
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

VARIANTFLOW: INTERACTIVE STORYLINE VISUALIZATION USING

FORCE DIRECTED LAYOUT

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

SHEJUTI SILVIA
Norman, Oklahoma

2016

VARIANTFLOW: INTERACTIVE STORYLINE VISUALIZATION USING
FORCE DIRECTED LAYOUT

A THESIS APPROVED FOR THE
DEPARTMENT OF ENGINEERING

BY

Dr. Christopher E. Weaver, Chair

Dr. Mohammed Atiquzzaman

Dr. Charles D. Nicholson

© Copyright by SHEJUTI SILVIA 2016
All Rights Reserved.

Contents

Abstract vii

1 Introduction 1

2 Background 5
2.1 Data Visualization . 5
2.2 Application Domain: Classical Latin 6
2.3 Related Work . 11

2.3.1 Collation Tools . 11
2.3.2 Text and Time Series Visualizations 11
2.3.3 Storyline Visualizations . 12
2.3.4 Force-Directed Graph Layout Algorithms 15

3 Design 16
3.1 Design Goals . 16
3.2 Design Approach . 17
3.3 Design Challenges . 22
3.4 Limitations . 24

4 Layout Algorithm 27
4.1 The Overall Approach . 27
4.2 Algorithm Overview . 29

4.2.1 Organic Step . 29
4.2.2 Force Model . 30
4.2.3 Algorithm 1 Description 31
4.2.4 Fixed Step . 33

4.3 Time Complexity . 36
4.4 Limitations . 37
4.5 Implementation . 38

4.5.1 Data Transformation . 39
4.5.2 Time Complexity . 40
4.5.3 Limitations . 42

iv

5 Usability Evaluation 43
5.1 Procedure . 43
5.2 Task and Data Analysis . 45
5.3 Findings . 47

6 Discussion and Future Work 50
6.1 Analysis . 50
6.2 Generalization . 52
6.3 Limitations and Future Work . 53

7 Conclusion 58

v

List of Figures

2.1 Giarratano’s critical edition of the classical Latin poem Calpurnius
Siculus [29]. 8

2.2 XKCD’s hand drawn illustration of “Movie Narrative Chart” [22].
(Reproduced under Creative Commons Attribution - Non Com-
mercial 2.5.) . 13

3.1 Storyline design principals introduced in [23, 28] 17
3.2 Storyline visualization of Giarratano’s critical edition of the clas-

sical Latin poem Calpurnius Siculus [29]. (Elements are described
detail in the text.) . 18

4.1 Flow chart of our FDL storyline layout algorithm. 29
4.2 Force model used in the FDL organic step of our storyline layout

algorithm. 30

5.1 Left: Mean accuracy for 3 categories of quantitative tasks with the
dense and sparse storyline layouts. Right: User accuracy versus
time taken to perform visual metaphor interpretation (category 1),
reading (category 2), and pattern recognition (category 3) tasks. . 45

vi

Abstract

The study of literature is changing dramatically by incorporating new opportu-

nities that digital technology presents. Data visualization overturns the dynamic

for literary analysis by revealing and displaying connections and patterns be-

tween elements in text. Literary scholars compare and analyze textual variations

in different versions of a lost original text and work to reconstruct the original

text in the form of a critical edition. A critical edition notes textual variations

in extensive footnotes, collectively called a critical apparatus. Information in the

apparatus is of great interest to scholars who seek to explore complex relation-

ships between text versions. Motivated by application to classical Latin texts, we

adapted the storyline technique to visualize a critical apparatus. The visualiza-

tion facilitates guided discovery of similarities and dissimilarities between prior

text versions, which are difficult to detect and reason about with traditional deep

reading and spreadsheet-based methods.

Storyline visualizations help users understand and analyze the interactions

between entities in a story and explore how entity relationships evolve over time.

Typical design considerations in existing storyline techniques include minimiz-

ing line crossing and line wiggling, which are computationally intense problems.

Generating storyline layouts in real time is a substantial challenge to interactive

visualization. Existing storyline techniques support limited user interaction due

vii

to the high cost of layout. We contribute a force directed layout algorithm that

dynamically reflows storyline layouts with best effort response to internal and

coordinated interactions. We anticipate that the characteristics of our layout

algorithm will allow for graceful response to a wide variety of interaction types,

speeds, and patterns. We conducted a user study to evaluate the legibility of our

storyline layout after convergence. The evaluation results demonstrate that most

users can accurately complete a wide variety of visual metaphor interpretation,

reading, and pattern recognition tasks within 20 seconds.

viii

Chapter 1

Introduction

Textual criticism is an active area of research in digital humanities. Literary

scholars study the creation, alteration and evolution of text over time. Data

visualization overturns the dynamic for literary analysis by revealing and depict-

ing connections and patterns between elements in text. Interactive visualization

techniques guide scholars to explore text corpora and discover new knowledge

that is impractical to gain using traditional methods.

Original Latin texts from the classical era are mostly lost. Only replications

of the original texts survived in the forms of manuscripts, early printed editions,

and modern editions. Existing manuscripts and the printed editions of a text

usually vary from each other significantly, due to the errors or alteration of text

introduced by scribal and printing processes. Classics scholars refer to these

manuscripts and early printed editions as witnesses. Textual differences between

witnesses are called variants. A scholar’s ultimate goal is to reconstruct the

original text, in the form of a critical edition, by carefully choosing variants

from the existing witnesses. The main text in a critical edition is accompanied

by a critical apparatus, which includes variants from witnesses that the editor

1

considered important during collation. Each word or phrase in the main text

that has an entry in the apparatus is called a lemma. The apparatus appears at

the bottom of each page, in a highly abbreviated form that requires substantial

training to read. Students and novice readers of Latin texts are typically unable

to read or interpret the apparatus.

This thesis presents VariantFlow, an interactive storyline visualization of the

critical apparatus that is easily readable and comprehendible to students, teach-

ers, and novice readers of Latin texts, who do not have sufficient training to read

the apparatus in its canonical form. Moreover, scholars are unable to analyze

the apparatus of an entire critical edition at once. They are only able to look at

an individual entry or a collection of entries in an apparatus on a page, instead

of the entire text. VariantFlow visualization provides an overview of the entire

apparatus that will help scholars observe larger patterns and anomalies, above

the level of the individual lemma. The storyline layout works especially well for

tracing witnesses of the same lineage (their stemma) that have many variants in

common, traveling through text together, revealing similarities and dissimilarities

between them. Analyzing the apparatus with VariantFlow visualization will also

help scholars understand the editor’s conjectures in an existing collation, which

plays an essential role in creating new and improved critical editions.

State-of-the-art storyline techniques compute optimal layout with minimum

line crossing and line wiggling. These techniques support limited user interac-

tion due to high computational cost of layout. Instead of generating an optimal

layout, we focus on generating a layout that is highly interactively responsive

yet also topologically good enough for users to perform key reading and pat-

tern recognition tasks with reasonable speed and accuracy. We use a customized

force-directed layout algorithm to achieve fast convergence to reasonable layouts

2

regardless of earlier layout states or interaction dynamics. We are developing

the new storyline technique to be a component in an upcoming desktop app for

visualizing critical editions in the Digital Latin Library. One mode of the app

will include brushed highlighting and filtering between storyline elements and the

elements in a central view of the main text.

Existing storyline techniques employ combinatory optimization methods that

are difficult to apply incrementally and hence do not accommodate interaction

well. In contrast, our layout algorithm runs smoothly and continuously in re-

sponse to interaction, and hence also seems faster (while actually being slower)

than existing techniques. We argue that these characteristics allow for graceful

response to diverse forms of coordinated interaction, such as dynamic filtering.

A user evaluation confirmed that our storyline layout is aesthetically pleasing

and easy to read for novice readers, who performed several reading and pattern

recognition tasks with accuracy and efficiency not significantly affected by layout

complexity.

This thesis contributes a storyline layout algorithm for VariantFlow

visualization, that dynamically generates legible layout for best effort

response to external interaction. An interactive storyline generation tech-

nique needs to be able to relayout within 100 ms of an external interaction [26].

In the best case scenario (with a smaller data set), our layout is generated in in-

teractive time (within 100 ms), however for the worst case (with a larger dataset),

it can take up to several seconds. We have employed a force-directed layout tech-

nique to achieve fast convergence to reasonable layouts regardless of earlier layout

state. We hypothesize that the characteristics of our force-directed

layout algorithm will allow for graceful response to a wide variety of

interaction types, speeds, and patterns.

3

This document opens with a discussion of the application domain area and

the related work in both humanities and data visualization that motivated our

research. In Chapter 3 we describe our objective, approach and challenges in de-

signing VariantFlow, an interactive storyline visualization. Chapter 4 details the

VariantFlow layout algorithm, and its time complexity, implementation, and lim-

itations. Chapter 5 discusses the procedure and results of a usability evaluation

of the prototype visualization. In Chapter 6 and 7 we conclude by considering

utility and usability of our prototype layout algorithm and visualization, plus

several future directions.

4

Chapter 2

Background

This thesis, like much work in visual analytics, draws techniques and terminol-

ogy from a variety of disciplines: text visualizations, time series visualizations,

storyline visualizations and force-directed layout algorithms come from data visu-

alization; textual variants, critical apparatus, critical edition and textual collation

comes from classical Latin editorial work; variant graphs and collation tools come

from digital humanities. This chapter presents related work and provides back-

ground in these areas to aid understanding the motivation behind the design of

the VarientFlow visualization.

2.1 Data Visualization

Data visualization is the theory and practice of creating visual representations

of data that enable users to gain new insights and discover hidden patterns in a

given dataset. Application of data visualization includes various domain areas,

such as intelligence, social networks, sports, science, and the humanities. Text

is the most common form of “data” used in the humanities. Standard text vi-

5

sualization techniques, focusing on the analytics of large datasets, are usually

not tailored to serve the needs of the humanities scholars who perform critical

engagements with texts. Few existing visualization techniques depict complex

relationships between text entities. On the other hand, time series and storyline

visualization techniques are commonly used to represent entity relationships in

any given dataset and how entity relationships change over time. Due to salient

issues in the humanities—uncertainty, interpretative complexity, and the idiosyn-

crasies in critical theoretical approaches—it is difficult to develop visualization

tools to support humanities research. In the next section, we present the specific

humanities domain area and the complex research problems within that domain

area that our research aims to support.

