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Abstract 
 

As military weapons systems continue to become more powerful, the noise levels 

they generate become more dangerous to the soldiers deploying them. This has increased 

the need for advanced methods of evaluating the risks of weapon-generated pressure 

profiles as well as the need for advanced Hearing Protection Devices to protect against 

these profiles. The Finite Element Method in conjunction with Computational Fluid 

Dynamics may be employed in the proposed Human Ear Model to predict human ear 

response to high-intensity impulse pressures and give insight into earplug function. 

This thesis focuses on the development of the first Finite Element model of the 

human ear for blast impulse analysis. Real-ear geometry was adapted to generate strongly 

coupled Fluid-Structure Interaction analyses in Fluent/ANSYS Mechanical software. 

Pressure waveforms measured during human cadaver temporal bone experiments were 

applied to the model as input; the model was validated by comparing the predicted 

waveforms monitored at locations within the ear with experimental waveforms measured 

at identical locations. The model was then applied to explain trends observed during 

experimentation.  

A conceptual model was conceived to investigate the role of orifice geometry in 

nonlinear earplugs. Then, linear and nonlinear earplugs were introduced to the Human 

Ear Model for blast impulse analysis. 
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Chapter 1: Introduction 

1.1 Motivation 

Tinnitus and noise-induced hearing loss were the most prevalent service-

connected disabilities among veterans receiving compensation, accounting for 36% of 

total cases (20% and 16%, respectively) and over $1 billion [1]. It is estimated that an 

additional million veterans suffer from service-connected auditory disabilities who do not 

meet the criteria for compensation [2]; these numbers are only expected to rise, as the 

percent change in impairment of auditory acuity from 2011-2012 was a 25.6% increase 

[1]. 

Noise-induced hearing loss (defined by either temporary or permanent threshold 

shifts in hearing) has been a concern since the advent of mechanized machinery, artillery, 

and firearms in war. SPL is usually measured with the logarithmic unit of decibels, where 

0 dB SPL is equal to 20 μPa, the auditory threshold in humans; the raised human voice is 

approximately 76 dB SPL (0.13 Pa). As the need for higher degrees of lethality increases, 

so must the power, and therefore pressure levels, of weapon systems and platforms. The 

SPL threshold for pain is commonly known as being 120 dB (20 Pa); the standard 9mm 

caliber M9 pistol reaches peak SPL of 157 dB (1.42 kPa) measured at the shooter’s 

location [3]. Some weapons, such as the 84mm Multi-role Anti-armor Antipersonnel 

Weapon System recoilless rifle, generate a massive 190 dB SPL (63 kPa) at the gunner’s 

location. To grant soldiers the maximum degree of lethality while keeping them safe from 

their own weapon systems and weapon platforms, a comprehensive DRC must be 

established that is capable of evaluating and accurately predicting human ear response to 

a wide variety of pressure waveforms. Of specific interest with respect to this thesis is the 
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ear’s response to high-intensity, impulse waveforms, or blasts, which are common 

amongst firearms, artillery, and explosions, in general.  

The U.S. Navy mandates use of single (earplugs or earmuffs) HPDs when exposed 

to SPLs greater than 85 dB and double HPDs (earplugs and earmuffs) at exposures greater 

than 105 dB SPL [4]. With double HPDs, wearer is protected against pressure levels under 

115 dB; however, aircraft cockpits and carrier decks reach SPLs of up to 135 dB and 150 

dB, respectively. On the battlefield, EPs are seldom worn. Although EPs have been 

developed that allow for attenuation of high-intensity impulse pressures while mildly 

attenuating important hearing-level communications, promoting situational awareness, 

these EPs are unpopular due to their uncomfortability and their still-significant loss in 

communication capabilities. To improve use of HPDs during combat and reduce service-

connected ear injuries, the function of current HPDs must be well understood and 

improved upon. 

 

1.2 Background: Human Ear Anatomy and Function 

 The human ear is comprised of outer, middle, and inner ear portions. Figure 1 

shows a schematic diagram of the human ear. The outer ear is made up of the pinna and 

external auditory ear canal which terminates at the TM or eardrum. The conical TM, 

whose apex is termed the umbo, is considered to be part of the middle ear. The manubrium 

is a soft tissue which attaches the TM to the ossicular chain. The ossicular chain resides 

within the ME cavity and consists of three ossicles: the malleus, incus, and stapes. The 

ossicles are separated by joint and are suspended in the ME cavity via suspensory 

ligaments. The Eustachian tube’s primary function is to drain ME fluid and keep ME 
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pressure at atmospheric levels. The ossicular chain terminates at the oval window of the 

inner ear, or cochlea. The cochlea houses the organ of Corti, which is comprised of the 

basilar membrane on which mechanosensory or hair cells reside.  

 

 

Figure 1: Human Ear Structure  

(https://s3-ap-southeast-

2.amazonaws.com/mydr2016/site_content/files/images/categories/anatom/ear_anat

omy.gif) 

  

 The primary function of the ear is to transform acoustic vibrations into electrical 

signals that are transferred by the auditory nerve to the brain. Acoustic vibrations are 

directed down the external auditory canal by the pinna, which vibrates the TM. This 

mechanical vibration results in the piston-like motion of the stapes that sets the cochlear 

fluid into motion; this excites the hair cells within the organ of Corti, which produce 

electrical signals for the brain to interpret as sound. 
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1.3 Current Methods for Evaluating Blasts/Earplugs  

1.3.1 Auditory Hazard Assessment Algorithm for Humans 

 In the 1960’s, the Army’s Human Engineering Laboratory developed MIL-STD-

1474 which was adopted as a health hazard criterion for noise exposure by the DoD. By 

the 1980’s, enough research was completed to support the development of a mathematical 

model of the human ear’s response to intense sound, and the AHAAH was created. The 

AHAAH is an electro-acoustic (circuit) model of the human ear capable of calculating 

cochlear structural response due to signal transmission from the free sound field outside 

the ear which has resulted in the development of AHUs [5]. AHUs are the criteria for 

predicting hearing damage and are determined from the calculated time-history of the 

displacement, mechanical stress, and number of cycles of the basilar membrane; if the 

prediction exceeds 500 AHU, permanent hearing loss may occur [6]. The AHAAH model 

was able to predict the threshold of hazard in better than 95% of cases tested, while MIL-

STD-1474D (1997-2015) exhibited only 36% accuracy when examining the same data 

[7]. In April 2015 the AHAAH model was implemented in establishing the new acoustic 

noise limits, testing procedures, and DRC described in MIL-STD-1474E.  

 HPDs are generally divided into two categories: protectors in which the 

attenuation is constant and does not depend on SPL (usually termed “linear” protectors 

[8]), and protectors whose attenuation depends on the SPL (usually termed “nonlinear” 

protectors). Nonlinear HPDs are characterized by their ability to strongly attenuate high-

intensity waveforms while only limitedly attenuating hearing-level waveforms. This is 

achieved via an orifice through the EP whose geometry facilitates dissipative behavior of 

impulsive and high-level pressure waveforms, while minimally effecting low-level, 



5 

harmonic waveforms [8]. The AHAAH model was capable of accurately predicting 

multiple EP performance in terms of attenuation and general waveform when compared 

to experiments carried out in an auditory test fixture [9].  

 The AHAAH model has proven to significantly impact military noise standards 

through accurate prediction of pressure waveforms and inner ear damage in unoccluded 

and occluded ears. However, the antiquated approach of circuit modeling significantly 

limits the details that may be extracted from impulse blast analyses. This electro-acoustic 

model provides no information of the displacement or stress distributions imparted on the 

surfaces or throughout the TM or structures of the ME cavity, and only provides such 

information at discrete points on the basilar membrane. Such detailed information would 

prove useful in determining criteria for hearing loss due to modes other than cochlear 

damage – like TM rupture or ossicular chain disarticulation. Although pressure 

waveforms behind EPs may be predicted, the pressure propagation and distribution 

throughout the ear canal, ME cavity, and in the fluid domains of the cochlea remain 

unknown. The transient flow fields may be used to innovate EP orifice design and 

improve the acceptability of nonlinear EPs amongst soldiers. It is the claim of this thesis 

that such information missing from the AHAAH model’s results may be captured and 

utilized when conducting analyses using modern FSI capabilities of the FEM. 

