
 MONITORING EASTERN OKLAHOMA LAKE

WATER QUALITY USING LANDSAT

 By

 CLAY BARRETT

 Bachelor of Science in Environmental Science

 Oklahoma State University

 Stillwater, Oklahoma

 2004

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 May, 2015

ii

 MONITORING EASTERN OKLAHOMA LAKE

WATER QUALITY USING LANDSAT

 Thesis Approved:

 Dr. Amy E. Frazier

 Thesis Adviser

 Dr. Jonathan C. Comer

 Dr. Chris Zou

iii

Acknowledgements reflect the views of the author and are not endorsed by committee members

or Oklahoma State University.

ACKNOWLEDGEMENTS

The author wishes to thank Marga and Xavier Barrett for their patience, understanding,

and support during the completion of this thesis.

The encouragement of family and friends made the burdens of graduate school less

difficult to bear. Those I would like to thank especially are Nadeen Barrett, Jill Holmes,

and Lori Edgmand.

The perseverence and guidance provided by my committee members were invaluable in

completing this research. Thank you all.

iv

Name: CLAY BARRETT

Date of Degree: MAY, 2015

Title of Study: MONITORING EASTERN OKLAHOMA LAKE WATER QUALITY

USING LANDSAT

Major Field: GEOGRAPHY

Abstract: The monitoring of public waters for recreational, industrial, agricultural, and

drinking purposes is a difficult task assigned to many state water agencies. The

Oklahoma Water Resources Board (OWRB) is only physically monitoring a quarter of

the lakes it is charged with monitoring in any given year. The minimal sample scheme

adopted by the OWRB is utilized to determine long-term trends and basic impairment but

is insufficient to monitor the water quality shifts that occur following influx from rains or

to detect algal blooms, which may be highly localized and temporally brief. Recent work

in remote sensing calibrates reflectance coefficients between extant water quality data

and Landsat imagery reflectance to estimate water quality parameters on a regional basis.

Remotely-sensed water quality monitoring benefits include reduced cost, more frequent

sampling, inclusion of all lakes visible each satellite pass, and better spatial resolution

results. The study area for this research is the Ozark foothills region in eastern Oklahoma

including the many lakes impacted by phosphorus flowing in from the Arkansas border

region. The result of this research was a moderate r2 regression value for turbidity during

winter (0.52) and summer (0.65), which indicates that there is a seasonal bias to turbidity

estimation using this methodology and the potential to further develop an estimation

equation for this water quality parameter. Refinements that improve this methodology

could provide state-wide estimations of turbidity allowing more frequent observation of

water quality and allow better response times by the OWRB to developing water

impairments.

v

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

 Remote Sensing of Water Quality ...3

 Radiometric Correction ..6

 Components of Water Reflectance ..7

 Landscape Scale Research ...9

 Objectives ..11

II. STUDY AREA ...13

III. DATA ..17

 Beneficial Use Monitoring Program ..17

 Landsat Imagery...20

 Landsat Spectral Bands ..20

 Timing of Landsat Collection ..22

IV. METHODS ..24

 Image Analysis: Subsetting Images ...25

 Image Analysis: Correction and Masking ..27

 Band Corrections ...27

 Not-Cloud Mask ..29

 Water Mask ...30

 Image Analysis: Pixel Extraction ..31

 Statistical Analysis ..33

V. RESULTS ..35

 Winter ..37

 Spring ...38

 Summer ..39

 Fall ...39

IV. DISCUSSION ..41

 Conclusions ..44

vi

REFERENCES ..46

APPENDICES ...50

vii

LIST OF TABLES

Table Page

 1: Landsat (LS) band comparison showing wavelength ranges20

 2: Linear regression results for the natural log of turbidity (lnTurbidity)43

viii

LIST OF FIGURES

Figure Page

1: Example of the location of the EPA Level II Ecoregions in relationship to water

bodies in eastern Oklahoma. ...14

2: Oklahoma's EPA Level II Ecoregions showing the modified study area in eastern

Oklahoma. ...15

3: Lake WR Holway Beneficial Use Monitoring Program (BUMP) sample points (red

dots)...19

4: Landsat 8 & Landsat 7 spectral band comparison. ...21

5: Landsat (LS) mission timelines. ...22

6: Methodology flowchart...25

7: Subsetting illustration for Sardis Lake..26

8: Lake Carl Blackwell without (left) and with Landsat 7 ETM+ scan line correction

void zones (right). ...32

9: Landsat 7 ETM+ scan line correction void & extraction window interactions. Nine-

pixel sample window shown in red. ..33

10: Frequency histogram for the natural log of band 3 (lnB3) for all turbidity36

1

CHAPTER I

INTRODUCTION

The Clean Water Act of 1972 (EPA 2014b) was enacted to make the waters of the United States

fishable, drinkable, and swimmable in recognition of their vital role. This recognition extends

beyond them being necessary for life and includes their use for industry, recreation, and food

production. The Oklahoma Legislature tasked the Oklahoma Water Resources Board (OWRB)

with monitoring the state’s waters to ensure they were complaint with the Clean Water Act

regulations, with those not in compliance being listed on the 303d or impaired waters list.

Oklahoma’s water issues vary from a lack in the west, high sediment loads in the middle due to

heavy clay soils, and anthropogenic phosphorus causing undesirable algal growth in the east.

The monitoring of public waters for recreational and drinking purposes is a difficult task assigned

to many state water agencies. Currently, the OWRB’s Beneficial Use Monitoring Program

(BUMP) is only able to physically monitor a quarter of the lakes it is charged with monitoring in

any given year (30 out of 130), with each lake being sampled a minimum of once every five

years. Field sample campaigns are labor and time intensive outings requiring a full day per lake

(or lake arm for a large lake) for sample and data collection, with some samples requiring

additional processing in the lab after the field campaign.

Four sample points are average for all but the largest lakes in Oklahoma and serve to represent

2

the mean condition of the entire lake. This average sample is sufficient for compliance purposes,

but lakes are not homogenous and are comprised of distinct zones. Where each tributary to a lake

or reservoir enters the water body is the riverine zone, which is typified by the highest nutrient

and sediment loads. As these waters mingle with the lake water, solids settle out while nutrient

loads dilute and they enter the transitional zone. These first two zones spatially expand and

contract in response to increased and decreased flow from rivers. The lacustrine zone is the

clearest part of the lake, nearest to the dam, and will typically contain the least amount of

sediment and other suspended or dissolved matter.

The minimal sample scheme adopted by the OWRB is utilized to determine long-term trends and

basic impairment but is insufficient to monitor the water quality shifts that occur following influx

from rains or to detect algal blooms, which may be highly localized and temporally brief. The

spatial heterogeneity of many parameters like sediment is supposed to be represented by

including the lacustrine, riverine, and transitional zones in the sample regime (OWRB 2014b), but

these variations are lost when samples are averaged together to represent an entire lake.

If the OWRB were able to monitor every lake potentially twice a month, the increased sample

rate would provide more timely information and allow faster response time to water impairment

events. The mandate of the OWRB is to implement the Clean Water Act not only by defining the

Beneficial Uses of Oklahoma’s lakes and streams, but also to set Total Maximum Daily Loads

(TMDL) which support these Beneficial Uses, monitor to ensure they do not exceed the TMDL

for each water quality parameter, and grant or revoke permits in order to control point source

pollution. In addition to more frequent samples, a remotely-sensed image could allow the

discernment of which tributary or tributaries contributed an impairing level of a pollutant and

produce faster, more accurate diagnosis of the source leading to reduced non-compliance with

TMDL limits.

3

The potential benefits of using satellite monitoring to estimate Oklahoma lake water quality

parameters include reduced sampling cost, increased sampling frequency, inclusion of all lakes

visible (not hidden by clouds) at each satellite pass, better understanding of where in a lake water

quality is impaired, and faster result processing. The output of this process would be lake-wide

estimations of specific water quality parameters, which would be unsuitable for regulatory or

punitive uses but would be well-suited to observe selected water quality issues more closely and

allow better response times by the OWRB to developing water impairments.

The parts necessary to implement this type of remote observation technique for water quality

monitoring are already present. The Landsat program collects imagery of the entire Earth every

sixteen days, BUMP collects the water quality data necessary to calibrate the relationship with the

satellite images, and remote sensing analysts have devised the techniques necessary to integrate

the two. This research puts these pieces together with the objective of testing these methods in

Oklahoma and providing these tools to improve monitoring of water quality by the OWRB and

other water quality analysts.

Remote Sensing of Water Quality

The acquisition of aerial imagery while concurrently sampling water quality began in the early

1970’s (Goldman et al. 1974) and remains the backbone of remote sensing-based water quality

studies (Harrington, Schiebe, and Nix 1992; Chavez 1996; Jiazhu 2006). Traditionally, collection

of in situ water quality samples was timed to coincide with flights contracted to gather aerial

photographs. One simply waited until the plane flew past to get out in a boat, collected samples,

and regressed the collected data against manually assigned color values from the photograph.

Goldman et al. (1974) studied sediment flowing into Lake Tahoe, Nevada, from a tributary

stream with recent urban development using this method. Soil matter suspended in the stream

water influx contrasted highly with the unsedimented lake water due to the difference in spectral

properties between water and sediment. Original studies such as this one utilized analog

4

photographs and required manual assignment of subjective density values for sediment loads,

which therefore limited comparisons to within a single image. While there have been continual

improvements to the tools utilized in water research, the core methodology has not varied: collect

water reference data as close to image acquisition as possible and then analyze the reflectance

data to determine a relationship between the two.

There have been two technological advances enabling better water quality research. The first was

the rise of the desktop computer with its image processing and Geographic Information System

(GIS) software. This technological advance has allowed the sheer volume of image analysis to

expand and the pace of image processing to quicken display and analysis of increasingly large

and complex datasets. The second, and perhaps greatest, technological change has occurred in

development and continued improvement of remote sensing satellites. Technically, satellite

sensors were capable of capturing a greater range of spectra than film, and digital media gained

prevalence with the spread of desktop computers.

The Landsat Earth observing platforms were the first satellites launched for the specific purpose

of documenting the change of the Earth’s surface (USGS 2013c). This series of polar-orbiting

satellites is the longest running continuous repository of earth imagery. While initially developed

for remote sensing of land cover, upgrades over the decades have expanded their range of

operation to include water and thermal applications (USGS 2013b), and costs for procuring

Landsat images were eventually eliminated. The Landsat archive is now a free repository of

remotely sensed images of the earth’s surface dating back to 1972. The availability of such a

large pool of data has enticed water quality researchers to adapt Landsat data to their purposes.

This is despite the availability of other instruments capturing hundreds of spectral bands (Han,

Jin, and Yun 2006), specialized satellites capable of discriminating between sediment at the

surface and at depth (Kunte 2008), and satellites designed solely for monitoring water (Lepistö et

5

al. 2010). The archive of Landsat Thematic Mapper (TM) data are still continually applied for

remote sensing of water quality due to the depth of the catalog, accessibility, and global coverage.

The pioneering efforts by water quality analysts to use satellite imagery were conducted using the

earlier Landsat Multi Spectral Scanner (MSS) instrument, with only four wide spectral bands at a

spatial resolution of 80 x 80m, on water bodies of various conditions. While the MSS sensor has

been phased out, the techniques developed to correlate remote sensing information with water

quality data developed using MSS imagery were applied to the next generation sensor, the

Thematic Mapper (TM). While the Landsat TM sensor generates seven narrower spectral bands

and a reduced spatial resolution of 30 x 30m, the MSS image analysis techniques were transferred

with no significant difference in the correlation in some cases (Ritchie, Cooper, and Schiebe

1990).

One of the most important contributions was the more than decade-long collection of water

quality data collected temporally near Landsat overpasses of Lake Chicot, Arkansas, by

Harrington, Schiebe and Nix (1992). This type of long-term analysis was possible in part due to

the digital format of the Landsat images, the authors’ choice of optical water quality parameters

instead of physical (i.e., turbidity instead of sediment), and their sheer persistence. Their analysis

of 79 different sample dates that included four sample sites on the lake allowed the relationship

between remote reflectance and sediment to finally become predictive. Ritchie, Schiebe and

Cooper (1989) and Schiebe, Harrington and Ritchie (1992) investigated alternate models to linear

regression for comparison of water reference data and image values, finding that exponential

transformation techniques controlled for photosynthetic reflectance, thereby improving the

estimation of sediment for clear lakes. However, the authors’ choice of Landsat bands for high

sediment water bodies was the Near Infrared (NIR) Band, as high concentrations of sediment at

the surface caused these wavelengths to be reflected rather than absorbed, improving satellite

returns.

6

Radiometric Correction

When satellites replaced planes for image acquisition, the increase in the distance between the

Earth and the sensor increased the effect of atmospheric scattering (e.g., water molecules) on light

captured by the sensor, with estimates ranging as high as 90 percent (Kutser et al. 2005) or in

some cases even 100 percent (Hadjimitsis 1999). Atmospheric scatter is undesirable because the

light reaching the sensor does not contain any reflectance information about the actual target, in

this case water quality. Light can be reflected towards the sensor from the atmosphere, from the

water surface, from the substrate at the bottom of the water body, or from constituents suspended

within the water column (Bukata 1995). Only the light reflected from constituents suspended

within the water column contains true information about water quality, and the minimization of

all other reflectance paths is necessary to improve estimation results. Early efforts to correct for

atmospheric scattering required collection of reference radiometric data during water quality

sample events, which unfortunately are not available for archival images, as well as specialized

software. In addition, some satellite sensors develop flaws and the imagery they collect needs to

be corrected using ancillary data provided by the satellite management agency. This combined

correction of error due to sensor flaws and atmospheric effects on the sensed image is called

radiometric correction.

Radiometric correction was the first addition to the basic template for water quality research

using remotely-sensed images. Correction for atmospheric diffusion and sun angle by Verdin

(1985) was an early success in image processing for this purpose. Curran and Novo (1988)

quickly declared diffusion and sun angle correction a necessary step in any water quality

estimation research in order to correct error introduced during atmospheric transmission.

Unfortunately, the technique developed by Verdin (1985) required field measurements of

radiometric conditions or imperfect estimations based upon the highest lake brightness values and

only accounted for one type of atmospheric error. The choice between estimating corrective

factors or additional field data collection made this technique unattractive for both reasons.

7

Dark Object Subtraction (DOS) was developed to reduce both types of atmospheric error by

accounting for the angle of the sun at different times of the year. Chavez (1996) accomplished

this feat by expanding upon DOS radiometric correction by using the cosine of solar zenith

(COST) to accurately estimate error for all Landsat MSS bands without any field radiometric

measurements. The development of the COST-DOS method allowed researchers to correct

images only using data from within the image and known properties of the sun, rather than

inflicting additional data collection burdens. Some additional methods for image-based correction

have been proposed utilizing more complicated filtering (Hadjimitsis and Clayton 2009) or by

locating large Lambertian surfaces (Hadjimitsis, Clayton, and Retalis 2009), but COST-DOS

remains the most frequently utilized method. This refinement of the radiometric correction

technique unlocked archival data for use by researchers, a development that has been important

for remote sensing of water bodies along with improved technology.

With correction techniques developed to account for the error introduced by moving the remote

sensing apparatus beyond the Earth’s atmosphere, the basic outline for remote sensing of water

quality was complete. However, some researchers (Curran and Novo 1988) noted that research on

different lakes still came up with differing relationships between reflectance and suspended

sediment, regardless of the improvements in technique. They suggested that a better

understanding of the multitude of environmental factors influencing the color and composition of

suspended sediment could improve water quality estimation abilities using satellites.

Components of Water Reflectance

The difficulties faced when trying to decode water quality remotely led to research on individual

water quality parameters. Dekker, Vos and Peters (2002) modeled Total Suspended Matter (TSM)

on a regional basis, but TSM is an aggregate measure of water quality and does not inform about

specific individual parameters such as Suspended Sediment Concentration (SSC or often just

sediment) or chlorophyll. Onderka and Rodný (2010) derived a relationship between NIR

8

saturation and SSC when there was adequate variation in reflectance within an image. The use of

software-assisted classification was successful for detecting sediment plumes without in situ

sampling (Guneroglu, Karsli, and Dihkan 2013), supporting the concept of completely remote

analysis of some water quality parameters. However, this still did not resolve the difficulties of

adapting a region-specific reflectance equation to new regions.

Preliminary research efforts were focused on investigating which Landsat spectral bands

optimally represented specific water quality parameters. The primary factors influencing the

spectral reflectance, or color, of water are the relative concentrations of chlorophyll, dissolved

organic matter, and suspended minerals (Bukata 1995; Jensen 2007). While these three

constituents are known, their interactions at varied concentrations in solution have been difficult

to decipher. Testing Landsat application to lakes, Carpenter and Carpenter (1983) selected the

MSS Green band as the optimal band for detecting sediments in all but the most turbid water

bodies. Ritchie, Cooper and Yongqing (1987) concluded that both the MSS Green and Red bands

were optimal for sediment detection in clear lakes, but Ritchie, Schiebe and Cooper (1989)

eventually noted that reflectance between lakes varied even for the same sediment level.

Specific water quality parameters of interest to monitoring water bodies in situ are often limited

to nitrogen concentration, phosphorus concentration, and the amount of sediment suspended in

the water column. Unfortunately, nitrogen and phosphorus have not yet been directly detected

optically. Instead, chlorophyll has been used as a proxy for remote sensing of phosphorus and

nitrogen (Chen and Quan 2012; Song et al. 2012). This is an imperfect arrangement, as each of

those substances can be the limiting factor for algae growth, and sediment can carry these

elements bound to their surface by ionic bonds. Despite these challenges, chlorophyll has been

the most widely used method for remote phosphorus prediction to date.

