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Abstract

Stratosphere-troposphere exchange (STE) has important and significant impacts

on the chemical and radiative properties of the upper troposphere and lower strato-

sphere. This study presents a 15-year climatology of global large-scale STE from

four modern reanalyses: ERA-Interim, JRA-55, MERRA-2, and MERRA-1. STE

is separated into four categories for analysis to identify the significance of known

transport mechanisms: 1) vertical stratosphere-to-troposphere transport (STT), 2)

vertical troposphere-to-stratosphere transport (TST), 3) lateral STT (that occur-

ring between the tropics and the extratropics and across the tropopause “break”),

and 4) lateral TST.

In addition, this study employs a method to identify STE as that crossing

the lapse-rate tropopause (LRT), while most previous studies have used a potential

vorticity (PV) isosurface as the troposphere-stratosphere boundary. PV-based

and LRT-based STE climatologies are compared using the same reanalysis output

(ERA-Interim). The comparison reveals quantitative and qualitative differences,

particularly in the geographic representation of TST in the polar regions.

Based upon spatiotemporal integrations among the reanalysis models, we

find STE to be STT-dominant in ERA-Interim and JRA-55 and TST-dominant in

the MERRA reanalyses. Time series analysis over the 15-year period show long-

term changes in STT and TST, which are argued to correspond with changes in

the Brewer-Dobson circulation. Ultimately, differences occur as a result of physical

and dynamical differences between the four reanalysis models.

xii



Chapter 1

Introduction and Background

1.1 Stratosphere-troposphere exchange

Stratosphere-troposphere exchange (STE) has important and significant impacts

on the chemical and radiative properties of the upper troposphere and lower strato-

sphere (UTLS). Oxidative and greenhouse gases can be transported across the

tropopause in two directions, typically referred to as stratosphere-to-troposphere

transport (STT) and troposphere-to-stratosphere transport (TST) (Holton et al.,

1995). STT brings ozone-rich stratospheric air into the troposphere, and in some

cases STT can extend into the planetary boundary layer (Danielsen, 1968; Lin

et al., 2012). Per molecule, ozone radiative forcing is maximized in the upper tro-

posphere (Lacis et al., 1990). Conversely, TST processes can inject water vapor

and other tropospheric pollutants into the lower stratosphere, where the lifetimes

of such gases can be increased. Because water vapor is a greenhouse gas, increases

in LS water vapor from TST lead to an increase in radiative forcing similar to that

for UT ozone (Forster and Shine, 2002).

1



1.2 Large-scale STE processes

STE is driven by dynamic processes occurring across a wide range of spatial and

temporal scales. There are several known large-scale processes that occur in the

extratropical domain, the tropical domain, and along the boundary between them

(i.e. within the subtropics).

1.2.1 Extratropical STE processes

STE in the extratropics often occurs in the vicinity of baroclinic transient eddies,

or extratropical cyclones (Holton et al., 1995; Wernli and Davies, 1997; Wirth and

Egger, 1999; Reutter et al., 2015). Transport associated with extratropical cy-

clones is dominated by STT, and is primarily due to clear-air turbulence along the

edges of stratospheric intrusions (or tropopause folds) in the upper-troposphere

(Danielsen, 1968; Shapiro, 1980; Lamarque and Hess, 1994; Cooper et al., 2004;

Reutter et al., 2015). Stratospheric intrusions can develop apart from extratrop-

ical cyclones along the cyclonic side of upper tropospheric jet streams as a result

of ageostrophic circulations (Sawyer, 1956; Shapiro, 1981; Shapiro and Kennedy,

1981; Keyser and Shapiro, 1986). These tend to be shallow and exchange less

than stratospheric intrusions associated with extratropical cyclones (Wernli and

Bourqui, 2002; Sprenger and Wernli, 2003). Extratropical cyclones also result in

TST, which is sourced by warm-conveyor-belt flows that bring lower troposphere

air to the UTLS along isentropic surfaces and by moist convection. (Stohl, 2001;

Wernli and Bourqui, 2002; Reutter et al., 2015). Cut-off extratropical cyclones oc-

cur frequently in the upper-troposphere and result in STT due to eroding processes

(i.e. turbulence and friction) acting on the associated depression in the tropopause

(Price and Vaughan, 1993).
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1.2.2 Tropical STE processes

STE has been found to be globally unbalanced, with net TST in the tropics and

net STT in the extratropics. This imbalance is primarily a reflection of systematic

tropospheric upwelling at the tropical tropopause and downwelling at the extrat-

ropical tropopause that is driven by the diabatic Hadley cell and Brewer-Dobson

circulation (or BDC) (Brewer, 1949; Dobson, 1956). The BDC is roughly a 2-year

latitudinal circulation, where tropospheric air diabatically ascends into the tropi-

cal lower-stratosphere and is dynamically “pumped” poleward and downward into

the extratropical lower stratosphere by Rossby wave breaking in the mid-latitudes

(Holton et al., 1995). Apart from the BDC, TST in monsoon anticyclones is an

important STE mechanism in the tropics. Moist convection rapidly lofts lower

troposphere air into the interior of the UT anticyclonic circulation where it slowly

ascends into the lower stratosphere. The North American and Asian Monsoon An-

ticyclones are receiving a considerable amount of recent attention and have been

shown to contribute significantly to global STE (e.g. Randel et al., 2010, and

references therein).

1.2.3 Intermediate: subtropical STE processes

There are also known STE processes that occur primarily in the subtropics and

involve tropical UT air and extratropical LS air. One of the most well-known

subtropical STE processes is Rossby wave breaking, which is a quasi-isentropic

transport process that can be predominantly poleward (TST), equatorward (STT),

or bidirectional (Seo and Bowman, 2001; Scott and Cammas, 2002; Homeyer and

Bowman, 2013). Stratospheric intrusions along the subtropical jet stream occur

outside of the tropics, but can bring extratropical lower stratosphere air into the
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tropical middle and upper troposphere (Waugh and Polvani, 2000).

1.3 Analyzing STE

1.3.1 Eulerian-based STE

The impacts of STE are considerable on the global scale but, as a result of lim-

ited observations, most studies have investigated STE and associated large-scale

processes over small domains and for short time periods using numerical mod-

els and remote sensing or aircraft platforms. For example, Lamarque and Hess

(1994) used a simulated stratospheric intrusion to estimate the annual net mass

exchange across the tropopause in the Northern Hemisphere by extrapolation.

Specifically, annual estimates of STT were approximated using an annual average

of stratospheric intrusions (1460 per year) and STT quantities found in their case

study, which amounted to 1.79×1017 kg per year. Although quantitative estimates

from Lamarque and Hess (1994) were similar to additional studies published at the

time, they suggested that stratospheric intrusions are invariable and exhibit similar

lifespans and STE quantities, which is now known to be an incorrect assumption.

