about 70 minutes, it was able to reduce

the gap to around 1.25%.

Given the current data from the large example, the model is recommending base

stock for only an average of 923 out of the 4,149 different parts, or around 22% of

total parts. Basically, it recommends relying on expedited shipments for the rest

of the parts whenever the normal lead time is greater than the maintenance period.

These results remind us of the case discussed in section 1.2 where Cohen and Wille

[14] presented two different strategies followed by two different companies. The first

company (‘on-shore MRO’), has on average $35,000 inventory per check, which is

nearly half of what the other company (‘off-shore MRO’) has per inventory check

($67,000). On the other hand, during maintenance checks ‘on-shore MRO’ places 2.5

times more expedited orders (200 orders) than the ‘off-shore MRO’ (83 orders), as

shown in Figure 1.5. Again, the company that places more expedited orders has a

higher number of late deliveries compared to the other company.

In our large case example, the value of the base stock level recommended to be

held at the warehouse is around $99,000. This inventory, together with the additional

orders, will help us satisfy 3 maintenance checks per week. It is challenging to compare

the stock amount we got from our case with the inventory levels presented by Cohen

and Wille [14] because, in our case, we did not include the C items; we left out many

other parts because we didn’t have all the necessary information to include them as

this was a sample to test the optimization model; and also, the data used is related
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to only maintenance check type ’C’ and not the rest of checks.

The large case example results in an average number of expedited orders of 47,

with a standard deviation of 58 orders per check. However, 90% of the checks place

88 orders or less. There is no indication of how spread out the case presented in

section 1.2 is. Also, it is not possible to validate if the delays are caused by lead time

reliability or by not having the appropriate mix of base stock levels. Something we can

conclude though, is that relying on expedited shipment is a valid strategy followed

by companies, especially in the case of spare parts which have sporadic demand.

This research proposes a model that is able to minimize the expedited cost, penalty

cost and holding cost while satisfying an agreed service level for on-time equipment

delivery.

7.3 Future Work

The present research can be further expanded by removing some assumptions made on

it. For instance, we currently assume that if a plane gets delayed, it has no impact on

incoming planes behind it. However, there could be cases where an aircraft operator

cannot release a new aircraft into maintenance if there are none being returned from

maintenance, otherwise, it could disrupt flight schedules, causing cancelations and

other type of expenses. Setting up some precedent constraints might be part of

expanding the model to represent a more real scenario.

Another assumption made in the current work is that when a company places an

expedited order, we assume the unit price of the part is the same as the price paid

when the part is acquired using a normal order. In many instances this assumption

might not be true, as when the needed part is located at a supplier other than the

original manufacturer, the price could be significantly higher though with almost

immediate availability. By modeling a higher unit price when placing an expedited

order, the strategy recommended by the model might change: for some parts, it might
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recommend having or increasing base stock levels or reducing expedited orders.

7.4 Summary

In summary, this research proposes a more realistic model that is able to minimize

holding cost, expedited shipment cost and penalty cost for late deliveries while satisfy-

ing an agreed service level agreement for on-time delivery. Some of the characteristics

which together make this problem different than previous ones studied are:

• Problem has multiple types of part failures. After the technician inspects spe-

cific areas of the equipment, he/she is going to decide if parts need to be re-

placed.

• Quantity of pieces of a part to be replaced could be more than one. The same

type of part could be located in different places of the aircraft and it will be

decided how many are going to be replaced after findings are made.

• Even though a part is needed and it is not available, it might not delay the

system availability if it comes before scheduled delivery. It may be necessary

to place an expedited order to avoid delay, or it could happen that normal lead

time is short and the part will arrive before scheduled system delivery.

• Penalty cost for late delivery is a linear function of the number of times units

the equipment is delayed. There is a penalty fee greater than or equal to zero

for late delivery.

• Several items could overlap and cause late delivery, but penalty fee effect is not

additive. It is calculated based on the item that causes the longest delay in

equipment delivery.