9

The estimation of chlorophyll using remote sensing is also nuanced. Some researchers suggest

that the change in plant communities between seasons means the expected chlorophyll color

varies with season (Schalles, Rundquist, and Schiebe 2002; Zhou et al. 2006) and additionally

also varies between lakes (Schalles et al. 1998). Schalles, Rundquist and Schiebe (2002)

attempted to model the interaction between sediment and chlorophyll by taking spectral

reflectance values by spectrometer for tanks of water with known chlorophyll concentrations

while adding clays of various colors. The results showed a consistent increase in albedo with clay

addition but an inconsistent shift of the location of the maximum reflectance within the green

visible light range depending on the color of clay added. While Landsat data are averaged

together to make a broad green band and peak shift effects are moderated, these intricacies in the

relationship between chlorophyll and sediment reflectance led some researchers to advocate

against a unified sediment reflectance theory (Dekker, Vos, and Peters 2002; Jiazhu 2006; Nas et

al. 2010).

Landscape Scale Research

Rather than continuation of research on a global relationship between water quality parameters

and reflectance, researchers focused on establishing the optimal water reflectance relationship for

specific regions, often bounded by a single satellite image scene and for a single water quality

parameter. This shift to the landscape scale often led to a larger sample pool, and was often based

upon extant water quality data collected over longer time scales than earlier studies.

Kloiber, Brezonik and Bauer (2002) analyzed 25 years of Secchi Disk Depth (SDD) data with

Landsat images for Minnesota. The Secchi Disk is a disk with alternating black and white color

attached to a chain and lowered into a water body to measure optical clarity, which is recorded as

the lowest depth at which the disk can still be seen. There were SDD data for some lakes in the

region, but the authors extrapolated using the relationship calibrated by the few lakes with sample

data to include all lakes in each Landsat scene. They found that the temporal window for

10

statistically significant correlations for SDD extended to images captured up to seven days before

or after the sample event. SDD is an inorganic measurement and is very stable during the summer

dry period, which enables the wide temporal range of useable imagery. Additionally, Kloiber et

al. (2002) discovered a significant relationship between SDD and the combination of the Blue

band/Red band.

The SDD band combination and landscape level application techniques that were established by

Kloiber, Brezonik and Bauer (2002) and Kloiber et al. (2002) have been verified in other

geographic areas including Michigan (Olmanson, Bauer, and Brezonik 2008), Turkey (Nas et al.

2010), and western Maine (McCullough, Loftin, and Sader 2012). In Maine, it was found that

clear lakes were less suited for remote estimation of water quality due to the risk of light hitting

the bottom of the lake and reflecting the bottom substrate rather than reflecting just the

components of water column (McCullough, Loftin, and Sader 2012), requiring masking to

exclude these portions of the lake from analysis (Allan et al. 2011). Although these researchers

used the same spectral bands, Kallio et al. (2008) cautioned during a review of other SDD works

that reflectance equations require recalibration when applied to new areas due to regional

differences in water composition.

While these studies successfully modeled a single water quality parameter for a subset of lakes

with in situ reference values, the ability to model multiple parameters at a landscape scale was the

next evolution in water quality research. Whereas studies had been utilizing a few or single lakes

to calibrate a scene for a single parameter (Kloiber et al. 2002) or even multiple parameters

within a few lakes (Allan et al. 2011), the ability to effectively model multiple parameters at a

regional scale was not demonstrated until recently. An example of overcoming this shortcoming

is the recent work by Hicks et al. (2013) in New Zealand. Using extant Turbidity, Total

Suspended Sediment, and SDD data for a few lakes, they expanded use of the regressed

relationship between these water quality parameters and Landsat imagery to all lakes in a Landsat

11

scene, even lakes that were lacking in situ monitoring data. The study period of ten years

comprised 53 Landsat scenes, each containing a variable number of water bodies free of cloud

and shadow. Therefore, the authors developed automated techniques for processing a vast amount

of data into corrected images displaying only the open water used to extract reflectance values.

The result of this study was an exceptionally high r2 value for Turbidity (0.924) utilizing the NIR

band and a good r2 value (0.670) for SDD utilizing the ratio between the Red and Blue bands.

While the Hicks et al. (2013) study applied the resultant formula to all water bodies in a Landsat

image, this research only estimates water quality parameters on water bodies that have

contributed water quality sample data to developing the reflectance coefficients.

Objectives

The Hicks et al. (2013) findings were specific to New Zealand. In order to validate their

methodology for other regions, the method needs to be tested in different regions and on other

water bodies. Additionally, many researchers including Hicks et al. (2013) use Landsat image

boundaries to define the study region. While use of the Landsat image coverage is convenient, it

does not ensure similarity of environmental factors pertaining to lake classification. Oklahoma is

an ecologically diverse state but contains a region in the Ozark foothills with the greatest

similarity to the clear, shallow lakes of New Zealand. Therefore, Hicks et al.’s (2013)

methodology will be validated in Oklahoma’s region most similar to New Zealand to see if their

methodology can be successfully applied in this new region with a different definition of the

study area.

The primary objective of this thesis is to test the methodology developed by Hicks et al. (2013)

for remote water quality analysis for a region in Oklahoma. Specifically, this research aims to

calibrate the water reflectance equation developed by Hicks et al. (2013) for the parameters of

turbidity and chlorophyll, for the lakes located in the eastern region of Oklahoma. Successful

calibration of the water reflectance equation for each water quality parameter will allow lake-

12

wide estimation of turbidity and chlorophyll each time that lake is imaged by a Landsat sensor,

thereby decreasing the sampling interval and improving lake monitoring and management. In

addition to developing remotely-sensed water reflectance equations for eastern Oklahoma lakes,

this study also aims to develop image processing scripts, which will automate the repetitive data

processing tasks associated with image calibration and analysis, thereby making the methodology

accessible and useful to individuals involved with water quality management in Oklahoma. If

successful, these scripts will be released for any parties interested in using Landsat to monitor

lake water quality remotely. It is hoped that the methodology of remotely-sensing water quality

can ultimately be adopted by the OWRB and expanded to the rest of Oklahoma.

13

CHAPTER II

STUDY AREA

The study area includes all major lakes in the Ozark foothills region of eastern Oklahoma. Some

of the waters in this region have experienced serious impairments due to eutrophication. Common

impairments are high total phosphorus value and subsequent low Dissolved Oxygen due to

consumption by algae (EPA 2010). These lakes are also of particular political interest and have

been the focus of scientific studies due to the nature of their impairment being caused by

activities upstream. While not the primary motivation for selection of a study area, the political

and economic importance of this area was taken into consideration while selecting an area in

Oklahoma to test remote-sensing of water quality. The EPA Ecoregion Level II boundary for the

Ozark, Ouachita-Appalachian Forest Ecoregion approximates the area comprising the clear

waters of Oklahoma and form the starting boundary for the study area. An ecoregion is not a

homogeneous area, but it is defined by landscapes with common characteristics (McCullough,

Loftin, and Sader 2012). For example, the soils in this ecoregion are Permian, unlike the oxidized

Pennsylvanian units under the western half of the state (OGS 2008).

The Ozark, Ouachita-Appalachian Forest Ecoregion includes many rivers leaving the Ozark

Plateau and draining through Oklahoma on their way back into Arkansas as the Arkansas River.

The longest water system is the Neosho River and associated impoundments, with sources in

14

Kansas, Missouri, and Arkansas. Important uses of these watersheds include Eucha-Spavinaw as

Tulsa’s freshwater supply, Lake Eufaula as the largest recreational lake in Oklahoma, and tourism

on Oklahoma Scenic Rivers like the Illinois River. However, the EPA ecoregion boundary is not

perfect for this study as it often crosses back and forth across streams and water bodies as seen in

Figure 1.

Figure 1: Example of the location of the EPA Level II Ecoregions in relationship to water bodies

in eastern Oklahoma.

Therefore, the boundary of the study area has been manually extended to include the entirety of

water bodies belonging to an Ozark, Ouachita-Appalachian Forest Ecoregion stream system.

15

Subsequently, all of the lakes along the Neosho River are included, all arms of Lake Eufaula have

been contained within the study area, and the entirety of Pine Creek Lake has also been included.

These modifications can be seen in Figure 2, where it is also clear that the Ozark, Ouachita-

Appalachian Forest Ecoregion extends beyond Oklahoma’s borders. The study area includes

Oklahoma exclusively because the reconciliation of data from different state agencies is outside

the scope of this thesis. Inclusion of water quality data from Missouri and Arkansas and

estimating water quality for their lakes is a logical extension for future work from the base study

provided here.

Figure 2: Oklahoma's EPA Level II Ecoregions showing the modified study area in eastern

Oklahoma.

The primary water quality issue for waters in the study area is the presence of phosphorus in

streams exiting Arkansas causing high algal production in lakes on the Oklahoma side of the

16

border, thereby degrading water quality and leading to these lakes being listed as impaired by

high levels phosphorus, chlorophyll, and low dissolved oxygen (EPA 2014a). Because of these

deleterious effects on watersheds due to excessive phosphorus, reduction of influx and methods to

mitigate phosphorus’s effect on Oklahoma’s waters are the subject of ongoing research (Haggard,

Moore, and DeLaune 2005; Haggard and Soerens 2006; Busteed et al. 2009). The state of

Oklahoma has sued both the EPA and municipalities within Arkansas in defense of these waters,

resulting in the establishment of a separate TMDL on phosphorus loads for Oklahoma’s

designated Scenic Waterways enforceable at the Oklahoma border (EPA 2010). The ability to

remotely monitor these waters is essential for researchers focused on this area.

17

CHAPTER III

DATA

The data for this thesis are all extant and are available freely from the BUMP database and the

Landsat Archive. The methodology used to process these two datasets into the final reflectance

equation is detailed in the next section.

Beneficial Use Monitoring Program

The OWRB’s BUMP database provides the primary data component for this study. The database

contains all the water quality data needed as ground reference, which negates the need for field

work. The BUMP monitoring program began in 1998 in order to monitor 130 of Oklahoma’s

largest lakes to

“document Beneficial Use impairments, identify impairment sources (if possible), detect

water quality trends, provide needed information for the Water Quality Standards, and

facilitate the prioritization of pollution control activities” (OWRB 2012: 3)

OWRB designates different levels of water quality standard depending upon the Beneficial Use(s)

designated for each lake. The five Beneficial Uses are (1) Fish & Wildlife Propagation, (2)

Aesthetics, (3) Agriculture, (4) Primary Body Contact Recreation, and (5) Public & Private Water

Supply. Each lake is sampled for parameters that have tolerance ranges for each activity and these

samples are used to determine whether the lake is compliant for each designated Beneficial Use

or Uses. The water quality parameters sampled by OWRB include nutrients such as nitrogen and

18

phosphorus, optical clarity, dissolved metals, salt concentrations, biological indicators such as

chlorophyll, and physical parameters including depth.

These data are collected using a combination of digital mensuration tools, field measurements,

and lab analysis to evaluate the multitude of parameters sampled (OWRB 2012). For this project,

the focus is on the levels of suspended sediment and phosphorus in the lakes. Chlorophyll-α is

utilized as a proxy for remote detection of phosphorus. To measure chlorophyll-α, water samples

are collected in a flask at each sample point and returned to the lab for extraction and

measurement by spectrometer. Chlorophyll-α is ratio data, precise to four significant figures, and

reported in units of milligrams per liter (µg/L).

Suspended sediments and turbidity have both been used to successfully estimate water quality

(Hicks et al. 2013), but field measurement of suspended sediment was discontinued for lakes

other than Lake Thunderbird after August of 2000. Turbidity has been collected in its stead,

which is the composite of suspended sediments, chlorophyll, dissolved organic matter, and even

air bubbles (particularly in moving streams). Turbidity is interval data, precise to four significant

figures, and reported in Nephelometric Turbidity Units (NTU). The turbidity parameter is

detected with a digital turbidity meter that calculates the amount of light passing through the

water column. Perfectly clear water has no turbidity and a reading of 0 NTU, whereas heavily

sedimented water has a turbidity value as high as 1600 NTU.

19

Figure 3: Lake WR Holway Beneficial Use Monitoring Program (BUMP) sample points (red

dots).

Each lake has multiple sample points situated to capture the conditions in the riverine,

transitional, and lacustrine zones (Figure 3). Larger lakes tend to have more sample sites and even

separate sample events for different arms when necessary. OWRB sampling campaigns occur

quarterly and all lakes are sampled at least once every five years. However, sampling intervals are

not systematic, and the repeat rate for the larger lakes is more frequent than for the smaller water

bodies. This sporadic sampling regime makes for spotty availability of data events for each

particular lake.

The greatest complication when using BUMP data is the inconsistency of parameter collection,

even among just chlorophyll and turbidity. For example, there are no sampling events in the

database between 1998 and 2002 when these two parameters are captured during the same sample

20

event. Despite these issues, the database contains many thousands of entries and is an invaluable

asset that enables this and many other water quality research projects in Oklahoma.

Landsat Imagery

 There have been six functioning Landsat satellite missions, but this thesis is limited to the data

produced by Landsat 5 (LS5) and Landsat 7 (LS7) for reasons explained below. First, some

general information about the Landsat satellites will be described. Each satellite was placed in an

offset polar orbit with a temporal resolution of sixteen days. First generation Landsat (LS1 – LS3)

carried a Multi Spectral Scanner instrument (MSS), but the second generation (LS4 – LS7)

phased the MSS out and contained the Thematic Mapper (TM) and eventually Enhanced

Thematic Mapper (ETM+) instruments, which generated the data for this project. The most recent

satellite in the Landsat family (LS8) contains a new instrument, the Operational Land Imager

(OLI), which is not compatible with the TM data due to band width contraction. As is shown in

Table 1, only one boundary for one band was kept in place between the TM and OLI instruments.

Effectively, every band is new since the sampled wavelengths narrowed by at least one

micrometer, a 14 percent reduction in the Blue band. NIR was reduced from thirteen micrometers

to three, a reduction of 69 percent. As the table shows, all the critical bands for water quality

research have been altered in the latest Landsat sensor (red highlight), and cannot be compared

with prior satellite data.

Landsat Spectral Bands

There are multiple nomenclature methods for identifying the Landsat bands. Unfortunately the

simplest, numerological, was offset with the addition of a new band at the spectral origin point (as

is seen in Figure 4). Therefore each band will be described by the nominal system using the

Table 1: Landsat (LS) band comparison showing wavelength ranges

 Aerosol Blue Green Red NIR

LS 4-7 - 0.45 0.52 0.52 0.60 0.63 0.69 0.77 0.90

LS 8 0.43–0.45 0.45 0.51 0.53 0.59 0.64 0.67 0.85 0.88

 Wavelengths are in micrometers

21

visible light range the band corresponds with or its common usage (e.g. Red, Blue, Aerosol, and

NIR).

Figure 4: Landsat 8 & Landsat 7 spectral band comparison (image acquired from

http://pubs.usgs.gov/fs/2013/3060/pdf/fs2013-3060.pdf).

The Coastal Band is only available on LS8 and was added to detect coastal aerosol and shallow

water. There have only been a few studies testing this band, so its utility for water quality studies

is not yet known. It has been suggested that it can be used not only to correct the Blue Band for

diffusion of light but also to monitor airborne pollutants. The Blue Band is the band that best

penetrates water. The flip side is that water vapor interferes with this band the most, making it

inconsistent and unsuitable for many research projects.

The Green Band corresponds with the visible reflectance of vegetation. This band works in

conjunction with other bands to detect boundaries between vegetated areas and soil. The Red

Band includes the wavelengths absorbed by chlorophyll. The variation in absorption by this band

is one indicator of plant vigor. The NIR band is highly absorbed by water, making finding water

bodies with this band simple due to their high contrast against surrounding soil and vegetation.

However, a lake reflecting this band indicates there is suspended sediment reflecting light back at

the sensor.

22

The remaining Landsat bands are not typically used for detecting water quality directly, but some

are used during image processing and therefore all will be described here for completeness. The

Short Wave Infrared 1 (SWIR1) is used to detect soil moisture and is capable of discerning

between cloud, snow, and ice. Therefore it will be used to build the not-cloud mask. Short Wave

Infrared 2 (SWIR2) is used for geological surveys as it can tell between geologic formations. The

Thermal Band is used to detect temperature, useful in this study only for cloud detection. Finally

the Panchromatic band is a higher spatial resolution composite of the lower visible bands. This is

used for cosmetic improvements to images and has no scientific utility.

Timing of Landsat Collection Events

Prior research has indicated that there is a narrow window of time to collect appropriate imagery

to utilize preceding or following an in situ data collection event in a water body: the day before,

the day of, or the day after (Kloiber et al. 2002; Hicks et al. 2013). Therefore, the primary

limitation for the application of Landsat images to this project is the availability of cloud-free

images of the lakes taken within this narrow time window around a data collection event from the

OWRB containing both turbidity and chlorophyll. Narrowing the field further is the discovery

that incidence of both parameters only falls between the years of 2002 and 2012 within the

BUMP data collected for this project. These factors have reduced the pertinent datasets to only

include LS5 and LS7 as seen in Figure 5.

Figure 5: Landsat (LS) mission timelines.

1980 1985 1990 1995 2000 2005 2010 2015

LS4

LS5

LS7

LS8

Year

L
a

n
d

s
a

t
 M

is
s
io

n

23

The LS7 collection was disrupted in 2003 when a component on the satellite malfunctioned and

began producing images with stripes devoid of data on every image. The post-2003 LS7 datasets

are now designated with ‘SLC-off’ to denote these problematic images. This thesis utilizes this

part of the archive in spite of the missing data since data selection only includes small pixel

sampling windows around BUMP sample points. The sporadic selection of data from each image

allows these SLC-off images to be used for analysis, but will not be able to fill in the missing data

when estimating water quality parameters.