 

1.3.2 The Finite Element Method 

 3-D FSI simulations have proven to be indispensable tools in the evaluation of 

protective measures against blast injury of human soft tissues. Grujicic et. al. at Clemson 

University, South Carolina utilized FSI analyses and a Finite Element (FE) model of the 
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human head (helmet, skull, brain assembly) to computationally determine the blast wave 

mitigation performance of a proposed advanced combat helmet in relation to mild 

traumatic brain injury [10]. These analyses calculated the complex spatial and temporal 

evolution of stresses within the brain, with and without helmet, and were used to suggest 

improvements that enhanced later helmet design [11]. A group from Johns Hopkins 

University, Baltimore, MD, and the Indian Institute of Technology, Bombay, Mumbai, 

India utilized a similar approach to analyze eye biomechanics and the protective function 

of Military Combat Eye Protection [12]. In this study, the function of spectacles and 

goggles were compared; the transient flow was computed and it was found that, at higher 

pressure exposures, the goggles trapped air in front of the eye and resulted in sustained 

elevated pressure loading on the eye higher than even in the unprotected eye case. Both 

of the referenced studies were funded by the U.S. military, utilized experimental blast 

data as a tool for model validation, and provided important insight into the function and 

possible innovation of blast impulse protective equipment. 

 Sgard et. al. at the École de technologie supérieure in Montreal, Quebec, Canada 

is a leading group in the research of linear (classic foam and custom molded silicon) EP 

and earmuff function, combining experimentation with FE computational analysis 

methods. This group has conducted parametric studies [13], [14], [15], [16], studies 

examining the acoustic impact of ear canal skin [15] and skin with cartilage and bone 

[13], the occlusion effect [14] and bone conduction occlusion effect [17], acoustic test 

fixture geometry [16], [14] and over 14 real ear canal geometries [13], [18], and 2-D axi-

symmetric models versus 3-D FE models of the ear canal [18]. The limitations of this 

group’s work are that only linear (constant attenuation) EP function has been examined 
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under low-level pressure (on the order of 120 dB SPL or 20 Pa), harmonic loading 

conditions in a simplistic ear model. 

 

 1.4 The Finite Element Model of the Human Ear  

 The FE model of the human ear developed in the Biomedical Engineering 

Laboratory at the University of Oklahoma, Norman, whose geometry was extracted for 

investigation into the transient realm of blast analyses, has been well-published and has 

been implemented in the investigation of ear response to numerous conditions. The 

model, constructed based on a complete set of histological section images of a left ear 

temporal bone in 2004, was validated by comparing model-predicted displacements at 

the stapes footplate and TM with published experimental measurements on human 

temporal bones [18]. It was used in the first FEA of the human ear that featured acoustic-

structure coupled behavior between the ear canal air column and the TM and ME ossicles 

with the air in the ME cavity. As pictured in Figure 2, the HEM featured the fluid domains 

of the ear canal and ME cavity, the structures of the TM and the TM annulus, the ME 

ossicles and associated soft joints and suspensory ligaments, and the cochlear load, which 

modeled the 20 GΩ cochlear impedance applied to the stapes footplate. 
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Figure 2: Finite Element Model of Human Ear [19] 

 

 In 2007 a hyperelastic material model was applied to the TM and key suspensory 

ligaments and ME pressure effects on static and dynamic response of the ear was 

calculated [20]. That same year, a simplified two-chamber straight cochlea with basilar 

membrane was introduced to the model and sound transmission from the ear canal into 

cochlea was predicted [21]. This model produced satisfactory agreements between 

predicted basilar membrane motion and experimental data in literature. This study was 

the first step toward the development of a comprehensive FE model of the entire human 

ear for acoustic-mechanical analysis. Another study altered TM geometry to include 

different numbers and sizes of perforations at particular locations, and the TM 

displacement and ME pressure were calculated. Cadaver ears were perforated similarly 

and TM displacement was measured by laser Doppler Vibrometry. Across frequency 

ranges, the HEM was found to accurately predict TM vibrations and ME pressure levels 
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when compared to experimental measures [22].  In a later iteration of the HEM, 

viscoelastic material properties and a three-chamber spiral cochlea were introduced. This 

study showed the model’s capability of modeling energy absorbance in normal ears and 

ear with otitis media, otosclerosis, and ossicular chain disarticulation [23]. The model has 

also been implicated in evaluating totally implantable hearing systems [24].  

 Over the past ten years, the HEM has proven to be a valuable tool when used in 

conjunction with experimental data, capable of predicting ear function from canal to 

cochlea, various modes of ear damage and disease, and even the behavior of implantable 

biomechanical systems. The analyses discussed above were conducted ANSYS APDL 

and investigated ear function in low-pressure conditions in the frequency domain. In this 

thesis, the geometry of the previous HEM model was extracted and modified to create 

new models for the analysis of mid- and high-level impulse pressure waveforms in short-

scale transient domain analyses.   

 

1.5 Objectives 

 Because the impact blast-related tinnitus and hearing loss have on the quality of 

life of affected soldiers and society is so great, our understanding of the causes and risks 

of ear damage and the capability of HPDs must be improved. Towards this, further 

research in two primary directions is needed: 1) Damage Risk Criteria (DRC) must be 

derived from analysis methods with the ability to predict stresses and fatigue of all 

important ear components under a multitude of impulse and steady noise conditions; and 

2) EP design must be advanced such that they provide sufficiently high degrees of 

attenuation for impulsive and otherwise high-pressure waveforms while minimally 
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reducing soldiers’ combat effectiveness and communication capabilities. To achieve this, 

an advanced analysis scheme is needed. Toward devising such analysis scheme capable 

of providing detailed structural response of ear components as well as the transient flow 

profile of air through the ear, strongly coupled FSI analyses using the updated HEM in 

the Fluent/ANSY Mechanical environment were conducted. Insights from these analyses 

may be used to predict TM damage under blast loading and optimize design of nonlinear 

earplugs. 

 

1.5.1 Outline 

Implementation of Human Ear Model predictions of blast impulse 

 The HEM is transferred into ANSYS Workbench where the fluid and structural 

components are divided into analysis software Fluent and ANSYS Mechanical, 

respectively.  

 Appropriate boundary conditions, material properties, and fluid-structure 

interfaces are applied. 

 The analyses are initiated through application of experimental blast waveforms 

measured outside of cadaveric ears. 

 The predicted waveforms at key locations are compared against experimental 

waveforms at same locations.  

 Validated HEM is then applied to posit explanations for trends seen amongst 

experimental blast groups (Vertical, Horizontal, and Front). 

Initial parametric study of linear and nonlinear Hearing Protection Devices 

 A conceptual model is created for parametric study and is validated against HEM. 
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 Foam EP material properties are examined. 

 Multiple geometries are created to test effects of EP insertion depth and orifice 

configuration subjected to impulse loading. 

 Waveform differences resulting from varying EP geometries are discussed. 

Human Ear Model is implemented in earplug analysis 

 The HEM is modified to create unoccluded and occluded EP (foam and Combat 

Arms triple-dome-only) models. 

 Mid- and high-level blast waves from unoccluded and occluded cadaver ear 

experiments are used to initialize model computation. 

 Model predictions are compared against experimental measures and are 

discussed.  
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Chapter 2: Finite Element Analyses of Human Ear Response to Blast 

Impulse 
 

 The FE analyses of the HEM previously reported in literature utilized the 

computational software ANSYS APDL (or ANSYS Classic) to predict the middle ear 

response under numerous conditions in the frequency domain. ANSYS APDL solved, 

both, the structural response of the TM, ME structures, and cochlear load, as well as the 

fluid response of the air in the ear canal and ME cavity. The acoustic fluid element type 

FLUID30 was used to calculate the acoustic pressure propagation down the ear canal and 

throughout the ME cavity via the 3-D wave equation. This element type had several 

limitations when evaluating its feasibility of being implemented in blast wave analyses: 

analyses with this element type were limited to small acoustic pressures, its linear shape 

function did not well represent complicated pressure distributions in the fluid chambers, 

and the governing wave equation did not sufficiently model a blast’s impulse waveform. 

Therefore, an enhanced solver method was needed for blast analyses. Geometry was 

adapted from the previously reported HEM for use in the current 3-D HEM. 

 This chapter will discuss the newly created HEM model for the analysis of blast 

impulse transmission. The newly implemented analysis software will be discussed and 

solver methodology will be detailed. Material assumptions and boundary conditions will 

be described. Model validation rational will be presented, and then the model will be 

applied to examine trends seen in cadaver ear blast experiments. 