• Every type of part has its own replenishment lead time (either Normal or Ex-

pedited), and instantaneous replenishment is not assumed.
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• The schedule of the preventive maintenance to be performed is known in ad-

vance, but not all spare parts to be used in each case are known.

• Service level for on-time delivery is defined at the equipment level, not the item

or part level. We are interested in measuring performance at the system level,

not at the item level.

• The model is a multi-item, single echelon model.

We have used real case data to validate the model and run it through a sample

equal to 2̃0% of the original part population. Results are strong because the model

is able to find 27 different and feasible solutions, and provide an answer with around

1% gap between dual and primal.

In summary, we were able to achieve the goals of the dissertation, to be able to

solve a large scale MRO problem within reasonable time. By developing some pre-

processing techniques, we were able to reduce the size of the mathematical model

which translated in a reduction of the solution time. The mathematical model is

addressing the needs of the MRO problem, and it is able to provide a robust solution

which is feasible among all the scenarios.
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APPENDIX A

LARGE EXAMPLE - RESULTS FROM ROOT CUTTING &

HEURISTICS

Appendix A shows the results in Table A.1 from the Large Example where the root

cutting and heuristics process completed; this is discussed in section 6.2.

Table A.1: Large Example - Results from Root Cutting

& Heuristics

Its BestSoln BestBound Sols Gap Ginf Time

+ 99418.55717 87065.54072 1 12.43% 0 166

+ 96814.84553 87065.54072 2 10.07% 0 260

+ 94827.62145 87065.54072 3 8.19% 0 350

1 94827.62145 88039.06921 3 7.16% 14740 452

2 94827.62145 88752.06773 3 6.41% 13340 458

3 94827.62145 89259.00575 3 5.87% 12992 463

4 94827.62145 89634.44079 3 5.48% 12651 470

5 94827.62145 89923.37478 3 5.17% 12511 477

6 94827.62145 90115.04813 3 4.97% 12363 484

7 94827.62145 90260.55177 3 4.82% 12149 489

8 94827.62145 90379.10211 3 4.69% 12151 495

9 94827.62145 90465.33736 3 4.6% 12143 500

Continued on next page
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Table A.1 – continued from previous page

Its BestSln BestBound Sols Gap Ginf Time

10 94827.62145 90558.45581 3 4.5% 11991 506

11 94827.62145 90638.01496 3 4.42% 11993 512

12 94827.62145 90699.64464 3 4.35% 11689 521

13 94827.62145 90740.23621 3 4.31% 11775 529

14 94827.62145 90803.15932 3 4.24% 11681 534

15 94827.62145 90837.50513 3 4.21% 11641 540

16 94827.62145 90892.55 3 4.15% 11531 547

17 94827.62145 90925.61213 3 4.11% 11139 552

18 94827.62145 90950.82656 3 4.09% 11193 559

19 94827.62145 90970.72343 3 4.07% 11183 567

20 94827.62145 90984.98784 3 4.05% 11289 572

21 94827.62145 91022.48875 3 4.01% 11111 575

22 94827.62145 91046.9776 3 3.99% 10701 577

+ 93890.30795 91046.9776 4 3.03% 0 584

search started

+ 92563.79202 91046.9776 5 1.64% 0 739

search stopped
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APPENDIX B

LARGE EXAMPLE - RESULTS FROM BRANCH AND BOUND

Appendix B shows the branch and bound results in table B.1 from the large example

data set.

Table B.1: Large Example - Results from Branch and

Bound

Node BestSoln BestBound Sols Active Depth Gap Time

1 92563.79202 91046.9776 5 2 1 1.64% 931

2 92563.79202 91048.19957 5 1 2 1.64% 938

3 92563.79202 91066.50611 5 2 2 1.62% 943

4 92563.79202 91076.65218 5 3 3 1.61% 950

5 92563.79202 91094.95872 5 4 3 1.59% 954

6 92563.79202 91094.98856 5 5 3 1.59% 960

7 92563.79202 91100.94512 5 6 4 1.58% 965

8 92563.79202 91111.40516 5 7 5 1.57% 968

9 92563.79202 91112.62713 5 8 6 1.57% 971

10 92563.79202 91113.2951 5 9 3 1.57% 976

20 92563.79202 91115.03395 5 11 16 1.57% 1000

30 92563.79202 91115.03395 5 11 26 1.57% 1020

40 92563.79202 91115.03395 5 11 36 1.57% 1043

50 92563.79202 91115.03395 5 11 46 1.57% 1068

Continued on next page
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Table B.1 – continued from prev. page