24

CHAPTER IV

METHODS

The methodology for this thesis is a scripted way of clipping, correcting, analyzing, and selecting

pixels associated with each BUMP sample point. Mean pixel values associated with each sample

point are then assessed by regression to determine the presence or absence of a statistical

relationship between reflectance and sampled values for turbidity and chlorophyll (Figure 6). The

primary tools for image pre-processing and processing are the Python scripting language (PSF

2014) and the ArcMap GIS package. Image manipulation is performed using ArcMap (ESRI

2014) via the ‘arcpy’ module, a version of Python built by ESRI with external access to

ArcMap’s functions.

This means Python is utilized to control ArcMap from outside the program allowing ArcMap

functions to be called the same way any Python function is called. The development of these

script tools in Python means that they can be distributed and easily utilized for other research

projects. However, the usage of arcpy for this methodology requires the presence of both an

ArcMap and Spatial Analyst license.

25

Figure 6: Methodology flowchart.

Image Analysis: Subsetting Images

The majority of the methodology comprises the selection and reduction of Landsat images into a

form comparable with the BUMP water quality data. The first step is determining the Landsat

26

images within a one day temporal window of a BUMP sample events. Images that were collected

within one day of a BUMP sample event and containing less than 100 percent cloud cover are

downloaded from the USGS Global Visualization Viewer. The size of each uncompressed

Landsat scene is approximately 3 gb for the entire 31,110 km2 scene in all bands. Each lake is

only a fraction of that image, so to save space and processing time, images are reduced (i.e.,

spatially subsetted) as soon as possible. There is one measurement required in the radiometric

correction portion of the methodology (discussed below) from image before subsetting; the

DNmin. DNmin is the lowest pixel value (or Digital Number) which has a count of at least 100 from

the entire image, representing the actual value of ‘black’ in the scene for each band. This value is

assessed for each scene once and saved, meaning that if any lakes are sourced from the same

Landsat scene they would all have the same DNmin value.

Once DNmin is determined for the scene, each band’s image is subset to just the lake. Data files

for the lake outline are available from the OWRB (OWRB 2014a), but lake levels fluctuate and

complex vectors are computationally expensive inputs for clipping. Instead the lake outlines are

reprocessed to rectangles bounding the outer extent of the lake’s shoreline (Figure 7) to expedite

the image subsetting process.

Figure 7: Subsetting illustration for Sardis Lake.

27

Image Analysis: Correction and Masking

Clipped lake images are smaller and faster to process than entire scenes, but they are still

uncorrected radiometrically and contain data reflected off vegetation, lakeshore, cloud, man-made

structures like docks, and the water surface. First, the images require atmospheric correction and

analysis to mask out the non-water features. Once processed, they are ready for extraction of the

corrected pixel values.

Band Corrections

All bands except the Thermal band are corrected using Chavez’s (1996) COST-DOS method

which requires the DNmin value collected before image subsetting. The Thermal band, which is

used only to detect clouds, is instead converted to temperature for use in cloud mask building (see

Band Corrections below). Both of these processes require Top of Atmosphere reflectance (TOA)

as input instead of the DN that Landsat images have been reprocessed and delivered containing.

COST-DOS is a sophisticated method for mitigating the effects of atmosphere recorded by

Landsat instruments including scattering, absorbing, and refracting light from the particles in the

air such as water vapor and air-borne particulate matter. The inputs for this method include the

DNmin collected from the whole scene, solar zenith angle, distance between the earth and sun, and

the scene’s pixel values recalculated to the TOA values originally captured by the sensor. The

COST-DOS process includes correction for both components of error with the COST portion

addressing multiplicative error by accounting for the variation in sun angle through the year. The

DOS portion mitigates additive error through a histogram shift, making the DNmin value the

reference zero value in the image.

The conversion of the image from DN to the TOA reflectance (Equation 1) is the first step in the

correction process for all bands (USGS 2011). The inputs for this equation are the DNs in the

image and calibration readings taken at-satellite for each scene and contained in the metadata

included with Landsat scene downloads.

28

�� = �� ∗ �	
� + � (1)

The pixel values, Qcal in DN, are multiplied by the multiplicative scaling factor, Mρ, and then the

additive rescaling factor, Aρ, is summed to give the TOA reflectance Lλ. The result of this first

equation converting image data from DN to TOA reflectance is uncorrected in any way, it only

returns it to the original units of capture at the sensor. Next, all bands other than thermal undergo

COST-DOS, which calculates rescaling factors from the minimum and maximum calibration

values and includes DOS correction and sun angle correction in this process. The generic and

expanded form of this equation are below (Equations 2-4).

����� = ����� − ��% (2)

Where:

����� = ���� + �����
����� − �����

������� − �������

(3)

��% = �0.01 + "#$�� ∗ cos �∅) * / 180�-� / �.-*� (4)

The majority of the necessary data are present in the Landsat metadata, which accompanies each

image downloaded from the USGS site. Lmax and Lmin are maximum and minimum spectral

radiances values scaled to QCALmax and QCALmin by band. The difference between QCALmax and

QCALmin has been 254 (255 – 1) since a recalibration in 2004, and this term is often substituted

with that value when published. DNmin is the lowest pixel value (originally in DN but then

converted to TOA reflectance in HLmin) with at least a count of 100 in the raw scene. ESUNλ is

solar spectral irradiance at TOA which are known values published for each satellite (Chander

and Markham 2003; USGS 2013a). The solar zenith angle in degrees, ∅s, is calculated from the

sun elevation included in the metadata minus 90⁰. Finally, d is the distance between the Earth and

sun, which are known values referenced using the Julian date within the Landsat scene name. The

29

outcome, Lhaze is the rescaled and corrected DNmin value, which is used to correct the rescaled

image values during their correction process (Equation 5).

0� =
*��� − ������.-

"#$�� cos �* / 180 1)�

(5)

The atmospherically corrected reflectance (Pλ) is the final outcome using the TOA reflectance

(Lλ) minus the rescaled and corrected DNmin value, corrected the variations in the angle, distance,

and brightness of the sun throughout the year. The output of this step in the methodology is an

atmospherically corrected version of lake clips for each desired band.

The Thermal band is used to calculate cloud cover mask through a temperature detection

algorithm. These data were converted to spectral radiance (Equation 1), and need to be converted

to temperature (Equation 6) for the masking process. This conversion also requires calibration

constants (USGS 2013a); in this case K1 and K2 are thermal conversion constants and the output

is in kelvins.

2 =
3-

ln �
3�
�6 + 1�

(6)

Not-Cloud Mask

The Landsat data production process includes a percentage counter for the amount of each image

covered by cloud. The source pixel-by-pixel map of cloud cover is not made available with the

scene. However, the same process used in the Landsat image processing can be used to generate

our own cloud cover map to exclude these pixels from data extraction and analysis utilizing the

now converted Green, Red, NIR, SWIR1, and Thermal bands.

The official Landsat process was detailed clearly by Irish (2000) and consists of a two pass

process using thresholds and indices to check for dense clouds and filter out sand and snow which

both exhibit similarities to cloud reflectance. Cirrus clouds are not detected by this method due to

30

their lack of a strong thermal response, and are pervasive enough to be undesirable for exclusion

according to Irish (2000).

The first pass is comprised of eight filters, which progressively select areas that are definable as

cloud or not cloud. During this process the amount of pixels in the scene that are snow and desert

are counted for later use. The remainder of pixels unclassified by this first pass are classified as

ambiguous and handed to the second pass for analysis.

The second pass reevaluates any ambiguous pixels, if there were any, on basic statistics of the

clouds detected during pass one. If there is an excess of brightly illuminated desert pixels detected

in pass one, pass two is not executed. If there is snow present in the scene, the clouds are divided

into a warm and cold class with the statistics of each used to evaluate ambiguous pixels,

otherwise the entire cloud class is utilized. These cloud statistics set minimum and maximum

classification thresholds for the algorithm reevaluating ambiguous pixels to determine if they are

cloud or not cloud.

The final result of this Not-Cloud Mask is a value of 0 if Not-Cloud is false, and 1 if Not-Cloud is

true. Simply stated, values of 1 are pixels where cloud is not detected and these values are

extracted for analysis.

Water Mask

Due to the seasonal fluctuations in lake levels, it is necessary to also exclude any pixels that are

unidentifiable as water. The Normalized Difference Water Index (NDWI) was designed to mask

out exactly these features for MSS data, and has been redesigned to work with current Landsat

bands as the Modified NDWI (Xu 2006) (Equation 7).

���78 =
9:;;< − #78=1

9:;;< + #78=1

(7)

31

The result of MNDWI is an image that is reclassified into a mask to filter out pixels where water

was not detected. Reclassification leaves 0 where Water was not detected and 1 where Water was

detected. The mask value of 1 allows those pixel values to be extracted for analysis.

Image analysis is completed with lake specific clips of the raw Landsat image corrected for

atmospheric interference, and masks computed to exclude non-water and cloud pixels from

automated extraction. The images are now completely processed and ready for pixel value

extraction.

Image Analysis: Pixel Extraction

Each processed lake image contains a variable number of BUMP sample sites. The purpose of

this step is to extract values from each sample site and present them as a summary containing

mask results and individual pixel values for each band. If data are present for all nine pixels

within the sample window and the masks permit, the nine pixel values are averaged for each

band. This aggregated output of a mean by band for each site is combined with the BUMP sample

data for turbidity and chlorophyll for the final step: regression analysis.

The OWRB provides a digital file containing the GPS points for all its BUMP sample sites

(OWRB 2014a). Using the sample point GPS point as the center cell, a sample window 3 pixels

by 3 pixels is generated for each sample site. These nine pixels are sampled for all corrected

bands and both masks at each BUMP sample site. This method averages each BUMP water

sample over a 9 pixel, or 900 m2, area of reflectance from the water surface.

There are a number of reasons for this averaging of a window around the sample point pixel, the

first being that samples are taken by boats floating on the lake surface, which makes staying in

place difficult, thereby contributing to spatial variation in actual sample location. A second reason

is a given sample point could lie a meter away from the boundary of a pixel and be as

representative of that neighboring pixel as the one the GPS point lies within. Third, water is

32

heterogeneous and often in flux due to seasonal, solar, and meteorological factors. Finally, the

water quality samples are a few cups of water taken to represent reflectance data averaged into a

900 m2 surface with a single digital reflectance value. By averaging nine pixel reflectance

averages as regression values rather than using a single pixel’s reflectance, these influences are

reduced by increasing the area of lake each sample represents. Kloiber et al. (2002) investigated

the result of increasing sizes of region of interests (up to 25 x 25 pixels) finding that more than 3

x 3 pixels was not statistically advantageous.

Figure 8: Lake Carl Blackwell without (left) and with Landsat 7 ETM+ scan line correction void

zones (right).

It is possible that aside from the masked-out cloud and land features, the LS7 data will contain

SLC-off voids (Figure 8) or even be outside the scene but within the file extent. The image on the

left is a SLC-on picture of Lake Carl Blackwell, with the red crosses indicating the five BUMP

sample points. On the right, these horizontal stripes in the image reduce the number of pixels

available for image selection. It is clear that three of the sample points are clear of the void zones,

one is within the void, but the 9-pixel window nearest the dam could contain both void and data.

A closer look (Figure 9) shows how SLC-off voids interfere completely (a), not at all (b), or

occasionally only partially (c) with the 9-pixel extraction window.

33

 (a) (b) (c)

Figure 9: Landsat 7 ETM+ scan line correction void & extraction window interactions. Nine-

pixel sample window shown in red.

The cases where the SLC-off voids partially occlude the sample area (Figure 8c) are not explicitly

dealt with in the literature (Allan et al. 2011; Hicks et al. 2013). The simplest way to deal with the

partial extractions is to drop them from the analysis, and with sufficient data available this was

the path taken. A worthy refinement of these methods for future consideration would be to

investigate the proper thresholds for accepting or rejecting partial captures from sample windows.

Lakes clipped completely out of the no data portion of Landsat scenes are detected as such and

not processed further.

Statistical Analysis

Statistical analysis of extracted pixel values is accomplished using SPSS (IBM 2014) and

includes basic statistics, correlations, and regressions. The mean of the extracted pixel values for

each band is correlated with the turbidity and chlorophyll water quality parameters. The basic

minimum and maximum values will also be useful to indicate any anomalous results, as

reflectance values should range between one and zero. The values taken at each sample point

within each lake are treated independently, even though the locations sampled are static. The

dynamic nature of lakes means that the same geographic point does not consist of the same water

from sample event to sample event, especially when the rate of return for each lake is measured in

years. The samples within each lake are treated independently since this reflectance relationship

is not dependent on location, only the light reflected by each pixel of water.

34

Basic data explorations of standard histograms, summary statistics, and normality tests are

performed. At this point, candidates for transformation are identified since these are

environmental data and often exhibit high skew which usually present more normal distributions

when subjected to transformation. Transformed and raw pixel means are then tested for

correlations, by band, using Pearson’s r against the water quality parameter values.

Band/parameter pairs with significant and meaningful Pearson’s values are then tested with linear

bivariate regression. All reported correlations and regression results reported are significant at the

0.01 level (p = 0.99) with correlations being two-tailed.

35

CHAPTER V

RESULTS

Over the ten years of BUMP data that include turbidity and chlorophyll available for Oklahoma,

there were 130 Landsat scenes taken within the study area. The study area boundary for the

Ozark, Ouachita-Appalachian Forest Ecoregion within Oklahoma included twenty lakes sampled

by the OWRB. After verification that each sample window contained lake surface reflectance and

was complete for all bands by BUMP sample site, the number of paired pixel extracts and BUMP

samples was 432 (n = 432).

The chlorophyll and turbidity variables both exhibited a logarithmic curve, and transformation by

natural log improved the normality of each. Even when transformed, the chlorophyll did not

correlate often or well with any Landsat bands or band combinations. The only significant results

at the p = 0.99 level for Chlorophyll and lnChlorophyll was the band combination of SWIR2/NIR

(Pearson’s r values of -0.154 and -0.155 respectively). LnChlorophyll also had a weak, positive

correlation (0.150) with lnTurbidity.

The correlations between lnTurbidity and single bands was highest for SWIR1 and SWIR2

transformed by natural log (-0.142 and -0.145 respectively). These correlations are improved by

band combinations that include Red/SWIR1 (0.421), NIR/SWIR1 (0.409), and Red/SWIR2

36

 (0.384). Linear regression of lnTurbidity proceeded utilizing the significant although moderate

correlations. The outcome was a slightly less moderate r2 value (0.431) for the factors

Red/SWIR1, Green/Red, lnSWIR2, and lnChloropyll.

The corrected water reflectance data for all bands was all within the expected range (0 < x < 1).

While it appeared that they would respond well to a logarithmic transformation, they instead

presented a bimodal distribution after natural log transformation (Figure 10).

During this study period there were infrequently significant correlations with the transformed

band data, and they were always weak. The band ratio data were significant more frequently and

were usually stronger as well. It is possible that a more complex transformation schedule, such as

log-log, square root, multiplicative inverse, and combinations of half-logarithmic band ratios may

Figure 10: Frequency histogram for the natural log of band 3 (lnB3) for

all turbidity

37

produce distributions more similar to the water quality parameters, allowing a more direct

relationship between reflectance and water quality to emerge than by using the band ratios alone.

Given the rather weak relationship between water quality samples and Landsat reflectance for the

entire study period and the much greater sample size compared to those of Hicks et al. (2013),

these results are further analyzed by approximate seasons. The four seasons are rounded to the

nearest month rather than calculating based on annual equinoxes and solstices, shifting the start of

each season back approximately one week (e.g., January through March designated as winter,

April through June as spring, July through September as summer, and October through December

as fall).

Winter

The winter season data subset consisted of 102 events (n = 102), which was reduced to 74 when

correlated pairwise with chlorophyll. The two water quality variables were significantly but

weakly positively correlated (0.289) with one another once both were transformed. The number

of significant correlations for Chlorophyll exceeded lnChlorophyll in their strength and quantity.

LnChlorophyll was only significantly correlated to SWIR1/SWIR2 and lnTurbidity (0.379 and -

0.324 respectively). The significant correlations associated with Chlorophyll all included the

SWIR2 band: SWIR1/SWIR2 (0.498), Blue/SWIR2 (0.273), and SWIR2/Green (0.238). The

moderate strength of the SWIR1/SWIR2 correlation remained significant during regression

analysis, contributing the majority of the r2 value of 0.318 along with Blue/SWIR2. These

variables’ relationship with lnChlorophyll was unsatisfactory based upon the skew of the residual

histogram and clustering of the residual scatterplot.

Strong correlations were more common during winter for turbidity than for chlorophyll. The

strongest significant correlations for Turbidity included the mineral detection bands:

Green/SWIR2 (0.523) and Green/SWIR1 (0.455). These relationships were stronger with

lnTurbidity, which became more normally distributed during transformation. There were many

38

significant correlations with band combinations, the strongest including the mineral bands again:

Red/SWIR1 (0.510), NIR/SWIR1 (0.503), and Red/SWIR2 (0.470). In a linear regression, the r2

value of 0.648 comprised of Red/SWIR1 and Blue/SWIR1. There was some abnormality in the

positive end of the residual histogram and a pronounced downward pull on the scatterplot. Since

both band combinations utilize SWIR1 as the denominator the Variance Inflation Factor was in

the double digits, therefore the least contributing input (Blue/SWIR1) was removed and the

regression rerun. This modification lowered the r2 value to 0.521 at the same time it normalized

the residual histogram and scatterplot by reducing the redundant influence of SWIR1. The band

combinations for this regression relationship with lnTurbidity were Red/SWIR1, NIR/Blue, and

Green/Red.

