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Abstract: The fatty acid profile of beef is a complex trait that affects eating quality, 
healthfulness attributes for the consumer, and carcass characteristics. Longissimus 
muscle samples were obtained from 1,833 Angus cattle to determine the intramuscular 
fatty acid composition for 31 lipids and lipid classes from triacylglycerol (TAG) and 
phospholipid (PL) fractions and classified by structure into saturated (SFA), 
monounsaturated (MUFA), polyunsaturated (PUFA), omega-3 (n-3), and omega-6 (n-6) 
fatty acids. Restricted maximum likelihood methods combined with pedigree data were 
used to estimate variance components. Heritability estimates ranged from 0 to 0.63 for 
the major classes of fatty acids. Heritability estimates differed between the TAG and PL 
fractions, with higher estimates for TAG up to 0.64 and lower estimates for PL that 
ranged up to 0.14. Phenotypic and genotypic correlations among individual fatty acids 
were determined for the TAG fraction as well as among carcass traits including ribeye 
area (REA), numerical marbling score (MARB), yield grade (YG), ether fat (EFAT), and 
Warner-Bratzler shear force value (WBSF). Strong negative or positive genetic 
correlations were observed among individual fatty acids in the TAG fraction, which 
ranged from -0.99 to 0.97 (P < 0.05). Moderate correlations between carcass traits and 
fatty acids from the TAG fraction ranged from -0.43 to 0.32 (P < 0.05). These results 
indicate that fatty acids prominent in beef tissues show significant genetic variation as 
well as genetic relationships to carcass traits. Phenotypic measures of fatty acid profile 
from the triacylglycerol and phospholipid fraction of longissimus muscle, pedigree 
information, and Illumina 54k bovine SNPchip genotypes were utilized to derive an 
annotated gene network underlying the fatty acid composition. The Bayes-B statistical 
model was utilized to perform a genome wide association study to estimate effects 
between 54k SNP genotypes and 39 individual fatty acid phenotypes within each fraction 
(TAG or PL). Effects were estimated for 1-Mb genomic windows as well as for 54k SNP 
genotypes. A partial correlation algorithm was used to illustrate correlated regions of the 
genome with a set of 1 Mb windows explaining up to 34.55% of the genetic variation in 
both fatty acid fractions. Annotated gene network clusters were generated by utilizing a 
partial correlation and information theory algorithm (PCIT) in conjunction with network 
scoring and visualization software to analyze correlated SNP across 39 fatty acid 
phenotypes to identify SNP of functional significance. Significant pathways implicated in 
fatty acid metabolism through network analysis included fatty acid synthesis, glycerol-
phospholipid metabolism, and cell-to-cell adhesion and trafficking. A network analysis 
using partial correlations and annotation of significant SNP’s can yield functional 
information about the genetic mechanisms underlying the fatty acid profile of beef.
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CHAPTER I 
 

 

LITERATURE REVIEW 

 

INTRODUCTION 

Beef is a nutritious product that provides an excellent source of protein, vitamins, 

minerals, and lipids in the human diet. The lipid profile of beef contributes to the overall 

healthfulness and palatability of the final beef product, which indicates it is a trait of 

interest for consumers. Previous studies have characterized the lipid profile in various 

beef cattle tissues under different dietary conditions, in different breeds, and at various 

age points. This published collection of fatty acid phenotype data indicates that lipid 

storage in beef cattle is a dynamic process with individual lipids exhibiting a wide range 

of phenotypic and genetic variance estimates. This range in observed variance can be 

partially explained by genetic differences among animals for lipid synthesis, desaturation 

and deposition, as well as by the functionality of specific lipids and lipid classes in the 

biological environment of muscle and fat tissues. The two major lipid depots in beef 

cattle tissue are represented by the triacylglycerol and phospholipid fractions of the total 

lipid isolated from both muscle and adipose tissue. The triacylglycerol lipid fraction 

captures the lipids stored as triglycerides in adipose cells.  
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The phospholipid fraction captures lipids contained in the more diverse phospholipid cellular 

membrane of both myocytes and adipocytes. The triacylglycerol and phospholipid fractions 

exhibit the characteristics of quantitative traits. These traits are controlled by many individual 

genes with many correlated individual lipids composing larger lipid classes such as saturated 

(SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids. There is also a 

significant environmental component that influences the fatty acid profile. Given these 

factors, the triacylglycerol and phospholipid fractions present an excellent opportunity for an 

analysis of genetic parameters, the identification of candidate genes, and the visualization of 

gene networks controlling the overall lipid profile in beef cattle tissues.  

 

FATTY ACID PROFILE OF BEEF TISSUES 

 A wide range of studies have characterized the total fatty acid profile of various beef 

cattle tissues (Wood et al., 2008; Daley et al., 2010; Hoehne et al., 2012; Pavan and Duckett, 

2013; Duckett et al., 2014). The total fatty acid fraction represents the distribution of all 

lipids present in a biological sample including those derived from the lipid membranes of 

multiple cell types other than adipocytes. Depending on factors such as diet, age, and tissue, 

the total fatty acid profile of beef is generally composed of approximately 40-50% of SFA, 

40-60% of MUFA, and 5-15% of PUFA (Wood et al., 2008). Two important factors affecting 

fatty acid profile are maturity of the animal and location of the tissue sampled. Muscle type 

and adipose location have a significant effect on the fatty acid profile (Pavan and Duckett, 

2013; Liu et al., 2015b). Also, as an animal matures and a larger proportion of excess energy 

is used for fatty acid synthesis there tends to be an increase in the accumulation of SFA in 

relation to PUFA (Warren et al., 2008). This is likely due to a shift towards lipogenesis and a 
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shift away from adipogenesis as an animal reaches maturity and subsequent the need for 

more adipocytes is reduced. During lipogenesis the primary fatty acids being produced are 

saturated in nature. The primary product from the major protein complex driving lipogenesis, 

which is fatty acid synthase (FASN), is C16:0, which explains this shift in the SFA:PUFA 

ratio. It is known that this shift occurs as fatty acids are stored as triglycerides in adipocytes, 

but it is not clear how this shift affects the phospholipid membrane in a maturing animal. 

This membrane is a dynamic lipid depot and seems to undergo changes in fluidity and 

composition as adipogenesis proceeds in a maturing tissue (Pietilainen et al., 2011). More 

research is needed to understand the differences between these two lipid depots and how they 

change under various conditions and maturity points. 

A method developed by Hartman (1967) allowed the separation of polar and non-

polar lipids prior to gas chromatography that yields the neutral lipid and phospholipid fatty 

acid fractions in separate components. The non-polar neutral lipid fraction contains the 

triacylglycerol, diacylglycerol, ester, and cholesterol components of the tissue. The polar 

fraction contains the phospholipid bilayer fatty acids which are composed of four major 

phospholipids in mammals: phosphatidylethanolamine, phosphatidylserine, 

phosphatidylcholine, and sphingomyelin (Alberts, 2002). Each of these four major 

phospholipids contain two nonpolar fatty acid chains which compose the individual fatty 

acids identified as being associated with the phospholipid fatty acid fraction through gas 

chromatography analysis. Separating the total fatty acid fraction allows for a more detailed 

analysis of the genes and biological pathways affecting adipogenesis and lipid synthesis 

when compared to the total fatty acid fraction. When the two fractions are combined it cannot 

be determined if the fatty acids in the analysis come from the triacylglycerol or the 
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phospholipid which likely have distinct biological origins and configurations in various cell 

types.  

To date, there have been few studies that have presented a comprehensive separate 

analysis of the triacylglycerol and phospholipid fatty acid fractions in beef cattle species. 

Kazala et al. (1999) presented an analysis of the intramuscular fatty acid composition in 

crossbred Wagyu cattle in which the triacylglycerol fraction was separated from and 

compared to the total lipid fraction. In this study the triacylglycerol fraction was found to be 

very similar in composition to the total lipid with no significant difference detected in the 

MUFA/SFA ratio in longissimus. Dannenberger et al. (2007) presented a comprehensive 

analysis of the fatty acids distributed in multiple phospholipid classes in beef muscle 

including the phosphatidylethanolamines, phosphatidylcholines, phosphatidylinositols, 

cardiolipins, sphingomyolins, and lysophosphatidylethanolamines using high performance 

thin layer chromatography. Analysis of these individual phospholipid classes revealed that 

pasture feeding to finishing leads to a significant accumulation of omega-3 fatty acids in all 

classes when compared to finishing on a concentrate diet. The phospholipid membrane is a 

dynamic lipid depot and is known to undergo changes in fluidity and composition as 

adipogenesis proceeds in a maturing tissue (Pietilainen et al., 2011).  Smith et al. (1998) 

presented a comprehensive analysis of distribution and saturation of triacylglycerol species in 

beef cattle in response to different dietary formulas. This study concluded that diet had 

significant effects on the distribution of saturation and the composition of triacylglycerol 

species. The previous studies added important data sets for fatty acid analysis, but a future 

research on the triacylglycerol and phospholipid fractions is needed.  
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Margetak et al. (2012) presented a complete comparison of the triacylglycerol and 

phospholipid fatty acid fractions form the pars costalis diaphragmatic muscle and 

subcutaneous fat in beef cattle undergoing different dietary supplementations containing 

sunflower and flax oils. This study found the triacylglycerol fraction of muscle tissue to 

contain significantly higher amounts of C14:0 and C16:0. The phospholipid fraction of 

muscle tissue contained higher amounts of C18:0, C16:1c9, and C18:1c9. The phospholipid 

fraction of subcutaneous fat was found to contain higher amounts of C14:0, C16:0, C18:0, 

C16:1c9, and C18:1c9. The study also concluded that oil supplementation increased the 

absolute amounts of elongated unsaturated fatty acids in both the triacylglycerol and 

phospholipid fractions. There were no other studies identified that presented a direct 

comparison of the triacylglycerol and phospholipid fractions in beef. Future research is 

needed to determine the effects of breed, maturity, muscle type, and lipid depot on the 

triacylglycerol and phospholipid fatty acid profiles. 

 

GENETIC PARAMETERS ESTIMATES OF FATTY ACID TRAITS 

 Genetic parameter estimates for individual lipids and lipid classes in beef cattle 

tissues are available for the total fatty acid fraction. However, there are currently no studies 

available analyzing genetic parameters in triacylglycerol and phospholipid fractions. 

Heritability estimates for individual lipids and lipid classes range from 0 to a moderate 

heritability of approximately 0.6. These heritability estimates indicate the certain lipids 

would respond well to selection programs. Ekine-Dzivenu et al. (2014) estimated genetic 

parameters for fatty acids traits in 223 Angus and Charolais crossbred commercial steers. In 

this study heritability estimates for individual lipids ranged from approximately 0 to 0.51. 
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Heritability estimates for most fatty acids were low, with SFA, MUFA, and PUFA fatty acid 

classes having a heritabilities less than 0.15. The highest heritability estimates were found for 

C14:1 and C18:1 with estimates of 0.51 and 0.43, respectively. The relatively low population 

size likely led to an underestimation of heritability estimates for fatty acid traits in this study.  

 Inoue et al. (2011) also estimated heritabilities for fatty acid traits in a population of 

863 Japanese Black steers. Heritability estimates in this study ranged from approximately 0 

to 0.86. Traits with the highest heritability estimates included C14:1 and C14:0 with 

heritability estimates of 0.86 and 0.82, respectively. Total MUFA also exhibited a high 

heritability estimate of 0.66. The authors of this study note that the heritability estimates 

obtained seem high when compared to other breeds and other studies. The authors also note 

that this difference might be present due to differences in fatty acid synthesis and 

desaturation enzyme activity in Japanese Black cattle compared to other breeds. Nogi et al. 

(2011) presented the results of a similar study in a population of 2,275 Japanese Black cattle. 

Heritability estimates in this study were similar and raged from approximately 0 to 0.78. The 

highest heritability estimates were obtained for C14:0 and C18:1 with heritabilities of 0.70 

and 0.78, respectively. The lipid classes SFA, MUFA, and PUFA had heritability estimates 

of 0.66, 0.68, and 0.47, respectively. These studies represent the best examples currently 

present in the literature for fatty acid heritability estimates in a single breed of cattle due to 

the large population size, complete reporting of individual lipid heritability estimates, and 

uniform genetic background of the animals the study. 

 Pitchford et al. (2002) obtained heritability estimates for fatty acid traits in a 

population of 1,215 animals with 7 distinct sire breeds. This study also used the percentage 

of the total lipid as the measurement. Heritability estimates in this population range from 
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approximately 0 to a moderate heritability of 0.27. Fatty classes SFA and MUFA had 

heritabilities of 0.27 and 0.17, respectively. The fatty acid C16:0 had one of the highest 

heritability estimates of all individual lipids at 0.21. In contrast to the study by Inoue et al. 

(2011), this study found relatively lower heritability estimates across all individual lipids and 

lipid classes. It is possible that using cattle from a variety of genetic backgrounds as opposed 

to a single breed results in lower heritability estimates.  