Node BestSln BestBound Sols Active Depth Gap Time

60 92563.79202 91115.03395 5 11 56 1.57% 1091

70 92563.79202 91115.03395 5 11 66 1.57% 1119

80 92563.79202 91115.03395 5 11 76 1.57% 1141

90 92563.79202 91115.03395 5 11 86 1.57% 1169

100 92563.79202 91115.03395 5 11 96 1.57% 1196

B-B tree size: 32Mb total

Node BestSoln BestBound Sols Active Depth Gap% Time

200 92563.79202 91115.03395 5 11 196 1.57% 1435

300 92563.79202 91115.03395 5 11 296 1.57% 1668

400 92563.79202 91115.03395 5 11 396 1.57% 1875

500 92563.79202 91115.03395 5 11 496 1.57% 2056

600 92563.79202 91115.03395 5 11 596 1.57% 2221

700 92563.79202 91115.03395 5 11 695 1.57% 2357

800 92563.79202 91115.03395 5 11 795 1.57% 2478

900 92563.79202 91115.03395 5 11 891 1.57% 2519

999 92558.90415 91115.03395 6 11 991 1.56% 2563

999 92423.81395 91115.03395 7 11 991 1.42% 2690

999 92421.04245 91115.03395 8 11 991 1.41% 2814

999 92417.66396 91115.03395 9 11 991 1.41% 2900

1000 92417.66396 91115.03395 9 11 991 1.41% 3006

1100 92417.66396 91115.03395 9 11 1091 1.41% 3068

1200 92417.66396 91115.03395 9 11 1191 1.41% 3114

Continued on next page
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Table B.1 – continued from prev. page

Node BestSln BestBound Sols Active Depth Gap Time

1300 92417.66396 91115.03395 9 11 1291 1.41% 3161

1400 92417.66396 91115.03395 9 11 1391 1.41% 3204

1500 92417.66396 91115.03395 9 11 1491 1.41% 3251

1600 92417.66396 91115.03395 9 11 1590 1.41% 3286

1700 92417.66396 91115.03395 9 11 1690 1.41% 3331

B-B tree size: 165Mb total

Node BestSoln BestBound Sols Active Depth Gap% Time

1800 92417.66396 91115.03395 9 11 1790 1.41% 3369

1900 92417.66396 91115.03395 9 11 1890 1.41% 3413

1999 92405.53395 91115.03395 10 11 1990 1.4% 3458

1999 92285.4792 91115.03395 11 11 1990 1.27% 3554

2000 92285.4792 91115.03395 11 11 1990 1.27% 3657

2100 92285.4792 91115.03395 11 11 2088 1.27% 3713

2200 92285.4792 91115.03395 11 11 2187 1.27% 3768

2300 92285.4792 91115.03395 11 11 2287 1.27% 3806

2400 92285.4792 91115.03395 11 11 2387 1.27% 3843

2500 92285.4792 91115.03395 11 11 2487 1.27% 3886

2600 92285.4792 91115.03395 11 11 2586 1.27% 3930

2700 92285.4792 91115.03395 11 11 2686 1.27% 3984

2800 92285.4792 91115.03395 11 11 2786 1.27% 4035

2900 92285.4792 91115.03395 11 11 2885 1.27% 4086

2999 92283.74738 91115.03395 12 11 2985 1.27% 4133

Continued on next page
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Table B.1 – continued from prev. page