Modern numerical models and computing capabilities, however, enable climatolog-

ical studies of STE without estimation or extrapolation using a limited number of

events.

Previous studies have employed multiple years of global model output to pro-

duce a climatology of STE. Appenzeller et al. (1996) analyzed downward fluxes

out of the lower stratosphere in the Northern and Southern Hemispheres over two

calendar years (1992 and 1993). The study emphasized an Eulerian approach, the

“downward control principle” (i.e. mass continuity), to estimate seasonal net flux

in the extratropics, and results indicated a peak downward flux during Northern
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Hemisphere spring. Annual net downward mass flux was estimated to be 3.5×1017

kg and 3.3×1017 kg for the Northern and Southern hemispheres, respectively, which

is nearly twice that found by Lamarque and Hess (1994). An important caveat in

the Appenzeller et al. (1996) study is that the method does not provide spatial

distributions of STE and only considers STT in the extratropics. Another Eulerian

metric used as a diagnostic for STE is the Wei method (Wei, 1987), which allows

for determination of STT and TST on short spatiotemporal scales but suffers from

conceptual problems (Gettelman and Sobel, 2000).

1.3.2 Lagrangian-based STE

An alternative to Eulerian methods is a Lagrangian approach, which employs a

large number of three-dimensional (or 3-D) trajectories to determine STE. For

example, Stohl (2001) developed a one-year Northern Hemisphere climatology of

STE using trajectories and identified large-scale airstreams and the corresponding

spatial and temporal variability of STE associated with particular flows (i.e. warm-

conveyor belts and stratospheric intrusions). Annual net downward mass flux

estimates in the northern extratropics were found to be larger than previous global

estimates (4.4× 1017 kg).

Multi-year climatologies of STE have also employed a Lagrangian approach on

global and hemispherical scales, wherein studies aim to investigate the quantita-

tive and qualitative characteristics of STE (Wernli and Bourqui, 2002; Sprenger

and Wernli, 2003; Škerlak et al., 2014). A recent STE climatology by Škerlak

et al. (2014, hereafter Š14) evaluated STE over a 33-year period using 3-D kine-

matic winds from the ERA-Interim reanalysis and a Lagrangian trajectory model.

Their method requires a parcel to remain in its parent reservoir (troposphere or

stratosphere) and destination reservoir (stratosphere or troposphere) for at least 48
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hours to be classified as irreversible STE (a so-called ‘residence time’). Although a

Lagrangian trajectory method was employed, the annual downward net exchange

found (0.42× 1017 kg yr−1) was an order of magnitude smaller than estimates by

Stohl (2001). It is apparent that residence times significantly decrease the quanti-

tative STE estimates as a result of separating irreversible exchange from transient

exchange.

1.4 STE challenges

As outlined above, there have been three classes of methods used to analyze STE:

(1) Eulerian based approaches, such as the Wei method and the “downward control

principle”, (2) a Lagrangian trajectory-based method that does not use a residence

filter (e.g. Stohl, 2001; Seo and Bowman, 2002), and (3) a Lagrangian trajectory-

based method with a residence filter (e.g. Wernli and Bourqui, 2002; Sprenger and

Wernli, 2003; Škerlak et al., 2014). Despite previous efforts to determine climato-

logical characteristics of STE, the various models, methods, and time periods used

have led to a wide range of transport estimates.

Motivated by an improved understanding of UTLS characteristics and processes

and the availability of output from numerous higher resolution global models, this

study seeks to develop and contrast climatological estimates of STE from several

modern global reanalyses: the European Centre for Medium-range Weather Fore-

casting Interim reanalysis (ERA-Interim), the Japanese Meteorological Agency

55-year reanalysis (JRA-55), and the National Aeronautics and Space Adminis-

tration (NASA) Modern Era Retrospective analysis for Research and Applications

versions 1 and 2 (MERRA-1/2). A Lagrangian approach is applied using 3-D

kinematic wind fields from each reanalysis to compute STE during a 15-year pe-

riod: 1996-2010. STE is further stratified into four categories in an attempt to
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evaluate the role of individual large-scale transport processes on the global scale:

vertical STT, vertical TST, lateral (quasi-horizontal) STT, and lateral TST. While

small-scale mechanisms such as gravity wave breaking and convection contribute

to STE as well, such processes are not investigated in this study because they are

not resolved in the reanalyses.
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Chapter 2

Data and methods

2.1 Reanalysis model output

As outlined in Section 1, we employ output from four reanalysis models in this

study: ERA-Interim, JRA-55, MERRA-1, and MERRA-2. ERA-Interim is avail-

able from 1979–present on an approximately 80 km horizontal grid and at 60 verti-

cal model levels with a model top of 0.1 hPa (Dee et al., 2011). JRA-55 is available

from 1958–present on a ∼60 km horizontal grid (Kobayashi et al., 2015). Similar

to ERA-Interim, JRA-55 has 60 vertical model levels with a model top of 0.1 hPa.

MERRA-1 is available from 1979–2016 at 0.5◦ × 0.667◦ horizontal resolution and

at 72 vertical model levels with a model top of 0.01 hPa (Rienecker et al., 2011).

MERRA-2 has a similar design to MERRA-1, but is available at a slightly finer

horizontal resolution of 0.5◦ × 0.625◦ from 1979–present (Bosilovich et al., 2015).

Numerical improvements from MERRA-1 to MERRA-2 are expected to more ac-

curately resolve UTLS processes. Comparison of their STE representations will

demonstrate model improvements.

We employ 3-D output at 6-hour intervals from each reanalysis in this study.

All of the data is interpolated to a regular 1◦ × 1◦ latitude-longitude grid for

analysis. Model output is also used to calculate secondary variables for analysis:

tropopause pressure (using the World Meteorological Orginazation (WMO) (1957)

8



lapse-rate tropopause (LRT) definition), potential temperature (θ), and potential

vorticity (PV) on the native model levels.