 Ahlberg et al. (2014) obtained posterior mean genomic heritability estimates for 

various fatty acid classes as a proportion of phenotypic variation explained by a genomic 

marker panel in a population of 236 crossbred steers and heifers. Heritability estimates for 

fatty acid classes PUFA and MUFA were 0.7 and 0.4, respectively, when measured on a 

percentage of total lipid basis. Heritability estimates of PUFA and MUFA were 0.7 and 0.85, 

respectively, when measured on the basis of mg/100 g of wet tissue.   

 Heritability estimates for fatty acid traits appear to be variable across the studies 

estimating these parameters in beef cattle. Genetic background of the animals in the study as 

well as the measurement system used to determine the fatty acid measurement seem to be the 

two factors causing the most variation in heritability estimates. In general, studies using a 

single breed with the percentage of total lipid measurement system yield the highest 

estimates of heritability for fatty acid traits. The classes SFA and MUFA as well as the 

individual lipids making up those classes appear to have moderate to high heritabilities. The 

more unsaturated lipids composing the PUFA class appear to have low to moderate 

heritabilities.  The data gathered in these studies indicates that overall the fatty acid profile 

has a moderate heritability and certain fatty acids would respond to a marker assisted 

selection program. 
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GENETIC CORRELATIONS INVOLVING FATTY ACID TRAITS 

 Genetic correlation estimates have also been well characterized among individual 

lipids, lipid classes, and carcass traits for the total fatty acid fraction. Fatty acid synthesis and 

desaturation occurs through a pathway of related enzyme complexes to produce the many 

lipids and lipid classes found in mammalian tissues. The central driver of lipid synthesis in 

mammalian tissues is a large protein complex known as fatty acid synthase (FASN) (Alberts, 

2002). The primary products of FASN synthesis are C14:0 and C16:0, which are derived by 

the addition of 2 carbon acetyl CoA to a growing carbon chain until the final product reaches 

either 14 or 16 carbons in length. Many other enzymes in addition to FASN work to lengthen 

individual lipids and add features such as desaturations and isomerizations after the final 

C14:0 or C16:0 are produced. These include the desaturase class of enzymes, such as steroyl 

CoA desaturase, and elongation enzymes. It is reasonable to conclude that certain fatty acids 

would exhibit moderate to high genetic correlations since genetic variation in these biological 

pathways and networks would affect all lipid products in the assembly line. It also follows 

that individual lipids and lipid classes should be genetically correlated to carcass traits since 

the fatty acid profile is known to vary at different levels of tissue maturity (Warren et al., 

2008). 

 Both direction and strength of phenotypic and genetic correlations among fatty acids 

appear to be highly dependent upon the measurement system used (percent of total lipid vs. 

mg/100 g tissue). Using percent of total lipid calculation appears to give higher heritability 

estimates for the majority of lipids and lipid classes (Saatchi et al., 2013; Ahlberg et al., 

2014). Phenotypic correlations between SFA and the unsaturated lipid classes MUFA and 
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PUFA are generally negative. SFA is the primary product of de novo lipid synthesis, and the 

newly synthesized saturated fatty acids are then used as precursors for unsaturated fatty acid 

products derived from that synthesis. Maturity of the animal is also known to drive this 

association, as fatter animals typically have higher amounts of SFA compared to unsaturated 

fatty acids (Warren et al., 2008). Multiple studies have identified this phenotypic association 

(Pitchford et al., 2002; Inoue et al., 2011; Ekine-Dzivenu et al., 2014).    

 Genetic correlations among fatty acids tend to be less predictable across multiple 

studies, but the general trend of SFA exhibiting a negative genetic correlation with other fatty 

acids seems to be a common association. This is likely a reflection of the general pathway of 

lipid elongation and desaturation that occurs as lipid synthesis and incorporation into various 

depots proceeds in the adipocyte. Ekine-Dzivenu et al. (2014) found SFA have a negative 

genetic correlation with MUFA and PUFA, with genetic correlation estimates of -0.99 and -

0.41, respectively. MUFA and PUFA were found to have a weak but positive genetic 

correlation of 0.2. Similarly, Pitchford et al. (2002) found a negative genetic correlation 

between SFA and other unsaturated fatty acids. The fatty acid C14:0 had negative genetic 

correlations of -0.61 and -0.27 with MUFA and UFA, respectively. Inoue et al. (2011) also 

observed the C14:0 to have a negative genetic correlation with MUFA and UFA of -0.74 and 

-0.81, respectively.  

 Other individual lipids also exhibit predictable genetic correlations. In general, 

individual SFA’s of different lengths tend to be positively correlated (Inoue et al., 2011; Nogi 

et al., 2011). A strong negative genetic correlation is also consistently observed between 

C18:0 and C18:1 (Inoue et al., 2011; Nogi et al., 2011), which is likely a reflection of 

stearoyl Co-A desaturase (SCD) variation in the catalysis of C18:0 desaturation into C18:1 
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(Smith et al., 2006). Individual lipids and lipid classes exhibit a wide range of genetic 

correlation estimations. Some individual lipids exhibit a genetic correlation of almost 1.0 or -

1.0 which is likely due to the pathway being highly dependent on the products from each 

previous step in the synthesis, elongation, or desaturation of lipid products, or an over 

estimation of the parameter.  

 

GENOMIC REGIONS OF INTEREST FOR FATTY ACID TRAITS 

 Multiple studies have carried out genome-wide association studies in various breeds 

of cattle for the total fatty acid fraction in order to identify genomic regions, markers, and 

genes of interest. One of the most important genes involved in de novo synthesis of fatty 

acids is FASN. This protein is a complex of multiple subunits which are transcribed from a 

region on chromosome 19 starting at approximately 51,384,900 base pairs (bp). Multiple 

studies have identified this region as having a high association with saturated fatty acids 

including C14:0, C16:0, and total SFA (Matsuhashi et al., 2011; Uemoto et al., 2011; Ishii et 

al., 2013; Saatchi et al., 2013; Hayakawa et al., 2015). There have also been multiple detailed 

studies of this region in relation to the fatty acid profile and there appear to be many different 

SNP’s in the region affecting synthesis of SFA (Li et al., 2012; Oh et al., 2012; Lee et al., 

2014). Saatchi et al. (2013) also estimated that markers in this region explain up to 25% of 

the genetic variance in saturated fatty acids with the highest genetic variance explained in 

cis-9 C18:1. This data suggests there are likely multiple causative mutations in the FASN 

gene that affect the fatty acid profile in multiple species of cattle (Casas et al., 2001; Casas et 

al., 2003; McClure et al., 2010). 
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However, not every species seems to have this association between SFA the FASN 

loci. Cesar et al. (2014) identified 8 genomic regions explaining approximately 1% of the 

genetic variance in SFA’s, including C14:0, C16:0, and C18:0. None of these 8 regions were 

near or overlapped the FASN loci, but they did overlap with previously identified loci 

affecting marbling score, backfat thickness, and carcass and body weight in Angus cattle. 

These associations are likely detecting the effect of loci causing variation in carcass fatness, 

which directly has an effect on percentage of SFA. At different levels of carcass fatness the 

ratio of SFA to unsaturated fatty acids changes (Warren et al., 2008). This effect can be 

partially explained by the morphology of adipose cells at different maturity points. In 

younger animals it can be expected that adipose cells are in a stage of multiplication under 

conditions of excess energy intake, at which point the ratio of the lipids in the phospholipid 

membrane to the lipids stored as triacylglycerol is high (Graugnard et al., 2010). As the 

adipose tissue ages a higher proportion of the lipids synthesized and incorporated are stored 

in the triacylglycerol as triglycerides which are generally more saturated in nature than the 

phospholipid membrane (Smith et al., 1998). Given this shift in lipid storage as a tissue ages, 

it can be expected that loci affecting carcass fatness and adipose cell morphology would also 

affect the proportion of SFA.  

  Saatchi et al. (2013) also identified a region on chromosome 29 starting at about the 

18th Mb harboring the candidate gene thyroid responsive hormone (THRSP or SPOT14) to 

explain the second highest amount of genetic variance in C14:0, C16:0, C16:1, cis-9 C18:1, 

long chain fatty acids (LCFA), and medium chain fatty acids (MCFA). This gene is known to 

be involved in SFA and LCFA synthesis through transcriptional activity and possibly by 

acting as a cofactor to FASN (Cunningham et al., 1998; LaFave et al., 2006). Other studies 
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have also identified an association between fatty acid traits and variation and expression of 

THRSP (Hudson et al., 2014; Oh et al., 2014). Variation in FASN and THRSP appear to be 

associated with high genetic variance in SFA and fatty acid synthesis in beef cattle tissues. 

Genomic regions associated with percentage of MUFA have also been well 

characterized. A region on chromosome 26 starting at approximately 21,132,700 bp harbors 

the SCD gene which is known to be involved in lipid desaturation in mammalian tissues 

(Marchitelli et al., 2013; Estany et al., 2014). Multiple studies have identified this genomic 

region as having a significant effect on C14:1. C16:1, C18:1 and other elongated MUFA 

species through GWAS (Ishii et al., 2013; Saatchi et al., 2013; Cesar et al., 2014). Additional 

regions have been associated with MUFA containing candidate genes for fatty acid related 

traits. Cesar et al. (2014) identified a region on chromosome 2 in Nellore cattle near two 

candidate genes, glutamate decarboxylase 1 (GAD1) and specificity protein 5-transcription 

factor (Sp5), which are both involved in general energy metabolism, adipogenesis, and 

lipogenesis pathways. These studies support the hypothesis that SCD is the main candidate 

gene responsible for variation in MUFA species in beef cattle tissues.  

Results from estimates of genetic parameters and GWAS from PUFA in beef tissues 

provide the least information among the three major lipid saturation classes. Heritability 

estimates for the PUFA lipids are the lowest for all lipid species (Inoue et al., 2011; Saatchi 

et al., 2013; Ekine-Dzivenu et al., 2014). This relatively low variance observed for PUFA 

species is likely a reflection of the biological importance of these lipids in the cell. Since the 

majority of these elongated and unsaturated lipids are found in the cell membrane it can be 

reasoned that variance in this lipid depot would be detrimental to the fluidity and function of 

the phospholipid bilayer. The low genetic variance estimates for these phenotypes also allow 
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for the discovery of fewer candidate genes explaining genetic variance using a GWAS 

methodology. This does not indicate that there are fewer genes involved in the synthesis or 

incorporation of these lipids into adipose tissue, but that it is more difficult to identify them 

using these methods. Another source of difficulty in identifying candidate genes involved 

with the PUFA species is that a number of them are not synthesized in-vivo, but are instead 

incorporated from dietary sources. Also, the majority of the PUFA synthesis that does occur 

in mammalian tissues occurs in the liver rather than in adipose. The main pathway leading to 

PUFA synthesis relies on the conversion of linoleic and alpha linoleic acids to arachidonic 

(ARA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) through the activity of fatty 

acid elongases (ELOVLs) and fatty acid desaturases (FADS) (Jump, 2011).  

Studies reporting GWAS results for PUFA species in beef cattle have not found an 

association with the FAD or ELOVL loci, but rather genomic regions harboring or near 

candidate genes involved in membrane function, membrane adhesion, adipogenesis, or cell 

signaling. Cesar et al. (2014 identified 9 genomic regions explaining at least 1% of the 

genetic variance in multiple PUFA species. Candidate genes in the regions included 

aquaporin 7 (AQP7), lysil oxidase-like 2 (LOXL2), and RAR-related orphan receptor. These 

candidate genes are involved in cellular component functions such as the PPAR signaling 

pathway, lean body mass determination in mice, and cellular receptor pathways but no 

previous association with bovine adipose tissue has been reported. Saatchi et al. (2013) 

reported associations between omega-3 and omega-6 fatty acids and regions on 

chromosomes 23, 14, 26, and 11, but no candidate genes were reported near these regions 

with association to lipid metabolism. There were also no regions of the genome in this study 

with a posterior probability of inclusion (PPI) greater than 0.9 for total PUFA or any other 
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individual PUFA lipids. Identification of genomic loci affecting PUFA species needs further 

investigation. It appears that the low phenotypic and genetic variance estimates for this trait 

hinder the discovery of candidate genes affecting variation.  

Other candidate genes affecting fatty acid profile in livestock species have been 

described in the literature, but have not shown up in GWAS studies in these traits. Graugnard 

et al. (2010) described the PPAR gamma signaling axis as a major driver of adipogenesis in 

response to energy abundance under different dietary conditions. Other lipid metabolism 

genes implicated in through differential gene expression in this study included adiponectin 

(ADIPOQ), fatty acid binding protein 4 (FABP4), diglycerol acyltranferase 2 (DGAT2), and 

sterol regulatory element-binding transcription factor 1 (SREBF1). The role of ADIPOQ has 

been studied as a regulator of lipid synthesis in milk fatty acid synthesis (Singh et al., 2014; 

Locher et al., 2015), and it would follow that this hormone would likely have a similar role in 

signaling lipogenesis in adipose. The binding protein FABP4 has also exhibited differential 

expression in the muscle of cattle fed differing levels of soybean oil or rumen protected fat 

(Oliveira et al., 2014). There have been a wide variety of genes described in the literature 

affecting fatty acid traits in beef cattle and other species. Taken together, this set of candidate 

genes likely contains a large number of causal mutations contributing variation to fatty acid 

traits in beef cattle.  

