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Abstract

A nocturnal maximum in precipitation exists over the Great Plains during

the summer. The initiation of nocturnal storms is notoriously difficult to forecast

in numerical models due to the storms often involving interactions across many

scales. Additionally, most storms that develop at night are categorized as “ele-

vated” in which the conditionally unstable source air is located above the bound-

ary layer. While convection initiation (CI) in well-mixed, daytime boundary layers

is often triggered along boundaries of surface convergence and is moderately well-

understood, nocturnal CI is relatively unexplored. In this thesis, a multi-scale,

GSI-based EnKF forecast system is applied to a case from 25 June 2013 to ad-

dress the impact of (1) radar and conventional data assimilation; and (2) physical

parameterization schemes on nocturnal CI forecasts. These results will be utilized

to (3) improve the understanding of mechanisms that lead to nocturnal CI.

The simulated convection appears to have been generated by the interaction

of synoptic scale lift, a surface outflow boundary, a veering nocturnal low-level jet

(LLJ), and trapped gravity waves. The assimilation of conventional observations

(surface, rawinsonde, aircraft, etc.) enhanced convergence at the terminus of the

LLJ and strengthened ongoing convection that produced an important cold pool

and resulting gravity waves. Radar assimilation showed little improvements in the

CI forecast, though it better resolved earlier convection and reduced the amount of

spurious precipitation. Additionally, little sensitivity was found for both planetary

boundary layer and microphysical parameterization schemes.

xix



Chapter 1

Introduction

1.1 Nocturnal precipitation maximum

There is a well-documented, but not well-understood, nocturnal maximum in

precipitation in the Great Plains of the United States (US) during the summer that

is critical to the hydrology and agriculture of the region (Wallace 1975; Heideman

and Fritsch 1988; Moore et al. 2003; Surcel et al. 2010). Additionally, warm season

precipitation forecasting remains a difficult challenge, as the accuracy in quantita-

tive precipitation forecasts (QPFs) is consistently higher in the cool season than

the summer (Heideman and Fritsch 1988; Fritsch et al. 1998; Fritsch and Carbone

2004). The agricultural industry commonly utilizes weather forecasts to determine

how much of their water resources should be used for irrigation purposes and how

much can be saved. Lazo et al. (2011) explored the importance of precipitation

forecasts to the US economy and determined that in 2008 alone, the variation in

the economic activity associated with weather variability could be 3.4%, or up

to $485 billion. Flash flooding events are also most common during the summer

months (Maddox et al. 1979) and result in more deaths in the United States per

year than any other severe weather related hazard (NOAA 2004).
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Various studies have suggested that the nocturnal maximum in precipitation

over the Great Plains can be related to the eastward movement of convective sys-

tems from the higher terrain to the west (Fig. 1.1; Carbone et al. 2002; Ahijevych

et al. 2004; Carbone and Tuttle 2008; Keenan and Carbone 2008). Similar max-

ima have been found east of the Appalachian Mountains (Parker and Ahijevych

2007) and in Australia (Keenan and Carbone 2008). During the afternoon, nu-

merical weather prediction (NWP) models represent the timing and location of

the initiation of mesoscale convective systems (MCSs) fairly well, though they are

known to poorly depict the propagation characteristics (Surcel et al. 2010; Davis

et al. 2004). Other factors are also likely important to the nocturnal precipita-

tion maximum in the Great Plains, including the Great Plains nocturnal low-level

jet (LLJ), potential vorticity (PV) anomalies lee of the Rocky Mountains, and

convective feedbacks.

The Great Plains LLJ is a well-documented region of 15 – 35 m s-1 wind speeds

located 300-800 m AGL that often develops over the Great Plains after sunset

(Parish and Oolman 2010). It is responsible for advecting warm, moist air into

the Great Plains region that enhances the environment for elevated convection

(Fig. 1.2; Helfand and Schubert 1995; Higgins et al. 1997; Tollerud et al. 2008).

It can also destabilize a region when advecting high θe air underneath cooler air

aloft, or erode convective inhibition (CIN) via cooling above the LLJ caused by

mesoscale ascent north of a surface front (Trier and Parsons 1993). In addition

to enhancing the environment for new convective development, the LLJ also often

provides potential forcing for convection, such as when interacting with a frontal

boundary (Pitchford and London 1962; Augustine and Caracena 1994; Anderson

and Arritt 1998) or a pre-existing mesoscale convective vortex (Schumacher and

Johnson 2009). In the absence of interaction with another feature, speed conver-

gence at the terminus of the jet can also provide a focal point for new convection

2



Figure 1.1: Hovmöller diagram of mean diurnal cycle of average hourly rainrates

in the US between 1996 and 2007 for both spring and summer from Surcel et al.

(2010). The Great Plains region of the US spans from -97° to -102° W.
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Figure 1.2: Schematic features of a severe weather outbreak in the Great Plains

as aided by the developing LLJ from Newton (1967). Solid lines are sea level

isobars; dashed lines are streamlines of upper-tropospheric flow. Shading outlines

the general area of the LLJ moist tongue and region of potential instability

(Trier and Parsons 1993). A study by (Gale et al. 2002) noted that a majority of

MCSs began to dissipate with the removal of LLJ forcing.

Trains of oscillating PV anomalies are produced in the lee of the Rockies due to

localized elevated heating over the higher terrain. They are then advected by up-

per tropospheric winds into the Great Plains (Fig. 1.3; Tripoli and Cotton 1989a,b;

Carbone et al. 2002; Li and Smith 2010) and are thought to be capable of pro-

ducing deep vertical motions near the surface due to the presence of background

shear. Li and Smith (2010) performed an analysis of surface observations to find

a mix of stationary and east-west moving precipitation events lee of the Rockies

that correlate with eastward-moving diurnal pulses of PV. They also found that

these PV signals occur in both the summer and winter months; however, the winter
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Figure 1.3: Schematic plot of PV train mechanisms in the lee of a mountain

range from Li and Smith (2010). U represents the background wind, N

represents the environmental stability, Z1 is the shear level, H is the heating

level, and Q(z) is the vertical profile of diurnal heating over the mountain.

disturbances were weaker, moved faster, and did not tend to influence precipita-

tion, thus indicating that the PV signal is a cause, not an effect, of the summer

precipitation propagation.

Lastly, convective feedbacks (Carbone et al. 2002) represent the idea that

storms forming near the high terrain of the Rocky Mountains produce cold pools

or gravity waves that are able to enhance or even generate new convection down-

stream (Fig. 1.4). Gravity waves that come in contact with a low-level stable layer

might produce what is known as an atmospheric bore that moves out ahead of

the density current and is able to cause a sustained elevation of the stable layer

and intense net upward displacements of air parcels (Crook 1988; Rottman and

Simpson 1989) . Koch et al. (2008) observed vertical velocities of nearly 5 m s-1

at 2 km AGL in an atmospheric soliton (a type of wave that evolves from a bore)

during the International H2O project (IHOP) in southwest Kansas; disturbances of
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this magnitude are capable of lifting conditionally unstable parcels to their level of

free convection (LFC). According to climatology, elevated convection is most com-

mon east of the Rocky Mountains, northeast of surface cyclone cores, and north

of surface warm fronts (Colman 1990), which is consistent with common areas of

gravity wave occurrence (Jewett et al. 2003). However, internal gravity waves are

inherently dispersive and need other conditions to be present in order to maintain

long-lived waves and influence the generation of convection away from the source

(Crook 1988).

The various mechanisms listed above provide forecast challenges for both oper-

ational meteorologists and NWP models. Apart from those, another large reason

for nocturnal convective storms in the US being poorly forecast compared to con-

vection during the daytime (Davis et al. 2004) is due to the increased occurrence

of elevated convection at night. Glickman and Zenk (2000) defines elevated con-

vection as convection where the conditionally unstable source air is located above

the boundary layer. More simply, elevated convection can be characterized as any

convection that develops above a near-surface stable layer, such as a sloping frontal

surface or nocturnal inversion. Elevated storms can also evolve from surface-based

storms over time (Corfidi et al. 2008; Parker 2008). Not all convection that ini-

tiates at night is elevated, however, as some cold pools associated with strong

MCSs are able to lift surface-based air to their LFC even in an environment with a

strongly stable planetary boundary layer (PBL; Billings and Parker 2012). During

the IHOP project in 2002, 50% of all initiation episodes, and 80% of the episodes

between 10 p.m. and 7 a.m. LST, were classified as being elevated (Wilson and

Roberts 2006).
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Figure 1.4: Hovmöller diagram for radar-derived rain-rate for 27-29 May 1998 in

the southern Great Plains from Carbone et al. (2002). Smaller squall lines were

initiated with the mesoscale convective vortex (noted as cold pool dynamics) but

rapidly propagated eastward from it.
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1.2 Nocturnal convection initiation

It is possible that all the above features are interrelated and contribute to the

nocturnal maximum in precipitation over the Great Plains. Though much of the

maximum is associated with long-lived, nocturnal MCSs, new storms can develop

over the Great Plains that contribute to large rainfall totals. Determining the

exact mechanisms that initiate elevated storms is a difficult challenge, especially

without routine observations above the surface. Wilson and Roberts (2006) noted

that most cases observed during IHOP were associated with convergent or confluent

boundaries at the mid-levels. A well-documented nocturnal convection initiation

(CI) episode from IHOP occurred when a trapped wave intersected a stationary

convergence line at the terminus of the LLJ, producing CI above a stable nocturnal

boundary layer affected by a previous MCS (Marsham et al. 2011). The authors

calculated the Scorer parameter (1949) from a nearby sounding and showed that

the environment, defined by a surface-based stable layer capped by near-neutral

layers aloft, and combined with the southerly LLJ, favored wave trapping and

thus long-lived internal gravity waves. However, there are various other wave

features that potentially play a role in CI at night, including density currents,

bores, and solitary waves (White and Helfrich 2012). Multiple instances of bore-

produced convection were observed during both the IHOP (Wilson and Roberts

2006) and Plains Elevated Convection at Night (PECAN; Parsons et al. 2013)

field projects. This study will apply an advanced data assimilation (DA) system

to better understand why convection developed during a summer 2013 case from

western Kansas.

Various studies have explored the immense difficulty associated with accurately

predicting CI, even during the afternoon, in NWP models (e.g. Xue and Martin

2006a,b; Weisman et al. 2008; Bodine et al. 2010; Kain et al. 2013; Trier et al.

2015). Slight variations in the storm-scale or even the mesoscale environment can
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produce significantly different results in regards to timing, location, and structure

of new convective development (Fig. 1.5; Martin and Xue 2006). Forecasts of con-

vection have also been shown to be sensitive to physical parameterization schemes,

including different PBL and microphysics schemes (e.g. Johnson et al. 2011; Duda

et al. 2014; Johnson and Wang 2016; Johnson et al. 2016). PBL schemes deter-

mine the structure of the low-level thermodynamic and moisture profiles and can

often perform differently in stable conditions. Microphysics schemes are known to

handle the strength and structure of cold pools differently (e.g. Dawson et al. 2010;

Wheatley et al. 2014; Li et al. 2015), which are potentially important in the pro-

cess of initiating new convection. Despite the fact that many convective processes

also occur at a sub-grid scale, Kain et al. (2013) found that convection-allowing

models provide some skill in predicting both the timing and location of diurnal

CI. Johnson and Wang (2016) also found similar results for nocturnal CI events

during the PECAN experiment; though they did not verify CI forecast locations,

their operational forecast ensemble was nearly unbiased in nocturnal CI forecast

times.

The assimilation of synoptic and mesoscale observations, as well as storm-scale

radar observations, are known to improve analyses of surface boundaries or other

features that might be the focal area for new storm development, as well as the

mesoscale and kinematic environments in which storms form. Childs et al. (2006)

improved precipitation forecasts when assimilating surface layer temperature and

water vapor mixing ratio to indirectly update soil variables. Additionally, the as-

similation of radar observations (radar reflectivity factor and radial velocity) have

shown large impacts on improving forecasts of convection (Zhang et al. 2009; Yus-

souf et al. 2013; Thompson 2014; Johnson et al. 2015; Jones et al. 2015; Johnson

and Wang 2016). Most of these studies have used radar observations to improve

the spin-up of convective echoes, but not to specifically study the impact of DA on
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Figure 1.5: Forecast accumulated precipitation that fell in two model runs with

only a 1 g kg-1 perturbation in the PBL moisture at the location shown in the

box, from Martin and Xue (2006). The arrow in each figure, in (a) northwestern

Oklahoma; and (b) north-central Oklahoma, indicates the location of the box.

Contour increments are 15 mm. The 10 g kg-1 isopleth of water vapor at 10 m

above the ground is drawn at the initial model time to indicate the location of a

dryline. Only a slight perturbation in a small area was able to completely change

the precipitation structure in multiple locations.
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the forecasting of new storms. Gasperoni et al. (2013) assimilated radar-derived re-

fractivity measurements, which provide information on near-surface moisture con-

tent, and found that the assimilation was able to correct low-level moisture errors

and improve CI forecasts. More recently, Sobash and Stensrud (2015) improved

forecasts of CI in the southern Great Plains by using an ensemble Kalman filter

(EnKF) to assimilate mesonet and conventional surface observations (Fig. 1.6).

They determined that the improvements largely resulted from a more accurate

representation of PBL moisture profiles. The EnKF method of DA, which will be

applied for this study, has the advantage of flow-dependent background error co-

variances compared to the static covariances assumed by variational DA schemes.

This produces more accurate spatial and cross-variable correlations between the

state variables and observations (given that a number of assumptions are not bro-

ken) and thus also a more accurate final analysis compared to 3DVar (Johnson

et al. 2015).