2.2 Tropopause definition

The tropopause definition employed in STE studies is critical to their outcome since

it represents the boundary between troposphere and stratosphere and the location

where dynamical processes and associated transport are evaluated. Many previous

STE studies have used a “dynamical” tropopause to represent the troposphere-

stratosphere boundary, for which a potential vorticity (PV) isosurface such as

2-PVU (1 PVU = 10−6 Km2kg−1s−1) is used (Ertel and Rossby, 1949). However,

several studies demonstrate that STE estimates can be largely sensitive to small

changes in the PV isosurface used. For example, Seo and Bowman (2002) (their

Fig. 6) made Lagrangian estimates of STE using multiple control surfaces, in-

cluding isobaric surfaces and potential vorticity iso-surfaces, and found downward

mass flux ranged from 1–4 ×1017 kg/yr. Homeyer and Bowman (2013) used 30

yr of ERA-Interim to produce a climatology of Rossby wave breaking events and

associated STE in the subtropics and demonstrated that varying the PV boundary

from 2 to 4 PVU resulted in a reversal of the net transport direction (i.e., TST or

STT). Despite these known sensitivities, many studies have continued to employ

a dynamic tropopause to avoid challenging STE calculations in the vicinity of the

sharp LRT discontinuity near the subtropical jet known as the “tropopause break”

(Palmén, 1948; Randel et al., 2007; Homeyer and Bowman, 2013). Because PV

is a quasi-conserved quantity in an adiabatic and frictionless flow, it is treated

as a quasi-material surface, and can provide a continuous boundary through the

tropopause break. An additional aspect of a PV-based method that is problematic
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for global STE studies is the fact that PV values converge to zero at the equa-

tor and do not coincide with the altitude of the tropical tropopause south of the

tropopause break. As a result, most studies that use a PV-based method in the

extratropics select an alternative surface to represent the tropopause in the tropics

(e.g., cold point altitude, isentropic surface).

The LRT, on the other hand, has been shown to coincide best with stability

and chemical transitions between the troposphere and stratosphere globally (e.g.,

Gettelman et al., 2011; Pan et al., 2004). This is due to the fact that a single PV

value does not coincide with the LRT and chemical transition everywhere, with

PV values at the tropopause ranging from at least 1 to 6 pvu in the extratrop-

ics (e.g., Kunz et al., 2011). For these reasons, we use the LRT to represent the

troposphere-stratosphere boundary in this study, but leverage beneficial informa-

tion from PV analyses to identify irreversible transport. A detailed outline of this

approach is provided in the following subsection.

2.3 STE identification

Trajectory calculations (∼6 billion) in this study are performed using the TRAJ3D

model developed by Bowman (1993) and updated in Bowman and Carrie (2002).

Parcels are initialized daily at 00 UTC every 1◦ in longitude and latitude and

every 20 hPa at altitudes relative to the LRT. Analogous to STE methods in

previous studies, preliminary selection of STE parcels is dependent upon whether

trajectories cross the LRT within the initial 24 hours downstream. This selection

is a straightforward process and only requires the initial and final parcel pressure

and coincident tropopause pressure. For instance, if a parcel pressure is initially

lower than its coincident tropopause pressure and one day downstream the parcel

pressure is greater than its coincident tropopause pressure, it is flagged as possible

10



STT. All potential STE parcels are then advected 5 days forward and backward

in time from the initial parcel locations for further analysis.

To ensure that transient (intermittent tropopause crossing) STE parcels are not

erroneously counted and represented as irreversible exchange, a filtering method is

applied to each parcel. Two criteria are necessary to identify irreversible transport:

(i) a residence time (τ), and (ii) a parcel PV change occurring during the 10-day

trajectory period. Based on a sensitivity study by Wernli and Bourqui (2002), a

long residence time, longer than 24 hours, can decrease estimates of irreversible

transport and change the direction of the annual net STE. Here, we chose a strict

residence time criteria, τ , of 96 hours. This allows processes with longer transport

times to be identified as STE, such as the slower diabatic upwelling in the tropics.

The second filtering criteria requires an absolute PV change of 0.5 PVU from

the initial parcel value to that 5 days downstream. The PV criteria represents

a dynamic change in a parcel’s characteristics from the influence of diabatic or

frictional affects (i.e., mixing). Parcels that meet the required criteria are retained

as irreversible exchange.

To examine irreversible STE mass flux, we compute the mass of each parcel

based on the following equation:

M =
1

g
(a20 cosφ)∆λ∆φ∆p (2.1)

Where Earth’s gravitational acceleration and radius are denoted by g and a0, re-

spectively, and φ, λ, and p represent latitude, longitude, and pressure scales of each

parcel. Since the parcel resolution is constant, parcel mass decreases from equator

to pole. Therefore, a greater number of transported parcels are required in the

extratropical and polar latitudes to achieve equivalent STE to that in the tropics

and subtropics. We bin STE parcels on a global grid with a longitude–latitude res-

olution of 2 degrees. For this purpose, the 1-day downstream parcel locations are

used in an attempt to better represent the locations where STE occurred. Slight
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differences in the locations of STE in the comparisons with Š14 in Chapter 3 may

be due to this choice, since Š14 use their initial parcel locations for binning.

2.4 Categorizing STE

In an attempt to evaluate the role of individual large-scale STE processes glob-

ally, we separate transport into four categories: vertical STT, vertical TST, lateral

STT, and lateral TST. For large-scale STE processes, lateral exchanges are known

to correspond primarily with Rossby wave breaking. Vertical exchanges, however,

are associated with extratropical cyclones, stratospheric intrusions, and tropical

upwelling. Therefore, in addition to the four categories, we also separate verti-

cal exchanges by geographic reservoir: tropical or extratropical. In particular,

we classify regions as tropical if they lie equatorward of the ‘tropopause break’

and extratropical if they lie poleward of the break. Similar to previous studies, the

tropopause break is defined as the LRT altitude frequency minimum between trop-

ical (15-17 km or < 150 hPa) and extratropical (8-12 km or > 150 hPa) modes in

hemispheric distributions (e.g., Birner, 2010; Homeyer and Bowman, 2013). Anal-

ysis of tropopause altitudes in each reanalysis model reveal that, despite slight

differences in LRT altitudes, the tropopause break can be routinely identified in

each using a tropopause pressure threshold of 150 hPa (not shown). Therefore,

we set trajectories with vertical STE as tropical if the tropopause pressure at the

initial parcel location is less than 150 hPa, and extratropical otherwise.

Similarly, classifying parcel transport as lateral or vertical involves evaluat-

ing both its tropopause break-relative location and tropopause-relative altitude

during advection. In particular, if a parcel is initially located below the tropical

tropopause and located above the extratropical tropopause 5 days downstream, it

will be flagged at as lateral TST. Alternatively, if a parcel is initially located above
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the extratropical tropopause and below the tropical tropopause 5 days downstream,

it is flagged as lateral STT. Remaining parcels are flagged as vertical exchange.