2.2 Application Domain: Classical Latin

Prior to the 15th century, Latin texts were primarily preserved by scribes, who

copied the original text or a copy of the original text to a manuscript by hand,

introducing textual variations and transcription errors in the process. Over time,

the “original text” is replicated to multiple manuscripts that vary from each

other in ways that are important to literary scholars and textual critics. At

the end of the 15th century, publishers started publishing printed editions of

these manuscripts. Publishers often chose a manuscript at random to publish

as a printed edition, and then discarded the manuscript itself, considering it

redundant to the printed edition. Thus, manuscripts of many classical Latin

texts are lost. Moreover, the printing process itself introduced errors [16, 21, 33].

As a result, existing manuscripts and the printed editions of a lost “original text”

usually vary from each other significantly. Manuscripts and early printed editions

6

of an “original text” are called witnesses. Textual variation between witnesses

are called variants.

Scholars and editors of Latin texts study the transmission history and evolu-

tion of texts to reconstruct the original text as closely as possible. A scholar’s

ultimate goal is to produce a critical edition that recreates an original text from

carefully selected variants. First, the editor chooses the most reliable witness

as the original text, also referred to as the base text. Then he selects a set of

witnesses that he would like to collate against the base text. During the col-

lation process, the editor manually compares witnesses with the base text and

records variants for each word, typically in a spreadsheet, referred as a collation

table. Then the editor employs philological judgment and his own reasoning to

determine the authenticity and the significance of each variant in the collation

table [4, 16, 21, 33].

Editors take various approaches to select variants for critical editions. They

often prefer variants supported by the majority of witnesses, or the oldest wit-

nesses, or the witnesses that consistently provide reliable variants throughout the

text. In some cases, editors consider the outliers—the variants that deviate from

the known practice of a scribe or a given period—more reliable [3, 16, 21, 33].

Editors also employ a stemmatic approach to select variants for critical edi-

tions. A stemma is a family tree of manuscripts showing which manuscripts

copied from each other. This approach requires tracing the relationship between

witnesses from one generation to the others. Depending on the witnesses shar-

ing the same lineage, and therefore sharing similar variants, the editor creates a

manuscript family tree (stemma). This helps to reduce the complexity of the col-

lation process by allowing the editor to select variants for the critical edition from

a branch that he or she thinks more reliable, and ignore variants from the other

7

Figure 2.1: Giarratano’s critical edition of the classical Latin poem Calpurnius
Siculus [29].

branches in the stemma that the editor considers less reliable [3, 16, 5, 21, 33].

Finally, the editor assembles the collated text as a critical edition. Figure 2.1

shows Giarratano’s critical edition of the classical Latin poem. As shown in this

figure, the text in a critical edition appears at the top of the page, accompanied

by a critical apparatus, which includes the list of witnesses and variants the

editor considered important during the collation process. An apparatus consists

8

of entries for each lemma, meaning word or phrase in the text, for which there are

textual variations among witnesses. The apparatus appears as a running set of

footnotes on each page, containing a collection of entries for the lemmas associated

with that page. Each entry in the apparatus contains the line number and the

variants for a lemma, followed by the type of each variant and the list of witnesses

that supports that variant. The information in the apparatus is encoded in

extremely concise and highly abbreviated form that requires substantial training

to read. Students and novice readers of Latin texts are typically unable to read

or interpret an apparatus.

We developed the VariantFlow visualization to represent the information in

a critical apparatus in a way that requires much less training to read and com-

prehend. In the apparatus, editors only include the conjectures and the collation

decisions that they consider important. Thus, visualization of an apparatus re-

veals the key editorial decisions made in a critical edition, and the patterns of

witnesses and variants that are reflected in that edition. For scholarly advance-

ment, being able to read and understand the apparatus using a visualization tool

is quite valuable to the students, teachers, and novice readers of Latin texts, who

do not have sufficient training to read the apparatus in its canonical form.

VariantFlow visualization can support editors to assess their own editorial or

collation process over time. Editors take years to create a critical edition. Over

the years, editors build their collation table, starting from the beginning of a

base text and typically working their way through to the end of the text. How

editors construct the collation table, their interest in specific characteristics or

patterns in the texts they compare, and which editorial decisions and philological

judgments they make for any given conjecture or any given lemma in the critical

edition, can all vary over time. Therefore, visualization of a critical apparatus,

9

which includes the key phenomena of the collation process, can usefully reveal

substantial “drift” in editorial and scholarly decisions, from chapter to chapter

or from the beginning of the text to the end. For example, when the editor

collates variants for the first chapter of a text, he may prefer variants from a

certain group of witnesses over the others. However, a few years later, when

the editor works on the later chapters of the text, he might prioritize a different

group of witnesses, due to the change in knowledge, experience, and reasoning.

VariantFlow effectively depicts these “scholarly drifts” throughout the text of a

critical edition, allowing the editors to study their own collation process in the

past.

Similarly, scholars cannot analyze the entire apparatus of a critical edition at

once. They can only look at an individual entry or collection of entries in an ap-

paratus on a page. VariantFlow visualization provides an overview of the entire

apparatus that helps scholars observe larger patterns and anomalies in variant

texts, whereas before, scholars only could see details at the level of a few individ-

ual lemmas. VariantFlow layout works especially well for tracing witnesses from

same lineage (stemma) that have many variants in common, revealing similari-

ties and dissimilarities between them. Analyzing the apparatus with VariantFlow

visualization will also help scholars understand the editor’s conjectures in an ex-

isting collation, which plays an essential role in creating new and improved critical

editions. Moreover, VariantFlow reveals the structure of the stemma used in cre-

ating a critical edition, by grouping witnesses from the same lineage together. It

can also depict interesting anomalies like contamination, in which a witness is

linked to multiple lineages.

10

2.3 Related Work

This section presents the related topics in both humanities and data visualization

that inspired our research.

2.3.1 Collation Tools

For centuries, textual critics and editors have been comparing texts and their

provenance of copying to reconstruct original texts that are lost. Many digital

humanities projects are currently invested in developing tools to facilitate this

process. Juxta is an online open-source tool widely used by scholars to visualize

textual differences in multiple witnesses and collate them to create new critical

editions [1]. Schmidt introduced Variant Graph [25], which represents textual

variations as separate paths through a directed acyclic graph, with witness labels

and variants positioned on the edges. Due to convoluted layout and the difficulty

of effective text positioning, variant graphs have generally poor readability and

scalability. Inspired by Schmidt’s work, Dekker [9] proposed CollateX, a modified

version of Variant Graph, most commonly used by scholars for analyzing variants.

StemmaWeb [4] is another online application that extends CollateX and provides

various methods of analyzing and interpreting textual variants. TRAViz, an in-

teractive implementation of variant graph, aligns sentences from witnesses, based

on their similarity in tokens (words or phrases) [13]. Thus, TRAViz is effective

for application cases like verse-by-verse comparison between Bible editions.

2.3.2 Text and Time Series Visualizations

This thesis is closely related to research on text and time series visualization. We

are interested in identifying complex patterns in witnesses related to phenom-

11

ena such as scholarly drift, contamination, and characterizing how these patterns

evolve throughout the text of a critical edition. Many existing techniques com-

bine text visualization and time series visualization techniques to depict temporal

patterns in text data. ThemeRiver is a visualization of theme changes over time

in a document collection. Each theme is represented with ‘river currents’ made

of smooth continuous curves. River currents progress through time, from left to

right, revealing various temporal patterns in a text collection [12]. History flow

visualization shows how collaborative documents change over time, revealing in-

teresting patterns in authorship and textual variations in different versions of a

document [30]. TimeNets is a visualization technique for genealogical data that

represents individuals with lines that converge and diverge based on various tem-

poral and family relationships such as - birth and death, marriage and divorce,

etc. [17]. Other similar visualization techniques track changes of topics in text

streams [7, 18, 10, 19], and of creation and evolution of communities in social

networks over time [24]. Popular stack graph and layer graph visualization tech-

niques are also effective in revealing temporal patterns and entity relationships

in a given dataset. Each stack or layer represents an entity such as topic, genre

and revenue of movies. The directed flow from left to right indicates how various

entity relationships change over time [6, 10, 19].

2.3.3 Storyline Visualizations

Munroe popularized the storyline visualization technique in hand-drawn form

in his XKCD comic about movie narratives [22]. Figure 2.2 shows some hand-

drawn illustrations of XKCD’s “Movie Narrative Chart”. In this illustration,

the horizontal axis represents time and vertical groupings of lines indicate which

12

Figure 2.2: XKCD’s hand drawn illustration of “Movie Narrative Chart” [22].
(Reproduced under Creative Commons Attribution - Non Commercial 2.5.)

characters are together at a given time. Colored regions reference the spatial

locations the characters pass through.

Thus, storyline visualizations represent entities with lines. Lines flow from

left to right, converging or diverging from each other at various points in time,

revealing spatial, temporal, and correlated entity grouping relationships. For our

application case, we are particularly interested in tracing patterns of variations

between witnesses and tracking how these patterns change throughout the entire

text of a critical edition. The ability to show groupings of lines based on entity

relationships and how these groupings change over time depending on changes in

entity relationships makes the storyline technique a suitable fit for our application

case. For storyline to be effective, the groupings of lines needs to be coherent

over time. In our application case, lines represent witnesses, progressing through

13

text (lemmas), from left to right in reading order. Lines are grouped together

when they share the same variant for a lemma. It is an assumption within our

application case that there is enough consistency between groupings of witnesses

in providing common variants throughout the text. Apparatuses usually include

witnesses from a few reliable lineages (stemma). Witnesses from the same stemma

tend to possess many variants in common. Therefore, storyline visualization

of the apparatus should effectively reveal patterns. For instance, lines might

nicely converge together into a few groups at the beginning of a critical edition,

indicating higher quality provenance for those witnesses. Or, towards the end

of the critical edition, if there are no coherent groupings in storyline and lines

are tangled between groups, it reveals many variations and high fragmentation

between witnesses (destruction of witnesses, or the presence of fragments of a

former witness within other witnesses). Storyline can also depict anomalies like

contamination, where a line consistently grouped with one group of witnesses

throughout the text suddenly diverges and joins another group, revealing its

association with multiple lineages.