Our study will apply an advanced, multi-scale DA system to a nocturnal CI

case from central Kansas during 25 June 2013. On 24 June, a late-afternoon

MCS initiated off of a dryline in southwestern Kansas before dissipating in the

early evening hours of 25 June. Operational forecasts for the area predicted that

due to the loss of daytime heating, storm chances would diminish rapidly by late

evening. However, convection initiated slightly before 0300 UTC with no apparent

boundaries near it. The term “multi-scale” will refer to a DA and forecast system

that resolves a range of scales, from the larger synoptic scale on an outer domain,

down to the storm-scale on an inner, convection-allowing domain. Observations

that are designed to sample these different scales will be assimilated during the

DA process on the different grids in order to provide unique analyses that best

estimate the state.
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Figure 1.6: One hour forecast probabilities (2100 – 2200 UTC) of composite

reflectivity (CREF) > 25 dBZ for (a), a control forecast initialized from the

NCAR mesoscale ensemble with no DA; and (b) a forecast initialized after 3

hours of surface data assimilation from Sobash and Stensrud (2015). Maximum

observed CREF > 25 dBZ from 2100 to 2200 UTC is shaded in black.
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Results from this advanced DA system will be used to address three main goals:

(1) what is the impact of radar and in-situ DA for nocturnal CI forecasts? Both

observation types are now commonly assimilated into operational forecast mod-

els. However, separating them into different assimilation experiments will provide

information on which features and scales are most important for the model to re-

solve in order to specifically forecast nocturnal CI. Since few previous studies have

specifically attempted to simulate nocturnal CI, this work can also be approached

as a feasibility study of whether convection-allowing forecast systems are able to

reproduce some of the unique interactions that lead to CI at night. Also addressed

in this thesis is: (2) what roles do physical parameterization schemes (PBL and

microphysics) play in simulating nocturnal CI? Though they can produce very

different results for diurnal CI simulations, the largest differences between these

schemes often occur near the surface and below the likely layers of initiation for

most nocturnal convection. Lastly, these results will be used to (3) improve the

understanding of mechanisms that lead to nocturnal CI. As previously mentioned,

the features responsible for triggering convection at night are often unclear due to

the lack of high-frequency observations above the surface. Though it is difficult

to verify whether the simulated CI mechanisms are true, NWP models provide a

proxy for pinpointing specific features that are likely to be important.

The thesis is organized as follows. A description of the case from 25 June, 2013

is presented in chapter 2. Chapter 3 will outline the model and DA configurations

used in this study. Chapter 4 provides an overview of the DA results as well as

the forecast results related specifically to CI. Chapter 5 presents the sensitivity

results for different parameterization schemes. The dynamical results related to

the specific mechanisms responsible for generating CI will be discussed in chapter

6. Lastly, an overall discussion of results, conclusions, and future work are included

in chapter 7.
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Chapter 2

Overview of 25 June 2013 CI event

2.1 Synoptic and mesoscale environment

The focus of this study will be a cluster of isolated convection that initiated in

northwestern Kansas in a stable environment with no obvious convergent bound-

aries nearby. Upper level flow was mostly weak and southwesterly, although a

shortwave trough was present east of the Rocky Mountains at 300 hPa down to

500 hPa (Fig. 2.1a) that can be traced back to the northern Pacific coast. Prior to

the passage of the perturbation, upper-level flow was not supportive of convection

becoming particularly organized. As the upper-level wave moved over the Rockies,

deep southwesterly flow increased and a lee trough developed closer to the surface

(Fig. 2.1b). An associated surface low became apparent in southeastern Wyoming

during the early afternoon of 24 June.

A bulging dryline extended southward from this surface low into the Texas

Panhandle (Fig. 2.2) with surface dew point temperatures of 61 °F in Dodge City,

Kansas and 32 °F in far southeastern Colorado at 2200 UTC. The warm front

associated with the surface low was draped across southern Nebraska and pushed

north into the evening hours. Surface flow throughout most of northern and eastern

Kansas was weak (10 kts or less), though wind speeds were higher in parts of west-

ern Kansas and the Oklahoma/Texas Panhandle. The late afternoon environment
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A)

B)

Figure 2.1: Upper-air analyses and observations at 0000 UTC on 25 June of (a)

300 hPa isotachs (fill), streamlines (black contours), and divergence (yellow

contours); and (b) 700 hPa heights (black contours), temperature (red contours),

and dewpoints > -4 °C (green contours).
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Figure 2.2: Surface observations across the Great Plains at 2213 UTC on 24

June. The brown line indicates the subjectively analyzed location of the surface

dryline at 50 °F, while the red line indicates the approximate location of the

warm front. Also contoured are the 5 °F isodrosotherms.

on 24 June in the warm sector was classified as strongly capped but moderately

unstable (300 J kg-1 of surface-based convective inhibition [CIN] and 2200 J kg-1

of surface-based convective available potential energy [CAPE] in Topeka at 0000

UTC). The 0000 UTC sounding on 25 June from Dodge City, Kansas was within

the cold pool from later convection, though the 1200 UTC sounding on 24 June

showed steep mid-level lapse rates but little low-level moisture. Dew points were

able to increase in those 12 hours from 13 °C to 21 °C.

Storms formed prior to the convection of interest earlier that afternoon in

southwest Kansas along the dryline at 2100 UTC and moved eastward (Fig. 2.3).

They merged into a small MCS, possessing their best squall line-like structure at

2330 UTC before slowly dying out by 0500 UTC (Fig. 2.3c-d). Around the time
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A) B)

D)C)

Figure 2.3: Radar observations of 1 km AGL reflectivity valid at (a) 2200 UTC

on 24 June; (b) 0000 UTC; (c) 0300 UTC; and (d) 0500 UTC on 25 June. The

red circle in (c) indicates a radar fine line moving northwestward.

that the dryline began to retreat back westward (Fig. 2.4), signs of an outflow

boundary moving northward through northwest Kansas could also be seen on the

observed 1 km AGL reflectivity image (Fig. 2.3c). Reports of large hail and high

wind gusts were associated with this southern system (Fig. 2.5, see cluster of

reports in southern Kansas).
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Figure 2.4: As in Fig. 2.2 but at 0313 UTC on 25 June.

Figure 2.5: Preliminary storm reports from the Storm Prediction Center between

1200 UTC on 24 June and 1200 UTC on 25 June. Black icons indicate high wind

or large hail reports.
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2.2 Operational forecasts

Most operational forecasts from the National Weather Service (NWS) and

Storm Prediction Center (SPC) assumed that storms would be unlikely to de-

velop overnight due to a stabilizing boundary layer, as well as the cold pool from

previous convection spreading northward (NOAA 2013). An Area Forecast Dis-

cussion (AFD) from the Dodge City, Kansas NWS office at 2100 UTC on 24 June

stated: “after the shortwave trough passes tonight, and by the loss of daytime

heating, storm chances will diminish rapidly by late evening”. The SPC echoed

that sentiment at 0200 UTC on 25 June: “the boundary layer is cooling and CIN

is increasing rapidly across the area, which should aid in weakening the ongoing

storm and likely preclude additional development from western Kansas into south

central Nebraska”. The NWS office in Hastings, Nebraska however did catch on to

the possibility of convection continuing into the overnight hours: “mid-level per-

turbation currently advancing east from the Rockies. . . promoting some increasing

omega. . . guidance continues to suggest the axis of a 45-55 850 mb jet streak will

develop across portions of the southern and central Plains tonight. . . 20-30% POPS

[probability of precipitation] are presented to the entire central watch area”.

2.3 Convective history

Convection initiated in the evening with storms forming in northwestern Kansas

by 0230 UTC (Fig. 2.6; circled area). This initiation episode will be the focus of

this study. The cells were originally isolated but began to merge into a mesoscale

feature at 0500 UTC (Fig. 2.7c). As they moved eastward, severe hail and wind re-

ports (including one greater than 65 kts) were noted in northern Kansas (Fig. 2.5);

see cluster of reports in northern Kansas). More storms began to initiate along
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Figure 2.6: Radar observations of 1 km AGL reflectivity valid at 0230 UTC. The

circled area indicates the initiation episode of interest.

both the northern and southern ends of a northwest to southeast oriented con-

vective line (only the original initiation point will be studied). At 0800 UTC, a

convective core in the middle of the line began to strengthen and move with more

of a southerly component than the rest of the line. At 0900 UTC, this storm pro-

duced a supercell-like hook structure (Fig. 2.7d). Additional convection initiated

further ahead of this line in eastern Nebraska at 1100 UTC though multiple seg-

ments of the line began to weaken after that. Most of the original structure fell

apart by early morning.

There were no boundaries present near the initiation location on the surface

charts (Fig. 2.4). The nearest radiosonde observation to this point at Dodge City,

Kansas was within the cold pool of the previous convection at 0000 UTC, though

it stands as a decent first-guess analysis of the environment that these storms

developed in. Since radar fine-lines were seen moving northward in northwestern

Kansas prior to this episode initiating, it is likely that the new convection formed

above or within the cold pool of the southern convection. The late afternoon
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A) B)

D)C)

Figure 2.7: Radar observations of 1 km AGL reflectivity valid at (a) 0300 UTC;

(b) 0400 UTC; (c) 0500 UTC; and (d) 0900 UTC on 25 June.
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sounding (Fig. 2.8a) had a strong surface-based inversion with surface-based CIN

values of near 400 J kg-1. However the mid-level lapse rates in the area were very

steep (analyzed as over 8.5 K km-1 via the SPC mesoanalysis), producing over 1500

J kg-1 of most-unstable CAPE (MUCAPE) at KDDC and indicating the possibility

for elevated convection to form. Additionally, a strong LLJ was present at the 1200

UTC sounding from KDDC. (Fig. 2.8b). The jet max at 1200 UTC was observed

as 56 kt at 843 hPa (1524 m AGL).

Almost no observations, other than conventional surface stations and upper air

soundings, are available to analyze the particular cause of this new CI in north-

western Kansas. This study will use modeling results to infer the mechanisms that

may be responsible, though it will be impossible to verify whether these actually

occurred. However, using these results, one can infer possible mechanisms that

may be responsible for generating nocturnal CI and apply them to other cases.

Additionally, we will be able to understand through this study whether a 4 km

NWP simulation is able to correctly resolve some of these important features.
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A) B)

Figure 2.8: Soundings from KDDC at (a) 0000 UTC; and (b) 1200 UTC on 25

June.
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Chapter 3

Methodology

3.1 Model configuration

3.1.1 Initial and lateral boundary conditions

All simulations presented in this study utilize the Weather Research and Fore-

casting (Skamarock et al. 2008) NWP model with the advanced research core

(WRF-ARW) version 3.6.1. WRF is widely used and well-documented throughout

the field of meteorology for both research and operations. An outer domain is

configured with 12 km grid spacing and 50 terrain-following vertical levels over a

326 x 259 grid point domain (Fig. 3.1). These vertical grid levels are stretched,

with the tightest spacing near the surface up to 2.5 km AGL and then gradually

spreading above until the model top at 50 hPa (Fig. 3.2). The outer domain is

created at the beginning of the simulation by downscaling the operational National

Centers for Environmental Prediction Global Forecast System (NCEP GFS) anal-

ysis to the WRF domain using the WRF Preprocessing System (WPS) at 0000

UTC on 24 June. To generate 40 ensemble members, random perturbations are

added through the random-cv facility in the WRF Data Assimilation (WRFDA;

Barker et al. 2004) package. Perturbation standard deviations of 1.9 m s-1 for
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Figure 3.1: Domain configurations for all simulations. The outer box represents

the outer, 12 km domain, while the inner box is the convection-allowing, 4 km

domain. Each circle within the inner domain represents a WSR-88D radar that

was assimilated.

the horizontal wind, 0.6 K for temperature, 0.3 hPa for model pressure pertur-

bation, and 0.9 g kg-1 for water vapor mixing ratio are added (Wang et al. 2008;

Johnson et al. 2015). GFS forecasts are also used to produce the lateral boundary

conditions (LBCs) for the outer domain; the pert wrf bc program from the Data

Assimilation Research Testbed (DART) and the National Center for Atmospheric

Research (NCAR) is used to randomly perturb the LBC for each member similar

to the initial conditions.

After DA on the outer domain (detailed in the next section) is finished, an inner,

convection-allowing domain with 4 km spacing of 346 x 277 horizontal levels is

initialized within the outer domain (inner box in Fig. 3.1) which provides the initial

and lateral boundary conditions. Chasteen et al. (2016, personal communication)
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Figure 3.2: Stretched vertical grid spacing for 50 terrain-following vertical levels

in all simulations.

found large sensitivity to the nesting configuration for a long-track, nocturnal MCS.

They discovered that switching from one-way to two-way nesting allowed a much

more developed system, similar to the observed MCS, to form in their simulation.

Thus we also utilize two-way nesting in which forecasts from the inner domain are

allowed to update the outer domain as well. The inner domain also has the same

50 terrain-following, stretched vertical levels. After assimilation has completed on

the inner domain, free forecasts from the final EnKF analyses are launched out to

6 h lead times.

3.1.2 Physical parameterizations

Fixed physical parameterizations are used for each of the 40 members and

are listed as follows. Results in chapters 3 and 4 will utilize the Mellor-Yamada-

Nakanishi-Niino (MYNN; Nakanishi and Niino 2004, 2009) PBL scheme, as well
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as the WRF single-moment 6-class (WSM6; Hong and Lim 2006) and Lin (Lin

et al. 1983) microphysics schemes. Additionally, the Noah land surface model (Ek

et al. 2003), RRTMG longwave (Iacono et al. 2008) radiation, Goddard shortwave

radiation (Tao et al. 2003), and the Grell-Freitas (Grell and Freitas 2013) cumulus

parameterization schemes are used for all simulations. Chapter 5 will also examine

forecast sensitivities to different PBL and microphysics schemes. 4 km horizontal

grid spacing on the inner domain, though not capable of fully resolving all convec-

tive details, “allows” convection to form with similar structures to that observed.

Thus the cumulus parameterization is turned off for the inner domain simulations.

A summary of all parameterization schemes is given in Table 3.1. Coniglio et al.