Spring

The data within the spring classification included 118 sample events (n = 118) reduced to a

minimum of 94 pairwise. There was no significant correlation between chlorophyll and turbidity

for this season. Chlorophyll had no significant correlations in its untransformed state.

LnChlorophyll was slightly and negatively correlated with a selection of mineral bands:

NIR/SWIR1 (-0.356), Green/SWIR1 (-0.346), Red/SWIR1 (-0.319), Green/ SWIR2 (-0.306), and

NIR/SWIR2 (-0.303). In a linear stepwise regression, only NIR/SWIR was selected and residuals

were unsatisfactory.

Turbidity correlated with more bands and combinations in spring, of varying significance.

LnTurbidity results superseded those in terms of significance and strength except for in the case

of single bands and natural log transformations of single bands where a drop of 0.5 was common.

The strongest lnTurbidity correlations were not dominated by the mineral bands in spring, though

they were present: Green/Red (-0.464), Blue/Red (-0.422), SWIR2/NIR (0.329), and SWIR2/Blue

(0.273). Linear regression of these band combinations resulted in a weak r2 value of 0.303 which

included Green/Red, Blue/NIR, and SWIR2/Green.

39

Summer

Filtering the processed data to only analyze the summer season selected 120 data (n = 120) with a

minimum of 99 when correlated pairwise. LnChlorophyll and lnTurbidity were moderately

positively correlated (0.495) for this season. This was also the only significant correlation for

chlorophyll. Turbidity has a selection of significant correlations, but all were improved by

transformation.

The band correlations for lnTurbidity included either the Red band or a mineral band (SWIR1 &

SWIR2). These ten significant correlations were moderate in strength at best (ranging from 0.277

to 0.496), but together accomplished a greater r2 value of 0.654 during stepwise regression. The

selected variables of influence were lnChlorophyll, and Red/Blue, and SWIR2/NIR which had a

normally distributed residual histogram and scatterplot.

Fall

Fall contained a total of 92 data entries (n = 92), which was reduced to a minimum of 80 during

pairwise analysis. Chlorophyll nearly achieved significance for many minor correlations with

single band and band transformations, but fell short at the selected significance level (p = 0.99).

LnChlorophyll failed to make a significant correlation with any data. The Turbidity correlations

were again weaker and less often significant than lnTurbidity relationships.

LnTurbidity during the fall season achieved a significant correlation with all six of the bands,

their natural log transformations, and ten independent band ratios varying in strength from -0.292

to 0.461. All of the band ratios included an infrared band: NIR, SWIR1, or SWIR2. In a stepwise

regression of the significantly correlated variables, there was overlap with the Green band

showing up three times. When controlled for excessive influence of that one band, the r2 = 0.555

and included the NIR, lnRed, and lnBlue bands. However, the Variance Inflation Factor shot to

triple digits due to multicollinearity between the lnRed and lnBlue bands. Scaling back either

40

natural log transformation band further reduced the r2 below 0.200 and still failed to normalize

residuals.

41

CHAPTER VI

DISCUSSION

The BUMP water quality data were not found to be highly correlated with Landsat reflectance

data as was found by Hicks et al. (2013). The strong predictive relationship between the NIR

Band and Turbidity as well as the relationship between the ratio of the Blue band and the Red

band that Hicks et al. (2013) found for lakes in New Zealand do not appear to hold for the lakes

in the Ozark, Ouachita-Appalachian Forest Ecoregion of Oklahoma. The detection of chlorophyll

remains elusive. However, this study did find a relationship between Landsat reflectance and

turbidity, albeit with a seasonal bias.

There are a number of factors that may have contributed to the Hicks et al. (2013) findings not

being directly applicable to Oklahoma. Of primary importance is likely the difference between

the two regions in terms of lake morphology and water composition. Additional research on the

factors which best define similarity between lakes in order to create a study area could refine the

relationships discovered. Both studies utilize Landsat data from the last decade, but Hicks et al.

(2013) utilized just six scenes over nine years with thirty-five total sample events from ten lakes,

while this research analyzed hundreds of sample events spanning one-hundred Landsat images

42

and twenty lakes. The larger study area used in this study may have introduced additional

variability, and the higher sample size rate may have compounded this issue.

That water quality parameter relationships with bands varied seasonally means that further

analysis upon the boundaries when strong relationships are found between turbidity and

reflectance are necessary. Uneven portions of the year may uncover periods of water stability

with stronger relationships than four even seasons did. There is also the risk of decreased

temporal range reducing the sample size drastically, and so research on recovery of partial sample

window results is also important for continuation of remote-sensing of water quality. Alternately,

the acceptable temporal window between a BUMP sample event and a Landsat scene could be

extended for turbidity, since physical parameters stabilize during low influx times of the year

(Olmanson, Bauer, and Brezonik 2008) and the reduced correlation strength for additional

observations is offset by the increase in the number of observations (Kloiber et al. 2002).

Although chlorophyll was not definitively revealed via reflectance, there were some clues that

may lead to better estimating this parameter remotely. The frequent correlations with mineral

bands (SWIR1 and SWIR2) in winter and spring suggest that there may be a relationship between

those spectra during those seasons. A regression relationship between mineral band reflection

with algae and plant production may still be possible through further refinement of methodology.

It is quite surprising that chlorophyll is not significantly correlated with any tested bands or band

combinations during the growing season. However, algae blooms can be temporally brief

phenomena which are difficult to detect with a temporal resolution of sixteen days.

Spring turbidity data exhibited a weaker correlation with single band data when transformed,

unlike the other seasons, and resulted in a very weak regression result. Investigation into the

causes and corrections for this phenomenon could improve the ability to estimate turbidity during

the spring season. It could also simply be due to the lake turnover effect, when the equalization of

43

the thermal gradient in the lake induces mixing of surface and bottom waters. The fall turbidity

correlations included every single band and natural log transformation of single bands, but no

reversal of transformed correlation strength as seen for spring. Investigation into the possible

reasons for fall’s special relationship with band rather than band ratio data or finding a way to

reduce the overlap between the significant bands may yet lead to a relationship for this season as

well.

 The most significant result of this research was the establishment of moderate regression

relationships for turbidity during winter and summer (Table 2), when lake water quality is most

stable. The winter regression yielded an r2 value of only 0.521 and was comprised of band

combinations including the Red, SWIR1, and NIR bands. Previous research had indicated

possible relationships with Red (Kloiber, Brezonik and Bauer 2002) and NIR (Hicks et al. 2013),

but not SWIR1. More significant was the summer regression result of 0.654, which again

included Red, SWIR1, and NIR in band combinations as well as lnChlorophyll. The significant

correlation between chlorophyll and turbidity found for summer may mean that this relationship

is less stable than the winter regression result, as biologic entities are more dynamic than other

particles suspended in the water. While this is the strongest regression result, it falls a bit short of

being a robust estimator for lake turbidity values. Additional refinements in methodology which

build on this study may increase this relationship to enable researchers with the OWRB to check

turbidity levels in all lakes in eastern Oklahoma on a sixteen-day cycle without mandatory field

work.

Table 2: Linear regression results for the natural log of turbidity (lnTurbidity)

Season n Equation r2 p

Summer 96 lnTurbidity = -2.59 + .457 x lnChlorophyll + 6.34 x Red/Green – 4.46 x

SWIR2/NIR

0.654 <0.001

Winter 70 lnTurbidity = 6.7 + 0.62 x Red/NIR - .882 x NIR/Blue – 3.22 x Green/Blue 0.521 <0.001

44

Finally, the development of scripted image processing tools using Python and ESRI’s arcpy was

successful in processing a large volume of image data quickly. The design of these tools around

the OWRB’s water quality database and lake shapefiles allows rapid reapplication of this

methodology across Oklahoma. With minor changes, they could also be applied to other water

quality databases and even integrate LS8 once it has been confirmed compatible with current

Landsat data. In the development of these scripts, code was reviewed and portions reused which

had been published by prior researchers (Gómez-Dans 2013; Kochaver 2014). The insight these

other scripts provided expedited the development of these tools, and hopefully their public release

helps future researchers.

The preference going into this project was that proprietary programs would be avoided, allowing

the application of the scripts by anyone with internet access, not just those with an ArcMAP

license. Due to the time constraints of a thesis and familiarity with the arcpy module, the project

was completed using ArcMAP. Future work on these script tools will be focused on replacing

arcpy functions with free tools.

Conclusions

In conclusion, this thesis set out to apply the methodology of Hicks et al. (2013) that was

developed for lakes in New Zealand to the Ozark, Ouachita-Appalachian Forest Ecoregion of

Oklahoma. The first objective was to test that methodology for two critical water quality

parameters, turbidity and chlorophyll, and if successful translate the regression relationship into a

predictive equation for each parameter. The ability to estimate the state of Oklahoma’s waters

with remote-sensing data would greatly increase the OWRB’s response time to emerging water

quality issues, cost very little compared to field campaigns, and hopefully lead to improved water

quality for all Beneficial Uses and users.

There was no relationship discovered for chlorophyll, but moderate to fair regression

relationships were discovered for turbidity during winter and summer. This finding is important

45

not only as it can be used to crudely estimate turbidity in eastern Oklahoma during half of the

year, but serves as the foundation for increased understanding of the relationship between Landsat

reflectance and turbidity for Ozark, Ouachita-Appalachian Forest Ecoregion and potentially all of

Oklahoma.

The second objective of this study was to develop an automated method for the image processing

workflow. These Landsat image processing scripts are another important by-product of this

research. The scripts will be released to the public along with guidelines for their use. The

availability of these tools accelerates research on remotely-sensed water quality estimation, and

enables agencies tasked with monitoring water quality, such as the OWRB, to investigate

remotely-sensed water quality observation.

Future work stemming from this research includes better transformations of the corrected LS

band data, parameters which define similar water quality bodies, and whether specific time

periods are more effective at estimating turbidity. The frequent correlations between the mineral

bands and chlorophyll during winter and spring also merit further analysis, as there may be an

undiscovered relationship. Finally, there are minor modifications to the script parameters which

may increase the ability to estimate water quality from Landsat reflectance which include

increasing the acceptable time between image and water sample collection and recovery of partial

sample window results. It is hoped that this research and the release of the scripts themselves

encourages interest in the application of Landsat imagery to monitoring water quality.

46

REFERENCES

Allan, M. G., D. P. Hamilton, B. J. Hicks, & L. Brabyn. 2011. Landsat remote sensing of

chlorophyll a concentrations in central North Island lakes of New Zealand. International

Journal of Remote Sensing 32:2037-2055.

Bukata, R. P. 1995. Optical properties and remote sensing of inland and coastal waters. Boca

Raton, FL: CRC Press.

Busteed, P. R., D. E. Storm, M. J. White, & S. H. Stoodley. 2009. Using SWAT to Target Critical

Source Sediment and Phosphorus Areas in the Wister Lake Basin, USA. American

Journal of Environmental Sciences 5:156-163.

Carpenter, S. M., & D. J. Carpenter. 1983. Modeling inland water quality using Landsat data.

Remote Sensing of Environment 13:345-352.

Chander, G., & B. Markham. 2003. Revised Landsat-5 TM radiometric calibration procedures

and postcalibration dynamic ranges. Geoscience and Remote Sensing, IEEE Transactions

on 41:2674-2677.

Chavez, P. S., Jr. 1996. Image-based atmospheric corrections--revisited and improved.

Photogrammetric Engineering & Remote Sensing 62:1025.

Chen, J., & W. Quan. 2012. Using Landsat/TM imagery to estimate nitrogen and phosphorus

concentration in Taihu Lake, China. Selected Topics in Applied Earth Observations and

Remote Sensing, IEEE Journal of 5:273-280.

Curran, P. J., & E. M. M. Novo. 1988. The Relationship Between Suspended Sediment

Concentration and Remotely Sensed Spectral Radiance: A Review. Journal of Coastal

Research 4:351-368.

Dekker, A. G., R. J. Vos, & S. W. M. Peters. 2002. Analytical algorithms for lake water TSM

estimation for retrospective analyses of TM and SPOT sensor data. International Journal

of Remote Sensing 23:15-35.

Environmental Protection Agency (EPA). 2010. "TMDL Development for Lakes Eucha and

Spavinaw in Oklahoma". www.epa.gov/waters/tmdldocs/2Eucha_Spavinaw_TMDL_TP_

Apr_10 (last accessed 20 February 2015).

———. 2014a. "2014 Oklahoma 303(d) List of Impaired Waters (DRAFT)".

http://www.deq.state.ok.us/wqdnew/305b_303d/2014DraftReport/2014 Appendix C -

303d Draft.pdf (last accessed 22 February 2015).

———. 2014b. "Summary of the Clean Water Act". http://www2.epa.gov/laws-

regulations/summary-clean-water-act (last accessed 1 November 2014).

Environmental Systems Research Institute (ESRI). ArcGIS Desktop, Version 10.2.2.

Environmental Systems Research Institute, Redlands, CA.

Goldman, C. R., R. C. Richards, H. W. Paerl, R. C. Wrigley, V. R. Oberbeck, & W. L. Quaide.

1974. Limnological studies and remote sensing of the Upper Truckee River sediment

plume in Lake Tahoe, California-Nevada. Remote Sensing of Environment 3:49-67.

Guneroglu, A., F. Karsli, & M. Dihkan. 2013. Automatic detection of coastal plumes using

Landsat TM/ETM+ images. International Journal of Remote Sensing 34:4702-4714.

Hadjimitsis, D. G. 1999. The application of atmospheric correction algorithms in the satellite

remote sensing of reservoirs. University of Surrey, United Kingdom.

47

Hadjimitsis, D. G., & C. Clayton. 2009. Assessment of temporal variations of water quality in

inland water bodies using atmospheric corrected satellite remotely sensed image data.

Environmental Monitoring and Assessment 159:281-292.

Hadjimitsis, D. G., C. R. I. Clayton, & A. Retalis. 2009. The use of selected pseudo-invariant

targets for the application of atmospheric correction in multi-temporal studies using

satellite remotely sensed imagery. International Journal of Applied Earth Observation

and Geoinformation 11:192-200.

Haggard, B., P. Moore, & P. DeLaune. 2005. Phosphorus flux from bottom sediments in Lake

Eucha, Oklahoma. Journal of environmental quality 34:724-728.

Haggard, B. E., & T. S. Soerens. 2006. Sediment phosphorus release at a small impoundment on

the Illinois River, Arkansas and Oklahoma, USA. Ecological Engineering 28:280-287.

Han, Z., Y. Q. Jin, & C. X. Yun. 2006. Suspended sediment concentrations in the Yangtze River

estuary retrieved from the CMODIS data. International Journal of Remote Sensing

27:4329-4336.

Harrington, J. A., F. R. Schiebe, & J. F. Nix. 1992. Remote sensing of Lake Chicot, Arkansas:

Monitoring suspended sediments, turbidity, and Secchi depth with Landsat MSS data.

Remote Sensing of Environment 39:15-27.

Hicks, B., G. Stichbury, L. Brabyn, M. Allan, & S. Ashraf. 2013. Hindcasting water clarity from

Landsat satellite images of unmonitored shallow lakes in the Waikato region, New

Zealand. Environmental Monitoring and Assessment 185:7245-7261.

International Business Machines Corporation (IBM). IBM SPSS Statistics, Version 22.

International Business Machines Corporation, Armonk, NY.

Irish, R. R. 2000. Landsat 7 automatic cloud cover assessment. In AeroSense 2000, 348-355.

International Society for Optics and Photonics.

Jensen, J. R. 2007. Remote sensing of the environment: an earth resource perspective. Upper

Saddle River, NJ: Pearson Prentice Hall.

Jiazhu, G. J. W. Y. H. 2006. A model for the retrieval of suspended sediment concentrations in

Taihu Lake from TM images. Journal of Geographical Sciences 16:458-464.

Kallio, K., J. Attila, P. Harma, S. Koponen, J. Pulliainen, U. M. Hyytiainen, & T. Pyhalahti.

2008. Landsat ETM+ images in the estimation of seasonal lake water quality in boreal

river basins. Environmental Management 42:511-522.

Kloiber, S. M., P. L. Brezonik, & M. E. Bauer. 2002. Application of Landsat imagery to regional-

scale assessments of lake clarity. Water Research 36:4330-4340.

Kloiber, S. M., P. L. Brezonik, L. G. Olmanson, & M. E. Bauer. 2002. A procedure for regional

lake water clarity assessment using Landsat multispectral data. Remote Sensing of

Environment 82:38-47.

Kunte, P. 2008. Sediment concentration and bed form structures of Gulf of Cambay from remote

sensing. International Journal of Remote Sensing 29:2169-2182.

Kutser, T., D. C. Pierson, K. Y. Kallio, A. Reinart, & S. Sobek. 2005. Mapping lake CDOM by

satellite remote sensing. Remote Sensing of Environment 94:535-540.

Lepistö, A., T. Huttula, S. Koponen, K. Kallio, A. Lindfors, M. Tarvainen, & J. Sarvala. 2010.

Monitoring of spatial water quality in lakes by remote sensing and transect

measurements. Aquatic Ecosystem Health & Management 13:176-184.

McCullough, I. M., C. S. Loftin, & S. A. Sader. 2012. Combining lake and watershed

characteristics with Landsat TM data for remote estimation of regional lake clarity.

Remote Sensing of Environment 123:109-115.

Nas, B., S. Ekercin, H. Karabork, A. Berktay, & D. J. Mulla. 2010. An Application of Landsat-

5TM Image Data for Water Quality Mapping in Lake Beysehir, Turkey. Water Air and

Soil Pollution 212:183-197.