There is growing interest in automating the layout of storylines [28, 23]. The

methods described by Tanahashi, et al. [28, 27] produce storylines for hundreds

of entities and event times but take several minutes to lay out, making them

too slow for many user interactions including dynamic queries. StoryFlow [20]

generates layouts faster, enabling it to support precise user interactions, such as

bundling and straightening lines.

14

2.3.4 Force-Directed Graph Layout Algorithms

Like storylines, graph visualizations use lines to represent relationships between

entities. The design principals for aesthetics, legibility and traceability of indi-

vidual lines in graph visualizations carry over to storylines. Our research was

particularly inspired by the design principals and layout algorithms suggested

by Ogawa and Ma [23] for generating storylines. In their work, Ogawa and Ma

suggested force-directed graph layout algorithms as a potential future research di-

rection for storyline generation. They presented a set of design rules for storyline

visualization of temporal dynamics between developers in a software development

history. The horizontal axis represents timesteps, and each node represents a de-

veloper’s appearance in a timestep. Nodes representing the same developer are

connected by edges in the horizontal-direction. Thus, each line in a graph repre-

sents an entity. Each node on a line is vertically aligned with the co-appearances

of the other developers (nodes) associated with the same timestep. By restrict-

ing the node positions on their respective timesteps along the horizontal, the

force-directed graph layout algorithm can be applied only along the vertical to

cluster the lines based on some entity relationship, such as developers working

together within the same project. A force directed layout algorithm can also

help reduce the number of edge/line crossings. The most popular force directed

graph layout algorithms include Fruchterman-Reingold’s organic model [11] and

Davison-Harel’s simulated annealing [8]. Nodes attract and repulse each other

based on the force model. Iterative movement minimizes the cumulative force

on each node, approaching an equilibrium state and converging to a reasonable

layout.

15

Chapter 3

Design

In this chapter, we describe the design goals, our overall approach and challenges

of designing VariantFlow, an interactive storyline visualization technique to vi-

sualize textual variations in classical Latin text.

3.1 Design Goals

In designing VariantFlow, our first goal is to support simultaneous graphical

representation of the witnesses and lemmas in the base text of a critical edition,

revealing their complex relationships. By employing the storyline technique, we

aim to depict interaction between witnesses providing variants, the patterns of

variants overall and other anomalies in the critical edition above the level of

individual lemmas.

Our second goal is to represent the critical apparatus with an intuitive visual-

ization, one that is easily readable and comprehendible to novice readers of Latin

texts who do not have sufficient training to read and interpret the apparatus in

its canonical form.

16

Figure 3.1: Storyline design principals introduced in [23, 28]

Finally, our third goal is to provide a visualization of the apparatus that is

responsive to common user interactions in real time.

3.2 Design Approach

Storyline visualizations consist of a time axis and a collection of lines, converging

and diverging in the course of their paths, as they progress forward along the time

axis. For VariantFlow, we employ the design principals introduced in [23, 28] as

follows (see Figure 3.1):

1. Lines represent entities.

2. Lines are clustered based on specific entity relationship.

3. Lines within the same cluster must be adjacent to each other.

4. Clusters should be spaced apart from each other.

5. Line crossings and line wiggles are inevitable, but minimize them as much

as possible.

17

Figure 3.2: Storyline visualization of Giarratano’s critical edition of the classical
Latin poem Calpurnius Siculus [29]. (Elements are described detail in the text.)

6. Balance the amount of empty space in the layout to effectively use screen

real estate.

Figure 3.2 shows a storyline visualization of the critical apparatus from a

classical Latin poem, Calpurnius Siculus [29]. We implemented a prototype of

our layout algorithm and visualization by adapting the existing general-purpose

graph view in Improvise [31, 14]. In this section, we describe the series of visual

encoding decisions we made in crafting VariantFlow.

• Base text line: Unlike existing storyline techniques, which show time from

left to right, VariantFlow’s horizontal axis represents text in reading order.

The transparent line along the top (see Figure 3.2) represents lemmas in

the base text in a critical edition.

• Lemmas on base text line: Lemmas are equally spaced along the top

line, from left to right, in reading order. The base text line can be compared

to the time axis of the existing storyline visualizations. The lemmas divide

18

the entire view into vertical slots (see Figure 3.2), similar to the time steps

or interaction events in existing storyline techniques.

• Witness line: Like other storyline techniques, each line represents an

entity. In our application case, each line (except the top line) represents a

witness (see Figure 3.2).

• Labels: Each line is labeled with their witness name. A line label appears

between each successive pair of nodes (see Figure 3.2). This provides better

traceability and readability of individual lines in the layout.

• Line color: Lines of the same color represent witnesses from the same

manuscript family (stemma). The boldly colored lines indicate the wit-

nesses from the primary manuscript families. The lightly colored lines rep-

resent the witnesses from the inferior (secondary) manuscript families.

• Variants on witness lines: With the horizontal axis devoted to text in

reading order, the vertical axis is available to represent the relationship be-

tween the witnesses and the base text. Within our dataset, the relationships

among the witnesses and the base text (lemmas) are determined by their

similarities and dissimilarities in text. Each node, representing a variant of

a lemma, is vertically aligned with the lemma and horizontally positioned

on the contributing witness line. Thus, nodes representing variants of the

same lemma are all vertically aligned within that lemma’s slot.

• Common variants in blob: Multiple witness lines are clustered together

in a “blob” or “pack” when they have a common variant (see Figure 3.2).

The color of a blob represents its variant category.

19

– green blobs represent semantic and orthographical variants (simply

referred to as variants).

– blue blobs represent variants that are the same as the lemma (referred

as lemma-witnesses). Witnesses that have the same text as a lemma

are grouped together in a single blue blob.

– red blobs represent subtractive variants caused by omission of a

lemma through oversight, erasure, etc. in a witness.

• Empty boxes: Empty boxes indicate no textual variation (see Figure 3.2).

Like variants, each empty box is vertically aligned with a lemma and hori-

zontally positioned on a witness line, depicting the absence of a variant in

a particular witness, for a particular lemma.

In a printed critical edition, scholars have difficulty analyzeing the entire appa-

ratus at once. They can only look at the individual entry or collection of entries

in an apparatus on a page. VariantFlow visualization provides an overview of

the entire apparatus that helps scholars observe larger patterns and anomalies in

variant texts, whereas with printed editions, scholars have no true overview and

can only view details at the level of individual lemma. We hypothesize that users

may observe the following patterns in variant texts using VariantFlow:

• Scholarly drift at different scales: Editors take years to create a crit-

ical edition. Over the years, their interest in specific characteristics of the

witnesses and their variants, and the editor’s knowledge and philological

judgement in collating text, may change substantially. Therefore, with

VariantFlow, users can look for “drift” in editorial and scholarly decisions,

from chapter to chapter or from the beginning of the text to the end in a

critical edition.

20

• Contamination: VariantFlow depicts anomalies like contamination, in

which a line consistently grouped with one group of witnesses throughout

the text suddenly diverges and joins another group, revealing its association

with multiple lineages. However, contamination can be difficult to identify

in cases in which there are many group changes among the witnesses, caused

by a large amount of variation or fragmentation in text.

• Anomalies in collation decisions: VariantFlow can be used to identify

unusual decisions or conjectures made by the editor during the collation

process, like when the editor chooses an outlier variant as a lemma. The

outlier could be a variant supported by a single witness (as opposed to the

majority of the witnesses) or a variant supported by inferior manuscript

families instead of primary manuscript families. Sometimes, editors intro-

duce their own conjecture, ignoring all the witnesses. However, it might

be difficult to distinguish these scenarios with VariantFlow, if the editor

frequently chooses variants in unconventional ways.

• Fragmentations: Fragmentation in a witness is caused by partial destruc-

tion of the witness or by the presence of a former manuscript’s “waste” or

“fragments” within other witnesses. VariantFlow can be used to identify

patterns, like lines nicely converged together into few groups at the begin-

ning of a critical edition, that indicate higher quality provenance of the

witnesses. However, towards the end of the critical edition, there are few

coherent groupings and lines are tangled between groups, revealing many

variations and probable fragmentation between witnesses.

21

3.3 Design Challenges

In this section we describe the design considerations and challenges of crafting

storyline visualization specifically as an application to classical Latin text.

Designing an interactive storyline layout for VariantFlow poses the following

challenges:

• Low coherence: For storyline to be effective, the groupings of lines need

to be coherent over time. The challenge with our application case is that

grouping of witnesses specifying common variants (see Figure 3.2) does not

tend to be coherent across consecutive vertical slots (lemmas in reading

order). In contrast, entities in traditional storylines tend to interact with

each other over long periods of time, causing the lines to converge across

multiple slots in a time line.

• Spacing and alignments: In traditional storylines, entities appear and

disappear over time, causing the lines to be discontinuous throughout the

visualization. Discontinuous lines are easy to position in a suitable place

within the visualization or cluster with other lines, as these lines can appear

and reappear anywhere throughout the visualization. Discontinuous lines

also help avoid line crossings and line wiggles, and the consequent visual

clutter. The XKCD storyline uses dotted lines before a character’s first

appearance and reappearances to imply that their prior locations are un-

known. In contrast, lines in a VariantFlow visualization exist throughout

the entire text. This makes the spacing and aligning of lines challenging

within the storyline layout.

• Legibility of the layout: The storyline representation of the critical ap-

22

paratus needs to be intuitive and easily readable to scholars, as well to stu-

dents and novice readers of Latin text. Moreover, each storyline element in

VariantFlow visualization displays text. In our prototype visualization, we

employed the methods introduced in CollateX to position variant texts in

nodes [9]. We used in-line labels to indicate witness lines, similar to existing

storyline techniques. However, each of these design choices poses usability

challenges indicating difficulty in reading the text positioned within the

concise space of a node, distinguishing variants with similar spelling, and

labels creating visual clutter where lines overlap.

