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Abstract 

This work presents the results of a series of triaxial- injection experiments carried out 

on two basalt cores from the Newberry geothermal field well GEO-N2 and a 

Mississippi lime stone. A combination of triaxial and injection experiments were 

performed on the cores to characterize their goemechanical properties and to better 

understand their response to stimulation treatment. The first GEO-N2 sample (sample 

A) was axially loaded to a vertical stress of 10000 psi at a strain rate of 1x10-5 

strains/sec while maintaining an effective confining pressure of 3500 psi and a 

temperature of 90 oC. Nitrogen gas was injected at a pressure of 2000 psi. Sample didn’t 

fail. Then the pore pressure increased to 4500 psi resulting in an effective confining 

pressure of 1000 psi. However the sample still did not fail due to injection. Since the 

intention of the test was to create the Mohr - Coulomb envelope by performing a 

multistage triaxial test, the deviatoric stress did not get increased to fracture the sample 

and sample fractured by multistage triaxial test.  

The triaxial-injection test performed on the second GEO-N2 sample (sample B) same as 

the first GEO-N2 sample with the same procedure and configurations. For the last part 

of the test, the intention was to fail the rock with injection. Therefore, at the moment of 

the turning point on the volumetric strain curve, the axial load was held constant and the 

sample was fractured by injecting nitrogen gas in to it. The sample temperature was 90o 

C. 

The Mississippi lime stone sample (sample C) was axially loaded to a vertical stress of 

6000 psi at a strain rate of 1x10-5 strains/sec while maintaining an effective confining 

pressure of 2000 psi. Nitrogen gas was injected at a pressure of 2000 psi. Sample didn’t 
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fail. Then the pore pressure increased to 3300 psi resulting in an effective confining 

pressure of 700 psi. However the sample still did not fail due to injection. For the last 

part of the test, the intention was to fail the rock with injection. Therefore, at the 

moment of the turning point on the volumetric strain curve, the axial load was held 

constant and the sample was tried to be fractured by injecting nitrogen gas in to it. 

However it did not fractured and sample C got fractured by compression.  

Fluid flow was maintained across the samples throughout the experiments while stress, 

strain and acoustic emissions were recorded. Rock deformation and acoustic emissions 

data were monitored and analyzed, and the locations of events were recorded and they 

correlate with the fracture location in the samples. The result showed that all three 

samples have high value of Young’s modulus over a 40 GPA. Sample A and B 

experiments were conducted at elevated temperatures to investigate the rock response to 

thermal stresses. Heat didn’t influence the elastic properties very much in these rocks. It 

is estimated that higher temperatures (>300 C) would probably create this effect. And 

about 0.03% strain was observed in hydrostatic heating of the sample. Sample C is from 

an oil field which is not hot and the tests on this sample were not performed at high 

temperature.  
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Chapter 1: Introduction 

Problem Statement 

 Creation of conductive fluid flow pathways and heat exchange are the bases of EGS 

development. This study is mainly an experimental research and the main objectives 

were as follows; 

1. To prepare experimental setup and conduct a triaxial-injection test to help 

understand the rock response to stimulation 

2. Collect all possible geomechanical information from the sample. This includes 

Mohr-Coulomb envelope, sample compressive strength, elastic parameters etc.    

The cores for this study are from the well GEO- N2, drilled at Newberry geothermal 

field and a Mississippi lime sample from Oklahoma. Experiments on GEO- N2 samples 

have been performed under heated conditions. 

The GEO- N2 well is located about 2.8 km from the western rim of the Newberry 

volcano caldera in Oregon, U.S.A. The cores from the GEO N2 had a diameter of 

0.0635 m (2.5 inches) and were cored to obtain two samples whose  length to diameter 

ratios varied from 1.5:1 to 2:1 (Details are provided in the relevant section). The 

Mississippi lime sample had a diameter of 0.1008 m (4 inches) and the length to 

diameter ratio of 1.41 and is from a depth of a 5893 ft. 

Mineral composition and pore scale characterization were performed using XRD and 

thin sections of the core. A variety of laboratory tests have been conducted on the plugs 

to determine rock strength (triaxial and injection tests), velocity data (shear and 

compressional), elastic properties, acoustic emissions and stress-dependent porosity and 

permeability. 
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Literature Review 

Triaxial Test 

Triaxial test is used to measure the deformation properties and strength of cylindrical 

rock specimen as a function of the confining pressure. The stresses applied to the 

specimen while running the triaxial compression test are presented in Figure 1. The 

confining stress σc is applied by building the pressure up using the fluid surrounding the 

specimen which is also equal to the radial stress σr, or minor principal stress σ3. The 

deviator stress q is generated by applying an axial strain εa to the specimen. The axial 

stress σa, or major principal stress σ1 is the addition of the deviator stress to the 

confining stress in the axial direction. The minor principal stress state is said to be 

isotropic when σ1 = σ3, and anisotropic when σ1 ≠ σ3.  

 

 

Figure 1. Stress State on Triaxial Compression Test 
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Different technical equipment and machinery needed for triaxial test can be listed as 

below; 

- Triaxial cell – Parts of the triaxial cell are pressure vessel, loading piston, seals, 

platens with spherical seating, hydraulic connections, and bleeder hole. Platens 

needs to be place at bottom and top of the specimen. These platens should have 

a Rockwell hardness of more than C30 (ISRM standards). The diameter of the 

platens should be between 1 to 1.02 times the diameters of the specimen. The 

thickness of the top and bottom platens should be at least one third of the sample 

diameter and surfaces of the platens should be polished and flat in the range of 

0.01 mm. 

- Axial load applying and controlling device – A rigid loading machine for 

applying and measuring the axial load should be used with as high capacity to 

fail the specimen at desired confining pressure and applying the strains at 

desired rates. 

- Confining pressure applying and controlling device – A hydraulic pump with a 

sufficient capacity and capable of regulating the pressure within 2% should be 

used. 

- Measuring and recording of loads, pressure and displacement equipment – Axial 

load should be recorded continuously using a load transducer. Confining 

pressure should be measured using a pressure transducer or pressure gauges and 

it is advised to use at least two indicators. Axial displacement measuring and 

recording should be done with displacement transducer. Having two 
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displacement transducer at each side of the specimen is recommended. All the 

reading and measurement should be recorded by a computer for further analysis. 

High Temperature Triaxial Test 

There are not many laboratory studies on the high temperature triaxial test considering 

the difficulties and required equipment. One of the early practices has been done by 

Handin and Hager (1958). Triaxial compression test on dry anhydrite, dolomite, 

limestone, sandstone, shale, siltstone, slate, and halite single crystal has been done 

under pressure-temperature conditions simulating depth down to 30,000 feet is done by 

Handin and Hager (1958). Their results indicates increase of temperature at constant 

pressure reduces the yield stress. Heating the specimen up to 300°Cat constant pressure 

increases the ductility of work-hardening rocks which may raise the ultimate strength of 

the rock. 