Oklahoma Geologic Survey (OGS). 2008. "Geologic History of Oklahoma".

http://www.ogs.ou.edu/pubsscanned/EP9_2-8geol.pdf (last accessed 2 October 2014).

48

Olmanson, L. G., M. E. Bauer, & P. L. Brezonik. 2008. A 20-year Landsat water clarity census of

Minnesota's 10,000 lakes. Remote Sensing of Environment 112:4086-4097.

Onderka, M., & M. Rodný. 2010. Can suspended sediment concentrations be estimated from

multispectral imagery using only image-derived information? Journal of the Indian

Society of Remote Sensing 38:85-97.

Oklahoma Water Resources Board (OWRB). 2012. "2012 Oklahoma Lakes Report".

http://www.owrb.ok.gov/quality/monitoring/bump/pdf_bump/archives/2012_LakesBUM

PReport.pdf (last accessed 4 October 2014).

———. 2014a. "Data & Maps: Surface Water".

http://www.owrb.ok.gov/maps/pmg/owrbdata_SW.html (last accessed 22 April 2014).

———. 2014b. "Status of Water Quality Monitoring in Oklahoma: Surface Water Monitoring

Strategy Document".

http://www.owrb.ok.gov/quality/monitoring/monitoring_pdf/2014WaterQualityMonitorin

gStrategy.pdf (last accessed 14 February 2015).

Python Software Foundation (PSF). Python, Version 2.7. Python Language Reference, Delaware,

USA.

Ritchie, J. C., C. M. Cooper, & F. R. Schiebe. 1990. The relationship of MSS and TM digital data

with suspended sediments, chlorophyll, and temperature in Moon Lake, Mississippi.

Remote Sensing of Environment 33:137-148.

Ritchie, J. C., C. M. Cooper, & J. Yongqing. 1987. Using landsat multispectral scanner data to

estimate suspended sediments in Moon Lake, Mississippi. Remote Sensing of

Environment 23:65-81.

Ritchie, J. C., F. R. Schiebe, & C. M. Cooper. 1989. Landsat digital data for estimating suspended

sediment in inland water. International Association of Hydrological Sciences Publ:151-

158.

Schalles, J. F., A. A. Gitelson, Y. Z. Yacobi, & A. E. Kroenke. 1998. Estimation of chlorophyll a

from time series measurements of high spectral resolution reflectance in an eutrophic

lake. Journal of Phycology 34:383-390.

Schalles, J. F., D. Rundquist, & F. Schiebe. 2002. The influence of suspended clays on

phytoplankton reflectance signatures and the remote estimation of chlorophyll. In Verh.

Int. Ver. Theor. Angew. Limnol./Proc. Int. Assoc. Theor. Appl. Limnol./Trav. Assoc. Int.

Limnol. Theor. Appl., 3619-3625.

Schiebe, F., J. Harrington, & J. Ritchie. 1992. Remote sensing of suspended sediments: the Lake

Chicot, Arkansas project. International Journal of Remote Sensing 13:1487-1509.

Song, K., L. Li, S. Li, L. Tedesco, B. Hall, & L. Li. 2012. Hyperspectral remote sensing of total

phosphorus (TP) in three central Indiana water supply reservoirs. Water, Air, & Soil

Pollution 223:1481-1502.

United States Geologic Survey (USGS). 2011. "Landsat 7 Science Data Users Handbook".

http://landsathandbook.gsfc.nasa.gov/data_prod/prog_sect11_3.html (last accessed May

15 2015).

United States Geologic Survey (USGS). 2013a. "ACCA Parameters".

http://landsathandbook.gsfc.nasa.gov/cpf/prog_sect9_2.html#section9.2.4 (last accessed

15 March 2015).

———. 2013b. "Landsat 4 History". http://landsat.usgs.gov/about_landsat4.php (last accessed 29

September 2014).

———. 2013c. "Landsat Project Description".

http://landsat.usgs.gov/about_project_descriptions.php (last accessed 29 September

2014).

Verdin, J. P. 1985. Monitoring water quality conditions in a large western reservoir with Landsat

imagery. Photogrammetric Engineering and Remote Sensing 51:343-353.

49

Xu, H. 2006. Modification of normalised difference water index (NDWI) to enhance open water

features in remotely sensed imagery. International Journal of Remote Sensing 27:3025-

3033.

Zhou, W., S. Wang, Y. Zhou, & A. Troy. 2006. Mapping the concentrations of total suspended

matter in Lake Tailm, China, using Landsat-5 TM data. International Journal of Remote

Sensing 27:1177-1191.

50

APPENDICES

Below are the source code for the Python scripts developed and utilized during this research

project. These include code developed by other researchers but are implemented specifically for

the OWRB’s database format. The settings variables in the header of each script are customizable

by the user to facilitate application to other data. There are three main scripts: Read Images and

Clip, Image Correction, and BUMP and Processed Data Assembly. The first, Read Images and

Clip reads a master list of lake and scene names, selects scenes from the master list for

processing, reads the metadata for that image, and then clips each Landsat scene down to just the

lake. Next these subset images are processed to convert them back to TOA reflectance using the

metadata parameters, corrected using COST-DOS, masked for water and cloud detection, and

then sampled for the nine pixels surrounding and including the BUMP sample point. Finally, the

results of the Landsat image correction and sampling script is matched back up with the BUMP

water quality data file for statistical analysis.

Read Images and Clip

try:

 import arcpy

except ImportError:

 print "You need arcpy installed"

 sys.exit (-1)

from arcpy import env

env.overwriteOutput = True

import fileinput

import os

from os import listdir

51

from os.path import isfile, join

import csv

try:

 import numpy as np

except ImportError:

 print "You need numpy installed"

 sys.exit (-1)

import inspect

import logging

import pickle

Set environment settings

env.workspace = "F:/py"

working_dir = os.getcwd()

settings = {

'Image Dump': '',

'Image List': 'Master List.csv',

'Output Dir': 'Processed',

'Clip Dir': 'Clips',

'Scene Dir': 'image dump',

reading master list

'Code Header': 'Code',

52

'Scene Header': 'Scene Name',

'Pick Bands': ['1', '2', '3', '4', '5', '6', '7'],

'Parameter List': ['dnmin', 'gain', 'bias', 'lmax', 'lmin', 'qc_lmax', 'qc_lmin'],

metadata store

'MD file':'metadata.txt'

}

code adapted from J Gomez-Dans

def process_metadata (fname , scene):

 """A function to extract the relelvant metadata from the

 USGS control file. Returns dicionaries with LMAX, LMIN,

 QCAL_LMIN and QCAL_LMAX for each of the bands of interest."""

 log = logger.getChild(inspect.currentframe().f_code.co_name)

 log.info(u'Initializing {}'.format(inspect.currentframe().f_code.co_name))

 # band vars

 lmax = {} # Dicts to store constants

 lmin = {}

 qc_lmax = {}

 qc_lmin = {}

 gain = {}

 bias = {}

 p_list = ['lmax', 'lmin', 'qc_lmax', 'qc_lmin', 'gain', 'bias']

53

 parameters = [lmax, lmin, qc_lmax, qc_lmin, gain, bias]

 # scene vars

 sun_elevation = 0

 julian_date = 0

 sat_id = ''

 # lets just go ahead and assemble these as a dict for return

 result = {}

 with open(fname, 'r') as fp: # Open metadata file

 for line in fp:

 if (line.find ("RADIANCE_MULT_BAND") >= 0):

 s = line.split("=") # Split by equal sign

 the_band = s[0].strip()[-1] # Band number as string

 # use this as dict name

 band_name = 'B' + s[0].split("_")[3].strip() + '.TIF'

 logger.debug('test {} in {}: {}'.format(the_band, settings['Pick Bands'], the_band in

settings['Pick Bands']))

 if the_band in settings['Pick Bands']: # Is this one of the bands we want?

 gain[band_name] = float (s[-1]) # Get constant as float

 logger.debug('gain[{}]: {}'.format(band_name, gain[band_name]))

 elif (line.find ("RADIANCE_ADD_BAND") >= 0):

 s = line.split("=") # Split by equal sign

54

 # test this one

 the_band = s[0].strip()[-1] # Band number as string

 # use this as dict name

 band_name = 'B' + s[0].split("_")[3].strip()

 if the_band in settings['Pick Bands']: # Is this one of the bands we want?

 bias[band_name] = float (s[-1]) # Get constant as float

 elif (line.find ("QUANTIZE_CAL_MAX_BAND") >= 0):

 s = line.split("=") # Split by equal sign

 # test this one

 the_band = s[0].strip()[-1] # Band number as string

 # use this as dict name

 band_name = 'B' + s[0].split("_")[4].strip()

 if the_band in settings['Pick Bands']: # Is this one of the bands we want?

 qc_lmax[band_name] = float (s[-1]) # Get constant as float

 elif (line.find ("QUANTIZE_CAL_MIN_BAND") >= 0):

 s = line.split("=") # Split by equal sign

 # test this one

 the_band = s[0].strip()[-1] # Band number as string

 # use this as dict name

 band_name = 'B' + s[0].split("_")[4].strip()

 if the_band in settings['Pick Bands']: # Is this one of the bands we want?

 qc_lmin[band_name] = float (s[-1]) # Get constant as float

 elif (line.find ("RADIANCE_MAXIMUM_BAND") >= 0):

55

 s = line.split("=") # Split by equal sign

 # test this one

 the_band = s[0].strip()[-1] # Band number as string

 # use this as dict name

 band_name = 'B' + s[0].split("_")[3].strip()

 if the_band in settings['Pick Bands']: # Is this one of the bands we want?

 lmax[band_name] = float (s[-1]) # Get constant as float

 elif (line.find ("RADIANCE_MINIMUM_BAND") >= 0):

 s = line.split("=") # Split by equal sign

 # test this one

 the_band = s[0].strip()[-1] # Band number as string

 # use this as dict name

 band_name = 'B' + s[0].split("_")[3].strip()

 if the_band in settings['Pick Bands']: # Is this one of the bands we want?

 lmin[band_name] = float (s[-1]) # Get constant as float

 elif (line.find('SUN_ELEVATION') >= 0):

 s = line.split('=')

 sun_elevation = s[1].strip()

 log.debug('sun_elevation: {}'.format(sun_elevation))

 # other is scene wide metadata

 sat_id = scene[2]

 julian_date = scene[13:16]

56

 log.debug('sat id: {}, julian_date: {}'.format(sat_id, julian_date))

 other = [sat_id, julian_date, sun_elevation]

 # make named dict for result

 for (x, i) in zip(p_list, parameters):

 result[x] = i

 log.debug('result: {}'.format(result))

 return [result, other]

code adapted from J Gomez-Dans

def get_metadata (fname):

 """This function takes `fname`, a filename (opionally with a path), and

 and works out the associated metadata file"""

 log = logger.getChild(inspect.currentframe().f_code.co_name)

 log.info(u'Initializing {}'.format(inspect.currentframe().f_code.co_name))

 original_fname = os.path.basename (fname)

 metadata_fname = original_fname.split("_")[0] + "_MTL.txt"

 metadata_fname = os.path.join (os.path.dirname (fname), metadata_fname)

 return metadata_fname

def discover_files(loc):

 """

57

 Search curdir for a csv or txt in the Raw Input dir.

 This is the list of locations and dates which are used to select images from

 the other directory full of LS metadata "Target List"

 Lets use a working dir, and then a file name "Test list.xls". load the xlreader.

 Read check for clip, read for dnmin, then clip and save to new dir.

 """

 log = logger.getChild(inspect.currentframe().f_code.co_name)

 log.info(u'Initializing {}'.format(inspect.currentframe().f_code.co_name))

 result = []

 # Load all Input_Types files in curdir to a list

 file_list = [f for f in listdir(loc) if isfile(join(loc,f)) \

 and os.path.splitext(f)[1] in settings['Input_Types']]

 log.debug('found anything?: {}'.format(file_list))

 # See if it's a CSV or TXT file

 for file in file_list:

 extention = os.path.splitext(file)[1]

 log.debug('checking extention: {}'.format(extention))

 if extention.lower() == '.csv':

 log.debug('found a csv file: {}'.format(file))

 result.append(join(loc,file))

 elif extention.lower() == '.txt':

58

 log.debug('found a txt file: {}'.format(file))

 result.append(file)

 else:

 log.debug('no csv or txt file was found')

 if verbose: print ('discover result: ', result)

 if result:

 log.debug('found an input')

 return result

def list_find(list, search_term):

 """

 Find if something is found in a list of lists, and return that column's data

 Returns ['R, C', 'List of stuff -header']

 """

 log = logger.getChild(inspect.currentframe().f_code.co_name)

 log.debug('Initializing {}'.format(inspect.currentframe().f_code.co_name))

 logger.debug('for {} in {}'.format(search_term, list))

 result = []

 # see if term is in the list

 term_row = [idx for idx in list if search_term in idx]

 log.debug('term row: {}'.format(term_row))

59

 # possible outcomes are 0 = not found, 1 = expected to find one time, >1 = problem...

 # this is a list comp, so result is a list. check length!

 if len(term_row) == 1:

 # get the index of the row term was found in

 term_row_i = [i for i, x in enumerate(list) if search_term in x][0]

 log.debug('term row_i: {}'.format(term_row_i))

 # get the column index it was found in

 term_col_i = [x for x, i in enumerate(term_row[0]) if i == search_term][0] # returns i as list,

so [0]

 log.debug('term col_i: {}'.format(term_col_i))

 # with start row and col found, find last col and return a selection

 # only get from header row +1 to last row

 # can deal with an extra, blank line result on return

 selection = [x[term_col_i] for idx, x in enumerate(list) if idx in range(term_row_i +1,

len(list))] # but this leaves blank on the end of names

 log.debug('list_find selection dump: {}'.format(selection)) # should gaurd against blanks

above header row

 result = [[term_row_i, term_col_i], selection]

 else:

 log.warning(u'Failed to find {} exactly once in list'.format(search_term))

 result = [0, 0]

 log.debug('list_find result: {}'.format(result))

 return result

60

def main():

 pass

if __name__ == '__main__':

 main()

 # Setup Logger

 logger = logging.getLogger(os.path.basename(__file__))

 logger.setLevel(logging.DEBUG)

 formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')

 format2 = logging.Formatter('%(levelname)s - %(message)s')

 # Logging to conlsole/standard output

 ch = logging.StreamHandler()

 ch.setLevel(logging.DEBUG)

 ch.setFormatter(formatter)

 logger.addHandler(ch)

 # read master list

 # first is it present?

 input_file = settings['Image List']

 input_list = []

61

 clip_list = []

 if os.path.isfile(input_file):

 with open(input_file, 'r') as csvfile:

 logger.debug('opened: {}'.format(input_file))

 reader = csv.reader(csvfile)

 for row in reader:

 input_list.append(row)

 logger.debug('read: {}'.format(row))

 # check for all scenes in image dump

 # get list of clip codes

 clip_list = list_find(input_list, settings['Code Header'])[1]

 logger.debug('code len & list: {} {}'.format(len(clip_list), clip_list))

 # reduce codes to just first half (scene code)

 clip_list = [i[:2] for i in clip_list]

 clip_list = set(clip_list)

 logger.debug('uniq code & scene list: {} {}'.format(len(clip_list), clip_list))

 # check each is present in clips

 clip_dir = os.path.join(os.getcwd(), settings['Clip Dir'])

 logger.debug('clip_dir: {}'.format(clip_dir))

 # get just the prefix, only for SHP files

62

 clips_in_dir = [i[:2] for i in listdir(clip_dir) if i.partition('.')[2] == 'shp']

 logger.debug('clips_in_dir 1 len & list: {} {}'.format(len(clips_in_dir), clips_in_dir))

 # see if all of clip_list can be found in clips_in_dir list

 clips_missed = []

 for i in clip_list:

 if i in clips_in_dir:

 logger.debug('clip {} found already clipped'.format(i))

 else:

 logger.warning('clip {} NOT found already clipped'.format(i))

 clips_missed.append(i)

 if clips_missed:

 logger.warning('clips NOT all found already clipped: {}'.format(clips_missed))

 else:

 logger.debug('clips all found already clipped')

 # get list of scenes

 scene_list = list_find(input_list, settings['Scene Header'])[1]

 logger.debug('scene len & list: {} {}'.format(len(scene_list), scene_list))

 scene_list = set(scene_list)

 logger.debug('uniq len & scene list: {} {}'.format(len(scene_list), scene_list))

63

 # Start with each scene in the input_list

 scene_dir = os.path.join(os.getcwd(), settings['Scene Dir'])

 logger.debug('scene_dir: {}'.format(scene_dir))

 for x in scene_list:

 logger.debug('processing scene: {}'.format(x))

 parameter_dict = {}

 # read metadata to store in dict

 metadata_file = get_metadata(os.path.join(scene_dir, x))

 logger.debug('metadata name: {}'.format(metadata_file))

 if os.path.isfile(metadata_file):

 parameter_dict , scene_vars = process_metadata(metadata_file, x)

 logger.debug('metadata sneak peak: {}'.format(parameter_dict))

 logger.debug('scene metadata: {}'.format(scene_vars))

 # Get all the scenes

 scenes = [i for i in listdir(scene_dir) if x in i and i.partition('.')[2] == 'TIF']

 logger.debug('scenes selected from scene dir 1: {}'.format(scenes))

 # drop bands not on in the Pick List

 scenes = [i for i in scenes if i.partition('_')[2][1] in settings['Pick Bands']]

 logger.debug('reduced scenes selected from scene dir : {}'.format(scenes))

 # collect each scene's DNmin

64

 dnmin = {}

 for i in scenes:

 scene = os.path.join(settings['Scene Dir'], i)

 logger.debug('scene path: {}'.format(scene))

 img = arcpy.Raster(scene)