• Generating suboptimal layout: Typical design considerations in exist-

ing storyline techniques include minimizing line crossing and line wiggling,

which are computationally intense problems. Instead of generating an opti-

mal layout with minimal line crossing and line wiggling, we focus on gener-

ating a topologically good enough layout, which will allow users to perform

various reading and pattern recognition tasks with reasonable speed and

accuracy.

• Best effort responsiveness: Generating storyline layouts in real time

is a substantial challenge to interactive visualization. Existing storyline

techniques support limited or no user interaction due to the high cost of

producing a layout. An interactive storyline generation technique needs to

be able to relayout within 100 ms of an external interaction [26]. A more

delayed response makes it harder for typical users to follow the transition

of storyline elements across layouts. From user interaction to relayout of

storyline includes the steps of dynamic query construction, storyline layout

algorithm execution, and rendering storyline elements on the view. Exe-

23

cution of the storyline layout algorithm presents the primary performance

bottleneck among these three steps.

Our objective is to design a storyline layout algorithm that dynam-

ically generates a legible layout with best effort response to external

interaction.

We are mapping a fairly complex dataset into a storyline visualization com-

pared to those shown in typical narrative storyline techniques. Our design goals

and challenges within our chosen application domain calls for design, perfor-

mance and usability considerations, listed above, that are substantially distinct

from existing storyline techniques and their domain areas of application. These

considerations led us to design the initial layout algorithm and visualization.

3.4 Limitations

• Scalability: We found that the VariantFlow visualization works best with

small to medium-sized dataset with no more than 15 lines. Representing

the base text as the top line within the same view as the witness lines causes

the base text line to disappear during vertical scrolling, causing users to not

be able to reference lemmas while reading a variant node far away from the

top line. This limits the number of lines we can include in the VariantFlow

visualization, causing it to scale poorly. This is an implementation issue

rather than a fundamental design issue, and can be corrected in the future

designs(by using separate view for the top line, for instance).

• Wiggle distance and white space: Apart from minimizing the number

of line crossings and line wiggles, state-of-the-art storyline techniques min-

24

imize the wiggle distance and empty space to achieve a more balanced and

compact layout. However, these design principles and quality metrics call

for computing the storyline layout as a combinatory optimization problem.

The force model in our prototype FDL algorithm includes a force function

that minimizes line crossing and line wiggles. However, we have not yet

implemented any force function to explicitly minimize wiggle distance and

white space to achieve a more compact layout.

• Spatial information: The narrative storyline techniques use color-coded

contours as a background on a storyline visualization to show spatial lo-

cations where characters interact in a story. These contours occupy rela-

tively fixed positions in the visualization, constraining vertical movement

of lines. We excluded the spatial contours from our VariantFlow design

because, with our layout algorithm, we are interested first in applying FDL

algorithm to the vertical displacement of nodes, keeping their horizontal

position unchanged. Constraining the nodes’ vertical movement would in-

crease the chances of the FDL algorithm to perform poorly, converging to a

suboptimal layout with poor topology. This would affect the interactivity

and readability of the layout.

• Hierarchical relationships: VariantFlow visualization is not currently

designed to represent hierarchical relationships among entities. However,

in the future, one might extend packs across multiple vertical slots to en-

code hierarchical order of entity relationships, such as the spatial contours

in narrative storylines [28, 20]. One could also split lines to represent hierar-

chical relationships among entities. For example, in our application domain,

a single witness can provide variants from multiple scribes in chronological

25

order, referred as witness hands; meaning, a witness can contain variants

from a scribe who made corrections to variants introduced by prior scribes.

These variants and the witness hands have hierarchical relationships among

them, that can be represented by temporarily splitting a witness line into

multiple paths for the variant nodes involving hands. These design per-

spectives would motivate adding new forces in our existing force model.

26

Chapter 4

Layout Algorithm

Our VariantFlow layout algorithm was inspired by Ogawa and Ma [23]. In their

work, Ogawa and Ma suggested force-directed graph layout algorithm as a po-

tential future research direction for storyline generation. In the following section

we describe our approach to generate interactive storylines using force-directed

layout algorithm.

4.1 The Overall Approach

As mentioned in the previous chapters, our objective is to develop a storyline

layout algorithm that dynamically generates legible layout for best

effort response to external interaction.

The existing state-of-the-art storyline techniques compute storyline layouts as

combinatory optimization problem with respect to the matrices for legibility and

aesthetics of the layout, constrained by their design principals. Although these

layout techniques produce optimized layout with minimal line crossing, minimal

line wiggles and balanced whitespace, they take seconds to minutes to produce

27

layouts, making them unsuitable for real time user interaction.

Generating storyline layouts in real time is a substantial challenge to inter-

active visualization. An interactive storyline generation technique needs to be

able to relayout within 100 milliseconds of an external interaction [26]. A more

delayed response makes it harder for typical users to follow the transition or dif-

ference between the storyline elements across layouts. To generate a storyline

layout using The Matrix dataset, StoryFlow [20] computes in 0.16 second and

Tanahashi and Ma’s technique [28] computes in 1.7 second.

This has motivated us to employ force-directed layout (FDL) algorithm

to achieve fast convergence to reasonable layouts, for best effort re-

sponse to external interaction. We believe that the characteristics of

the force-directed layout algorithm will allow for graceful response to

a wide variety of interaction types, speeds, and patterns.

We use a modified version of the Fruchterman-Reingold model [11] for our

layout algorithm. Nodes attract and repulse each other. Iterative movement min-

imizes the cumulative force on each node, approaching an equilibrium state [8].

In our force model, node represents variant of a lemma at a particular point in

the text, edges are connections between variants for a given witness, and hy-

peredge “blobs” are sets of witnesses that have a common variant for a lemma.

Application of storylines to critical editions is a special case of graph layout. The

variant nodes for each lemma are initially placed in a column (vertical slot), with

columns laid out from left to right for each lemma in reading order. All forces

and node movements are vertical only.

28

4.2 Algorithm Overview

Figure 4.1 shows a flowchart of the algorithm for computing the layout of Vari-

antFlow visualization.

Our Layout algorithm consists of two major steps - the organic step and the

fixed step.

Figure 4.1: Flow chart of our FDL storyline layout algorithm.

4.2.1 Organic Step

In the organic step, we apply a force directed layout algorithm for 30 iterations

to converge to a minimum-crossing topological layout. This number was empir-

ically found. Less than 30 iterations usually produce more convoluted layout.

More than 30 iterations usually do not make much improvements over the layout

achieved by 30 iterations.

29

4.2.2 Force Model

The force model used in the organic step is as follows:

Figure 4.2: Force model used in the FDL organic step of our storyline layout
algorithm.

• Node-node (n-n) forces: Nodes within the same vertical slot repulse each

other, if they are closer to each other than a minimum distance threshold,

D. This repulsive force, f repulsive separate nodes to an equilibrium distance

from each other, thus effectively preventing node overlapping within each

vertical slot.

• Node-edge (n-e) forces: Nodes on consecutive vertical slots, connected

by an edge, attract each other vertically, thus pulling each pair of nodes

to align horizontally. This force, f attractive-alignment reduces line crossing and

line wiggling.

• Node-pack (n-p) attractive forces: Nodes within each variant pack

attract each other using a quadratic force centered on equilibrium distance.

This force, f attractive clusters lines within the same pack in each vertical slot.

30

• Pack-pack (p-p) repulsive forces: The packs within the same vertical

slot repulse each other, using an inverse-square force, f repulsive-centroid, on

their centroids. Overlapping packs are repulsed from each other using a

strong repulsive force, f strong-repulsive-centroid. This force separate packs and

non-member nodes from other packs within each vertical slot.

4.2.3 Algorithm 1 Description

As shown in Algorithm 1, before applying the force directed algorithm, graph G

is initialized with a set of vertical slots, positioned from left to right, according to

the order lemmas appear in the input file. Moreover, lines are evenly positioned

along x-axis, from top to bottom, according to the order witnesses appear in the

input file. Each node is vertically aligned within a lemma’s slot and horizontally

positioned on a witness line. After the initialization phase, the 30 iterations for

the organic step of our force directed layout algorithm begins. During the organic

step, the forces described above are applied on each node, on y-direction only,

while keeping the horizontal position of the node fixed. Therefore, all forces and

distance matrices described in Algorithm 1 are vertical only.

Within each of the 30 iterations, the algorithm loops through each vertical slot

in G. If the euclidian distance between a pair of nodes (u, v) within a vertical slot

(s) is less than a minimum distance threshold (D), then the none-node repulsive

force (f(u, v)repulsive) is applied on u and v to push them further apart.

If a pair of nodes (u, v) within a vertical slot (s) belongs to the same pack

(p), the the node-pack attractive force (f(u, v)attractive) is applied on u and v to

cluster them together.

If the euclidian distance (duv) between a pair of nodes (u, v) within consecutive

31

vertical slots (s, s+1), connected through an edge (E), is not zero; meaning, u

and v are on the same line, but they are not aligned horizontally, then the node-

edge attractive-alignment force (f(u, v)attractive-alignment) is applied on u and v to

push them up or down, within their respective vertical slots, in order to make

them horizontally aligned.

Packs (P s) within a vertical slot repulse (using f(u)repulsive-centroid) each non-

pack-member node (u) from the pack’s centroid (c) to make clear separation

between the packs and other non-pack nodes. If the euclidian distance (duc)

between a pack’s centroid c and a non-pack member node u is less than a mini-

mum distance threshold (Dc), meaning there’s an overlap between packs or be-

tween a pack and a non-pack-member node (u), then a strong repulsive force

(f strong-repulsive-centroid) is applied on u to push it further apart from the pack’s

centroid c.

We experimented with our force model to achieve faster convergence to a good

layout topology. Algorithm 1 includes force functions used in our force model.