(2013) notes that the local closure, 1.5-order MYNN scheme performs significantly

better than other schemes in that it is nearly unbiased in PBL depth, moisture,

and potential temperature, thus giving confidence in its use in convection-allowing

configurations of WRF. Various studies have demonstrated the large role that

microphysics processes and schemes play in the evolution of convection, through

changes in the phase speed of convective systems, as well as rainfall magnitudes

(Fritsch and Carbone 2004; Dawson et al. 2010). During data assimilation, the

WSM6 scheme is utilized due to computational efficiency; the reflectivity observa-

tion operator for DA associated with WSM6 follows Johnson et al. (2015; 2016a).

While performing diagnostics for the microphysics sensitivity studies described in

chapter 5, the Lin microphysics scheme was subjectively chosen for the forecast

period due to its ability to produce CI with a similar orientation and shape to

that which was observed. The Lin scheme is a single-moment, bulk microphysics

scheme that predicts the mixing ratios of cloud and rain water, ice, snow, graupel,

and hail. French and Parker (2008) successfully used the scheme to simulate the

initiation of both supercells and an MCS in WRF, and it has also been shown to

perform well for other convective modes (e.g. Nasrollahi et al. 2012).
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Parameterization Scheme

PBL 1.5-order MYNN

Microphysics (DA) WSM6

Microphysics (Forecast) Lin

Land Surface Model Noah

Longwave Radiation RRTMG

Shortwave Radiation Goddard

Cumulus Grell-Freitas (outer domain only)

Table 3.1: Physical parameterization schemes used for all non-physics sensitivity

experiments.

3.2 Data assimilation system configuration

3.2.1 The ensemble Kalman filter

The ensemble Kalman filter (EnKF) method for DA has the advantage of flow-

dependent covariances compared to the static covariances assumed by variational

DA schemes such as 3DVar. This produces more accurate spatial and cross-variable

correlations between the state variables and observations (Fig. 3.3). The EnKF

used in this study is based on the ensemble square root filter (EnSRF) detailed

in Whitaker and Hamill (2002); it updates a prior estimate of the atmospheric

state xb, valid at some time with the information given in the observations yo,

to arrive at an analysis of the atmosphere xa as in (3.1). Bold symbols indicate

vectors, while overbars denote the ensemble mean, and the deviation from the

mean is denoted by a prime symbol. In order to update the ensemble mean, a

Kalman gain matrix K is calculated (3.3) to give an appropriate weight to the

observations, which have error covariance R, and the background, which has error
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covariance P b. In order to map the background into observation space, a forward

operator H is required. When using an EnSRF, each observation is assimilated

serially and a modified Kalman gain K̃ is used to update ensemble deviations from

the ensemble mean (3.2 and 3.4).

xa = xb + K(yo −Hxb) (3.1)

x′a = x′b − K̃Hx′b (3.2)

K = P bHT (HP bHT + R)−1 (3.3)

K̃ = αK (3.4)

where

α = (1 +
√

R/HP bHT + R)−1 (3.5)

The quantities P bHT and HP bHT can be estimated using the ensembles following

Whitaker and Hamill (2002).

The general theory and equations behind the EnKF can be further explored

in Whitaker et al. (2008) and a general review of the filter for atmospheric DA

purposes is given in Houtekamer and Zhang (2016). The Gridpoint Statistical

Interpolation (GSI) program is used for the calculations of the forward operators

(H in 3.1-3.5) for the update step of the DA equations (Kleist et al. 2009). A GSI-

based hybrid EnKF-Var system is currently in use in the NCEP operational centers

(Hamill et al. 2011b; Wang et al. 2013; Wang and Lei 2014). The GSI-based EnKF

used in this study was extended to be able to directly assimilate radar observations

(reflectivity and radial velocity; Johnson et al. 2015). Johnson et al. (2015) also

compared 3DVar to a GSI-based EnKF data assimilation system over 10 diverse

cases of mid-latitude convective-scale precipitation forecasts and found that the

GSI-based EnKF forecasts are more skillful than 3DVar both with and without

storm-scale radar assimilation. This is attributed to a more accurate analysis of

both the mesoscale and storm-scale environments. For the outer domain mesoscale
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A) B) C)

Figure 3.3: Illustration of the potential of an EnKF for making meteorologically

reasonable analysis increments from Hamill et al. (2011a). (a) Mean background

forecast of 850 hPa winds. Assuming an observation 10 m s-1 greater than the

background is available at the black dot. (b) Wind analysis increment from the

assimilation of the single observation when using an EnKF, and (c) Wind

analysis increment when using an average of the ensemble covariance over all

locations around the hurricane, a surrogate for the increment that may be

expected from a 3DVar system.

30



assimilation, the state variables updated by the EnKF are as follows: meridional

and zonal wind, potential temperature, water vapor mixing ratio, geopotential

height, and column perturbation dry air mass (a proxy for pressure). For the inner

domain storm-scale assimilation, the above state variables are updated in addition

to the mixing ratios of rain, snow, and graupel.

3.2.2 Observational dataset

The data utilized in this study include conventional and radar observations.

Conventional observational data will hereby refer to synoptic and mesoscale data

obtained from the Climate Forecast System Reanalysis project at the NOAA Op-

erational Model Archive and Distribution System (NOMADS); they include raw-

insondes, surface METAR and mesonets, Aircraft Communication Addressing and

Reporting System (ACARS), NOAA wind profilers, and ship and buoy observa-

tions. Earlier studies have shown large improvements when also assimilating radar

observations using an EnKF (e.g. Zhang et al. 2009; Yussouf et al. 2013; Thomp-

son 2014; Marquis et al. 2014; Johnson et al. 2015; Snook et al. 2015). A major

difference between this and other studies is that previous work mainly focused on

the impact of radar DA in spinning up pre-existing convection, not specifically

in evaluating the use of radar observations for forecasting the initiation of new

convection. The radar observations (radar reflectivity factor and radial velocity)

are NEXRAD level 2 data obtained from the National Centers for Environmental

Information (NCEI). The exact WSR-88D radar locations that are assimilated in

this study can be seen as the circled areas in Fig. 3.1.

Before being assimilated, all radar data is quality-controlled and preprocessed

through the Warning Decision Support System – Integrated Information (WDSS-

II; Lakshmanan et al. 2007) software package. The w2qcnn utility is used to

remove non-meteorological echoes such as anomalous propagation and biological
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echoes. We found that also setting any reflectivity observations less than 5 dBZ

to -35 dBZ within GSI (to be consistent with the minimum reflectivity allowed

in WRF) also helped with reducing spurious convection during the assimilation

cycles. Velocity data are dealiased using a two-dimensional dealiasing algorithm

described in Jing and Wiener (1993) and then thresholded based on the reflectivity

data; any velocity data where the corresponding reflectivity observation is less than

5 dBZ is omitted. Additionally, velocity observations are rejected if the difference

from the background value is greater than 30 m s-1, though this likely only occurs

in cases of extreme aliasing missed during preprocessing. Reflectivity observations

are not rejected based on an observation-background difference, as large differences

could result from areas of spurious convection in the background or early cycles

in which storms are observed that are not yet in the background. In these cases,

a large observation-background difference is needed to improve the analysis. The

observation error of radar reflectivity and radial velocity observations are set to 5

dBZ and 2 m s-1, respectively, following Johnson et al. (2015).

3.2.3 Error treatment

Additional techniques are employed in this study to bypass common DA prob-

lems. To circumvent the problem of assimilating observations at a different time

than the analysis, first guess at appropriate time (FGAT) is applied to the cycles

on the outer domain by outputting background fields at 30 minute intervals for 1.5

h before and after the analysis time. Background fields are linearly interpolated

in time for comparison to observations at their time. Additionally, asynchronous

assimilation (Sakov et al. 2010) is employed on the outer domain, in which the

ensemble covariance matrix is calculated between observation priors valid at in-

dividual observation times, and background priors in model space valid at the

analysis time.
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Covariance localization following a Gaspari and Cohn (1999) function is utilized

to treat the problem of sampling errors in the ensemble covariance (Fig. 3.4);

observations are only allowed to update the model state variable if they fall within

a certain cutoff radius in both the horizontal and vertical. Sampling errors tend to

be largest when the actual correlation is small, such as at large distances (Sobash

and Stensrud 2013). A unique cutoff radius, which is vertically stretched, is set for

each observation type (conventional or radar) in both the horizontal and vertical

following Johnson et al. (2015). For the conventional observations assimilated on

the outer domain, the horizontal localization cutoff radius is set to 700 km and

increases by a factor of 1.5 at the model top. The vertical localization is set to 0.275

scale height units (natural log of pressure), increasing to 0.55 at the model top for

temperature and moisture, and 0.55 increasing to 1.1 for wind. On the inner-

domain, constant correlation length scales of 20 km in the horizontal and 1.1 scale

height units are used for all radar observations (radial velocity and reflectivity) in

the vertical. For conventional observations assimilated on the inner domain, only

the constant correlation length scale in the horizontal is increased to 200 km.

To treat errors associated with the misrepresentation of model errors, such

as those associated with physical parameterizations, both a constant (multiplica-

tive; Whitaker and Hamill 2012), as well as a relaxation to prior spread (RTPS;

Whitaker and Hamill 2012) inflation technique are applied to the ensemble spread.

A constant inflation of 15% is applied every 3 hour cycle to the background spread

on the outer domain; an equivalent ∼0.4% is applied every 5 min cycle on the inner

domain. The inflation parameter smoothly tapers to ∼3% at the 50 hPa model

top to avoid excessive spread near the model top, similar to Zhu et al. (2013).

The RTPS (also called adaptive inflation) technique inflates the posterior ensem-

ble spread to a certain percentage (95% in our case) of the prior ensemble spread

to account for excessive spread reduction during the assimilation process. Lastly,
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Figure 3.4: Illustration of covariance localization from Hamill (2006). (a)

Correlations of sea-level pressure directly estimated from a 25 member ensemble

with pressure at a point in the western Pacific (fill). Solid lines denote ensemble

mean background sea-level pressure contoured every 8 hPa. (b) As in (a) but

using a 200-member ensemble. (c) Covariance localization correlation function.

(d) Correlation estimate from 25-member ensemble after application of

covariance localization. Note how even with 175 less ensemble members, (d) is

very similar to (b) due to the use of the covariance localization function.
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following Dowell and Wicker (2009) and Yussouf et al. (2013), additional noise is

added to the inner domain fields of temperature, dew point temperature, and the

horizontal winds as a final step before integrating WRF forward. Errors based

on standard deviations of 0.50 K and 0.50 m s-1 are added to each field where

the observed reflectivity is greater than 25 dBZ. Additive noise helps to main-

tain ensemble spread during DA and quickly introduce observed storms into the

analysis. Note that the exact values of localization and inflation parameters are

often case- and application-dependent. These values were chosen following John-

son et al. (2015), though additional work determining optimal values for nocturnal

convection is likely needed.

3.3 Experimental design

The simulations described in this study are “multi-scale” in that they involve

determining the impact of assimilating two different observations types that sample

unique scales and features. For this purpose, three experiments are designed (as

summarized in Table 3.2). Conventional data are assimilated for all experiments

on the outer domain at 3 hour intervals beginning at 0000 UTC on 24 June until

0000 UTC on 25 June when the inner domain is initialized. For the inner domain,

the different observation types are assimilated at different cycling intervals. Peña

and Kalnay (2004) explain that cycling frequency should be consistent with the

mode of error growth consistent with that observation type. In the convDA ex-

periment, only conventional assimilation is performed on the inner domain for 3

cycles of 30 minute intervals (to 0130 UTC on 25 June) with the goal of improving

the mesoscale and synoptic environments to be more supportive of new developing

convection. This can be done by improving upper-level features as well as thermo-

dynamic support and cold pool structures. In the radarDA experiment, only radar

data is assimilated on the inner domain for 18 cycles of 5 minute intervals (also
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Figure 3.5: Flowchart for the allDA experiment. The green arrows indicate

analysis times during which conventional observations are assimilated, while the

orange lines indicate analysis times during which radar observations are

assimilated. The top line is for the outer, 12 km domain while the bottom line is

for the inner, 4 km domain.

to 0130 UTC on 25 June) with the goal of improving the structure of the previ-

ous convection and any outflow boundaries in southern Kansas. Lastly, the allDA

experiment assimilates both conventional and radar observations on the inner do-

main with the same cycling patterns described above. Since all state variables are

able to be updated by all observations in the EnKF through cross-variable corre-

lations, this experiment allows conventional observations to update radar-related

variables (such as hydrometeor contents) and vice-versa. A flowchart for the allDA

experiment is shown in (Fig. 3.5).
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Experiment Assimilation Cycles

convDA Conventional observations assimilated for 3

cycles (one every 30 min)

radarDA Radar observations assimilated for 18 cycles

(one every 5 min)

allDA Both conventional (3 cycles; one every 30

min) and radar (18 cycles; one every 5 min)

observations assimilated

Table 3.2: Summary of observation assimilation experiments on the inner domain.
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Chapter 4

Observation impact analysis

4.1 Data assimilation cycling results

We first examine the results of the data assimilation cycling experiments (con-

vDA, radarDA, and allDA) to determine what impact each observation type had

on the final EnKF analyses ending at 0130 UTC on 25 June. Since the true state

of the atmosphere is not known and instead approximated by the DA process, the

quality of the update cycles is first evaluated based on the guesses’ (background or

analysis) fit to independent observations. Two quantities, including the root mean

square innovation (RMSI) and total ensemble spread (TES), are calculated within

the observation space. For a given innovation of:

d = yo −H(xf ) (4.1)

the RMSI is calculated as:

RMSI =
√
〈d2〉 (4.2)

in which yo is the observation vector, and H(xf) is the forecast guess vector

(either the background or analysis) in observation space. Brackets indicate an

average over all observations, while an overbar represents an ensemble mean. TES
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(Dowell and Wicker 2009) is an estimate of the ensemble spread combined with

the observation error, σ2
o :

TES =

√√√√σ2
o + 〈 1

N − 1

N∑
n=1

[H(xf
n)−H(xf )]2〉 (4.3)

A perfectly consistent ensemble, in which the total ensemble spread provides a

perfect estimate of the actual error of the ensemble, would produce a plot of RMSI

that overlaps with the TES. Three common verification metrics are calculated in

observation space based on the first guess and analysis fields (Figs. 4.1, 4.2). The

first is the “sawtooth” plot which compares an alternating time-series of back-

ground and analysis RMSI to the TES (Wheatley et al. 2014); the second is a

profile of RMSI and TES; and lastly a profile of the background and analysis bias

given simply as 〈d〉.