Most of the times heating eliminates work-hardening and lowers the ultimate strength, 

so that even though a rock is more ductile, it becomes weaker because of yield stress 

reduction (Handin and Hager, 1958).  

GEO - N2 Newberry 

USGS published a document in 1999 with the title of Hydrothermal Mineralogy of Core 

from Geothermal Drill Holes at Newberry Volcano, Oregon, which described the holes 

drilled at Newberry Volcano including the GEO - N2 Newberry. The location of the 

GEO - N2 is on the west flank of Newberry volcano about 2.8 km outside the western 

rim of the caldera at the elevation of 1,779 m. The reason for choosing the drill site was 

on the basis of a geophysical anomaly. The sites for most of the west flank drill holes at 
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Newberry volcano were selected because of electromagnetic or surface resistivity 

anomalies (Walkey and Swanberg, 1990).  

Permeability in Volcanic Rocks 

Unlike the lavas, which rapidly cooled upon emplacement, the ignimbrite flows are 

characterized by a protracted cooling history due to their extraordinary heat retention 

capacity (P. Sruoga and N. Rubinstein, 2004). They go through two stages: (1) the pre-

emplacement stage, which includes vesiculation and fragmentation; and (2) the post-

emplacement stage which embraces the cooling and post-cooling history (P. Sruoga and 

N. Rubinstein, 2004). Cooling history includes welding, Devitrication, Feldspar 

alteration, Silicification, Vapor-phase crystallization, Quench fragmentation and glass 

alteration. The post-cooling history includes hydrothermal alteration, weathering, and 

tectonic deformation. The original petrophysical characteristics can be modified 

substantially during cooling and in the post-cooling processes. Sruoga and Rubinstein 

(2004) results show that the highest porosity and permeability occur in rocks with 

quench fractured glasses and in non-welded ignimbrites with gas-pipe structures, 

followed by autobrecciated rhyolites and Welded ignimbrites, massive glasses and fresh 

rhyolites have the lowest permeability. 
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Chapter 2: Equipment 

The two experimental setups having MTS 816 Rock Mechanics Test System and 315 

Load Frame are presented in pictures below on Figure 2 and Figure 3. Each component 

of the experimental system is explained in more detail in the following section. 

 

 
Figure 2. Multistage Triaxial Experimental Setup with MTS 816 Rock Mechanics 

Test System 

 

 

 
Figure 3. Multistage Triaxial Experimental Setup with 315 Load Frame 
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The schematic diagram of the system used for the experiments is shown in Figure 4 

including triaxial cell, loading unit, fluid circulating system, control station and data 

acquisition system. 

 
Figure 4. Schematic Diagram of the Experimental System. (A) Triaxial Cell; (B) 

Loading Unit; (C) Fluid Circulating System; (D) Control Station and (E) Data 

Acquisition System 

 

MTS Rock Mechanics Test Systems 

Both MTS 816 Rock Mechanics Test System and 315 Load Frame were used in the 

process of different tests. In order to take the dynamic velocity measurements 

specimens was placed in 315 Load Frame. The permeability measurements, triaxial and 

injection tests were all performed in the 816 Rock Mechanics Test System. Figure 5 and 

6 presents MTS 816 Rock Mechanics Test System and 315 Load Frame. 
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Figure 5. MTS 816 Rock Mechanics Test System 
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Figure 6. MTS 315 Load Frame 

 

Acoustic Emission (AE) System 

The MISTRAS Express-24 channel, Acoustic Emission (AE) system with a frequency 

range of 1 KHz - 1MHz was used with 8 AE sensors per sample for recording acoustic 

emissions generated during the triaxial tests. These sensors were Acoustic transducers 
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with a frequency of 500 kHz. These sensors were attached to the sample using the “E-Z 

bound instant glue thick” by pushing it to the sample surface with fingers and holding it 

for 30 seconds.. A preamplifier of 40 dB was applied to all the sensors. The amplitude 

cut-off on these sensors varied from 55-60 dB; any wave below this amplitude was 

discarded by the system as noise. Frequency and energy of failure events were also 

recorded during the tests - these give insights into the nature of the failure; typically, 

higher confining pressures result in lower energy released during the failure if the rocks 

become more ductile. A sample rate of 1 MSPS (million samples per second) was used 

to record the AE information. 3-D location analysis was also performed using AE 

information - this technique uses the source amplitude and the differences in the time it 

took the wave to reach the different sensors to arrive at the location of the event. 3-D 

location is highly dependent upon the rock type, rocks which generate low AE 

(including certain types of Tuff) typically do not give a good 3-D location response as 

compared to very brittle rocks which generate high amplitude AE waves during the 

failure process. AE/MEQ analysis was carried out for all the tests. Figure 7 presents the 

MISTRAS Industrial Express large PCI Express AE chassis. 

 

Figure 7. MISTRAS Industrial Express large PCI Express AE chassis 
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Dynamic Velocity Measurements System 

Both Compressional and shear velocities were measured using 500 kHz crystals 

embedded in steel platens placed on top and bottom of the specimen, at hydrostatic 

pressure of 3.45 MPa (500 psi) to 24.13 MPa (3500 psi). Figure 8 presents the velocity 

measurement crystals embedded in the platens and Figure 9 presents the Tektronix 

MDO3022 Mixed Domain Oscilloscope which was used for monitoring the velocity 

waves. The procedure of dynamic velocity test and determination of rock properties of 

the results are presented in the appendix. 

 

 
Figure 8. Velocity Measurement Crystals Embedded in Platens 

 

 

Figure 9. Tektronix MDO3000 Mixed Domain Oscilloscope 
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Syringe Pump 

Different models with different capacities of High precision TELEDYNE ISCO syringe 

pumps and controllers were used in different stages of the tests. Applying and 

controlling confining pressure using oil, and applying and controlling pore pressure 

using nitrogen gas or water was done with these syringe pumps. Figure 10 shows a 

TELEDYNE ISCO syringe pump and controller. 

  

 

Figure 10. TELEDYNE ISCO Syringe Pump and Controller 
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Chapter 3: Preparations 

Sample Preparation 

Before running any tests on the rocks, the specimens were prepared based on the ISRM 

standards for parallelism and smoothness. Specimens having all required platens and 

spacers attached to them to be placed in the MTS 816 Rock Mechanics Test System 

should be shorter than 11 inches and shorter than 8 inches for 315 Load Frame.  