There is one important exception that must be accounted for: stratospheric in-

trusions below the subtropical jet. In order to identify these parcels as vertical

exchange, we require an additional condition for lateral STT: both initial and fi-

nal parcel pressures must be less than (above) the initial extratropical tropopause

pressure. For a detailed schematic of the identification method see Fig. 1.
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Chapter 3

STE method comparison

As previously mentioned, there can be significant variability in climatological STE

estimates based on the tropopause definition chosen to analyze exchange. Here, we

use our STE geographic distributions from ERA-Interim to briefly illustrate some

of the differences and similarities between our approach (i.e., using the LRT) and

the recent STE climatology presented by Š14 that employs a dynamic tropopause

(i.e. a PVU-isosurface of ±2-PVU) in the extratropics and the 380 K isentrope in

the tropics. In Figure 2, the global summertime and wintertime geographic distri-

butions of STT are shown for each approach. During both seasons, the locations

of STT maxima and minima are largely similar between the methods, but the

magnitude of STT mass flux is significantly larger using the PV-based tropopause

definition, particularly in the extratropics.

On the other hand, TST geographic distributions (Fig. 3) are shown to be quan-

titatively and qualitatively different. Similar to the STT comparisons, PV-based

TST is larger than that found with the LRT method in most places. However,

there is a unique latitudinal dependence of the differences, with the largest dif-

ferences found in the polar regions. For the LRT method, global TST maxima

are found within the tropics (i.e. Monsoon anticyclones and systematic tropical

upwelling), while TST in the extratropics and especially the polar regions is found

to be comparatively weak. The opposite relationship is found using a dynamic
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tropopause. According to our knowledge of large-scale processes associated with

TST, the geographic distributions from the LRT-based climatology (Left column

Fig. 3) agree more closely with known transport mechanisms.

The differences between the two methods may be rooted in the altitude place-

ment of the tropopause definition used. The±2–PVU surface (dynamic tropopause

used in Š14), while at times may reside at similar altitudes compared to the LRT,

often resides at lower altitudes with respect to the LRT (Pan et al., 2004; Gettel-

man et al., 2011; Kunz et al., 2011). Therefore, UT stirring or mixing may lead to

erroneously flagged STT or TST parcels when using the dynamic tropopause.
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Chapter 4

Results

Throughout the following chapter comparisons of STE among the four reanaly-

sis systems are shown using various metrics. Here, we seek to reveal important

similarities and differences in STE and the associated sub-categories of exchange

between the reanalyses.

4.1 STE geographic distribution

Global spatial distributions of annually averaged STT and TST mass fluxes are

shown in the right and left columns of Fig. 4, respectively. All of the models

are similar regarding peak STT regions, with the largest differences found in con-

trasting the magnitudes of downward transport. Total STT mass fluxes are max-

imized along the Northern Hemisphere (NH) Atlantic and Pacific extratropical

storm tracks in each reanalysis model. Among the four reanalyses, ERA-Interim

and JRA-55 STT mass fluxes are largest (Fig. 4a and 4c) with a maximum of ∼300

kg s−1 km−2 in the core of NH cyclone tracks. In the Southern Hemisphere (SH)

the STT mass fluxes are largest within the subtropical latitudes along the western

coasts of the continents. The largest SH STT maximum in each reanalysis is lo-

cated along the subtropical coast of Chile. This is a confined but dominant region
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of STT mass flux, and is greatest in JRA-55 (∼350 kg s−1 km−2) and weakest in

MERRA-1 (∼200 kg s−1 km−2). Another common region of elevated STT in the

SH occurs over a broad area in the extratropics along the west coast of Antarctica.

A noteworthy difference among reanalyses regarding STT mass fluxes is found

within the tropics, where the location of peak STT mass flux varies considerably.

Peak regions of tropical STT are found along the equator across the Indian ocean

in JRA-55 and ERA-Interim, but are found to be displaced south of the equator

in both MERRA reanalyses.

Annually averaged geographic distributions of TST mass fluxes show consid-

erably larger magnitudes and broader maxima within the tropical latitudes (right

column Fig. 4) in all of the reanalyses compared to STT. Spatially, maxima in trop-

ical TST mass fluxes coincide with minima in STT mass flux. Distinct maxima

of tropical TST mass fluxes are evident in the South China Sea, the East pacific,

the Caribbean Sea, and Southeast Asia. Within the subtropics a narrow band of

TST extends from China into the east Pacific and is consistent among the reanal-

yses. Comparison of TST among the reanalyses reveals two modes: regionally (or

latitudinally) symmetric in ERA-Interim and JRA-55, and regionally asymmetric

in the MERRA reanalyses. The regional asymmetry in the MERRA reanalyses is

due to significantly enhanced TST mass fluxes in the extratropics compared to the

remaining reanalyses, with extratropical TST near ∼400 kg s−1 km−2 globally in

MERRA-1/2 and near ∼200 kg s−1 km−2 in ERA-Interim and JRA-55. Another

inconsistency among the reanalyses is the location of peak TST in the tropical

western Pacific. The peak tropical TST location in JRA-55 and ERA-Interim is

highest in the NH but extends across the equator, whereas MERRA-1/2 show a

peak located mostly in the NH.
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To better understand the differences and similarities of STT and TST geo-

graphic distributions, we can decompose both transport directions into the ver-

tical and lateral subcategories of exchange to determine their contributions to

the differences observed in total (lateral + vertical) STE. The extratropical spa-

tial distributions of vertical STT and TST are shown in Fig. 5. One significant

characteristic shown is the dominance of vertical STT over vertical TST in the

extratropics indicated by ERA-Interim, JRA-55, and MERRA-2, especially over

the NH and SH storm tracks. MERRA-1, however, shows the opposite behavior.

As in the global STT distributions, the largest vertical STT mass fluxes in the

extratropics coincide with the NH cyclone tracks. In the SH, the vertical STT

mass fluxes are largest poleward of 60 deg S. Also, vertical STT maxima across

the subtropical SH, particularly the Chilean coast, are detected but magnitudes

are weaker than those in total STT. More generally, Vertical STT mass fluxes in

the extratropics are largest in JRA-55 and weakest in MERRA-1.

Vertical TST in the extratropics, similar to STT, is found to be spatially consis-

tent amongst the reanalyses, with the only apparent differences being the localized

maxima near 60 deg N in MERRA-1/2 that are not observed in ERA-Interim or

JRA-55. In addition, vertical TST in the extratropics in MERRA-1 is generally

larger than the remaining reanalyses.

Vertical STT and TST mass fluxes and their geographic distributions within

the tropics are shown in Fig. 6. While both TST and STT mass fluxes are similar

in magnitude between the reanalyses, there are slight offsets in the location and

width of the identified maxima. For example, no two models agree on the precise

location, zonal extent, or meridional extent of the TST maxima in the western

Pacific. The offsets in STT and TST maxima outlined in the discussion of Figure

4 above are also evident in the maps of vertical STT in the tropics.