 

GENE NETWORK THEORY 

 Complex trait analysis in livestock species has been assisted by recent advances in the 

generation of genomic and general “omics” related data sets. However, this generation of 

extremely large datasets has created a need for more complex analysis systems to detect 
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biological phenomena and relate genotype to phenotype. Some of the primary goals in 

complex trait analysis using these large datasets are to identify causal genes and causal 

mutations, interactions among these genes and genomic regions, and to assemble these genes 

and interactions into networks or pathways in a meaningful way that relates to the underlying 

biology (Feltus, 2014). Such tasks have been the central goal of disciplines such as systems 

biology or systems genetics. These systems biology approaches have been developed to 

identify a variety of genome features such as copy number variation (Jiang et al., 2015), 

diagnostic features in the cancer genome (Liu et al., 2015a), and causal mutations underlying 

traits of interest (Hudson et al., 2009; Chen et al., 2014). Causal mutations are of particular 

importance to the livestock genomics industry due to the development of selection strategies 

based on genomic data, which can increase in accuracy when causal mutations are included 

in the prediction (Druet et al., 2014).    

 One important development in this area has been the incorporation of GWAS data 

into the generation of regulatory networks underlying multiple related traits of interest. A 

method developed by Reverter and Fortes (2013) has utilized the inclusion of SNP identified 

in GWAS to build gene networks highlighting genes of functional relevance to significant 

biological pathways, rather than just a single phenotype. The method relies on the generation 

of SNP networks derived from an association weight network tested for interactions by using 

an algorithm known as partial correlation and information theory (PCIT) (Reverter and Chan, 

2008). The major principal behind this method relies on the assumption that SNP having a 

high impact on multiple related phenotypes are likely of high importance or contain causal 

mutations.  
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 The first step in the generation of the association weight matrix is to create a matrix 

of SNP effects for all phenotypes used in the model. A threshold needs to be chosen that 

incorporates a number of SNP that have a sufficiently high effect on the phenotype of highest 

importance. Once the initial set of SNP are chosen, the rest of the phenotypes are populated 

with the same chosen SNP with effects from each respective GWAS. For Bayesian GWAS 

methods an appropriate threshold might include a posterior probability of association (PPA) 

of 0.50 to 0.95, depending on the number of SNP that fall within this range. One benefit of 

the method is that it can be customized to multiple types of omics data that has been 

generated in association with multiple related phenotypes of interest. Other methods have 

successfully been used to generate an association weight matrix from data such as the 

transcriptome (Lehnert et al., 2006; Fortes et al., 2010; Fortes et al., 2012).  

 The next step is to identify correlations between all SNP or data points in the 

association weight matrix. The PCIT algorithm was developed specifically to handle this task 

of identifying associations or correlations among all data points in a large matrix. The matrix 

consists of columns that correspond to phenotypes in the analysis, and rows that correspond 

to the SNP selected from GWAS results with the highest association to the most important 

phenotype in the analysis. The algorithm first estimates correlations between every pair of 

SNP in the dataset across all of the phenotypes. Next, the algorithm identifies a partial 

correlation between each SNP pair and every other SNP, if such a correlation exists. SNP 

pairs with a partial correlation of 0 to any other SNP are considered isolated and only 

associated with one another, and subsequently removed from the final output. The algorithm 

was optimized for use as an R package (Watson-Haigh et al., 2010) and also optimized to run 

in parallel for high performance computing applications (Koesterke et al., 2013). The final 
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output of the algorithm is a set of SNP pairs and their associated direct correlations which 

can be utilized in the final visualization of SNP networks.  

 Network scoring, annotation, and visualization are the final steps in the association 

weight matrix approach spanning multiple phenotypes. The are many software packages that 

can handle gene network visualization, but the Cytoscape software package (Shannon et al., 

2003) is particularly useful for its ability to score highly interconnected network clusters. A 

plugin for the Cytoscape software called MCODE (Bader and Hogue, 2003) was developed 

to score highly interconnected clusters of genes. The clusters are identified by an analysis of 

cluster density, which is the product of the number of connections in the network and the 

number of SNP. Clusters with the highest network density are ranked highest in the scoring 

criteria. These highly interconnected clusters represent the candidate genes or SNP that have 

the highest impact on the overall phenotype of interest since they contain associated genes or 

SNP that affect all phenotypes in the model. Annotation of the final networks is necessary to 

determine if the captured SNP fall in or near genes of functional significance to the overall 

phenotype in the analysis. 

 Multiple studies have utilized the association weight matrix approach to analyze 

quantitative traits in livestock species. A study by Fortes et al. (2012) utilized transcriptome 

data to build an association weight matrix to analyze first service conception rates in Brangus 

heifers. Transcriptome data from 10 related growth and fertility traits were used in the 

construction of the association weight matrix. This approach identified 5 highly 

interconnected transcription factors hypothesized to be related to overall fertility as well as 

markers in multiple genes that have been previously associated with fertility traits in beef 

cattle.  
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 A study by Ramayo-Caldas et al. (2014b) utilized a SNP effect based association 

weight matrix to analyze intramuscular fat deposition in approximately 10,000 beef cattle 

from 3 breeds. The study looked at 29 different traits including intramuscular fat, related fat 

phenotypes, feedlot performance, and various meat quality traits to identify the markers with 

the highest impact on fat deposition. The resulting networks produced three transcription 

factors as key regulators of fat deposition and carcass traits: PPARGC1A, HNF4G, and 

FOXP3. Multiple other markers were identified within genes of biological importance to the 

pathways regulating these traits of interest as well. Importantly, it was noted that the 

transcription factors and major genes of interest were not identified in the GWAS as markers 

with the highest effect associated with any one individual phenotype. Only the combination 

of multiple phenotypes into the association weight matrix allowed these markers to be 

highlighted.  

 Another study by Ramayo-Caldas et al. (2014a) used SNP effects to create an 

association weight matrix for intramuscular fatty acid composition in porcine. This study 

looked at 15 fatty acid phenotypes to identify key regulators of intramuscular fatty acid 

metabolism. The final network analysis identified the transcription factors NCOA2, FHL2, 

and EP300 as central regulators of fatty acid metabolism along with many other individual 

genes of functional significance. This study was unique in that the authors went on to 

validate the identified transcription factors as having differential expression at the 

transcriptomic level using real-time PCR. They found expression differences for extreme 

fatty acid phenotypes in two breeds in liver tissue for 55 genes involved in their association 

network, including the three identified transcription factors. Also, approximately 60% of the 

connections identified in the network analysis were validated at the transcriptomic level. 
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Creating the association weight matrix with multiple types of omics data or validating the 

networks through expression analysis appears to be a robust method for identifying genes of 

interest in pathways affecting multiple phenotypes of interest.  

 

CONCLUSION 

 The fatty acid profile of beef is a complex phenotype that requires a systems biology 

approach to identify the genes of highest impact regulating overall lipid metabolism. The 

fatty acid profile is associated with economic traits of interest such as intramuscular fat and 

healthfulness of the final beef product. In general, individual lipids and lipids classes exhibit 

a wide range of heritability estimates. Lipids of higher abundance such as medium chain SFA 

and MUFA exhibit a moderate to high heritability, which indicates these traits would respond 

to a genomic selection program. Given the wide range of observed fatty acid phenotypes in 

various lipid depots (triacylglycerol vs. phospholipid) muscle types, breeds, and feeding 

programs there is a need to identify the major pathways, transcription factors, and genes 

responsible for variation within the overall process of lipid metabolism. The identification of 

the drivers of lipid metabolism has economic implications for the beef cattle industry since 

the value of the final beef product is highly dependent on lipogenesis during the finishing 

phase.  

 The association weight matrix approach appears to be a robust methodology that can 

identify the central regulators of a complex metabolic process such as the fatty acid profile of 

beef. The fatty acid profile has multiple related individual phenotypes that make up the 

overall fatty acid profile including the major lipid classes as well as the various individual 

lipids contained in muscle and adipose tissue. The following chapters will present an analysis 
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of the genetic parameters and genetic correlations associated with the intramuscular fatty acid 

profile from the triacylglycerol and phospholipid fatty acid fractions followed by the 

implementation of the association weight matrix approach to generate a network analysis of 

lipid metabolism in Angus beef cattle.  
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ABSTRACT 

The objective of this study was to estimate genetic parameters for intramuscular fatty 

acids in beef tissue. Longissimus muscle samples were obtained from 1,833 Angus cattle to 

determine the intramuscular fatty acid composition for 31 lipids and lipid classes from 

triacylglycerol (TAG) and phospholipid (PL) fractions and classified by structure into 

saturated (SFA), monounsaturated (MUFA), polyunsaturated (PUFA), omega-3 (n-3), and 

omega-6 (n-6) fatty acids. An atherogenic index (AI) was also determined as a measure of 

the unsaturated to SFA ratio. Restricted maximum likelihood methods combined with 

pedigree data were used to estimate variance components with the WOMBAT software 

package. Heritability estimates ranged from 0 to 0.63 for the major classes of fatty acids. 

Heritability estimates differed between the TAG and PL fractions, with higher estimates for 

TAG up to 0.64 and lower estimates for PL that ranged up to 0.14. Phenotypic and genotypic 

correlations among individual fatty acids were determined for the TAG fraction as well as 

among carcass traits including ribeye area (REA), numerical marbling score (MARB), yield 

grade (YG), ether fat (EFAT), and Warner-Bratzler shear force value (WBSF). Strong 

negative or positive genetic correlations were observed among individual fatty acids in the 

TAG fraction, which ranged from -0.99 to 0.97 (P < 0.05). Moderate correlations between 

carcass traits and fatty acids from the TAG fraction ranged from -0.43 to 0.32 (P < 0.05). 

These results indicate that fatty acids prominent in beef tissues show significant genetic 

variation as well as genetic relationships to carcass traits.  

 

INTRODUCTION 
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Beef is an important source of essential amino acids, minerals, vitamins and 

beneficial fatty acids. The nutritional value of beef has become increasingly important to 

specific groups of consumers some of whom are willing to pay a premium for low rather than 

high marbling in beef (Killinger et al., 2004). This indicates that consumer awareness of the 

relationship between the consumption of certain fatty acids and cardiovascular health likely 

affects purchasing decisions. There is interest in characterization of the genetic relationships 

among health traits such as fatty acid profile and mineral and vitamin contents, as well as the 

relationship of these traits to other carcass characteristics (Mateescu et al., 2013; Saatchi et 

al., 2013). Fatty acid profiles vary by breed (Wood et al., 2008), age and fatness, and together 

these factors indicate it is necessary to increase knowledge of how the fatty acid profile 

varies with carcass characteristics and in response to selection for traits such as marbling and 

tenderness.  

Total intramuscular and subcutaneous fatty acid profile measurements can be derived 

from a combination of lipid fractions from the TAG and PL cellular components (Murphy, 

2001). Proportions of fatty acids in each fraction are known to vary according to the relative 

amount of intramuscular fat (Hoehne et al., 2012). Analysis of these individual cellular 

components will lead to a better understanding of the genetic mechanisms behind variation in 

fatty acid synthesis and the relationship to carcass and adipose tissue development in beef 

cattle. 

The objective of this study was to estimate genetic parameters for both the TAG and 

PL fractions in LM in Angus beef cattle. Additionally, genetic correlations were analyzed 

among heritable individual fatty acids and important carcass traits.  
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MATERIALS AND METHODS 

Animals and Fatty Acid Determination 

A total of 1,833 Angus-sired bulls (n = 450), steers (n = 1,022), and heifers (n = 361) 

representing offspring of 155 sires were used in this study. All cattle were finished on 

concentrate diets in Iowa (n = 908), California (n = 344), Colorado (n = 291), or Texas (n = 

290). Animals were harvested at commercial facilities when they reached typical US market 

endpoints with an average age of 457 ± 46 days. Production characteristics and additional 

details of the sample collection and preparation of these cattle were reported previously 

(Garmyn et al., 2011). After external fat and connective tissue were removed, the 1.27-cm 

LM samples were analyzed for fatty acid composition. Determination of fatty acid methyl 

esters by gas chromatography was reported previously (Saatchi et al., 2013). 

 

Statistical Analysis 

Trait means and standard deviations were calculated using the MEANS procedure in 

SAS 9.3 (SAS Inst. Inc., Cary, NC). For each fatty acid or fatty acid class, restricted 

maximum likelihood procedures were used to estimate genetic and residual variances as well 

as heritability, based on a single-trait animal model fitted to the data using WOMBAT 

(Meyer, 2007). Restricted maximum likelihood procedures were used to estimate genetic and 

phenotypic covariances from a multi-trait animal model simultaneously fitted to all six traits 

using WOMBAT (Meyer, 2007).  In matrix notation, the basic model equation was: 

y = Xβ + Zu + e 

where: 

y is a vector of the observations for six traits, 
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X is an incidence matrix relating observations to fixed effects, 

β is a vector of the fixed effects for each trait, 

Z is an incidence matrix relating observations to random animal effects, 

u is a vector containing the random genetic effects for all animals and all six traits, 

and 

e is a vector of the random residual errors for all measured traits and animals. 

