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Abstract 

A better understanding of the basement, such as rock properties and faults 

orientation, is critical to study the earthquakes in central Oklahoma. The active 

seismicity in this region provides a great opportunity to study the velocity structures in 

the basement. The earthquake location is an important parameter for seismology such as 

hazard assessments, fault studies, induced seismicity, and others. 

In order to advance our understanding of the increase in seismicity occurring 

within Oklahoma and the resultant seismic hazards, I improved our ability to locate the 

earthquakes in three-dimensional (3D) space and improved the geological and 

geophysical model for central and north-central Oklahoma. I developed a pure Python 

package for automatically identifying the seismic phase types for earthquake 

monitoring, which is used for further seismological analysis, such as seismic 

tomography, focal mechanism studies, and others. A major result is a new 3D velocity 

model for the central Oklahoma region. The 3D velocity model provides new insights 

on the deep geologic features to depth of ~10 km, and significantly improved the 

earthquake locations. 

In order to process the massive amount of seismic data that the Oklahoma 

Geological Survey seismic network records, I developed a Python phase identification 

package: the PhasePApy for earthquake data processing and near real-time monitoring. 

All the data formats supported by Obspy (a Python open library for seismology) are 

supported within the PhasePApy. The PhasePApy has two sub-packages: the 

PhasePicker and the Associator, aiming to identify phase arrival onsets (picks) and 

associate them to phase types (P-wave and S-wave), respectively. The PhasePicker and 
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the Associator can work jointly or separately. Three autopickers are implemented in the 

PhasePicker sub-package: the frequency band picker, the Akaike Information Criteria 

function derivative picker, and the kurtosis picker. The PhasePicker triggers the pick 

with a dynamic threshold and can declare a pick with false pick filtering. Also, the 

PhasePicker identifies a pick polarity and uncertainty for further seismological analysis 

such as focal mechanism determination. There are two associators included in the 

Associator sub-package: the one-dimensional (1D) and three-dimensional (3D) 

Associator, which assign phase types to picks that best fit the predicted travel times of a 

potential earthquake by minimizing root mean square (RMS) residuals, respectively. 

Both associators use travel-time look up tables to determine the best estimation of the 

earthquake location and evaluate the phase type for picks. The PhasePApy package has 

been used extensively for local and regional earthquakes and can work for active source 

experiments as well. 

Two 3D tomographic models for central Oklahoma are derived by employing 

different methods for central Oklahoma with P- and S-phase arrival times of local 

earthquakes. I created the first velocity model by using the FMTOMO package with 

8194 M2+ earthquakes, the depths of which are greater than 3 km. I derived the second 

velocity model by using the SIMUL2000 package with 480 relative uniformly 

distributed composite events that include pick information from neighbor events within 

hypocentral distance less than 2 km. These two velocity models and Vp/Vs ratios show 

similar features on a large scale, but the model from SIMUL2000 has less velocity and 

Vp/Vs ratio variation. A strong lateral velocity heterogeneity within the Precambrian 

basement is present in both models, which indicates the presence of complex structures 
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in the upper crust of central Oklahoma. By comparing velocity models to gravity and 

magnetic data, most of the large-scale velocity anomalies generally correlate with the 

previous known features within crystalline basement in north central Oklahoma, such as 

mafic intrusion associate with the Osage County Microgranite and Spavinaw Granite, 

Central Oklahoma Granite Group, and southwestern extension of the Mid-Continent 

Rift (MCR) arm. A low Vp/Vs ratio zone is identified in the upper basement for depths 

of ~3 to 10 km, which may be due to the water-filled fractures. 

I obtained high-accuracy earthquake locations for central Oklahoma from 

01/01/2010 to 03/31/2016 employing the new 3D velocity model. The 3D velocity 

model algorithm improved the absolute locations of the earthquakes with the 

SIMUL2000. A 3D double-difference method (HYPODD 3D) followed to improve the 

relative locations for the clustered earthquakes. The relocated earthquakes show a 

hypocenter distribution centered at depth about 5 km, which demonstrate that most 

earthquakes occurred within the upper part of the crystalline basement. Numerous 

relocated clusters present clearer northeast-southwest (NE-SW) and northwest-southeast 

(NW-SE) orientations after the 3D model relocation, which are consistent with 

maximum horizontal stress state within the study region. Some of clusters suggest 

unmapped faults in the crystalline basement. I also relocated the cataloged earthquake 

locations with the 1D velocity double-difference method (HYPODD 1D) to compare to 

the results of the 3D velocity relocation. Both the 1D and the 3D velocity relocations 

improved the relative earthquake locations, and showed clear and narrow cluster 

orientations, but there were systematic shifts between the results. The southern 



 

 xviii 

earthquakes mainly shifted westward, and the northern ones shifted southward. On 

average, the horizontal shift is about 0.7 km.  
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Introduction 

Oklahoma has drawn a great deal of attention since 2009 due to the significant 

seismicity increase. Numerous earthquakes and seismometers in central Oklahoma can 

easily produce a large volume of data, which are almost impossible for analysts to 

identify all phase arrivals and earthquakes. I developed a robust and efficient software 

package PhasePApy, which is a very useful tool for automatically identifying a large 

number of earthquakes. Since 2009, the total number of Oklahoma earthquakes is much 

more than that of all events identified in the last few decades. Before 2009, the average 

number of earthquakes with magnitude greater than 3.0 was 1.6 per year. This number 

increased to 585 by 2014 and ~700 by 2015. The very active seismicity in central 

Oklahoma and the surrounding area provides a great opportunity to study the velocity 

structures in the crystalline basement of this region. A better understanding of the 

basement, such as optimal oriented faults and petrophysical properties of rock, is critical 

to study the increased seismicity in central Oklahoma. The earthquake location is an 

important parameter for seismology such as fault studies, induced seismicity, and 

others. The derived velocity model can improve the earthquake locations with high 

accuracy, which is useful to the following seismological research.  

In this dissertation, there are three projects included. Three main chapters 

connect to each other. Chapter 1 focuses on the Python package for automatically 

identifying seismic phases. In Chapter 2, a tomographic study is discussed for central 

Oklahoma and the surrounding region by integrating gravity and magnetic data. A 

comparison between the modeling results, gravity, and magnetic data is conducted to 

make an interpretation in the upper basement. I correlate several significant previously 
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known geological features from gravity and/or magnetic data to the 3D velocity 

modeling results. In general, there are two uses for 3D velocity modeling via seismic 

tomographic approaches: interpret geological structures and improve source locations 

with the modeling results. Chapter 3 is the study about the earthquake relocation with 

the 3D velocity model that is derived from Chapter 2. The accurate earthquake location 

is critical for many subsequent applications such as fault studies, earthquake hazard 

assessment, seismic travel time tomography, stress field analysis, induced seismicity 

and others. The 3D velocity model improves the earthquake absolute and relative 

locations by considering the velocity bias; the improved accurate earthquake 

hypocenters help to identify the relationship between the earthquakes and nearby faults, 

injection wells, and other geological structures in the crystalline basement. 
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Chapter 1: PhasePApy: A Robust Pure Python Package for 

Automatic Identification of Seismic Phases 

Introduction 

In increasing numbers globally, modern seismic monitoring networks, with 

broadband and/or strong motion seismometers, can easily produce large enough 

volumes of waveform data such that manual picking of phase arrivals by analysts 

becomes nearly impossible. The phase identification for a large amount of data is 

tedious work for a human being. Moreover, to some extent, manual analysis of 

seismograms and phase picking is subjective, and may depend on different analysts who 

may introduce bias and inconsistencies in phase-arrival data (e.g., Leonard, 2000). 

Therefore, phase identification will always be a critical issue both for manual phase 

identification and automatic algorithmic phase identification. Inaccurate and 

inconsistent phase arrival times can bias all subsequent analyses such as earthquake 

location, travel time tomography, and focal mechanism analysis. In order to analyze 

manual picking errors, Zeiler and Velasco (2009) performed two experiments to define 

and isolate phase picking errors. They stated that the signal-to-noise ratio (SNR) is the 

main source of error for an individual analyst. Leonard (2000) conducted the 

comparison of 78 teleseismic phases manually picked by four analysts and three 

automatic picking algorithms to conclude that the average difference between the 

analysts is greater than the difference between analysts and an automatic picker. 

There are many automatic phase arrival pickers based on different algorithms. 

Each kind of picker has its own advantages and limitations. Effectiveness and 

computational efficiency are two important measurements of an automatic algorithm. 
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Many factors can affect these two measures of an automatic picker, such as data quality 

and algorithm simplicity. The SNR can dramatically affect the behavior of automatic 

phase pickers (e.g., Zeiler and Velasco, 2009). The majority of picking algorithms can 

be classified into one of the following methods: energy transient methods in time-

domain or frequency-domain (e.g., Withers et al., 1998; Vassallo et al., 2012), 

autoregressive (AR) methods (e.g., Leonard and Kennett, 1999), high-order statistical 

methods (e.g., Baillard et al., 2014), neural network methods (e.g., Gentili and 

Michelini, 2006), and wavelet transform methods (e.g., Bogiatzis and Ishii, 2015). The 

most popular picking algorithms compare the short-term average (STA) and long-term 

average (LTA) of the characteristic function (CF) of a signal to determine the phase 

arrivals; this is a classic energy transient method (e.g., Allen, 1978; Baer and Kradolfer, 

1987; Lomax et al., 2012; Vassallo et al., 2012). These algorithms trigger and declare 

picks when the ratio of STA to LTA exceeds a predefined or dynamic threshold value. 

The STA/LTA method is an important automatic picking algorithm for early warning 

systems, due to its simplicity and effectiveness. Withers et al. (1998) discussed several 

STA/LTA algorithms including classic STA/LTA, delayed STA/LTA, recursive 

STA/LTA and Z-detector in time-domain and power spectrum density in frequency 

domain.  

Another picking method is based on autoregressive Akaike Information Criteria 

(AR-AIC) function (e.g., Akaike, 1974; Kitagawa and Akaike, 1978; Leonard and 

Kennett, 1999; Sleeman and van Eck, 1999; Zhang et al., 2003). By autoregressive 

approach, the seismogram window is divided into two different local stationary 

segments, which contain the noise and signal, respectively. Two segments of different 
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statistical properties are modeled as an AR process. The AR-AIC picker can determine 

the optimal onset time by looking for the global minimum of the AIC function of a 

seismogram. For this reason, it is necessary to choose a window that only includes the 

segments of interest. Therefore, phase arrival identification is required to choose the 

appropriate window before using the AR-AIC method. The signal pre-detection 

processing will increase the computation time and reduce the efficiency.  

Higher order statistics, such as kurtosis, is used to identify seismic phases due to 

the non-Gaussian distribution attribute of seismic waves (e.g., Panagiotakis et al., 2008; 

Baillard et al., 2014; Hibert et al., 2014). Artificial neural network methods are also 

used to search for phase onset by training the machine to recognize phase arrivals (e.g., 

Dai and MacBeth, 1995; Wang and Teng, 1997; Gentili and Michelini, 2006). In 

addition, wavelet transform is another approach for seismic signal analysis (e.g., Anant 

and Dowla, 1997; Akansu et al., 2010; Bogiatzis and Ishii, 2015). The two main types 

of wavelet analysis, discrete and continuous wavelet transform, can be used to detect 

both P- and S-phases.  

In this paper, we introduce a software package to identify phase arrival times 

and associate the picks to the type of seismic wave. This software package is developed 

as a Python package: PhasePApy, in order to leverage the growing number of scientific 

libraries being written in Python, mostly notably Obspy (Beyreuther et al., 2010). The 

choice of making our algorithms compatible with Obspy means that all data formats and 

access methods supported by Obspy are naturally supported; these include SEED, 

MiniSEED, SAC, SEGY, and others.  The other libraries on which Obspy and our 

algorithms rely are Numpy (Oliphant, 2007), Scipy (Jones et al., 2001), and Matplotlib 
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(Hunter, 2007). The PhasePApy is separated into two different tasks, which are 

implemented in two sub-packages: the PhasePicker and the Associator, aiming to pick 

phase arrivals and associate them to earthquakes, respectively. We implement three 

pickers based on different CFs: the frequency band picker (FBpicker), the AIC function 

derivative picker (AICDpicker), and the kurtosis picker (KTpicker). We also implement 

two associators: the 1D Associator and 3D Associator. Users can choose the appropriate 

picker and associator that best meet their requirements.  

The task of the PhasePicker is simply making picks of phase arrivals from 

seismograms. Each picker only has a small number of different parameters to input. The 

processing method FBpicker adapts to sampling rate and instrument gain 

systematically. The FBpicker algorithm is an algorithm modified from that of Lomax et 

al. (2012), which does not require extensive tuning (Vassallo et al., 2012) as there is no 

need to specify triggering thresholds and other parameters for each analyzed channel. 

The AICDpicker and KTpicker determine the phase arrival times based on the derivative 

of the AIC function and kurtosis, respectively. Many picking algorithms pick and 

declare phase types by using specified thresholds, but the PhasePicker employs the 

dynamic threshold. The PhasePicker only detects phase arrivals and identifies the phase 

onsets, but not phase types. Phase polarities and picking uncertainties can be determined 

as well by the PhasePicker. The picker itself can be set to make picks from global phase 

arrivals to near-field phase arrivals and reflections.  

Because the PhasePicker can pick any number of phase types that have 

sufficient energy contrast in the filtered waveforms, it is necessary to have a robust 

approach to automatically associate the picks to seismic phase types. The task of the 
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Associator is to associate the picks that best fit the different phase types associated with 

a particular earthquake. We developed two earthquake phase associators (fixed depth 

1D velocity model associator and 3D velocity model associator) appropriate for local 

and regional earthquake monitoring, but these methods could be adapted to 

accommodate any distance. The Associator can provide estimation of event location and 

origin time for the determined earthquake events. The primary function is not to locate 

the earthquake but properly identify the phases associated with the earthquake. 

Phasepicker Algorithms 

Characteristic Function 1: FBpicker 

We implement three pickers for pick identification; the first is the FBpicker, 

which is a modified transient energy method from Lomax et al. (2012). Before any 

processing, the FBpicker removes the mean and trend of the data with a least squares 

method. It is important to note that if the user is attempting to make picks for long-

period phases, a sufficiently long window of data is required such that this initial 

processing does not affect the ability to identify phases. The FBpicker applies an 

octave-filter (doubling the central frequency) to the seismograms and generates several 

frequency bands for each seismogram, which automatically adapt to instrumentation 

sampling rate. The central frequency of each consecutive band keeps doubling from a 

user-defined minimum band, which includes low-frequency components of interest, 

until the high corner of the next band of the last filtering band exceeds the Nyquist 

frequency (see Fig. S1, available in the appendix). The user can reduce the number of 

bands by decimating the data, which decreases the Nyquist frequency. The FBpicker 

allows users to change the corner order of the filtering, which determines the 
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attenuation for frequencies outside of the bandwidth. In order to reduce the Gibbs effect 

from the band-pass filtering, the filtered data of each band are cosine tapered and also 

user configurable i.e., users can modify the tapering percentage of the data. 