The constants K, C, C1, C2 in the force functions were determined empirically.

In the organic step, different forces in our force model compete with each other

to reach an equilibrium state. These constants help manipulate the strength of

each forces to achieve a good balance. For example, during our experiment, we

observed that the n-p attractive force, f(u, v)attractive usually compete with the

n-e attractive alignment force, f(u, v)attractive-alignment. Meaning, if we strengthen

f(u, v)attractive-alignment, and weaken f attractive, then our algorithm converges to a

layout with less line wiggles and line crossing, however, it fails to effectively

cluster lines in packs. On the other, when we strengthen f(u, v)attractive to cluster

lines nicely, our algorithm converges to a layout with more line crossing and line

wiggles. Similarly f(u, v)attractive and f(u, v)repulsive also compete with each other.

32

Strengthening one over the other causes our algorithm to generate compact or

sparse layout respectively. These constants also have some correlation to the size

of G (total number of nodes).

At the end of each iteration in the organic step, graph G is updated with the

new node and edge positions calculated after applying these forces on the nodes.

4.2.4 Fixed Step

At the end of 30 iterations with the organic step, we apply strong local symmetry

and alignment forces for one more iteration to improve the aesthetics of the

storyline layout while keeping the topology of the layout achieved from the organic

step. Symmetry forces adjusts all node positions in a pack so that they are very

close to each other and distances between adjacent nodes are equal. Symmetric

distance between adjacent nodes is quite hard to achieve using the organic forces.

Before applying alignment forces, we pre calculate virtual horizontal slot for each

line, so that the adjacent lines are equally positioned from each other. After

that, we apply strong alignment forces to reposition nodes within each vatical

slot to the horizontal slots, while keeping the nodes order within each vatical

slot the same. This step reduces unnecessary line wiggles and line crossings, and

adds balanced spacing between layout elements, which significant improves the

aesthetics of the storyline layout.

We apply these forces iteratively and continuously. In each iteration, we

combine the forces to achieve a good balance. This results in convergence to

reasonable layouts regardless of earlier layout state. We hypothesize that these

characteristics of our model will allow for graceful response to a wide variety of

interaction types, speeds, and patterns. This interactive behavior will in turn

33

greatly facilitate the flexible design of coordinated multiple view visualizations

that include storyline views.

Term Definition

G(V, E) Graph with V set of nodes and E set of edges
V Number of nodes
E Number of edges
S Number of vertical slots in G
L Number of lines in G
Ps Number of packs in a vertical slot s
D Minimum Euclidian distance threshold between a pair of nodes
Dc Minimum Euclidian distance threshold between a pack’s centroid

and a node that does not belong to that pack
duv Euclidian distance between node u and v
duc Euclidian distance between node u and a pack’s centroid c
−→uv Unit length vector pointing from node u to v
−→vu Unit length vector pointing from node v to u
−→cu Unit length vector pointing from a pack’s centroid c to node u
C, C1, C2 Some empirical constants
K V

C

iterations 30 is experimentally set as the number of iterations the
organic step of the algorithm should run

Table 4.1: Algorithm terms with definitions.

34

Algorithm 1 FDL Organic Step

1: G← initialize(V,E)
2: {All forces and distance matrices are vertical only}
3: for k = 1→ iterations do
4: for s = 1→ S do
5: P s ← getSlotPacks(s)
6: for i = 1→ L do
7: u← getNode(i, s)
8: for j = i + 1→ L do
9: v ← getNode(j, s)
10: duv ← getEuclideanDist(u, v)
11: if duv < D then

12: f(u, v)repulsive ← C1 + duv2

K
−→vu

13: end if
14: for p = 1→ P s do
15: if u, v ∈ p then

16: f(u, v)attractive ← duv2

K
−→uv

17: end if
18: end for
19: end for
20: v ← getNode(i, s + 1)
21: duv ← getEuclideanDist(u, v)
22: if u, v ∈ E, duv 6= 0 then
23: f(u, v)attractive-alignment ← ±(K

duv2
−→uv + K

duv2
−→vu)

24: end if
25: for p = 1→ P s do
26: c← getCentroid(p)
27: if u /∈ p then
28: duc ← getEuclideanDist(u, c)
29: if duc < Dc then
30: f(u)strong-repulsive-centroid ← C2 + Kduc

2−→cu
31: else
32: f(u)repulsive-centroid ← K

duc2
−→cu

33: end if
34: end if
35: end for
36: end for
37: end for
38: G← update(V,E)
39: end for

35

4.3 Time Complexity

Given S being the number of vertical slots and L being the number of lines in

graph G, the time complexity of our layout algorithm is O(SL3).

The order of growth of the running time of Algorithm 1 is

=
30∑
k=1

S∑
s=1

L∑
i=1

(
L∑

j=1

c +
L∑

j=1

P s∑
p=1

c +
P s∑
p=1

c

)
, c = constant, 0 0 P s 0 L

= 30 ∗ c ∗ S ∗ L(L + LP s + P s)

= 30 ∗ c ∗ S(L2 + L2P s + LP s)

= 30 ∗ c ∗ S(L2 + L2 ∗ L + L ∗ L)

= 30 ∗ c(SL2 + SL3 + SL2)

= 30 ∗ c(2SL2 + SL3)

(4.1)

Therefore, the time complexity of our VariantFlow layout algorithm is O(SL3).

Ogawa and Ma’s storyline layout algorithm computes in O(CT) for number

of entities C and number of time steps T [23].

The state-of-the-art method proposed by Tanahashi and Ma uses a genetic

algorithm (GA) to generate storyline layouts. GA algorithms are computationally

expensive. For number of vertical slots S and number of interaction sessions

I, the GA step in Tanahashi and Ma’s technique computes in O(SI), which

grows polynomially in the number of slots and exponentially in the number of

interaction sessions. In addition, computing the layout for each genome takes

time complexity O(CI + STI) [28]. Here, C is the number of lines, I is the

number of sessions, S is the number of slots, and T is the number of time frames.

On the other hand, the time complexity of StoryFlow is O(ne
2T + T 3) where

ne is the number of entities and T is the number of time frames in a StoryFlow

36

layout [20].

Therefore, the computational complexity of our layout algorithm, O(SL3) is

better than the time complexity of StoryFlow and Tanahashi and Ma’s technique.

4.4 Limitations

• Poor local minima: FDL algorithms tend to converge to local minima,

which produces suboptimal layout with more line crossings and line wiggles

and poor aesthetics.

• Legibility and aesthetics: For the legibility and aesthetics of the layout,

the distance between intra-cluster nodes or lines needs to be symmetric,

which an FDL algorithm cannot guarantee.

• Fixed step limits interactivity: While FDL algorithms converge to a

good layout topology faster, they also usually result in poor layout aesthet-

ics. To overcome this issue, we apply strong local symmetry and alignment

forces on nodes in the last iteration of the algorithm (fixed step). This

fixed step keeps the topology of the layout achieved from the organic step

and simply improves the aesthetics of that layout by applying those strong

forces. Although the fixed step significantly improves the legibility and aes-

thetics of the layout, it interrupts the force system of the FDL algorithm,

preventing it from approaching an equilibrium state iteratively. Thus the

layout becomes unresponsive to user interactions like dragging or moving

nodes, packs or edges.

• Sensitive to initial position: Like many FDL algorithm, the initial posi-

tion of nodes significantly affects the layout convergence of our VariantFlow

37

algorithm. Our FDL algorithm is designed to be applied only along verti-

cal direction of nodes while horizontal position of nodes remain fixed [23].

This requires to initialize our layout with vertical slots for lemmas in reading

order, with each variant node vertically aligned with it’s lemma’s slot and

horizontally aligned with it’s witness line. We found out that if we initialize

the nodes on lines evenly positioned along x-axis, the algorithm converges

to a good layout topology within the first 30 iterations. The vertical slots

and lines are initialized according to the order lemmas and witnesses ap-

pear in the data source. Therefore, the chronological order of lemmas and

witnesses in the input file influences VariantFlow layout convergence.

• Layout complexity: Due to the FDL algorithm’s tendency to settle into a

local minimum, the VariantFlow converges to a suboptimal layout. Mean-

ing, our VariantFlow layout can have more line wiggles and line crossing

than an optimal layout (with minimum line crossings and line wiggles).

Therefore, our layout algorithm tends to generate somewhat more complex

layout compared to the existing techniques.

4.5 Implementation

We implemented our layout algorithm in Java. We used the existing general-

purpose graph view and a modified version of the existing generic force-directed

layout algorithm in Improvise to implement the VariantFlow prototype visual-

ization and layout algorithm [31, 14]. The following section describes the data

model and data transformation pipeline for VariantFlow.

38

4.5.1 Data Transformation

Like many digital humanities project, DLL follows Text Encoding Initiative (TEI)

guidelines to represent critical editions in digital form (using XML markups). TEI

is a consortium that develops and maintains standards for digital representation

of texts. Since 1994, TEI guidelines have been widely used by scholars, edi-

tors, publishers, libraries and museums to encode texts for humanities research,

teaching, and preservation [2].

The raw input data for our VariantFlow visualization comes from TEI encoded

XML file containing the list of apparatus entries for lemmas in the critical edition

of the classical Latin poem Calpurnius Siculus [29].

The first step in our data transformation pipeline is to map the data from the

a TEI-encoded XML file to our data model. We use a basic relational data model

for VariantFlow. The data model is consists of four relational tables as follows.

witness 〈witness id, name〉

lemma 〈lemma id, name, poemNo, pageNo, lineNo〉

lemmaWitness 〈lemmaWitness id, location, name, witness id〉

variant 〈variant id, name, lemma id, witness id, type〉

These tables list individual witnesses, lemmas and variants. A forth lemmaWitness

table contains, for each lemma, a list of variants that are the same as the lemma

(referred as lemma−witnesses). We encode the relationship between each vari-

ant and it’s lemma using a lemma id as a foreign key. Similarly, the relationship

between the lemmaWitness and the witness is encoded using the witness id as a

foreign key. Moreover, the variant categories (variant, omission, etc.) are encoded

using the type attribute in the variant table. The lemma and lemmaWitness

tables contain the page location and the poem or chapter number of each lemma.