 

2.1 ANSYS Workbench: Coupled Analyses 

 When founded, ANSYS was solely a structural solver; after numerous industry 

buyouts, ANSYS Inc. is now the global leader in engineering simulation, capable of 
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structural, fluids, electronics, heat transfer, electromagnetic, explicit dynamics, and 

multiphysics analyses. This section will provide an overview of the solution methodology 

of Fluent/ANSYS Mechanical coupled analysis. ANSYS Workbench provides the 

project-level control necessary to easily create a custom and comprehensive analysis 

system by providing drag-and-drop system modules that allow for the geometry creation, 

mesh generation, analysis setup and monitoring, and post-processing for all of the 

programs in the Workbench suite. Figure 3 shows the analysis system created for the blast 

simulations in the HEM.  

 

 

Figure 3: The ANSYS Workbench Project Schematic showing the flow of data 

from the mesh readers to the analysis systems to the coupling service. [25] 

 

 The analysis software implemented to deliver the desired simulation system were 

Fluent and ANSYS Mechanical, which solved the fluid and structural domains, 
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respectively. .MSH files containing the ear canal and ME cavity meshes were read by 

individual Mesh component systems before being transferred to Fluent; the External 

Model component system was used to read in the .CBD structural mesh file, which 

included the TM, TM annulus, ossicular chain and associated suspensory ligaments, and 

cochlear load, and feed the mesh to ANSYS Mechanical. The individual solver principles 

and analysis settings will be discussed in following sections.  

 In order to accurately model the physics of high-intensity impulse pressure 

propagation down the ear canal and its interaction with the ME structure, Fluent and 

ANSYS Mechanical must be able to communicate with one another bi-directionally. This 

is achieved through application of strongly coupled FSIs that are facilitated by the 

Workbench component system, System Coupling. Strongly coupled FSIs are prescribed 

by application of fluid-structure interfaces, which must be specified on coincident mesh 

faces in both Fluent and ANSYS Mechanical (e.g. on the canal’s interface with the TM 

and on the TM’s interface with the canal). The execution sequence diagram for the 

System Coupling service is shown in Figure 4. 
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Figure 4: The execution sequence diagram for the System Coupling service and the 

involved solver participants. [26] 

 

Shown in dark gray are the synchronization points which act as a gateway beyond 

which an analysis will not progress until all necessary processes or sub-processes have 

successfully completed. After the coupling service and solver participants are connected, 

Initial Synchronization must be achieved; at this point, the meshes and analysis settings 

of the involved participants are collected. The analysis is initialized when the data 

containing the initial conditions of all involved participants are transferred across the 
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fluid-structure interfaces (e.g. the fluid pressure distributions of the ear canal and ME 

cavity on their shared surfaces with the TM are transferred to the TM structure at t = 0 s.)  

 The solution synchronization point is passed once the appropriate data transfers 

between the participant programs and the subsequent solving of each participant is 

complete at each time step and coupling iteration. After each iteration is solved, 

convergence is checked for each participant; if the time step has not yet converged, a new 

coupling iteration initiates and the solution synchronization begins again. After 

convergence of a single time step is reached, the loop continues until all time steps making 

up the analysis duration are complete or divergence is detected and the analysis fails. 

Upon analysis completion, the coupling service and participants are shut down. 

For a given analysis duration (say, 2 ms), the user defines a time-step size (say, 1 

µs); in this case, the analysis is comprised of 2,000 time steps. For the first time step after 

the analysis has been initialized, the solution method for Fluent/ANSYS Mechanical 

analyses follows. During the first iteration of the first time step, Fluent calculates the 

pressure distribution throughout the fluid domains based on its input and passes the 

calculated forces onto the fluid-structure interfaces, via System Coupling. ANSYS 

Mechanical then solves the response of the structure under any applied loads and those 

passed to the structure from Fluent. The convergence check is failed, and ANSYS 

Mechanical passes its displacement information to Fluent. A new iteration begins in 

which Fluent recalculates the pressure distribution with respect to the new domain shape 

stemming from the structural deformation. The updated pressure forces are passed back 

to ANSYS Mechanical, which solves the updated structural deformation. This iterative 
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process continues until convergence of both solvers are reached; then the analysis moves 

on to the next time step until analysis completion.  

After analysis completion, Workbench offers multiple options for results post-

processing. Within ANSYS Mechanical, component-specific displacement, stress, and 

strain distributions may be viewed. The component system CFD-Post allows for the 

visualization of the pressure and velocity distributions within the fluid domains. This list 

results is not comprehensive, but are the output parameters that will be discussed later 

within this document.  

 

2.2 Generating Model for Blast Simulations 

 The previous section discussed the application of ANSYS Workbench and 

explained the strongly coupled FSI analysis method. The current section will give insight 

into solver methodology and will detail the analysis settings used in both Fluent and 

ANSYS Mechanical for the purpose of simulating high-intensity pressure propagation 

through the Human Ear Model. 

 

2.2.1 Fluent Methodology 

 Fluent is one of the world’s largest commercial CFD providers that offers a wide 

array of advanced physical models [27]. CFD is a subset of fluid dynamics that uses 

numerical methods to approximate solutions for fluid flow problems. In this approach the 

fluid domain is discretized, which results in a system of equations at nodal locations that 

when solved give a discrete representation of the solution. Fluent uses the FVM, in which 

the governing conservative PDEs are implicitly solved over discrete control volumes 
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(cells); this conservative form means that the flux exiting one cell is equal to the flux 

entering the next. The FVM is common across CFD codes, as it requires less memory 

usage, results in faster solve times, and is more conducive to a conservative solution 

approach compared to the FEM [28]. 

 

2.2.1.1 Equations Used to Predict Pressure Propagation in Human Ear Model 

 The constitutive equations Fluent employs to solve fluid flow problems are 

generally referred to as the Navier-Stokes equations. The Navier-Stokes equations consist 

of the continuity and momentum equations (that are standard equations solved by Fluent), 

the energy equation (necessary for flows involving heat transfer or compressibility), and 

the ideal gas law for compressible flows; turbulence effects are not considered in the 

current HEM analyses.  

 Equation (1) is the 3-D continuity equation, also called the mass conservation 

equation, and is valid for incompressible as well as compressible flows.  

 
𝛿𝜌

𝛿𝑡
+ 𝛻 ∙ (𝜌�⃑�) = 𝑆𝑚 (1) 

ρ is the density and �⃑� is the velocity vector . 𝑆𝑚 is a source term representing the mass 

added from phase change or any user-defined sources [29]; in the case of the HEM 

analyses, there is no source term and Sm is zero. 

 The momentum equation of a non-accelerating reference frame is described by 

equation (2).  
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 𝛿

𝛿𝑡
(𝜌�⃑�) + 𝛻 ∙ (𝜌�⃑��⃑�) = −𝛻𝑝 + 𝛻 ∙ (𝜏̿) + 𝜌�⃑� + �⃑� (2) 

In this equation, 𝑝 is the static pressure, 𝜌�⃑� is the gravitational body force, and �⃑� is the 

external body forces [29]. Gravitational effects are ignored, and thus 𝜌�⃑� is zero. The 

pressure waveform applied to the entrance of the ear canal (discussed later) is accounted 

for by the external body forces. 𝜏̿ is the stress tensor and is given by equation (3) 

 
𝜏̿ = µ[(∇�⃑� + 𝛻�⃑�𝑇) −

2

3
𝛻 ∙ �⃑� 𝐼 (3) 

where µ is the molecular viscosity of air, I is the unit tensor, and 𝛻�⃑�𝑇 is the effect of 

volume dilation [29]. 

 The energy equation is given by equation (4). 

 𝛿

𝛿𝑡
(𝜌𝐸) + 𝛻 ∙ (�⃑�(𝜌𝐸 + 𝜌)) = 𝛻 ∙ (𝑘𝑒𝑓𝑓𝛻𝑇) + 𝑆ℎ (4) 

Here, 𝐸 is energy, 𝑘𝑒𝑓𝑓 is the effective thermal conductivity, and 𝑆ℎ is the source term 

that contains contribution from radiation and other volumetric heat sources [29] [30]; 𝑆ℎ 

is zero. 