Given cores had a diameter of 2.5 inches and based on that the length of 5 inches was 

cut, which was short enough to fit in the testing systems for running tests. After cutting 

both surfaces of the specimen was grinded and polished to have an even and smooth 

surface. Exact diameter, length and weight were measured afterward. Picture of any 

natural phenomena like healed fractures or mineral formation piece was taken. Also 

pictures were taken from different angles at each step in front of a scale.  

 

Copper Jacketing 

Copper sheet 0.003 mm in thickness purchased from amazon.com  was cut in a size 

covering the specimen sides, 1mm short on each head and was wrapped around the 

specimen. Rubber band was added to hold the jacket after tightening the jacket. Then 

the closing side was welded carefully assuring the copper is melted and there is not 

open gap left. In this process the jacket should not get loose and after welding the jacket 

should be very tight all around the specimen. Figures 11, 12, and 13 shows the steps of 

jacketing the specimen with copper sheet. 
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Figure 11. Wrapping the Specimen with Copper Sheet 

 

 
Figure 12. Welding the Closing Line of Copper Sheet 

 

  
Figure 13. Drawing Vertical Lines and Marking Measurements 
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Applying Epoxy 

To prevent any leakage all the joints should be sealed with epoxy. After placing the 

platens on two ends of the specimen, using two rounds of self-fusing tape, the specimen 

and platens stacked on top of each other and stayed standing. 3M Scotch-Weld Epoxy 

Adhesive tube kit - 2216 B/A Gray with 90 minute work life was used for sample 

preparation. Epoxy was applied to cover the welding line and self-fusing tape on both 

heads overlapping the platen and specimen. Figure 14 shows the specimen after epoxy 

application. 

 
Figure 14. Stress State on Triaxial Compression Test 

 

Attaching Strain Gauges 

Proper strain gauge type and size was selected and got prepared by attaching the two 

wires to be used according to the specimen size. OMEGA strain gauge with the 

resistance of 120.4 ohms and a gage factor of 2.02 % and Micro-Measurements 

Division strain gauge with a resistance of 120.0 ohms and a gage factor of 2.09 % were 

used in the tests. Strain gauge should be attached to the horizontal center line of the 

specimen. Strain gauges were attached by applying the “E-Z bound instant glue thick” 

with viscosity of 1500 CPS to the back face of the strain gauges and placing it on the 
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sample surface and applying pressure. Figure 15 shows the sample strain gauge used in 

the tests, prepared to be attached, and Figure 16 shows the strain gauge attached to the 

specimen. 

 
Figure 15. Sample Strain Gauge Prepared to be Attached 

 

 
Figure 16. Stain Gauge Attached to the Specimen 

 

Attaching Acoustic Emission (AE) Crystals 

It is recommended to spread the Acoustic Emission crystals in a way presented in 

Figure 17 (Petruzalek, et al. 2012) to capture all the hits by insuring a wider coverage of 

the sample. However in our tests it was not possible to have the AE crystal on top and 

bottom of the sample on the platens. Also the radial LVDT chain covered a wide part of 
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the sample in center and about half inch of sample on each head was covered by epoxy. 

So the AE crystals were placed closer to the ends of the sample as suggested by 

Petruzalek, et al. (2012) to cover the missing AE crystal at the ends of the sample.  

 
Figure 17. Acoustic Emission crystals location suggested by Petruzalek, et al. 

(2012) 

 

Acoustic Emission crystals were attached over the copper jacket using the “E-Z bound 

instant glue thick” by pushing it to the sample surface with fingers and holding it for 30 

seconds. Vertical lines were printed on top of the jacket every 60o degree having the 

welding line in the middle of two of lines, and each line was marked by centimeters 

from the bottom of the sample to the top (Figure 18). Crystals were attached and each 

one was labeled and its location was recorded. Figure 19 shows a screenshot of the 

template I created in excel to record the AE crystal locations and to calculate the 3D 
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location of them needed to import in to the Mistras software. Crystals used in the test 

were all 500 kHz sensors. 

 
Figure 18. Specimen with Attached Acoustic Emission Crystals 

 

 
Figure 19. Excel file used to record the AE crystal locations and to calculate the 3D 

location (Sample B data screenshot) 
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Chapter 4: Sample A - Tests, Procedures and Results 

Sample Description 

This sample is a basaltic tuff and light gray in color and has an average depth of 

4381.75 ft (uncut core depth of 4378.4 - 4385 ft). It has a length of 127.51 mm (5.02 in) 

and 63.4 mm (2.5 in) in diameter (L/D ratio of 2:1). The sample is light gray in color 

and has reddish and white lines running across the sample (Figure 20). It shows no 

visible fractures - minor or major. It has several white and red veins (healed fractures) 

on the sample. It also shows few white colored inclusions which vary in size from <1 

mm - 5mm in length (Figure 20). The grain structure is fine grained and very well 

consolidated. Its mineral content is covered in the next section.  
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Figure 20. Sample A Cut and Polished Before Test 

 

 

XRD Results 

The XRD test was conducted by Powder X-ray Diffraction Laboratory at University of 

Oklahoma on the sample and the mineral content and compound composition of the 
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sample is determined. XRD test is done on about 5 gr of the sample. Table 1 shows the 

mineral content and table 2 shows the compound composition of sample A. 

Table 1. Mineral content in Sample A 

Minerals Weight (%) 

Anorthite 28.5 

Albite 25.7 

Clinochlore  23.2 

Corrensite 5.8 

Quartz 9.8 

Hematite-Ti 2.9 

Ferrosillite 3 

Fluorite 1 

 

Table 2. Compound Composition in Sample A 

Compound Weight (%) 

SiO2 47.4% 

Al2O3 25.9% 

Fe2O3 10.5% 

Na2O 4.7% 

MgO 4.1% 

CaO 3.7% 

TiO2 0.2% 

 

Dynamic Velocity Measurements 

Dynamic velocity tests were carried out with axially placed compressional and shear 

crystals of frequency 500 Hz. Measurements were carried out at the desired final 

confining pressure (3500 psi). Appendix A explains how to measure the dynamic 

velocity. Figure 21 and Figure 22 show a screenshot of the oscilloscope measuring the 



22 

P-wave and S-wave travel time for sample A at 3500 psi confining pressure. Results are 

summarized in Table 3. 