Node BestSln BestBound Sols Active Depth Gap Time

2999 92279.61369 91115.03395 13 11 2985 1.26% 4222

2999 92269.75916 91115.03395 14 11 2985 1.25% 4316

3000 92269.75916 91115.03395 14 11 2985 1.25% 4405

3100 92269.75916 91115.03395 14 11 3080 1.25% 4461

3200 92269.75916 91115.17944 14 3122 13 1.25% 4516

B-B tree size: 304Mb total

Node BestSoln BestBound Sols Active Depth Gap% Time

3300 92269.75916 91115.17944 14 3122 113 1.25% 4564

3400 92269.75916 91115.17944 14 3122 213 1.25% 4587

3500 92269.75916 91115.17944 14 3122 313 1.25% 4616

3600 92269.75916 91115.17944 14 3122 413 1.25% 4635

3700 92269.75916 91115.17944 14 3122 513 1.25% 4655

3800 92269.75916 91115.17944 14 3122 613 1.25% 4675

3900 92269.75916 91115.17944 14 3122 713 1.25% 4698

4000 92269.75916 91115.17944 14 3122 807 1.25% 4724

4100 92269.75916 91115.17944 14 3122 906 1.25% 4747

4200 92269.75916 91115.17944 14 3122 1004 1.25% 4776

4300 92269.75916 91115.17944 14 3122 1103 1.25% 4816

4400 92269.75916 91115.17944 14 3122 1203 1.25% 4852

4500 92269.75916 91115.17944 14 3122 1302 1.25% 4918

4600 92269.75916 91115.17944 14 3122 1400 1.25% 4968

4700 92269.75916 91115.17944 14 3122 1499 1.25% 5007

Continued on next page
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Table B.1 – continued from prev. page

Node BestSln BestBound Sols Active Depth Gap Time

4800 92269.75916 91115.17944 14 3122 1596 1.25% 5047

4900 92269.75916 91115.17944 14 3122 1695 1.25% 5081

5000 92269.75916 91115.17944 14 3122 1794 1.25% 5123

5100 92269.75916 91115.17944 14 3122 1894 1.25% 5162

5200 92269.75916 91115.17944 14 3122 1994 1.25% 5202

B-B tree size: 473Mb total

Node BestSoln BestBound Sols Active Depth Gap% Time

5300 92269.75916 91115.17944 14 3122 2093 1.25% 5242

5400 92269.75916 91115.17944 14 3122 2193 1.25% 5274

5499 92264.82127 91115.17944 15 3122 2292 1.25% 5318

5499 92263.00093 91115.17944 16 3122 2292 1.24% 5417

5499 92262.53244 91115.17944 17 3122 2292 1.24% 5508

5500 92262.53244 91115.17944 17 3122 2292 1.24% 5607

5600 92262.53244 91115.17944 17 3122 2391 1.24% 5647

5700 92262.53244 91115.17944 17 3122 2490 1.24% 5693

5800 92262.53244 91115.17944 17 3122 2588 1.24% 5736

5900 92262.53244 91115.17944 17 3122 2686 1.24% 5775

6000 92262.53244 91115.17944 17 3122 2785 1.24% 5810

6100 92262.53244 91115.17944 17 3122 2881 1.24% 5844

6200 92262.53244 91115.17944 17 3122 2977 1.24% 5887

6300 92262.53244 91115.17944 17 6049 3146 1.24% 5909

6400 92262.53244 91116.52186 17 6035 93 1.24% 5939

Continued on next page
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Table B.1 – continued from prev. page