The outer domain, in addition to providing the initial conditions for the inner-

domain, storm-scale assimilation, also interacts with features on the inner domain

through the use of two-way nesting. Thus we first evaluate the DA cycles during the

24 h of conventional assimilation on the outer domain in Fig. 4.1. As is expected,

each assimilation update cycle produces a reduction in RMSI: the improvements

are largest for temperature and wind, and smallest for the water vapor mixing

ratio. The ensemble spread provides a good estimate of the model error for both

temperature and wind speed, however mixing ratio is overdispersive throughout

all of the lower troposphere (where more water vapor is located) and during all

DA cycles (Fig. 4.1d,e). There is also a slight cold bias at the surface that is oddly

pulled to be even slightly colder (to ∼ -1 K) by the analysis update (Fig. 4.1c). And

while the mixing ratio is nearly unbiased, the same miscorrection occurs for the

mesoscale analysis of wind speed (Fig. 4.1i). However these errors are minor and

the final domain-averaged RMSIs of 1.4 K, 1.3 g kg-1, and 3.1 m s-1 are reasonable,

thus we conclude that the mesoscale analysis provides a good initial background for

the storm-scale domain. Since the inner domain experiments are each initialized
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from the same outer domain analysis, the above results do not differ between the

three experiments.

4.1.1 Inner domain conventional observation verification

To demonstrate the large improvement in the analyzed storm-scale environ-

ment via the addition of conventional observations, the sawtooth plots for the

inner domain variables of temperature, water vapor mixing ratio, and wind speed

are presented in Fig. 4.2. Note that these objective statistics are calculated over

the entire inner domain, while the 2D plots over the convective area of interest

(Figs. 4.9 onward) are zoomed in to include only Kansas. Profiles of bias and

RMSI/TES are not included due to the small number of observations in each ver-

tical bin for only three cycles. Omitting these three cycles of conventional DA, the

temperature final RMSI almost doubles that of the experiments with the data in-

cluded (3.25 vs. 1.8 K for the final cycle). The differences between other variables

are less extreme, but the addition of conventional observations still provides a pos-

itive benefit. Adding in radar data, in addition to the conventional data (allDA)

actually provides a small degradation in the error statistics for temperature (for

which TES is also lower in allDA than convDA) and mixing ratio. This is possibly

due to allDA overly suppressing echoes that in turn weaken the size and magnitude

of true cold pools across the domain (Figs. 4.4a, 4.14).

Since most observations between 00 and 12 UTC in the conventional dataset

are surface observations, the majority of the positive impact from conventional

observations is found closer to the ground. The near-surface temperature biases at

observation locations for the final EnKF update cycle (Fig. 4.3) reveal that the cold

bias present in the outer domain remains throughout most of the inner domain.

This error appears to be largest in the eastern half of the domain near eastern

Kansas with temperature biases approaching -5 K near Kansas City, MO. This cold
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I)H)G)

F)E)D)

Figure 4.1: Verification statistics from the outer domain variables of temperature

(K; a-c), water vapor mixing ratio (g kg-1; d-f), and wind speed (m s-1; g-i)

including: (a,d,g) alternating time series of background and analysis RMSI

(sawtooth; solid line) and TES (dotted line); (b,e,h) profiles of background RMSI

(solid line) and TES (dotted line); and (c,f,i) background (dashed line) and

analysis (solid line) bias.
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C)B)A)

Figure 4.2: As in Fig. 4.1(a,g,d) but for the inner domain variables of

temperature (K), water vapor mixing ratio (g kg-1), and wind speed (m s-1) for

convDA (green); radarDA (blue); and allDA (red).

error is drastically improved by assimilating conventional observations, though the

problem still exists (Fig. 4.3b). Cold biases across the state of Kansas are warmed

to∼ -1 to -2 K. However, the cold pool produced by previous convection in southern

Kansas is too warm in the final analysis; a warm bias of ∼ 2 - 3 K exists that is not

improved by conventional observations. Improving moisture biases is an another

important advantage of conventional data assimilation specifically for CI purposes,

as even slight thermodynamic differences in a mesoscale environment can produce

precipitation at completely different times and locations (Martin and Xue 2006).

Similar improvements can be seen in the water vapor field near the surface: dry

biases in northeastern and southwestern Kansas, as well as southern Nebraska are

moistened with the addition of conventional data (Fig. 4.3c,d).

Though we have no rawinsonde observations at the end of the cycling period

to verify against, analysis soundings for the three experiments show differences

in both the lower and mid-tropospheric environments across Kansas (Fig. 4.4a

in southern Kansas and 4.4b in northern Kansas near the area of future CI). As

will be discussed in the next sections, the convDA experiment produces overly
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Temp. Analysis Bias (K) for radarDA EnKF Mean at 0130 UTC, All Obs. Below 800 mb

-6.00 -4.50 -3.00 -1.50 0.00 1.50 3.00 4.50 6.00

Temp. Analysis Bias (K) for allDA EnKF Mean at 0130 UTC, All Obs. Below 800 mb

-6.00 -4.50 -3.00 -1.50 0.00 1.50 3.00 4.50 6.00

Qvapor Analysis Bias (g/kg) for radarDA EnKF Mean at 0130 UTC, All Obs. Below 800 mb

-5.00 -4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00 5.00

Qvapor Analysis Bias (g/kg) for allDA EnKF Mean at 0130 UTC, All Obs. Below 800 mb

-5.00 -4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00 5.00

A) radarDA B) allDA

D) allDAC) radarDA

Figure 4.3: Final EnKF mean (a,b) temperature biases (K); and (c,d) water

vapor mixing ratio biases (g kg-1) at each observation location below 800 hPa for

(a,c) radarDA; and (b,d) allDA.
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strong storms in southern Kansas, leading to expansive cold pools throughout the

area (as seen by the extreme low-level cooling in Fig. 4.4b). With the addition

of radar data assimilation to suppress the spurious echoes and remove the dia-

batic heat source, the allDA and radarDA experiments produce cooler upper-level

temperatures across northern and southern Kansas. Despite the low-level cool-

ing and warmer upper-level temperatures, the experiments with conventional DA

(allDA and convDA) produce steeper low-level lapse rates and enhanced low-level

moisture, leading to stronger instability located at the surface in southern Kansas

(Fig. 4.5).

Lastly, as the nocturnal LLJ is often an important mechanism in producing

nocturnal convection, we examine the differences in the analyzed 850 hPa winds

(∼700 m AGL in central Kansas) produced by the three experiments (Fig. 4.6).

Though the jet has yet to fully develop by 0130 UTC, all three experiments analyze

similar low-level wind speeds, with maximum values reaching between 40-50 kts.

The addition of surface wind observations in the conventional DA experiments

(convDA, allDA) weakens surface winds in southwestern and northern Kansas and

thus confines the maximum speeds to near the region of new CI. More localized

convergence is produced at the termini of these wind maxima with conventional

DA. With just radar DA, the jet is more widespread across the entire western half

of Kansas (but east of the dryline) and strong convergence is only located near the

interactions with the northern surface boundary and the dryline.

4.1.2 Inner domain radar observation verification

Radar reflectivity verification (Figs. 4.7a-c) is only performed on the inner

domain in locations where precipitation (as defined by reflectivity > 10 dBZ) is

present in both the guess and the observation. Since the default value for no-

precipitation is -35 dBZ in WRF, any location in which precipitation was observed
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Figure 4.4: Final EnKF mean analysis (0130 UTC) soundings from (a) southern

Kansas and (b) northwestern Kansas for: convDA (green); radarDA (blue); and

allDA (red).
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A) radarDA

B) allDA

Figure 4.5: Final EnKF mean analysis (0130) of the most unstable convective

available potential energy (MUCAPE; J kg-1; filled) and the lifted parcel level

(LPL; m; red contours) for (a) radarDA; and (b) allDA. The LPL indicates the

height AGL that the most unstable parcel originates.
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B) radarDA

A) convDA

C) allDA

Figure 4.6: Final EnKF mean analysis (0130) of the 850 hPa wind speeds and

barbs for (a) convDA; (b) radarDA; and (c) allDA.
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but not located in the background/analysis would produce very large RMSIs and

negative biases. Radar reflectivity RMSI and TES values are similar to previous

studies (e.g. Dowell et al. 2011; Jones et al. 2015; Yussouf et al. 2015) and demon-

strate that each cycle improves the overall fit of the analysis of the observed storms.

Errors are highest near the surface, possibly due to a smaller number of observa-

tions at that level. Interestingly, with the addition of conventional DA (allDA) a

higher RMSI is produced in the later cycles and closer to the surface. However

the allDA ensemble does produce a larger TES to make up for this. Note that the

increase in RMSI during the 16th cycle (at 0120 UTC) arises due to the KDDC

radar being offline until that point and thus many more observations now being in-

cluded in the assimilation and verification processes. There is little-to-no difference

between the allDA and radarDA experiments in the errors and biases produced for

radial wind (Figs. 4.7d-f); both experiments are stable and have reasonable RMSI

and bias profiles.

Since the error metrics in Fig. 4.7 are only calculated at locations where precip-

itation is both observed and located in the guess (background or analysis), another

method is needed to demonstrate that the radar data assimilation is providing a

good fit to the observations. Fig. 4.8a shows the percentage of total precipitation

observations in which precipitation was also located in the guess. Fig. 4.8b shows

the opposite: the percentage of total clear-air observations in which clear-air was

also located in the guess. Both of these metrics should increase with each update

cycle as the model and observation state grow closer to each other, and a value

of 100% would indicate complete agreement in terms of precipitation or clear-air

locations (but not for the magnitude of those echoes). Though only 10% of ob-

served precipitation locations have corresponding reflectivity echoes in the first

background cycle, this value is increased to 70% by 40 minutes into the cycling
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A) B) C)

D) E) F)

Figure 4.7: As in Fig. 4.2 but for the inner domain variables of radar reflectivity

factor (dBZ; a-c) and radial wind (m s-1; d-f). The blue line represents the

radarDA experiment and the red line represents the allDA experiment. All

statistics are only calculated at observation locations where both the guess and

observation have reflectivity > 10 dBZ.
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A) B)

Figure 4.8: Alternating time series of background and analysis (a) percentage of

precipitation observations where precipitation was also located in the guess; and

(b) percentage of clear-air observations where clear-air was also located in the

guess. The green lines indicate convDA; the blue lines indicate radarDA; and the

red lines indicate allDA.

period (Fig. 4.8a), thus demonstrating that the reflectivity assimilation is prop-

erly adding correct precipitation locations into the model state. This is a large

improvement to the experiment without any radar assimilation, in which only 15%

of observation locations with precipitation are in agreement. Additionally, the

radar assimilation is correctly working to remove spurious areas of precipitation

by improving the agreement in clear-air locations between the model state and

the observations (Fig. 4.8b). The small increase in spurious precipitation at 80

minutes into the cycling period is a result of the KDDC radar coming back online

and thus a large number of new observations being added to the dataset. However,

many of these spurious areas are removed within the last two cycles.
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As discussed in section 3.2.2, if the observation is ever less than a noise value of

5 dBZ, it is reduced to the no-precipitation level in WRF of -35 dBZ. This has the

impact of greatly suppressing the occurrence of any spurious echoes when assim-

ilating radar observations. Without any radar data assimilation, many spurious

storms form along the western border between Kansas and Nebraska that persist

until the end of the cycling period (Fig. 4.9a). Although most members highlight

this northern area of convection, as well as an additional area in southwestern

Kansas, a lot of spread is present in the composite reflectivity field, with all mem-

bers showing different shapes and locations of convective activity. By assimilating

radar data (Fig. 4.9b), the spurious echoes in northern Kansas are totally removed

in the final analyses. The core of the southern storm is well analyzed and there is

strong ensemble agreement on its location. Overall the analysis looks very similar

to the observations in Fig. 4.9d. More spread is present southwestern Kansas, po-

tentially due to the KDDC radar only being online for 20 minutes at that point.

The addition of conventional data (allDA; Fig. 4.9c and red line in Fig. 4.8) better

suppresses spurious convection towards the end of the cycling period, as indicated

by a smaller percentage than radarDA of non-precipitation observations in which

precipitation is located in the guess. However, this addition might be slightly over-

suppressing some observations compared to the radarDA experiments, as seen by

the slight gap in Fig. 4.8b near the end of the cycling period.

4.2 Ensemble forecasts

4.2.1 Convection initiation forecast differences

The previous sections have demonstrated the thermodynamic and kinematic

advantages gained in the storm-scale analysis from assimilating conventional ob-

servations. Additionally, radar DA provides a large improvement through the
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Contours of Composite Refl. > 30 dBZ - Valid: 20130625/0130Z Contours of Composite Refl. > 30 dBZ - Valid: 20130625/0130Z

Contours of Composite Refl. > 30 dBZ - Valid: 20130625/0130Z

B) radarDAA) convDA

C) allDA D) obs.

Figure 4.9: Spaghetti contours for each ensemble member of composite radar

reflectivity factor greater than 30 dBZ for the (a) convDA; (b) radarDA; and (c)

allDA EnKF analyses (at 0130 UTC). Each member plotted is a different color.