 
Figure 21.  Screenshot of the oscilloscope measuring the P-wave travel time for 

sample A at 3500 psi confining pressure 

 

 
Figure 22. Screenshot of the oscilloscope measuring the S-wave travel time for 

sample A at 3500 psi confining pressure 

 

Pick Point 

Pick Point 
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Table 3. Sample A Velocity Measurements 

Confining 

Pressure 

(psi) 

DENSITY 

(g/cc) 

P-wave velocity 

(m/s) 

S-wave velocity 

(m/s) 

Dynamic Elastic 

Modulus (GPa) 

Dynamic 

Poisson's 

ratio 

3500 

2.64 

4913.72 3073.29 58.71 0.18 

0 4724.73 2963.64 54.45 0.18 

 

Triaxial Testing and Injection 

Two main objectives for this test were to conduct a triaxial-injection test to understand 

the rock response to stimulation. And to collect all possible geomechanical information 

from the sample. This includes Mohr-Coulomb envelope, sample compressive strength, 

elastic parameters etc.    

 Test Parameters are presented in the Table 4. 

 

Table 4. Triaxial Test Input Parameters 

Specimen Type  Basalt 

Specimen Diameter  63.4 mm 

Specimen Length 127.51 mm 

Loading method used Strain control 

Strain Loading Rate  1x10-5 strain/sec 

Effective Confining Pressure 1500-3500 psi (Multistage test) 

Pore pressure differential across sample 

(Nitrogen) 
300 psi  

Strain measurements undertaken 
One axial LVDT’s, two strain gauges at 

center of sample – One axial and one radial  
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Test Results 

A description of each of the tests conducted on the sample is shown below: 

Room Temperature Test for Measurement of Elastic Parameters 

Confining pressure was increased to 3500 psi at room temperature. Before beginning 

loading the sample, the piston was lowered to come into contact with the sample. This 

was done by changing the displacement with a rate of 0.1 mm/sec on the MTS software 

and watching the force reading on the monitor. Having the force reading change from 

zero to a positive number indicated that the sample is touched by the piston. The sample 

was then loaded to a differential stress of 45 MPa at a strain rate of 1x10-5 strains/sec. 

And then unloaded back.  

Using the recorded data of the test, the differential stress is plotted versus axial strain. 

To calculate the average Young’s modulus the slope of the initial linear part of the plot 

which is about first half of the plot from beginning to dilation point is calculated which 

is shown in Figure 23. Also the radial strain is plotted versus axial strain and the after 

adding a trend line, the slope of the trend line is calculated as the Poisson’s ratio of the 

sample which is shown in Figure 24. 
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Figure 23. Stress vs Strain Plot for Sample A Conducted at 3500 psi Confining 

Pressure and Room Temperature for Young’s Modulus Calculation 

 

 
Figure 24. Radial Strain vs Axial Strain Plot for Sample A Conducted at 3500 psi 

Confining Pressure and Room Temperature for Poisson’s Ratio Calculation 
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High Temperature Test 

The sample was heated at a rate of 1.5oC/min. Strains (axial and radial) were recorded 

using LVDT. The plot below shows the effect of heating on the strain (Figure 25) 

 
Figure 25. Effect of Heating on the Strain (Negative Signe Means Expansion) 

 

As can be seen, the sample increases in length by almost 0.03% when the temperature is 

raised to 75 oC from 25 oC. In the end we can see some fluctuation in strain which is 

due to the temperature controller error in maintaining sample temperature; it still varies 

by +/- 5 oC once stable. Another way to represent this is by using a time and 

temperature vs strain plot (Figure 26). 
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Figure 26. Time and Temperature vs Strain (Negative Signe Means Expansion) 

 

This plot shows that temperature varies by +/- 5 oC which results in similar changes in 

strain.  

Verifying if the sample will fail due to injection  

This test was conducted to understand if a stimulation carried out by injection of gas 

into the sample resulting into an effective confining pressure of 1000 psi (from the 

initial 3500 psi) would be successful. The sample was therefore subjected to estimate 

in-situ conditions of 10000 psi vertical stress and 3500 psi horizontal stress. The sample 

was axially loaded to a vertical stress of 10000 psi at a strain rate of 1x10-5 strains/sec 

while maintaining a confining pressure of 5500 psi (Not effective) and a temperature of 

90 oC. Then vertical stress was maintained constant at 10000 psi, while nitrogen gas 

was injected at a pressure of 2000 psi resulting into an effective confining pressure of 

3500 psi. The injection was maintained for 30 mins from both ends of the sample to 

reach desired pore pressure faster. After 30 minutes the flow rate on both injection 

pumps to the top and bottom of the sample reached an equal flow rate with opposite 
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sign which indicated a uniform pore pressure in the sample. However, sample didn’t 

fail. This answered one desired question for testing of this sample, that sample won’t 

fail due to a stimulation treatment with an effective confining pressure of 3500 psi 

(assuming a vertical differential stress of 10000psi). Then the pore pressure increased to 

4500 psi resulting in an effective confining pressure of 1000 psi. However the sample 

still did not fail due to injection. Since the intention of the test was to create the Mohr - 

Coulomb envelope by performing a multistage triaxial test I did not increase the 

deviatoric stress to fracture the sample.  

Multistage Triaxial testing 

A multistage triaxial testing program was conducted to construct a Mohr circle failure 

envelope for the sample. The sample was tested at effective confining pressures of 3500 

psi, 2000 psi and 1500 psi. It was failed at 1500 psi effective confining pressure. 

Figures 27 and 28 show the stress vs strain plots and the Mohr - Coulomb envelope 

constructed for Sample A. The point at which deflection in volumetric strain occurred 

was taken as the failure strength for each confining pressure of 3500 psi, 2000 psi and 

1500 psi to find the failure envelope on the Mohr Coulomb plot. Failing the sample at 

1500 psi gave the real strength of the sample for that confining pressure, which leads to 

generate the actual envelope as presented in Figure 28. Figures 29 and 30 show the 

stress vs strain plot presenting the Young's Modulus and radial strain vs axial strain plot 

showing Poisson’s ratio for Sample A. The parameters resulted from stress strain plots 

and the Mohr - Coulomb envelope are presented in Table 5. 
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Figure 27. Differential Stress vs Strain Plot for Sample A 

 

 
Figure 28. Mohr - Coulomb Envelope Plot for Sample A 
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Figure 29. Stress vs Strain Plot Presenting the Young's Modulus for Sample A at 

High Temperature equals 41.7 GPa 

 

 
Figure 30. Radial Strain vs Axial Strain Plot Showing Poisson’s Ratio for Sample 

A at High Temperature equals 0.29. 
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Table 5. Results from Stress vs Strain Plots and The Mohr - Coulomb Envelope 