 An equation of state is necessary to close the above equations. This is achieved 

through the application of the ideal gas law for compressible flows; expressed by equation 

(5). 

 
𝜌 =

𝑝𝑂𝑃 + 𝑝

𝑅
𝑀𝑤

𝑇
 

(5) 

 𝑝𝑂𝑃 is the operating pressure of the analysis, 𝑅 is the universal gas constant or 

8.314472 (J/mol-K), and T is the absolute pressure computed from the energy equation 

[28]. 
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2.2.1.2 Fluid Analysis Setup 

 The objective of the analysis setup process is to apply the appropriate loads and 

boundary conditions, under the proper assumptions, that will result in the most accurate 

representation of the physics of the physical system of interest. Fluent version 16.1 was 

chosen for this transient, compressible, laminar fluid flow analysis. Compressible flows 

are often characterized by the value of their Mach number, which is the ratio of the 

velocity in a system over the speed of sound in that gas; when the Mach number is less 

than 1.0, the flow is termed subsonic and may be considered incompressible. At 

sufficiently high Mach numbers (approximately > 0.1) compressibility effects are no 

longer negligible, meaning the density of the gas varies with pressure, and cannot be 

ignored in analyses. Compressibility effects must also be taken into consideration in 

circumstances in which there are abrupt and dramatic changes in pressure level. As a 

subsonic blast wave of around 40 kPa enters the ear canal its velocity corresponds to a 

Mach number of approximately 0.3, and thus compressibility were included in the 

analyses. Although at the entrance of the ear canal the entrance velocity is significant (i.e. 

total pressure is comprised of both static and dynamic pressures), total pressure measured 

at the end of the canal is comprised almost entirely of static pressure. Thus, as the pressure 

propagates down the 30x8 mm cylindrical canal, the pressure front rapidly loses velocity 

and may be sufficiently represented by laminar flow.  

 An important parameter in CFD simulations is what is known as the Courant 

number. The Courant is given by equation (6) and represents how the flow is moving 

through the mesh [31]. 
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 𝐶 =
𝑢𝛥𝑡

𝛥𝑥
 (6) 

It is determined by the flow velocity, time step size, and element size in the direction of 

flow. If the Courant number is <= 1, this means that the fluid flow moves from one cell 

to the next within one time step (at most); if the Courant number is > 1, the fluid flow 

moves through more than one cell with each time step, possibly resulting in a divergent 

solution. The cell size of the ear canal get smaller approaching the TM, as does the 

velocity. A time step size of 1 µs results in an average Courant number of approximately 

0.1, suggesting the mesh cell size will provide a satisfactory level of flow resolution. 

 Standard compressible air properties were employed and the operating pressure 

was set to ambient air pressure at sea level, or 101,325 Pa. Gravity effects were neglected. 

As the TM deformed greatly under high pressure, so must fluid-structure interfaces the 

canal and ME cavity fluid domains. To keep the fluid meshes’ cell quality sufficient for 

convergence under conditions of large deformation, a dynamic smoothing and remeshing 

scheme was employed. The smoothing scheme allowed interior fluid nodes to absorb the 

motion of nodes directly adjacent to the moving FSI boundaries, which prevented 

negative cell volumes. When the mesh deformation was significant enough, the 

remeshing scheme was activated, which allowed for local or region remeshing mid-

analysis. The remeshing scheme greatly enhanced the solvability of these analyses, and 

was ultimately why Fluent was chosen over other CFD packages for this application. 
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Figure 5: Ear canal and ME cavity fluid domains in Fluent. Pressure monitor 

locations P0, P1, and P2 are shown at the entrance of the canal, just before the 

TM, and within the ME cavity, respectively. 

 

 Correct application of boundary conditions is key for proper analysis. The 

entrance of the ear canal was defined as a pressure-inlet. Here, experimentally measured 

P0 waveforms were applied as the input which drove the analyses. The walls of the ear 

canal and ME cavity were defined as rigid, no slip walls. Two separate fluid-structure 

interfaces were applied, one to either side of the TM. These were necessary to pass the 

fluid forces acting on these surfaces to the structure and to receive the structural 

displacements under these loads. The FSI between the ossicular chain and air within the 

ME cavity was ignored due to the high additional computational requirements that 

resulted in little change in pressure magnitude within the ME cavity.  

 The analysis duration was set to 2 ms. The desired output of the analyses were the 

pressure waveforms predicted at locations P1 and P2, on the lateral and medial side of 

the TM, respectively, as shown in Figure 5. Therefore, static pressure monitors were 

initialized at these locations, although the full pressure and velocity fields were calculated 

at each time step. 
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2.2.2 Structural Analysis in ANSYS Mechanical 

 ANSYS Mechanical employs the FEM to approximate solutions to boundary 

value problems for PDEs. In the scope of this paper, the FEM involves discretizing the 

complex geometry of the ME components into simpler parts, called elements. The 

structural mechanics equations are solved at each element based on the global boundary 

conditions, material properties, and element shapes; the element equations are then 

systematically combined into a global system of equations for final calculation at each 

time step iteration. ANSYS Mechanical provides an enhanced, easy-to-use graphical user 

interface as compared to ANSYS APDL, but the solver equations are identical. An in-

depth discussion of the solver tactics of ANSYS Mechanical will not be included in this 

thesis, as they are largely the same as those reported in the literature of the previous 

human ear models. This section will focus on the analysis setup for the HEM blast 

analyses.  
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2.2.2.1 ANSYS Mechanical Analysis Setup 

 

Figure 6: Mesh of Middle Ear structures with labeled components. 

 

Three element types were used in the HEM analyses – those were the 8-node 

hexahedral elements of the cochlear mass, the 6-node prism elements of the TM (pars 

tensa and pars flaccida) and TMA, and the 4-node tetrahedral elements of the manubrium, 

ME ossicles, IMJ, ISJ, and SAL. Also comprised of tetrahedral elements were the 

superior mallear, lateral mallear, posterior incudal, anterior mallear, posterior stapedial, 

and tensor tympani ligaments and tendons, or C1, C2, C3, C4, C5, and C7, respectively. 

(Components shown in Figure 6.) Three degrees of freedom exist at each node: translation 

in the x, y, and z directions. The elements exhibit viscoelasticity, large deflection, and 

large strain capabilities. Ten 1-D dashpots were used for the modeling of the damping of 

the cochlear load; five connecting the cochlear mass to the stapes footplate and five 

connecting the cochlear mass and ground. 
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 The analysis duration was set to 2 ms with a time step size of 1 µs, as in Fluent. 

The duration was deemed long enough to observe the development of the pressure 

waveforms in the ear canal and ME cavity, as well as the initial response and subsequent 

vibration of the TM and ME structures. The time step size was found to be small enough 

to resolve the structural displacements under high-intensity pressure loading. 

 The material properties used in the HEM analyses were adapted from literature. 

In most FE models of the middle ear, the Young’s modulus of the ME tissues were 

assumed constant and frequency independent [20] [32]. The Poisson’s ratio was assumed 

0.3 for the entire system. The density of the ME ligaments was assumed 1000 kg/m3 as 

in previous studies [20] [21]. Ossicular densities were averaged across their constituent 

parts (e.g. malleus head, neck, and handle). Governed by Hooke’s Law, the following 

components were considered linear elastic materials: the manubrium, ossicles and 

suspensory ligaments, and the cochlear mass. The elastic materials are given in Table 1. 
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Table 1: Elastic material properties used in HEM [19] 

Structure Density (kg/m3) Young’s Modulus (N/m2) 

Manubrium 1000 4.9 x 109 

Malleus 3600 1.41 x 1010 

Incus 3230 1.41 x 1010 

Stapes 2200 1.41 x 1010 

Cochlear Mass 3600 8 x 1010 

   

Ligaments Young’s Modulus (N/m2) 

Superior mallear ligament (C1) 4.9 x 106 

Lateral mallear ligament (C2) 6.7 x 106 

Posterior incudal ligament (C3) 6.5 x 106 

Anterior mallear ligament (C4) 2.1 x 107 

Posterior stapedial tendon (C5) 5.2 x 107 

Tensor tympani tendon (C7) 7.0 x 107 

  

Linear viscoelastic material parameters of the TM (pars tensa and pars flaccida), 

TMA, IMJ, ISJ, and SAL were adapted from those reported in [23]. Here, the standard 

linear viscoelastic model was used with the relaxation modulus of the tissues being 

expressed as equation (7). 