Node BestSln BestBound Sols Active Depth Gap Time

6500 92262.53244 91116.52186 17 6035 193 1.24% 5956

6600 92262.53244 91116.52186 17 6035 293 1.24% 5975

6700 92262.53244 91116.52186 17 6035 393 1.24% 5994

6800 92262.53244 91116.52186 17 6035 493 1.24% 6010

6900 92262.53244 91116.52186 17 6035 593 1.24% 6028

B-B tree size: 0.6Gb total

Node BestSoln BestBound Sols Active Depth Gap% Time

7000 92262.53244 91116.52186 17 6035 693 1.24% 6047

7100 92262.53244 91116.52186 17 6035 790 1.24% 6066

7200 92262.53244 91116.52186 17 6035 888 1.24% 6090

7300 92262.53244 91116.52186 17 6035 985 1.24% 6117

7400 92262.53244 91116.52186 17 6035 1083 1.24% 6149

7500 92262.53244 91116.52186 17 6035 1182 1.24% 6176

7600 92262.53244 91116.52186 17 6035 1280 1.24% 6207

7700 92262.53244 91116.52186 17 6035 1379 1.24% 6239

7800 92262.53244 91116.52186 17 6035 1474 1.24% 6273

7900 92262.53244 91116.52186 17 6035 1574 1.24% 6330

8000 92262.53244 91116.52186 17 6035 1674 1.24% 6364

8100 92262.53244 91116.52186 17 6035 1774 1.24% 6402

8200 92262.53244 91116.52186 17 6035 1874 1.24% 6439

8300 92262.53244 91116.52186 17 6035 1973 1.24% 6473

8400 92262.53244 91116.52186 17 6035 2071 1.24% 6507

Continued on next page
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Table B.1 – continued from prev. page

Node BestSln BestBound Sols Active Depth Gap Time

8500 92262.53244 91116.52186 17 6035 2170 1.24% 6538

8600 92262.53244 91116.52186 17 6035 2270 1.24% 6572

8700 92262.53244 91116.52186 17 6035 2369 1.24% 6613

8800 92262.53244 91116.52186 17 6035 2468 1.24% 6653

8813 92255.14154 91116.52186 18 6035 2482 1.23% 6661

B-B tree size: 0.7Gb total

Node BestSoln BestBound Sols Active Depth Gap% Time

8900 92255.14154 91116.52186 18 6035 2568 1.23% 6795

9000 92255.14154 91116.52186 18 6035 2665 1.23% 6839

9100 92255.14154 91116.52186 18 6035 2763 1.23% 6881

9200 92255.14154 91116.52186 18 6035 2859 1.23% 6925

9300 92255.14154 91119.24988 18 8766 13 1.23% 6947

9400 92255.14154 91119.24988 18 8766 113 1.23% 6977

9500 92255.14154 91119.24988 18 8766 213 1.23% 6999

9600 92255.14154 91119.24988 18 8766 313 1.23% 7020

9700 92255.14154 91119.24988 18 8766 413 1.23% 7039

9800 92255.14154 91119.24988 18 8766 513 1.23% 7058

9900 92255.14154 91119.24988 18 8766 613 1.23% 7080

10000 92255.14154 91119.24988 18 8766 713 1.23% 7099

11000 92255.14154 91119.24988 18 8766 1693 1.23% 7415

12000 92255.14154 91119.24988 18 8766 2677 1.23% 7773

13000 92255.14154 91119.49059 18 11637 732 1.23% 8056

Continued on next page
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Table B.1 – continued from prev. page