Average Young’s Modulus* 41.7 GPa 

Average Poisson’s ratio* 0.29 

Peak Strength**   180.9 MPa  

Axial strain at failure** 0.66% 

Initial Permeability* 46.8 nD 

Angle of friction 26.9O 

Cohesion 50.8 

* Both at effective confining pressure of 3500 psi  

** At effective confining pressure of 1500 psi 

Permeability was measured after failure the same way it was measured before 

fracturing. Top and bottom of the sample each were connected to a separate syringe 

pump. The pump connected to the top of the sample was injecting with a pressure of 

2000 psi and the pump connected to the bottom of the sample was injecting with a 

pressure of 1900 psi. Until the flow rate got stable on both pumps and the gas was 

getting injected and received at a same flow rate. At this point the flow rate was 

recorded and having dimensions of the sample the permeability was calculated using 

Darcy’s law. The permeability showed a large increase from 46.8 nD to >500 µD 

reflecting an increase of more than 1000 times (zero differential pressure, confining 

pressure of 3500 psi). The increase can be attributed to the large fracture seen to cut 

through the sample’s end after failure. It should be noted that there were multiple 

fractures with one large axial and an inclined large fracture (Figure 31).  
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Figure 31. Sample A after Failure (Two Views) 

 

Acoustic Emissions analysis 

Eight crystals placed across the sample as explained in Chapter 2 (Figure 32). A droplet 

of the “E-Z bound instant glue thick” with viscosity of 1500 CPS applied to the face of 

each AE crystal and then the crystals were placed on the sample surface by pushing it to 

the sample surface with fingers and holding it for 30 seconds to have it attached to the 

sample surface well. The amplitude cut off for all tests conducted on this sample was 

60dB. The higher amplitude cut off for this test can be attributed to the use of frame 

MTS 816 which has less noise cancelling capability than the larger and better sound 

insulated frame MTS 315. More detail on Acoustic Emission threshold amplitude 

determination and noise reduction is explained in appendix B. 
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Figure 32. Sample A with Attached Acoustic Emission Crystals 

 

The following Figures 33 and 34 show the results of the Acoustic emissions for the 

triaxial test with confining pressure 1500 psi, the final triaxial test which resulted in 

sample failure. As can be seen, most of the AE events are generated during failure due 

to the formation of fracture as expected.  
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Figure 33. Differential Stress and Cumulative AE Hits vs Time for Sample A 

 

 
Figure 34. Differential Stress and AE Hits Rate vs Time for Sample A 
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The location of these events was done in 2-D as well as 3-D using MISTRAS software. 

This is shown in Figure 35 and 36 below. The location of events can be seen to match 

reasonably with the actual fracture, although location algorithm also picks up some 

micro-cracking events within the sample at locations further away from the fracture. 

 

 
Figure 35. The Location of the Events Presented in 2-D Using MISTRAS Software 

beside the Fractured Sample A 
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Figure 36. The Location of the Events Presented in 3-D Using MISTRAS Software 

for Sample A 

 

We can see from the plots that the AE is mainly generated in the location of the 

fracture. The generated 3-D location is not completely accurate since it fails to pick up 

more events closer to the ends because both heads of the sample are covered with epoxy 

and it is not possible to attach the AE crystals at the tip of the sample but the closest 

place on the sample not covered with epoxy.  
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Chapter 5: Sample B - Tests, Procedures and Results 

Sample Description 

The sample is purplish in color and has an average depth of 4242.5 ft (uncut core depth 

of 4239.5 – 4245.5 ft). It has a length of 122.4 mm (4.8 in) and 63.5 mm (2.5 in) in 

diameter (L/D ratio of 1.9:1). The sample has white calcite veins (confirmed by XRD) 

running across the sample (Figure 37). It shows no visible fractures, minor or major. It 

does show few white and colored inclusions which vary in size from <1 mm – 5mm in 

length (Figure 38). Grain structure is fine grained and very well consolidated. Its 

mineral content is covered in the next section. 
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Figure 37. Sample B Cut and Polished Before Test 
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Figure 38. Zoomed in Version of Sample Showing the Calcitic Veins Present in the 

Sample Clearly 

 

XRD Results 

Same as previous sample the mineral content of this sample is determined by XRD test. 

Table 6 shows the mineral content of sample B. 

Table 6. Mineral content in Sample B 

Minerals Weight (%) 

Albite 33.1 

Labradorite 42.1 

Vermiculite 15 

Quartz 6.6 

Hematite 3.2 

 

Comparing the mineral contents of the sample A and sample B shows both of them 

contains Albite and Quarts and at about the same percentage, however the other 

minerals are different between two samples. 
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Dynamic Velocity measurements 

Dynamic velocity tests were carried out with axially placed compressional and shear 

crystals of frequency 500 Hz. Measurements were carried out at the desired final 

confining pressure (3500 psi). Appendix A explains how to measure the dynamic 

velocity. Figure 39 and Figure 40 show a screenshot of the oscilloscope measuring the 

P-wave and S-wave travel time for sample B at 3500 psi confining pressure. Results are 

summarized in Table 7. 

 
Figure 39. Screenshot of the oscilloscope measuring the P-wave travel time for 

sample B at 3500 psi confining pressure 

 

Pick Point 
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Figure 40. Screenshot of the oscilloscope measuring the S-wave travel time for 

sample B at 3500 psi confining pressure 

 

Table 7. Sample B Velocity Measurements 

Sample 

Designation 

DENSITY 

(g/cm^3) 

P-wave velocity 

(m/s) 

S-wave velocity 

(m/s) 

Dynamic Elastic 

Modulus (GPa) 

Dynamic 

Poisson's 

ratio 

Sample B 2.74 5456.98 3285.91 71.83 0.22 

 

Comparing the dynamic elastic modulus and dynamic Poisson’s ratio calculated from 

the dynamic velocity measurements shows that sample A has about 22% higher 

dynamic elastic modulus and dynamic Poisson’s ratio than sample B. 

Triaxial testing and Injection 

Testing sample B has the same objectives as sample A. The main objective is to have a 

successful triaxial-injection test in mentioned conditions. 

Test parameters for sample B are presented in the Table 8. 