Observed 1 km AGL reflectivity at the same time is given in (d).
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suppression of spurious radar echoes and by better resolving pre-existing convec-

tion, especially in southern Kansas. We now determine the downstream impact

these observations had by examining ensemble forecast differences between these

two experiments. Spaghetti contours of reflectivity greater than 40 dBZ are pre-

sented in Figs. 4.11 – 4.13 and can be compared to observations at the same time

in Fig. 4.10.

As mentioned in the previous section, convDA produces a largely spurious and

very strong area of convection along the Kansas and Nebraska border. The south-

ern Kansas convection produced is also overly strong, before and after the final

EnKF analysis. These two regions of convection progress eastward throughout the

free forecast, and almost no new storms develop in the first 1.5 h (Fig. 4.11a,b).

The observed CI of interest that we are attempting to capture develops between

0230 – 0300 UTC, though these are not seen at that time in the convDA sim-

ulations. By 0400 UTC, a few members begin to show the first hints of echoes

developing in northwestern Kansas (Fig. 4.11c), which form ∼ 1 h late and also

possess a western location bias. However, they possess the same “pristine” quality

and orientation as the observed storms, thus we consider this a successful forecast

of the nocturnal CI. By 0500 UTC (Fig. 4.11d), 16 of the 20 ensemble members

have captured the new CI and a few are actually producing the linear growth that

the observed storms possess. Even though the convDA experiment produces a

large, overly strong mass of convection just north of the area of interest, it is still

able to successfully forecast the new CI.

Though the analysis for the experiments with radar data assimilated (radarDA

and allDA) were able to better suppress the spurious echoes in southern Kansas

during the DA period, spurious storms from southwestern to northeastern Kansas

quickly redevelop in the free forecast periods of those simulations (0200 UTC;

Figs. 4.12 and 4.13a,b). From this, we infer that, even though the radar data
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D)C)

A) B)

Figure 4.10: Observed 1-km AGL radar reflectivity factor from a) 0200; b) 0300;

c) 0400; and d) 0500 UTC.
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Contours of Composite Refl. > 40 dbz - Valid: 20130625/0200Z Contours of Composite Refl. > 40 dbz - Valid: 20130625/0300Z

Contours of Composite Refl. > 40 dbz - Valid: 20130625/0400Z

A) B)

C)
Contours of Composite Refl. > 40 dbz - Valid: 20130625/0500Z

D)

Figure 4.11: Spaghetti contours for each ensemble member of composite radar

reflectivity factor greater than 40 dBZ for the convDA experiment, valid at a)

0200; b) 0300; c) 0400; and d) 0500 UTC.

55



are able to remove actual echoes from the area, the mesoscale thermodynamic and

kinematic environments are strongly supportive of convective development. Storms

also begin to initiate along the bulging dryline in northwestern Kansas within 30

min of the forecast period. Though these widespread spurious regions of convection

quickly pop back up after the DA period, they fall apart by 0300 UTC (∼ 1.5 h

of free forecasts; Figs. 4.12 and 4.13b). Three areas of convection are emphasized

by the radarDA and allDA experiments at this time: one in southern Kansas

and eastern-central Kansas (both of these are observed), and another spurious

region along the Kansas and Nebraska border (not observed, but much weaker

than those produced by convDA). Through 0300 UTC, the radarDA and allDA

experiments behave similarly, neither of which produce the new CI at the observed

time. However by 0400 UTC (Figs. 4.12 and 4.13c), the allDA experiment begins

to produce new echoes in a similar spot as the convDA experiment (once again

an hour too late and with a westward bias). Additionally, the eastern area of

convection begins to dissipate in radarDA at this time. This new development

again becomes linear, similar to the observed storms, by 0500 UTC (Figs. 4.12

and 4.13d) in allDA, while radarDA continues to produce no new storms. Three

ensemble members generate new convection around 0600 UTC in radarDA, but it

is difficult to determine whether these are the same storms predicted as the other

experiments due to the temporal lag. The improvements from convDA to allDA

were small in regards to the new convective development. All but one ensemble

member produced the new convection in allDA (three more than convDA). There

is also more agreement (less spread) between the ensemble members as to the

location of the new CI compared to convDA, producing an overall more confident

forecast. However, some allDA members also develop the new convection about

15 minutes later than the corresponding members in convDA.
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D)

Figure 4.12: As in Fig. 4.11 but for the radarDA experiment.
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Contours of Composite Refl. > 40 dbz - Valid: 20130625/0500Z

D)

Figure 4.13: As in Fig. 4.11 but for the allDA experiment.
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4.2.2 Thermodynamic and kinematic forecast differences

Both convDA and the allDA experiments produce the nocturnal CI of interest

in northwestern Kansas, albeit with a temporal lag of ∼ 1 h and a westward bias of

∼ 100 km. While they both predict the new development, allDA produces an over-

all better forecast across the domain due to the continuing convection in eastern

Kansas, as well as more confident forecast of the CI location. The addition of only

three cycles of conventional assimilation appears to have been the key to capturing

these new storms. The root cause of these new storms will be further studied in

chapter 6; however important differences between other forecast components will

be highlighted now. The plots to be shown in this section are 1.5 hour forecasts

valid at 0330 UTC, 30 min before the new convection forms in the convDA and

allDA experiments.

One large difference between the experiments with conventional DA and radarDA

comes from the strength of the storm in southern Kansas. As mentioned in 4.1.1,

the addition of conventional data during the assimilation process produces a more

accurate thermodynamic environment, one that has steeper low-level lapse rates

and is moister in southern Kansas (and thus more unstable). Due to this, the

southern storm is enhanced in those experiments and in turn produces a much

more obvious cold pool (Fig. 4.14). The cold pools produced by convDA and

allDA are assumed to be more realistic, as a surface temperature of 72 °F was

observed underneath the southern convection at 0300 UTC. This cold pool was

found to be ∼ 750 m AGL deep (not shown) in the allDA simulations.

Near the surface at 800 hPa (∼ 1200 m AGL), a band of positive vertical

velocities associated with lifting ahead of the cold pool is seen moving outward from

the convection in southwestern Kansas in convDA and allDA, but not radarDA

(Fig. 4.15a,c; only radarDA and allDA shown). A sounding from northern Kansas

(Fig. 4.16) reveals a nearly dry-adiabatic thermodynamic profile from ∼ 800 – 500
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B) radarDA

A) convDA

C) allDA

Figure 4.14: Two hour surface temperature (°F) ensemble mean forecasts valid at

0330 UTC from the: a) convDA; b) radarDA; and c) allDA experiments.
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C) allDA

B) radarDA

D) allDA

Figure 4.15: Two hour forecasts for member 3 valid at 0330 UTC of a,c) 800 hPa

vertical velocity; and b,d) 600 hPa vertical velocity. (a,b) are from radarDA,

while (c,d) are from allDA. Also overlaid on all plots are the contours of 30 dBZ

composite reflectivity.

hPa in all three experiments. The cold pool that was produced in convDA and

allDA thus promotes deep lifting all the way up to the mid-troposphere (Fig. 4.15d).

For these figures, only member 3 (which was determined to be the most consistent

with observations of reflectivity) from each experiment is shown, as the ensemble

mean smooths out slight location differences. Deep lifting is seen with this band

all the way up to 600 hPa in allDA, while no similar features are seen with just

radar data assimilated. Interestingly, multiple bands of positive vertical velocity

are seen in the allDA experiment at 600 hPa that do not appear at 800 hPa; these

will be discussed in further detail in chapter 6.
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Figure 4.16: Two hour forecast ensemble mean soundings valid at 0330 UTC

from near the area CI for: convDA (green); radarDA (blue); and allDA (red).
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As mentioned in section 4.1.1, the radarDA experiment produces a LLJ with

a more widespread wind maxima across western Kansas, compared to the local-

ized maxima produced in allDA and convDA. This continued into the free forecast

period (Fig. 4.17). At 0330 UTC, the localized convergence produced by convDA

and allDA becomes much more apparent, especially in northwestern Kansas where

the new CI soon develops. Compared to convDA, the allDA experiment produces

a few more maxima across northern Kansas, and thus more localized areas of

convergence are present. The low-level wind profiles lead to a different low-level

thermodynamic profile between the three experiments (Fig. 4.16). Though con-

vDA was found to produce warmer temperatures in the mid- and upper-levels due

to diabatic heating effects from large amounts of precipitation, the upper-level pro-

files became more uniform between the three experiments throughout the forecast

period. As we will show in chapter 6, the convection that formed in northwestern

Kansas initialized above the 800 hPa warm nose and was thus this low-level profile

difference was unlikely important for CI purposes.

4.3 Summary of observation impacts

The addition of each observation types provided a positive impact on both

the analysis and the consecutive free forecasts. The convDA experiment without

any radar data was able to capture the CI with similar timing and orientation to

the allDA run. The addition of conventional data during the DA process greatly

improved the storm-scale environment by reducing the errors in temperature, wind,

and water vapor mixing ratio (mostly at the surface). The conventional data was

also able to enhance the environment in southern Kansas (by a greater magnitude

than the radar observations) for the pre-existing storms to strengthen during the

earlier forecast, thus producing a stronger cold pool and deep tropospheric lift.

Additionally, surface wind observations improved the LLJ analysis and forecast
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B) radarDA

A) convDA

C) allDA

Figure 4.17: As in Fig. 4.6 but for the 2 hour ensemble mean forecasts of 850 hPa

wind speeds (valid at 0330 UTC).
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by producing more localized areas of convergence across western Kansas. We will

soon show that these features improved by the conventional DA were extremely

important for the CI process.

When comparing convDA to allDA, there were slight improvements in the

location of the new development, as well as in the ensemble confidence of that

location. However the timing of CI was later in this experiment as well. Perhaps

the greatest impact provided by the addition of radar observations in the allDA

experiment was the ability to better suppress strongly spurious echoes that were

produced in convDA, and also to introduce storms into the model that would

otherwise not be there. Though the radarDA experiment was not able to produce

the new convection, the composite reflectivity analysis field looks very similar to the

observations in Fig. 4.9d. Because of numerous spurious echoes in the early hours

of a model simulation, operational meteorologists might not trust the downstream

forecast of that model. Thus improving the initial fields of reflectivity in allDA

provides a better end-product for the forecasters. Some spurious storms do quickly

form again in the free forecast period, yet they are much weaker and less widespread

than simulations without any radarDA at all. This reduction of spurious echoes

also reduced the diabatic warming in the upper-levels of the troposphere which

result in a more unstable environment for the new storms to develop within.
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Chapter 5

Sensitivity to physical parameterizations

The previous chapter focused on the DA and ensemble forecast results from

three different experiments to show the impact of different observation types on

the forecast of nocturnal CI. We now shift our attention from forecast sensitivity to

DA configuration, to sensitivities to different physical parameterization schemes.

To study the impact of both the PBL and microphysics schemes on nocturnal CI

for the 25 June event, the ensemble forecast simulations are run with five different

schemes of each type. As we have previously determined that the allDA experiment

produces the best analysis and forecast, we use the final EnKF analysis from that

experiment to initialize these forecasts. Apart from differences in the PBL and

microphysics schemes, all WRF configuration settings follow those discussed in

chapter 2.

5.1 Planetary boundary layer parameterizations

Since the representation of turbulent mixing in NWP models is mostly a sub-

grid process, PBL parameterization schemes are needed to control the transport

and mixing of mass, moisture, and energy fluxes throughout the troposphere. The

PBL scheme’s responsibilities include the local mixing of sensible and latent heat

fluxes (output from the land surface model) between the surface layer and the
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PBL, local and nonlocal mixing (for some schemes) throughout the PBL, and also

entrainment into the free atmosphere and vertical diffusion. Each PBL scheme re-

quires a closure scheme to estimate the turbulent fluxes from mean quantities (Holt

and Raman 1988): either a local closure scheme in which only adjacent vertical

levels are considered, or a nonlocal scheme which consider a deeper layer. Thus the

PBL scheme is often one of the main drivers of the low-level thermodynamic and

kinematic structure of the environment; both of which are main factors in fore-

casting convection in a numerical simulation. For example, if the PBL is too warm

or too dry, the LFC for surface-based convection might be unobtainable. Also, if

the PBL scheme overmixes a jet maxima downwards, spurious convergence might

be located near the ground. As nocturnal convection is often elevated, instability

sources and updrafts tend to be disconnected from the surface. Thus unless the

PBL scheme is performing poorly, such as when large errors in the solar irradiance

inhibit the growth of ground-based nocturnal inversions (Zamora et al. 2003), the

connection between elevated convection and the PBL scheme is less clear.

In this section, we examine nocturnal CI forecast sensitivities to five different

PBL schemes following Coniglio et al. (2013). Three of the schemes examined are

local schemes: MYNN following the control allDA experiment, quasi-normal scale

elimination (QNSE; Sukoriansky et al. 2005), and Mellow-Yamada-Janjic (MYJ;

Janjic 1994, 2002). The last two are nonlocal schemes: the asymmetric cloud model

version 2 (ACM2; Pleim 2007), and Yonei University (YSU; Hong and Pan 1996;

Noh et al. 2003; Hong and Kim 2008). Coniglio et al. (2013) compared rawinsonde

observations upstream of deep convection to convection-allowing WRF forecasts.

As the 1200 UTC morning radiosonde launch is the closest observation time to

average nocturnal convection times, this is the closest previous studies have come

to examining the different environments produced by PBL schemes specifically for

elevated storms. They found that morning PBLs in all schemes (for both local
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and nonlocal closure) are too cool and dry, despite having little bias in the PBL

depth. The only outlier was the YSU scheme, which predicted significantly higher

PBL heights during the early morning. This result, combined with the fact that

the nonlocal mixing terms in ACM2 are shut off for nocturnal, stable conditions,

implies that local mixing under more stable regimes produces more accurate noc-

turnal PBL depths. Past studies have supported this hypothesis (Shin and Hong

2011; Hu et al. 2010). The morning biases in temperature and moisture led to

an under-prediction in mixed-layer CAPE and an over-prediction of mixed-layer

CIN during the morning for all schemes, thus inhibiting early morning convection.