 𝐸(𝑡) = 𝐸0 + 𝐸1exp (−
𝑡

𝜏1
) (7) 

In ANSYS, linear viscoelasticity is modeled by combining linear elasticity with 

Prony Shear Relaxation. One-parameter Prony Shear Relaxation is given by equation (8). 
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𝐺(𝑡) = 𝐺0[𝑎∞

𝐺 + 𝑎1
𝐺 exp (−

𝑡

𝜏1
)] (8) 

Here, 𝐺0 is the relaxation modulus at t = 0 and 𝑎1
𝐺  is the relative modulus, i.e. it 

is the portion of 𝐺0 that trends to zero as time approaches infinity. 𝜏1 is the relaxation 

time and represents how quickly this relaxation occurs. Prony Shear Relaxation is defined 

by the relaxation time and the relative modulus.  

 Since the elastic modulus and shear modulus are linearly related by equation (9), 

the experimentally obtained viscoelastic properties reported in [23] may be directly 

applied to yield the appropriate relaxation modulus and relative modulus. Table 2 gives 

the viscoelastic material properties used in this thesis. The strength of the TMA was 

artificially increased by a factor of approximately 20 to maintain its integrity during high-

intensity impulse pressure loading; this is not thought to significantly affect the predicted 

pressure magnitudes. 

 𝐸 = 2𝐺(1 + 𝜈) (9) 

 

Table 2: Material properties of the viscoelastic soft tissues 

Soft tissues 𝐸0 (MPa) 𝐸1 (MPa) 𝜏1 (μs) 

Density 

(kg/m3) 

TM-PF 7 16 25 1200 

TM-PT 25 70 25 1200 

TMA 14 46 25 1200 

IMJ 60 180 20 3200 

ISJ 0.4 20 20 1200 

SAL 2.0 10.8 24 1200 
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The structure of the middle ear responds passively to the fluid pressure acting on 

it. Fixed boundary conditions around the TM annulus and where ligaments meet the bony 

structure of the ME cavity suspend the ME structures. A fluid-structure interface on the 

lateral (canal side) side of the TM receives pressure input, driving the initial response of 

the ME structures. The FSI between the medial side of the TM and the ME cavity 

transmits pressure into the middle ear, generating the P2 reading. 

 

2.3 Results and Validation  

 FEA is an integral instrument in the development of solutions to complex 

engineering problems. A validated FE model can be used to probe what cannot be 

examined experimentally and may be used to test the feasibility of various product 

designs that would be too expensive to physically produce and test. The versatility and 

accuracy of FE analyses makes them an important tool in research in academia and 

industry.  

 

Figure 7: Blast orientation visualization with 3-D model head 

 



29 

 The HEM was considered validated for blast wave propagation analyses when it 

was able to accurately predict experimentally measured waveforms at locations near the 

TM when driven by experimentally measured waveforms surveyed outside of the ear 

canal. Cadaver temporal bone experiments were conducted in the Biomedical 

Engineering Laboratory’s Free Field Blast Chamber at the University of Oklahoma in 

Norman to determine TM rupture thresholds when high-intensity blast waves are oriented 

in the Vertical (N=14), Horizontal (N=14), and Front (N=14) directions with respect to 

the mounting headblock; visualization provided in Figure 7. The blasts resulted in 

pressure propagation that was captured by pressure sensors at P0, outside of the ear canal, 

P1, just in front of the TM, and P2, inside of the ME cavity, as shown in Figure 5. A total 

pressure sensor is set perpendicular to the oncoming blast wave and measures P0. The P1 

and P2 sensors measure static pressure at their locations. An example of the experimental 

results is shown in Figure 8.  
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Figure 8: An example waveform resulting from cadaver ear temporal bone 

experiments. The P0, P1, and P2 pressure waveforms were taken near the entrance 

of the ear canal, just before the TM, and inside of the ME cavity, respectively. 

  

 The total pressure measured at P0 is amplified near the TM at P1, where the static 

pressure waveform is registered. TM rupture and damage was caused by the P1 

waveform; therefore the effect, P1, to the cause, P0, is the main focus of this study; 

discussion of P2 is included for completeness. In addition to the peak pressure levels of 

P0 and P1, the amplification ratio, P1/P0, is important for discerning the differences blast 

orientation has on TM rupture threshold. The rupture threshold level was determined by 

incrementing the blast wave intensity until rupture was observed, and is defined as the 

maximum pressure the TM can undergo prior to failure. 

 Three experimental P0 waveforms from the Vertical, Horizontal, and Front 

directions were applied to the entrance of the ear canal in Fluent for full FSI analyses, 
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and the resulting P1 and P2 predictions were compared to the experimental waveforms. 

The comparison is shown in Figure 9.  

 

 

Figure 9: Comparison of the experimental and FEA predicted waveforms for the 

Vertical, Horizontal, and Front directions. (Top) Experimental waveforms. 

(Middle) FEA predicted P1 and P2 waveforms with experimental P0 used as input. 

(Bottom) Comparison P1 vs. P1 

 

The factors that contribute to P1 waveform are entrance pressure magnitude, 

entrance velocity, ear canal and pinna (outer ear) geometry, and the P0 waveform, itself. 

Therefore, a qualitative assessment was conducted to determine the predictability of the 

newly created HEM for blast transmission. As shown in the figure above, the model was 

successful in predicting P1 and P2 waveform and peak magnitudes. In all cases, the 

predicted P1 level was lower than the experimental values, however this difference was 
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only pronounced for the Horizontal case. Comparing FEA-derived with experimental P1 

waveforms shows the model has the ability to accurately predict the shape of P1 and P2 

given P0 input.  

A primary advantage the FE method has over the circuit analysis method for blast 

analysis in the human ear is the ability to derive structural displacement and stress 

distributions (an example of which is shown in Figure 10).  

 

 

Figure 10: Example of structural distribution results available in the Finite 

Element Method. (Left) Displacement distribution at time of max; and (Right) 

stress distribution at time of max. 

 

 The left and right images in the above figure show the distribution of maximum 

displacement taken at time of maximum displacement and the distribution of maximum 

stress taken at time of maximum stress, respectively. Analyses with the FE method 

provide the capability of predicting the mode of TM rupture for specific geometries, and 

predict ear response in much greater detail as compared to circuit analysis. It should be 

noted, however, that the current TM is modeled as an isotropic solid, when in reality it is 
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a complex three-layered structure; to best predict TM rupture mechanics, TM geometry 

must be modified to include the epithelial, mucosal, and fibrous layers. 

 

2.4 Application of the Human Ear Model 

 Once the HEM was demonstrated as being capable of accurately predicting 

experimentally measured waveforms it was employed to explain some trends observed 

in the experimental data. The results investigated are given in Table 3. 

 

Table 3: Experimentally determined blast TM rupture thresholds. 

Direction P0 Rupt. Thresh. P1 Rupt. Thresh. P1/P0 

V (N=14) 63 ± 12 kPa 131 ± 23 kPa 2.2 ± 0.5 

H (N=14) 44 ± 14 kPa 131 ± 41 kPa 3.4 ± 0.7 

F (N=14) 67 ± 15 kPa 112 ± 22 kPa 1.7 ± 0.4 

 

 In the above table, the P0 Rupture Threshold is defined as the maximum P0 

pressure level reached prior to TM rupture. The P1 Rupture Threshold is considered the 

maximum pressure value the TM can withstand without rupture. Two trends were 

observed: 1) the P1 Rupture Threshold for the Front direction was approximately 20 kPa 

lower than both the Vertical and Horizontal direction; and 2) the P0 Rupture Threshold 

for the Horizontal direction was lower than the Vertical and Front directions, which were 

approximately equal. The HEM analysis strategies described earlier in this chapter were 

used to provide explanation for these trends. This section will highlight the initial 

contributions of the HEM for blast impulse analysis. 
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2.4.1 Explaining Front Direction P1 Rupture Threshold Level 

 TM geometry and material properties of the 42 temporal bones tested were 

assumed to be equal; therefore, it should be expected that all tested TMs would have 

similar P1 rupture thresholds. As shown in Table 3, blast overpressure from the Front 

direction with respect to the experimental headblock resulted in TM failure at lower 

pressures than the Vertical and Horizontal blast orientations (whose P1 rupture thresholds 

are approximately equal). This suggested that the Front P1 waveform interacted with the 

TM dissimilarly than P1 waveforms from the other directions. In a study in chinchillas, 

TM mechanical damage was examined in relation to impulse pressure waveform, and it 

was found that the resulting stress gradient with respect to pressure characterized TM 

damage induced by blast [33]. Thus, it was hypothesized that the Front direction P1 

waveforms imparted a larger stress gradient with respect to P1 pressure than the Vertical 

and Horizontal P1 waveforms. 