Following the method of Lomax et al. (2012), the FBpicker calculates the 

energy 𝐸𝑛 of the filtered data for each band: 

𝐸𝑛[𝑖] = 𝐵𝐹𝑛[𝑖]2,                                                              (1) 

where 𝐵𝐹𝑛[𝑖] is the band-pass filtered amplitude of ith sample of the nth band. We 

implemented RMS, and standard deviation (SD) mode to calculate the CF for each band 

in Equations (2) and (3), respectively:  

𝐶𝐹𝑛
𝑅𝑀𝑆[𝑖] =

𝐸𝑛[𝑖]

𝑅𝑀𝑆(𝐸𝑛[𝑖−1−𝑙:𝑖−1])
,                                            (2) 

𝐶𝐹𝑛
𝑆𝐷[𝑖] =

𝐸𝑛[𝑖]−𝑚𝑒𝑎𝑛(𝐸𝑛[𝑖−1−𝑙:𝑖−1])

𝑆𝐷(𝐸𝑛[𝑖−1−𝑙:𝑖−1])
,                                       (3) 

where l is the window length in a sample. For RMS mode, 𝐶𝐹𝑛
𝑅𝑀𝑆[𝑖] is the ratio of the 

transient energy of sample i of frequency band n to the RMS value of energy in the 

previous moving window; for SD mode, 𝐶𝐹𝑛
𝑆𝐷[𝑖] is the ratio of difference between the 

transient energy of sample i and the mean of its previous window for frequency band n 

to the standard deviation of the energy in the previous window. The CF quantifies the 

energy change relative to the energy level in the previous window. Therefore, the high 

𝐶𝐹𝑛[𝑖] indicates the high energy level of a sample compared to that in the previous 

window. Due to fewer numerical operations, the RMS mode can improve the 

computation time compared to the SD mode without significantly affecting the 

performance. The reason is that the trends of the data are removed in the data-

conditioning phase. RMS mode reduces the computation time by about 30%, when 

computed on a 6-minute segment of data. The FBpicker allows the user to customize 
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the CF calculating mode (RMS or SD) depending on their requirements. Finally, the 

FBpicker summarizes the 𝐶𝐹𝑛[𝑖] by taking the maximum value over all bands n for each 

sample i (Lomax et al., 2012) to obtain the CF. 

Characteristic Function 2: AICDpicker 

The AIC picker has been used in many P-wave picking algorithms for single or 

multiple component records by searching the global minimum of the AIC function 

calculated with the autoregressive technique (e.g., Leonard and Kennett, 1999; Sleeman 

and van Eck, 1999; Zhang et al., 2003). The AIC function of a seismogram of two 

signal segments can be represented as the function of division point 𝑃 (Sleeman and van 

Eck, 1999): 

𝐴𝐼𝐶(𝑃) = (𝑃 − 𝑀) log(𝜎1,𝑚𝑎𝑥
2 ) + (𝑁 − 𝑀 − 𝑃) log(𝜎2,𝑚𝑎𝑥

2 ) + 𝐶𝑜𝑛𝑠𝑡.,         (4) 

where 𝑃 is the division point, 𝑀 is the order of the autoregressive model, 𝑁 is the total 

length of the data, and 𝜎1,𝑚𝑎𝑥
2  and 𝜎2,𝑚𝑎𝑥

2  indicate the variance of the seismogram in two 

segments. Another approach without using the autoregressive method determines the 

AIC function directly from the seismogram (Maeda, 1985): 

𝐴𝐼𝐶(𝑃) = 𝑃 log{𝑣𝑎𝑟(𝑥[1, 𝑃])} + (𝑁 − 𝑃 − 1) log{𝑣𝑎𝑟(𝑥[𝑃 + 1, 𝑁])},         (5) 

where division point 𝑃 ranges over all the samples of the seismogram x. If the 

seismogram only contains the P-wave, the AIC picker can easily determine the phase 

onset by looking for the global minimum of AIC function. However, if the seismogram 

also contains the S-wave, it is difficult to identify the seismic phases by just searching 

for the global minimum of the AIC function. We take the absolute value of the first 

derivative AIC function as the CF for AICDpicker, because the first derivative of the 

AIC function is sensitive to the change of the AIC function. 
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Characteristic Function 3: KTpicker 

 The third picker in the PhasePicker is a kurtosis-based picker: the KTpicker. 

The kurtosis is a statistical measure to describe the degree of measurements 

concentration, which can be used as the CF of a seismogram. The kurtosis is high-order 

statistics of a variable, and has been widely used in identifying the seismic waves phase 

onset (e.g., Panagiotakis et al., 2008; Baillard et al., 2014; Hibert et al., 2014). We 

apply the kurtosis in a moving window through the time series to characterize the 

seismic signal. Kurtosis is defined as the standardized fourth moment about the mean of 

the measurements:  

    𝐾 =  
𝐸[(𝑋−𝜇)4]

(𝐸[(𝑋−𝜇)2])2 =
𝜇4

𝜎4.                                                   (6) 

In equation (6), 𝐸 is the expectation operator, 𝑋 is the measurements, 𝜇 is the mean of 

the measurements, 𝜇4 is the fourth moment about the mean, and 𝜎 is the standard 

deviation. White noise is normally (Gaussian) distributed, the kurtosis of which is 3 

(DeCarlo, 1997). Values of 𝐾 greater than 3 result in a higher peak compared to the 

Gaussian distribution, while values less than 3 result in lower peak than the Gaussian 

distribution. Therefore, the kurtosis characterizes the signal based on the shape of the 

distribution instead of the SNR, and as such, the kurtosis can work well for the signals 

with low SNR. 

Triggering, Declaration and False Pick Filtering 

The PhasePicker identifies, or triggers, the pick by using a floating threshold 

level, which is determined by multiplying the RMS of the CF in a moving window with 

a user-defined coefficient, instead of a fixed threshold. The floating threshold level may 

make the pick triggering independent of the noise level of CF to some extent. This 



 

 11 

dynamic threshold level is a method often applied in statistical process control called 

control charts (e.g., Alwan and Roberts, 1988) (e.g., 6-sigma). The threshold is 

determined by multiplying the RMS of the CF to a user-defined coefficient, which is 

roughly comparable to the number of standard deviations of the CF. The Associator 

allows the user to change threshold as a multiple of  based on the requirements of each 

case. The PhasePicker triggers picks at the time when the CF exceeds the dynamic 

threshold. We design the PhasePicker with a rollback algorithm to ensure that picks are 

declared at the same time as much as possible for different threshold levels. The 

PhasePicker will roll backward the triggering time along the CF until it reaches the first 

local minimum, at which point a pick is declared. Without the rollback algorithm, there 

will be a few samples difference between higher and lower threshold levels. Therefore, 

pick declaration is roughly independent of the triggering threshold level. The SNR of 

CF (SNRCF) of each pick is determined by the ratio of the first local maximum CF after 

the pick to the RMS of CF in the previous window. This feature can assist users in 

choosing the appropriate threshold level for the pick-triggering process. 

The SNR of a signal on different stations or time can vary over a wide range. 

Usually, the stations close to an earthquake’s epicenter have higher SNR than the 

distant ones. As would be expected, it is easier to trigger picks for channels with high 

SNR rather than the ones with low SNR. A lower dynamic threshold level can identify a 

greater number of smaller amplitude signals (indicated by low CF spikes), but false 

picks are more likely to be identified. A high threshold-triggering level can trigger high 

SNR signals and introduce fewer false picks, but may miss weak signals. Therefore, 

there is a tradeoff between the threshold levels for triggering the picks. By tuning the 
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threshold level, one can remove a significant number of false picks. This is different 

than the method of Lomax et al. (2012), where static thresholds are applied and do not 

change without reconfiguration and as such cannot account for changing noise levels 

due to things such as wind or cultural noise. From our experience, it is often possible to 

find a single dynamic threshold coefficient that is appropriate for a broad range of 

channels within a region. 

A high dynamic threshold level can identify picks that correspond to phase with 

high SNR. However, this approach often discards significant picks for phase arrivals 

with lower SNR. If users choose a relatively low dynamic threshold level, we 

implement two optional pick-filtering algorithms that attempts to preserve as many real 

picks as possible and remove questionable picks. The first utilizes a close-pick cleaning 

filter, which does not allow a following consecutive pick to occur within a user-defined 

amount of time. The second filter implements a short-period noise-cleaning filter, which 

determines whether a pick may be false or not by comparing the  in the previous and 

following window of a pick. The energy levels before and after phase onset are 

different, which can be used to determine whether the detected signal is a false or 

correct earthquake phase. The short-period noise-cleaning filter removes the pick if the 

 of the waveform amplitude in a short preceding window multiplied by a user-defined 

coefficient is greater than the  of the waveform amplitude in the window after the pick. 

Otherwise, the pick is considered a correct phase pick. In the case that there is another 

pick falling in the previous or following window, the window size will automatically 

shrink to the interval between two picks. Although it is possible that some of the 
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remaining picks are still false, after both false pick-cleaning filters are applied, a 

significant number of false picks can be filtered out.  

Polarity and Uncertainty 

The PhasePicker includes a method to determine the phase polarity or direction 

of first motion as compression, dilatation, or uncertain. Human beings determine the 

phase polarity by visually inspecting the difference between the amplitude of the phase 

and background noise level. If an analyst considers the amplitude large enough, he or 

she can assign the direction of first motion. If the amplitude is approximately equivalent 

to the noise level, it is difficult to identify the first arrival and the polarity of the phase. 

The PhasePicker determines the polarity in a similar way by comparing the phase 

amplitude to the noise level. When the pick is declared, the PhasePicker searches for a 

local maximum or minimum value along the waveform after the triggering time. The 

amplitude of the pick is determined as the difference between the average in the pick 

epoch and the identified extreme value. If the absolute value of the pick amplitude is 

greater than  of the seismic waveform in a previous window times a user-defined 

coefficient, the polarity will be declared.  

The uncertainty of a pick is not easy to determine because it is not easy to 

distinguish how much of the true seismic phase is buried in the noise. The SNR is a 

significant factor that affects the accuracy of the uncertainty determination. We employ 

the RMS of the CF before the declared picks and a user-defined coefficient to evaluate 

the picking uncertainty. The uncertainty-triggered picking time 𝑡𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑
𝑢𝑛𝑐𝑒𝑟𝑡  is obtained by 

rolling forward the declared time 𝑡𝑑𝑒𝑐𝑙𝑎𝑟𝑒𝑑 along the CF until the value of the CF 

exceeds the RMS times the user-defined coefficient. The PhasePicker determines the 
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uncertainty as the time difference between declared pick 𝑡𝑑𝑒𝑐𝑙𝑎𝑟𝑒𝑑 and uncertainty-

triggered pick 𝑡𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑
𝑢𝑛𝑐𝑒𝑟𝑡 . 

Results of PhasePicker 

We take a 6-minute window of data as an example to show the implementation 

and performance. The example seismogram is from a magnitude 2.7 earthquake that 

occurred in central Oklahoma on June 16, 2013, which is recorded on the vertical 

component of the OKCFA station in the Oklahoma regional network (OK). In this 

example, we use the FBpicker to demonstrate seismic phase arrival picking 

performance. The AICDpicker and KTpicker have similar picking performance. The 

sampling rate of the seismogram is 100 Hz. By using 1 Hz as the central frequency of 

the starting band, the FBpicker determines six bands with central frequency at 1 Hz, 2 

Hz, 4 Hz, 8 Hz, 16 Hz, and 32 Hz respectively (Fig. 1.1). In this example, we use the 

RMS and a 5-second moving window to calculate the CF for each band (Fig. 1.2). The 

strongest signal frequency component of this example is in the highest frequency band 

(32 Hz), which suggests that the seismogram corresponds to a local earthquake with 

higher frequency components.  

Figure 1.3 demonstrates the behavior of the CF, which is normalized by the 

maximum absolute value, and the dynamic threshold with 20 seconds of the moving 

window and 6 of dynamic threshold. We assign a value of zero for the very beginning 

windows (5 seconds and 20 seconds, respectively) of the normalized CF and dynamic 

threshold. In this example, the threshold of 6 can identify not only the real phase 

arrivals, but also introduce some false triggering picks (Fig. 1.4a). By tuning up the 

dynamic threshold level, such as 8 or even higher, most false picks can be removed. In 
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order to demonstrate the removal of false picks from each component by applying the 

two cleaning filters, we use the window length of 0.78 seconds for the close-pick 

cleaning filter to remove close-picks, but there are still considerable false picks 

remaining (Fig. 1.4b). Then, we use the window length of 2 seconds and the coefficient 

of 2 as the short-period noise-cleaning filter setup. After applying the short-period 

noise-cleaning filter, most of the false picks are filtered out (Fig. 1.4c). The last picks 

on component N and Z in Figure 1.4c are false picks, which have not been removed. 

They could possibly be from some micro earthquakes or high-frequency cultural noise.  

The FBpicker determines the polarity for declared picks (see Fig. S1.2, available 

in the appendix). We also show the normalized CF of the AICDpicker and KTpicker in 

Figures S1.3 and S1.4 (available in the appendix), but we only use picks from the 

FBpicker in the following processing demonstration. In these test data from vertical 

component of OKCFA, the picks from different automated picks are almost identical, 

with only a few samples difference. In our experience, the SNRCF of the declared picks 

is particularly useful information for choosing the appropriate coefficient for the 

dynamic threshold level, which can significantly affect the picking performance. By 

evaluating the SNRCF values of picks, the user will have a clue as to what threshold 

level can trigger the picks for actual phase arrivals, and avoid most false picks. The 

Associator can remove the remaining false picks by associating correct picks to the 

best-fitting earthquakes. 

Associator Algorithm 

The Associator uses identified picks and associates the picks with earthquakes 

using the following steps: pick aggregation, event candidate creation, origin time 
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analysis, and phase association. There are two associators in the sub-package: the 1D 

Associator and the 3D Associator. Both associators are using travel-time look up tables 

for P- and S-waves to determine earthquake location and to associate phases in this case 

for locally to regionally recorded earthquakes. The picks to associate can come from the 

PhasePicker, other picking algorithms, manual picks, or other sources. 

Step 1: The Associator aggregates picks from different components on the same 

station if the seismometer has multiple components. Before aggregating picks, the 

Associator first stacks picks from different components on the same station (see Fig. 

S1.5, available in the appendix). Ideally, P- and S-waves are only identified on vertical 

and horizontal components, respectively. However, in some cases, P- and S-waves are 

picked on the other components, respectively. Pick stacking without differentiating 

components can make use of as many identified picks as possible for the further 

derivative analysis, such as tomography studies. The additional picks may allow for 

future advancements of phase association or further tuning of the picking algorithms. 

Automatic picks may occur on multiple channels at a seismic station and may have 

slightly different times. It is necessary to group the picks from different components of 

the same station.  If the picks from different components have a time separation less 

than a user-defined pick link length, the picks are linked to create what we call modified 

picks. The Associator uses the minimum S-P time of the travel-time table multiplying a 

user-defined coefficient to determine the link length. The picks can be aggregated with 

either mean or median statistics mode, which takes the average value and median pick 

of the linked picks, respectively. Therefore, the aggregated pick is referred to as the 

modified pick. All the raw picks are associated with the modified picks for further 
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processing. Aggregating picks can reduce the number of picks necessary for the phase 

association and improves the computing efficiency.  

Step 2: The Associator creates event candidates for every modified pick pair 

from the same station. The candidate pick pair separation (S-P interval in time) can 

determine S-P interval in distance (a measure of distance from the earthquake epicenter 

to a seismometer, S-P interval in distance refers to the epicentral distance for all the 

following cases in the 1D Associator) by looking up the travel-time table. With the 

determined S-P interval in distance, the Associator calculates the origin time for the 

candidate by back projecting the P-wave travel time for the determined S-P distance. 