In the evening, they found that local schemes produce PBLs that are often too

shallow and too moist compared to the nonlocal schemes (though the local scheme

MYNN was found to be nearly unbiased in PBL depth, moisture, and potential

temperature). Hu et al. (2010) found that the vertical mixing at night is weaker

in MYJ and ACM2 compared to YSU due to recent enhancements in its vertical

mixing scheme, resulting in stronger LLJs, higher temperatures, and lower mois-

ture. Few studies have specifically examined the role of PBL schemes in nocturnal

CI. Recently, Johnson and Wang (2016) applied objective verification techniques

to an operational forecast ensemble during the PECAN field experiment to find

that, though the ensemble as a whole was nearly unbiased in forecast CI timing,

certain physics schemes did demonstrate different results. MYNN was shown to

perform the best, while QNSE members showed an early bias and ACM2/MYJ

members showed a late bias. YSU members also showed a slight late bias but with

more spread in the timing of CI.

In this study, we focus specifically on the PBL schemes’ ability to forecast noc-

turnal CI and the important components that are possibly responsible for its oc-

currence. As PBL schemes are important drivers of thermodynamic and kinematic

conditions within the boundary layer itself (lowest ∼ 1 – 2 km of the troposphere),
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we focus on low-level differences between the different forecast experiments. At

the surface (Fig. 5.1), we notice that all PBL schemes produce cold pools with

similar structure, and that there tends to be more similarity in their structure

and magnitude within the local (MYNN, QNSE, MYJ; Fig. 5.1a-c) and nonlocal

(ACM2, YSU; Fig. 5.1d,e) schemes. All PBL schemes appear to produce a cold

pool that is too cold (∼ 67°F), as the lowest temperature observed during this

time was 72 °F. This is opposite of the results from the first cold pool present

during the DA analysis, in which the area was analyzed as too warm. This region

of southwestern Kansas is not observationally dense, so is possible that a lower

temperature occurred but was not observed. The nonlocal schemes do not extend

the cold pool as far to the north, similar to the observations (Fig. 2.7), though they

produce surface temperatures slightly too warm (2 – 3 °F) in regions of western

and northern Kansas.

Soundings from within (Fig. 5.2a) and ahead of (Fig. 5.2b) the cold pool from

the southern Kansas convection are shown. Though there are no observed sound-

ings around this time to verify against, we can note a few points. There once

again is clustering in the vertical profile around the local and nonlocal schemes.

The largest differences appear within the cold pool as the local schemes produce

a weaker stable layer at 850 hPa with maximum temperatures of ∼ 19 – 20 °C,

while the nonlocal schemes are ∼ 2 – 3 °C warmer. This reverses above 500 hPa,

where the nonlocal schemes produce steeper lapse rates. Additionally, the nonlo-

cal schemes are drier throughout most of the lower troposphere within the cold

pool. Ahead of the cold pool where the new convection forms, there is very little

difference between the schemes in the vertical profile (Fig. 5.2a,b). The inversion

layer is now warmer in the local schemes by ∼ 1 °C. These differences have very

little impact on the elevated CAPE in the region; no obvious differences appear

(not shown).
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A) MYNN B) QNSE

C) MYJ D) ACM2

E) YSU

Figure 5.1: Ensemble mean surface temperature forecasts (°F) from 0330 UTC on

25 June for the (a) MYNN; (b) QNSE; (c) MYJ; (d) ACM2; and (e) YSU PBL

sensitivity experiments.
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Figure 5.2: Ensemble mean soundings from (a) within the cold pool; and (b)

ahead of the cold pool for each PBL scheme.

71



Since the PBL scheme determines the vertical mixing of horizontal momentum

within the PBL, it is possible that different schemes could produce different LLJs.

From the sounding within the cold pool (Fig. 5.2a), MYNN appears to produce

a deeper LLJ. The local schemes overall produce stronger wind maxima at 850

hPa (and thus stronger convergence) in southwest Kansas (Fig. 5.3), consistent

with findings from Hu et al. (2010), though the convergence areas are present

in similar areas. As mentioned in the previous chapter, conventional observation

assimilation produced strong lift ahead and behind the cold pools all the way up

to 600 hPa; Fig. 5.4 demonstrates that there was little difference in these vertical

velocity features between the various PBL schemes. Even though the cold pool was

further south in the nonlocal schemes, the strongest lift along the outflow boundary

occurred at similar locations and with similar magnitudes in all schemes.

The end results of these differences, which are comparatively small above the

PBL and outside of the cold pool, are very similar forecasts of nocturnal CI for

the 25 June case (Fig. 5.5). All schemes predict the convective development at

the same time and location, and with similar structure and orientations. One

member in MYJ doesn’t produce the new convection that appears in other schemes,

and ACM2 produces slightly less weak convection in southeastern Kansas. The

convective members in each scheme grow linearly and look similar to other schemes

at later lead times (not shown). The features responsible for triggering the CI of

interest are likely disconnected from the PBL (to be discussed in the next chapter),

leading to weaker sensitivities to the PBL scheme than one would expect from

surface-based convection.
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A) MYNN B) QNSE

C) MYJ D) ACM2

E) YSU

Figure 5.3: As in Fig. 5.1 but for 850 hPa wind speeds (kts).
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A) MYNN B) QNSE

C) MYJ D) ACM2

E) YSU

Figure 5.4: As in Fig. 5.1 but for 600 hPa vertical velocity (m s-1) and only for

member 3. Also plotted is the 30 dBZ composite reflectivity contour.
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A) MYNN B) QNSE

C) MYJ D) ACM2

E) YSU

Figure 5.5: As in Fig. 5.1 but at 0400 UTC and for the spaghetti contours for

each ensemble member of composite reflectivity greater than 30 dBZ.
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5.2 Microphysical parameterizations

Microphysics schemes handle many processes within an NWP model but are

mainly used to control the formation, growth, and fallout of cloud droplets and ice

crystals. They also provide atmospheric heat and moisture tendencies, and sur-

face rainfall quantities (Morrison and Milbrandt 2010). Microphysical processes

driving these quantities include latent heating and cooling, condensation loading,

sedimentation and evaporation, precipitation, coupling with surface processes, ra-

diative transfer, and cloud-aerosol-precipitation interactions amongst others. Since

these interactions occur at a scale much smaller than the common NWP grid size,

microphysical parameterization schemes are needed. Nearly all schemes separate

microphysical processes between liquid and ice phases (which are in turn separated

into different ice species) and can be divided into two separate categories, similar

to the PBL closure schemes. These include: bin schemes, in which the particle size

distributions are discretized into individual bins; and bulk schemes, in which the

size distribution is assumed to follow a functional form (such as a gamma distribu-

tion). The majority of all microphysics schemes used operationally and in WRF

are bulk schemes due to their computational advantage. Additionally, all schemes

can be divided into single- or multi-moment schemes. Though they are more com-

putationally expensive, multi-moment schemes allow certain terms in the gamma

distribution to vary and, in addition to predicting hydrometeor mixing ratios from

the single-moment schemes, are also able to predict number concentration (2nd

moment), and reflectivity (3rd moment).

The Lin scheme was subjectively chosen for the previous simulations and ob-

servation impact studies due to its ability to best produce convection similar to

the observed storms. However, convective structure and precipitation distributions

at the surface are known to be extremely sensitive to the choice of microphysics

scheme (Otkin et al. 2006; Pieri et al. 2015). Thus we evaluate our nocturnal CI
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forecasts using four other microphysics schemes, including the Thompson (semi-

double-moment; Thompson et al. 2008), Morrison (double-moment; Morrison et al.

2005); WRF single-moment 6-class (WSM6; Hong and Lim 2006), and the WRF

double-moment 6-class (WDM6; Lim and Hong 2010) microphysics schemes. These

schemes, and which species they predict, are listed in Table 5.1. Many studies have

examined the capability of various microphysics schemes in WRF to produce differ-

ent cloud and convective features (e.g. Tao and Simpson 1989; Liu et al. 1997; Tao

et al. 2003; Gilmore et al. 2004; Liu and Moncrieff 2007; Hong et al. 2009; Grasso

et al. 2014; Johnson et al. 2015); however, few have examined these schemes specif-

ically in terms of nocturnal convection.

Scheme Moment Predicted Species

Lin Single-

moment

Mixing ratios for cloud, rain, ice, snow, and

graupel

Thompson Partially

double-

moment

Mixing ratios for cloud, rain, ice, snow, and

graupel; number concentrations of ice and

rain

Morrison Double-

moment

Mixing ratios for cloud, rain, ice, snow, and

graupel; number concentrations for rain, ice,

snow, and graupel

WSM6 Single-

moment

Mixing ratios for cloud, rain, ice, snow, and

graupel

WDM6 Double-

moment

Mixing ratios for cloud, rain, ice, snow, and

graupel; number concentrations for rain and

cloud; cloud condensation number

Table 5.1: Microphysics schemes studied in 5.2, as well as their moments and

predicted species.
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As the number concentrations predicted improve various microphysical pro-

cesses, most results (e.g. Min et al. 2015) conclude that double-moment schemes

perform better for diurnal convection cases. The double-moment schemes are also

known to produce more accurate cold pools (Dawson et al. 2010). Li et al. (2015)

examined the sensitivity of WRF microphysics schemes for precipitation and cold

pools produced by shallow marine clouds. They found that, compared to Thomp-

son, the Morrison scheme produces more robust cloud cover and liquid water

path (LWP) due to a slower autoconversion and stronger accretion processes, and

stronger cold pools due to differences in the terminal fall speeds producing higher

evaporation rates. A common trend in microphysics studies indicates that differ-

ent schemes can produce very different structures and magnitudes of cold pools

due to differences in precipitation loading and evaporative cooling rates. Morrison

et al. (2015) performed idealized WRF simulations and found that the differences

in simulated cold pools, in turn, produce different amounts and structures of new

convection along their outflow boundaries. Recently, Johnson and Wang (2016)

examined the impact of microphysics schemes used during both the DA and fore-

cast period for the purpose of nocturnal convection forecasts over a multitude of

cases. They found that that the use of Thompson for DA produced worse results

for forecasts of nocturnal precipitation (not specifically initiation) over WSM6 at

shorter lead times, but that the opposite was true at longer lead times. When

used during the forecast period, Thompson produced the most skillful precipita-

tion forecast at all lead times. Additionally, an ensemble with multiple physics

schemes (PBL, microphysics, and cumulus) using during the forecast period was

subjectively shown to be more skillful at producing nocturnal CI.
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Ensemble mean forecasts of composite reflectivity for the 25 June case are

shown in Fig. 5.6. Thompson and Lin produce the most realistic convective struc-

tures for the southern Kansas storm compared to the observed storms, while pre-

cipitation regions in Morrison and the WRF schemes (WSM6 and WDM6) are

much too expansive. In terms of highest reflectivity values, all schemes except

WDM6 handle the storms well. WDM6 produces an overly strong convective core,

which is also represented by the strongest cold pool at the surface (Fig. 5.6e).

Thompson is known to better resolve stratiform precipitation regions, though it

appears to be under-predicting most of the storms through central Kansas for this

event.

The differences between simulated cold pools are larger for different micro-

physical schemes (Fig. 5.7) than they were for the PBL schemes. Lin and WDM6

simulate the coldest cold pools, which as in the previous section, are likely too

cold compared to available observations in the region. Cold pools produced by the

Thompson and WRF schemes are better forecast in terms of size, though Thomp-

son appears to be slightly too warm. Morrison produces a very weak cold pool

(Fig. 5.7c; lowest temperature of ∼ 77 °F), even though strong precipitation is

present above. This is different from the Dawson et al. (2010) and Li et al. (2015)

findings that show strong improvements in cold pool strength from the use of a

double-moment scheme for diurnal convection. Similar differences are seen within

the vertical thermodynamic profile of the cold pool (Fig. 5.8a). Morrison and

Thompson are much warmer and dryer below 700 hPa than would be expected,

thus it is possible that too much of the precipitation is evaporating before it can

reach the surface and consequently producing nearly no cold pool. Johnson and

Wang (2016) found that Thompson produced better results for a simulated noctur-

nal MCS by also producing a dry slot above the surface that inhibited the growth of

a spurious MCS shown in other members. A similar dry layer is seen in our results,

79



A) LIN B) THOM

C) MORR D) WSM6

E) WDM6

Figure 5.6: Ensemble mean forecasts of composite reflectivity (dBZ) valid at 0330

UTC for (a) Lin; (b) Thompson; (c) Morrison; (d) WSM6; and (e) WDM6

microphysics sensitivity experiments. Also plotted are surface wind barbs (kts).
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though the impact of it appears to be negative. Thermodynamic differences are

less significant ahead of the cold pool (Fig. 5.8b). The single-moment schemes are

cooler below the inversion top, and temperatures from 500 hPa to the tropopause

are slightly warmer in Lin, possibly due to strong diabatic effects. These differences

once again yield almost no difference in the instability fields across Kansas.