 To investigate the stress gradients (i.e. rate of change of maximum stress with 

respect to maximum P1 pressure, dσmax/dP1) resulting from the P1 waveforms from the 

three blast orientations, ANSYS Mechanical was employed in structure-only analyses. 

P1 data from four samples from each blast orientation were applied directly to the surface 

of the TM so as to avoid the inherent calculation error as Fluent simulated the pressure 

propagation down the ear canal; the objective was to examine experimental P1 effect. 

Having used experimental P1 waveforms as structural load input, the stress distributions 

across the TM were predicted. 

 Identical material properties and boundary conditions (with the exception of fluid-

structure interfaces) were applied to the structure during this set of analyses, as discussed 
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previously. The analysis methodology for determining the stress gradients on the TM 

resulting from the three blast orientations follows:  

1. Four sets of incremental blast data measured at P1 were obtained from the 

Vertical, Horizontal, and Front blast orientations. An example set of such data for 

the Vertical direction is given by Figure 11.  

 

Figure 11: Resulting P1 waveforms from incrementally increasing blast 

experiments of temporal bone sample V14-19L. 

 

2. A segment of the complete P1 waveform is taken to include 0.5 ms of blast 

waveform starting at the point of initial P1 response. The number of incrementally 

increased blasts ranged from three to six. No blasts after rupture occurred.  

3. Each 0.5 ms duration P1 waveform was applied to the surface of the TM in 

ANSYS Mechanical for structure-only analyses.  

4. The predicted maximum stress was plotted against the maximum exposed 

pressure. This was done for all increments, samples, and blast orientations. A 
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linear trendline, the slope of which was the stress gradient, dσmax/dP1, was created 

for each direction. 

Figure 12 shows the results of this process. The accompanying table serves to further 

illuminate the data and provide statistical backing for the findings. 

 

 

Figure 12: Maximum Stress vs. maximum P1 for the three blast orientations. 

Dashed line represents linear fit of the data. 

 

Table 4: Showing the relationship between TM P1 Rupture Threshold and the 

predicted Stress Gradients for each blast orientation. 

Direction P1 Rupt. Thresh. dσmax/dP1  R2 

Vertical (N=4) 131 ± 23 kPa 74.1 0.89 

Horizontal (N=4) 131 ± 41 kPa 73.0 0.90 

Front (N=4) 112 ± 22 kPa 96.7 0.90 
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 As can be seen in the above, the stress gradient, dσmax/dP1, for the Front 

orientation is significantly higher than those of the Vertical and Horizontal orientations. 

This finding reveals that blasts in the Front orientation generate P1 waveforms that induce 

a greater rate of stress with respect to P1 levels than the Vertical and Horizontal 

orientations that induce similar rates of stress with respect to one another. This suggests 

that the rate of stress with respect to P1 is a more valid predictor of TM rupture than 

pressure level, alone.  

 

2.4.2 Explaining Horizontal Direction P0 Rupture Threshold Level 

 A difficult problem arises when deciding which TM rupture threshold one ought 

to report; the P1 Rupture Threshold is the most straightforward since P1 is the pressure 

level that acts on the TM and is responsible for rupture. However, P1 levels in vivo are 

hard to obtain. The P0 Rupture Threshold is practical as it is measured external to the 

body, and weapons’ fire pressure profiles are prevalent in literature and may be directly 

compared against the threshold for rupture [34] [35] [3]. An important parameter in 

bridging the peak pressure values, and thus rupture thresholds, of P1 and P0 is the 

pressure amplification ratio from P0 to P1, P1/P0. Table 3 shows that although the 

Vertical and Horizontal blast orientations possess the same P1 Rupture Threshold (same 

pressure level at the TM required to cause rupture), the Horizontal direction has a 

significantly lower P0 Rupture Threshold. Explaining how this occurred was achieved by 

providing insight into what governs P1/P0 through application of the HEM.  

 Four parameters were considered to impact P1/P0: canal geometry, entrance 

pressure magnitude, entrance velocity, and the waveform itself. A correlation study was 
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performed to test the effect entrance pressure magnitude had on the resulting P1/P0 value 

for the Vertical (N=14) and Horizontal (N=14) orientations. Figure 13 shows entrance 

pressure magnitude (P0) plotted against P1/P0 for the two blast orientations. The dashed 

line shows the linear-fit trendline. For both cases, P0 was shown to be weakly correlated 

with P1/P0, with R-squared (R2) values of 0.34 and 0.11 for the Vertical and Horizontal 

directions, respectively. This suggests the amplification ratio is only limitedly influenced 

by the pressure level outside of the ear.  

 

 

Figure 13: Showing weak correlation between entrance pressure level (P0) and 

resulting P1/P0 value for Vertical and Horizontal orientations. 

  

Due to the complexity of quantifying canal geometry and waveform alterations, 

these parameters of P1/P0 were not studied. However, the HEM was employed to test the 

effect of velocity on P1/P0. In these analyses, canal geometry was controlled via the HEM 

ear canal and waveform effects were controlled while only altering the entrance velocity 

via an initialization process.  
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Two analyses were initiated using the P0 waveforms from the Vertical and 

Horizontal experimental data shown in Figure 9. The analysis duration was set to 1 ms so 

as to be sufficiently long to capture the initial response of the P1 waveform. Fluent does 

not provide the capability of prescribing both pressure and velocity at a single subsonic 

inlet due to restrictions of the governing equations and instead automatically calculates 

the velocity at the ear canal entrance based on the input pressure waveform. In the 

previous validation analyses, the 3-D canal domain was initialized at rest (0 Pa and 0 m/s) 

throughout. The entrance of the canal (a 2-D boundary) introduced pressure and velocity 

to the system but with zero momentum; the boundary velocity was passed onto the 

adjacent 3-D cells which then developed momentum based on the velocity magnitude and 

mass of air. Velocity cannot be prescribed or controlled while applying a pressure 

waveform at the canal entrance; however, through domain modification, the entrance of 

the ear canal may be initialized and patched with the desired velocity. The ear canal 

therefore was modified and split into two domains using HyperMesh as shown in Figure 

14. Splitting the canal into two domains allowed for the bulk of the ear canal to be 

initialized at 0 Pa and 0 m/s, as before. The small fluid domain near the canal entrance 

was then patched with a higher velocity, as shown with red arrows in the figure below. 

Initializing the 3-D cells near the entrance of the canal with velocity, instead of just the 

2-D cells of the canal entrance boundary, provided the system with initial momentum that 

more accurately models the physics of the blast wave entering the ear canal.  
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Figure 14: Modified ear canal in HyperMesh. Shades of blue represents separate 

fluid domains. Green boundary indicates lateral TM fluid-structure interface. 

 

 Using this new initialization methodology and the Vertical and Horizontal 

experimental P0 waveforms discussed in Section 2.3, two full FSI analyses were 

conducted to examine the P1/P0 ratio under higher initial velocity conditions. The 

findings are detailed below. Table 5 compares the P1/P0, entrance velocity (deemed V0), 

and the velocity at P1 (deemed V1) for the low, automatically calculated velocity and the 

modified high velocity methods for each of the examined blast orientations. All data in 

this table was predicted by the HEM. 

 

Table 5: Showing velocity effect's on P1/P0 when the modified ear canal and 

initialization method is implemented. 

Analysis V0 (m/s) V1 (m/s) P1/P0 

Vertical – low velocity 115 95 1.78 

Vertical – high velocity 230 140 2.50 

Horizontal – low velocity 105 82 1.89 

Horizontal – high velocity 207 115 2.72 
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 The same P0 waveform was applied to the entrance of the canal for the low 

velocity and high velocity cases for Vertical and Horizontal orientation. Through 

increasing only the initial entrance velocity, a significant increase is seen in P1/P0 value. 