Each earthquake only has a single origin time; there must be some event candidates 

from different stations having similar origin times within some amount of uncertainty. 

Well-recorded or large earthquakes will naturally have a larger number of event 

candidates with origin times close to the actual earthquake origin time. The Associator 

is able to only process candidates with the S-P interval less than a certain user-

configurable cut-off distance to improve processing efficiency and force the regional 

restriction we chose.  

Step 3: The Associator analyzes the origin time clusters after all the event 

candidates are created. With a user-defined moving window through time, the 

Associator counts the number of unassociated event candidates with origin times falling 

within the moving window range. The origin time cluster analysis may roughly estimate 

when an earthquake occurred if the number of origin times in the cluster is greater than 

a predefined value. The minimum predefined value is 3, because triangulation for 

earthquake location requires at least 3 stations.  
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Step 4: The Associator determines the location for event candidate cluster by the 

count from high to low, and associates seismic phases to the unassociated picks. The 

Associator selects the first target cluster from all the candidate clusters that has the 

greatest number of event candidates. Once the event candidates in the first target cluster 

are used to associate to an earthquake, they will not be used in the cluster analysis for 

the second target cluster. Then the Associator re-runs the cluster analysis to determine 

the second target cluster among all the remaining clusters that has the greatest number 

of event candidates. An accurate earthquake location enhances pick association, 

although locating the earthquake is not the final objective of the Associator. The 

objective of the earthquake location algorithm in the Associator is to determine which 

pick pairs can fit the earthquake location best, and allow for picks not associated into 

pairs to possibly be identified as a phase arrival. The basis of the location algorithm in 

the Associator is to find a location with minimized RMS of misfits between S-P interval 

(in distance or epicentral distance for 1D Associator and in time for 3D Associator) and 

potential selected event candidates. Since any automatic phase picking algorithm may 

introduce false picks, a false pick close to a correct pick can introduce a false candidate 

with its origin time close to the one of the real event. In our package, one can reduce the 

false picks by tuning the PhasePicker, but meanwhile it is possible to miss the weak 

real seismic phase picks. If applying low dynamic threshold level, one may introduce 

false picks, which cause the false candidates. Due to the false candidates, two or even 

more event candidates from the same station may occur in an origin time cluster. The 

event candidates with close origin times can be viewed as concentric circles in a 2D 

perspective (Fig. 1.5a). The Associator divides the cluster with concentric circles into 
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several sub-clusters with event candidates from unique stations (no event candidates 

from the common station), calculates the RMS residuals for all the subsets, and 

determines the subset of candidates that minimizes RMS residuals as the best solution. 

In this way, the best fitting location can be determined, and false candidate(s) can be 

identified. The Associator includes an outlier evaluation function to determine whether 

an event candidate is an outlier by evaluating the residual. If the residual of an event 

candidate is greater than a user-defined parameter, the Associator will remove the 

candidate from the cluster as an outlier and repeat the location determination process 

until no outlier appears. Finally, in order to control the processing quality, we design a 

user-configurable RMS threshold and set the minimum number of observations to 

declare an earthquake. An earthquake is declared only if the RMS of misfits is less than 

a threshold, and the number of observations is greater than the minimum observation 

number.  

Step 5: After all the earthquakes are identified, and all P- and S-phase arrival 

pairs are associated, it is still possible that there are individual modified picks that have 

not been associated with any earthquakes. Modified picks that do not have a P- and S-

phase arrival pair may also represent phase arrivals associated with the associated 

earthquakes. These un-associated modified picks are then evaluated to determine 

whether the picks may be a single-phase arrival for an earthquake.  The travel time of 

an individual single phase is calculated for phase arrivals in the travel time look up table 

based on the distance between the estimate of earthquake location and the seismometer. 

It is then possible to determine if the modified pick corresponds within uncertainty to 

the origin time of an identified earthquake. If an individual modified pick can be 
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associated to an earthquake then all its aggregated raw picks are associated to the 

earthquake with the appropriate phase.  

Both the 1D Associator and 3D Associator take advantage of the fact that the 

PhasePicker does well at picking both P- and S-phase arrivals for local and regional 

earthquakes. For the 1D Associator, the location algorithm determines the hypocenter of 

an earthquake by searching the best estimation that minimizes the RMS residuals 

between the S-P intervals in distance 𝑟𝑖 and the distance from the trial epicenter to 

stations 𝑑𝑖: 

R =√∑ (𝑟𝑖−𝑑𝑖)2𝑁
𝑖=1

𝑁
,                                                             (7) 

where 𝑁 is the number of stations. A location determination example with four event 

candidates is shown in Figure 1.5b. With an initial trial epicenter, the 1D Associator 

iterates the location search until the best estimation of hypocenter is determined. The 

final location will be close to the intersection of the circles (black star in Fig. 1.5b). The 

location uncertainty of the 1D Associator is determined as the RMS residuals of 

distance:  

𝑈𝑙𝑜𝑐 = √∑ (𝑟𝑖−𝐷𝑖)2𝑁
𝑖=1

𝑁
,                                                            (8) 

where 𝐷𝑖 is the distance from each station i to the final determined earthquake location. 

For the 3D Associator, the hypocenter is determined by using a grid-search 

algorithm, minimizing RMS residuals between the predicted travel-times 𝑡𝑖 and the S-P 

intervals in time 𝑡𝑖
𝑠−𝑝

: 

𝑅 =  √
∑ (𝑡

𝑖
𝑠−𝑝

−𝑡𝑖)2𝑁
𝑖=1

𝑁
,                                                             (9) 
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where 𝑁 is the number of stations. The 3D Associator uses a pyramid grid-search 

algorithm. The pyramid search is a search scheme breaking the searching grids into 

several sub-blocks (at most 8 sub-blocks in one search iteration) and finding the one 

with the least RMS of travel-time misfits. The identified sub-block that minimizes the 

RMS is then broken up and grid searched for the node that minimizes the RMS 

residuals until the sub-block cannot be split (less than or equal to three grids in each 

dimension). Finally, we employ a fine search to the node from the last iteration of 

pyramid search, in order to identify the node with the global minimum RMS residuals. 

The fine search compares the RMS residuals of all the surrounding nodes to the central 

node. If the node of minimum RMS residuals is in surrounding nodes, the fine search 

process is re-centered with the new node, and continues comparing the RMS residuals 

of the central node to the surrounding nodes until the node of minimum RMS residuals 

is in the center. The location uncertainty in the case of the 3D Associator is determined 

as the RMS residuals of travel time:  

𝑈𝑙𝑜𝑐 = √
∑ (𝑡

𝑖
𝑠−𝑝

−𝑇𝑖)2𝑁
𝑖=1

𝑁
,                                                    (10) 

where 𝑇𝑖 is the predicted travel time from each station i to the final determined 

earthquake location. The grid size used for the 3D velocity model can affect the 

uncertainty since dense girds will improve the resolution of location search, but 

dramatically increase search times required to associate phases to an earthquake. 

The location determination algorithms for the 1D and the 3D Associator are 

based on minimizing RMS misfits of S-P interval in distance (hypocentral distance) and 

S-P time, respectively. The hypocentral distance relates the S-P time with the known 
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velocity model. Therefore, the 1D and the 3D Associator determine the earthquake 

location with the same method, but by minimizing different RMS misfits.   

Results of Associator 

We choose minimum S-P time (0.78 seconds) to aggregate the picks for the 

1day data test. The median mode is chosen in the picks aggregation for our example, so 

that outliers will not bias our results. There are 6023 picks identified, and 4832 

modified picks remain after pick aggregation, which indicates that 1191 (~20%) picks 

are aggregated. Based on the dimensions of our study area we use 350 km as the cut-off 

distance to create an event candidate. A window length of 7 seconds is selected to 

process 1-day of data on June 16, 2013. A statistical result of the origin times falling in 

the moving window is shown in Figure 1.6a, including candidates from the common 

station (concentric circles in Fig. 1.5a). Figure 6b demonstrates the cluster analysis with 

concentric circles excluded, and clusters with counts greater than three probably 

indicate earthquakes. One of the events, which occurred at 15:38:50 on June 16, 2013, 

is located as an example shown in Figure 1.7. The star and its surrounding circle (very 

small: ~0.03) indicate the epicenter and the location uncertainty of the earthquake. The 

example in Figure 1.7a indicates that the earthquake is a well-recorded event that 

occurred in central Oklahoma. The 1D Associator determined S-P intervals could match 

the modeled travel-time curve well in the subplot to the left. The cross section plot (Fig. 

1.7b) shows the waveforms and associated phases from all the stations in Figure 1.7a. 

The short bars are the associated picks, and the gray dots indicate where the bars cross 

the waveforms, which match the modeled P and S curves quite well. The 1D Associator 

assigns picks matching the upper and lower curve as P- and S-phase respectively. 
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The same earthquake is processed with the 3D Associator shown in Figure 1.8. 

We use 30, 40, and 4 grids in x, y, and z directions, respectively. Grid spacing is 0.1 

degree for both latitude and longitude, and 3 km for depth. In the initial pyramid 

searching stage, grids in each direction are split into two segments, thereby having 8 

sub-blocks for the first search. The 3D Associator determines the deepest central node 

of the southeastern sub-block as the best solution for the first search (hexagon in Fig. 

1.8a and the node depth in Fig. 1.8b). The pyramid search continues breaking up the 

identified sub-block and searching the central node with the minimum RMS residuals 

for each iteration (pentagon, square, and inverted triangle in Fig. 1.8). The depths of the 

determined node in the pyramid search are indicated in Figure 1.8b to the right with 

corresponding symbols. When the pyramid search finished, the fine search keeps 

comparing the RMS residuals of all surrounding nodes to the central node for several 

iterations to find the node with global minimum RMS residuals (circles in Fig. 1.8a and 

1.8b).  

Conclusions 

We designed a Python automatic phase identification package: PhasePApy. The 

PhasePApy consists of two sub-packages: the PhasePicker and the Associator, which 

can identify picks and determine phase types, respectively. The PhasePicker is designed 

to automatically detect the seismic wave phase arrival times. Three different pickers: 

the FBpicker, AICDpicker, and KTpicker, are implemented in PhasePicker. The CFs for 

these three pickers are based on transient energy ratio, derivative of AIC function, and 

kurtosis, respectively. We employ the dynamic threshold method based on statistical 

process control (e.g., Alwan and Roberts, 1988) in the PhasePicker for pick triggering 
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to automatically adapt to instrumentation differences. The threshold level is determined 

based on both the noise level of the CF and a level control coefficient, which simplifies 

picker tuning over the FilterPicker (Lomax et al. 2012; Vassallo et al., 2012). In order 

to ensure the floating triggering threshold does not affect the declared picks, we 

implement a rollback algorithm to roll backward the triggering point along the CF to 

search for the local minimum to declare a pick. The PhasePicker has functions to 

determine the pick’s polarity and uncertainty, which are designed for other processing 

purposes, such as focal mechanism analysis. The Associator identifies the phase types 

by searching for the picks that can best fit the determined earthquakes. Both 1D and 3D 

Associator aggregate the picks from different components on the stations to modify 

picks in order to improve computation efficiency and make use of as many picks as 

possible. By creating and back projecting the event candidates, the Associator conducts 

cluster analysis to search for the potential origin time cluster, in which event candidates 

have close origin times. The Associator evaluates RMS residuals to determine which 

picks can associate to the earthquakes. 

There are only a few parameters to tune in the PhasePApy package. All 

parameters of the picker and associator are intuitive and easy to set. Many phase-

picking algorithms can only identify P-wave phase arrival times; one advantage of our 

seismic phase identification system is that it has the capability to identify both P- and S-

phase arrival times. Moreover, other phase types with sufficient SNR can be recognized 

by adapting this method to accommodate any distance. In addition, the PhasePApy can 

process and integrate the new incoming data with existing data, which can improve the 

earthquake location, origin time, magnitude, number of observed first motion of P-
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waves, and as such can help further seismological analysis such as tomography and 

focal mechanism studies. Depending on users’ requirements, the PhasePicker and the 

Associator can work separately or jointly.   

Currently, PhasePApy is not designed to run in real time, but it can be utilized in 

a near real-time environment such as that employed for auto-locations and event 

notification at the Oklahoma Geological Survey (OGS). An older version of the 

PhasePApy package is being used to monitor the earthquakes in near-real time for OGS. 

The OGS, currently, automatically identifies and locates more than 1000 earthquakes 

each month in Oklahoma and surrounding regions. We compared the events identified 

by the PhasePApy to those manually identified, and the method presented here can 

automatically identify nearly all earthquakes of magnitude 2.0 or greater by using just a 

subset of the available stations. The PhasePApy can be applied beyond earthquake 

phase association and has been seen to perform well for active source experiments. The 

PhasePApy can clearly identify phase onsets and associate those phases to the active 

source. In addition, the inclusion of the 3D Associator makes the use of the PhasePApy 

appropriate for micro-seismic monitoring of well stimulations, as well as other 

applications. The PhasePApy should work well for processing micro-seismic data 

independent of the surface or down-hole geometry.  
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Figure 1.1 A de-trended example seismogram (top panel) from vertical component of 

station OKCFA in Oklahoma regional network (OK) is octave-filtered with 6 

determined bands (𝑩𝑭𝟏-𝑩𝑭𝟔) from the FBpicker. The sampling rate of the data is 100 

Hz. The central frequency of each band is labeled in the middle of each panel. A 10% 

tapering is applied to all bands. Amplitude is in counts. 
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Figure 1.2. The de-trended seismogram on vertical channel from OKCFA (top panel) 

and the FBpicker determined the 𝑪𝑭𝒏 (𝑪𝑭𝟏-𝑪𝑭𝟔) with RMS mode. Amplitude is in 

counts. 
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Figure 1.3. (a) The de-trended seismogram on vertical channel from OKCFA. (b) The 

FBpicker summarizes and normalizes the CF (solid line), and the dynamic threshold 

level of 6 shown as a dashed line. Amplitude is in counts. 
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Figure 1.4. The FBpicker false pick filtering on E, N and Z components. (a) All 

declared picks without applying false picks filters, (b) only applying the close-pick 

cleaning filter, (c) applying both close-pick cleaning filter and short-period noise-

cleaning filter. Amplitude is in counts. 
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Figure 1.5. (a) Six event candidates in the origin time cluster, which are A, B, B’, C, C’, 

and D with the determined radius: 𝒓𝑨, 𝒓𝑩, 𝒓𝑩
′ , 𝒓𝑪, 𝒓𝑪

′ , and 𝒓𝑫. Event candidate B and B’ 

are from the common station. Event candidate C and C’ are from another common 

station. There are four combinations to create the sub-cluster with event candidates only 

from different station: S1 = [A, B, C, D], S2 = [A, B’, C, D], S3 = [A, B, C’, D], and S4 = 

[A, B’, C’, D]. Triangles represent the stations from where the event candidates come. 