 # take of extention to match what the metadata keys look like

 this_band = i.partition('_')[2].split('.')[0]

 # check if RAT present or needs built

 test = img.hasRAT

 if test:

 logger.debug('{} has RAT'.format(i))

 else:

 logger.debug('{} has no RAT'.format(i))

 t = arcpy.BuildRasterAttributeTable_management(scene, "NONE")

 if t:

 logger.debug('{} had RAT built'.format(i))

 else:

 logger.debug('{} failed to build RAT'.format(i))

 if test or t:

 # these should be acending from lowest value

 with arcpy.da.SearchCursor(scene, ["VALUE", "COUNT"]) as rows:

65

 for row in rows:

 d = 0

 val = row[0]

 count = row[1]

 # find the lowest value with a count of at least 100

 if int(val) > 0 and int(count) > 100:

 d = int(val)

 dnmin[this_band] = d

 logger.debug('{} is DNmin'.format(d))

 break

 else:

 logger.debug('{} is not DNmin'.format(val))

 logger.debug('DNmin: {}'.format(dnmin))

 # add dnmin to parameter dict

 parameter_dict['dnmin'] = dnmin

 logger.debug('parameters as dict: {}'.format(parameter_dict))

 # store it by scene name

 Correction_Parameters[x] = parameter_dict

 Correction_Parameters[x]['sat_id'] = scene_vars[0]

 Correction_Parameters[x]['julian_date'] = scene_vars[1]

 Correction_Parameters[x]['sun_elevation'] = scene_vars[2]

 logger.debug('assembed correction parameters for {}: {}'.format(x,

Correction_Parameters))

66

 # Get all the lakes that need clipped out of this image

 process_list = [i for i in input_list if x in i]

 # Make sure you have something:

 if process_list:

 logger.debug('lakes to be clipped: {}'.format(process_list))

 # Process this list

 for i in process_list:

 # Set clip variables

 output_dir = os.path.join(settings['Output Dir'], i[0])

 rectangle = '#'

 clip_feature = clip_dir + '/' + i[0][:2] + '_box.shp'

 nodata_value = '0'

 clipping_geometry = 'ClippingGeometry'

 maintain_clipping_extent = 'NO_MAINTAIN_EXTENT'

 # make sure the output dir exists, if not, make

 out = os.path.join(working_dir, settings['Output Dir'], i[0])

 if not os.path.exists(out):

 os.makedirs(out)

 # Clip and output all bands of the scene

 for j in scenes:

67

 in_raster = os.path.join(scene_dir, j)

 out_raster = os.path.join(working_dir, output_dir, 'c_'+j)

 # Execute Clip

 #Clip_management in_raster rectangle out_raster {in_template_dataset}

{nodata_value} {NONE | ClippingGeometry}

 clip = arcpy.Clip_management(in_raster, rectangle, out_raster, \

 clip_feature, nodata_value, clipping_geometry, maintain_clipping_extent)

 # reclass 0 to be NoData

 if clip:

 logger.debug('clipped scene {} to {}'.format(j, output_dir))

 else:

 logger.warning('failed to clip: {}'.format(j))

 else:

 logger.warning('process_list couldnt find: {}'.format(x))

 else:

 logger.critical('metadata not found!: {}'.format(metadata_file))

 # write Correction Parameters dictionary to Output's dir

 logger.debug('writing corr parameters to {}'.format(settings['MD file']))

 with open(os.path.join(settings['Output Dir'], settings['MD file']), 'wb') as handle:

 pickle.dump(Correction_Parameters, handle)

 else:

68

 logger.warning(u'Missing the input file: {}'.format(settings['Image List']))

 logger.debug('finished!')

Image Correction

try:

 import arcpy

except ImportError:

 print "You need arcpy installed"

 sys.exit (-1)

from arcpy import env

env.overwriteOutput = True

from arcpy.sa import *

#Check out the Spatial Analyst extension

try:

 arcpy.CheckOutExtension("spatial")

except ImportError:

 print "You need access to Spatial Analyst"

 sys.exit (-1)

import os

from os import listdir

from os.path import isfile, join, isdir

import csv

69

import numpy as np

import math

import inspect

import logging

import pickle

from itertools import islice

working_dir = os.getcwd()

settings = {

'Image Dump': '',

'Image List': 'Master List.csv',

'Output Dir': 'Processed',

'Clip Dir': 'Clips',

'Scene Dir': 'image dump',

'Cloud Dir': 'cloud mask',

'Extr Dir': 'Extracts', #Extract dump

'Agg File': 'agg.dbf', # Extract file name

'Agg Output': 'Aggregated.csv',

'SD File': 'd.csv', # Solar distance file from NASA

reading master list

'Code Header': 'Code',

'Scene Header': 'Scene Name',

70

'Pick Bands': ['1', '2', '3', '4', '5', '6', '7'],

metadata store

'MD file':'metadata.txt',

'Clip Prefix': 'c_',

'Rad Prefix': 'r', # Converted to TOA radiance

'Corr Prefix': 'c', # COST DOS corrected

'Temp Prefix': 't', # For B6 once it's temperature

'NDWI Prefix': 'water_', # prefix for water mask

'Blue Band': 'B1',

'Green Band': 'B2',

'Red Band': 'B3',

'NIR Band': 'B4',

'SWIR Band': 'B5',

'Thermal Band': 'B6',

}

sun_d = {}

Do_COSTDOS = 1

switch for Testing or Production

Testing = 0

if Testing:

 log_location = 'log.txt'

71

 output_level = logging.DEBUG

else:

 log_location = 'log.txt'

 output_level = logging.INFO

#////////////////////////// Subfunctions //////////////////////////#

code adapted from Steve Kochaver

def calc_radiance (LMAX, LMIN, QCALMAX, QCALMIN, QCAL, outfolder):

 """

 Calculate the TOA radiance from metadata on each band.

 """

 log = logger.getChild(inspect.currentframe().f_code.co_name)

 log.info(u'Initializing {}'.format(inspect.currentframe().f_code.co_name))

 log.debug('with {}/{} {}/{} {}/{}'.format(LMAX, LMIN, QCALMAX, QCALMIN, QCAL,

outfolder))

 LMAX = float(LMAX)

 LMIN = float(LMIN)

 QCALMAX = float(QCALMAX)

 QCALMIN = float(QCALMIN)

 offset = (LMAX - LMIN)/(QCALMAX-QCALMIN)

 input_ras = Raster(QCAL)

72

 outname = os.path.join(outfolder, (settings['Rad Prefix'] + QCAL.split('\\')[-1]))

 log.debug('output name: {}'.format(outname))

 out_raster = (offset * (input_ras - QCALMIN)) + LMIN

 log.debug('saving output as: {}'.format(outname))

 out_raster.save(outname)

 return outname

code adapted from Steve Kochaver

def calc_reflectance(solarDist, ESUN, solarElevation, radianceRaster, Lhaze, outfolder):

 """

 COSTDOS correction in the Lhaze parameter. Toggle Global var Do_Costdos to use 0.0.

 """

 log = logger.getChild(inspect.currentframe().f_code.co_name)

 log.info(u'Initializing {}'.format(inspect.currentframe().f_code.co_name))

 log.debug('with: {} {} {} {} {} {}'.format(solarDist, ESUN, solarElevation, radianceRaster,

Lhaze, outfolder))

 outname = os.path.join(outfolder, (settings['Corr Prefix'] + radianceRaster.split('\\')[-1]))

 #Value for solar zenith is 90 degrees minus solar elevation (angle from horizon to the center of

the sun)

 #http://landsathandbook.gsfc.nasa.gov/data_properties/prog_sect6_3.html

 solarZenith = (90.0 - float(solarElevation)) * (math.pi / 180) #Converted from degrees to

radians

73

 #solarZenith = math.pow(((90.0 - float(solarElevation))* (math.pi / 180)), 2)

 solarDist = float(solarDist)

 ESUN = float(ESUN)

 radiance = Raster(radianceRaster)

 #outraster = (math.pi * radiance * math.pow(solarDist, 2)) / (ESUN * math.cos(solarZenith)) *

scaleFactor

 outraster = (math.pi * (radiance - Lhaze) * math.pow(solarDist, 2)) / (ESUN *

math.cos(solarZenith))

 outraster.save(outname)

 log.debug('saved: {}'.format(outname))

 return outname

code adapted from Steve Kochaver

def get_ESUN(bandNum, SIType):

 """

 """

 log = logger.getChild(inspect.currentframe().f_code.co_name)

 log.info(u'Initializing {}'.format(inspect.currentframe().f_code.co_name))

 SIType = SIType

 ESUN = {}

 #from NASA's Landsat7 User Handbook Table 11.3

http://landsathandbook.gsfc.nasa.gov/pdfs/Landsat7_Handbook.pdf

74

 #ETM+ Solar Spectral Irradiances(generated using the Thuillier solar spectrum)

 #if SIType == 'ETM+ Thuillier':

 if SIType == '7':

 ESUN = {'B1':1997,'B2':1812,'B3':1533,'B4':1039,'B5':230.8,'B7':84.90,'B8':1362}

 #from NASA's Landsat7 User Handbook Table 11.3

http://landsathandbook.gsfc.nasa.gov/data_prod/prog_sect11_3.html

 #ETM+ Solar Spectral Irradiances (generated using the combined Chance-Kurucz Solar

Spectrum within MODTRAN 5)

 if SIType == 'ETM+ ChKur':

 ESUN = {'b1':1970,'b2':1842,'b3':1547,'b4':1044,'b5':225.7,'b7':82.06,'b8':1369}

 #from NASA's Landsat7 User Handbook Table 9.1

http://landsathandbook.gsfc.nasa.gov/pdfs/Landsat7_Handbook.pdf

 #from the LPS ACCA algorith to correct for cloud cover

 if SIType == 'LPS ACAA Algorithm':

 ESUN = {'b1':1969,'b2':1840,'b3':1551,'b4':1044,'b5':225.7,'b7':82.06,'b8':1368}

 #from Revised Landsat-5 TM Radiometric Calibration Procedures and Postcalibration

 #Dynamic Ranges Gyanesh Chander and Brian Markham. Nov 2003. Table II.

http://landsathandbook.gsfc.nasa.gov/pdfs/L5TMLUTIEEE2003.pdf

 #Landsat 4 ChKur

 #if SIType == 'Landsat 5 ChKur':

 if SIType == '5':

 ESUN = {'B1':1957,'B2':1825,'B3':1557,'B4':1033,'B5':214.9,'B7':80.72}

75

 #from Revised Landsat-5 TM Radiometric Calibration Procedures and Postcalibration

 #Dynamic Ranges Gyanesh Chander and Brian Markham. Nov 2003. Table II.

http://landsathandbook.gsfc.nasa.gov/pdfs/L5TMLUTIEEE2003.pdf

 #Landsat 4 ChKur

 if SIType == 'Landsat 4 ChKur':

 ESUN = {'b1':1957,'b2':1826,'b3':1554,'b4':1036,'b5':215,'b7':80.67}

 bandNum = str(bandNum)

 return ESUN[bandNum]

def b6_to_temp(sat_id, radiance_ras):

 """

 Converts B6 as radiance to temperature in Kelvins

 """

 log = logger.getChild(inspect.currentframe().f_code.co_name)

 log.info(u'Initializing {}'.format(inspect.currentframe().f_code.co_name))

 log.debug('with {}'.format(radiance_ras))

 result = []

 name = radiance_ras.rsplit('\\', 1)

 desc=arcpy.Describe(radiance_ras)

 print 'no data =', desc.noDataValue, type(desc.noDataValue)

76

 input_ras = Raster(radiance_ras, noDataValue=desc.noDataValue)

 outname = os.path.join(name[0], (settings['Temp Prefix'] + name[1]))

 log.debug('output name: {}'.format(outname))

 #from http://landsathandbook.gsfc.nasa.gov/data_prod/prog_sect11_3.html 11.5

 calibration_constants = {

 '7': [666.09, 1282.71],

 '5': [607.76, 1260.56]

 }

 # from http://landsathandbook.gsfc.nasa.gov/data_prod/prog_sect11_3.html

 #T = (k2)/(ln(k1/L +1))

 #Where:

 #T = Effective at-satellite temperature in Kelvin

 #K2 = Calibration constant 2 from Table 11.5

 #K1 = Calibration constant 1 from Table 11.5

 #L = Spectral radiance in watts/(meter squared * ster * ????m)

 d1 = (calibration_constants[sat_id][0] / input_ras) +1

 out_raster = calibration_constants[sat_id][1] / Ln(d1)

 log.debug('saving output as: {}'.format(outname))

 out_raster.save(outname)

77

 return outname

def utm_window(args):

 """

 Accepts pair of UTM coords (list).

 Return the surrounding 8 coords in a 3x3 pixel window plus the given "center"

 As list of list objects

 """

 center = args

 result = []

 for (x, y) in center:

 result.append([x -30, y -30])

 result.append([x -30, y -0])

 result.append([x -30, y +30])

 result.append([x -0, y -30])

 result.append([x -0, y -0])

 result.append([x -0, y +30])

 result.append([x +30, y -30])

 result.append([x +30, y -0])

 result.append([x +30, y +30])

78

 return result

def make_pointfile(points, out_name):

 """

 Accept a list of points and a name.

 Make a shapefile containing those points named name, return the name.

 """

 log = logger.getChild(inspect.currentframe().f_code.co_name)

 log.info(u'Initializing {}'.format(inspect.currentframe().f_code.co_name))

 log.debug('with {}'.format(points))

 result =[]

 pt = arcpy.Point()

 ptGeoms = []

 for p in points:

 pt.X = p[0]

 pt.Y = p[1]

 pg = arcpy.PointGeometry(pt)

 ptGeoms.append(pg)

 final_name = out_name + ".shp"

 print final_name

 arcpy.CopyFeatures_management(ptGeoms, final_name)

 del ptGeoms

79

 return final_name

def ndwi_mask(folder_path, B2, B5):

 """

 Accepts the path and two required bands as inputs (2 & 5)

 Creates ndwi_Imagename.TIF in same dir

 Returns status code

 Water = 1 (True), otherwise false (0)

 """

 log = logger.getChild(inspect.currentframe().f_code.co_name)

 log.info(u'Initializing {}'.format(inspect.currentframe().f_code.co_name))

 log.debug('in {} with {} and {}'.format(folder_path, B2, B5))

 result = 0

 output_name = os.path.join(folder_path, settings['NDWI Prefix'] + B2.rsplit('_', 1)[0] + '.TIF')

 Green = os.path.join(folder_path, B2)

 NIR = os.path.join(folder_path, B5)

 #Create Numerator and Denominator rasters as variables and NDVI output (note that

arcpy.sa.Float returns a floating point raster)

 numerator = arcpy.sa.Float(Raster(Green) - Raster(NIR))

 denominator = arcpy.sa.Float(Raster(Green) + Raster(NIR))

80

 log.debug("Dividing")

 NDWI_eq = arcpy.sa.Divide(numerator, denominator)

 # save intermidiate before reclass

 NDWI_eq.save(os.path.join(folder_path, 'raw_ndwi.TIF'))

 # Reclassify to get a mask

 result = Reclassify(NDWI_eq, "Value", RemapRange([[-2, 0, 0], [0.01, 2, 1]]))

 #Saving output to result output you specified above

 try:

 result.save(output_name)

 log.debug("NDWI Successful: {}".format(output_name))

 result = output_name

 except:

 log.debug("NDWI Unsuccessful: {}".format(result))

 result = 0

 return result

def get_raster_count(args):

 """

 Subfunction to deal with ensuring there's a RAT and then getting the cell

 count out of the table using a cursor.

81

 Accepts raster.

 Returns integer value of total cell count or -1.

 """

 log = logger.getChild(inspect.currentframe().f_code.co_name)

 result = -1

 x = args

 # see if it's all null before the bother

 null_result = arcpy.GetRasterProperties_management(x, 'ALLNODATA')

 # make result useful

 null = bool(int(null_result.getOutput(0)))

 if null:

 result = 0

 else:

 # bother

 if x.hasRAT:

 logger.debug('{} has RAT'.format(x))

 else:

 try:

 arcpy.BuildRasterAttributeTable_management(x, "OVERWRITE")

 except:

 logger.debug('{} failed to build RAT'.format(x))

82

 # now RAT is built

 total_count = 0

 with arcpy.da.SearchCursor(os.path.join(x.path, x.name), ["VALUE", "COUNT"]) as rows:

 for row in rows:

 print row

 # nodata isn't in the RAT, so no need to filter it out

 # but we do skip the 0's

 if row[0] > 0:

 total_count += row[1]

 result = float(total_count)

 log.debug('{} result = {}'.format(x.name, result))

 return result

def not_cloud_mask(*args):

 """

 0 = cloud, 1 = not cloud, 2 = ambig

 Return path of mask?