18



Lastly, Figure 7 shows geographic distributions of lateral STT and TST from

the four reanalyses. These maps reveal that lateral transport is 1) generally weaker

than vertical transport in each model, 2) is dominated by poleward transport in

each hemisphere (i.e. TST), and 3) is preferentially distributed over the ocean

basins and extends poleward downstream of the ocean basins (in agreement with

known evolution of Rossby wave breaking events, e.g., see Figure 9 of (Homeyer

and Bowman, 2013)). In reference to the total STE geographic distributions, it is

evident that the influence of poleward and equatorward lateral transport directly

corresponds the subtropical maxima in STT and TST, which is expected due to

its association with the tropopause break.

4.2 STE totals

In an effort to quantitatively summarize some of the apparent differences identi-

fied in the analysis of geographic distributions, globally integrated and annually

averaged STE mass fluxes are provided in Table A.1 for each of the four reanal-

ysis models. Total STT mass flux is similar among JRA-55, ERA-Interim, and

MERRA-2, while the STT mass flux in MERRA-1 is at least 25% lower. In the

other direction, TST mass flux totals are significantly higher in MERRA-1 (∼51%)

and MERRA-2 (∼29%) compared to those from ERA-Interim and JRA-55.

Net STE is expected to be near zero, or balanced, over a long time period as

a result of mass continuity. However, all reanalyses result in a net exchange that

is either positive or negative (i.e. net TST or STT, respectively). Net mass fluxes

in JRA-55 and ERA-Interim are both negative (STT-dominant), but the net flux

amounts to only ∼4% of the total flux (TST + STT). However, net mass fluxes in

MERRA-1 and MERRA-2 are both positive and amount to about 33% and 12%

of their total fluxes, respectively.
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Table A.1 also includes the globally integrated mass fluxes of the four transport

subcategories (i.e. vertical STT, vertical TST, lateral STT, and lateral TST). Net

vertical STE fluxes are negative (STT-dominant) in JRA-55 and ERA-Interim,

marginally negative in MERRA-2, and positive (TST-dominant) in MERRA-1.

One unique commonality among the reanalyses is the net lateral flux. Each model

shows a net positive net lateral STE mass flux. Although net lateral fluxes are

unanimously positive, the MERRA-1/2 net fluxes are significantly larger than

those in JRA-55 and ERA-Interim.

4.3 STE meridional distributions

Annually and zonally integrated latitudinal distributions of STE are shown in Fig.

8. Meridional distributions, similar to geographic distributions, demonstrate the

latitudinal dependence of STE and offer a more quantitative comparison of the

regional differences. Once again, we show both total STE and STE separated by

the transport subcategories in the meridional distributions, but TST, STT, and

net STE are superimposed in each distribution.

Total STE meridional distributions (Fig. 8a) show similar latitudinal variations

in TST and STT in each model, but differences in the magnitude of each transport

direction lead to large differences in net STE, especially in the extratropics. The

meridional distributions for vertical (Fig. 8b) and lateral (Fig. 8c) subcategories

demonstrate that the majority of these differences can be attributed to vertical

STE, though lateral TST plays an important role in the subtropics and is clearly

much larger in the MERRA reanalyses (especially in the NH).
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4.4 Annual cycles

In addition to understanding regional differences in STE, examining differences in

the seasonality of transport can be important for determining the significance of

STE on UTLS composition throughout the year. Annual cycles of normalized STT

and TST are presented in Fig. 9 and separated by hemisphere. Mass fluxes of STT

and TST are normalized using the maximum and minimum monthly means over

the 15-year period:

Ni =
monthi −MIN(month)

MAX(month)−MIN(month)
(4.1)

Where, monthi is the monthly mean for each month (i = 1–12) and Ni is now the

ith normalized monthly mean mass flux. Normalized STT mass fluxes are similar

among the models in the NH and SH, but the hemispheres differ in the timing of

annual minimum and maximum STT. Annual STT is at maximum and minimum

in the late winter (DJF) and late summer (JJA) in the NH, while the maximum

and minimum STT occur during early Autumn (MAM) and spring (SON) in the

SH. One unique difference in STT is apparent during the Austral summer, where

MERRA-2 normalized mass fluxes are considerably smaller during those months

compared to the other reanalyses. Although the reanalyses show similar seasonality

for STT, there are some differences in seasonal variability. While there are no

uniform differences in variability within the hemispheres or among the reanalyses,

the monthly variabilities are considerably larger in the SH than in the NH.

There are more apparent differences in the annual cycles of TST (middle row of

Fig. 9). In particular, normalized TST mass flux in the NH reveals two preferred

seasonal cycles amongst the models. In JRA-55 and ERA-Interim, the annual cycle

of TST is weakly bimodal with maxima occurring during the NH winter (DJF) and

summer (JJA). The MERRA reanalyses, on the other hand, are not bimodal and

reach a maximum during the NH winter and a minimum during NH summer.
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Although the TST annual cycle is inconsistent in the NH, TST seasonality in the

SH is comparable in the reanalyses, with a maximum during the late summer and

early fall (FMA) and minimum during the winter (JJA). Similar to STT, the TST

annual cycles are more variable in the SH.

While the normalized annual cycles of TST and STT demonstrate the seasonal-

ity of STE, they do not represent amplitudes of the annual cycles (i.e. MAX(month)−

MIN(month)). Table A.2 provides annual cycle amplitudes for each hemisphere

and reanalysis. JRA-55, ERA-Interim, and MERRA-2 largely agree on TST and

STT annual cycle amplitudes in both hemispheres, with the exception of STT

amplitudes in the SH. On the other hand, annual cycle amplitudes in MERRA-1,

particularly in the NH, are larger for TST and smaller for STT compared to the

other reanalyses.

Annual cycles of net STE are shown in the top row of Figure 10 and left

un-normalized to show the combined effects of differences in seasonality and in

dominance of STE pathway. Both MERRA reanalyses show a positive net cross-

tropopause mass flux (TST) throughout their annual cycles in the NH. Alterna-

tively, JRA-55 and ERA-Interim exhibit a NH seasonal cycle that is STT-dominant

in the winter and early spring and TST dominant in the summer. In the SH, JRA-

55 and ERA-Interim again show consistent seasonality, and are STT-dominant

through most of the year and only briefly positive during the summertime (DJF).

While similar in shape, MERRA-2 exhibits positive net exchange that spans all

seasons but winter (JJA). MERRA-1, as in the NH, exhibits only positive net STE

and a weaker annual cycle compared to the other reanalyses. The largest monthly

net STE mass flux variability is found in the annual cycles of MERRA-1.