(b) After excluding concentric circles, location determined by minimizing the RMS of 

the misfits between the S-P interval in distances 𝒓𝒊 and the distances 𝒅𝒊 from stations to 

trial epicenter (gray star). The final determined location is around the circles crossing 

area (black star).  
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Figure 1.6. Cluster analysis of 1-day data on June 16, 2013. (a) Clusters including 

concentric circles. (b) Clusters excluding concentric circles. 
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Figure 1.7. Seismograms from an earthquake that occurred at 15:38:50 on June 16, 2013. (a) Map view of the event location 

determination. The triangles are the stations (green: TUL1 (big), FNO (small); blue: OKCFA (big), LC30 (small); red: WMOK; cyan: 

W35A; black: U32A; yellow: SIO; magenta: X34A). Circles are S-P interval in distance of event candidates. The star in the crossing 

area indicates the epicenter. The subplot shows the modeled S-P time curve and the 1D Associator determined S-P times for event 

candidates. (b) Cross section plot of the FBpicker and 1D Associator performance on channel E. Two dash lines are phases travel time 

curves (Upper: P; Lower: S). Short bars: the associated picks from the stations. Gray dots: where the bars cross waveforms. 
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Figure 1.8. Grid search for the hypocenter of the same earthquake in Fig. 1.7(a). Map 

view of the searching process. Gray crosses: searching grids; yellow triangles: seismic 

stations; colored lines: sub-block boundaries; polygons and circles: the determined grid 

with least RMS residuals in each search. (b) Depths of the grids. The polygons and 

circles are consistent with the ones in (a). 
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Appendix: Supplementary material 

Octave band-pass filtering of the FBpicker is shown in Figure S1.1. The 

consecutive band doubles the central frequency until the high corner of next band 

exceeds the Nyquist frequency. If the central frequency of a filtering band is N Hz, the 

low and high corner is 0.75×N Hz and 1.5×N Hz, respectively. For the next band, the 

central frequency is 2×N Hz; the low and high corner is 1.5×N Hz and 3×N Hz, 

respectively, and as such can ensure that there is no gap and significant overlap in 

filtering band and all signal components below Nyquist frequency can be resolved. We 

take the window length of 10 in samples and the coefficient of 10 for pick polarity 

determination (Fig. S1.2). The polarity method determines the polarity of the first pick 

from the vertical component as dilatation (denoted as ‘D’). The normalized 

characteristic functions of the AICDpicker and the KTpicker are in Figures S1.3 and 

S1.4, respectively.  

The Associator stacks and aggregates picks with a user-defined link length. The 

picks from different components of the same station are stacked for aggregation. If the 

succeeding pick is close to the preceding one (less than the link length), the succeeding 

pick will be linked for the pick aggregation. However, if there is a pick from the same 

component that has already been linked, the succeeding pick will be treated as the first 

pick in the next pick aggregation process (Fig. S1.5). Although P1 and P2 are less than 

link length; they are treated as different aggregated picks.  

The data from the Oklahoma Geological Survey OK network are archived and 

available at the Incorporated Research Institutions for Seismology (IRIS) Data 

Management Center (DMC) through http://ds.iris.edu/ds/nodes/dmc/. The data from 
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station OKCFA can be downloaded using IRIS DMC utilities. The PhasePApy package 

is available on GitHub at https://github.com/austinholland/PhasePApy. 
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Figure S1.1. Determination of frequency bands for octave-filter from the FBpicker. (a) 

The central frequency of a band is doubled to that of its previous band. (b) The high-

corner frequency of the last band (central frequency is N Hz) cannot exceed the Nyquist 

frequency fN. 
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Figure S1.2. Example with the polarity determination (D stands for Down) of a pick on 

the vertical component signal, dashed line indicates the pick. Amplitude is in counts. 
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Figure S1.3. (a) De-trended raw seismogram on the vertical channel from station 

OKCFA. (b) AIC function of data. (c) The normalized derivative of the AIC function, 

and the dynamic threshold level of 6 is in dashed line. Amplitude is in counts. 
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Figure S1.4. (a) The de-trended vertical channel seismogram from OKCFA. (b) The 

KTpicker normalized CF, and the dynamic threshold level of 6 is in the dashed line. 

Amplitude is in counts. 
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Figure S1.5. Stack and aggregate picks to obtain the modified picks from different 

components on the same station. N, E, and Z indicate two horizontal and a vertical 

components, respectively. The dashed line represents the link length to group the picks 

from different components for aggregation. P1, P2, and P3 are the aggregated picks 

from the stacking picks. 
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Chapter 2: Tomographic Study for Central Oklahoma by 

Integrating Gravity and Magnetic Data 

Introduction 

Oklahoma has drawn a great deal of attention because a large number of 

earthquakes have occurred in recent years (e.g., Ellsworth, 2013; McGarr et al., 2015; 

Petersen et al., 2015). Since 2009, the total number of Oklahoma earthquakes has 

exceeded that of all events identified since statehood. The average number of 

earthquakes with magnitude equal to or greater than 3.0 before 2009 was 1.6 per year, 

and by 2014 this number increased to 585 (Darold et al., 2015). Earthquakes are 

expected to occur within active tectonic regions. It is unusual that such large earthquake 

swarms occur in an intraplate region where the expected strain accumulation is low 

(Ellsworth, 2013). Most seismicity in Oklahoma occurred in the Precambrian basement, 

and exhibit general spatial correlation with areas where wastewater injection is common 

(Ellsworth, 2013; Holland, 2013; Keranen et al., 2013, 2014; Darold et al., 2014, 2015; 

Murray, 2014).  

There are several previous studies to investigate the relationships between the 

seismicity and tectonics in Oklahoma (e.g., Luza and Lawson, 1981, 1982). Prior to 

2009, the earthquakes in Oklahoma occurred over a broad region, without showing a 

clear relationship with previously known structures. However, the recent profound 

seismicity increase may be related to reactivation of faults and/or fractures within the 

basement, which could be triggered by wastewater injection that increases the pore-

pressure to promote fault slip. The reactivation of subsurface faults may play an 

important role in the recent seismicity increase in central Oklahoma because some 
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earthquake clusters align with the mapped subsurface faults or extension of the mapped 

fault trends. However, the majority of the seismicity clusters do not well correlate with 

mapped faults, which probably suggest that many faults are deep in the basement, and 

have not been documented with shallow subsurface methods (McNamara et al., 2015). 

Most identified subsurface faults in central Oklahoma are northeast-southwest (NE-SW) 

or northwest-southeast (NW-SE) trending orientation. Holland (2013) quantified the 

probability (or risk) of triggered seismicity as function of the fault orientation and 

general stress field within Oklahoma. Darold and Holland (2015) updated the 

preliminary optimal Oklahoma fault orientations based on oil and gas industry data and 

published literature. 

The basement structures that formed in multiple tectonic and metamorphic 

episodes control local structure evolution such as faulting and/or folding in the 

overlying sedimentary section (Gay, 1995). Therefore, a better understanding of the 

basement, such as optimally oriented faults and petrophysical properties of rock, is 

critical to study the increased seismicity in central Oklahoma. Although there were 

some seismic studies conducted in central Oklahoma, only a few of them image 

structures within crystalline basement (e.g., Tryggvason and Qualls, 1967; Toth, 2014). 

A three-dimensional (3D) tomographic study in central Oklahoma can be a good 

complementary to seismic reflection studies that were primarily for oil and gas 

exploration and only penetrate into subsurface sedimentary layers.  

In order to investigate upper crustal structures of this region, which are difficult 

to obtain from wells data and reflection seismic data, we derive two 3D velocity models 

and Vp/Vs ratios with the FMTOMO (Rawlinson and Urvoy, 2006) and the 
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SIMUL2000 (Thurber, 1983) software packages, respectively. The 3D velocity and 

Vp/Vs ratio variation in a crystalline basement can provide new insights of geological 

structure. Furthermore, the 3D velocity model can be used to improve locations of the 

earthquakes within this area as well. 

Geological Background 

Oklahoma has several well-documented geological structures that formed in the 

Late Precambrian, Early Paleozoic, and Pennsylvanian (e.g., Keller et al., 1983; 

Denison et al., 1984; Perry, 1989). Several studies summarized basic evolution of the 

Precambrian and Cambrian basement of the southern Midcontinent region (e.g., 

Muehlberger et al., 1967; Denison et al., 1984; Adams and Keller, 1996; Keller and 

Stephenson, 2007), which suggest that the depth to basement is about 1 km in northern 

Oklahoma and >10 km in southern Oklahoma. The Paleozoic tectonic activity produced 

the major structures in Oklahoma (Northcutt and Campbell, 1995; Johnson and Luza, 

2008). The asymmetric Anadarko Basin is the deepest basin in North America (>10 km) 

that formed in late Paleozoic, which is bounded by the inverted rift structures, Wichita 

Uplift, in southwestern Oklahoma. The Arkoma Basin is a large foreland basin in 

southeastern Oklahoma, which is overthrusted by the Ouachita Mountains from the 

south. The Arbuckle Uplift that formed during the Ouachita Orogeny in south central 

Oklahoma separates the Anadarko Basin and the Arkoma Basin. The Wichita and 

Arbuckle Uplift and southern Anadarko Basin are structural elements of a failed arm of 

a Cambrian triple junction that are evident in the gravity map shown in Figure 2.1. This 

triple junction formed a passive continental margin with one arm extending 

northeastward across southern Arkansas and another one extending southwestward 
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across eastern Texas. The NW-trending third arm formed the Southern Oklahoma 

Aulacogen (SOA) (e.g., Shatski, 1946; Hoffman et al., 1974; Keller et al., 1983; Brewer 

et al., 1983; Kruger and Keller, 1986; Perry, 1989; Keller and Stephenson, 2007; Bucky, 

2012), which is a classic example of an intraplate failed rift arm that was reactivated 

and inverted in the Pennsylvanian to form a series of uplifts with structural relief greater 

than 10 km (e.g., Shatski, 1946; Hoffman et al., 1974; Gilbert, 1983). The Anadarko 

Shelf and Cherokee Platform are gently dipping areas in northern Oklahoma. The 

Nemaha Fault Zone (NFZ) in north central Oklahoma, the Wilzetta Fault Zone (WFZ) 

in central Oklahoma, and the thrusting faults produced by the late Paleozoic continental 

collision in southwestern, southern, and southeastern Oklahoma are the major fault 

system in Oklahoma. 

In addition, the Mid-Continent Rift (MCR) is an important tectonic feature in 

Oklahoma that formed in Proterozoic (Fig. 2.1), which can be identified from gravity 

and magnetic data (e.g., Adams and Keller, 1996; Stein et al., 2014). The west arm of 

the MCR was interpreted to at least extend to southern Oklahoma from the outcrop area, 

seismic reflection profiles, and drilled samples from high gravity anomaly area (e.g., 

Denison, 1966; Adams and Keller, 1996; Merino et al., 2013; Stein et al., 2014). The 

interpreted southward extension of the MCR may associate with seismicity increase in 

central Oklahoma. 

The crystalline basement in north central Oklahoma can be divided into four 

major Precambrian units (Fig. 2.2): the Washington County Volcanic Group (WCVG), 

the Spavinaw Granite Group (SGG), the Osage County Microgranite (OCM), and 

Central Oklahoma Granite Group (COGG) (Denison, 1981; Luza and Lawson, 1982). 
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The WCVG is rock unit primarily composed of rhyolite with volcanic extrusion over a 

board area in northeastern Oklahoma. The SGG refers to the magnetic low in eastern 

central Oklahoma, which is mainly composed of microgranite and thought to comprise 

of a sill complex underlies the cover of rhyolite. In north central Oklahoma, the OCM is 

the most petrographically uniform rock unit and believed to be intruded under the 

rhyolite cover. The COGG is a younger rock unit composed of medium-grained granite 

in a broad region of central Oklahoma.  

Data and Methods 

Earthquake data 

 Most of the earthquakes were recorded around Jones and Prague area in central 

Oklahoma from 2009 to 2013. Starting in late 2013, the earthquake activity expanded 

northward in a board region, even extending to southern Kansas. Due to a significant 

increase in seismicity in central Oklahoma, the Oklahoma Geological Survey (OGS), 

U.S. Geological Survey (USGS) and other groups have deployed a variety of 

instruments throughout the state to monitor the seismicity (e.g., Holland et al., 2011). 

The available stations in Oklahoma after 2009 include the Transportable Array (e.g., 

Astiz et al., 2014), permanent stations, and temporary stations deployed by the OGS, 

USGS, Incorporated Research Institutions for Seismology (IRIS), and others. The OGS 

located a total of >15000 earthquakes within the study area from 01/01/2010 to 

07/31/2015. This large amount of seismic data provides a great opportunity to study the 

velocity model of upper crust with a tomographic method in central Oklahoma. There 

were 8194 M2+ earthquakes with depths >3.0 km, the number of station with observed 

arrivals >12, and root mean square (RMS) of traveltime residuals <0.6 s selected so as 
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to control the data quality and computation time (Fig. 2.3).  

All the phase arrivals were manually picked by seismic analysts using SEISAN 

software package (e.g., Ottemöller et al., 2013) and identified by the automatic phase 

identification package PhasePApy, which is robust pure Python package for automatic 

identification of seismic phases (Chen and Holland, 2016). The analysts reviewed those 

automatic phase picks. Somehow there were some questionable picks in the selected 

data, which can significantly bias the tomography results, especially the outliers with 

unreasonable traveltimes (i.e. negative traveltimes). In order to better control the 

velocity model from the tomographic inversion, we filtered the picks with traveltime 

errors greater than 1.5 s comparing to predicted travel-time based on 1D velocity model 

(Table 2.1), and we also removed the picks of epicentral distance greater than 350 km, 

which is about the dimension of our study region (Fig. 2.4(a)). The 1D P-wave velocity 

model in Table 2.1 was derived from digitizing sonic logs near the WFZ (Toth, 2014) 

and surface wave dispersion curves (Robert Hermann pers. comm. 4/17/13). The Vp/Vs 

ratio is employed as the typical value of 1.73. After picks filtering, there were 153119 

P- and 145949 S-picks left. The traveltime residuals, focal depth, and magnitude 

distribution are shown in Figure 2.4(b)-(d), respectively. The average focal depth of the 

earthquakes in central Oklahoma is more or less 5 km excluding those events with fixed 

depth (Darold et al., 2015). The filtered P-waves ray path can cover most area in central 

and north central Oklahoma (Fig. 2.5). The filtered S-waves ray path has the similar 

coverage to one of the P-waves due to they have the comparable number of picks. 

Method 1 

Many algorithms have been developed for local or regional traveltime 



 

 55 

tomography studies (e.g., Thurber, 1983; Zhang and Thurber, 2003; Rawlinson and 

Urvoy, 2006). In this study, we created the first velocity model with the Fast Marching 

Tomography (FMTOMO) method (Rawlinson and Urvoy, 2006), which employs the 

multi-stage fast marching method (FMM) as the grid-based forward modeling eikonal 

solver to predict the traveltimes (Sethian and Popovici, 1999). The FMTOMO solves 

the non-linear inversion problem by repeatedly and iteratively adjusting model 

parameters to reconcile the objective function (velocity, interface depth, and/or source 

location) and traveltime perturbations. The FMTOMO can invert 3D velocity with 

multiple types of the seismic phase, such as local, region and/or teleseismic data. We 

used the filtered P- and S- picks from the 8194 M2+ local events to determine Vp, Vs, 

and Vp/Vs ratio, respectively. 

Resolution of velocity model 1 

 We estimated the reliable region of both P- and S-wave tomography results with 

checkerboard tests. The alternatively perturbed velocity anomalies were imposed into 

the initial 1D velocity model to create a checkerboard pattern. The FMTOMO linearly 

interpolate the 1D velocity for the equal spacing depth nodes (Fig. 2.6). Positive and 

negative anomalies, 0.6 km/s, were added to P-wave velocity, and similarly 0.3 km/s 

were added to S-wave velocity alternatively. The model was parameterized with an 

optimized node spacing about 0.15 (x: ~13 km)  0.12 (y: ~13 km)  2.8 km (z) 

after several tests with different node spacing (Fig. 2.7). The solution converged well, 

and the residuals were reduced to a reasonable level after 4 iterations. The checkerboard 

patterns of P-wave velocity model shallow than ~15 km were recovered for central and 

north central Oklahoma (depths of 3 km and 13 km in Fig. 2.8). The region of a good 
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resolution was indicated with a polygon outlined by the dashed lines in Figure 2.8. As 

would be expected, the resolution was diminished in the 13 km depth slice, since there 

are only a few earthquakes deeper than 10 km (Fig. 2.4(c)), which results in fewer ray 

paths penetrate to such depth.  