39

The data model could be extended by introducing apparatus types (e.g., note,

conjecture) and their attributes, or by introducing additional tables, (for instance

to represent hierarchical relationship between witness hands).

The next step in our data transformation pipeline involves computing the

storyline (graph) elements from the data stored in our data model tables. The

graph view consists of three primitive elements: nodes, edges, and packs. First,

the data projection phase aggregates occurrences and co-occurrences of the data

values in each data dimension and transforms these into unique tuples. Then

the graph definition phase collects these tuples into tables that are then mapped

into nodes, edges, and packs [15, 32, 14]. For VariantFlow, each unique lemma−

witness − variant tuple and lemma − lemmaWitness tuple is mapped into a

node. Note that, during these phases, unique lemma−witness− emptyV ariant

tuples are computed and mapped into empty nodes. Edge and pack computations

are more complex. Each set of common witness vs. source-and-destination-node

pairs are mapped into an edge. Sets of common lemma − witness − variant

tuples and lemma− lemmaWitness tuples are mapped into packs.

The final step in our data transformation pipeline renders and layout the

storyline (graph) elements. This step takes the graph primitives generated in

the previous step as input. The subsequent Filtering,Brushing, and Layout

transformations support interaction with nodes, edges, and packs in the view

during the automatic VariantFlow layout [15, 32].

4.5.2 Time Complexity

As the general-purpose graph view in Improvise is not tailored for storyline lay-

outs. Thus, the size of the VariantFlow layout, determined by number of lemmas,

40

witnesses and variants, significantly affects the computation time of generating

the layout. In generating a VariantFlow layout G with number of nodes n, the

organic step computes in O(n2 + nP) time, which dominates the overall time

complexity of the layout generation.

Besides, there are cost associated with computing node’s membership in ver-

tical slots S and packs P from each node’s positions in the graph view between

each iteration. For number of lemmas (vertical slots) S and number of witnesses

(lines) L, total number of nodes n = SL, which is much larger even for a small

size graph. Therefore, the computational complexity of our implementation is

poorer than the actual time complexity of our algorithm O(SL3).

It takes under 2 seconds to generate the layout in Figure 3.2 (not entirely

visible) for a storyline with 13 lines, 37 vertical slots and 494 nodes, using a

MacBook Pro with an Intel Core i7 processor and 8 GB memory. Most of this

time is due to rendering the graph after each iteration, rather than waiting until

convergence to render once.

By comparison, to generate a storyline layout using The Matrix dataset with

14 lines and 42 time frames, StoryFlow [20] computes in 0.16 second and Tana-

hashi and Ma’s technique [28] computes in 1.7 seconds using a MacBook Pro with

Intel Core i7 processor and 4 GB memory.

Existing storyline techniques generate layouts in batch processes and hence

do not accommodate interaction well. In contrast, our layout algorithm runs

smoothly and continuously in response to interaction, and hence also seems faster

(while actually being slower) than existing techniques. These characteristics allow

for graceful response to diverse forms of coordinated interaction.

41

4.5.3 Limitations

• Design: The general-purpose graph view in Improvise is not tailored for

storyline layouts. Besides increasing the computation complexity of the lay-

out generation, this makes interactions like - selecting or highlighting lines,

which is basically witness paths (collection of edges), hard to implement.

• Interactivity: Applying strong symmetry and alignment forces on nodes

in the last iteration of the algorithm (fixed step) cause the layout to be

unresponsive to user interactions. In future, we can replace the fixed step

with some more incremental steps which is more suitable to user interaction.

• Performance: Our implementation of the algorithm runs slower (takes

under 2 seconds) than the performance suitable for real time interaction

(100 ms of an external interaction [26]).

• Scalability: VariantFlow visualization works best with small to medium-

sized dataset with no more than 15 lines. Representing the base text as the

top line within the same view as the witness lines causes the base text line

to disappear with vertical scrolling, thus causing the users to not be able

to reference lemmas while reading a variant node further away from the

top line. This limits the number of lines we can include in the VariantFlow

visualization, causing it to scale poorly.

42

Chapter 5

Usability Evaluation

We conducted a preliminary user study to evaluate the legibility and aesthetics

of our storyline visualization. In this study we are testing the following four hy-

potheses:

H1 The storyline visualization of the critical apparatus is easily readable to stu-

dents and novice readers.

H2 The storyline visualization demonstrates clear separation and groupings of

entities based on entity relationships.

H3 The storyline algorithm generates topologically good layout.

H4 The density and complexity of the layout affects readability of the storyline

visualization.

5.1 Procedure

Nineteen students from a variety of majors participated in this study. To re-

cruit participants, we sent word-of-mouth invitation and email announcements

through a campus mailing list. We conducted a separate study session for each

43

participant. The study lasted for an hour and consisted of two sessions with a

five-minute break in between. During the first session, participants performed a

set of quantitative tasks involving various reading activities using the storyline

layout. In the second session, participants answered a set of qualitative ques-

tions regarding the legibility and aesthetics of the layout. The study began with

the participant signing the consent form and completing a background survey.

After that, we provided a brief introduction to our storyline visualization and

demonstrated various reading task using the layout. To minimize the influence

of learning, we asked participants to perform various training tasks similar to

the ones they would be performing in the study. We also encouraged them to

ask questions throughout the study. Once the participant was familiar with our

storyline visualization, we provided a questionnaire with 18 quantitative tasks.

We used two different storyline layouts in this study. One of the layouts was

denser (with 50 variants and 13 lines) than the other (with 25 variants and 7

lines). Half of the participants were presented with the denser layout and the

other half were presented with the sparse layout. The study was conducted in an

isolated room with the participant seated in front of an Apple MacBookPro with

a 15” screen displaying a storyline layout. Participants used typical interaction

techniques like pan and scroll using mouse and keyboard.

After completing the quantitative tasks, each participant took a five minute

break. After the break the second session of the study began. In this session the

participant provided feedback to 7 qualitative questions. All questions required

choosing an answer from multiple choices or supplying a brief numeric or text

response. Given the ground truth, we compute the error in participant’s answer

to each quantitative question as zero or one. Participants also provided their

confidence level for performing each of the tasks using a 5-step Likert scale.

44

Figure 5.1: Left: Mean accuracy for 3 categories of quantitative tasks with the
dense and sparse storyline layouts. Right: User accuracy versus time taken to
perform visual metaphor interpretation (category 1), reading (category 2), and
pattern recognition (category 3) tasks.

We used a stopwatch to measure the participant’s response time and recorded

responses using textual transcription and audio recording.

5.2 Task and Data Analysis

Three analyses are of primary interest. First, whether the visual metaphors used

in storyline to represent various entities are intuitive. Second, whether the various

entity relationships are easily readable using the layout. And finally, whether it

is possible to find patterns or similarities between entities using the storyline

layout. Therefore, we divided the quantitative tasks into three categories: visual

metaphor interpretation, reading, and pattern recognition tasks.

Visual metaphor interpretation (category 1) tasks required participants to

identify lines and nodes representing witnesses and lemmas. Participants demon-

strated very high mean accuracy (Figure 5.1(left)), confidence, and speed in per-

forming these tasks using both dense and sparse layout. Figure 5.1(right) shows

most participants completed these tasks within 20 seconds with 100% accuracy.

We found strong positive correlation between accuracy and confidence, and mod-

erate negative correlation between speed and confidence for these tasks.

45

Reading (category 2) tasks required participants to identify variants for lem-

mas, categories of variants and witnesses contributing those variants. Participants

showed moderately high mean accuracy (Figure 5.1(left)), confidence, and speed

to perform these tasks, with both dense and sparse layout. Figure 5.1(right)

shows most participants completed these tasks within first 20 seconds with 100%

accuracy. A few participants demonstrated poor accuracy and confidence in per-

forming reading tasks that required distinguishing variants with similar spellings.

Moreover, we observed that poor performance was often influenced by the small

font size or a participant’s lack of attention while reading such variants. We also

found strong negative correlation between speed and confidence, for these tasks.

Pattern recognition (category 3) tasks required participants to find groupings

of lines in blobs, indicating common variants between witnesses. Participants

demonstrated good mean accuracy (Figure 5.1(left)), confidence, and speed in

performing these tasks with both dense and sparse layouts. As shown in Fig-

ure 5.1(right), all tasks (except task 18) were completed within first 20 seconds.

Task 18 required participants to trace a set of lines converging at various points

through the layout, indicating similarity in how witnesses provide variants. Due

to the higher complexity of this task, participants took more time completing

it. Moreover, we found strong to moderate negative correlation between speed

and accuracy, and between speed and confidence, and also moderate positive

correlation between accuracy and confidence for these tasks.

We performed Wilcoxon Rank-Sum test on two unpaired samples, using per-

formance on dense and sparse layouts as the metric for each of the three categories

of quantitative tasks. All test results showed p values much larger than 0.05, in-

dicating that the distribution of accuracy, confidence and speed is identical for

both of these layouts.

46

In order to analyze the responses to the qualitative questions, we divided

the questions into two categories. Category-1 qualitative questions were related

to the aesthetics, spacing, density, and complexity of the storyline layout. All

participants agreed that the storyline layout was appealing to them with an

average rank of 4.2 (1=least appealing, 5=most appealing). Participants also

provided generally positive feedback such as how they really liked how the lines

were grouped, that the lemmas and the variants were nicely spaced, and that

overall the layout was clear and easy to read. A few participants who used the

dense layout stated that some part of the layout had many line crossings, making

it difficult to read the line labels. Overall, participants gave an average rank

of 3.7 for the spacing, density, and complexity of the layout (1=low, 5=high).

Category-2 qualitative questions asked participants to identify the quantitative

tasks that were relatively easy or difficult to perform using the storyline layout.

Many participants stated that identifying the original text line (transparent) and

omissions of a lemma (red blobs) were the easiest. Many participants found

tracing groups of lines throughout the layout was relatively difficult, especially

in places where there were many line crossings and and a lot of line wiggling.