Annual cycles of the transport subcategories also reveal important differences

in the seasonality of STE and the contribution of individual processes to the total

annual cycles. Un-normalized net vertical and lateral annual cycles are also given
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in Fig. 10 for both hemispheres. Generally, the seasonality of net vertical mass

flux is similar in shape to the net annual cycle of total STE in each hemisphere,

with a few important differences. Specifically, the net vertical STE annual cycle

of MERRA-2 is shown to be STT-dominant during the NH wintertime, whereas

the total net STE indicates positive net exchange through all seasons. The SH net

vertical STE annual cycles are not significantly different from those represented by

net total STE, aside from a negative shift (i.e., a greater influence of STT).

For annual cycles of lateral transport, all four reanalyses show similar seasonal

behavior, with a minimum in late spring and early summer and a maximum during

the late fall and early winter and are TST dominant in both hemispheres. An-

nual cycles of lateral transport in MERRA-1/2 have a slightly larger amplitude

than those in ERA-Interim and JRA-55 and are displaced at higher net positive

fluxes, which is consistent with the analyses presented in Sections (4.1 & 4.3) above.

4.5 STE time series

Time series of STE are examined over the 15-year period to further evaluate simi-

larities and differences between the reanalysis models. In Fig. 11, global time series

of STT and TST are shown and are normalized with respect to the mean STT and

TST mass fluxes, respectively (i.e., mean fluxes are removed). STT throughout the

period shows two modes of long-term changes in the reanalyses: increasing mass

fluxes over time in JRA-55 and ERA-Interim and decreasing mass fluxes over time

in the MERRA reanalyses. Similar long-term increases in TST can be seen in

the ERA-Interim and JRA-55 time series. In the MERRA reanalyses, however,

long-term changes in TST are shown to be largely increasing in MERRA-1 and

near-zero in MERRA-2.
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Vertical and lateral STE time series are shown in the middle and bottom rows

of Fig. 11, respectively. Vertical STT shows similar patterns and variability to that

from total STT for each reanalysis. Mainly, there are decreasing vertical STT mass

fluxes in MERRA models and increasing fluxes in JRA-55 and ERA-Interim. In a

similar manner, vertical TST is increasing over the period in ERA-Interim, JRA-

55, slightly decreasing in MERRA-2, and strongly increasing in MERRA-1. Lateral

STE time series for all reanalyses show little to no long-term variability. There

is one exception, however, with lateral TST in MERRA-1 showing a potential

long-term increase in mass flux.

The long-term increases and decreases in STE identified in Figure 11 are asso-

ciated primarily with vertical STE and are considerably large relative to the mean,

especially given the relatively short time period analyzed. In order to better un-

derstand the source of these changes we also analyzed time series of vertical STE

occurring in extratropical and tropical domains. Based on the analyses presented

thus far and conventional STE knowledge, vertical transport in the tropics is pri-

marily upward (TST), while it is primarily downward (STT) in the extratropics

(with the exception of MERRA-1). These geographically separated upward STE

modes are largely the result of the BDC. Thus, we expect long-term changes in

vertical TST in the tropics and vertical STT in the extratropics to be consistent.

Figure 12 highlights these time series and the time series for the remaining modes

(vertical STT in the tropics and TST in the extratropics) from each reanalysis.

In Figure 12, long-term changes in vertical STT are negligible in the tropics and

apparent in the extratropics, while the opposite is true for vertical TST (except for

MERRA-1). Specifically, JRA-55 and ERA-Interim show increasing vertical STT

and TST in the extratropics and tropics, respectively, whereas MERRA-2 shows

decreasing mass fluxes over the 15-year period.
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The observed consistency in the sense of the long-term changes of vertical TST

in the tropics and STT in the extratropics in ERA-Interim, JRA-55, and MERRA-2

suggests that changes in the BDC may be responsible for this behavior. Specif-

ically, the increasing fluxes for tropical TST and extratropical STT over time in

JRA-55 and ERA-Interim indicate an acceleration in the BDC. While the decreases

in MERRA-2 indicate a deceleration of the BDC. Changes in the speed of the BDC

have been examined in previous studies. In particular, decreases in tropical strato-

spheric water vapor, ozone, and temperature observed by satellite correspond to

an increase in tropical upwelling associated with an enhanced BDC (Randel et al.,

2006). Chemistry-climate models have also indicated an acceleration of the BDC

over time (e.g., Austin and Li, 2006). These previous observational and modeling

studies are consistent with the results from ERA-Interim and JRA-55 here, while

MERRA-2 is in disagreement and MERRA-1 does not indicate changes in the BDC

over time.

4.6 Reanalysis model evaluations

This paper is largely a comparison of STE estimates using multiple state-of-the-

art reanalysis models, but we also briefly evaluate some model differences through

various metrics and diagnostics here. The goal is to provide general context and

logical reasoning to explain some of the aforementioned STE variations among the

reanalyses.
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4.6.1 STE occurrence geographic distributions

In order to assess quantitative and qualitative STE differences, particularly the

larger differences found for TST, we have to consider whether the frequency of

STE events differs among the models. Evaluating STE occurrence frequency in

each reanalysis informs us whether the amount of STE is a result of more frequent

STE or differences in the magnitude of transport in individual events.

In Fig. 13, total STT and TST occurrence frequencies are shown. There are

noticeable differences between the ERA-Interim and JRA-55 pair and the MERRA

reanalyses. In particular, ERA-Interim and JRA-55 show higher occurrence fre-

quencies globally for STT, while the MERRA occurrence frequencies are higher

for TST. Taken together with the results from the geographic distributions of STE

mass flux (Figs. 4–7), these analyses suggest that differences in mass flux between

the reanalyses are largely the result of differences in the frequency of exchange

events.

4.6.2 Diagnostics

The differences in STE occurrence and mass flux estimates among the models, to

some extent, are due to dynamical and/or physical differences between the models.

Over a long period these small differences may result in considerable variations

in climatological evaluations of STE. Dynamical differences may include offsets

in the locations of upper tropospheric jet streams or the strength of circulations

including the vertical motion. Physical differences include offsets in the altitude

of the tropopause or the location of the tropopause break.

These dynamical and physical characteristics can impact a reanalysis model’s

long-term representation of STE. For example, differences in vertical STE can be

the result of higher or lower tropopause altitudes among the models. Assuming the
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dynamics are equivalent in each model, differences in the altitude of the tropopause

imply that different elements of the dynamical features are analyzed for transport

calculations, which would ultimately lead to differences in STE estimates. A similar

argument can be made for uniform tropopause altitudes and dynamical differences.

Because the largest differences in our comparison are those associated with ver-

tical STE, comparing the magnitudes of vertical motion at and in a layer closely

above and below the tropopause may reveal a dynamical source of transport differ-

ences. However, we find that probability distributions of vertical motion are quite

similar among all the reanalyses (not shown).