Contemporary groups were defined based on the three-way combination of gender at harvest 

(bull, heifer or steer), finishing location (California, Colorado, Iowa, Texas), and harvest 

date, for a total of 33 groups. Contemporary groups were fit as fixed effects in all analyses.  

It is assumed that the random vectors u and e are independent and have multivariate 

normal distributions with mean zero so that E[y]= Xb. Variance assumptions included Var(u) 

= A⊗G0 and Var(e) = I ⊗R0, where G0 =matrix of additive genetic covariances between 

traits and R0 = matrix of covariances between residuals on the same animal; A= pedigree-

based relationship matrix; I = identity matrix of order equal to the number of animals with 

phenotypes; and ⊗ = matrix direct product.  

A pedigree file with 5,907 individuals including identification of all animal, sire, and 

dam trios for the animals with phenotypes and four ancestral generations was used to define 

relationships among animals in the data set. Significance of genetic correlations was obtained 

as θ ± Zα/2 (sampling error), which assumed normality of the estimator, θ. 

 

RESULTS AND DISCUSSION 

 Means, standard deviations, and coefficients of variation for individual fatty acids in 

both the TAG and PL fractions are in Table 2.1 on a percentage basis. Overall, the TAG 
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fraction contained a higher percentage of SFA and MUFA compared to the PL fraction. In 

contrast to TAG, the PL fraction contained a greater percentage of PUFA, which was 

expected as the major component of PL is the phospholipid membrane that surrounds the 

adipose cell. The major depot for lipid storage in mammalian tissue is white adipose tissue. 

The main source of lipids stored in the form of TAG are synthesized through fatty acid 

synthase (FASN) with the donation of an acyl-CoA. Less is known about the direct origin 

and synthesis of PL species, but sources include dietary incorporation into adipocytes and 

cellular membranes (Soriguer et al., 2000), as well as synthesis from diacylglycerol 

precursors (Ikeda et al., 2011). Additionally, the TAG fraction on average represents greater 

than 90% of the fatty acids found in beef tissues (Wood et al., 2008). In addition to the 

relatively greater proportion of fatty acids that originated from the TAG, Hoehne et al. (2012) 

report that there is also a significant correlation between increasing total muscular fat level 

and the TAG fraction. In contrast to the TAG fraction, lipids originating from PL appeared to 

have less direct correlation to total muscular fat. 

 

Heritabilities 

 Phenotypic and genetic parameter estimates for total fatty acid fraction were reported 

previously for this population (Saatchi et al., 2013). Genetic variance and heritability 

estimates for individual fatty acids as well as fatty acid classes are shown in Table 2.2 for 

both TAG and PL fractions. Heritability estimates for individual fatty acids from the TAG 

fraction ranged up to 0.64. In general, heritabilities for short to medium chain fatty acids in 

this fraction, which included 14:0 to 18:1 fatty acids, had the highest heritability estimates 

from 0.32 to 0.64. This is likely a result of direct de-novo fatty acid synthesis through the 
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FASN pathway, which produces primarily 16:0 and some 14:0 fatty acids (Wood et al., 

2008). For the fatty acid classes in the TAG fraction, SFA showed the highest heritability at 

0.50, with MUFA showing a similar heritability at 0.46. It should be noted that while 

heritabilities for TAG appeared relatively high, and there is also a relationship between the 

mean fraction of a particular fatty acid and heritability. Fatty acids with a higher mean 

fraction tended to have higher heritabilities, while lower estimates were found for fatty acids 

in lower abundance. Heritability estimates from the TAG fraction appear to be consistent 

with other studies that reported heritabilities for total fatty acid traits in Angus and Japanese 

Black cattle (Inoue et al., 2011; Nogi et al., 2011; Saatchi et al., 2013). These results suggest 

that the TAG fraction is closely representative of total fatty acid profile.   

 Estimates of heritability for the PL fraction in intramuscular mammalian tissue have 

not been published. In the PL fraction heritabilities were significantly lower when compared 

to the TAG. Individual fatty acid estimates were lowly heritable and ranged up to 0.14. For 

the categories of fatty acids, SFA and MUFA were lowly heritable with estimates at 0.03 and 

0.02, respectively. Total PUFA showed almost no heritability with the estimate at 0.001. 

These comparatively low heritability estimates observed in the PL fraction are likely due to 

very low phenotypic variation in relation to measurement errors, as well as dietary 

dependencies (Dannenberger et al., 2007). Low phenotypic variance in the PL is likely due to 

the importance of the biological function of the phospholipid membrane to adipose tissue. 

Overall, the heritability estimates for the TAG fraction are likely representative of the 

variance among individuals for de-novo fatty acid synthesis. These results highlight the TAG 

fraction as the main source of genetic variation in overall fatty acid phenotypes in muscular 

tissue.  
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Genetic Correlations among Fatty Acids 

 Genetic correlations among fatty acids, fatty acid classes, and carcass traits for the 

TAG fraction are shown in Table 2.3. Due to low genetic variance for PL fractions, those 

traits were omitted from further analysis. Genetic correlations among individual fatty acids 

and fatty acid classes in the TAG fraction ranged from -0.99 to 0.97 (P < 0.05). The genetic 

correlation between SFA and MUFA was -0.99 (P < 0.05), which indicates that the genes 

that cause increased levels of SFA do so at the expense of reduced levels of MUFA or vice 

versa. This finding is consistent with previously identified regulators of desaturation such as 

stearoyl-coenzyme a desaturase (SCD) (Matsuhashi et al., 2011). Significant negative genetic 

correlations were also observed between SFA and PUFA (-0.49, P < 0.05) and MUFA and 

PUFA (0.36, P < 0.05). 

 

Genetic Correlations with Carcass Traits 

 Genetic correlations between fatty acids from the TAG fraction and carcass traits 

ranged from -0.43 to 0.32 (P < 0.05). MUFA was positively genetically correlated with 

measures of increased muscular fat (EFAT and MARB). Correlations between EFAT and 

MUFA were 0.13 and EFAT and MARB were 0.98 (P < 0.05), respectively. Increased levels 

of MUFA have been previously associated with increased muscular fat in beef cattle 

(Cecchinato et al., 2012), likely due to the relationship between an increase in the relative 

amount of TAG compared to PL when fattening occurs (Vernon et al., 1999). Total PUFA 

showed a negative genetic correlation to measures of muscular fat, with genetic correlations 

to MARB of -0.20, and EFAT -0.16 (P < 0.05). Again, these correlations emphasize the 
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genetic relationships between higher degree of muscular fat and lower amounts of PUFA in 

the TAG fraction. These relationships among fatty acids in the TAG fraction and muscular 

fat are consistent with Hoehne et al. (2012), which suggest overall fatty acid saturation 

increased in the TAG fraction with increased intramuscular fat level.  

A number of fatty acids in the TAG fraction were genetically correlated with 

tenderness. The genetic correlation between SFA and WBSF was -0.30 (P < 0.05), which 

indicated that genetic factors promoting increased accumulation of SFA also promote a 

tougher LM.  Following this trend, genetic correlations between PUFA and WBSF was 0.27, 

and between MARB and WBSF was -0.50 (P < 0.05). This association is likely due to the 

relationship of muscular fatness to tenderness, where genes contributing to increased 

accumulation of SFA simultaneously contribute to decreased tenderness (Garmyn et al., 

2011). The genetic relationship between fatty acid desaturation and tenderness is important 

as selection for tenderness has the potential to alter fatty acid profile.  

  

CONCLUSION 

Heritabilities and genetic variance of fatty acids in the TAG fraction are much higher 

than those for PL, which essentially exhibit no genetic variation. Accordingly, heritabilities 

for the TAG fraction are representative of heritabilities previously estimated for total fatty 

acid fraction (Saatchi et al., 2013). Due to the functional nature of the membranes that are 

composed of the PL fraction, it was expected that fractions of certain fatty acids would 

remain relatively constant. Fatty acids found in the TAG fraction are of primary interest, 

because they are the dominant proportion of total fatty acids (greater than 90%) found in 

intramuscular adipose tissue. There is significant genetic association between the degree of 
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fatty acid saturation and measures of muscular fat and tenderness, which is important when 

considering selection programs designed to alter these traits.   

The future direction of selection for carcass traits will have an impact on carcass 

healthfulness, as these results show a direct genetic association between muscular fatness and 

healthfulness. Current selection programs placing a premium on carcass marbling are likely 

to decrease healthfulness from a fatty acid standpoint, as increased muscular fatness is 

associated with the accumulation of higher mean fractions of short chain and saturated fatty 

acids. Additionally, if fatty acids were to be measured and included as a selection criterion, 

these data show that manual separation of fatty acid fractions is not a necessary step. The 

majority of the moderate to highly heritable fatty acids originate from the TAG fraction, 

which are able to be sufficiently estimated from the total fatty acid measurement alone. 
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Table 2.1. Means, number of records (N), standard deviations (SD) and coefficient of variation 
(CV) for percent fatty acids from the triacylglycerol and phospholipid fraction in LM 
from Angus cattle. 

1 Atherogenic index=weighted ratio of palmitic and myristic acids to total unsaturated fatty acids 
2 Standard deviation 
3 Coefficient of variation 
 

  Triacylglycerol Phospholipid 
 Trait Mean           

(N = 1833) 
SD2 CV3 Mean          

(N = 1828) 
SD CV 

Fatty Acid, %    
 14:0 3.08 0.51 0.17 3.74 4.63 1.24 
 14:1 0.70 0.21 0.30 0.20 0.52 2.60 
 16:0 27.37 1.73 0.06 20.16 3.58 0.18 
 16:1 3.82 0.63 0.16 0.76 0.94 1.24 
 17:0 1.42 0.39 0.27 1.96 2.69 1.37 
 17:1 1.01 0.33 0.33 1.13 1.00 0.88 
 18:0 13.22 1.90 0.14 9.79 2.63 0.27 
 18:1 cis-9 40.28 2.88 0.07 19.39 7.09 0.37 
 18:1 cis-11/12/13 0.52 0.23 0.44 0.17 0.64 3.76 
 18:1, trans-10/11 3.68 1.57 0.43 0.53 1.13 2.13 
 18:2 2.01 0.52 0.26 25.37 6.83 0.27 
 18:3, n-3 0.16 0.16 1.00 0.11 0.64 5.82 
 18:3, n-6 0.00 0.01 0.00 0.01 0.12 12.00 
 20:0 0.02 0.05 2.50 0.12 0.54 4.50 
 20:1 0.05 0.13 2.60 0.10 0.34 3.40 
 20:2 0.08 0.11 1.38 0.06 0.29 4.83 
 20:3, n-3 0.00 0.02 0.00 0.23 0.71 3.09 
 20:3, n-6 0.01 0.03 3.00 0.64 1.06 1.66 
 20:4 0.02 0.07 3.50 8.50 2.81 0.33 
 22:0 0.02 0.05 2.50 0.80 1.07 1.34 
 22:1 0.01 0.03 3.00 0.10 0.47 4.70 
 23:0 0.01 0.05 5.00 0.17 0.42 2.47 
 24:0 0.03 0.08 2.67 0.46 0.67 1.46 
Sum, %          
 SFA 45.81 2.50 0.05 38.93 5.32 0.14 
 MUFA 51.57 2.57 0.05 23.94 8.06 0.34 
 PUFA 2.62 0.88 0.34 37.13 9.03 0.24 
 PUFA, n-3 0.33 0.40 1.21 2.11 2.05 0.97 
 PUFA, n-6 2.29 0.63 0.28 35.01 8.62 0.25 
Ratio          
 n-6:n-3 0.14 0.15 1.07 0.06 0.07 1.17 
 AI1 0.74 0.09 0.12 0.62 0.34 0.55 
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Table 2.2. Genetic (σ2a) variance and heritability (h2) estimates with SE for fatty acid phenotypes 
(phospholipid and triacylglycerol fractions) in LM from Angus cattle obtained by single 
trait REML analysis. 
 