In comparing the low velocity and high velocity analyses of the Vertical orientation, a 

100% increase in V0 magnitude yielded a 47% increase in V1 and a 40% increase in 

P1/P0; for the Horizontal direction, a 97% increase in V0 magnitude yielded a 40% and 

44% increase of V1 and P1/P0, respectively. This set of analyses demonstrate the effect 

heightened entrance velocities have on the resulting pressure amplification ratio, P1/P0. 

This finding suggests that the Horizontal orientation’s low P0 Rupture Threshold, which 

is explained by its high P1/P0 value, is due in large part to increased entrance velocity 

when compared to the Vertical and Front orientations. The reason for the heightened 

entrance velocity in the Horizontal orientation is intuitive – the blast flow direction is 

parallel to the ear canal, i.e. the pressure front need not make a 90° turn to enter the ear 

canal as in the Vertical and Front orientations. 

 As mentioned in Section 2.3, the HEM did the worst job in predicting the P1 

waveform for the Horizontal direction. The velocity magnitude Fluent automatically 

calculates based off of the applied pressure waveform at the canal entrance more 

accurately predicts the velocity of the Vertical and Front directions. The modified, or high 

velocity, initialization method was used to more accurately predict the P1 waveform of 

the Horizontal direction by more accurately modeling the entrance velocity. Figure 15 

shows 1 ms of the Horizontal direction’s experimental P1, low velocity P1, and high 

velocity P1 waveforms. 
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Figure 15: Un-modified vs. modified initialization results. Shows modified method 

results in better P1 prediction or Horizontal orientation. 

 

 As shown in the figure above, increasing the entrance velocity results in larger P1 

response and a more accurate P1 prediction for the Horizontal orientation. 

 

2.5 Chapter Summary 

 ANSYS Workbench was used to bridge the FE solver, ANSYS Mechanical, and 

the CFD solver, Fluent, for strongly coupled FSI analyses using the Human Ear Model. 

High-intensity pressure propagation analyses were conducted using experimental blast 

data as input, and then the model and analysis method was validated through comparison 

of the predicted pressure waveforms to the experimentally measured waveforms.  

 The experimental data showed that the Front orientation’s P1 Rupture Threshold 

was uncharacteristic of the set of rupture thresholds. Through structure-only analyses this 

trend was explained as being caused by the high rate of stress on the TM with respect to 
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P1 levels the Front orientation imparts in comparison to the rates of stress of the Vertical 

and Horizontal directions. The experimental data also showed that the Horizontal 

direction had an uncharacteristically low P0 Rupture Threshold. Statistical and FSI 

analysis methods were taken that demonstrated the low rupture threshold of the 

Horizontal direction was due to the high entrance velocity that is an intrinsic phenomenon 

of the Horizontal orientation.  

 In summary, a new analysis method was introduced and the first-ever coupled 

analyses for blast propagation were conducted in a FE model of the human ear.  
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Chapter 3: Conceptual Finite Element Model for Initial Earplug 

Analyses under Blast Impulse 
 

 With successful validation and implementation of the HEM, the model was to be 

employed in the investigation of HPD behavior under blast conditions. Before HPDs were 

created in the HEM, it was necessary to understand the function and importance of certain 

EP parameters. Such parameters included the EP material properties, EP insertion depth, 

and a host of geometric considerations. The construction of many FE models were 

necessary to conduct a sufficient parametric study; altering the HEM in HyperMesh 

would have been an infeasible approach for such a task. Therefore, the geometric creation 

capabilities of ANSYS Workbench’s DesignModeler was employed to create a 

conceptual model that could be easily altered to examine a variety of EP parameters. The 

unoccluded (no EP) conceptual model geometry is shown in Figure 16. 
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Figure 16: Unoccluded conceptual model of the human ear. 

 

 This tapered cylindrical model of the ear canal, TM, and ME cavity was created 

to represent the dimensions of the HEM. The diameter of the ear canal decreased from 12 

mm at the canal entrance to 8 mm near the TM. The ear canal length was 30 mm. The ear 

canal and ME cavity was separated by a flat TM. To validate the conceptual model as a 

sufficient representation of the HEM, the conceptual model and HEM were subjected to 

identical 10 kPa triangular pressure waveforms at the entrance of the canal. The 

conceptual model featured linear viscoelastic material properties of the TM and two FSIs. 

The walls of the ear canal and ME cavity were defined as no-slip walls, as in the HEM 

analyses. As discussed in prior chapters, the analyses’ prediction of the P1 waveform is 

paramount; therefore, the validation criteria of the conceptual model was that it predicted 
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a P1 level within 10% of the HEM’s prediction. The conceptual model predicted a P1 

level well within that range, and the conceptual and HEM’s predicted P1 waveform 

comparison are compared in Figure 17. 

 

Figure 17: HEM vs Conceptual Model P1 and P2 Predictions. 

 

 The predicted waveforms of the two models were deemed, through qualitative 

measures, sufficiently similar, as were the P2 levels and waveforms. The conceptual 

model was found to be well suited for estimating the HEM’s predictions and thus was 

implemented in the EP parametric study.  

 Two types of EPs fit into the scope of this study. Those were the classic foam EPs 

and the nonlinear EP produced by CA which featured a variable orifice and silicon triple-

dome structure. Another nonlinear EP, the BP EP, was examined during experimentation 

and is mentioned during the parametric study, however it was not a focus of this thesis. 

The two considered EPs are pictured in Figure 18.  
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Figure 18: (Left) Classic foam earplugs. (Right) Combat Arms Earplugs. 

 

 The conceptual model was used to determine the foam material properties to be 

used in the analyses, understand the effect of the material properties parameters, and 

resolve the important parameters governing the CA EP’s orifice function. 

  

3.1 Earplug Material Properties 

 Determining proper EP material properties to be used in the blast analyses is 

necessary to predict the proper attenuation provided by the EPs. Silicon EP material 

properties are largely available and relatively uniform as found in literature of EP 

attenuation predicted by FE analysis of low-pressure harmonic analyses [13] [14] [18] 

[15] in contrast with material properties of foam EPs, which are less investigated [36]. 

Additionally, unlike silicon, the foams used in EPs are very porous and exhibit a capacity 

for a great deal of compressibility (at least up to 30% [36]); it is likely that the foam EP 

attenuation and general behavior alters under high strain rate, high-intensity pressure 

conditions as compared to foam behavior under harmonic, hearing-level pressure loading. 

Therefore, the conceptual model was utilized to determine satisfactory foam EP material 

properties under blast conditions. 
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Figure 19: Conceptual model used to determine foam EP material properties. 

 

 The conceptual model ear canal was split at a distance of 11.3 mm, a distance 

chosen to mimic the average EP insertion depth used in FE analyses of 15 ear canal 

geometries [18], and divided into the foam EP and now smaller ear canal fluid domain as 

shown in Figure 19. The strongly coupled FSI analysis method used to validate the 

conceptual model was modified to include the foam EP. The foam EP was fixed along 

the periphery and additional fluid-structure interfaces were prescribed on the foam EP 

and ear canal coincident faces in ANSYS Mechanical and Fluent, respectively. A 10 kPa 

triangular pressure waveform with an overpressure duration of 0.5 ms was applied to the 

entrance of the canal onto the EP structure. A range of foam EP material properties were 

then examined and are shown in Table 6. These material properties were proposed by 

James [36] and were later adapted for use in simple FE models of EP attenuation by Sgard 

et. al. [13-18]. Both groups modeled foam EPs as isotropic solids; James included 

viscoelastic properties as measured during his experiments, and Sgard et. al. represented 

James’ viscoelastic material behavior by including loss factor (a ratio of the viscous and 

elastic response of viscoelastic materials) in a linear elastic material model.  
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ANSYS Mechanical does not provide the capability of modeling porous solids, 

such as the foam found in EPs; nor was there applicable data available in literature to 

facilitate the application of a hyperelastic material model. Therefore, the foam EP was 

assumed to be an elastic solid as in previous studies. Loss factor η, is a damping parameter 

that may be added to a material model and is used to characterize viscoelastic response. 

Including the loss factor in these analyses, regardless of which material property set was 

used, consistently resulted in unfavorable P1 levels; therefore loss factor was not included 

in the foam material model. 

 

Table 6: Foam EP Material Sets Considered for HEM Applications. 