The vertical cross-section slices in Figure 2.9 show areas of good resolution 

down to the depths about 15 km for both P- and S-wave velocity. The amplitude of the 

velocity perturbation is well recovered for depths <8 km. Although the resolution is 

reduced for depths from ~8 km to 15 km, the central portion of the checkerboard pattern 

can be recovered in this depth range. The patterns beneath 15 km were barely recovered 

due to the lack of deep events, although one can identify some poorly recovered 

patterns for depth deeper than 15 km. Therefore, we think that the most reliable area of 

the tomography with good resolution extends approximately from latitude 35 to 37.2 

and longitude 96 to 98.5 (Fig. 2.8), and depth down to ~15 km (Fig. 2.9).  

The checkerboard test of the S-wave velocity shows very similar resolution 

results, since the number of S-picks is quite comparable with the one of P-picks, only 

4.7% less. 

Method 2 

 We created the second velocity model by using the SIMUL2000 package 

(Thurber, 1983) with composite event method (Lin et al., 2007), which reduces the 

volume of the data so as to improve the computation time. Although the total number of 

picks is reduced, the composite event method preserves as much the original phase 

picks information as possible. In addition, this method makes the composite event 

distribution more uniform. We used 8194 M2+ events to start this tomography 
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processing. Due to the fact that close events have random picking error dominated 

residuals, we firstly used the HYPODD 1D (Waldhauser and Ellsworth, 2000; 

Waldhauser, 2001) method to relocate the earthquakes, which can provide better 

relative locations (Fig. 2.10). For those un-clustered and thrown away events due to the 

bad location, we added them back by using their initial locations in the catalog. Then a 

similar method as the one from Lin (2007) followed to construct the composite events 

(Fig. 2.11). We selected the first target earthquake that contains the most picks from the 

1D velocity relocated data. A close event search algorithm identified the nearby 

earthquakes within a certain radius (2 km in our case) centered at the target event. For a 

certain station, we took the median value of all the picks from the events within the 2 

km searching radius (including the target event) instead of taking the mean value as Lin 

(2007). The median value was assigned to the target event as the phase record from that 

certain station. A larger radius searching (5 km in our case) followed to exclude the 

events between two spheres (with radius 2 km and 5 km in our case, respectively) for 

candidate treatment of next target event in the future. There were 493 composite events 

with 13447 P-picks and 11293 S-picks constructed from 8194 M2+ events (Fig. 2.12). 

We used the first 485 composite events to conduct our second velocity modeling study, 

which have more than 99.5% picks from all the composite events. 

 We used a 30 km horizontal grid to invert for the 3D velocity model, which is 

about twice grid size of the FMTOMO model due to the computation capability 

restriction (Fig. 2.7). The vertical grid points are not equal spaced (Fig. 2.6), which can 

better represent our initial velocity model (Table 2.1). The Vp and Vp/Vs ratio damping 

parameters were optimized with a series of single-iteration inversion, respectively. For 
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the Vp damping determination, we used the damping parameters from 50 to 2000 to 

plot the data misfits versus model variation tradeoff curve (Fig. 2.13), while prohibiting 

the Vp/Vs ratio inversion. From the Vp tradeoff curve, we chose 300 as the optimized 

value since the data misfits can be reduced significantly without introducing too much 

model variance. By holding the Vp damping fixed at 300, we used a series of Vp/Vs 

ratio damping parameters from 10 to 1000 to determine the optimized value as 70. The 

tradeoff curve of Vp/Vs ratio is shown in Figure 2.14. We chose 300 and 70 as the 

values for Vp and Vp/Vs ratio, respectively, in our tomography inversions. Although 

the lower damping values can reduce the data misfits, they can introduce some sharper 

and strong velocity anomaly features that probably are due to artifacts.  

Gravity, magnetic, and basement depth data 

The free-air anomalies (FAA) gravity data and the pole reduced magnetic data 

used in this study were downloaded from gravity and magnetic database of Pan-

American Center for Earth and Environmental Studies (PACES) at University of Texas 

at El Paso (UTEP) (Figs. 2.15 and 2.16). The gravity data present numerous short-

wavelength artifacts, but should not affect our correlation with velocity structures at a 

large scale. The OGS developed a depth to basement top map based on well data and 

previous basement top contour maps from the USGS, the Colorado Geological Survey 

(CGS), the Kansas Geological Survey (KGS), the New Mexico Bureau of Geology, the 

Mineral Resources (NMBGMR), and others (Kevin Crain pers. comm., Oct./2015). The 

gravity, magnetic, and depth to basement top data were gridded to compare to two 

velocity models in this study region. 
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Modeling Results 

In order to better understand the structures in the crystalline basement, we used 

the velocity models, gravity, and magnetic data to examine the geological correlation. 

We compared the velocity models from the FMTOMO and the SIMUL2000 methods to 

the gravity and magnetic data along 7 west-east (A1-A7) and 7 south-north (B1-B7) 

profiles, respectively. The locations of the profile are shown in Figures 2.15 and 2.16. 

The profiles go through most part of the region with good resolution in central 

Oklahoma. By comparing the 14 cross-sections of the Vp and Vp/Vs models from 

FMTOMO and SIMUL2000, we think that most of the large features in these two 

models are comparable (Figs. 2.17 and 2.18), although the FMTOMO model presents 

some small-scale features. We calculated the averaged velocity variations for the grid 

points at each depth in the cross-section region (Fig. 2.19) to show that the SIMUL2000 

model has less velocity variation than the FMTOMO model. The sharper and small-

scale velocity anomalies usually have large uncertainty. In addition, most of the profiles 

in the SIMUL2000 model show less Vp/Vs variation relative to the initial value 1.73 

compared to the ones from the FMTOMO model (Fig. 2.20). The large FMTOMO 

model variation may be due to the small damping that we used in the inversion. 

Therefore, we chose the relatively smooth SIMUL2000 model to correlate gravity and 

magnetic anomalies for the following interpretations.  

On a large scale, the velocity model correlates to gravity anomalies since the 

dense rocks generally have high velocities, and vice versa. The velocity models reveal 

strong lateral heterogeneities within the Precambrian crystalline basement, which 

indicates the complex structures in the upper portion of the crust in the study area. 
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Several evident anomalies can be identified in this study region from the magnetic map 

(Fig. 2.16), which were labeled from R1 to R4. The anomaly R1 between the NFZ and 

the WFZ is a strong magnetic feature to the south of our study region, whereas has not 

been mentioned by previous studies. The anomaly R2 (Spavinaw Granite), R3 (Lamont 

Ring Complex), and R4 (Osage Island Maximum) are previously known features in 

central Oklahoma (Luza and Lawson, 1982).  

Cross-section A1: Since the western side of this Cross-section, beyond longitude 

about -98.2, exceeds the polygon outlined region; we can only make interpretation 

from longitude about -98.2 to -96 at most. This cross-section goes through the 

magnetic high R1 (Fig. 2.16), and the magnetic data presents a relative high anomaly 

from longitude -97.4 to -97. The gravity from longitude about -97.8 -to 96.6 also 

presents a broader high anomaly. There is a high Vp feature from longitude  -97.6 to -

97.0 for depth lower than ~8 km (Fig. 2.17a) in the SIMUL2000 model (use this model 

for the correlation in all the following cross-sections). The high Vp anomaly is bounded 

by the NFZ and the WFZ, which are vertical or near vertical in the sedimentary section. 

The high gravity, magnetic, and velocity anomaly suggest a presence of intrusion 

between the NFZ and the WFZ within the basement.  

Cross-section A2: This cross-section crosses the south of the basement rock unit 

SGG (R2 in Fig. 2.16). Similarly, we do not interpret the velocity for the portion to the 

west of longitude -98.3. There is only slight gravity high from longitude -97.8 to -

96.5 in this profile, but a magnetic low centered at longitude about -97.1. A strong 

high Vp anomaly is identified from longitude -97.5 to -96.4 for depth below ~8 km, 

which can be correlated to an intrusion related to the SGG.  
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Cross-section A3: This cross-section crosses the center of the unit SGG (R2 in 

Fig. 2.16). We use the range from longitude -98.5 to -96 for interpretation. A 

magnetic low presents from longitude about -97.2 to -96.4 and a strong high Vp 

anomaly body can be identified in this range for depth below ~8 km, which strongly 

suggest an intrusion below the SGG unit. However, a relatively low gravity anomaly 

shows in this range. We note that a low velocity zone at shallower depth to the east of 

NFZ overlies this strong Vp anomaly, which may reduce the total gravity observation. 

We restrainedly correlate a deep high Vp anomaly feature that centered at longitude 98 

to the MCR. 

Cross-section A4: This cross-section crosses the northern part of the unit SGG 

(R2 in Fig. 2.16) and the interpreted MCR. A magnetic low centered at longitude about 

-96.5 along this cross-section is underlain by a high Vp anomaly body below depth ~8 

km, which suggest an intrusion. There is a slight high gravity anomaly centered at 

longitude about -96.3, where is above the east portion of the intrusion. Another high 

velocity anomaly feature is centered at longitude about -98 that is interpreted as the 

MCR, where shows a corresponding high gravity anomaly. The velocity gradually 

decreases from the east portion of the intrusion to the MCR, which corresponds the 

gravity trend. The velocity and gravity present the local low anomalies at the common 

longitude -97.4. 

Cross-section A5: Two obvious features exist in this cross-section: the MCR to 

the west and southern part of the OCM (or WCVG) (R4 in Fig. 2.16) to the east, where 

underlain by two high Vp anomalies centered at longitude -98.2 and -96.2, 

respectively. A relative magnetic high presents around the OCM unit, which indicates 



 

 62 

that there is an intrusion in this area. The broad low gravity region from longitude -

97.5 to -97 corresponds a broad low velocity zone in the same range. This broad low 

gravity and velocity region indicate a large OCGG rock unit in central Oklahoma, 

which is consistent with density determination from wells samples that OCGG has the 

lowest density of four rock units (Denison, 1981). 

Cross-section A6: This cross-section crosses the MCR, southern part of the 

Lamont Ring Complex (R3 in Fig. 2.16), and the OCM (R4 in Fig. 2.16). Due to the 

east portion of this profile exceeds the reliable polygon; we only interpret the velocity 

as far as longitude about -96.5 to the east. Similar to the cross-section A5, a low 

gravity and velocity region is between the MCR and the OCM unit, which suggests a 

broad OCGG unit presence in this area. The gravity, magnetic, and velocity are 

generally consistent over this region, but the correlation between the velocity anomaly 

and Lamont Ring Complex is not obvious from this profile. 

Cross-section A7: This cross-section crosses the MCR, northern part of the 

Lamont Ring Complex (R3 in Fig. 2.16), and north part of the OCM (R4 in Fig. 2.16). 

Similarly, we constrain our interpretation from west to the longitude -96.7. The MCR 

and the intrusion around the OCM unit can be identified. This cross-section also shows 

a low gravity and velocity region in between, which suggest that the OCGG unit even 

extends northward to Kansas. The evidence of the source of the Lamont Ring Complex 

is still not clear from this profile. 

Cross-section B1: This cross-section crosses eastern part of the SGG unit (R2 in 

Fig. 2.16). The resolvable range in this profile is from latitude about 35 to 36.2. A 

magnetic low presents from latitude 35.5 to 36.2 and the gravity in this range is 
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slightly higher than that from latitude 35 to 35.5. A high Vp anomaly exists in the 

magnetic low range correspondingly, which suggest an intrusion beneath the SGG unit. 

Cross-section B2: The cross-section intersects the center of the SGG unit (R2 in 

Fig. 2.16) and western part of the OCM (R4 in Fig. 2.16). We only make the 

interpretation from latitude 35 to 36.7. A strong magnetic low shows from latitude 

about 35.3 to 36.2, where a high Vp anomaly body can be identified below depth ~8 

km. We correlate the strong high Vp feature to the intrusion that related to the SGG 

unit. There is a high magnetic anomaly located north to latitude 36.5, and the gravity is 

also slightly high in this range. The shallower high Vp feature at latitude 36.5 is 

correlated with the OCM unit. The reason that gravity above the SGG is lower than the 

OCM is probably due to the lower Vp rocks overlay the SGG unit and the OCM 

intrusion has shallower depth. 

Cross-section B3: This cross-section crosses western part of the SGG unit (R2 in 

Fig. 2.16). A magnetic low is centered at latitude about 35.8, where there is high Vp 

anomaly. The gravity decreases northward, where a low velocity zone presents. The 

high Vp feature can be interpreted as an intrusion that correlated with the SGG unit. The 

northern low Vp zone may relate to the younger COGG unit. 

Cross-section B4: Southern part of this cross-section crosses the R1 magnetic 

high in Figure 2.16, and the northern part of this profile crosses the eastern part of the 

Lamont Ring Complex (R3 in Fig. 2.16). Both magnetic and gravity shows high 

anomalies at southern part over the high Vp anomaly area, where strongly suggests that 

there is an intrusion. A large low Vp zone presents from the latitude 36 to 36.6, where 

a broad gravity low show. The high magnetic anomaly at latitude 36.6 represents the 
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Lamont Ring Complex. There is slightly high Vp anomaly from latitude 36.6 to 37, 

where might be an intrusion related to the Lamont Ring Complex. 

Cross-section B5: This cross-section crosses the western part of the Lamont 

Ring Complex (R3 in Fig. 2.16). The gravity shows slightly high anomaly at the 

southern part of the profile, where there is relatively high Vp anomaly. A magnetic high 

corresponding the Lamont Ring Complex from latitude 36.6 to 36.8 has a weak 

correlation with a slightly high Vp anomaly feature underneath. The weak high Vp 

anomaly might indicate an intrusion related to the Lamont Ring Complex. 

Cross-section B6: Most part of this cross-section crosses the interpreted MCR. 

The magnetic anomaly does not show much variation in this profile. The gravity 

presents a relatively high anomaly in a broad region from latitude about 35.6 to 37, 

where a broad high Vp anomaly high feature shows below depth ~8 km. There are two 

low gravity anomalies region on both ends, where two low Vp anomalies regions can be 

identified underneath. 

Cross-section B7: This cross-section crosses the interpreted MCR. Due to less 

resolution at the southern part of this profile, we only make interpretation north to 

latitude 35.5. There are two high local gravity anomalies centered at latitude 35.8 and 

36.5, respectively, where two corresponding separated high Vp anomalies can be 

identified underneath. The two high Vp features can be correlated to the MCR. A low 

Vp anomaly in between corresponds a local gravity low.  

Figure 2.21 shows the SIMUL200 Vp perturbations relative to the 1D 

SIMUL2000 velocity model at depths 1.5 km, 5 km, 8 km, 12 km, and 15 km. The most 

area in the outlined polygon of the first 4 layers (1.5 km, 5 km, 8 km, and 12 km) has 
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the negative Vp anomaly. The low velocity area in central part of the study region may 

represent the board COGG rock unit. For the 8 km depth slice, a positive Vp anomaly 

starts to show between the NFZ and WFZ, which may relate to the intrusion that formed 

the SGG unit. The positive Vp anomaly becomes more obvious around the SGG unit at 

12 km depth. Moreover, a high Vp anomaly presents at the south part of outline 

polygon, which suggests the intrusion related to the magnetic high R1 in Figure 2.16. 