Alternative dynamical and physical differences amongst the reanalyses outlined

above can be assessed using tropopause break-relative zonal means of tropopause

altitudes and horizontal wind speeds. Tropopause break-relative zonal means are

computed separately for each hemisphere using a relative latitude coordinate at

each longitude grid point, where the latitude of the tropopause break (location

where tropopause pressure is 150 hPa) is subtracted from the model latitude grid.

Once the relative latitude grid is known for each longitude in a hemisphere, zonal

means are calculated in relative latitude and on a dense, regularly spaced pressure

level grid in the vertical dimension. Figure 14 shows a single month of these

tropopause break-relative zonal means from each reanalysis for a cross-section that

includes both hemispheres and limits the vertical dimension to altitudes in the

UTLS. In this case, the relative grids in each hemisphere are centered at the

mean latitude of the tropopause break so that the zonal mean represents typical

conditions in each hemisphere. It is important to compute zonal means in this

manner since dynamical and physical differences in traditional Eulerian means may

be overly smoothed and therefore less informative about the typical collocations

of the jets and tropopause altitudes and the magnitudes of each.
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In Figure 14, it is apparent that extratropical and tropical tropopause altitudes

in both MERRA reanalyses are uniformly higher than those in both JRA-55 and

ERA-Interim. This alone may be an important contributor to STE differences

between the reanalyses. Slight offsets in the locations of the subtropical jets indi-

cate that there are also dynamical differences that may contribute to differences

in STE. Although we limit this analysis to a single month here, it is important to

note that the differences shown in Figure 14 are consistent throughout the analysis

period.
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Chapter 5

Conclusions and discussion

In this study, we examined global characteristics of STE over a 15-year period

(1996-2010) using a trajectory model and output from multiple reanalyses: ERA-

Interim, JRA-55, MERRA-2, and MERRA-1. STE was separated into four sub-

categories in an attempt to isolate known transport processes: vertical STT, ver-

tical TST, lateral STT, and lateral TST. Vertical STE was further separated

into domains being either extratropical or tropical based upon the altitude of the

tropopause.

5.1 Principal conclusions

This study, in contrast to the vast majority of previous work, used the lapse-rate

tropopause or LRT as the troposphere-stratosphere boundary rather than an iso-

surface of potential vorticity (PV) or dynamic tropopause. In order to demonstrate

the impact of this choice for STE studies, we presented a comparison of STE esti-

mates using the LRT method and results from a recent study that used a dynamic

tropopause (Škerlak et al., 2014). We found that:

1. magnitudes of STE are uniformly smaller using the LRT,
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2. spatial placement and variability of STT is similar between methods, and

3. spatial placement and variability of TST is largely different, with the most

significant differences found in the polar regions.

These differences correspond to a change in the net transport direction in the

polar regions when using the LRT (i.e., downward or STT-dominant rather than

upward). Such net transport at high latitudes from the LRT method is more

consistent with our established understanding of UTLS dynamics: net upward

motion in the tropics and net downward in the extratropics and polar regions.

The main focus of this paper was not a method comparison, but a comparison

of STE among four state-of-the-art atmospheric reanalyses. Doing so, we stratified

transport into several categories in order to investigate the STE climatologies both

quantitatively and qualitatively. It was found that the models can be grouped into

two populations: STT-dominant and TST-dominant (Table A.1). JRA-55 and

ERA-Interim are STT-dominant, while the MERRA reanalyses are both TST-

dominant. The net transport in the STT-dominant reanalyses, however, is small

relative to the total transport, while the opposite is true for the TST-dominant

reanalyses.

Geographic distributions and zonal mean latitudinal distributions revealed im-

portant characteristics about the two reanalysis populations. Notably, the largest

differences were found in the extratropics and associated primarily with vertical

STE. Geographic distributions of STT maxima were similar amongst all reanalyses,

while the opposite was true for TST. MERRA-1 was typically an outlier relative

to the remaining reanalyses, but similar differences (though largely diminished)

were found between MERRA-2 and the STT-dominant reanalyses (ERA-Interim

and JRA-55). Lateral STE was found to be consistent geographically with prior

studies of Rossby wave breaking events along the tropopause break (Postel and

Hitchman, 1999; Homeyer and Bowman, 2013). Although geographic placement
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and net transport for lateral STE was consistent among the models, the MERRA

reanalyses showed roughly twice the magnitude of net poleward transport (i.e.,

TST).

Seasonality of STE amongst the reanalyses was also found to be similar for some

transport categories and directions and significantly different for others. Similar

to geographic consistencies observed, we found that STT seasonality is consistent

among the reanalyses and in both hemispheres. However, annual cycles of TST

in the NH were found to be weakly bimodal in STT-dominant reanalyses and

unimodal in the TST-dominant reanalyses, with smaller differences in the SH.

Larger differences were found for annual cycles of net STE from the reanalyses, with

MERRA-1 showing little seasonality in each hemisphere. Differences in net STE

were shown to be associated primarily with vertical STE, which was a consistent

outcome of all analyses.

Long-term changes were also investigated using time series analysis over the 15-

year study period. These analyses indicated gradual increases and decreases in STT

and TST mass flux for the STT-dominant models and MERRA-2, respectively.

Further analyses of the transport subcategories suggested that long-term changes

in total STE are associated with either an acceleration or deceleration of the BDC.

Specifically, the BDC is apparently decelerating in MERRA-2 and accelerating in

JRA-55 and ERA-Interim from 1996–2010.

Finally, several diagnostics were applied to the reanalyses in order to shed light

on the sources of the STE differences. We found that differences in transport are

likely the result of differences in the frequency of irreversible STE rather than the

magnitude of individual events. We also found there to be persistent offsets in the

altitude of the tropopause and the locations of upper-tropospheric jets between

the STT-dominant and TST-dominant models. These dynamical and physical
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differences are considerable regarding the climatological STE differences, both of

which likely contribute some to the observed STE differences.

5.2 Discussion

The analyses in this study demonstrate that while there are some areas of agree-

ment in the magnitude, geographic distribution, and frequency of large-scale STE,

there are important differences that can lead to varying conclusions of the impact

of STE on UTLS composition, the radiation budget, and climate. While this study

is the first model comparison of global STE over a long time period, there are some

limitations that could be improved in future work to shed further light on these dif-

ferences. First, the analysis time period could be increased. Each reanalysis model

used in this study has output available from 1979 to 2015, roughly 2.5 times longer

than that used here. Expanding the analysis period may provide more knowledge

on the statistical behavior regarding the long-term changes associated with the

BDC (Section 4.5). An extended analysis period may also reduce variability in the

seasonality and regional distributions analyzed here and thus increase confidence

in the results.