1 

Addition
al 
heritabili
ty 
estimates 
for traits 
not listed 
include 
ribeye 
area 
(REA, 
0.34 
±0.073), 
marbling 
score 
(MARB, 
0.656 
±0.087), 
yield 
grade 
(YG, 
0.465 
±0.091), 
ether fat 
(EFAT, 
0.459 
±0.113), 
and 
Warner-
Bratzler 
shear 
force 
(WBSF, 
0.194 

±0.052). 
2 AI=atherogenic index, weighted ratio of palmitic and myristic acids to total unsaturated fatty acids 

  Triacylglycerol  Phospholipid 
 Trait1 σ2a h2 ± SE σ2a h2 ± SE 
Fatty Acid, %  
 14:0 0.130 0.587 ± 0.083 0.000 0.000 ± 0.030 
 14:1 0.026 0.636 ± 0.084 0.020 0.094 ± 0.056 
 16:0 1.443 0.537 ± 0.085 1.366 0.138 ± 0.070 
 16:1 0.147 0.509 ± 0.079 0.000 0.000 ± 0.044 
 17:0 0.025 0.550 ± 0.096 0.000 0.000 ± 0.031 
 17:1 0.015 0.457 ± 0.091 0.017 0.030 ± 0.037 
 18:0 0.595 0.437 ± 0.080 0.081 0.018 ± 0.038 
 18:1 cis-9 2.082 0.335 ± 0.076 2.371 0.069 ± 0.049 
 18:1 cis-11/12/13 0.012 0.316 ± 0.086 0.010 0.042 ± 0.037 
 18:1, trans-10/11 0.778 0.524 ± 0.091 0.000 0.000 ± 0.030 
 18:2 0.063 0.373 ± 0.074 2.490 0.082 ± 0.047 
 18:3, n-3 0.001 0.053 ± 0.074 0.003 0.007 ± 0.098 
 18:3, n-6 0.000 0.003 ± 0.052 0.000 0.009 ± 0.034 
 20:0 0.000 0.033 ± 0.031 0.000 0.002 ± 0.026 
 20:1 0.000 0.000 ± 0.020 0.004 0.039 ± 0.030 
 20:2 0.000 0.023 ± 0.033 0.001 0.011 ± 0.023 
 20:3, n-3 0.000 0.003 ± 0.035 0.137 0.059 ± 0.098 
 20:3, n-6 0.000 0.006 ± 0.024 0.000 0.000 ± 0.034 
 20:4 0.000 0.004 ± 0.028 0.422 0.087 ± 0.048 
 22:0 0.000 0.168 ± 0.055 0.004 0.011 ± 0.028 
 22:1 0.000 0.036 ± 0.028 0.000 0.001 ± 0.029 
 23:0 0.000 0.032 ± 0.037 0.000 0.000 ± 0.032 
 24:0 0.000 0.000 ± 0.032 0.000 0.001 ± 0.025 
Sum, %      
 SFA 2.558 0.495 ± 0.085 0.392 0.030 ± 0.040 
 MUFA 2.267 0.461 ± 0.082 0.773 0.020 ± 0.038 
 PUFA 0.070 0.151 ± 0.052 0.035 0.001 ± 0.033 
 PUFA, n-3 0.004 0.040 ±0 .034 0.000 0.000 ± 0.030 
 PUFA, n-6 0.065 0.269 ± 0.067 0.918 0.019 ± 0.036 
Ratio      
 n-6:n-3 0.026 0.022 ± 0.029 0.000 0.000 ± 0.028 
 AI2 0.004 0.546 ± 0.082 0.000 0.000 ± 0.034 
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Table 2.3. Estimates of genetic (above the diagonal) and phenotypic (below the diagonal) correlations between triacylglycerol 

fatty acid phenotypes and carcass traits in LM from Angus cattle obtained by multiple-trait REML analysis. 

Trait 14:0 16:0 18:0 18:1-c 18:1-t 18:2 SFA MUFA PUFA REA MAR
B 

YG EFAT WBSF 

14:0 
  

0.64 
(0.08)  

-0.30 
(0.13) 

-0.85 
(0.06) 

-0.23 
(0.14) 

-0.09 
(0.14) 

0.54 
(0.10) 

-0.63 
(0.09) 

-0.10 
(0.18) 

-0.09 
(0.14) 

0.08 
(0.12) 

0.13 
(0.13) 

0.17 
(0.13) 

-0.06 
(0.16) 

16:0 0.58 
(0.02)   

-0.19 
(0.14) 

-0.77 
(0.08) 

-0.50 
(0.13) 

-0.24 
(0.14) 

0.81 
(0.05) 

-0.81 
(0.05) 

-0.42 
(0.17) 

0.01 
(0.15) 

0.06 
(0.14) 

0.13 
(0.14) 

0.10 
(0.14) 

-0.29 
(0.16) 

18:0 -0.23 
(0.03) 

-0.13 
(0.03)   

0.12 
(0.17) 

-0.35 
(0.15) 

-0.22 
(0.15) 

0.39 
(0.12) 

-0.37 
(0.13) 

-0.16 
(0.20) 

0.01 
(0.16) 

-0.31 
(0.14) 

0.20 
(0.15) 

-0.22 
(0.15) 

-0.14 
(0.18) 

18:1-c1 -0.60 
(0.02) 

-0.53 
(0.02) 

-0.17 
(0.03)   

0.00 
(0.19) 

-0.15 
(0.17) 

-0.70 
(0.09) 

0.72 
(0.08) 

0.01 
(0.23) 

0.06 
(0.18) 

0.19 
(0.16) 

-0.43 
(0.14) 

-0.01 
(0.17) 

0.05 
(0.20) 

18:1-t2 -0.01 
(0.03) 

-0.23 
(0.03) 

-0.13 
(0.03) 

-0.50 
(0.02)   

0.69 
(0.11) 

-0.70 
(0.11) 

0.64 
(0.12) 

0.70 
(0.14) 

0.08 
(0.17) 

-0.12 
(0.16) 

0.32 
(0.15) 

0.05 
(0.17) 

0.25 
(0.19) 

18:2 -0.02 
(0.03) 

-0.18 
(0.03) 

-0.11 
(0.03) 

-0.28 
(0.03) 

0.48 
(0.02)   

-0.34 
(0.14) 

0.18 
(0.15) 

0.97 
(0.05) 

0.10 
(0.16) 

-0.15 
(0.15) 

0.08 
(0.15) 

-0.04 
(0.16) 

0.03 
(0.19) 

SFA 0.48 
(0.02) 

0.75 
(0.01) 

0.52 
(0.02) 

-0.64 
(0.02) 

-0.25 
(0.03) 

-0.20 
(0.03)   

-0.99 
(0.01) 

-0.49 
(0.17) 

-0.04 
(0.15) 

-0.11 
(0.14) 

0.31 
(0.14) 

-0.03 
(0.15) 

-0.30 
(0.17) 

MUFA -0.51 
(0.02) 

-0.68 
(0.02) 

-0.50 
(0.02) 

0.76 
(0.01) 

0.12 
(0.03) 

-0.02 
(0.03) 

-0.95 
(0.00)   

0.36 
(0.20) 

0.05 
(0.16) 

0.12 
(0.14) 

-0.37 
(0.01) 

0.13 
(0.01) 

0.24 
(0.05) 

PUFA 0.05 
(0.03) 

-0.29 
(0.02) 

-0.08 
(0.03) 

-0.26 
(0.02) 

0.39 
(0.02) 

0.70 
(0.01) 

-0.26 
(0.02) 

-0.06 
(0.03)   

0.11 
(0.21) 

-0.20 
(0.20) 

0.02 
(0.21) 

-0.16 
(0.21) 

0.27 
(0.23) 

REA3 -0.01 
(0.03) 

-0.05 
(0.03) 

-0.03 
(0.03) 

0.02 
(0.03) 

0.07 
(0.03) 

0.07 
(0.03) 

-0.07 
(0.03) 

0.05 
(0.03) 

0.05 
(0.03)   

0.05 
(0.15) 

-0.71 
(0.09) 

-0.07 
(0.16) 

-0.09 
(0.19) 

MARB
4 

0.09 
(0.03) 

0.05 
(0.03) 

-0.16 
(0.03) 

0.06 
(0.03) 

-0.04 
(0.03) 

-0.11 
(0.03) 

-0.05 
(0.03) 

0.06 
(0.03) 

-0.07 
(0.03) 

0.00 
(0.03)   

-0.26 
(0.14) 

0.98 
(0.02) 

-0.50 
(0.12) 

YG5 0.08 
(0.03) 

0.11 
(0.03) 

-0.02 
(0.03) 

-0.05 
(0.03) 

0.01 
(0.03) 

-0.10 
(0.03) 

0.09 
(0.03) 

0.13 
(0.03) 

-0.06 
(0.03) 

-0.49 
(0.02) 

0.16 
(0.03)   

-0.24 
(0.16) 

0.14 
(0.19) 

EFAT6 0.14 
(0.03) 

0.05 
(0.03) 

-0.07 
(0.03) 

0.01 
(0.03) 

-0.02 
(0.03) 

-0.13 
(0.03) 

0.01 
(0.03) 

0.15 
(0.03) 

-0.08 
(0.03) 

-0.07 
(0.03) 

0.75 
(0.01) 

0.25 
(0.03)   

-0.32 
(0.17) 

WBSF
7 

-0.05 
(0.03) 

-0.08 
(0.03) 

0.02 
(0.03) 

0.02 
(0.03) 

0.05 
(0.03) 

0.04 
(0.03) 

-0.05 
(0.03) 

0.18 
(0.03) 

0.03 
(0.03) 

0.04 
(0.03) 

-0.23 
(0.02) 

0.00 
(0.03) 

-0.19 
(0.03)   

12
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1 18:1-cis 
2 18:1-trans 
3 Ribeye area 
4 Numerical marbling score 
5 Calculated yield grade 
6 Ether fat percentage 
7 Warner-Bratzler shear force (kg)
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ABSTRACT 

The fatty acid profile of beef is a complex trait that can benefit from a gene-interaction 

network analysis to understand the functional relationship among loci that contribute to 

phenotypic variation. Phenotypic measures of fatty acid profile from the triacylglycerol and 

phospholipid fraction of longissimus muscle, pedigree information, and Illumina 54k bovine 

SNPchip genotypes were utilized to derive an annotated gene network that controls fatty acid 

composition in 1,833 Angus beef cattle. The Bayes-B statistical model was utilized to 

perform a genome wide association study to estimate associations between 54k SNP 

genotypes and 39 individual fatty acid phenotypes within each fraction. Effects were 

estimated for 1-Mb genomic windows as well as for 54k SNP. Windows that explained the 

majority of genetic variance in lipids from the phospholipid fraction exhibited almost no 

overlap with those from the triacylglycerol fraction. Partial correlations were used to identify 

correlated regions of the genome for that set of largest 1 Mb windows that explained up to 

35% genetic variation in both fatty acid fractions. SNP within those windows were annotated 

based on the bovine UMD3.1 assembly. Gene network clusters were generated utilizing a 

partial correlation and information theory algorithm. Results were used in conjunction with 

network scoring and visualization software to analyze correlated SNP across 39 fatty acid 

phenotypes to identify SNP of functional significance. Networks derived from partial 

correlation analysis captured up to 67.9% of the genetic variance explained by all SNPs. 

Significant pathways implicated in fatty acid metabolism through GO term enrichment 

analysis included homeostasis of number of cells, homeostatic process, coenzyme/cofactor 

activity, and protein kinase activity. Network analysis using partial correlations and 
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annotation of significant SNPs can yield functional information about genetic mechanisms 

controlling associated phenotypes. 

INTRODUCTION 

Beef is a nutritious source of protein, fat, vitamins, and minerals when appropriately 

included in the human diet. A large body of research exists that suggests it is critical to 

maintain a balanced fatty acid intake to support a healthy blood lipid profile (Ooi et al., 

2013).  The synthesis of adipose tissue in beef cattle is a complex biological process 

controlled by numerous genetic loci as well as environmental factors. Considerable ongoing 

effort has been devoted to the identification of these genetic loci as well as candidate genes 

for fatty acid profile and adipose synthesis in various breeds of beef cattle (Barendse, 

2011;Cesar et al., 2014;Kelly et al., 2014). The usefulness of these loci in DNA based beef 

cattle selection schemes will increase with knowledge of genomic architecture for fat 

deposition (Saatchi et al., 2013).   

The fatty acid profile in beef cattle can be characterized by the abundance of about 40 

individual lipids of varying chain lengths and degrees of saturation (Daley et al., 2010). 

Additionally, the total lipid fraction present in animal tissues can be separated into 

triacylglycerol and phospholipid fractions, which represent the two primary modes of lipid 

storage in cattle muscular tissue (Yen et al., 2008). The triacylglycerol fraction can typically 

represent from 70% to 92% of the total lipid fraction in longissimus muscle depending on 

age and dietary composition (Warren et al., 2008). Taken together, these data present a large 

number of phenotypes to consider at once. Current research into multiple-trait analyses 

utilizing GBLUP and Bayesian methods is ongoing (Jia and Jannink, 2012;Gao et al., 2014). 
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While multiple-trait methodology is being developed, there has been an interest in other 

computational methods that utilize single trait GWAS along with the principles of co-

association across multiple phenotypes to develop clusters of SNP that have a large 

association to the overall trait of interest (Reverter and Chan, 2008;Fortes et al., 

2011;Reverter and Fortes, 2013). 

Correlations among fatty acids within and across lipid fractions are known (Hoehne et al., 

2012), and genetic parameter estimates and correlations have been obtained for the data set 

used in this study (unpublished). According to Reverter and Fortes (2013) correlations 

among multiple phenotypes can be exploited to develop an association weight matrix that 

utilizes high-throughput data such as that obtained from GWAS. This methodology utilizes a 

partial correlation and information theory algorithm (PCIT) to analyze an input matrix that 

contains data from SNP across multiple phenotypes to generate clusters of loci that are highly 

associated with the overall trait of interest (Reverter and Chan, 2008). The usefulness of this 

analysis has been previously demonstrated through derivation of a regulatory gene network 

associated with puberty in beef cattle (Fortes et al., 2011). The objective of this study was to 

utilize the PCIT algorithm along with GWAS output from 39 different lipid classes from both 

the triacylglycerol and phospholipid fractions to derive gene networks associated with the 

fatty acid profile in Angus beef cattle. 