 

Pick Point 
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Table 8. Triaxial Test Input Parameters 

Specimen Type Basalt 

Specimen Diameter 63.5 mm 

Specimen Length 122.4 mm 

Loading method used Strain control 

Strain Loading Rate 1x10-5 strain/sec 

Effective Confining Pressure  1500-4500 psi (Multistage test) 

Pore pressure differential across sample 

(Nitrogen) 
200 psi 

Strain measurements undertaken 
One axial LVDT’s, two strain gauges at 

center of sample – One axial and one radial 

 

Testing Results 

A description of each of the tests conducted on the sample is shown below: 

Room temperature test for measurement of elastic parameters  

Confining pressure was increased to 3500 psi at room temperature. The sample was 

then loaded to a differential stress of 45 MPa at a strain rate of 1x10-5 strains/sec. and 

then unloaded back. Using the recorded data of the test, the differential stress is plotted 

versus axial strain and after adding a trend line, the slope of the trend line is calculated 

as the average Young’s modulus of the sample which is shown in Figure 41. Also the 

radial strain is plotted versus axial strain and the after adding a trend line, the slope of 

the trend line is calculated as the Poisson’s ratio of the sample which is shown in Figure 

42. 
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Figure 41. Stress vs Strain Plot for Sample B Conducted at 3500 psi Confining 

Pressure and Room Temperature for Young’s Modulus Calculation. 

 

   

Figure 42. Radial Strain vs Axial Strain Plot for Sample B Conducted at 3500 psi 

Confining Pressure and Room Temperature for Poisson’s Ratio Calculation. 
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Heating up the sample 

The sample was heated at a rate of 1.5oC/min. Axial strain was recorded using LVDT to 

quantify the length change of the sample. The plot below shows the effect of heating on 

the strain (Figure 43) 

 
Figure 43. Effect of Heating on the Strain (Negative Signe Means Expansion) 

 

Figure 44. Time and Temperature vs Strain 

As can be seen, the sample increases in length by almost 0.03% when the temperature is 

raised to 75 oC from 25 oC. In the end we can see some fluctuation in strain which is 

due to the temperature controller error in maintaining sample temperature; it still varies 

by +/- 5 oC once stable.  
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Verifying the sample will fail due to injection 

The triaxial-injection test performed on sample B same as sample A with the same 

procedure and configurations. Sample B did not fracture through the triaxial-injection 

test. Therefore the sample was loaded axially to near dilation point (turning point of the 

volumetric strain curve) and was then taken to failure by injection with the flow rate of 

50 ml/sec.  

Triaxial-Injection test at high temperature conditions 

For the last part of the test, the intention was to fail the rock with injection. Therefore, at 

the moment of the turning point on the volumetric strain curve, the axial load was held 

constant and the sample was fractured by injecting nitrogen gas in to it. The sample 

temperature was 90o C. Figure below shows the stress-strain plot for the test (Figure 

45). 
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Figure 45. Differential Stress vs Strain Plot for Sample. All strains measured using 

strain gauges 

 

 

 

Table 9. Results from Stress vs Strain Plots  

Average Young’s Modulus* 60.7 GPa 

Average Poisson’s ratio* 0.25 

Peak Strength**   163.8 MPa  

Axial strain at failure** 0.33% 

Initial Permeability* 1.12 µD (micro Darcy) 

Final Permeability* 10.2 µD (micro Darcy) 

* At effective confining pressure of 3500 psi  

** At effective confining pressure of 2500 psi 

Permeability was measured after failure. The permeability showed a large increase from 

1.12 µD to 10.2 µD reflecting an increase of about 10 times (no differential pressure, 
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confining pressure 3500 psi). The increase can be attributed to the large fracture seen in 

the sample after testing. It should be noted that there were multiple fractures with one 

large axial and an inclined large fracture which did not intersect the ends of the sample 

(Figure 46).  

 

  

Figure 46. Sample B after Failure (Two Views) 
 

Acoustic Emissions analysis 

Eight crystals placed across the sample as explained in Chapter 2 (Figure 47). The 

amplitude cut off for all tests conducted on this sample was 60dB. The high amplitude 

cut off for this test can be attributed to the use of the heat capable frame MTS 816 
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which has less noise cancelling capability than the larger and better sound insulated 

frame MTS 315.  

 

 

Figure 47. Sample B with Attached Acoustic Emission Crystals 

 

The following figures (48 and 49) show the results of the Acoustic emissions for the 

triaxial test with confining pressure 1500 psi, the final triaxial test which resulted in 

sample failure. As can be seen, most of the AE events are generated during failure due 

to the formation of fracture as expected.  
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Figure 48. Differential Stress and Cumulative AE Hits vs Time for Sample B 

 

 
Figure 49. Differential Stress and AE Hits Rate vs Time for Sample B 
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The location of these events was done in 2-D as well as 3-D using MISTRAS software. 

This is shown in Figure 45 and 46 below. The location of events can be seen to match 

reasonably with the actual fracture, although location algorithm also picks up some 

micro-cracking events within the sample at locations further away from the fracture. 

 

 
Figure 50. The Location of the Events Presented in 2-D Using MISTRAS Software 

beside the Fractured Sample B 
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Figure 51. The Location of the Events Presented in 3-D Using MISTRAS Software 

for Sample B 

 

We can see from the plots that the AE is mainly generated in the location of the 

fracture. The generated 3-D location is not completely accurate since it fails to pick up 

more events closer to the ends.  
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Chapter 6: Sample C - Tests, Procedures and Results 

Sample Description 

Sample is dark gray in color however the side of the sample is light brown full core 

(5892.8 – 5893.6 foot depth) and the only wok done on the core was to polish the ends 

to ensure parallelism of 0.1mm between the two ends. As can be seen from Figure 52 

below, the outer surface wasn’t highly polished at most places. The sample was cleaned 

with a dry cloth to remove any dust or drilling mud left on the sample. The dimensions 

were then measured. It has a diameter of 3.97 in (100.8 mm) and 5.6 in (142.2 mm) in 

length (L/D ratio of 1.41) and a bulk density of 2.67 g/cc.   

 

 
Figure 52. Sample C before Test from Second View 

 

Having the CT scan of the core courtesy of Devon Energy shown on Figure 53, it is 

visible that there were not any fracture in the core initially. Note that sample core is 

only top 5.6 in of the full core shown on the left side of the CT scan images. 
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Figure 53. Side View CT Scan of Sample C at Three Different Vertical Layers 
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Dynamic Velocity measurements 

Dynamic velocity tests were carried out with axially placed compressional and shear 

crystals of frequency 500 Hz. Measurements were carried out at different confining 

pressures. Appendix A explains how to measure the dynamic velocity. Figure 54 and 

Figure 55 show a screenshot of the oscilloscope measuring the P-wave and S-wave 

travel time for sample C at 3000 psi confining pressure. Results are summarized in 

Table 10 knowing that the density of the sample is 2.67 gr/cc. 