 """

 log = logger.getChild(inspect.currentframe().f_code.co_name)

 log.info(u'Initializing {}'.format(inspect.currentframe().f_code.co_name))

 log.debug('with {}'.format(args))

 result = -1

83

 folder_path = args[0]

 images = [os.path.join(folder_path, i) for i in args[1]]

 #print images

 B2 = Raster(images[0])

 B3 = Raster(images[1])

 B4 = Raster(images[2])

 B5 = Raster(images[3])

 B6 = Raster(images[4])

 # save final mask in folder_path dir

 # all the other stuff can be in the cloud_mask dir

 working_path = os.path.join(folder_path, settings['Cloud Dir'])

 # make sure the output dir exists, if not, make

 out = working_path

 if not os.path.exists(out):

 os.makedirs(out)

 #total_count = 0

 nodata_value = arcpy.Describe(B2).noDataValue

 output_name = os.path.join(folder_path, 'not_cloud.TIF')

 agg_name = os.path.join(working_path, 'agg_mask.TIF')

 name_0 = os.path.join(working_path, 'cloud.TIF')

84

 name_1 = os.path.join(working_path, 'not_cloud.TIF')

 name_2 = os.path.join(working_path, 'ambig.TIF')

 sql_exp = """{} > {}""".format(arcpy.AddFieldDelimiters(B2, 'VALUE'), nodata_value)

 log.debug('test sql statement: {}'.format(sql_exp))

 # test_raster just to get in count of data pixels

 test_raster = Test(B2, sql_exp)

 test_raster.save(os.path.join(working_path, 'test.TIF'))

 total_count = get_raster_count(test_raster)

 # set test_image to 0 to seed masks

 test_raster = Con(test_raster > 0, 0)

 # number of raster cells

 snow_count = 0

 hot_count = 0

 cold_count = 0

 desert_count = 0

 # filter 1: B3 < .08 = 1/not cloud

 f1 = Con(B3 < .08, 1, 0)

 f1.save(os.path.join(working_path, 'f1.TIF'))

85

 # add f1 to an aggregate mask

 # add to aggregate (binary mask, assigned a category or not)

 agg = BooleanOr(f1, test_raster)

 agg.save(os.path.join(working_path, 'agg1.TIF'))

 # running sums

 sum_0 = 0

 sum_1 = get_raster_count(agg)

 sum_2 = 0

 log.debug('f1- {:.3f} cloud. {:.3f} not cloud. {:.3f} ambig.'.format(sum_0 / total_count, \

 sum_1 / total_count, sum_2 / total_count))

 # filter 2: NSDI (B2 - B5)/(B2 + B5). >.7 = 1/not cloud (get count of snow?)

 NSDI = ((B2 - B5)/(B2 + B5))

 sf2 = Con(NSDI > 0.7, 1, 0)

 sf2.save(os.path.join(working_path, 'sf2.TIF'))

 # just f2 additions

 f2 = Diff(sf2, agg)

 f2.save(os.path.join(working_path, 'f2.TIF'))

 # get snow count

 get_raster_count(f2)

86

 # use aggregate + selection

 agg = BooleanOr(agg, sf2)

 agg.save(os.path.join(working_path, 'agg2.TIF'))

 # running sums

 sum_0 = 0

 sum_1 = get_raster_count(agg)

 sum_2 = 0

 log.debug('f2- {:.3f} cloud. {:.3f} not cloud. {:.3f} ambig.'.format(sum_0 / total_count, \

 sum_1 / total_count, sum_2 / total_count))

 # filter 3: B6 > 300K = 1

 sf3 = Con(B6 > 300, 1, 0)

 sf3.save(os.path.join(working_path, 'sf3.TIF'))

 f3 = Diff(sf3, agg)

 f3.save(os.path.join(working_path, 'f3.TIF'))

 agg = BooleanOr(agg, sf3)

 agg.save(os.path.join(working_path, 'agg3.TIF'))

 # copy not-cloud aggregate to (name_1) since switching to detect Ambig

 mask_1 = agg

 # running sums

 sum_0 = 0

87

 sum_1 = get_raster_count(mask_1)

 sum_2 = 0

 log.debug('f3- {:.3f} cloud. {:.3f} not cloud. {:.3f} ambig.'.format(sum_0 / total_count, \

 sum_1 / total_count, sum_2 / total_count))

 # filter 4: B5/6 Composite (1 - B5) * B6 > 225 = 2

 f4 = ((1 - B5) * B6)

 f4.save(os.path.join(working_path, 'rf4.TIF'))

 sf4 = Con(((1 - B5) * B6) > 225, 1, 0)

 sf4.save(os.path.join(working_path, 'sf4.TIF'))

 f4 = Diff(sf4, agg)

 f4.save(os.path.join(working_path, 'f4.TIF'))

 # add to aggregate

 agg = BooleanOr(agg, sf4)

 agg.save(os.path.join(working_path, 'agg4.TIF'))

 # start to cloud name_1 (ambig)

 mask_2 = f4

 mask_2.save(os.path.join(working_path, 'f4_a.TIF'))

 # running sums

 sum_0 = 0

 sum_1 = get_raster_count(mask_1)

88

 sum_2 = get_raster_count(mask_2)

 print sum_1, sum_2, total_count, sum_2/total_count

 log.debug('f4- {:.3f} cloud. {:.3f} not cloud. {:.3f} ambig.'.format(sum_0 / total_count, \

 sum_1 / total_count, sum_2 / total_count))

 # filter 5: B3/4 Ratio (B4/B3) > 2.0 = 2

 sf5 = Con((B4/B3) > 2.0, 1, 0)

 sf5.save(os.path.join(working_path, 'sf5.TIF'))

 f5 = Diff(sf5, agg)

 f5.save(os.path.join(working_path, 'f5.TIF'))

 # add to aggregate (binary mask, assigned a category or not)

 agg = BooleanOr(agg, f5)

 agg.save(os.path.join(working_path, 'agg5.TIF'))

 # add to cloud name_1 (ambig)

 mask_2 = BooleanOr(mask_2, f5)

 mask_2.save(os.path.join(working_path, 'f5_a.TIF'))

 # running sums

 print 'mask checks:', type(mask_1), mask_1.path, mask_1.name, type(mask_2), mask_2.path,

mask_2.name

 sum_0 = 0

 sum_1 = get_raster_count(mask_1)

 sum_2 = get_raster_count(mask_2)

 log.debug('f5- {:.3f} cloud. {:.3f} not cloud. {:.3f} ambig.'.format(sum_0 / total_count, \

 sum_1 / total_count, sum_2 / total_count))

89

 # filter 6: B4/2 Ratio (B4/B2) > 2.0 = 2

 sf6 = Con((B4/B2) > 2.0, 1, 0)

 sf6.save(os.path.join(working_path, 'sf6.TIF'))

 f6 = Diff(sf6, agg)

 f6.save(os.path.join(working_path, 'f6.TIF'))

 # add to aggregate

 agg = BooleanOr(agg, f6)

 # add to cloud name_1

 mask_2 = BooleanOr(f6, mask_2)

 mask_2.save(os.path.join(working_path, 'f6_a.TIF'))

 # running sums

 sum_0 = 0

 sum_1 = get_raster_count(mask_1)

 sum_2 = get_raster_count(mask_2)

 log.debug('f6- {:.3f} cloud. {:.3f} not cloud. {:.3f} ambig.'.format(sum_0 / total_count, \

 sum_1 / total_count, sum_2 / total_count))

 # filter 7: B4/5 Ratio (B4/B5) > 1.0 = 2 (get count of desert pixels)

 sf7 = Con((B4/B5) > 1.0, 1, 0)

 sf7.save(os.path.join(working_path, 'sf7.TIF'))

 f7 = Diff(sf6, agg)

90

 f7.save(os.path.join(working_path, 'f7.TIF'))

 desert_count = get_raster_count(f7)

 log.debug('desert_count: {}'.format(desert_count))

 # add to aggregate (binary mask, assigned a category or not)

 agg = BooleanOr(f7, agg)

 # add to cloud name_1

 mask_2 = BooleanOr(f7, mask_2)

 mask_2.save(os.path.join(working_path, 'f7_a.TIF'))

 # running sums

 sum_0 = 0

 sum_1 = get_raster_count(mask_1)

 sum_2 = get_raster_count(mask_2)

 log.debug('f7- {:.3f} cloud. {:.3f} not cloud. {:.3f} ambig.'.format(sum_0 / total_count, \

 sum_1 / total_count, sum_2 / total_count))

 # filter 8: Everything remaining = 0 (hot and cold clouds)

 sf8 = BooleanNot(agg)

 sf8.save(os.path.join(working_path, 'sf8.TIF'))

 f8 = Diff(sf8, agg)

 f8.save(os.path.join(working_path, 'f8.TIF'))

 mask_0 = sf8

91

 # running sums

 sum_0 = get_raster_count(mask_0)

 sum_1 = get_raster_count(mask_1)

 sum_2 = get_raster_count(mask_2)

 log.debug('f8- {:.3f} cloud. {:.3f} not cloud. {:.3f} ambig.'.format(sum_0 / total_count, \

 sum_1 / total_count, sum_2 / total_count))

 #finalize masks

 log.debug('saving masks')

 agg.save(agg_name)

 mask_0.save(name_0)

 mask_1.save(name_1)

 mask_2.save(name_2)

 # pass 2: only fires if there's clouds and all the 3 checks fail

 # if mask_1 is all 0: cloudfree, else try checks

 c_mask_0 = SetNull(mask_0, 1, "VALUE = 0")

 null_result = arcpy.GetRasterProperties_management(mask_0, 'ALLNODATA')

 null = bool(int(null_result.getOutput(0)))

 log.debug('{} all no data check: {}'.format(f8.name, null))

 if null:

 # no clouds = no pass 2

 log.debug('no clouds, no pass 2')

92

 result = 1

 else:

 check = 0 # if check == 3, do pass 2

 # if desert_index > 0.5: increment check

 if desert_count == 0:

 desert_index = 0

 else:

 #print desert_count, type(desert_count), total_count, type(total_count)

 desert_index = desert_count / total_count

 if desert_count > 0.5:

 check += 1

 log.debug('di did trip'.format(desert_index))

 else:

 log.debug('di did not trip'.format(desert_index))

 # if cold clouds are < .4%, skip pass 2

 if cold_count == 0:

 cold_index = 0

 else:

 # use B6 since it's the truest count of final image/filter

 cold_index = cold_count / get_raster_count(B6)

 if cold_index < .004:

93

 log.debug('ci count did not trip'.format(cold_index))

 else:

 check += 1

 log.debug('ci did trip'.format(cold_index))

 # if mean temp of cold class < 295K

 #cold_mean = GetRasterProperties_management (in_raster, {property_type}, {band_index})

/ cold_count

 cold_mean_result = arcpy.GetRasterProperties_management(ExtractByMask(B6, f8),

'MEAN')

 # maybe extract B6 using Mask_0, and then get average from this.

 cold_mean = float(cold_mean_result.getOutput(0))

 # but just to test, really have to decide which.

 if cold_mean < 295:

 check += 1

 log.debug('cm count did trip'.format(cold_mean))

 else:

 log.debug('cm did not trip'.format(cold_mean))

 if check == 3:

 log.debug('need pass 2')

 # setup some vars and things

 # split cloud into warm and cold for p2

94

 # B5/6 Composite (1 - B5) * B6 > 210 = warm, rest are cold

 warm_cloud = Con((f8 * ((1 - B5) * B6)) > 210, 1, 0)

 warm_cloud.save(os.path.join(working_path, 'warm_cloud.TIF'))

 warm_count = get_raster_count(hot_cloud)

 cold_cloud = Con((f8 * ((1 - B5) * B6)) <= 210, 1, 0)

 cold_cloud.save(os.path.join(working_path, 'cold_cloud.TIF'))

 cold_count = get_raster_count(cold_cloud)

 #selection of which cloud groups to process

 if snow_count:

 snow_pct = snow_count / total_count

 log.debug('snow_pct: {}'.format(snow_pct))

 # just assign the selection to a var

 if snow_pct < .01:

 # snow-free, use hot_cloud and cold_cloud AKA mask_0

 log.debug('snow free, use mask_0')

 test_clouds = mask_0

 else:

 # use cold cloud only only

 log.debug('snow found, use cold and move warm to ambig')

 test_clouds = cold_cloud

 # reassign warm_cloud as ambig/mask_2

 mask_2 = BooleanOr(mask_2, warm_cloud)

95

 mask_2.save(os.path.join(working_path, 'ambigP2.TIF'))

 else:

 log.warning('no snow_count: {}'.format(snow_count))

 # with selection, run through threshold evaluation

 raster_stats = CalculateStatistics_management(test_clouds, "MINIMUM")

 print 'cloud min', raster_stats.getOutput(0)

 test_arr = np.array(test_clouds)

 min = np.amax(test_arr)

 max = np.amin(test_arr)

 std_dev = np.std(test_arr)

 mean = np.mean(test_arr)

 n = 0

 for i in test_arr:

 n += (i - mean)^3

 skew = n / std_dev

 skew = sp.stats.skew(test_arr)

 log.debug('min {}. max {}. mean {}. std dev {}. skew {}'.format(\

 min, max, std_dev, skew))

 max_threshold = (max - min) * .9875 + min

 high_threshold = (max - min) * .975 + min

96

 low_threshold = (max - min) * .825+ min

 if skew > 0:

 # no adjustment to thresholds

 log.debug('no shift')

 else:

 # adjust thresholds up

 shift_factor = skew * std_dev

 log.debug('shift factor: {}'.format(shift_factor))

 low_threshold = low_threshold * shift_factor

 high_threshold = high_threshold * shift_factor

 # back high down if too high

 if high_threshold > max_threshold:

 high_threshold = max_threshold

 log.debug('high_threshold reassigned: {}'.format(high_threshold))

 else:

 log.debug('high_threshold passed: {}'.format(high_threshold))

 # Evaluate "termal effects"

 g1 = Con(test_clouds < high_threshold, 1, 0)

 g1 = Con(test_clouds < low_threshold, 0, g1)

 g2 = Con(g1 < low_threshold, 1, 0)

97

 # compute stats for upper

 g1_count = get_raster_count(g1)

 g12 = np.count_nonzero(~np.isnan(np.array(g1)))

 print 'count test: {} vs {}'.format(g1_count, g12)

 g1_pct = g1_count / total_count

 g1_mean = np.mean(g1)

 if g1_pct > .40 or g1_mean > 295:

 # then g1 are classified non-cloud

 mask_1 = BooleanOr(mask_1, g1)

 log.debug('rejecting g1')

 # continue to evaluate g2

 # compute stats for lower

 g2_count = get_raster_count(g2)

 g2_pct = g2_count / total_count

 g2_mean = np.mean(g2)

 if g2_pct > .40 or g2_mean > 295:

 # then all ambig are scrapped

 mask_1 = BooleanOr(mask_1, mask_2)

 log.debug('rejecting all ambig')

 else:

98

 # accept the lower group into cloud

 mask_0 = BooleanOr(mask_0, g2)

 log.debug('uniting the lower with cloud')

 else:

 # unite all 3 cloud classes

 log.debug('uniting the 3 cloud classes')

 mask_0 = BooleanOr(mask_0, mask_2)

 # CHEQUES

 mask_0.save(os.path.join(working_path, 'cloudP2.TIF'))

 else:

 log.debug('at least one check was breeched, no Pass 2.')

 mask_0 = BooleanOr(test_raster, B6)

 # save final masks

 mask_0.save(os.path.join(working_path, 'cloudP2.TIF'))

 mask_1.save(os.path.join(working_path, 'not_cloudP2.TIF'))

 result = 2

 # and then cloud holes filled in?

 mask_1.save(output_name)

 log.debug('not cloud mask named {}'.format(output_name))

 return output_name

def select_values(*args):

99

 """

 Get values from points around sample sites, if masks say its ok.

 Return as a table in Proccessed dir?

 """

 log = logger.getChild(inspect.currentframe().f_code.co_name)

 log.info(u'Initializing {}'.format(inspect.currentframe().f_code.co_name))

 folder_path = args[0]

 #need joined to path corrected_scenes = args[1]

 corrected_scenes = [os.path.join(folder_path, i) for i in sorted(args[1])]

 # now that htey are pathed, append not_cloud mask in

 corrected_scenes.append(args[2])

 log.debug('with {} ~ {}'.format(folder_path, corrected_scenes))

 result = []

 extract_dir = os.path.join(working_dir, settings['Extr Dir'], os.path.basename(folder_path))

 log.debug('extract dir {}'.format(extract_dir))

 # Get the sample point shapefile out of the dir corresponding with first 2 of this folder

 clip_dir = os.path.basename(folder_path)[:2]

 point_file = os.path.join(working_dir, settings['Clip Dir'], (clip_dir +'_pnts.shp'))

 log.debug('selecting sample points from dir: {}'.format(point_file))

 # have SR ready for features made

 spatial_reference = arcpy.Describe(point_file).spatialReference

100

 fields = ['SITE_ID', 'X', 'Y']

 # make sure there's things

 count = int(arcpy.GetCount_management(point_file).getOutput(0))

 log.debug('len of feature {}: {}'.format(point_file, count))

 if count:

 # list of files to aggregate after cursor

 extract_list = []

 # make output dir

 out = extract_dir

 if not os.path.exists(out):

 os.makedirs(out)

 # use sample on the XX_pnt file to get cell address

 xy_table = (os.path.join(extract_dir, 'xy.dbf'))

 Sample(corrected_scenes[0], point_file, xy_table)

 # join the SITE_ID from original file to xy_table

 arcpy.JoinField_management (xy_table, clip_dir +'_pnts', point_file, 'FID', 'SITE_ID')

 # iterate by site_id

 with arcpy.da.SearchCursor(xy_table, fields) as cursor:

 for row in cursor:

101

 print row

 log.debug('starting {}, {}/{}'.format(row[0], row[1], row[2]))

 # validate shortens, we just need dash out of name

 clean_siteid = row[0].replace('-', '_').strip()

 # get points, make into window coords

 points = []

 points.append([row[1], row[2]])

 window_coords = utm_window(points)

 log.debug('window coords: {}'.format(window_coords))

 # final extract table name

 output_name = os.path.join(extract_dir, clean_siteid.partition('_')[2] +'.dbf')

 extract_list.append(output_name)

 name = os.path.join(extract_dir, clean_siteid)

 log.debug('extract name: {}, pointfile name: {}'.format(output_name, name))

 # pointfile of window points

 pf_name = make_pointfile(window_coords, name)

 # apply SR from source file

 arcpy.DefineProjection_management(pf_name, spatial_reference)

 # set the id field to the site_id

 # Set local variables

 inFeatures = pf_name

102

 fieldName1 = "SID"

 fieldType = 'TEXT'

 fieldLength = 20

 # Sample

 Sample(corrected_scenes, pf_name, output_name)

 logger.debug('sampled {}'.format(output_name))

 # read sampled values

 arcpy.AddField_management(output_name, fieldName1, fieldType, \

 '#', '#', fieldLength)

 logger.debug('just added field {}, goign to populate it with {}' \

 .format(fieldName1, clean_siteid))

 with arcpy.da.UpdateCursor(output_name, '*') as cur:

 for row in cur:

 # should be last one since most recently appended

 row[-1] = clean_siteid

 #print row

 cur.updateRow(row)

 # aggregated sample file

 agg_ext = os.path.join(extract_dir, 'agg.dbf')

 # merge data into single file

 arcpy.Merge_management(extract_list, agg_ext)

103

 logger.debug('merged all of {}'.format(clean_siteid.partition('_')[0]))

 else:

 log.debug('{} was empty'.format(point_file))

 return result

def aggregator(arg):

 """

 Accepts output dir and aggrated file name.