The positive Vp anomaly is still prominent at depth 15 km. In addition, a north-south 

trending positive Vp anomaly presents in northwestern Oklahoma to the west of the 

NFZ in the 15 km slice, which strongly suggests that this feature is related to the MCR. 

The negative Vp anomalies around the NFZ suggest the OCGG unit. 

We also show the Vp/Vs ratio anomalies of the SIMUL2000 model relative to 

1.73 at depths 1.5 km, 5 km, 8 km, 12 km, and 15 km in Figure 2.22. The most area in 

the 1.5 km slice shows positive Vp/Vs ratio anomalies. The slice at depth 5 km starts to 

present some local negative Vp/Vs anomalies. The negative Vp/Vs variation at 8 km 

slice becomes prominent, but a relative narrow positive Vp/Vs ratio region presents at 

the SGG unit region. The positive Vp/Vs ratio is still prominent at 12 km and 15 km 

depth slices, respectively. Furthermore, by examining the variation of the Vp/Vs ratio in 

the 14 cross-sections, most of the profiles present a low Vp/Vs ratio region in upper 

crust (Figs. 2.17 and 2.18). We estimated the low Vp/Vs ratio zone roughly from depth 

~3 – 10 km. The low Vp/Vs ratio zone also can be identified from the averaged Vp/Vs 

ratio variation in Figures 2.19 and 2.20 as well. The averaged basement top is ~3 km in 

Oklahoma. Therefore, the Vp/Vs ratio can be simplified to three layers: <3 km, ~3 to 10 
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km, and >10 km, although there is a strong variation of Vp/Vs ratio in some cross-

sections.  

The study from Lin et al. (2009) shows that low Vp/Vs ratio zone in the 

earthquake source regions relates to water-filled fractures or cracks. A number of 

studies support that the earthquakes in Oklahoma have a strong relationship with the 

deep injection of wastewater (e.g., Holland, 2013; Keranen et al., 2013, 2014; 

Ellsworth, 2013; Darold et al., 2014, 2015). A huge amount of fluids, including 

wastewater and brine, has been injected into the Arbuckle Group, which has little or no 

Cambrian sedimentary rock between it and the Precambrian basement in most of 

Oklahoma (e.g., Murray, 2014; Morgan and Murray, 2015; Weingarten et al., 2015; 

Walsh and Zoback, 2015). Due to the complex fault and fracture structures in the 

basement, it is highly possible that the wastewater can penetrate into the deep basement, 

even down to 10 km or more. We think the water-filled fractures can be used to explain 

the low Vp/Vs ratio zone in the upper basement of central Oklahoma. 

Conclusions 

We created two 3D velocity models for central Oklahoma with the FMTOMO 

and the SIMUL2000 methods, respectively. These two models present similar velocity 

features in a large scale. The FMOTMO model shows more small-scale velocity 

features since more earthquakes and dense grids were used in the inversion. The 

SIMUL2000 model shows the similar large features as the FMTOMO model, but has 

less model variation, which is due to fewer data and grids were used in the inversion. 

We use the SIMUL2000 model, gravity, and magnetic data to correlate the previously 

known geological features in central Oklahoma. The velocity model shows high Vp 
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regions where are generally consistent with gravity and magnetic profiles in the study 

area. The SGG, the OCM, and the COGG rock unit can be identified through our 

velocity model. The SGG region is underlain by an intrusion. The reason that this high 

Vp feature is not obvious from the gravity data is probably due to a low Vp rhyolite 

cover overlay the intrusion. The OCM or WCVG unit always causes the high gravity 

and magnetic anomalies in the Osage County, where is located at the northeast of our 

study region. All the profiles and depth slices including this unit will present high Vp 

anomalies, which are consistent with gravity and magnetic observation. From the 

velocity model, we think that the OCM intrusion has the shallower depth than the SGG 

intrusion. A broad region in central part of the study area shows low Vp anomalies near 

the NFZ. We interpret this feature as the younger OCGG unit. The drilled sample from 

the OCGG area has the smallest measured density among all the units in central 

Oklahoma (Denison, 1981), which can support our interpretation. We also identified an 

intrusion (R1 in Fig. 2.16) from the velocity model between the NFZ and WFZ at the 

southern part of the study region. No too much previous study was conducted on this 

high magnetic feature. There is only a weak correlation between the magnetic and 

velocity anomalies for the Lamont Ring Complex (R3 in Fig. 2.16). The previous 

studies suggest that this feature is probably a Precambrian meteorite impact, shield 

volcano, or from basement geology (Luza and Lawson, 1982). However, the source of 

the Lamont Ring Complex is still unclear and poorly studied. We do not find strong 

velocity evidence for this feature. Another important tectonic feature, the MCR, can be 

identified from velocity model. We think that the MCR might be relatively deep since 

this feature does not become continuous until 15 km. 
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Therefore, most of the velocity anomalies can correlate to the known and 

inferred features, such as igneous intrusion related to the OCM, the SGG, and magnetic 

high (R2 in Fig. 2.16). The OCGG unit is widely distributed in north central Oklahoma. 

The MCR is also obvious from the velocity model. In addition, the Vp/Vs ratio presents 

a high-low-high distribution along the depth. The simplified low Vp/Vs ratio zone is in 

the upper basement for depth from ~3 km to 10 km, which may relate to the water-filled 

fractures in the host rock. 
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Figure 2.1. Gravity map showing the speculated west rift arm of Mid-Continent Rift (MCR) extending into Oklahoma. This image is 

computed by upward continuing the gridded complete Bouguer anomaly (CBA) data to 40 km and subtracting the resulting values 

from the gridded CBA values. Modified from Stein et al., (2014). SOA: Southern Oklahoma Aulacogen; AB: Arkoma Basin. 
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Figure 2.2. Basement rock unit map in north central Oklahoma (modified from Denison 

(1981) and Luza and Lawson (1982) by the Oklahoma Geological Survey). 



 

 

7
1
 

 

 

Figure 2.3. The 8194 M2+ earthquakes (01/01/2010 - 07/31/2015) were selected to determine the velocity model with FMTOMO. 

Black polygons are county boundaries, and black lines are major faults in Oklahoma. Gray triangles represent the stations. 
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Figure 2.4. Statistics of selected data after filtering. (a) Filtered P- and S-picks travel-time vs distance. (b) Histogram of residuals. (c) 

Histogram of focal depth. (d) Histogram of magnitude. 
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Figure 2.5. P-wave ray paths coverage in central Oklahoma. Gray polygons are county 

boundaries. 
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Figure 2.6. 1D velocity models for the FMTOMO (squares) and the SIMUL2000 (dots), 

respectively. 
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Figure 2.7. Grid configuration for the FMTOMO (open circles) and the SIMUL2000 (plus signs) methods. Gray triangles represent the 

stations. Black polygons are county boundaries, and black lines are major faults in Oklahoma. 
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Figure 2.8. Checkerboard test of Vp depth slices at 3 km (a) and 13 km (b). Green 

polygon indicates the region with good resolution, gray polygons are county 

boundaries, and black lines are major faults in Oklahoma. 
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Figure 2.9. Checkerboard test of SN and WE cross-section for the Vp model. (a)-(d). The longitude or latitude of each slice is 

indicated at lower left corner. 
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Figure 2.10. The relocated M2+ events (dots) with HYPODD 1D method. Black polygons are county boundaries, and black lines are 

major faults in Oklahoma. Gray triangles represent the stations. 
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Figure 2.11. Illustration of the algorithm of constructing the composite events. Squares 

are the target master events. Stars in inner solid circle are the close events that 

contribute pick information to the composite events, and the dots between inner solid 

circles and outside dashed circles represent the events excluded for the future master 

event candidates. The triangles are the stations. 
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Figure 2.12. The composite events (dots) have relatively uniform distribution. Black polygons are county boundaries, and black lines 

are major faults in Oklahoma. Gray triangles represent the stations. 
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Figure 2.13. Tradeoff curve of Vp between model variance and data misfit. 
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Figure 2.14. Tradeoff curve of Vp/Vs ratio between model variance and data misfit. 
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Figure 2.15. Free air gravity anomaly map of central Oklahoma. The data was 

downloaded from Pan-American Center for Earth and Environmental Studies (PACES). 

Gray polygons are county boundaries, and black lines are major faults in Oklahoma. 

Green polygon indicates the region with good resolution. The dashed lines indicate the 

positions of the vertical cross-sections shown in Figures 16 and 17. MCR: Mid-

Continent Rift; NFZ: Nemaha Fault Zone; WFZ: Wilzetta Fault Zone; SOA: Southern 

Oklahoma Aulacogen. 
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Figure 2.16. Reduced to the pole magnetic anomaly map. The data was downloaded 

from Pan-American Center for Earth and Environmental Studies (PACES). Gray 

polygons are county boundaries, and black lines are major faults in Oklahoma. Green 

polygon indicates the region with good resolution. The dashed lines indicate the 

positions of the vertical cross-sections shown in Figures 16 and 17. NFZ: Nemaha Fault 

Zone; WFZ: Wilzetta Fault Zone; SOA: Southern Oklahoma Aulacogen.  
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Figure 2.17a. Comparison of gravity, magnetic, Vp, Vp/Vs ratio from the SIMUL2000 

and the FMTOMO model along profile A1 in Figs. 2.15 and 2.16. The dashed lines 

indicate the depth to the basement. The profile location is indicated at the upper left 

corner of the top panel. NFZ: Nemaha Fault Zone; WFZ: Wilzetta Fault Zone. Dots: 

HYPODD 3D relocated earthquakes from Chapter 3. 
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Figure 2.17b. Comparison of gravity, magnetic, Vp, Vp/Vs ratio from the SIMUL2000 

and the FMTOMO model along profile A2 in Figs. 2.15 and 2.16. The dashed lines 

indicate the depth to the basement. The profile location is indicated at the upper left 

corner of the top panel. NFZ: Nemaha Fault Zone; WFZ: Wilzetta Fault Zone. Dots: 

HYPODD 3D relocated earthquakes from Chapter 3.  
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Figure 2.17c. Comparison of gravity, magnetic, Vp, Vp/Vs ratio from the SIMUL2000 

and the FMTOMO model along profile A3 in Figs. 2.15 and 2.16. The dashed lines 

indicate the depth to the basement. The profile location is indicated at the upper left 

corner of the top panel. NFZ: Nemaha Fault Zone; WFZ: Wilzetta Fault Zone. Dots: 

HYPODD 3D relocated earthquakes from Chapter 3.  
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Figure 2.17d. Comparison of gravity, magnetic, Vp, Vp/Vs ratio from the SIMUL2000 

and the FMTOMO model along profile A4 in Figs. 2.15 and 2.16. The dashed lines 

indicate the depth to the basement. The profile location is indicated at the upper left 

corner of the top panel. NFZ: Nemaha Fault Zone. Dots: HYPODD 3D relocated 

earthquakes from Chapter 3.  
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Figure 2.17e. Comparison of gravity, magnetic, Vp, Vp/Vs ratio from the SIMUL2000 

and the FMTOMO model along profile A5 in Figs. 2.15 and 2.16. The dashed lines 

indicate the depth to the basement. The profile location is indicated at the upper left 

corner of the top panel. NFZ: Nemaha Fault Zone. Dots: HYPODD 3D relocated 

earthquakes from Chapter 3.  



 

 93 

 

Figure 2.17f. Comparison of gravity, magnetic, Vp, Vp/Vs ratio from the SIMUL2000 

and the FMTOMO model along profile A6 in Figs. 2.15 and 2.16. The dashed lines 

indicate the depth to the basement. The profile location is indicated at the upper left 

corner of the top panel. NFZ: Nemaha Fault Zone. Dots: HYPODD 3D relocated 

earthquakes from Chapter 3.  
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Figure 2.17g. Comparison of gravity, magnetic, Vp, Vp/Vs ratio from the SIMUL2000 

and the FMTOMO model along profile A7 in Figs. 2.15 and 2.16. The dashed lines 

indicate the depth to the basement. The profile location is indicated at the upper left 

corner of the top panel. NFZ: Nemaha Fault Zone. Dots: HYPODD 3D relocated 

earthquakes from Chapter 3.  
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Figure 2.18a. Comparison of gravity, magnetic, Vp, Vp/Vs ratio from the SIMUL2000 

and the FMTOMO model along profile B1 in Figs. 2.15 and 2.16. The dashed lines 

indicate the depth to the basement. The profile location is indicated at the upper left 

corner of the top panel. Dots: HYPODD 3D relocated earthquakes from Chapter 3. 
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Figure 2.18b. Comparison of gravity, magnetic, Vp, Vp/Vs ratio from the SIMUL2000 

and the FMTOMO model along profile B2 in Figs. 2.15 and 2.16. The dashed lines 

indicate the depth to the basement. The profile location is indicated at the upper left 

corner of the top panel. WFZ: Wilzetta Fault Zone. Dots: HYPODD 3D relocated 

earthquakes from Chapter 3.  
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Figure 2.18c. Comparison of gravity, magnetic, Vp, Vp/Vs ratio from the SIMUL2000 

and the FMTOMO model along profile B3 in Figs. 2.15 and 2.16. The dashed lines 

indicate the depth to the basement. The profile location is indicated at the upper left 

corner of the top panel. Dots: HYPODD 3D relocated earthquakes from Chapter 3. 
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Figure 2.18d. Comparison of gravity, magnetic, Vp, Vp/Vs ratio from the SIMUL2000 

and the FMTOMO model along profile B4 in Figs. 2.15 and 2.16. The dashed lines 

indicate the depth to the basement. The profile location is indicated at the upper left 

corner of the top panel. NFZ: Nemaha Fault Zone. Dots: HYPODD 3D relocated 

earthquakes from Chapter 3.  
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Figure 2.18e. Comparison of gravity, magnetic, Vp, Vp/Vs ratio from the SIMUL2000 

and the FMTOMO model along profile B5 in Figs. 2.15 and 2.16. The dashed lines 

indicate the depth to the basement. The profile location is indicated at the upper left 

corner of the top panel. NFZ: Nemaha Fault Zone. Dots: HYPODD 3D relocated 

earthquakes from Chapter 3.  
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Figure 2.18f. Comparison of gravity, magnetic, Vp, Vp/Vs ratio from the SIMUL2000 

and the FMTOMO model along profile B6 in Figs. 2.15 and 2.16. The dashed lines 

indicate the depth to the basement. The profile location is indicated at the upper left 

corner of the top panel. NFZ: Nemaha Fault Zone. Dots: HYPODD 3D relocated 

earthquakes from Chapter 3.  
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Figure 2.18g. Comparison of gravity, magnetic, Vp, Vp/Vs ratio from the SIMUL2000 

and the FMTOMO model along profile B7 in Figs. 2.15 and 2.16. The dashed lines 

indicate the depth to the basement. The profile location is indicated at the upper left 

corner of the top panel. NFZ: Nemaha Fault Zone. Dots: HYPODD 3D relocated 

earthquakes from Chapter 3.  
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Figure 2.19a. Averaged Vp of the SIMUL2000 and the FMTOMO models for WE 

cross-sections (A1-A7). The variations of the models are shown in the parenthesis. SM: 

SIMUL2000; FM: FMTOMO.  
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Figure 2.19b. Averaged Vp of the SIMUL2000 and the FMTOMO models for SN 

cross-sections (B1-B7). The variations of the models are shown in the parenthesis. SM: 

SIMUL2000; FM: FMTOMO.  
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Figure 2.20a. Averaged Vp/Vs ratio of the SIMUL2000 and the FMTOMO models for 

WE cross-sections (A1-A7). The variations of the models are shown in the parenthesis. 