 

MATERIALS AND METHODS 

Animals and sample collection  
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A total of 1,833 offspring of 155 Angus bulls represented by bulls (n = 450), steers (n = 

1,022), and heifers (n = 361) were used in this study. All cattle were finished on concentrate 

diets in Iowa (n = 908), California (n = 344), Colorado (n = 291), or Texas (n = 290). 

Animals were harvested at commercial facilities when they reached typical US market 

endpoints with an average age of 457 ± 46 days. Production characteristics and additional 

details of sample collection and preparation were reported previously (Garmyn et al., 2011). 

After external fat and connective tissue were removed, the 1.27-cm steaks from the 

longissimus muscle were analyzed for fatty acid composition at Iowa State University 

(Ames, IA), using methods previously described (Zhang et al., 2008).  

 

Genome-wide association study of fatty acid fractions  

Genomic DNA was extracted from the ground beef sample used for fatty acid composition 

and was genotyped with the Bovine SNP50 Infinium II BeadChip (Illumina, San Diego, CA). 

Contemporary groups were defined based on cross-classifications of gender at harvest (bull, 

steer or heifer), finishing location (California, Colorado, Iowa, Texas), and harvest date, for a 

total of 33 groups. Contemporary groups were fit as fixed effects in genomic analyses. 

Effects of SNP on each trait were estimated using the Bayes-B option of GenSel accessed 

through the BIGSGUI Version 0.9.2 (Kizilkaya et al., 2010). The Markov-chain Monte Carlo 

approach used to estimate the effect of each SNP involved a 1,000 iteration burn-in period 

followed by 40,000 iterations used to obtain posterior means of the effect of each SNP. The 

estimate of the proportion of genetic variation explained by each SNP and each 1 Mb 

window was obtained for all 39 fatty acid phenotypes for triacylglycerol and phospholipid 
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fractions. The windowBV yes option was used to form the posterior distribution for every 1 

Mb window. 

 

Correlations among SNP  

SNP-wise correlations among 39 fatty acid phenotypes were determined using the PCIT 

algorithm optimized for use through the Texas Advanced Computing Center (Reverter and 

Chan, 2008;Koesterke et al., 2013). For the triacylglycerol fraction an initial set of 389 SNP 

were selected from the 17 genomic windows of size 1 Mb with the largest posterior mean for 

variance accounted by the window and posterior probability of association greater than 0.90 

(P < 0.05) from the 16:0 fatty acid phenotype. A vector of posterior mean SNP effects for 

389 SNP from 16:0 was augmented with the effects of all 39 fatty acid phenotypes. This 389 

x 39 matrix of posterior mean SNP effects was used as the input for the PCIT algorithm to 

detect similar effects for any SNP across multiple fatty acids. All SNP pairs within the matrix 

were tested for association with at least one other SNP in order to establish network 

connections. SNP pairs without a significant partial correlation to at least one other SNP 

were removed from the dataset and not used for subsequent network association analysis 

since they would appear isolated.  

To build a matrix of SNP effects for the phospholipid fraction SNP were selected from 20 

genomic windows of size 1 Mb with the largest posterior mean for variance accounted by the 

window and posterior probability of association greater than 0.3 (P < 0.05) from the 16:0 

fatty acid phenotype. The threshold for the posterior probability of association was relaxed to 

0.3 in order to capture a similar number of genomic windows containing SNP for network 

creation. A vector of posterior mean SNP effects for 571 SNP from 16:0 was augmented with 
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the effects of all 39 fatty acid phenotypes.  PCIT network creation and visualization 

proceeded identically to the methods described for the triacylglycerol fraction.  

 

Correlations among SNP were used to visualize networks of SNP that exhibited a common 

effect across multiple fatty acid phenotypes. Correlation between SNP pairs with a non-zero 

partial correlation to another SNP were input into Cytoscape 3.0.2 (Shannon et al., 2003) 

software to create gene network clusters using the MCODE plugin (Bader and Hogue, 2003: 

Saito et al., 2012). Networks are scored and ranked by the MCODE algorithm as network 

density times the number of nodes. MCODE defines network density as the number of edges 

in a network divided by the theoretical maximum number of edges. SNP were annotated 

using the Bovine UMD 3.1 annotations  (McLaren et al., 2010) accessed from the cattle 

genome analysis data repository (Koltes, 2012). 

 

Gene Ontology Enrichment Analysis and Visualization 

	Gene ontology (GO) enrichment was carried out using the DAVID v6.7 Functional 

Annotation Tool (Huang da et al., 2009b;a) in order to identify enriched biological terms 

associated with genomic regions and gene networks identified in the analysis. The resulting 

GO biological function terms were then condensed and visualized using REVIGO (Supek et 

al., 2011). GO term enrichment was first carried out on all genes within 1 Mb genomic 

windows associated with the triacylglycerol (PPA > 0.90) and phospholipid (PPA > 0.5) 

fractions. Ensembl Gene ID’s were extracted from 1Mb genomic regions from the Bos taurus 

UMD3.1 assembly for use in the GO term enrichment analysis. Additionally, GO term 
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enrichment analysis was carried out for all genes within the networks generated using the 

PCIT clustering algorithm. 

 

 

 

RESULTS AND DISCUSSION 

Triacylglycerol GWAS 

The estimates for genetic variance explained by 1 Mb genomic windows as well as the 

posterior probability of association for selected lipids and lipid classes from the 

triacylglycerol fraction are shown in Table 3.1. All posterior probabilities of association for 

the genomic windows displayed in Table 3.1 were greater than 90% (PPA > 0.90), which 

indicates that the false discovery rate is < 10%.  This means most of these genomic regions 

likely harbor individual loci that exhibit a very large effect on the phenotype included in the 

analysis. Multiple genomic windows were identified which explained between 22.13% and 

34.55% of genetic variance for individual lipids found in the triacylglycerol fraction. 

Variance and posterior estimates for the total fatty acid fraction from which triacylglycerol 

and phospholipid fractions were derived for this dataset were previously described (Saatchi et 

al., 2013). The genomic window on chromosome 19 between 51,148,913 and 51,956,162 

appears to describe a large proportion of the genetic variance across multiple fatty acids in 

the triacylglycerol fraction, including 14:0, 16:0, 16:1, 18:0, 18:1, SFA, and MUFA. This 

region harbors the candidate gene fatty acid synthase (FASN), which is known to be 

associated with primary lipid synthesis in adipose (Zhang et al., 2008;Abe et al., 2009). It 

follows that this genomic window would explain a large proportion of genetic variance 
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across multiple fatty acids and fatty acid classes due to the triacylglycerol functioning as the 

main storage site for lipids of medium chain length synthesized from FASN (Wood et al., 

2008). 

Other genomic regions of significance that appeared in both this data set and the total fatty 

acid fraction analysis presented by Saatchi et al. (2013) include windows on chromosome 29 

(from 18,046,673 to 18,882,323) and a region on chromosome 26 (2 Mb from 20012464 to 

21977581). The region on chromosome 29 accounts for up to 10.65% of the genetic variance 

in 14:0, 16:0, 16:1, 18:0, and 18:1. The region on chromosome 26 accounts for up to 5.39% 

of the genetic variance in 14:0, 16:1, SFA, and MUFA. These regions also harbor candidate 

genes related to fatty acid synthesis and metabolism including THRSP and SCD, 

respectively, as noted by Saatchi et al. (2013).  

Several genomic regions of interest were found to explain relatively large proportions of 

genetic variance that were not detected in the data presented by Saatchi et al. (2013). A 

window on chromosome 17 from 16,003,681 to 16,985,065 accounted for 22.91% genetic 

variance in 16:0. This region harbors the possible candidate gene inositol polyphosphate-4-

phosphatasa, type II (INPP4B). Cellular localization for INPP4B is in the cytoplasm, and the 

top Gene Ontology biological process entries for this gene include phospholipid metabolic 

process, and known associations in bovine indicate a larger role in bone remodeling 

(http://amigo.geneontology.org/amigo). No QTL have been reported in the Cattle QTL 

Database (http://www.animalgenome.org/cgi-bin/QTLdb/BT/index) in this region related to 

fat or fatty acid content. A previously unidentified region on chromosome 8 from 

103,028,846 to 103,941,108 accounted for 6.43% genetic variance in 18:1, and a second 

novel region on chromosome 7 from 56,022,790 to 56,989,949 accounted for 16.26% genetic 
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variance in 16:0. No candidate genes were identified within these regions, nor were they 

reported in the Cattle QTL Database related to fatness or fatty acid metabolism. 

Phospholipid GWAS 

  The posterior mean estimates for genetic variance explained by 1 Mb genomic windows 

as well as the posterior probabilities of association for selected lipids and lipid classes from 

the phospholipid fraction are shown in Table 3.2. In contrast to the triacylglycerol fraction, 

posterior estimates for individual lipids and lipid classes were lower, with only 10 windows 

displaying a posterior probability association greater than 50% (PPA > 0.50). Figure 1 

displays a Manhattan plot comparison of the distribution of genetic variance estimates for 1 

Mb genomic windows between the triacylglycerol (plot A) and phospholipid fraction (plot 

B). The relatively larger proportion of genetic variance explained by fewer 1 Mb windows is 

visually displayed in the plots. Windows that explained the majority of genetic variance in 

lipids from the phospholipid fraction exhibited almost no overlap with those from the 

triacylglycerol fraction. 

Several windows identified harbor candidate genes related to overall lipid and 

phospholipid metabolism. The genomic window on chromosome 16 from 4,021,893 to 

4,966,340 that accounted for 1.79% of the genetic variance in 14:0 harbors the candidate 

gene fructose-2,6-biphosphatase 2 (PFKFB2). This gene is known to be involved in synthesis 

and degradation of fructose-2.,6-bisphosphate, which is a regulatory molecule involved in 

glycolysis in eukaryotes (Hue and Rider, 1987). A QTL that spanned this region was 

identified previously in Angus in relation to 12th rib fat thickness (McClure et al., 2010).  

Also, the genomic window on chromosome 24 from 29,013,292 to 29,942,533 accounted for 
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4.27% of genetic variance in 18:0 harbors the candidate gene N-cadherin (CDH2). This gene 

is known to be involved in cell-to-cell adhesion and has been associated with increased 

adipogenic proliferation in mice (Castro et al., 2004). Other novel genomic windows, 

including 1 Mb upstream and downstream from the identified regions, did not harbor any 

genes of interest related to fatty acid or membrane metabolism.  

Triacylglycerol and phospholipid gene networks 

Of the 389 SNP entered into the PCIT analysis for the triacylglycerol fraction, 355 were 

co-localized into 12 separate networks. Information detailing network scoring results from 

the Cytoscape MCODE plugin and proportion of genetic variance explained by each network 

for all SNP in 16:0 in each triacylglycerol-derived network is presented in Table 3.3. The 

two highest scoring SNP networks for triacylglycerol fraction obtained from PCIT output and 

subsequent visualization of nodes with Cytoscape are displayed in Figures 2 and 3. 

Networks are scored and ranked by the MCODE algorithm as network density times the 

number of nodes. MCODE defines network density as the number of edges in a network 

divided by the theoretical maximum number of edges. Nodes that were not annotated to a 

gene or feature were removed from the figures for visual simplicity. Location within the 

network indicates significance of each node, with distance from the center indicating the 

number of overall connections and importance to the phenotype. Each edge represents a 

connection, or direct correlation, identified through PCIT analysis. Figure 2 displays the 

highest scoring triacylglycerol sub-network obtained by network scoring with the Cytoscape 

MCODE plugin. The highest scoring network contained 55 nodes and 1438 edges, or 

connections. The SNP captured in this network also explained up to 67.9% of the total 

genetic variance explained by all SNP in 16:0 in the triacylglycerol fraction. Figure 3 
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displays the second highest scoring annotated triacylglycerol network obtained with 

MCODE, which contained 94 nodes and 1792 edges. The SNP captured in this network also 

explained up to 29.8% of the total genetic variance explained by all SNP in 16:0 in the 

triacylglycerol fraction. The clusters of genes represent scored networks derived in 

combination with the PCIT algorithm that function as molecular complexes related to the 

input phenotype.  

Candidate genes involved in fatty acid metabolism found within these networks include 

thyroid responsive hormone (THRSP), Acyl-CoA synthetase-5 (ACSL5), glycerol-3-

phosphate acyltransferase muscle-type (GPAM), and coiled coil domain-containing 3 

(CCD57). The candidate genes THRSP and GPAM have been previously identified as 

playing a role in lipid metabolism in beef and dairy adipose via the PPAR pathway 

(Graugnard et al., 2010;Ji et al., 2014;Moisa et al., 2014). ACSL5 is found primarily in cells 

with a high triacylglycerol synthesis activity, which suggests a likely role in development of 

adipose (Bu and Mashek, 2010). CCD57 is known to be involved in DNA binding and 

regulation of gene expression. This gene is located next to FASN on chromosome 19, and 

has been previously associated with 14:0 content and transcripts have been detected in excess 

of FASN transcripts in second-lactation dairy cattle (Bouwman et al., 2014;Canovas et al., 

2014). Overall, this methodology presents strong evidence that functionally relevant genes 

can be co-localized with a close relationship to triacylglycerol variation and assembly.  