Second, while the present generation of the reanalysis models are significant

advancements for studies of UTLS dynamics and associated processes over previ-

ous generations, model improvements can still be made in the UTLS. Given the

limited spatiotemporal observations of STE available, it is understandable that

model simulations of transport could differ considerably. However, some of these

differences are likely related to basic model choices such as grid resolution. For ex-

ample, the vertical grids are nearly equivalent in ERA-Interim and JRA-55, which

differ considerably from that used in MERRA-1/2. Notably, vertical resolution is

finer at levels below the tropical tropopause in ERA-Interim and JRA-55, but finer

above the tropical tropopause in the MERRA Reanalyses. Since the vertical grid
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resolution and placement of vertical grid levels in the UTLS may have important

impacts on tropopause-relative analyses such as STE (especially since current ver-

tical resolution of reanalyses in the UTLS is 1 km), it is important to understand

the sensitivity of such analyses to this model design choice.

Third, although we use kinematic output (ω; hPa s−1) to vertically advect par-

cel trajectories, it is possible to use diabatic (heating rates; K s−1) output instead.

Because kinematic vertical velocities are derived using mass continuity, small nu-

merical errors can occur. Diabatic heating and cooling rates, on the other hand,

represent physical vertical motion and are less prone to numerical errors. To briefly

illustrate the sensitivity to vertical velocity output, we constructed a climatology

of STE using diabatic output from JRA-55 and compared it to kinematic geo-

graphic distributions and STE occurrence (Figure 15). The comparison shows a

decrease in TST mass flux magnitudes and occurrence. While diabatic vertical

velocities diminish some error, they are typically slower than kinematic vertical

velocities. Thus, using diabatic output may require modification to our STE algo-

rithm: allow 48–72 hours for initial STE identification, as diabatic vertical motion

is generally weaker. It is apparent that further investigation is necessary to provide

an adequate understanding of a diabatically driven STE.

Furthermore, while this study compared STE among reanalyses and attempted

to diagnose potential sources of those differences, much more work can be done

to examine them. Such analyses may lead to future improvements in the models,

especially in the UTLS.
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Figure 3: As in Fig. 2, but for TST.
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Figure 5: As in Fig. 4, but for vertical STE in the extratropics.
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Figure 6: As in Fig. 4, but for the vertical STE in the tropics.
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Figure 7: As in Fig. 4, but for lateral STE.
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Table A.1: Globally integrated STE mass fluxes averaged over the 15–yr period
for each reanalysis model. STT, TST, net (TST-STT), and gross (TST+STT)
mass fluxes are given for each transport category (i.e. total, vertical, and lateral
exchange). All mass flux units are 1010 kg s−1.

Total STE
Reanalyses STTT TSTT NetT GrossT

JRA-55 5.83 5.29 -0.54 11.12
ERA-Interim 5.56 5.10 -0.47 10.66
MERRA-2 5.16 6.57 1.41 11.73
MERRA-1 3.86 7.74 3.88 11.60

Vertical STE
Reanalyses STTV TSTV NetV GrossV

JRA-55 5.29 4.10 -1.19 9.39
ERA-Interim 5.02 3.86 -1.16 8.88
MERRA-2 4.69 4.68 -0.012 9.37
MERRA-1 3.39 5.55 2.16 8.94

Lateral STE
Reanalyses STTL TSTL NetL GrossL

JRA-55 0.54 1.19 0.65 1.73
ERA-Interim 0.55 1.24 0.69 1.79
MERRA-2 0.47 1.89 1.42 2.36
MERRA-1 0.47 2.19 1.72 2.66
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Figure 8: Annually and zonally averaged meridional distributions of STE from
each reanalysis function of latitude and for (a) total STE, (b) vertical STE, and
(c) lateral STE. STT is shown as the dotted lines (negative), TST as the dashed
lines (positive), and the net transport is given by the solid lines in each panel.
STE from JRA-55 is shown by the purple lines, ERA-Interim by the blue lines,
and MERRA-2 and MERRA-1 by the light and dark red lines, respectively.
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Figure 9: Annual cycles of (top row) normalized STT and (bottom row) normalized
TST for the (left) Northern Hemisphere and (right) Southern Hemisphere from
each reanalysis model. In each plot, the solid colored lines are the mean annual
cycles and the colored error bars are plus/minus one standard deviation from the
mean. STE from JRA-55 is shown by the purple lines, ERA-Interim by the blue
lines, and MERRA-2 and MERRA-1 by the light and dark red lines, respectively.
Note that SH and NH annual cycles are offset by 6 mo.
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Table A.2: STT and TST annual cycle amplitudes given in both hemispheres from
each reanalysis model. All amplitudes are in units of 109 kg s−1.

STT TST
Reanalysis NH SH NH SH

JRA-55 6.00 12.92 12.11 4.91
ERA-Interim 5.33 10.68 12.74 3.90
MERRA-2 5.46 12.92 14.19 5.94
MERRA-1 10.82 10.47 9.83 6.37
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Figure 10: As in Figure 9, but for non-normalized net total STE (top row), net
vertical STE (middle row), and net lateral STE (bottom row).
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Figure 11: For each reanalysis, time series of globally integrated (top) total, (bot-
tom) lateral, and (middle) vertical STT (left) and TST (right) mass fluxes that
are normalized by the 15-year mean over the period (1996–2010). The thin lines
represent the monthly mean mass fluxes, while the bold lines are the result of ap-
plying a low-pass filter to a Fourier transform of each time series (power at time
scales ≤ 12 months is attenuated). STE from JRA-55 is shown by the purple lines,
ERA-Interim by the blue lines, and MERRA-2 and MERRA-1 by the light and
dark red lines, respectively.
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Figure 12: As in Fig. 11, but for vertical STE in the (top) tropics and (bottom)
extratropics.
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Figure 13: Global occurrence frequency distributions of (left) STT and (right)
TST events for (a & b) ERA-Interim, (c & d) JRA-55, (e & f) MERRA-2, and (g
& h) MERRA-1.
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Figure 14: Monthly (November 2002) tropopause break-relative zonal means of
(a) tropopause pressure (hPa) and (b) total horizontal wind (m s−1) for each
reanalysis. JRA-55 is shown by the purple lines, ERA-Interim by the blue lines,
and MERRA-2 and MERRA-1 by the light and dark red lines, respectively.
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Figure 15: Geographic distributions of TST mass flux (top row) and occurrence
(bottom row) using JRA-55 reanalysis diabatic (left; K s−1) and kinematic (right;
hPa s−1) vertical velocity output over the 15-year period (1996–2010).
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