SM: SIMUL2000; FM: FMTOMO.  
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Figure 2.20b. Averaged Vp/Vs ratio of the SIMUL2000 and the FMTOMO models for 

SN cross-sections (B1-B7). The variations of the models are shown in the parenthesis. 

SM: SIMUL2000; FM: FMTOMO.  
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Figure 2.21a. Depth slices of Vp determined by SIMUL2000 at 1.5 km. Green polygon 

indicates region with good resolution. Slice depth is shown at lower left of each plot. 

Gray polygons are county boundaries, and black lines are major faults in Oklahoma. 

Green polygon indicates the region with good resolution. 
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Figure 2.21b. Depth slices of Vp determined by SIMUL2000 at 5 km. Green polygon 

indicates region with good resolution. Slice depth is shown at lower left of each plot. 

Gray polygons are county boundaries, and black lines are major faults in Oklahoma. 

Green polygon indicates the region with good resolution. 
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Figure 2.21c. Depth slices of Vp determined by SIMUL2000 at 8 km. Green polygon 

indicates region with good resolution. Slice depth is shown at lower left of each plot. 

Gray polygons are county boundaries, and black lines are major faults in Oklahoma. 

Green polygon indicates the region with good resolution. 
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Figure 2.21d. Depth slices of Vp determined by SIMUL2000 at 12 km. Green polygon 

indicates region with good resolution. Slice depth is shown at lower left of each plot. 

Gray polygons are county boundaries, and black lines are major faults in Oklahoma. 

Green polygon indicates the region with good resolution. 
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Figure 2.21e. Depth slices of Vp determined by SIMUL2000 at 15 km. Green polygon 

indicates region with good resolution. Slice depth is shown at lower left of each plot. 

Gray polygons are county boundaries, and black lines are major faults in Oklahoma. 

Green polygon indicates the region with good resolution. 
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Figure 2.22a. Depth slices of Vp/Vs ratio determined by SIMUL2000 at 1.5 km. Green 

polygon indicates region with good resolution. Slice depth is shown at lower left of 

each plot. Gray polygons are county boundaries, and black lines are major faults in 

Oklahoma. Green polygon indicates the region with good resolution. 
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Figure 2.22b. Depth slices of Vp/Vs ratio determined by SIMUL2000 at 5 km. Green 

polygon indicates region with good resolution. Slice depth is shown at lower left of 

each plot. Gray polygons are county boundaries, and black lines are major faults in 

Oklahoma. Green polygon indicates the region with good resolution. 
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Figure 2.22c. Depth slices of Vp/Vs ratio determined by SIMUL2000 at 8 km. Green 

polygon indicates region with good resolution. Slice depth is shown at lower left of 

each plot. Gray polygons are county boundaries, and black lines are major faults in 

Oklahoma. Green polygon indicates the region with good resolution. 
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Figure 2.22d. Depth slices of Vp/Vs ratio determined by SIMUL2000 at 12 km. Green 

polygon indicates region with good resolution. Slice depth is shown at lower left of 

each plot. Gray polygons are county boundaries, and black lines are major faults in 

Oklahoma. Green polygon indicates the region with good resolution. 
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Figure 2.22e. Depth slices of Vp/Vs ratio determined by SIMUL2000 at 15 km. Green 

polygon indicates region with good resolution. Slice depth is shown at lower left of 

each plot. Gray polygons are county boundaries, and black lines are major faults in 

Oklahoma. Green polygon indicates the region with good resolution. 
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Depth 

(km) 

0 0.3 1.0 1.5 8.0 21 42 50 80 

Vp 

(km/s) 

2.70 2.95 4.15 5.80 6.27 6.41 7.90 8.15 8.50 

 

Table 2.1. Initial 1D P-wave velocity model. 
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Chapter 3: Earthquake Relocations Using A Three-

Dimensional Velocity Model and Double Differencing: 

Relocations of Earthquakes in Oklahoma 

Introduction 

 Earthquake location estimation is one of the most important inverse problems in 

seismology study. Most earthquake location methods are based on exploiting phase 

arrivals from the seismic waveforms and the velocity model. The accurate earthquake 

location is important for many applications, such as fault studies, hazard assessment, 

seismic tomography, stress field, induced seismicity, and others. The early earthquake 

location determination employed simple grid search (e.g., Reid, 1910) or Geiger’s 

method (1912). With the power of computer increasing, numerous methods have been 

developed to improve the accuracy of absolute locations with the single event method 

for local and global earthquakes in the past few decades (e.g., Thurber, 1983; Moser et 

al., 1992; Lomax et al., 2000). There are several other algorithms developed to locate 

multiple events at the same time that can improve the relative locations, such as joint 

hypocenter determination (JHD) (Douglas, 1967; Frohlich, 1979), hypocentroidal 

decomposition (HDC) (Jordan and Sverdrup, 1981), and source-specific station terms 

(SSST) method (Richards-Dinger and Shearer, 2000). Double-difference (DD) method 

is another algorithm for improving relative locations between the nearby events in a 

network (Waldhauser and Ellsworth, 2000; Waldhauser, 2001). The DD methods 

significantly improve the relative earthquake location accuracy either with a 1D or 3D 

velocity model. The improved relative earthquake locations can produce the sharper 
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clustered seismicity patterns, which can help to identify the fault location and 

orientation. In order to relocate the increased seismicity in central Oklahoma since 

2009, we derived the three-dimensional (3D) velocity model with the SIMUL2000 

algorithm (Thurber, 1983) in Chapter 2.  

 Most of the earthquakes in central Oklahoma are clustered and presented 

northeast-southwest (NE-SW) or northwest-southeast (NW-SE) trending orientation 

that are consistent with maximum horizontal stress state within the region (e.g., 

McNamara, 2015). With the 3D velocity model, we relocated the cataloged 

earthquakes. The high-accuracy earthquake locations improved the resolution of fault 

locations by producing sharper patterns of the seismicity. Furthermore, the improved 

the earthquake locations can better understand the relationship between the injection 

wells and the induced seismicity. In addition, the improvement of the earthquake 

locations can help with identifying primary fault planes from focal mechanism, crustal 

deformation, and others. 

Data and Methods 

Our 3D velocity relocation strategy is to first relocate the cataloged earthquakes 

with the single event method, which is used to improve the absolute earthquake 

locations. Then, a DD method follows to improve the relative locations for the clustered 

nearby events with the 3D velocity model. The DD technique takes the advantage of the 

fact that if the hypocentral separation between the nearby events is much smaller than 

the event-station distance and velocity variation scale, the ray paths from the event to 

the common station are similar (Waldhauser and Ellsworth, 2000; Waldhauser, 2001). 

In this case, the relative location between the nearby events can be improved by the 
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double-differential traveltimes and the hypocentral separation, even though the 

traveltimes are biased by the 3D velocity structures. 

The Oklahoma Geological Survey (OGS) has used the earthquake analysis 

package SEISAN (Havskov and Ottemoller, 1999) since 2010. From the OGS catalog, 

there were a great number of earthquakes identified in central Oklahoma and the 

surrounding area from early 2010 to July 2016. We selected 17385 earthquakes in this 

study region from the OGS catalog from 01/01/2010 to 03/31/2016 by requiring events 

having records at least 6 stations with a root mean square (RMS) residuals 2.0 s cutoff 

(Fig. 3.1). Due to the phase arrival outliers existed in the database, the picks with 

traveltime errors greater than 1.5 s comparing to modeled travel-time curve from the 1D 

velocity model (Table 5 in Darold et al., 2015) were removed, and we also removed the 

picks with epicentral distance greater than 350 km, which is about the dimension of our 

study region (Fig. 3.2(a)). There were 282531 P-picks and 274698 S-picks left in the 

earthquake relocation process after the bad pick filtering. The histograms of the data are 

shown in Figure 3.2(b)-(d).  

Step 1: Initially, we used the SIMUL2000 to relocate 17385 selected cataloged 

earthquakes with the 3D velocity model. The 3D velocity model was derived with the 

composite event method (Lin et al., 2007) from 8194 earthquakes with magnitude 

greater than 2.0 in central Oklahoma and the surrounding area (please refer to Chapter 2 

for more details). Simultaneously inverting for the velocity and location is usually used 

for the local earthquakes (e.g., Thurber, 1983; Zhang and Thurber, 2003). Ideally, we 

would like to invert for the velocity model using all the available earthquakes and 

relocate all the earthquakes simultaneously. However, large data volume makes the 
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computation time intensive. The computation capability limitation forced us to choose 

the composite event method to derive the velocity model and relocate earthquakes 

separately. The SIMUL2000 allows one only to relocate earthquakes by keeping the 3D 

velocity fixed. We applied 6 iterations in the relocation procedure. 

Step 2: During the single event relocation in Step 1, some poorly located 

earthquakes of high residuals were thrown out. We added them back with their initial 

cataloged locations, so as to make the catalog completed. Then, we clustered the 

earthquakes with 2 km hypocentral separation between the nearby events with the 3D 

version of HYPODD package and used the double-differential traveltimes to improve 

the relative locations. Only the double-differential catalog data were used in the 

relocation since the waveforms cross correlation data were not available yet at the 

moment of documenting this work. We applied 3 sets of iteration in the relocation. Each 

set had 3 iterations with decreasing residual threshold weight (9, 8, and 7, respectively). 

The catalog P-picks weights were 1.0 for the 3 sets of iteration, and we used 0.6, 0.65, 

and 0.7 for the weights of S-picks for each iteration set, respectively. The max distance 

threshold between the linked pairs was set as 2 km. The damping values were 100, 80, 

and 60 for the 3 sets of iteration, respectively. 

Step 3: We also used the 1D version of HYPODD package with the 1D velocity 

model to relocate all the selected cataloged earthquakes. We investigated how the 

velocity model biased the earthquake location by examining the location shift between 

the 1D and the 3D velocity models relocation for some large or important clusters in 

central Oklahoma. In order to compare the relocation results from the 1D and 3D 

velocity relocations, all the parameters of the iteration sets were identical except each 
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set has 4 iterations. (i.e. In this 1-D velocity relocation, there were also 3 sets of 

iteration. We determined to use 4 iterations for each set by running several tests to 

check the condition number during the relocation. See the user manual for more details 

about the condition number.) 

Results 

Single event method relocation results with the 3D velocity model 

The 17385 selected earthquakes were relocated with the SIMUL2000. There are 

16361 relocated earthquakes relocated with the single event relocation method in Figure 

3.3, which shows sharper cluster patterns than the initial catalog. Less than 5.9% events 

were discarded due to the large residuals. Since the DD method works well for the 

clustered earthquakes, the clustered events with the sharper pattern are the better 

starting locations for the following DD method to improve the relative locations. The 

traveltime residuals met a reasonable convergence minimum value after 6 iterations. 

The RMS residual of each iteration is shown in Figure 3.4. The RMS residual reduces 

much for the first two iterations. From iteration 3 to 6, the RMS residuals do not change 

significantly. The normalized histograms of the relocation uncertainty along x, y, and z 

directions are shown in Figure 3.5. The prominent uncertainties are less than 0.2 km 

along x, y, and z directions. From the cumulative percentage, one can see that more than 

80% events have the uncertainties of x and y directions less than 0.4 km. For the z 

(depth) direction, the uncertainty range is wider than the ones of the x and y directions. 

There are more than 80% events having the uncertainties in 1.2 km for z direction.  
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DD method relocation results with the 3D velocity model 

The 3D DD relocation follows the 3D single event relocation to improve the 

relative locations. There were 14550 earthquake events that were clustered with 2 km 

hypocentral separation before the DD method relocation, and 13818 earthquakes were 

relocated in this step (Fig. 3.6). The seismicity swarms show a sharpening of the 

clustered earthquakes compared to the single event method relocation results. About 5% 

events with high residuals were discarded during the relocation process. The RMS 

traveltime residuals reduce to about 0.26 s after 9 iterations (Fig. 3.7(a)). Comparing to 

the original catalog data, most of the earthquakes show the reduced RMS traveltime 

residuals within 0.2 s after relocation (Fig. 3.7(b)), and focal depths show a symmetric 

distribution centered at about 5 km (Fig. 3.7(c)). We estimate the uncertainty of the 

earthquake locations by employing 50 bootstrap tests with 80% resampled data. The 

location uncertainty is ~40 m horizontally and ~100 m vertically (Fig. 3.8).  

DD method relocation results with the 1D velocity model 

Although the 3D velocity model can improve the absolute earthquake locations 

and relative locations, the DD relocation with the 1D velocity model still has important 

meaning for this study. There were 15756 cataloged earthquakes that were clustered, 

and 14866 clustered earthquakes were relocated with the 1D DD relocation. We noted 

that the number of the clustered earthquakes (15756) of 1D velocity relocation is more 

than that (14550) of 3D velocity relocation. The reason maybe that the single event 

method relocation with the 3D velocity model not only changes the epicenters, but also 

changes the focal depth for most of the earthquakes, which probably make the 2 km 

hypocentral separation can link fewer events to a cluster. About 5.6% earthquakes with 
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high residuals were discarded after this relocation. The relocated earthquakes are shown 

in Figure 3.9, which also present clear and narrow clusters. The shapes and orientations 

of the clusters are almost consistent with the 3D velocity relocated ones.  

After 12 relocation iterations, the RMS traveltime residuals reduce to about 0.29 

s (Fig. 3.10(a)), which is slightly higher than that of the 3D velocity relocation. The 

slightly higher RMS residuals with more iteration numbers may indicate that the 3D 

velocity model has the better relocation performance. Figure 3.10(b) shows the similar 

histogram of the residuals to Figure 3.7(b). Figure 3.10(c) shows more earthquakes 

around 5 km depth (Fig. 3.10(c)) than that in Figure 3.7(c), since the 3D velocity model 

already improved the earthquake hypocenters before the DD relocation. 

Comparison between the 3D and 1D DD relocations 

Although the 1D and the 3D velocity relocations show similar shapes and 

orientations of clusters, there are systematic shifts between the results. For comparison, 

we plotted differences between the 1D and the 3D velocity DD relocation results in 

Figure 3.11. The vectors point to the 3D velocity DD relocation from the 1D velocity 

DD relocation and are color coded for directions. Two large earthquake groups have 

different shifting directions (Figure 3.11). Most of the clusters in the southern group, 

which is between the NFZ and the WFZ, basically shift westward and northwestward 

(in greenish color). The clusters in the northern group to the west of the NFZ mainly 

shift southward (in reddish color). Figure 3.12 shows the histogram of the epicentral 

shift distances between the 1D and 3D velocity relocation results. The dominant shift 

distance is about 0.5 km, and the average shift amount is 0.7 km. More than 80% of the 

earthquakes shift less than 1 km. There are only a few events shifting greater than 2 km. 
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Figure 3.13 shows 8 sub-regions (black dashed boxes in Fig. 3.11) to examine cluster 

shifting in small scales.  