Visualizations of the two highest scoring phospholipid networks with Cytoscape are 

shown in Figures 4 and 5. The network in Figure 4 is the highest scoring phospholipid 

network containing 47 nodes and 780 edges. This network accounted for 9.42E-04% of the 

total genetic variance explained by all SNP in 16:0.  Figure 5 displays the second highest 
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scoring phospholipid network which contained 87 nodes and 1264 edges.  Multiple genes 

identified within these networks are known to be involved in cellular trafficking and cell 

integrity functions associated with the phospholipid membrane. Multiple genes that are 

known to be involved in membrane binding and cellular trafficking were identified including 

myosin-IXB (MYO9B), FCH domain only protein 1 (FCHO1), and ADAM metallopeptidase 

domain (ADAM11). The identification of large sets of genes related to phospholipid 

metabolism for the phospholipid fraction is difficult due to the low variance observed in the 

initial phenotype. Low variance estimates in the phenotype also account for the low estimates 

of genetic variance explained by the genomic windows. It is known that traits with a low 

genetic variance should produce fewer biologically related genes responsible for genetic 

variation in the trait of interest, and these results reflect that relationship. 

 

Gene Ontology Term Enrichment Analysis 

Gene ontology term enrichment analysis was first carried out for all genes located in the 

top 1 Mb regions within Table 3.1 and Table 3.2 using the DAVID Functional Classification 

tool. Genes were obtained by extracting ENSEMBL Gene ID features from the regions of 

interest. Significant results for the DAVID Functional Annotation Clustering and Functional 

Annotation Chart results for the top GWAS regions for both fractions are located in Tables 

3.4 through 3.10. The top GO term clusters for the top 1 Mb windows associated with the 

triacylglycerol fraction are shown in Table 3.4. DAVID Functional Annotation Clusters are 

considered significant above an enrichment score of 1.3, and GO terms are considered 

significantly enriched at a P-Value of 0.05 or less (Huang da et al., 2009b).  
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Two clusters were produced for the triacylglycerol fraction with an enrichment score 

above 1.3. The full list of GO terms is displayed in Table 3.5. Significant GO terms featured 

in the Functional Clusters and Functional Annotation Chart included homeostatic process 

(GO:0042592), homeostasis of number of cells (GO:0048872), dendrite development 

(GO:0016358), and activation of MAP kinase activity (GO:0000187). These terms appear to 

be associated with features relating to cellularity and energy homeostasis pathways, which 

have relevance to fatty acid deposition and adipogenesis. The full list of GO terms produced 

in the Functional Annotation Chart was reduced and visualized in Figure 6 using the 

REVIGO software. Darker color indicates significance of P-value obtained through DAVID 

clustering. Connections indicate related biological process terms, and size represents 

frequency of the GO term in the Gene Ontology Annotation Database (UniProt-GOA).  The 

link between adipose tissue cellularity and fatty acid profile has been previously established 

(Costa et al., 2012). These results highlight the genetic involvement of cellular homeostasis 

in triacylglycerol metabolism.  

 Functional Annotation Clustering analysis for the top GWAS regions associated with 

phospholipid is located in Table 3.6 and the full list of GO terms from the Functional 

Annotation Chart is located in Table 3.7. The full list of GO terms was reduced and 

visualized in Figure 7. Only one significant GO term cluster was identified for the 

phospholipid regions with an annotation cluster score above 1.3. Top significant enriched GO 

terms included protein serine/threonine kinase activity (GO:0004674), immunoglobulin 

mediated immune response (GO:0002455), and plasma protein inflammatory response 

(GO:0002541). There is evidence for a link between prolonged protein kinase activation and 

a cellular signaling cascade that may result in the degradation of lipid membrane constituents 
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(Nishizuka, 1995). However, without further evidence it is not immediately apparent how 

this term enrichment relates to lipid membrane metabolism. There also appear to be a large 

number of enrich terms associated with immune response pathways, suggesting a possible 

role in unsaturated lipid signaling in these processes.  

Gene ontology enrichment analysis results from the Functional Annotation Chart for the 

SNP captured in the triacylglycerol networks is located in Table 3.8. The full list of GO 

terms was reduced and visualized in Figure 8. There were no significant Functional 

Annotation Clusters identified for the Genes captured in the SNP networks for the 

triacylglycerol fraction. The significant enriched GO terms for the SNP captured in the 

triacylglycerol gene networks included aspartic-type endopeptidase and peptidase activity 

(GO:0004190, GO:0070001), and other peptidase and proteolysis terms (GO:0070011, 

GO:0008233, GO:0006508). A class of peptidases known as Cathepsins have been 

previously characterized in beef muscle tissues and are known to be involved in amino acid 

degradation in muscle tissues (Bolumar et al., 2014). A link between adipose accumulation 

and Cathepsin D-activated cell death in a human study (Eguchi and Feldstein, 2003) supports 

the conclusion that triacylglycerol accumulation and increased peptidase activity are 

associated. This association further supports the previously identified link between 

triacylglycerol accumulation and cellular homeostasis GO terms.  

Functional Annotation Clustering analysis for the SNP captured in the phospholipid 

networks is located in Table 3.9. There was only one Functional Annotation Cluster with a 

significant enrichment score over 1.3 for the SNP captured in the phospholipid networks. The 

full list of GO terms was reduced and visualized in Figure 9. The significant GO term 

associations in Table 3.10 from the Functional Annotation Chart included coenzyme 
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metabolic process (GO:0006732, GO:0009108) and cofactor biosynthetic process 

(GO:0051186, GO:0051188). Coenzyme activity of flavine adenine dinucleotide (FAD) is 

known to be critical in the synthesis of ether phospholipids from 

alkyldihydroxyacetonephosphate (alkyl-DHAP), which catalyzes the formation of the ether 

bond (Razeto et al., 2007). Ether phospholipids are known to be critical components of the 

phospholipid membrane in eukaryotes (Clark et al., 2014), but it is difficult to determine their 

abundance in phospholipid samples analyzed using gas chromatography due to their 

structure. It is likely that multiple coenzyme factors play a larger role in synthesis of 

phospholipid membrane components.  

 

CONCLUSION 

Analysis of GWAS results for triacylglycerol and phospholipid fractions appears to 

support the conclusion that the triacylglycerol fraction is closely representative of the total 

fatty acid fraction. Significant genomic windows identified highly overlapped with the results 

presented by (Saatchi et al., 2013). These results are supported by the fact that the phenotypic 

measurements of the triacylglycerol fraction mirror the percentages of the total fatty acid 

fraction. It follows that the genomic regions that likely harbor genes and features related to 

the total fatty acid fraction would also be identified when just the triacylglycerol fraction is 

analyzed. The triacylglycerol fraction also exhibits a much larger genetic variance when 

compared to the phospholipid fraction. This methodology provides a set of markers 

associated with intramuscular adipose accumulation as well as an enriched set of biological 

functions representative of fatty acid deposition in beef cattle.  
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An analysis of the genomic regions that affect the phospholipid fraction yielded few genes 

with a known biological association to lipid metabolism. Significant genomic regions 

identified explained lower percentages of genetic variance in comparison to the 

triacylglycerol. The low variation observed in the phospholipid fraction is likely due to the 

importance of the phospholipid membrane to biological function of the cell. Pathways 

prevalent in the phospholipid analysis appeared to be highly related to cell-to-cell adhesion, 

cellular trafficking, and coenzyme/cofactor activity. A larger dataset could possibly improve 

results when dealing with traits that exhibit a low phenotypic variance. In conclusion, the 

combination of GWAS results with the PCIT algorithm and network visualization represents 

a robust methodology for identifying candidate genes of interest for traits with multiple 

phenotypes and adequate phenotypic variance.    
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Table 3.1. Characterization of windows that account for variation in lipids in triacylglycerol. For each lipid or lipid class the 

posterior mean of the genetic variance explained by the 1 Mb window is given along with window position coordinates (UMD3.1), 

number of SNP, and posterior probability of association (PPA). 

Trait Map Start Map End RS# Start RS# End # of SNP Genetic Variance (%) PPA 
14:0        
 19_51148913 19_51956162 rs41923412 rs109147235 25 34.55 1.00 
 29_18046673 29_18882323 rs42375315 rs41589183 14 10.65 1.00 
 10_19017657 10_19987360 rs41647457 rs110785951 24 3.21 0.98 
 19_53038373 19_53963109 rs110146710 rs41577620 25 1.86 0.92 
 18_18050574 18_18997878 rs110528295 rs110871891 25 1.55 0.99 
 26_21023960 26_21977581 rs109309604 rs42086690 20 1.53 0.99 
 25_34025400 25_34984182 rs110966408 rs109749619 33 1.13 0.95 
16:0        
 17_16003681 17_16985065 rs109550465 rs110684903 17 22.91 1.00 
 7_56022790 7_56989949 rs41614823 rs42334377 17 16.26 1.00 
 19_51148913 19_51956162 rs41923412 rs109147235 25 16.18 1.00 
 1_80019442 1_80974985 rs43245574 rs110467946 21 10.44 1.00 
 16_3035722 16_3987821 rs41790571 rs41633905 24 9.66 0.99 
 29_18046673 29_18882323 rs42375315 rs41589183 14 5.87 1.00 
 26_33003665 26_33962496 rs41606739 rs110568468 27 2.01 0.95 
 13_31014861 13_31938349 rs29019775 rs41566146 21 1.65 0.96 
16:1        
 19_51148913 19_51956162 rs41923412 rs109147235 25 15.25 1.00 
 29_18046673 29_18882323 rs42375315 rs41589183 14 4.72 1.00 
 26_21023960 26_21977581 rs109309604 rs42086690 20 3.23 1.00 
 25_34025400 25_34984182 rs110966408 rs109749619 33 2.52 0.95 
 19_35003592 19_35965938 rs109843005 rs43031950 27 1.59 0.94 
 7_13002006 7_13934893 rs109277981 rs41255303 24 1.5 0.96 
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 25_32003625 25_32912638 rs41626335 rs110326707 22 1.47 0.94 
18:0        
 29_18046673 29_18882323 rs42375315 rs41589183 14 5.95 1.00 
 19_51148913 19_51956162 rs41923412 rs109147235 25 3.04 1.00 
 19_35003592 19_35965938 rs109843005 rs43031950 27 2.46 0.95 
18:1        
 19_51148913 19_51956162 rs41923412 rs109147235 25 22.13 1.00 
 8_103028846 8_103941108 rs109285764 rs41590918 18 6.43 0.97 
 16_20024651 16_20985573 rs110743197 rs42542723 23 5.88 0.99 
 29_18046673 29_18882323 rs42375315 rs41589183 14 4.96 1.00 
18:2        
 16_21019333 16_21956237 rs110103457 rs41583507 26 2.18 0.95 
 18_43024125 18_43966013 rs41581224 rs109486478 22 1.89 0.92 
SFA        
 19_51148913 19_51956162 rs41923412 rs109147235 25 15.58 1.00 
 26_20012464 26_20984335 rs42981135 rs41623887 21 5.39 0.98 
MUFA        
 19_51148913 19_51956162 rs41923412 rs109147235 25 16.63 1.00 
 26_20012464 26_20984335 rs42981135 rs41623887 21 4.59 0.96 
PUFA        
 17_51051583 17_51746326 rs109895216 rs110725997 4 2.13 0.91 
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Table 3.2. Characterization of windows accounting for variation in lipids in phospholipid. For each lipid or lipid class an 

estimate of genetic variance explained by the 1 Mb window is given along with window position coordinates, number of SNP, and 

posterior probability of association (PPA). 

Trait Map Start Map End RS# Start RS# End # of SNP Genetic Variance (%) PPA 
14:0        
 16_4021893 16_4966340 rs110257825 rs109105804 26 1.79 0.68 
 19_5057128 19_5934293 rs41633989 rs109106774 17 1.11 0.50 
16:0        
 21_36032144 21_36993382 rs109143576 rs42429437 22 2.54 0.72 
 1_52030982 1_52979497 rs41600017 rs43711327 25 1.10 0.54 
16:1        
 4_95020715 4_95969034 rs43412327 rs42421263 20 1.39 0.68 
 X_5276122 X_5920404 rs109239523 rs29023191 12 0.87 0.55 
18:0        
 24_29013292 24_29942533 rs110012069 rs42837712 24 4.27 0.78 
SFA        
 3_114057364 3_114995892 rs110764304 rs109271147 30 4.3 0.63 
 10_54012929 10_54995489 rs42291384 rs110839090 27 2.97 0.50 
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Table 3.3. MCODE results derived from network scoring and proportion of variance 

accounted for in 16:0 for triacylglycerol and phospholipid fractions.  