 
Figure 54. Screenshot of the oscilloscope measuring the P-wave travel time for 

sample B at 3000 psi confining pressure 

 

Pick Point 
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Figure 55. Screenshot of the oscilloscope measuring the S-wave travel time for 

sample B at 3000 psi confining pressure 

 

Table 10. Sample C Velocity Measurements 

Confining 

Pressure (psi) 

P-wave velocity 

(m/s) 

S-wave velocity 

(m/s) 

Dynamic Elastic 

Modulus (GPa) 

Dynamic 

Poisson's ratio 

Uniaxial 3988.13 2150.80 31.93 0.29 

1000 4056.38 2319.36 36.05 0.26 

1500 5032.26 3001.66 58.78 0.22 

2500 5274.87 3199.42 65.97 0.21 

 

Triaxial testing and Injection 

Sample C has the same objectives as previous samples which is to have a successful 

triaxial-injection test in mentioned conditions. Test parameters for sample C are 

presented in the Table 11. 

Pick Point 
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Table 11. Triaxial Test Input Parameters 

Specimen Type Limestone 

Specimen Diameter 100.81 mm 

Specimen Length 142.2 mm 

Effective Confining Pressure 2000 psi (Multistage test) 

Loading method used Strain control 

Strain Loading Rate 1x10-5  strain/sec 

Pore pressure differential across sample 

(Nitrogen) 
300 psi 

Strain measurements undertaken 
Three strain gauges at center of sample – 

Two axial and one radial 

 

Testing Results 

A description of each of the tests conducted on the sample is shown below: 

Room temperature test for measurement of elastic parameters  

Confining pressure was increased to 2000 psi at room temperature. Sample was then 

loaded to a differential stress of 45 MPa at a strain rate of 1x10-5 strains/sec. and then 

unloaded back. Using the recorded data of the test, the differential stress is plotted 

versus axial strain and after adding a trend line, the slope of the trend line is calculated 

as the average Young’s modulus of the sample which is shown in Figure 56. Also the 

radial strain is plotted versus axial strain and the after adding a trend line, the slope of 

the trend line is calculated as the Poisson’s ratio of the sample which is shown in Figure 

57.  
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Figure 56. Stress vs Strain Plot for Sample C Conducted at 2000 psi Confining 

Pressure and Room Temperature for Young’s Modulus Calculation. 

 

 
Figure 57. Radial Strain vs Axial Strain Plot for Sample C Conducted at 2000 psi 

Confining Pressure and Room Temperature for Poisson’s Ratio Calculation. 
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Verifying if sample will fail due to injection 

The triaxial-injection test performed on sample C in the same manner as in previous 

samples with the same procedure. The sample was axially loaded to a vertical stress of 

6000 psi while maintaining a confining pressure of 4000 psi (Not effective) and 

nitrogen gas was injected at a pressure of 2000 psi resulting into an effective confining 

pressure of 2000 psi. Since the sample didn’t fracture by injection the pore pressure was 

increased to 3300 psi resulting in an effective confining pressure of 700 psi. Sample C 

did not fractured during the triaxial-injection test. Therefore the sample was loaded 

axially to near dilation point (turning point of the volumetric strain curve) to be 

fractured by injection. However it did not get fractured by injection near the dilation 

point.  

Triaxial-Injection test at room temperature conditions 

For the last part of the test the intention was to fail the rock under triaxial-injection and 

not to establish a Mohr Coulomb envelope. However the sample did not get fractured 

by injection near the dilation point and by increasing the axil load it got fractured by 

compression. Figure below shows the stress strain plot for the test (Figure 58). 
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Figure 58. Differential Stress vs Strain Plot for Sample. All strains measured using 

strain gauges 

 

Table 12. Results from Stress vs Strain Plots  

Average Young’s Modulus* 43.6 GPa 

Average Poisson’s ratio* 0.34 

Peak Strength*  178.1 MPa  

Axial strain at failure* 0.68% 

Initial Permeability* 1.12 µD (micro Darcy) 

* At effective confining pressure of 2000 psi  

 

The fracture on sample C reached both ends of the sample as shown on Figure 59 in two 

views. 
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Figure 59. Sample C after Failure (Two Views) 
 

Acoustic Emissions analysis 

Eight crystals spaced placed across the sample as explained in Chapter 2 (Figure 60). 

The amplitude cut off for all tests conducted on this sample was 60dB.  
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Figure 60. Sample C with Attached Acoustic Emission Crystals 

 

The following Figures (61 and 62) show the results of the Acoustic emissions for the 

triaxial test with confining pressure of 2000 psi, the triaxial test which resulted in 

sample failure. As can be seen, most of the AE events are generated during failure due 

to the formation of fracture as expected.  
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Figure 61. Differential Stress and Cumulative AE Hits vs Time for Sample C 

 

 
Figure 62. Differential Stress and AE Hits Rate vs Time for Sample C 
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The location of these events was done in 2-D as well as 3-D using MISTRAS software. 

This is shown in Figure 63 and 64 below. The location of events can be seen to match 

reasonably with the actual fracture although location algorithm also picks some micro-

cracking events within the sample at locations further away from the fracture. 

 
Figure 63. The Location of the Events Presented in 2-D Using MISTRAS Software 

beside the Fractured Sample C 
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Figure 64. The Location of the Events Presented in 3-D Using MISTRAS Software 

for Sample C 

 

We can see from the plots that the AE is mainly generated in the location of the 

fracture. The generated 3-D location is not completely accurate since it fails to pick up 

more events close to the ends.  
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Chapter 7: Conclusion 

The triaxial-injection test on two GEO-N2 samples from Newberry geothermal field 

and Mississippi lime sample were carried out The two GEO-N2 rocks were from a 

depth of 10000 ft and the Mississippi lime sample was from a depth of 6000 ft. The 

vertical stress for testing purposes was assumed at 1 psi/ft and horizontal stress was 

assumed as 3500 psi (1/3rd of vertical stress) for two GEO-N2 samples and 2000 psi 

(1/3rd of vertical stress) for the Mississippi lime sample.  

Sample A went through multi stage triaxial test after not fracturing initially by triaxial 

injection test. Sample B was fractured by triaxial injection however at a higher vertical 

load than desired. Sample C was not fractured by triaxial injection neither at the initial 

intended load nor at the volumetric curve turning point. 

The geomechanical properties of each sample have been characterized in this work. The 

results provided information regarding the elastic and failure properties along with 

compositional analysis, and permeability. High values of Young’s modulus were 

observed in both of the GEO N2 samples, about 41 GPa for sample A and 60 GPa for 

sample B. Mississippi lime sample had Young’s modulus at about 43 Gpa.  

Permeability measurements clearly show a large increase after fracturing. AE activity 

was observed and recorded during the tests which matched the fractures well, 

exponential increase was observed near and at failure.  