Node BestSln BestBound Sols Active Depth Gap Time

14000 92255.14154 91119.49059 18 11637 1705 1.23% 8380

14813 92254.78942 91119.49059 19 11637 2497 1.23% 8680

15000 92254.78942 91120.50346 19 14113 130 1.23% 8844

16000 92254.78942 91120.50346 19 14113 1120 1.23% 9083

17000 92254.78942 91120.50346 19 14113 2106 1.23% 9439

B-B tree size: 1.5Gb total

Node BestSoln BestBound Sols Active Depth Gap% Time

18000 92254.78942 91120.74417 19 16939 226 1.23% 9795

19000 92254.78942 91120.74417 19 16939 1214 1.23% 10038

20000 92254.78942 91120.74417 19 16939 2190 1.23% 10399

21000 92254.78942 91123.26555 19 19479 577 1.23% 10700

22000 92254.78942 91123.26555 19 19479 1554 1.23% 11026

22813 92252.32578 91123.26555 20 19479 2363 1.22% 11332

23000 92252.32578 91123.26555 20 19479 2546 1.22% 11488

24000 92252.32578 91124.29585 20 22236 535 1.22% 11744

25000 92252.32578 91124.29585 20 22236 1517 1.22% 12046

26000 92252.32578 91124.29585 20 22236 2508 1.22% 12375

27000 92252.32578 91125.32538 20 25212 464 1.22% 12718

28000 92252.32578 91125.32538 20 25212 1449 1.22% 12992

29000 92252.32578 91125.32538 20 25212 2441 1.22% 13368

29046 92251.9115 91125.32538 21 25212 2488 1.22% 13389

29046 92250.89089 91125.32538 22 25212 2488 1.22% 13475

Continued on next page
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Table B.1 – continued from prev. page

Node BestSln BestBound Sols Active Depth Gap Time

30000 92250.89089 91128.51652 22 28259 127 1.22% 13933

31000 92250.89089 91128.51652 22 28259 1114 1.22% 14167

32000 92250.89089 91128.51652 22 28259 2096 1.22% 14541

33000 92250.89089 91129.09755 22 30686 571 1.22% 14798

34000 92250.89089 91129.09755 22 30686 1552 1.22% 15104

B-B tree size: 2.9Gb total

1.0Mb in support structures

Node BestSoln BestBound Sols Active Depth Gap% Time

35000 92250.89089 91129.09755 22 30686 2532 1.22% 15427

36000 92250.89089 91129.41629 22 33274 896 1.22% 15647

37000 92250.89089 91129.41629 22 33274 1875 1.22% 15985

38000 92250.89089 91129.41629 22 33274 2860 1.22% 16353

39000 92250.89089 91131.24775 22 36323 749 1.21% 16652

40000 92250.89089 91131.24775 22 36323 1724 1.21% 17001

41000 92250.89089 91131.42452 22 38587 366 1.21% 17326

42000 92250.89089 91131.42452 22 38587 1349 1.21% 17592

43000 92250.89089 91131.42452 22 38587 2331 1.21% 17969

44000 92250.89089 91132.49653 22 41334 496 1.21% 18287

45000 92250.89089 91132.49653 22 41334 1476 1.21% 18585

46000 92250.89089 91134.00197 22 43552 167 1.21% 18958

47000 92250.89089 91134.00197 22 43552 1153 1.21% 19216

48000 92250.89089 91134.00197 22 43552 2120 1.21% 19590

Continued on next page
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Table B.1 – continued from prev. page

Node BestSln BestBound Sols Active Depth Gap Time

49000 92250.89089 91135.25074 22 45638 972 1.21% 19834

50000 92250.89089 91135.25074 22 45638 1941 1.21% 20215

51000 92250.89089 91135.6504 22 47713 783 1.21% 20490

52000 92250.89089 91135.6504 22 47713 1753 1.21% 20860

53000 92250.89089 91137.14532 22 49762 642 1.21% 21170

54000 92250.89089 91137.14532 22 49762 1624 1.21% 21539

B-B tree size: 4.7Gb total

1.2Mb in support structures

Node BestSoln BestBound Sols Active Depth Gap% Time

55000 92250.89089 91137.14532 22 49762 2595 1.21% 21913

56000 92250.89089 91138.80823 22 52496 779 1.21% 22202

57000 92250.89089 91138.80823 22 52496 1762 1.21% 22543

58000 92250.89089 91138.80823 22 52496 2737 1.21% 22935

59000 92250.89089 91139.04894 22 55274 898 1.21% 23229

60000 92250.89089 91139.04894 22 55274 1872 1.21% 23613

61000 92250.89089 91139.06685 22 57762 303 1.21% 23967

62000 92250.89089 91139.06685 22 57762 1289 1.21% 24221

63000 92250.89089 91139.06685 22 57762 2273 1.21% 24605

64000 92250.89089 91139.52789 22 60578 394 1.2% 24924

65000 92250.89089 91139.52789 22 60578 1373 1.2% 25264

65874 92250.67153 91139.52789 23 60578 2231 1.2% 25609

65874 92249.76488 91139.52789 24 60578 2231 1.2% 25718

Continued on next page
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Table B.1 – continued from prev. page