5.3 Findings

In this section we relate both quantitative and qualitative findings of the study

to our hypotheses, and draw conclusions.

Quantitative analysis reveals high mean performance for the reading and vi-

sual metaphor interpretation tasks. Most participants completed these tasks

within 20 seconds with very high accuracy. A few participants had difficulty dis-

tinguishing variants with very similar spellings due to the smaller font size used

47

to display the text. Participants with higher accuracy performed these reading

tasks faster, with higher confidence. None of the participants had prior experi-

ence with Latin. Therefore, we can accept H1 and conclude that our storyline

representation of the critical apparatus is easily readable to novice readers.

Pattern recognition tasks were designed particularly to evaluate H2. Quanti-

tative analysis shows good mean performance for these tasks. A few participants

reported that line crossing and line wiggling caused difficulty in visually follow-

ing groups of lines traveling together throughout the layout. Most of these tasks

were completed within the 20 seconds with very high accuracy, which is consistent

with all 3 categories of tasks. Participants with higher accuracy performed these

reading tasks faster, with higher confidence. However, participants took a longer

time to accurately perform tasks with higher complexity. Therefore, we claim

that H2 holds true and conclude that our storyline visualization demonstrates

clear separation and groupings of entities based on entity relationships.

H3 claims that our storyline algorithm generates topologically good layouts.

Meaning, given prioritization of the witnesses, there exists an optimal layout

with a minimal number of line crossings and line wiggles. Our FDL algorithm

produces a layout that has more line crossings and line wiggles than the opti-

mal one. However, our quantitative analysis indicates participants were able to

perform various reading and pattern recognition tasks with high mean accuracy,

confidence, and speed. Our qualitative analysis demonstrates participants found

the VariantFlow layout to be aesthetically pleasing and nicely spaced with mod-

erate density and complexity. Therefore, we can accept H3 and conclude that

even though our layout does not meet the standard of the optimized layout, it is

a sufficient layout for readability.

To evaluate H4, we ran a Wilcoxon Rank-Sum test on performance data drawn

48

from two samples (dense and sparse) for each of the three categories of quantita-

tive tasks. The results indicate no significant difference in accuracy, confidence

or speed for tasks performed either with dense or sparse layout. Therefore, we

reject H4 and claim that density and complexity of the layout does not affect the

readability of our storyline visualization.

The results from our preliminary user study discussed in this section demon-

strates that our storyline visualization of the critical apparatus was easy to use

for novice readers, who performed various reading and pattern recognition tasks

with accuracy and efficiency that was not significantly affected by the complexity

of the layout.

49

Chapter 6

Discussion and Future Work

In this chapter, we provide a brief usability and utility analysis of the VariantFlow

visualization based on our objectives and evaluation outlined in Chapter 3 and

Chapter 5, respectively.

6.1 Analysis

Our first goal is to help scholars observe larger patterns and anomalies in variant

texts—including “scholarly drifts”, fragmentations in witnesses, contamination,

unconventional collation decisions, and conjectures—using the VariantFlow vi-

sualization of a critical apparatus. To support these visual pattern recognition

tasks effectively, VariantFlow employs a storyline technique to trace the witnesses

that have many variants in common throughout the text, revealing their simi-

larities and dissimilarities. The results from our usability evaluation, discussed

in Chapter 5, demonstrate that VariantFlow visualization helps users to perform

several pattern recognition tasks efficiently.

Our second goal is to help students, who do not have sufficient training to

50

read or interpret the apparatus in a critical edition, to read and comprehend the

information in the apparatus using VariantFlow. The results from our usability

evaluation shows that users with no experience with Latin were easily able to

read and interpret information; they could lookup different variants of a lemma,

identify a variant category from the color of a pack, and identify the list of

witnesses providing the same variant as a lemma. Users also found the visual

metaphors used in VariantFlow quite easy to use. While a few users experienced

difficulty in simply reading the text due to small font size, most users performed

reading and visual metaphor interpretation tasks efficiently.

Finally, our third goal is to develop a storyline layout algorithm that dy-

namically generates legible layout for best effort response to external interaction.

The aesthetics and legibility of a layout is usually determined by the number of

line crossings and line wiggles and the balanced use of whitespace in the layout.

Minimizing line crossings and line wiggles is a computationally intense problem.

With our FDL algorithm, we attempted to reduce line crossings and line wig-

gles by applying node-edge attractive forces on pair of nodes connected by an

edge. Using the force model described in Chapter 4, our FDL algorithm tries to

converge to an equilibrium state (typically an improved best suboptimal layout)

by clustering lines based on entity relationships, while untangling line crossings

and straightening lines in each iteration. In the future, we would like to explore

alternative force functions and fine tune our force model to achieve an even better

layout.

The results from our usability evaluation show that the complexity of the lay-

out did not affect the accuracy and efficiency of users performing several reading

and pattern recognition tasks. Although a few users complained about visual

clutter in parts of the layout where there were more line crossings, most of them

51

performed reading and pattern recognition tasks with high speed and accuracy.

Users also found the VariantFlow layout to be aesthetically pleasing and nicely

spaced with moderate density and complexity. Therefore, we conclude that even

though our layout is a suboptimal layout—meaning there are more line crossings

and line wiggles in our layout than in an optimal layout (with minimum line

crossings and line wiggles), it is sufficient for readability. Our current implemen-

tation of the algorithm takes less than 2 seconds to generate a layout with 13

lines, 37 vertical slots and 494 nodes, which is a little slower than the response

time suitable for external interaction. Most of this time is due to rendering

the storyline layout after each iteration. Our layout algorithm runs smoothly

and continuously in response to interaction, and hence also seems faster (while

actually being slower). With a smaller dataset, our algorithm converges to a

layout that is sufficient for readability within 100 ms, a time that is perceptually

suitable for immediate iteration. Therefore, we conclude that our VariantFlow

algorithm dynamically generates legible layout for best effort response to external

interaction.

6.2 Generalization

Although our VariantFlow layout algorithm was applied to visualize variant texts

in Latin poems, it can easily be adapted to other application domains, such as

narratives in movies or the software evaluation storylines in a software develop-

ment project’s version control system dataset. Like existing storyline techniques,

VariantFlow can effectively represent entities like movie characters or software de-

velopers as lines. Instead of representing lemmas in reading order, VariantFlow

can represent time along the horizontal axis, over which the entities interact with

52

each other. Lines in existing storyline techniques progress through time (along

the horizontal axis), from left to right, converging and diverging in the course of

their path, depending on entity relationships. In storylines of movie narrative,

the lines of character bundle together for the duration(s) of time that the char-

acters interact with each other. Typically, character lines group together based

on the geographic proximity of the characters in the movie over time. Similarly,

software evaluation storylines cluster lines based on the developers who work on

the same project over time [23]. As the developers stop making code commits for

a project and move to other projects, the lines representing those developers di-

verge from the previous cluster and converge to a new cluster. Here, the lines are

grouped based on the developers’ similarities in sharing software projects. Like

representing similarity in variant texts, VariantFlow can also effectively represent

other types of similarity matrices, such as the ones discussed above. Therefore,

we believe the VariantFlow layout algorithm and visual representation generalize

well.

6.3 Limitations and Future Work

This thesis work is part of ongoing research. Here, we presented our prototype

visualization and layout algorithm followed by a usability evaluation to verify

the viability of the research direction. We observed positive results and received

positive feedbacks in our usability evaluation. This has motivated us to start

planning revision and extension of the storyline design and implementation as

follows:

• In computing storyline layouts with an FDL algorithm, the search space

contains several local minima. In the future, we would like to add random

53

restarts to our algorithm to escape from local minima and broaden the

range of search.

• FDL algorithms tend to converge in local minima. For the legibility and

aesthetics of the layout, we wanted to keep the distance between nodes

within a pack symmetric, which a FDL algorithm cannot guarantee. To

overcome this issue, we apply strong local symmetry and alignment forces

on the nodes at the last iteration of the algorithm (the fixed step). This

fixed step adopts the topology of the final layout achieved from the organic

step and simply improves the aesthetics of that layout. Although the fixed

step significantly improves the legibility and aesthetics of the layout, it

comes to a price. The fixed step interrupts the force system of the FDL

algorithm, causing it to stop approaching an equilibrium state iteratively.

Thus the layout becomes less interactive to user interactions, such as drag-

ging nodes, packs, or edges. We would like to replace the fixed step with a

more incremental adjustment of the layout aesthetics that is more suitable

to user interaction.

• The drastic change in the layout aesthetics between the organic step and

the fixed step can make it difficult for users to follow the movement of

storyline elements across these two steps. Therefore, we have considered

implementing tweening animation, in more incremental and aesthetic ad-

justment steps, to make the movement of the layout elements easy to follow,

while preserving the user’s mental model.

• In designing VariantFlow, representing the base text as the top line within

the same view as the witness lines causes the base text line to disappear

with vertical scrolling, making it harder for users to refer to lemmas while

54

reading variant nodes far away from the top line. This limits the number

of lines we can include in the VariantFlow visualization, causing it to scale

poorly in the number of witnesses. To overcome this issue, we would like to

use a separate view for the lemmas, with horizontal scrolling synchronized

but vertical scrolling independent, so that the lemmas are always visible.

• VariantFlow visualization is not currently designed to represent hierarchi-

cal relationships among entities. However, in the future, we can use packs

(or design new hyperedge blobs) to extend across multiple vertical slots to

encode hierarchical order of entity relationships, like the spatial contours in

narrative storylines [28, 20]. We can also split lines to represent hierarchi-

cal relationships among entities. For example, in our application domain,

a single witness can provide variants from multiple scribes in chronological

order, referred to as witness hands; meaning, one scribe can make a correc-

tion to a variant introduced by a previous scribe. Therefore, these variants

and the witness hands have a hierarchical relationship among themselves

which can be represented by splitting the witness line around the variant

nodes involving hands. These design perspectives would motivate adding

new forces in our existing force model to handle splits in lines.