In terms of compressional and shear velocities, compressional velocity for sample A 

was on average 4800 m/s and average shear velocity was 3000 m/s, compressional 

velocity for sample B was on average 5400 m/s and average shear velocity was 3200 
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m/s, and compressional velocity for sample C was on average 4600 m/s and average 

shear velocity was 2600 m/s. Such high velocities exist in lower porosity rocks. 

Heat didn’t influence the elastic properties very much in these rocks. It is estimated that 

higher temperatures (>300 C) would probably create this effect. 

About 0.03% strain was observed in hydrostatic heating of the sample. 

Significant Acoustic emissions were observed during testing of the sample. This shows 

that significant MEQ’s can be expected to be generated during actual fracturing. The 

location analysis worked well for samples B and C. This shows that location techniques 

need to be improved more to better understand the location of failure plane in 3-D. 

 



67 

References 

Bakshi, R., M.E. Halvaei, A. Ghassemi. 2016. Geomechanical Characterization of Core 

from the Proposed FORGE Laboratory on the Eastern Snake River Plain, Idaho. 

 Bakshi, R., Eskandari Halvaei, M., and Ghassemi, A. Injection Experiments on Basaltic 

Tuffs under Triaxial and Heated Conditions with Acoustic Emissions 

Monitoring, ARMA 16-747, 2016. 

Bargar, Keith E. and Terry E.C. Keith. 1999. Hydrothermal mineralogy of core from 

geothermal drill holes at Newberry Volcano, Oregon.  

Crawford, A., and Wylie, D. (1987), A modified multiple failure state triaxial testing 

method, 28th US Rock Mechanics Symposium,133-140. 

Goodman, R.E. 1989. Introduction to Rock Mechanics. 2nd ed. 

Handin, J., and R. V. Hager, Experimental deformation of sedimentary rocks under 

confining pressure: Tests at high temperature, A.A.P.G. Bull., 42, 2892-2934, 

1958.  

INL/EXT-06-11746 report by MIT. 2006. The future of geothermal energy, Impact of 

Enhanced Geothermal Systems (EGS) on the United States in the 21st century. 

Kim, M. M., and H. Y. Ko.(1979), Multistage triaxial testing of Rocks, Geotechnical 

Testing 2: 98-105. 

Kovari, K., A. Tisa, H. Einstein, and J.A. Franklin. 1983. Suggested methods for 

determining the strength materials in triaxial compression, Int. J. of Rock Mech. 

& Min. Sci. & Geomechs Abs. 20: 283-290. 

Kwasniewski, M. Mechanical behavior of rocks under true triaxial compression 

conditions; volumetric strain and dilatancy. Archives of 

Li, Yawei, J. Wang, W. Jung, A. Ghassemi. 2012. Mechanical properties of intact rock 

and fractures in welded Tuff from Newberry volcano. 

Petruzˇa´lek M., Vilhelm J., Rudajev V., Lokajı´cˇek T., Svitek T., 2012. Determination 

of the anisotropy of elastic waves monitored by a sparse sensor network, 

International Journal of Rock Mechanics & Mining Sciences 60 (2013) 208–216 

Sruoga, N. P., G. H. Rubinstein. 2004. Porosity and permeability in volcanic rocks: a 

case study on the Serie Tobfera, South Patagonia, Argentina, Journal of 

Volcanology and Geothermal Research, Volume 132, Issue 1, 15 April 2004, 

Pages 31-43. 

Tran, D.T., Pagoulatos, A., C.H. Sondergeld. 2010. Quantify Uncertainty of Rock 

Failure Parameters From Laboratory Triaxial Testings Using Conventional And 



68 

Multistage Approaches, 44th U.S. Rock Mechanics Symp., June 27 - 30, 2010, 

Salt Lake City, Utah. 

Walkey, William C., and Chandler A. Swanberg. Newberry Volcano, Oregon: new data 

supports conceptual hydrologic model. Geothermal Resources Council. 

Transactions 14 (1990): 743-748.  

 



69 

Appendix A - Dynamic Velocity Measurement 

Dynamic velocity tests were carried within the triaxial cell just before and after the test. 

Velocities should be ideally measured at the in-situ conditions although measuring them 

at low confining pressures (500 psi at least) and then comparing those to higher 

pressures gives a qualitative idea of the compressibility of the material as well as its 

porosity. Very large differences (>10%) are seen in unconsolidated rocks while lower 

differences are found in consolidated rocks (<5%). The in-situ conditions for this rock 

was determined to be 3500 psi confining. Values below 500 psi couldn’t be measured 

due to insufficient strength of the signal to pass through the material at lower confining 

pressures. In the case of all the three samples, no significant differences were observed 

(< 5%) for the velocities measured at 500 psi and 3500 psi. This shows the well 

consolidated nature of these rocks. Tests were carried out with axially placed 

compressional and shear crystals, both of frequency 500 Hz, placed within the top and 

bottom platens.  

Before conducting dynamic tests, dimensions of each sample were measured and 

weighed; the density of each sample was then recorded. Looking at the signal reading 

on oscilloscope, a good signal is one where the transition from the initial noise to a high 

amplitude can be clearly seen without ambiguity. By measuring the travel time through 

the sample and subtracting the travel time from platen to platen (without a sample in 

between), the wave velocities of compression and shear waves through the rock were 

measured. The Young’s modulus and Poisson’s ratio based on these measurements were 

then recorded and reported. 
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Figure 65. Oscilloscope Screen Reading the Travel Time 

 

Pick Point 
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Appendix B - Acoustic Emission Threshold Amplitude Determination 

and Pencil Break Test 

An amplitude filter was used for these experiments. This was selected based on the 

‘pencil break test’. This involves removing unwanted noise which may be present in the 

area due to various factors (machinery use, vibrations etc). Although efforts are made to 

conduct the test such that the least noise is present, some of it is inevitable and must be 

removed lest it gets wrongly interpreted as an AE event due to changes in rock 

structure. In this case, a certain amplitude was chosen and the AE monitoring switched 

on. If any events were observed, then higher amplitude was selected. This was done 

until an amplitude was reached when no events were observed for a minute. To further 

confirm if the crystals were functioning, a pencil lead was taken close to both ends of 

the platens (each housing one crystal) and broken. If a single AE event was observed, 

then the chosen amplitude is saved and used for the test. The pencil break test is done 

several times before closing the chamber as once the test starts, it is not advisable to 

alter it. With regards to reduction of noise so as to reduce amplitude cut off, the AE 

machine was grounded to the main 315 frame. See Figure 66 below, thin steel wires 

were taken and connected with the preamplifiers. These were then further connected to 

the 315 frame. It was observed that the amplitude cut-off was reduced significantly after 

the grounding. 
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Figure 66. Grounding preamplifiers on AE system 

 

 

 

 

 

 

 