Node BestSln BestBound Sols Active Depth Gap Time

66000 92249.76488 91139.52789 24 60578 2353 1.2% 25871

67000 92249.76488 91139.62953 24 63085 515 1.2% 26177

68000 92249.76488 91139.62953 24 63085 1495 1.2% 26544

68989 92247.39519 91139.62953 25 63085 2469 1.2% 26928

69000 92247.39519 91139.62953 25 63085 2479 1.2% 27028

70000 92247.39519 91140.32912 25 65485 336 1.2% 27265

71000 92247.39519 91140.32912 25 65485 1305 1.2% 27572

B-B tree size: 6.0Gb total

2.6Mb in support structures

Node BestSoln BestBound Sols Active Depth Gap% Time

71171 92245.02549 91140.32912 26 65485 1471 1.2% 27646

72000 92245.02549 91140.32912 26 67207 2628 1.2% 28013

73000 92245.02549 91140.38776 26 67032 828 1.2% 28229

74000 92245.02549 91140.38776 26 67032 1808 1.2% 28624

75000 92245.02549 91140.38776 26 67032 2778 1.2% 28989

76000 92245.02549 91140.62684 26 69811 944 1.2% 29236

77000 92245.02549 91140.62684 26 69811 1928 1.2% 29594

78000 92245.02549 91140.84229 26 72547 104 1.2% 29961

79000 92245.02549 91140.84229 26 72547 1095 1.2% 30214

80000 92245.02549 91140.84229 26 72547 2076 1.2% 30576

81000 92245.02549 91141.91501 26 75149 401 1.2% 30912

82000 92245.02549 91141.91501 26 75149 1385 1.2% 31215

Continued on next page
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Table B.1 – continued from prev. page

Node BestSln BestBound Sols Active Depth Gap Time

83000 92245.02549 91141.91501 26 75149 2367 1.2% 31662

84000 92245.02549 91142.40719 26 77889 528 1.2% 31981

85000 92245.02549 91142.40719 26 77889 1507 1.2% 32299

86000 92245.02549 91142.40719 26 77889 2474 1.2% 32665

87000 92245.02549 91142.934 26 80329 973 1.19% 32933

88000 92245.02549 91142.934 26 80329 1954 1.19% 33329

88674 92244.60095 91142.934 27 80329 2619 1.19% 33617

89000 92244.60095 91142.934 27 83127 2529 1.19% 33849

B-B tree size: 7.5Gb total

2.7Mb in support structures

Node BestSoln BestBound Sols Active Depth Gap% Time

90000 92244.60095 91142.93441 27 83085 977 1.19% 34128

91000 92244.60095 91142.93441 27 83085 1954 1.19% 34566

92000 92244.60095 91143.0546 27 85912 34 1.19% 35002

93000 92244.60095 91143.0546 27 85912 1026 1.19% 35238

94000 92244.60095 91143.0546 27 85912 1996 1.19% 35622

95000 92244.60095 91143.11323 27 88032 758 1.19% 35941

96000 92244.60095 91143.11323 27 88032 1735 1.19% 36380
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APPENDIX C

LARGE EXAMPLE - SCENARIOS RESULTS

Appendix C shows the results in Table C.1 of all the different cost associated with

each scenario. These results are discussed in section 6.2.4.

Table C.1: Large Example - Scenario Reults

Scenario ExtraShipment

1 47949

2 70227

3 67769

4 110888

5 72372

6 88980

7 115071

8 137149

9 134159

10 142674

11 90839

12 107824

13 120707

14 145562

Continued on next page
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Table C.1 – continued from prev. page

Scenario ExtraShipment

15 110858

16 52122

17 92910

18 56536

19 76159

20 85404

21 55125

22 43863

23 45847

24 48511

25 56718

26 39676

27 85249

28 61629

29 57017

30 53420

31 40695

32 36473

33 42878
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