 Reads them all and puts them into a single CSV in the Extracts dir

 """

 log = logger.getChild(inspect.currentframe().f_code.co_name)

 log.info(u'Initializing {}'.format(inspect.currentframe().f_code.co_name))

 log.debug('with {}'.format(arg))

 result = []

 extract_dir = os.path.join(os.getcwd(), settings['Extr Dir'])

 # get folders in the Extract dir

 folders_in_dir = [i for i in listdir(extract_dir) if isdir(os.path.join(extract_dir, i))]

 log.debug('folders_in_dir len & (short) list: {} {}'.format(len(folders_in_dir),

folders_in_dir[:3]))

104

 # initialize output

 output = []

 # walk dirs and open the file

 for f in folders_in_dir:

 logger.debug('iterating with {}'.format(f))

 # if settings['Agg File'] in listdir(os.path.join(extract_dir, f)):

 f_path = os.path.join(extract_dir, f, settings['Agg File'])

 # need to pick out some field headings here, and just read those in cursor

 # if first folder, initialize field names

 if output == []:

 field_names = [i.name for i in arcpy.ListFields(f_path)]

 field_names.insert(0, 'folder name')

 log.debug('field names {}'.format(field_names))

 output.append(field_names)

 # first read, append header selection

 try:

 with arcpy.da.SearchCursor(f_path, "*") as cursor:

 for row in cursor:

 x = [i for i in row]

 x.insert(0, f)

 output.append(x)

105

 except:

 log.debug('{} did not have a {}'.format(f, settings['Agg File']))

 # write output into source folder

 with open(os.path.join(extract_dir, settings['Agg Output']), 'wb') as file:

 writer = csv.writer(file)

 writer.writerows(output)

 logging.info('output saved as {}\{}'.format(extract_dir, settings['Agg Output']))

 return result

#////////////////////////// Correction Funcion //////////////////////////#

def main():

 pass

Setup Logger

logger = logging.getLogger(os.path.basename(__file__))

logger.setLevel(logging.DEBUG)

formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')

format2 = logging.Formatter('%(levelname)s - %(message)s')

106

Logging to file

fh = logging.FileHandler(log_location)

fh.setLevel(logging.DEBUG)

fh.setFormatter(formatter)

logger.addHandler(fh)

Logging to conlsole/standard output

ch = logging.StreamHandler()

ch.setLevel(output_level)

ch.setFormatter(formatter)

logger.addHandler(ch)

open the metadata dict

with open(os.path.join(settings['Output Dir'], settings['MD file']), 'rb') as handle:

 Correction_Parameters = pickle.loads(handle.read())

open the solar distance file, read into a dict

with open(os.path.join(working_dir, settings['SD File']), 'rb') as handle:

 reader = csv.reader(handle)

 for row in islice(reader, 1, None): #skip header row

 sun_d[row[0]] = float(row[1])

107

read the folders to process in the Processed folder

image_dir = os.path.join(os.getcwd(), settings['Output Dir'])

logger.debug('processed_dir is: {}'.format(image_dir))

folders_in_dir = [i for i in listdir(image_dir) if isdir(os.path.join(image_dir, i))]

logger.debug('folders_in_dir len & list: {} {}'.format(len(folders_in_dir), folders_in_dir))

if __name__ == '__main__':

 main()

cycle thorugh contents of Process folder

for folder in folders_in_dir:

 folder_path = os.path.join(working_dir, settings['Output Dir'], folder)

 logger.debug('folder path: {}'.format(folder_path))

 # get list of scenes with clip prefix and tif ext

 scenes_in_dir = [i for i in listdir(folder_path) if i[:2] == settings['Clip Prefix'] \

 and i.partition('.')[2] == 'TIF']

 logger.debug('scenes_in_dir {} len & list: {} {}'.format(folder, len(scenes_in_dir),

scenes_in_dir))

 scene_key = set([i.split('_')[1] for i in scenes_in_dir])

 logger.debug('scene_key {}'.format(scene_key))

 # load a subset of Corr Para for this scene

108

 scene_d = dict((i, Correction_Parameters[i]) for i in Correction_Parameters if i in scene_key)

 # having to use scene name sucks, since it's arelady pulled just "what we want"

 scene_d = scene_d.values()[0]

 logger.debug('scene parameters {}'.format(scene_d))

code modified from ...

 for scene in scenes_in_dir:

 scene_path = os.path.join(folder_path, scene)

 #scene_path = os.path.join(working_dir, settings['Output Dir'], folder, scene)

 band = scene.split('_')[2].split('.')[0]

 logger.debug('reading {}, band = {}'.format(scene_path, band))

 # check if the image contains any data

 radiance_ras = Raster(scene_path)

 # see if the image is all NoData

 # this returns a result object... part of which is string of result that needs converted

 # to binary to be useful

 nd_check = arcpy.GetRasterProperties_management (radiance_ras, 'ALLNODATA')

 logger.debug('nd_check = {}'.format(nd_check))

 t = bool(int(nd_check.getOutput(0)))

 print 'int of t', t, type(t), bool(t)

 if t:

 logger.warning('image {} is all NoData, no processing'.format(scene))

109

 else:

 #radianceRaster = calcRadiance(LMAX, LMIN, QCALMAX, QCALMIN, BANDFILE,

outfolder)

 # (LMAX, LMIN, QCALMAX, QCALMIN, QCAL, outfolder)

 radiance_ras = calc_radiance(scene_d['lmax'][band], scene_d['lmin'][band], \

 scene_d['qc_lmax'][band], scene_d['qc_lmin'][band], scene_path , folder_path)

 # B6 > Temp, everything else goes for Correction

 if band == 'B6':

 test = b6_to_temp(scene_d['sat_id'], radiance_ras)

 if test:

 logger.debug('{} successfully converted to kelvins'.format(scene_path))

 else:

 logger.debug('{} failed to convert to kelvins'.format(scene_path))

 else:

 # DNMin is in DN. Has to be converted to Radiance seperatley form scene.

 # COST DOS correction (includes scaling DNMin)

 dnmin_as_radiance = 0.0

 if Do_COSTDOS:

 offset = (scene_d['lmax'][band] - scene_d['lmin'][band])/(scene_d['qc_lmax'][band] -

scene_d['qc_lmin'][band])

 HLmin = (scene_d['qc_lmin'][band] + scene_d['dnmin'][band] * offset)

 logger.debug('HLmin: {}'.format(HLmin))

110

 # now correct it

 solarZenith = (90.0 - float(solarElevation))* (math.pi / 180) #Converted from

degrees to radians

 logger.debug('solar zenith in rad: {}'.format(solarZenith))

 logger.debug('n = {}'.format((0.01 + get_ESUN(band, scene_d['sat_id']) *

math.cos(solarZenith))))

 logger.debug('d = {}'.format((math.pow(sun_d[scene_d['julian_date'].lstrip('0')], 2) *

math.pi)))

 L1percent = ((0.01 + get_ESUN(band, scene_d['sat_id']) * math.cos(solarZenith)) / \

 (math.pow(sun_d[scene_d['julian_date'].lstrip('0')], 2) * math.pi))

 logger.debug('L1percent: {}'.format(L1percent))

 dnmin_as_radiance = HLmin - L1percent

 logger.debug('DNMin of {} converted to radiance

{}'.format(scene_d['dnmin'][band], dnmin_as_radiance))

 else:

 logger.debug('DNMin is 0 (preset)')

 reflectanceRaster = calc_reflectance(sun_d[scene_d['julian_date'].lstrip('0')], \

 get_ESUN(band, scene_d['sat_id']), scene_d['sun_elevation'], radiance_ras,

dnmin_as_radiance, folder_path)

 # now from the corrected scenes grab band 2 & 5 (if any)

 corrected_prefix = settings['Corr Prefix'] + settings['Rad Prefix'] + settings['Clip Prefix']

 corrected_scenes = [i for i in listdir(folder_path) if corrected_prefix in i \

 and i.partition('.')[2] == 'TIF']

 logger.debug('corrected scene list 2: {}'.format(corrected_scenes))

111

 # need to get TRC in there for cloud_mask

 if len(corrected_scenes) > 2:

 B2 = [i for i in corrected_scenes if settings['Green Band'] in i][0]

 B5 = [i for i in corrected_scenes if settings['SWIR Band'] in i][0]

 # send to ndwi

 if B2 and B5:

 ndwi = ndwi_mask(folder_path, B2, B5)

 else:

 logger.warning('ndwi failed to process: {} {}'.format(B2, B5))

 B3 = [i for i in corrected_scenes if settings['Red Band'] in i][0]

 B4 = [i for i in corrected_scenes if settings['NIR Band'] in i][0]

 unwanted_thermal = 'VCID_2'

 thermal_prefix = settings['Temp Prefix'] + settings['Rad Prefix'] + settings['Clip Prefix']

 B6 = [i for i in listdir(folder_path) if thermal_prefix in i \

 and i.partition('.')[2] == 'TIF' and unwanted_thermal not in i][0]

 logger.debug('found thermal band: {}'.format(B6))

 corrected_scenes.append(B6)

 # do cloud mask

 cloud = not_cloud_mask(folder_path, [B2, B3, B4, B5, B6])

112

 # ndwi gets caught in corrected scenes!

 select_values(folder_path, corrected_scenes, cloud)

 # which searches out the masks from before to exlude from extraction

 else:

 logger.debug('No corrected scenes to process: {}'.format(corrected_scenes))

aggregator(1)

logger.debug(u'finished')

BUMP and Processed Data Assembly

import os

from os import listdir

from os.path import isfile, join, isdir

import csv

from datetime import date, datetime, timedelta

import logging

import inspect

settings = {

'Image List': 'Master List.csv',

'Processed Dir': 'Output',

'Processed List': 'Aggregated.csv',

'Bump Data': 'Bump Data.csv',

'Exclude Site': 'B',

113

'date allowance': timedelta(days=1),

'Final Output': 'final.csv'

}

working_dir = os.getcwd()

def read_csv(args):

 """

 """

 log = logger.getChild(inspect.currentframe().f_code.co_name)

 log.info(u'Initializing {}'.format(inspect.currentframe().f_code.co_name))

 log.debug(u'with {}'.format(args))

 result = []

 with open(args, 'rb') as csvfile:

 log.debug(u'Reading {} as csvfile.'.format(args))

 reader = csv.reader(csvfile)

 for row in reader:

 result.append(row)

 return result

114

def main():

 pass

if __name__ == '__main__':

 main()

Setup Logger

logger = logging.getLogger(os.path.basename(__file__))

logger.setLevel(logging.DEBUG)

formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')

format2 = logging.Formatter('%(levelname)s - %(message)s')

Logging to conlsole/standard output

ch = logging.StreamHandler()

ch.setLevel(logging.DEBUG)

ch.setFormatter(formatter)

logger.addHandler(ch)

Read Master list

master_list = read_csv(os.path.join(working_dir, settings['Image List']))

Read Processed image data

115

aggregated_list = read_csv(os.path.join(working_dir, settings['Processed Dir'], settings['Processed

List']))

result = []

initialize final output headers

merge_result = [['folder name', 'lake name', 'scene', 'scene date', 'site id', 'B1', 'B2', 'B3', \

 'B4', 'B5', 'B7', 'other result','Corrected Chlorophyl A', 'Turbidity, Field', 'season']]

initialize mask check values, 0 = do not use

test_value = ['0.0', '0.0']

Use folder name to select data for each scene out of processed data

folder_list = [i[0] for i in master_list[1:]]

for f in folder_list:

 logger.debug('iterating folder {}'.format(f))

 data_selection = [i for i in aggregated_list if f in i]

 logger.debug('folder data selection: {}'.format(data_selection))

 if data_selection:

 # iterate by scene and evaluate final values (- Bottom readings)

 site_list = set([i[-1] for i in data_selection if settings['Exclude Site'] not in i[-1]])

 logger.debug('site_list: {}'.format(site_list))

 line_seed =[i for i in master_list[1:] if f in i][0]

 for s in site_list:

 logger.debug('processing site {}'.format(s))

 # seed is Folder Name, Lake Name, Scene Name, and Scene Date

 line = []

116

 line.extend(line_seed)

 logger.debug('line initialized: {}'.format(line))

 # append site_id converting '_' back to '-'

 line.append(s.replace('_', '-'))

 site_selection = [i for i in data_selection if s in i]

 logger.debug('site_selection: {}/{}'.format(len(site_selection), site_selection))

 test_masks = [i[11:13] for i in s]

 if test_value in test_masks:

 logger.debug('all masks not ok')

 line.append('X')

 line.append('X')

 line.append('X')

 line.append('X')

 line.append('X')

 line.append('X')

 line.append('reason code')

 else:

 # take a mean of the 4 desired bands

 index = [5, 6, 7, 8, 9, 10]

 for j in index:

 num = [i[j] for i in site_selection]

 # magically turn strings into numbers for division

 L = [float(n) for n in num if n]

117

 avg = sum(L)/len(L) if L else '-'

 logger.debug('avg: {}'.format(avg))

 line.append(avg)

 line.append('np')

 # Check if we should ship writing due to all bands being NoData

 if all(line[5:11]):

 merge_result.append(line)

 else:

 logger.debug('nd for all bands, not writing to output')

 logger.debug('line: {}'.format(line))

 else:

 logger.debug('{} had no output'.format(f))

logger.debug('master list and aggregated merged result: {}'.format(merge_result))

open bump metadata

bump_list = read_csv(os.path.join(working_dir, settings['Processed Dir'], settings['Bump Data']))

for each line in result compare to site & date in bump list, appending sample data

for (x, i) in enumerate(merge_result):

 # skip header

 if x > 0:

 r = i

 logger.debug('seeded r {}'.format(r))

 site = i[4]

118

 date = i[3]

 # dates are in '02/25/2001' format

 do = datetime.strptime(date, "%m/%d/%Y").date()

 date_check = []

 date_check.append(do)

 date_check.extend([do - settings['date allowance']])

 date_check.extend([do + settings['date allowance']])

 logger.debug('date objects for check {}'.format(date_check))

 # bump list has date as string, so put these back to string

 acceptable_dates = [datetime.strftime(d, "%m/%d/%Y") for d in date_check]

 logger.debug('acceptable string dates: {}'.format(acceptable_dates))

 logger.debug('check for {} {} in bump'.format(site, date))

 selection = [i for i in bump_list if site in i and i[3] in acceptable_dates]

 logger.debug('selection of bump: {}'.format(selection)) # try for id + date range

 if selection:

 # each data seems to have its own row... assume there are no dupes here

 chlor = ''

 turb = ''

 for j in selection:

 logger.debug('checking {}'.format(j[5:7]))

 if j[5]:

 chlor = j[5]

 if j[6]:

119

 turb = j[6]

 r.extend([chlor, turb])

 logger.debug('month: {}'.format(do.month))

 if do.month > 9:

 season = 'fall'

 elif do.month > 6:

 season = 'summer'

 elif do.month > 3:

 season = 'spring'

 elif do.month > 0:

 season = 'winter'

 else:

 season = 'error'

 r.append(season)

 logger.debug('keeping line {}'.format(r))

 result.append(r)

 else:

 logger.warning('delete due to failing to match processed scene to a bump sample date')

 else:

 logger.debug('seed result with header: {}'.format(i))

 result.append(i)

120

write output into output folder

output_path = working_dir, settings['Processed Dir'], settings['Final Output']

logger.debug('final output: {}'.format(output_path))

type(output_path)

#with open(os.path.join(output_path), 'wb') as file:

with open(os.path.join(working_dir, settings['Processed Dir'], settings['Final Output']), 'wb') as

file:

 writer = csv.writer(file)

 writer.writerows(result)

 logger.info(u'result saved as {}'.format(output_path))

logger.debug('result {}'.format(result))

logger.info(u'finished')

VITA

Clay Barrett

Candidate for the Degree of

Master of Science

Thesis: MONITORING EASTERN OKLAHOMA LAKE WATER QUALITY USING

LANDSAT

Major Field: Geography

Biographical:

Education:

Completed the requirements for the Master of Science in Geography at

Oklahoma State University, Stillwater, Oklahoma in May, 2015

Completed the requirements for the Bachelor of Science in Environmental

Science at Oklahoma State University, Stillwater, Oklahoma in July, 2004

Experience:

Currently employed as the GIS Specalist for Cartography Services in the

Department of Geography at Oklahoma State University

Professional Memberships:

Association of American Geographers

Gamma Theta Upsilon

South Central Arc User Group

American Society for Photogrammetry and Remote Sensing