Sub-region A in Figure 3.13a shows the relocated clusters near the town of 

Jones, OK. The 3D velocity relocated earthquakes (dots) generally present a systematic 

shifting orientation compared to the 1D velocity relocation (vector tails). (The symbols 

are the same for all the sub-regions in Figure 3.13a-h. The vectors point to the 3D DD 

relocation from the 1D DD relocation.) The prominent shifting directions for the 

earthquakes in this area are northwest, although there are a few earthquakes moving in 

the other directions. The clusters in this are do not seem to present clear orientations. 

Sub-region B in Figure 3.13b shows the Prague sequence, which is the largest 

seismic sequence that had drawn a great deal of attention (e.g., Keranen, 2013; 

McNamara, 2015). Three moderate damaging earthquakes (Mw 4.8, 5.6, and 4.8) 

occurred in early November 2011 near Prague, OK. The aftershocks present a clear NE-

SW trending orientation that very likely suggests a rupture, and an interpreted fault was 

inferred from this sequence. The earthquakes in the sequence tail show more consistent 

southwest shifting (in yellowish color). The northwestern earthquakes in the sequence 

head shift southward (in reddish color) to the fault, and the southeastern earthquakes in 

the sequence head primarily shift northwestward (in greenish color) to make the 

seismicity pattern sharpening.  

Sub-region C in Figure 3.13c shows several clusters near Guthrie, OK, where an 

NE-SW trending fault is to the southeast of the clusters. Most of the earthquakes 

slightly shift to west (in greenish color). The largest cluster in this area with very 

consistent shifting presents a clear conjugate-planes pattern (NE-SW and NW-SE). The 
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cluster in the southwest corner is likely to show two parallel separated small clusters 

with the primary northwest shifting and a few other shifting directions. Several 

earthquakes at northeastern corner shift to the northeast (in bluish color).  

There are two NE-SW trending clusters around Cushing, OK in Figure 3.13d. 

Two earthquake clusters in this sub-region D present fairly consistent northwest shifting 

orientations. The earthquakes around this region have tremendous meaning to the 

energy security of Unite States, where one of the world largest crude oil storage 

facilities is located in (McNamara et al., 2015). In October 2014, two M4+ earthquakes 

shook the Cushing oil hub that is a strategic infrastructure of Unite States. McNamara et 

al., (2015) interred a WNW-ESE fault based on their earthquake relocation study for the 

southern cluster and made a series of analysis. However, our relocation result shows 

NE-SW trending orientations for it, which is different than McNamara et al., (2015). 

We think that more studies may be necessary for further details to demonstrate the fault 

structures in this area. 

Sub-region E in Figure 3.13e is close to the gap between two large earthquake 

groups. Most earthquakes of two obvious clusters in this sub-region shift southwestward 

(in orange and yellowish colors). These two clusters also present NE-SW and NW-SE 

orientations, which are consistent with the maximum horizontal stress state in 

Oklahoma. Only a few earthquakes shift to other directions. 

Several parallel NE-SW trending clusters in sub-region F are shown in Figure 

3.13f. This area is located in the large northern earthquake group. Most of the 

earthquakes in this area shift southward (in reddish color). The consistent cluster 

orientations may indicate similar fault strike orientations in this sub-region. 
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Similar to sub-region F, clusters in sub-region G also present systematic 

southward shifting (in reddish color) in Figure 3.13g. Some clusters show NE-SW 

trending orientations, and some of them show NW-SE orientations, which are close to 

nearby parallel fault segments. 

Sub-region H in Figure 3.13h shows an NE-SW trending cluster in northwestern 

Oklahoma. The earthquakes in this cluster primarily shift eastward (in purplish color). 

The cluster aligns well with the mapped fault to the southwest. This fault may be 

blamed for the most moderate earthquakes in this cluster occurred in early 2016.  

Discussion 

 Demonstrating the relationship between the earthquakes and geological 

structures in Oklahoma is important, because the seismicity is very active in this region 

after 2009. The 3D velocity model can improve the earthquake locations, which helps to 

correlate the seismicity with the mapped faults, interpret unmapped faults, and 

determine the connection between the earthquakes and the wastewater injection wells. 

Some of the relocated clusters present narrower and linear trends, which may indicate 

the potential faults that related to the clusters. Therefore, the correlation between the 

earthquake locations and faults may be used to decide where to build large-scale 

structures with low ricks, such as large-rise facilities, oil storage infrastructures, 

pipelines, and others. In addition, the correlation may provide information to evaluate 

insurance rates of residential buildings in Oklahoma as well (Luza and Lawson, 1982). 

Most of the clusters present narrower linear trends with NE-SW or NW-SE 

orientation after the 3D velocity relocation, which are consistent with the favorable fault 

orientations in central Oklahoma (Holland, 2013). Several studies suggest that recent 
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earthquakes in Oklahoma were caused by reactivation of the ancient faults, which cut 

through Arbuckle Group and extend into the upper basement (e.g., Holland, 2013; Alt 

and Zoback, 2014; McNamara et al., 2015). The Prague sequence was studied with a 

variety of focal mechanism data to show that the most of the earthquakes in Prague 

sequence have strike-slip motion, which is consistent with the knowledge that Wilzetta 

Fault is a vertical or near vertical fault, at least in sedimentary section and upper 

basement (Holland, 2013; Sumy et al., 2014; McNamara et al., 2015). However, not all 

of clusters have been well studied in Oklahoma. For many relocated clusters, there is no 

identified fault nearby, but some of the clusters may be associated with large geological 

structures in central Oklahoma, since they align well with mapped faults. Due to the 

strong heterogeneity in the basement (Chapter 2), basement faults may be complicated 

that are difficult to associate with the seismicity increase.  

Conclusions 

We relocated the earthquakes in central Oklahoma and the surrounding regions 

from the 01/01/2010 to 03/31/2015 with 3D velocity model. Firstly, we applied the 

single event method to improve the absolute locations with the 3D velocity model. 

Next, the DD method was used to improve the relative locations with the 3D velocity 

model. We also relocated the earthquakes with the DD method using the 1D velocity 

model for comparison to determine to the location shifts. The majority of the 

earthquakes shift less than 1 km, and the average shift amount is 0.7 km over the whole 

region. Most of the clusters present NE-SW or NW-SE orientations, which are 

consistent with maximum horizontal stress in the mid-continent (Zoback, 1992). Some 

clusters show a clear correlation with fault splays, or align with the mapped faults. For 
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some clusters, there are no close faults to correlate, which may suggest new inferred 

faults to support the fault database. Some of the clusters show shallow depth 

distributions in the sedimentary section.  
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Figure 3.1. Map view of the initial cataloged earthquakes (dots) from 01/01/2010 to 

03/31/2016 in central Oklahoma and the surrounding region. The cataloged earthquakes 

were located with the SEISAN package (Havskov and Ottemoller, 1999) by the OGS. 

Gray polygons are the county boundaries. The black lines are the preliminary Oklahoma 

faults (Holland, 2015). NFZ: Nemaha Fault Zone; WFZ: Wilzetta Fault Zone. 



 

 

1
3
7
 

 
 

Figure 3.2. Statistics of selected 17385 earthquakes after bad pick filtering. (a) Filtered P- and S-picks travel-time vs distance. (b) 

Histogram of residuals. (c) Histogram of focal depth. (d) Histogram of magnitude. 
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Figure 3.3. Map view of the relocated earthquakes (dots) with the single event method 

from the SIMUL2000. Gray polygons are the county boundaries. The black lines are the 

preliminary Oklahoma faults (Holland, 2015). NFZ: Nemaha Fault Zone; WFZ: 

Wilzetta Fault Zone. 
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Figure 3.4. Reduction of the RMS traveltime residual with iterations of the single event 

method relocation (SIMUL2000). 
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Figure 3.5a. The normalized uncertainty from the single event method relocation along 

x-axis. Red dashed line: cumulative percentage on the x-axis (uncertainty). 
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Figure 3.5b. The normalized uncertainty from the single event method relocation along 

y-axis. Red dashed line: cumulative percentage on the y-axis (uncertainty). 
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Figure 3.5c. The normalized uncertainty from the single event method relocation along 

z-axis. Red dashed line: cumulative percentage on the z-axis (uncertainty). 
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Figure 3.6. Map view of the relocated earthquakes (dots) with the 3D DD method. Gray 

polygons are the county boundaries. The black lines are the preliminary Oklahoma 

faults (Holland, 2015). NFZ: Nemaha Fault Zone; WFZ: Wilzetta Fault Zone. 
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Figure 3.7. (a) Reduction of the RMS traveltime residual with iterations for the 3D DD method. (b) Histograms of residual distribution 

for initial cataloged data (shaded) and relocation data (white). (c) Histogram of the depth after the relocation. 
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Figure 3.8. The normalized uncertainty of the 3D DD method relocation with 50 

bootstrap tests. 
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Figure 3.9. Map view of the relocated earthquakes (dots) with 1D DD method. Gray 

polygons are the county boundaries. The black lines are the preliminary Oklahoma 

faults (Holland, 2015). NFZ: Nemaha Fault Zone; WFZ: Wilzetta Fault Zone. 
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Figure 3.10. (a) Reduction of the RMS traveltime residual with iterations for the 1D DD method. (b) Histograms of residual 

distribution for initial cataloged data (shaded) and relocation data (white). (c) Histogram of the depth after the relocation. 
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Figure 3.11. Epicentral shifts between the 1D and 3D velocity DD relocation results. 

The colored vectors (very small in this scale) point to the 3D velocity relocated 

earthquakes from the same events of 1D velocity relocation. Color indicates the shift 

azimuth. Eight sub-regions (A-H) are shown in Figure 3.13 to examine cluster shift in 

the small scale. Gray polygons are the county boundaries. The black lines are the 

preliminary Oklahoma faults (Holland, 2015). NFZ: Nemaha Fault Zone; WFZ: 

Wilzetta Fault Zone. 

  



 

 149 

 
Figure 3.12. Histogram of the epicentral shift distances between the 1D and the 3D 

velocity relocations. 
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Figure 3.13a. Sub-region A in Figure 3.11. Epicentral shifts between the 1D and 3D 

velocity DD relocation results (black dots). The colored vectors point to the 3D velocity 

relocated earthquakes from the same events of 1D velocity relocation. Color indicates 

the shift azimuth. The thick black lines are the preliminary Oklahoma faults (Holland, 

2015). The gray lines are the county boundaries. 
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Figure 3.13b. Sub-region B in Figure 3.11. Epicentral shifts between the 1D and 3D 

velocity DD relocation results (black dots). The colored vectors point to the 3D velocity 

relocated earthquakes from the same events of 1D velocity relocation. Color indicates 

the shift azimuth. The thick black lines are the preliminary Oklahoma faults (Holland, 

2015). The gray lines are the county boundaries. 
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Figure 3.13c. Sub-region C in Figure 3.11. Epicentral shifts between the 1D and 3D 

velocity DD relocation results (black dots). The colored vectors point to the 3D velocity 

relocated earthquakes from the same events of 1D velocity relocation. Color indicates 

the shift azimuth. The thick black lines are the preliminary Oklahoma faults (Holland, 

2015).  

  



 

 153 

 

Figure 3.13d. Sub-region D in Figure 3.11. Epicentral shifts between the 1D and 3D 

velocity DD relocation results (black dots). The colored vectors point to the 3D velocity 

relocated earthquakes from the same events of 1D velocity relocation. Color indicates 

the shift azimuth. The thick black lines are the preliminary Oklahoma faults (Holland, 

2015). The gray lines are the county boundaries. 
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Figure 3.13e. Sub-region E in Figure 3.11. Epicentral shifts between the 1D and 3D 

velocity DD relocation results (black dots). The colored vectors point to the 3D velocity 

relocated earthquakes from the same events of 1D velocity relocation. Color indicates 

the shift azimuth. The thick black lines are the preliminary Oklahoma faults (Holland, 

2015). The gray lines are the county boundaries. 
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Figure 3.13f. Sub-region F in Figure 3.11. Epicentral shifts between the 1D and 3D 

velocity DD relocation results (black dots). The colored vectors point to the 3D velocity 

relocated earthquakes from the same events of 1D velocity relocation. Color indicates 

the shift azimuth. The thick black lines are the preliminary Oklahoma faults (Holland, 

2015). The gray lines are the county boundaries. 
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Figure 3.13g. Sub-region G in Figure 3.11. Epicentral shifts between the 1D and 3D 

velocity DD relocation results (black dots). The colored vectors point to the 3D velocity 

relocated earthquakes from the same events of 1D velocity relocation. Color indicates 

the shift azimuth. The thick black lines are the preliminary Oklahoma faults (Holland, 

2015). 
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Figure 3.13h. Sub-region H in Figure 3.11. Epicentral shifts between the 1D and 3D 

velocity DD relocation results (black dots). The colored vectors point to the 3D velocity 

relocated earthquakes from the same events of 1D velocity relocation. Color indicates 

the shift azimuth. The thick black lines are the preliminary Oklahoma faults (Holland, 

2015). The gray lines are the county boundaries. 
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Conclusions 

This dissertation firstly introduced a method to automatically identify seismic 

phase types. I developed the package: PhasePApy, which consists of two sub-packages: 

the PhasePicker and the Associator. The PhasePicker was designed to automatically 

detect seismic wave phase arrival times. The FBpicker, the AICDpicker, and the 

KTpicker, are implemented in the PhasePicker. I use the dynamic threshold method in 

the PhasePicker for pick triggering. The threshold level is determined from the noise 

level of the CF and a control coefficient. The PhasePicker has functions to determine 

the pick’s polarity and uncertainty. The 1D and 3D Associator identify the phase types 

by searching for the picks that best fit an earthquake. The Associator evaluates RMS 

residuals to determine which picks can associate to the earthquakes. There are only a 

few parameters to tune in the PhasePApy package. All parameters of the picker and 

associator are intuitive and easy to set. Depending on users’ requirements, the 

PhasePicker and the Associator can work separately or jointly. The PhasePApy should 

work well for processing micro-seismic data independent of the surface or down-hole 

geometry. 

I created two 3D velocity models for central Oklahoma, which present similar 

velocity features at a large scale. The SIMUL2000 model shows the similar large 

features as the FMTOMO model, but has less model variation, which is due to less data 

and grids being used in the inversion. I decided to use the SIMUL2000 model, gravity, 

and magnetic data to correlate with the previously known geological features. Most of 

the velocity anomalies correlate with known and inferred features, such as igneous 

intrusions related to the OCM (Osage County Microgranite), the SGG (Spavinaw 
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Granite Group), and the magnetic high feature in this region. The OCGG Central 

Oklahoma Granite Group) unit is widely distributed in north central Oklahoma. At mid-

crustal levels, a southward extension of the MCR (Mid-Continent Rift) from Kansas 

into central Oklahoma is suggested from the velocity model. The Vp/Vs ratio generally 

displays a high-low-high distribution vertically. The low Vp/Vs ratio zone may relate to 

the water-filled fractures in the host rock. 

I relocated the earthquakes from the 01/01/2010 to 03/31/2016 with 3D velocity 

model. The single event method is firstly used to improve the absolute locations with 

the 3D velocity model. Then, the DD (double-difference) method was employed to 

improve the relative locations with the 3D velocity model. The 1D velocity model DD 

method relocation results were used to determine location shifts. Most earthquake 

locations shifted less than 1 km, and the average shift amount was about 0.7 km. The 

relocated clusters provided narrower NE-SW or NW-SE orientations, which are 

consistent with maximum horizontal stress in this region. Some clusters correlate with 

fault splays, or align with mapped faults. Some clusters suggest new inferred faults due 

to no nearby publically known faults correlating with them.  

 