Fraction Network Score Nodes Edges 16:0 Genetic Variance (%) 
Triacylglycerol           
  1 53.26 55 1438 67.9 
  2 38.54 94 1792 29.8 
  3 24.42 34 403 1.73E-03 
  4 18.52 67 611 1.13E-01 
  5 17.38 33 278 1.95E-03 
  6 11.00 11 55 2.79E-05 
  7 9.14 36 160 6.18E-04 
  8 3.67 7 11 8.88E-06 
  9 3.50 9 14 4.18E-05 
  10 3.00 3 3 9.62E-06 
  11 3.00 3 3 1.63E-06 
  12 3.00 3 3 3.52E-08 
Phospholipid         
  1 33.91 47 780 9.42E-04 
  2 29.40 87 1264 1.20 
  3 26.10 97 1273 1.01E-03 
  4 10.00 72 355 1.51E-05 
  5 7.40 68 248 3.27E-04 
  6 5.81 63 180 3.82E-05 
  7 4.96 45 109 5.86E-05 
  8 3.79 20 36 2.59E-05 
  9 3.00 7 9 2.21E-06 
  10 2.80 16 21 9.76E-05 
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Table 3.4. Functional Annotation Clustering for significant 1 Mb identified through GWAS for the Triacylglycerol fraction. 

 

Annotation Cluster 1 Enrichment Score: 1.717490754477256       
Category Term Count % PValue Fold Enrichment Benjamini FDR
GOTERM_BP_FAT GO:0048872~homeostasis of number of cells 5 3.47 0.00 12.02 0.39 1.08
GOTERM_BP_FAT GO:0042592~homeostatic process 9 6.25 0.00 3.56 0.67 4.70
GOTERM_BP_FAT GO:0030099~myeloid cell differentiation 3 2.08 0.04 9.96 0.96 41.77
GOTERM_BP_FAT GO:0048534~hemopoietic or lymph organ dev. 4 2.78 0.05 4.61 0.97 56.44
GOTERM_BP_FAT GO:0002520~immune system development 4 2.78 0.06 4.26 0.96 63.67
GOTERM_BP_FAT GO:0030097~hemopoiesis 3 2.08 0.18 3.87 0.99 94.69

   
Annotation Cluster 2 Enrichment Score: 1.6099545079517525  
Category Term Count % PValue Fold Enrichment Benjamini FDR
SP_PIR_KEYWORDS nadp 5 3.47 0.00 8.45 0.31 3.06
SP_PIR_KEYWORDS nad 6 4.17 0.00 5.94 0.19 3.50
INTERPRO IPR016040:NAD(P)-binding domain 5 3.47 0.02 4.96 0.95 19.22
UP_SEQ_FEATURE active site:Proton acceptor 6 4.17 0.02 3.67 0.96 22.54
SP_PIR_KEYWORDS oxidoreductase 8 5.56 0.02 2.74 0.67 24.39
GOTERM_BP_FAT GO:0055114~oxidation reduction 9 6.25 0.03 2.45 0.93 33.71
INTERPRO IPR002347:Glucose/ribitol dehydrogenase 3 2.08 0.06 7.15 1.00 55.43
INTERPRO IPR002198:Short dehydrogenase/reduct. SDR 3 2.08 0.08 6.30 0.99 63.77
UP_SEQ_FEATURE binding site:Substrate 3 2.08 0.35 2.40 1.00 99.42
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Table 3.5. Functional Annotation Chart results for significant 1 Mb regions identified through GWAS for the Triacylglycerol 

fraction.  

 

Category Term Count % P-Value Fold Enrichment FDR 
GOTERM_BP_FAT GO:0048872~homeostasis of number of cells 5 3.47 0.00 12.02 1.08 
SP_PIR_KEYWORDS nadp 5 3.47 0.00 8.45 3.06 
SP_PIR_KEYWORDS nad 6 4.17 0.00 5.94 3.50 
GOTERM_BP_FAT GO:0042592~homeostatic process 9 6.25 0.00 3.56 4.70 
GOTERM_BP_FAT GO:0016358~dendrite development 3 2.08 0.00 32.18 5.35 
GOTERM_BP_FAT GO:0000187~activation of MAPK activity 3 2.08 0.01 18.19 15.71 
INTERPRO IPR016040:NAD(P)-binding domain 5 3.47 0.02 4.96 19.22 
GOTERM_CC_FAT GO:0016607~nuclear speck 3 2.08 0.02 13.74 19.96 
GOTERM_MF_FAT GO:0000166~nucleotide binding 17 11.81 0.02 1.77 21.01 
UP_SEQ_FEATURE active site:Proton acceptor 6 4.17 0.02 3.67 22.54 
GOTERM_BP_FAT GO:0043406~positive regulation of MAP kinase activity 3 2.08 0.02 13.07 27.63 
GOTERM_BP_FAT GO:0043623~cellular protein complex assembly 4 2.78 0.02 6.56 28.45 
SP_PIR_KEYWORDS oxidoreductase 8 5.56 0.02 2.74 24.39 
GOTERM_BP_FAT GO:0055114~oxidation reduction 9 6.25 0.03 2.45 33.71 
KEGG_PATHWAY bta04130:SNARE interactions in vesicular transport 3 2.08 0.03 10.83 26.23 
GOTERM_CC_FAT GO:0070013~intracellular organelle lumen 8 5.56 0.03 2.47 33.71 
GOTERM_BP_FAT GO:0043113~receptor clustering 2 1.39 0.03 55.78 41.38 
GOTERM_CC_FAT GO:0043233~organelle lumen 8 5.56 0.03 2.46 33.94 
GOTERM_BP_FAT GO:0030099~myeloid cell differentiation 3 2.08 0.04 9.96 41.77 
GOTERM_CC_FAT GO:0005739~mitochondrion 9 6.25 0.04 2.20 38.11 
GOTERM_BP_FAT GO:0030534~adult behavior 3 2.08 0.04 9.09 47.30 
GOTERM_BP_FAT GO:0007172~signal complex assembly 2 1.39 0.04 46.48 47.33 
GOTERM_CC_FAT GO:0031974~membrane-enclosed lumen 8 5.56 0.04 2.37 39.52 
SP_PIR_KEYWORDS Chaperone 4 2.78 0.04 4.97 41.44 
GOTERM_BP_FAT GO:0043405~regulation of MAP kinase activity 3 2.08 0.04 8.72 50.00 
GOTERM_CC_FAT GO:0016604~nuclear body 3 2.08 0.05 8.51 42.22 
SMART SM00241:ZP 2 1.39 0.05 37.62 36.23 
UP_SEQ_FEATURE nucleotide phosphate-binding region:NAD 3 2.08 0.05 8.00 47.19 
GOTERM_BP_FAT GO:0048534~hemopoietic or lymphoid organ development 4 2.78 0.05 4.61 56.44 
GOTERM_BP_FAT GO:0000165~MAPKKK cascade 3 2.08 0.05 7.89 56.48 
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Table 3.6 Functional Annotation Clustering for significant 1 Mb regions identified through GWAS for the Phospholipid 
fraction. 

 

 

 

Annotation Cluster 1 Enrichment Score: 1.7110314771797666       
Category Term Count % PValue Fold Enrichment Benjamini FDR
INTERPRO IPR000436:Sushi/SCR/CCP 3 10.71 0.00 64.13 0.03 0.71
INTERPRO IPR016060:Complement control module 3 10.71 0.00 60.47 0.01 0.79
SMART SM00032:CCP 3 10.71 0.00 49.59 0.01 0.62
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Table 3.7. Functional Annotation Chart results for significant 1 Mb regions identified through GWAS for the Phospholipid 

fraction. 

 

Category Term Count % PValue Fold Enrichment FDR 
INTERPRO IPR000436:Sushi/SCR/CCP 3 10.71 0.00 64.13 0.71 
INTERPRO IPR016060:Complement control module 3 10.71 0.00 60.47 0.79 
SMART SM00032:CCP 3 10.71 0.00 49.59 0.62 
SP_PIR_KEYWORDS complement pathway 2 7.14 0.02 116.65 12.64 
GOTERM_BP_FAT GO:0002455~immune response mediated by immunoglobulin 2 7.14 0.02 104.58 17.02 
GOTERM_BP_FAT GO:0006958~complement activation, classical pathway 2 7.14 0.02 104.58 17.02 
UP_SEQ_FEATURE domain:Sushi 2 2 7.14 0.02 84.74 16.64 
GOTERM_BP_FAT GO:0006956~complement activation 2 7.14 0.02 77.06 22.38 
GOTERM_BP_FAT GO:0002541~activation of plasma in inflammatory response 2 7.14 0.02 77.06 22.38 
SP_PIR_KEYWORDS sushi 2 7.14 0.02 71.00 19.93 
GOTERM_MF_FAT GO:0004674~protein serine/threonine kinase activity 3 10.71 0.03 9.91 22.91 
GOTERM_BP_FAT GO:0006959~humoral immune response 2 7.14 0.03 56.31 29.31 
GOTERM_BP_FAT GO:0016064~immunoglobulin mediated immune response 2 7.14 0.04 45.76 34.75 
SP_PIR_KEYWORDS innate immunity 2 7.14 0.04 44.14 30.08 
GOTERM_BP_FAT GO:0019724~B cell mediated immunity 2 7.14 0.04 44.37 35.62 
GOTERM_BP_FAT GO:0051605~protein maturation by peptide bond cleavage 2 7.14 0.05 38.53 39.78 
GOTERM_BP_FAT GO:0002460~immune response immunoglobulin domains 2 7.14 0.05 36.60 41.37 
GOTERM_BP_FAT GO:0002250~adaptive immune response 2 7.14 0.05 36.60 41.37 
GOTERM_BP_FAT GO:0002449~lymphocyte mediated immunity 2 7.14 0.05 36.60 41.37 
GOTERM_BP_FAT GO:0002526~acute inflammatory response 2 7.14 0.05 34.05 43.68 
GOTERM_BP_FAT GO:0002443~leukocyte mediated immunity 2 7.14 0.05 32.54 45.17 
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Table 3.8. Functional Annotation Chart results for genes captured in networks associated with the Triacylglycerol fraction. 

 

Category Term Count % PValue Fold Enrichment FDR 
SP_PIR_KEYWORDS lyase 4 4.21 0.00 11.35 5.03 
GOTERM_MF_FAT GO:0004190~aspartic-type endopeptidase activity 3 3.16 0.02 14.45 17.92 
GOTERM_MF_FAT GO:0070001~aspartic-type peptidase activity 3 3.16 0.02 14.45 17.92 
INTERPRO IPR001594:Zinc finger, DHHC-type 2 2.11 0.04 49.84 36.61 
INTERPRO IPR011991:Winged helix repressor DNA-binding 3 3.16 0.05 8.54 42.08 
GOTERM_BP_FAT GO:0006399~tRNA metabolic process 3 3.16 0.05 8.26 48.48 
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Table 3.9 Functional Annotation Clustering for genes captured in networks associated with the Phospholipid fraction. 

Annotation Cluster 1 Enrichment Score: 1.7110314771797666       
Category Term Count % PValue Fold Enrichment Benjamini FDR
GOTERM_BP_FAT GO:0006732~coenzyme metabolic process 4 3.54 0.01 8.69 0.99 13.33
GOTERM_BP_FAT GO:0051186~cofactor metabolic process 4 3.54 0.02 6.81 0.99 24.15
GOTERM_BP_FAT GO:0009108~coenzyme biosynthetic process 3 2.65 0.02 13.32 0.95 25.06
GOTERM_BP_FAT GO:0051188~cofactor biosynthetic process 3 2.65 0.04 9.73 0.98 40.65
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Table 3.10. Functional Annotation Chart results for genes captured in networks associated with the Phospholipid fraction. 

 

 

Category Term Count % PValue Fold Enrichment FDR 
GOTERM_MF_FAT GO:0003953~NAD+ nucleosidase activity 2 1.77 0.01 205.53 10.73 
GOTERM_BP_FAT GO:0006732~coenzyme metabolic process 4 3.54 0.01 8.69 13.33 
PIR_SUPERFAMILY MARVEL domain, MAL/Bene/MAL2 types 2 1.77 0.01 141.45 8.38 
GOTERM_BP_FAT GO:0051186~cofactor metabolic process 4 3.54 0.02 6.81 24.15 
GOTERM_BP_FAT GO:0009108~coenzyme biosynthetic process 3 2.65 0.02 13.32 25.06 
GOTERM_CC_FAT GO:0005819~spindle 3 2.65 0.02 12.04 23.43 
INTERPRO IPR013295:Myelin and lymphocyte (MAL) 2 1.77 0.02 81.52 24.06 
GOTERM_BP_FAT GO:0051188~cofactor biosynthetic process 3 2.65 0.04 9.73 40.65 
INTERPRO IPR014721:Ribosomal protein S5 domain 2-type fold 2 1.77 0.05 37.05 45.43 
GOTERM_CC_FAT GO:0015630~microtubule cytoskeleton 4 3.54 0.05 4.52 44.83 
GOTERM_BP_FAT GO:0022402~cell cycle process 4 3.54 0.05 4.51 55.00 
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