Other than the large differences in the southern storm and its associated cold

pool, almost no differences are noticeable in the other fields that have been dis-

cussed throughout this study. The LLJs produced by each scheme are similar, as

are the upper-level vertical velocity fields. And as with the PBL sensitivity tests,

these differences yield almost no sensitivity in the specific CI forecast in north-

western Kansas (Fig. 5.9). The new storms form at the same time and in a similar

location in each scheme. Convection in the WRF schemes grow upscale slightly

faster than other schemes, though the differences are minor. Though the initiation

is forecast similar between each scheme, the new convection is much weaker at later

lead times in the Thompson and Morrison schemes (Fig. 5.10). Since these two

schemes produced the weakest cold pools but have little differences in CAPE/CIN,

it is possible that lifting behind the cold pool (i.e. gravity waves) is sustaining some

of the storms after initiation.
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A) LIN B) THOM

C) MORR D) WSM6

E) WDM6

Figure 5.7: As in Fig. 5.6 but for surface temperature (°F).
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Figure 5.8: Ensemble mean soundings from (a) within the cold pool; and (b)

ahead of the cold pool for each microphysics scheme.
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C) MORR D) WSM6

E) WDM6

Figure 5.9: As in Fig. 5.6 but at 0400 UTC and for the spaghetti contours for

each ensemble member of composite reflectivity greater than 30 dBZ.
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Figure 5.10: As in Fig. 5.9 but at 0500 UTC and for the spaghetti contours for

each ensemble member of composite reflectivity greater than 40 dBZ.
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Chapter 6

Convection initiation mechanisms

In order to highlight the mechanisms responsible for CI in this event, the final

section of results will focus on a single member of the 20 ensemble forecasts for

the allDA experiment. As allDA has been proven to give the best results, there

is confidence in it producing the most physically realistic forecast. Member 3 is

chosen as, though it produced the CI late and with a slight western bias, it gives

the best subjective results consistent with the structure of the observed storms

(Fig. 6.1). The first echo can be seen in the model at around 0415 UTC, over an

hour later than the first observed storms in the area (at ∼ 0230 UTC). However,

the location and structure of the storms in this member, as well as the quick

evolution into a quasi-linear structure, is well forecast. Thus we will assume the

results from member 3 of the allDA experiment as “quasi-truth” and analyze the

mechanisms responsible for CI in this member.

6.1 Synoptic and mesoscale environment

Prior to the development of convection in northwestern Kansas, a strong upper-

level wave can be seen moving through western Kansas at 0300 UTC (Fig. 6.2b).

Interestingly, the CI occurred upstream of the main PV anomaly associated with

this wave, an area in which large scale descent would be expected (marked by a
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A) B)

C) D)

E) F)

Figure 6.1: Composite reflectivity forecasts from allDA member 3 (a,c,e) and the

corresponding 1 km AGL reflectivity observations (b,d,f) at (a,b) 0400 UTC;

(c,d) 0500 UTC; and (e,f) 0600 UTC.
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star in Fig. 6.2b). The weak dry line was located at the surface near the Colorado

and Kansas border (Fig. 6.2a) with a northeast tilt and a large section bulging

into northwestern Kansas. At this point the dryline was beginning to retreat back

westward (and northward for the bulging section). Another boundary (warm front)

was located in southern Nebraska stretching eastward. Additionally, a southerly

LLJ of ∼ 30 - 40 kts was present at 850 hPa (∼ 700 m AGL in western Kansas) that

greatly strengthened with time. This has been mentioned many times in previous

chapters, however we also now point out another developing jet max slightly higher

above at 800 hPa (∼ 1200 m AGL in western Kansas). As this jet veered with

time, strong moisture convergence can be noted ahead of it (time series in Fig. 6.3).

The first surface cold pool of ∼ 78 °F produced by the convection in southern

Kansas slowly moved northward into the region (Fig. 6.4) throughout the forecast.

Ambient temperatures ahead of the cold pool were∼ 85 °F. Some weak convergence

could be noted along the outflow boundary in northern Kansas due to southerly

winds enhanced within the cold pool. However this boundary moved beyond the

region where CI occurs by 0200 UTC (2 hours prior to CI; approximate area

marked by a star in Fig. 6.4). Together with the nocturnal cooling beginning to

kick in (0200 UTC = 9 p.m. LST), the cold pool helped to quickly stabilize the

lowest levels of the atmosphere. With the addition of the LLJ advecting warm air

around 850 hPa, a strong surface-based inversion had developed. Mid-level lapse

rates within this cold pool were also nearly adiabatic from 820 hPa up to 300 hPa,

thus producing a region of sufficient MUCAPE (∼ 2000 J kg-1 at 1500 m AGL)

for elevated storms to develop (recall Fig. 4.16).

6.2 Sources of lift

The storms that developed in allDA member 3 were “pristine” in that they

formed along no obvious surface boundary and were not directly connected to any

88



A)

B)

Figure 6.2: Forecasts valid at 0300 UTC from allDA member 3 of (a) surface

dewpoint temperature (°F) and winds (kts); and (b) Potential vorticity (PVU)

and winds (kts) at 10 km; and. The star in each plot indicates the simulated

location of CI at ∼ 0415 UTC.
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A) B)

C) D)

Figure 6.3: Forecasts from allDA member 3 of 800 hPa moisture convergence

(∗104 g kg-1 s-1) valid at (a) 0200; and (b) 0300; (c) 0400; and (d) 0500 UTC. The

circle in (c,d) indicates the location of the LLJ convergence.
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A) B)

C) D)

Figure 6.4: As in Fig. 6.3 but for surface temperature (°F) and winds (kts). The

star in each plot indicates the simulated location of CI at ∼ 0415 UTC.
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ongoing convection. By 0245 UTC, a second, stronger cold pool was produced by

the storm in southern Kansas with temperatures within it closer to 68 °F (Fig. 6.4b-

d). This boundary moved through the region of CI at ∼ 0400 UTC, just before

CI occurred. There was again some convergence ahead of this second cold pool

though it would not likely have been strong enough to lift surface-based parcels to

their LFC of nearly 4 km. To determine any additional mechanisms responsible for

lifting elevated parcels to their LFC, forward trajectories are presented in Fig. 6.5.

The particular parcel chosen for this figure begins just east of the dryline at 3.25 km

and moves northeast with the mid-level steering flow. It undergoes moderate lift

for about 3 hours until it quickly ascends upwards at 0430 UTC from just under 6

km to above 7 km in 15 minutes (i.e. reached its LFC). West-to-east cross-sections

are now taken through the y-location of this parcel in time (Figs. 6.6). Early on,

the parcel follows the 320 K isentrope of potential temperature as it undergoes

steady lift from west to east. The positive PV anomaly can be seen in Fig. 6.6a

just west of the -100° longitude line and extending below 12 km. Another weaker,

positive anomaly extending below the tropopause followed behind just east of the

-102° longitude line; additional areas of positive PV are present between 6 and 8

km. The early parcel ascent between 0130 and 0300 UTC appears to be connected

to large-scale synoptic lift associated with either the PV anomaly or the sloped

isentropes near the dryline. These are also potentially connected, with the PV

anomaly acting to “pull” the isentropes upwards near the surface and actually

aiding in the development of the dryline.

This parcel goes through a phase of weak ascent between 0230 and 0300 UTC.

At 0300 UTC, it interacts with a band of stronger ascent closer to the surface, seen

circled in Fig. 6.6b, and begins to rise again. This band features vertical velocities

greater than 1 m s-1 and moves with a westward component in time. Between 0345

and 0400 UTC, the parcel again interacts with another area of positive vertical
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Figure 6.5: Forward trajectory of a parcel originating just east of the dryline at

0130 UTC and ending under the location of CI at 0430 UTC (in blue) for allDA

member 3. The opacity and size of the red dots are proportional to the height

AGL of the parcel.

93



A) B)

C) D)

F)E)

Figure 6.6: Forecast from allDA member 3 of east to west vertical cross-sections

through the y-location of the parcel trajectory’s location at (a,b) 0300; (c,d)

0400; and (e,f) 0500 UTC. Plotted in (a,c,e) are potential vorticity (fill, PVU),

total hydrometeor mixing ratio (green contours, g kg-1), and virtual potential

temperature (black contours, K). Plotted in (b,d,f) are vertical velocity (fill, m

s-1) and virtual potential temperature (black contours, K). The parcel trajectory

is the same as the 2D trajectory in Fig. 6.5. See text for description of circles.
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A) B)

D)C)

Figure 6.7: Forecasts from allDA member 3 of 600 hPa vertical velocity (m s-1)

valid at (a) 0230; and (b) 0300; (c) 0330; and (d) 0400 UTC. The circle in (c)

indicates the location of the two positive vertical velocity bands. Also overlaid on

each plot is the 30 dBZ composite reflectivity contour.

velocity (again, circled in Fig. 6.6f). This second band is enough to lift the parcel to

6 km where it can reach its LFC. These two bands can be better seen via a 2D plot

of vertical velocity at 600 hPa (Fig. 6.7; circled bands at 0330 UTC). They both

appear to move outwards from the previous convection in southwestern Kansas.

At 0400 UTC, the banded structure of the new convection begins to appear in the

vertical 2D vertical velocity field. Also at the same time, hydrometeors begin to

form at 6 km as saturation occurs (Fig. 6.6e). The base of the updraft extends

down to ∼ 3 km (2 km AGL) thus proving that the new CI is truly elevated.
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6.3 Two-dimensional discrete cosine transformation

We can further determine the cause of these two bands by utilizing a two-

dimensional discrete cosine transformation (2D-DCT; Denis et al. 2002), commonly

used for the compression of digital images. The 2D-DCT produces an array of

spectral variances in which the spatial scales are related to the 2D wavenumbers.

This field can then be multiplied by a transfer function array to rebuild a specific

filtered physical field (see Denis et al. 2002 for more details). Put simply, we can

use the 2D-DCT to split the 2D field of 600 hPa vertical velocity (Fig. 6.7c) into its

individual components at different scales (Fig. 6.8). It is now possible to identify

three main features: 1) a mesoscale feature at scales greater than 100 km likely

tied to the surface outflow boundary (green circle); 2) another mesoscale feature

likely tied to a region of enhanced convergence at the terminus of veering low-level

jet at 800 hPa (blue circle); and 3) wave features at the smaller scales less than

50 km indicated by the alternating positive and negative arcs emanating from the

southern convection (time series of only scales < 50 km given in Fig. 6.9). Similar

wave trains can also be seen emanating from northern convection in northeastern

Kansas.

6.3.1 Mesoscale sources of lift

To demonstrate the cause of the mesoscale features in Fig. 6.8b, see Fig. 6.10.

The leading band described in (1) is spatially and temporally correlated with an

area of enhanced moisture convergence near the surface, consistent with the second

outflow boundary moving northward (green circles in Figs. 6.8b and 6.10a). Since

the thermodynamic profile was nearly dry adiabatic above the surface inversion,

it is reasonable for any such lift to be vertically deep. As the low-level jet begins

to strengthen and veer, a second area of enhanced surface convergence becomes

apparent just above the surface (red circles in Figs. 6.8b and 6.10b) and south
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A) B)

D)C)

Figure 6.8: Two-dimensional discrete cosine transformation of the 600 hPa

vertical velocity (m s-1) field from Fig. 6.7c valid at 0330 UTC. The original plot

is given in (a), while different scales of wavelengths (b) greater than 100 km; (c)

between 50 and 100 km; and (d) less than 50 km are shown. See text for

description of circles.
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A) B)

C) D)

Figure 6.9: As in Fig. 6.8d but at (a) 0230; (b) 0300; (c) 0330; and (d) 0400 UTC.
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of the lift produced by the outflow boundary. This band moves north and east

with time as the LLJ begins to move eastward. As the jet veers (and the jet

core moves eastward), the southerly flow encounters more westerly flow and hence

produces stronger convergence over time; this is a common area for nocturnal CI

(Josh Gebauer 2016, personal communication). The first convective echoes that

form feature a similar orientation to the convergence produced at the jet terminus,

leading further credence to the hypothesis that the lift associated with the LLJ is

the final push up the LFC.

6.3.2 Gravity wave analysis

To determine whether the banded structures in (3) are gravity waves, we apply

an analysis similar to Marsham et al. (2011). Internal gravity waves propagating

in the x-z plane in a stratified system must satisfy the Taylor-Goldstein equation:

d2w

dz2
+m2w = 0 (6.1)

where

m2 =
N2

(U − c)2
− U ′′

(U − c)
− k2 (6.2)

or m2 = l2 − k2. l2 is referred to as the Scorer parameter (1949); k2 is the

horizontal wavenumber; N2 is the Brunt-Väisälä frequency; U is the wind speed

in the direction of wave propagation; U ′′ refers to the second derivative of the

wind speed with respect to height (i.e. curvature of the wind); and c represents

the gravity wave phase speed. Gravity waves are often observed propagating on a

stable layer near the ground with a deeper, weakly stratified layer aloft. However,

a separate mechanism is needed in order to prevent the wave energy from escaping

upwards (Crook 1988). Without any trapping of wave energy, most of the energy

from a gravity wave will radiate away from the stable layer by the time air has

traveled from one crest to the next. Scorer (1949) determined that to obtain
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A)

B)

Figure 6.10: Forecasts from allDA member 3 of moisture convergence (∗104 g kg-1

s-1) at (a) 800 hPa; and (b) 850 hPa valid at 0330 UTC. The green circle

indicates convergence at the cold pool, and the red circle indicates convergence at

the terminus of the LLJ.
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significant energy at the ground, the l2 term must decrease with height. In any

layer where l2 < k2, the propagating waves would change from propagating in

the vertical to decaying and thus energy in those wavelengths would be trapped

below. Though it is difficult to know the exact propagating wavenumber k2, this

requirement will always be satisfied for any negative values of the Scorer parameter

(since k2 is always positive). Using simulations from a non-hydrostatic numerical

model, Crook (1988) found three common mechanisms that are able to prevent

wave energy from escaping upwards and produce long period gravity waves. The

first mechanism occurs when winds in the upper layer oppose the wave motion,

thereby reducing the Scorer parameter in the upper layer (through increasing the

magnitude of [U − c]2) and causing waves to evanesce. The second occurs when a

jet exists in the lower layer that opposes the wave motion. The curvature in the

velocity profile above this jet increases U ′′ causing the second term to dominate

and produce a layer of negative Scorer parameter. Lastly, the third mechanism,

unrelated to the Scorer parameter, involves an elevated inversion above the lower

stable layer in which wave energy can be reflected back downwards and lead to an

enhancement of wave amplitude near the ground.