• The next step is to implement a complete visualization tool in Improvise

for the DLL desktop app, incorporating our VariantFlow technique. The

tool would consist of a VariantFlow view, a text view, and brushed linking

between the text and the VariantFlow elements. The tool might also contain

collections of switches to manipulate the VariantFlow layout content, like

filtering witnesses or lemmas, showing or hiding packs, showing or hiding

empty boxes, etc.

55

• We are particularly interested in implementing the following interactions

that affect the topology of the VariantFlow layout:

– Witness/lemma spacing: Users can interactively change the default

spacing between lines and lemmas.

– Horizontal/vertical force direction constant: Users can dynam-

ically change the constants used in the force model to determine the

topology of the layout.

– Filtering lemmas/horizontal scrunching Extend our algorithm to

apply horizontal forces on nodes within each vertical slot to smoothly

transition horizontally into a denser layout while keeping the vertical

positions unchanged.

The study of literature is changing dramatically by incorporating new oppor-

tunities the digital technology presents. Literary scholars, editors, students and

teachers are increasingly incorporating data visualization in their research and

academic work. Studying critical editions and their apparatus is of great interest

to literary scolders and editors. However, they are only able to look at individual

entry or collection of entries in an apparatus on a page, instead of the entire text.

Moreover, students and novice readers of Latin texts are typically unable to read

or interpret the critical apparatus in it’s canonical form.

This thesis presents VariantFlow, an interactive storyline visualization of the

critical apparatus that is easily readable and comprehendible to the students,

teacher and novice readers of Latin texts, who do not have sufficient training to

read the apparatus in it’s canonical form. VariantFlow augments scholarly and

editorial work by providing an overview of the critical apparatus, to observe larger

patterns and anomalies in variant texts. This thesis contributes a storyline layout

56

algorithm for VariantFlow visualization, that dynamically generates legible layout

for best effort response to external interaction. We belive that the characteristics

of our force-directed layout algorithm will allow for graceful response to a wide

variety of interaction types, speeds, and patterns.

In this thesis, we have implemented a prototype of our layout algorithm and

visualization. We also conducted a preliminary usability evaluation to validate

the legibility and effectiveness of our VariantFlow visualization.

57

Chapter 7

Conclusion

This thesis work presents outcomes of an initial phase in ongoing research. Before

moving to the next phase, we sought to investigate the legibility and effectiveness

of our VariantFlow (storyline) layout. The next phase of the research includes

implementation of user interactions to dynamically generate the storyline lay-

out in interactive time, followed by an extensive usability evaluation of various

interaction techniques with storyline visualization.

We anticipate that the dynamic interactive querying capability of our Vari-

antFlow visualization will help users explore and analyze relational structures

in ordered datasets. The high dynamics of interactive querying requires layout

techniques that will dynamically generate decent layouts in real time. Current

state-of-the-art storyline techniques do not produce layouts in real time, making

them generally unsuitable for use with many common kinds of interactive query-

ing like dynamic filtering. The work in this thesis accomplishes several key steps

towards this goal.

58

Bibliography

[1] Juxta. http://www. juxtasoftware.org/.

[2] TEI: Text Encoding Initiative. http://www.tei-c.org/.

[3] T. L. Andrews. Prolegomena to a Critical Edition of the Chroni-
cle of Matthew of Edessa, with a Discussion of Computer-Aided Meth-
ods Used to Edit the Text. In Oxford: University of Oxford. http://
ora.ouls.ox.ac.uk/objects/uuid(accessed 12 June 2013) 2009.

[4] Tara L. Andrews and Caroline Macé. Beyond the tree of texts: Building
an empirical model of scribal variation through graph analysis of texts and
stemmata. In Literary and Linguistic Computing, volume 28, pages 504–521,
December 2013.

[5] S. Boodts. A New Critical Edition of Augustine’s Sermo 170. With a Tenta-
tive Analysis of the Stemmatic Position of the De Lapsu Mundi Collection.
pages 50: 185–225. Sacris Erudiri: a Journal on the Inheritance of Early and
Medieval Christianity, 2012.

[6] L. Byron and M. Wattenberg. Stacked Graphs - Geometry & Aesthetics. In
IEEE Transactions on Visualization and Computer Graphics, pages 14(6),
1245–1252, 2008.

[7] W. Cui, S. Liu, L. Tan, C. Shi, Y. Song, Z. Gao, H. Qu, and X. Tong.
TextFlow: Towards Better Understanding of Evolving Topics in Text.
In IEEE Transactions on Visualization and Computer Graphics, pages
17(12):2412–2421, 2011.

[8] Ron Davidson and David Harel. Drawing graphs nicely using simulated
annealing. In ACM Transactions on Graphics, volume 15, pages 301–331,
October 1996.

[9] Ronald H. Dekker and Gregor Middell. Computer-Supported Collation with
CollateX: Managing Textual Variance in an Environment with Varying Re-
quirements. In Supporting Digital Humanities, pages 17–18. University of
Copenhagen, Denmark, 2011.

59

[10] M. Dork, D. Gruen, C. Williamson, and S. Carpendale. A visual backchannel
for large-scale events. In IEEE Transactions on Visualization and Computer
Graphics, pages 16(6):1129–1138, 2010.

[11] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by
force-directed placement. In Software- Practice and Experience, volume 21,
pages 1129–1164, November 1991.

[12] S. Havre, B. Hetzler, and L. Nowell. ThemeRiver: In Search of Trends,
Patterns, and Relationships. In IEEE Transactions on Visualization and
Computer Graphics, pages 8(1):9–20, 2002.

[13] Stefan Janicke, Annette Geßner, Marco Buchler, and Gerik Scheuermann.
Visualizations for Text Re-use. In International Conference on Information
Visualization Theory and Applications (IVAPP). 59-70, June 2014.

[14] T.J. Jankun-Kelly, Tim Dwyer, Danny Holten, Christophe Hurter, Martin
Nöllenburg, Chris Weaver, and Kai Xu. Scalability Considerations for Mul-
tivariate Graph Visualization. In Andreas Kerren, Helen C. Purchase, and
Matthew O. Ward, editors, Multivariate Network Visualization, volume 8380
of Lecture Notes in Computer Science, chapter Scalability Considerations for
Multivariate Graph Visualization, pages 207–235. Springer, 2014.

[15] T.J. Jankun-Kelly, Tim Dwyer, Danny Holten, Christophe Hurter, Mar-
tin Nöllenburg, Chris Weaver, and Kai Xu. Scalability Considerations for
Multivariate Graph Visualization. In Lecture Notes in Computer Science
8380, Multivariate Network Visualization, eds. Andreas Kerren, Helen C.
Purchase, and Matthew O. Ward, pages 207–235, Springer, Berlin, 2014.

[16] E.J. Kenney. The Classical Text: Aspects of Editing in the Age of the
Printed Book. In Sather Classical Lectures, volume 44. Berkeley: University
of California Press, 1974.

[17] N. W. Kim, S. K. Card, and J. Heer. Tracing Genealogical Data with
TimeNets. In Proceedings of the International Conference on Advanced Vi-
sual Interfaces, pages 241–248, 2010.

[18] M. Krstajic, M. Najm-Araghi, F. Mansmann, and D. Keim. Incremental
visual text analytics of news story development. In In Proceedings of Con-
ference on Visualization and Data Analysis, VDA, 2012.

[19] J. Leskovec, L. Backstrom, , and J. Kleinberg. Meme-tracking and the
dynamics of the news cycle. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’09,
pages 497–506, New York, NY, USA, 2009. ACM.

60

[20] Shixia Liu, Yingcai Wu, Enxun Wei, Mengchen Liu, and Yang Liu. Sto-
ryFlow: Tracking the Evolution of Stories. In IEEE Transactions on Visu-
alization and Computer Graphics, volume 19, pages 2436–2445, December
2013.

[21] Paul Maas. Textual criticism. Oxford, Clarendon Press, 1958.

[22] R. Munroe. XKCD. http://xkcd.com/657/, December 2009.

[23] Michael Ogawa and Kwan-Liu Ma. Software evolution storylines. In Pro-
ceedings of the 5th international symposium on Software visualization, pages
35–42. ACM, 2010.

[24] K. Reda, C. Tantipathananandh, A. Johnson, J. Leigh, and T. Berger-Wolf.
Visualizing the Evolution of Community Structures in Dynamic Social Net-
works. In Comp. Graphics Forum, pages 30(3):1061–1070, 2011.

[25] Desmond Schmidt and Robert Colomb. A data structure for representing
multi-version texts online. In International Journal of Human-Computer
Studies, 67(6), pages 497–514, 2009.

[26] B. Shneiderman. Dynamic queries for visual information seek-
ing. In IEEE Software, volume 11, pages 70–77. [Online]. Available:
http://dx.doi.org/10.1109/52.329404, November 1994.

[27] Yuzuru Tanahashi, Chien-Hsin Hsueh, and Kwan-Liu Ma. An Efficient
Framework for Generating Storyline Visualizations from Streaming Data.
In IEEE Transactions on Visualization and Computer Graphics, volume 21,
pages 730–742, 2015.

[28] Yuzuru Tanahashi and Kwan-Liu Ma. Design Considerations for Optimiz-
ing Storyline Visualizations. In IEEE Transactions on Visualization and
Computer Graphics, volume 18, pages 2679–2688, December 2012.

[29] Titus Calpurnius Siculus and Caesar Giarratano. Calpurnii Et Nemesiani
Bucolica. 1910.

[30] F. Viegas, M. Wattenberg, and K Dave. Studying Cooperation and Conflict
between Authors with History Flow Visualizations. In Computer Human
Interaction,Vienna, Austria, 2004.

[31] Chris Weaver. A User Interface for Interactive Construction of Highly-
Coordinated Visualizations. In University of Wisconsin-Madison, June 2006.

[32] Chris Weaver. Multidimensional Data Dissection Using Attribute Relation-
ship Graphs. In Proceedings of the IEEE Conference on Visual Analytics
Science and Technology 2010, Salt Lake City, UT, October 2010.

61

[33] M. L. West. Textual Criticism and Editorial Technique: Applicable to Greek
and Latin Texts. Walter de Gruyter, 1973.

62