As a first check to further determine whether the features discussed in this

section are possibly gravity waves, we estimate the phase speed of gravity waves

produced from a sounding just ahead of the waves in space and time (Fig. 6.11).

Eom (1975) solved a two-layer, two-dimensional simple model for the phase speed

of gravity waves corresponding to adiabatic, compressible, hydrostatic and inviscid

flow in a non-rotating coordinate system. In this model, each layer was assumed

to have a constant stability parameter and mean depth, and also that the mean

flow is non-zero in the upper layer only. By applying the perturbation method and

linearizing the system of equations following a steady basic state, the phase speed

of gravity waves can be solved for via a system equations detailed in Eom (1975).
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To apply this model, we choose the lower stable layer to extend from 860 to 800

hPa, and the second layer from 800 to 520 hPa. After rotating the coordinate

system for waves propagating along 115° (to the northwest) and correcting for the

assumption of no mean flow in the lower layer, we calculated a most probable

gravity wave phase speed of 28 m s-1. The system of equations presented by Eom

(1975) actually produces five possible speeds; this value was assumed to be the

most physical for this situation. To compare this estimated speed to that of the

features being discussed, the distance between wave crests at four different output

times (temporally spaced by 15 minutes) was measured to produce an “observed”

speed of 31 m s-1. Note that the background flow as deduced by the sounding

in this region was only ∼ 24 m s-1. In the case study presented by Eom (1975),

the author estimated phase speeds of 49.5 and 52.0 m s-1, which he describes as

“remarkably close” to the observed disturbance propagation speed of 50 m s-1.

The same sounding in Fig. 6.11 is used to calculate the different components

(Fig. 6.12a-c) of the Scorer parameter in Fig. 6.12d. The Scorer parameter calcula-

tion requires a given value for the phase speed of the wave, c. Though we do have an

estimated value of 28 ms-1, c was allowed to vary in the calculations to account for

possible errors in the Eom (1975) model. The sounding does feature a nearly dry

adiabatic layer aloft of a stable layer from the surface to ∼ 850 hPa through which

gravity waves would be able to form. This can also be seen by a layer of largely

decreasing N2 (Fig. 6.12a). As mentioned earlier, a layer capable of trapping wave

energy would be demonstrated by a region where the Scorer parameter becomes

negative. For all gravity wave phase speeds, a trapping layer exists between 300

and 400 hPa which is consistent with the maximum heights of the positive vertical

velocity bands (not shown). Since the opposing flow term, ([U − c]; Fig. 6.12c) is

negative for all phase speeds above 600 hPa, as well as the curvature in the wind

being negative (i.e., veering) between 300 – 400 hPa (Fig. 6.12b); the second term
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Figure 6.11: Sounding from just ahead of the potential gravity waves in Fig. 6.9b

at 0300 UTC which is used to calculate the potential phase speed following Eom

(1975).
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in (6.2) dominates and thus the entire value becomes negative. For gravity wave

phase speeds greater than 15 m s-1, there exist another trapping around 600 hPa

that arises due to the same reason, though it only occurs at greater phase speeds

due to the weaker opposing flow in the layer. These trapping layers are similar to

the first method described in Crook (1988).

Crook (1988) found in his simulations that the maximum vertical velocity ob-

tained in these trapped waves can reach as high as 8 – 10 m s-1, much faster than

those produced by the banded features in our simulations of 1 – 2 m s-1. However,

the trapping layer in the Crook (1988) paper was much closer to the surface at ∼

2 km, while there would be more wave energy damped in our simulations due the

trapping layers being located higher in the atmosphere. These results indicate that

the environment produced in allDA member 3 was capable of producing trapped

gravity waves. And given that the estimated phase speed of gravity waves follow-

ing Eom’s (1975) model was extremely close to the speed of the banded features,

we conclude that these features are trapped internal gravity waves. Worth noting

is that the 49 vertical levels (compared to the 80 used in Crook 1988) used in our

simulations is rather low for fully resolving vertically-propagating waves. Experi-

ments in the future will examine the sensitivity of vertical grid levels to features

such as these.

6.4 Summary of CI

We now summarize the mechanisms likely responsible for CI with the follow-

ing: parcels originated along the dryline and underwent weak, synoptic ascent

due to either a positive PV anomaly or lift ahead of the dryline (likely related).

After a period of weak descent for 30 minutes, the parcels moved into an envi-

ronment classified by strong low-level stability induced by previous convection’s

northward-moving cold pool. However mid-level lapse rates were steep, yielding
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A) N2

C) (u-c)

B) u’’

D) l2 x 105

Figure 6.12: Individual terms of the Scorer parameter calculated from the

sounding in Fig. 6.11 including (a) N2; (b) uzz; and (c) (u− c). The final Scorer

parameter profile is given in (d).
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strong MUCAPE for elevated thunderstorms. There, they encountered a north-

ward moving band of lift produced ahead of a cold pool as a result of convection

in southern Kansas. A second band of lift produced by a veering LLJ provided

the final push for parcels to reach their LFC and convect. These final two bands

were structured and enhanced by trapped gravity waves propagating along the

top of the second cold pool. A diagram and summary of these features is shown

in Fig. 6.13. As discussed in the previous chapter, the Morrison and Thompson

microphysics members did not produce a strong cold pool but were still able to

generate the new CI in northwestern Kansas. However, these schemes did gen-

erate strong surface outflow boundaries ahead of their weaker cold pools. From

this, we infer that though the cold pools were simulated differently, the gust fronts

ahead of them, and their associated regions of convergence, were the important

mechanisms able to sufficiently provide the early parcel lift. The boundaries are

generated within 15-30 minutes after the final EnKF update cycle, thus suggesting

that the DA process is potentially responsible for their production.

As the LLJ-produced convergence was the final push for parcels to reach their

LFC, we assume that it was the most important mechanism. The trapped gravity

waves only served to structure and enhance the lift produced by the LLJ; therefore

it is possible that the convection still would have formed in their absence. However,

outflow boundaries, LLJ convergence, and gravity waves were seen in each of the

convDA and allDA (including the physics sensitivity tests) simulations discussed

in this thesis. Since no successful forecasts were found without these mechanisms,

we cannot rule out that each one played an important part in the CI process.

Additionally, the convection produced by Morrison and Thompson schemes also

fell apart within 2 hours of its formation, as opposed to the other schemes in which

the convection quickly grew upscale. Though the gravity waves were produced

by these two schemes, the maximum vertical velocities within them were weaker
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Figure 6.13: Schematic of the features likely interacting in order to generate CI

for the 25 June 2013 nocturnal CI event. The parcel trajectory is also shown in

black.
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(0.5 m s-1 in Morrison, 1 m s-1 in Thompson, and upwards of 2 m s-1 in Lin),

thus suggesting that the gravity waves were partly responsible for sustaining the

convection after its initiation. Since the waves were moving northwestward and

the storms eastward, the new convection would be provided with further support

due to their interaction with additional wave crests. As the cold pools were weaker

in the Morrison and Thompson schemes, the perturbation into the neutral layer

aloft and resulting gravity waves were weaker.

It is difficult to verify whether the actual observed storms were produced by

these same mechanisms due to the lack of a dense observation network in Kansas.

However, Marsham et al. (2011) observed a similar event of CI produced by the

interaction of trapped waves and a convergence line produced by an LLJ. We

can thus assume that the CI produced by member 3 in the allDA experiment,

also considering its similar structure and evolution to the observed convection, is

reasonable.
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Chapter 7

Conclusions

7.1 Summary of results

Though it can be important both economically and for severe weather threats,

nocturnal convection is often difficult to forecast both in NWP models and by

skilled human forecasters. As nocturnal convection is usually elevated, it isn’t

often as easy as simply locating surface boundaries for preferred areas of develop-

ment. Multiple mechanisms are also commonly responsible for initiating nocturnal

convection; they can occur and interact at many scales which are often difficult

for weather models to predict. On 25 June 2013, a nocturnal CI event occurred

with little warning from both operational forecasters and NWP models. After a

weak MCS began to fall apart in southern Kansas, storms initiated around 0300

UTC with no obvious boundaries responsible for their formation. By using an

advanced multi-scale DA system, we found positive impact in convection-allowing

ensemble forecasts from both conventional and radar data assimilation for this

event. Though observations were not present to verify these conclusions, the CI

appears to have been generated by the interaction of synoptic scale lift, a surface

outflow boundary, a veering nocturnal LLJ, and trapped gravity waves. These

interactions are similar to an observed event from the IHOP experiment described
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in Marsham et al. (2011) in which CI occurred at the interaction of trapped waves

and a convergence line produced by the LLJ.

Conventional observations, even though they are mostly located at the surface

after 0000 UTC, were able to greatly improve the thermodynamic and kinematic

environments for nocturnal convection. The EnKF analysis produced mesoscale en-

vironments more supportive of strengthening convection in southern Kansas that,

in turn, produced strong surface outflow ahead of its cold pool and was able to pro-

vide deep lift throughout the lower troposphere. The trapped gravity waves also

formed as a result of this cold pool. Surface observations included in DA also fur-

ther enhanced convergence produced at the terminus of the LLJ by weakening 850

hPa winds throughout parts of northern Kansas. While radar assimilation alone

was not enough to capture the CI, it did provide improvements by better resolving

earlier convection during the forecast period and by also reducing the amount of

spurious precipitation in other parts of Kansas. Our simulations indicate that the

cold pool and resulting gravity waves are important for the generation of new noc-

turnal convection. These features form as a product of ongoing convection, which

is greatly improved upon in the analysis through the assimilation of radar data.

Though the convDA experiment in this case was sufficient to produce the ongoing

convection in southwestern Kansas, it is very possible that the use of radar DA

in future experiments will show positive impacts by adding in previous convec-

tion responsible for generating cold pools and gravity waves. Additionally, from a

forecaster’s point of view, seeing a better analysis of current ongoing convection

and less spurious storms in an NWP forecast would provide more confidence to an

operational meteorologist.

In terms of the specific CI forecast, little sensitivity was found for both PBL

and microphysical parameterization schemes used during the forecast period. Local

and nonlocal closure PBL schemes produced different cold pool sizes and different
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LLJs. However, apart from these and some minor thermodynamic differences, there

was almost no difference in the CI forecast. The microphysics schemes tested pro-

duced different reflectivity structures for the convection in southern Kansas which

also impacted the surface due to evaporation and cold pool differences. Though

Morrison produced an extremely weak cold pool, outflow boundaries were enough

to provide some lift and the converging LLJ was enough to push parcels to their

LFC. These results indicate that deciding on a particular PBL and microphysics

scheme, as opposed to common results for diurnal convection, isn’t largely im-

portant for elevated convection. Elevated storms, which represent a majority of

nocturnal convective systems, tend to be disconnected from the surface. However,

the physics schemes are responsible for producing the pre-storm thermodynamic

and kinematic environments that the features responsible for CI form within. With

lead times of only 2 hours, which is common for CI-specific studies, the pre-storm

environment has already been largely determined by the DA process. Thus it is

possible that utilizing different schemes during DA, or extending the forecast lead

time, would produce stronger sensitivities. Additionally, this result is likely to be

extremely case-dependent; additional studies for other nocturnal CI events (similar

to Johnson et al. 2016), particularly ones with more unique observations available

to verify against, are necessary.

7.2 Future work

This study only examined the sensitivity of a single nocturnal convective event

to assimilated observations and physics configurations. The PECAN (Parsons et al.

2013) experiment took place during 2015 in order to advance the understanding of

nocturnal precipitation in conditions with a stable boundary layer, nocturnal LLJ,

and the largest CAPE located above the boundary layer. Events from this field

project will provide dense datasets for similar assimilation and dynamical studies in
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the future. During the PECAN campaign, numerous amounts of observations were

taken during nocturnal convective events. Many of these observations were located

at fixed stations (fixed PISAs; PECAN integrated sounding array) throughout

Oklahoma, Kansas, and Nebraska, while others were located on mobile platforms

(mobile PISAs). Observations located at PISA stations include thermodynamic

profilers, radiosondes, Doppler wind Lidars, and conventional surface observations.

The thermodynamic profilers are designed to observe the evolution of atmospheric

instability and low-level temperature and humidity with high-temporal resolution

in order to quantify CI potential. The kinematic profilers provide the ability to

capture the evolution of lower-tropospheric wind and turbulence profiles, in or-

der to quantify moisture transport, mesoscale convergence, and nocturnal LLJs.

Additionally, the PISAs will also serve as a test-bed for the nationwide network

of profiling systems, as advocated in the 2009 National Research Council report

“Observing Weather and Climate from the Ground Up” (NRC 2009). As shown

here, nocturnal convection is often elevated and is initiated by features located

above the surface such as elevated convergence zones or atmospheric waves. Envi-

ronments supportive of gravity waves or atmospheric bores are also very sensitive

to the structure of small-scale jets and trapping layers. Therefore the assimilation

of thermodynamic and kinematic profilers can provide key information for such

environments during periods when operational rawinsondes were unavailable. Fu-

ture work will examine the impact of assimilating these unique observation sets.

Additionally, these datasets will likely prove useful in verifying other mechanisms

responsible for convection at night.

Since nocturnal convection can be initiated by many different mechanisms, fur-

ther work into determining optimal model configurations for the explicit purpose

of forecasting CI should be explored. The most important of these is likely the
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horizontal and vertical grid spacing, both of which will be explored in future sim-

ulations. Johnson et al. (2016) found that atmospheric bore-like features are able

to be produced but not fully resolved in a 4 km simulation. Though the 4 km

horizontal grid spacing and 50 vertical levels were sufficient enough to produce

the new convection in this case, various features which are responsible for initiat-

ing new convection at night possibly occur on much smaller scales. Schumacher

(2015) found problems with simulating supercells and MCSs with grid spacing

lower less than 4 km due to overmixing of a dryline, therefore detailed work will

be required to find the optimal resolution to resolve these features but not cause

issues elsewhere.
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