Parameter Set 1 Set 2 Set 3 

E 22.2 kPa 0.10 MPa 0.45 MPa 

ρ 228 kg/m3 220 kg/m3 220 kg/m3 

 

 

 Cadaver ear blast experiments in which the ear canal was occluded by a classic 

foam EP, resulted in an average P1/P0 value across P0 pressure levels of approximately 

0.4. The foam material properties that resulted in the most favorable P1/P0 ratio were 

used for the remainder of this study. It was found that the foam material property Set 1 

predicted a P1/P0 value nearest to 0.4 (0.35). It should be noted that due to the low 

Young’s Modulus of this material property set and the large EP deformation (nearly 3 

mm under 10 kPa triangular pressure waveform loading), it was recognized at this point 

in the study that element deformation complications were likely to be encountered as the 

P0 pressure intensity was increased.  
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 Using the selected material properties as a baseline, various material parameters 

were increased and decreased to examine their effect on P1 level and the resulting 

waveform due to a 1 kPa triangular pressure waveform introduced at P0. Figure 20 below 

shows the effect altered Young’s modulus and density material parameters have on 

maximum P1 response.   

 

Figure 20: Foam EP Material Effect under 1 kPa Impulse. 

  

 In these studies, it was determined that the most sensitive material parameter is 

Young’s modulus. If a more stiff foam material is assumed, a decrease in P1 level is 

observed, although P1 respond response time (time between peak P0 and P1 response) to 

the impulse pressure is quicker.  A more dense foam material will decrease both P1 level 

and response time. Poisson’s ratios ranging from 0.049 to 0.49 were prescribed to the EP 

and the resulting P1 waveforms were monitored. Significant change in P1 level and 

waveform was not detected for values of 0.049 through 0.3; at values greater than 0.4, P1 

level began to decrease significantly while P1 response time was shortened. Although 

this group of analyses demonstrated the effect of linear elastic material parameters on P1, 

the defining material parameter of foam was not able to be examined – porosity. 



51 

Therefore, an analysis method capable of investigating foam’s porosity effects will be 

necessary for more accurate foam material response. Additionally, future studies will 

need to be conducted that determine the way in which foam material response differs 

between hearing-level harmonic loading and blast impulse loading.  

 

 3.2 Examining Geometric Considerations 

 The function of linear EPs is very well documented in literature [3] [13] [36]; 

these EPs provide a high level of protection regardless of noise level (impulse or 

harmonic) and frequency content.  Nonlinear EPs are characterized by a small orifice 

whose function is to exploit the acoustic impedance of impulse noise while minimally 

effecting the transmission of hearing-level harmonic noise. The result is an EP that 

mitigates hazardous noise (like the impulse noise from weapons fire) while inappreciably 

interfering with harmonic noise necessary for communication [37]. These EPs have been 

shown to provide more protection as the introduced noise level increases, hence 

“nonlinear” [3]. No papers have been found that examine the effects of different orifice 

geometries under blast conditions; such information is necessary to optimize nonlinear 

EPs. 

 The CA EP is comprised of two parts (pictured in Figure 21): the silicon triple-

dome structure, whose primary function is to occlude the ear canal; and the HPC, which 

provides the mechanism for opening and closing the orifice that exists in the center of 

both parts. The HPC extends about 10 mm into the triple-dome structure, terminating at 

the apex of the 3rd dome (numbered right to left), and is assumed to be constructed of hard 
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polyethylene plastic. The remainder of the orifice (between the apices of the 1st and 3rd 

dome) is purely silicon in structure and features a constant 2.1 mm diameter.  

 

Figure 21: Schematic of the Combat Arms Earplugs. (Top) silicon triple-dome 

structure. (Bottom) Hard Plastic Core. Blue arrow indicates turn direction to close 

orifice. 

 

 It is not reported in literature how the orifice geometry (namely that of the HPC) 

effects the resulting P1 waveform. To determine which orifice geometric parameters most 

govern P1 response, the polyethylene HPC was imbedded into the foam EP of the 

conceptual model and strongly coupled FSI analyses were initialized with alterations 

made to the HPC geometry. The analyses were driven by 10 kPa triangular waveforms 

applied to the foam EP at the ear canal entrance and at the inlet of the orifice. As a base 

model, a 2.3 mm diameter straight orifice of was inserted into the foam EP. Geometry 
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modifications were then made to that initial orifice geometry. Preliminary analyses found 

that expanding a portion of the orifice in the radial direction had no impact on the resulting 

P1 waveform. It was also found that altering the length of expanded (and contracted) 

portions of the orifice from 0.5 mm to 5 mm did not significantly alter P1. Therefore, the 

reported parametric study examined the effects of EP insertion depth and the location and 

diameter of HPC orifice contraction. An overview of the geometries and parameters to 

be tested may be seen in Table 7. Unlike the CA HPC orifice, that of the BP EP consisted 

of multiple orifice contractions; a geometric model was therefore created to examine this 

geometry. The results will be discussed in the following pages. 

 

Table 7: HPC Parametric Study Geometries and Parameters. 

Designation Parameter Tested Dimensions (mm) 

FOAM Insertion depth 5.8 
  of foam EP 11.3 

    15 

Straight Insertion depth  
with constant orifice 

5.8 
11.3 

   15 

Entry Location & diameter 1 
  of orifice contraction 0.5 

Mid Location & diameter 1 
  of orifice contraction 0.5 

End (CA) Location & diameter 1 
  of orifice contraction 0.5 

Battleplugs Location & diameter 1 

  of orifice contraction 0.5 
 

 The P1 waveform was investigated for three foam EP insertion depths; these 

depths were 5.8, 11.3, and 15 mm as measured from the ear canal entrance and correlate 

to shallow, average, and deep insertion depths, respectively, of EPs found in literature 
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[14] [15]. It was found that greater insertion depth corresponded to a decrease in P1 level 

and an increase in P1 response time; this is shown graphically in Figure 22.  

 

 

Figure 22: Foam insertion depth resulting P1 waveform comparison. 

 

 Three geometries with a constant 2.3 mm diameter orifice were created to 

investigate insertion depth’s impact on P1 waveform resulting from ear canal occlusion 

by a perforated EP. Figure 23 below shows the comparison of the resulting P1 waveforms.  
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Figure 23: Straight geometry insertion depth resulting P1 waveform comparison. 

 

Unlike the foam EP, the relationship between insertion depth and P1 level and 

response time is unclear; the 11.3 mm insertion depth generates the lowest P1 level of 6.7 

kPa. Of note is that the 5.8 mm insertion depth results in the least amount of negative 

overpressure. This knowledge may prove useful when optimizing EP design, as a study 

in chinchillas [33] has shown that negative overpressure results in much higher stress 

levels as the TM is effectively pulled towards the ear canal entrance as contrasted against 

positive overpressure. The Straight geometry of 11.3 mm insertion depth was used as a 

baseline from which to modify and compare the other orifice geometries.  

 Three sets of geometries were created with single diameter contractions located 

at the entrance of the ear canal, in the middle of the EP, and at the end of the EP, 

designated Entry, Mid, and End, respectively. The End geometry coincides with the HPC 

structure of the CA EP. An additional geometry was created that estimates the HPC 

architecture of the BP EP, which features two orifice diameter contractions. The first 
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(leftmost) of the BP contractions separates staggered orifice diameters of 3.2 and 3.7 mm, 

left to right, as pictured in Figure 24 (4).  

 

Figure 24: 0.5 mm orifice contraction geometries of (1) Entry, (2) Mid, (3) End, (4) 

BP. 

 

Analyses with the aforementioned geometries were conducted with contraction 

diameters of 0.5 and 1.0 mm. Figure 25 show the contraction diameter effect by 

comparison of the resulting P1 waveforms for the Entry, Mid, End, and BP geometries, 

respectively.  
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Figure 25: Comparison P1 waveforms of 0.5 and 1.0 mm orifice contraction 

diameters in Conceptual Ear Model. 

 

 As displayed in the plots above, decreasing the contraction diameters from 1.0 

mm to 0.5 mm did not significantly alter the maximum P1 level; it did, however, result 

in a decrease in the area under the curve from t = 0 ms to approximately t = 0.8 ms. 

Additional studies on what is the major contributor to TM damage – peak P1 value or 

area under the curve – will need to be conducted before this finding may provide 

conclusions on most appropriate design. 

 Figure 26 and Table 8 may be used to draw conclusions on this parametric study. 

Figure 26 compares the P1 waveforms of the Entry, Mid, End, and BP geometries with 

0.5 mm contraction diameters while contrasting them against the Straight orifice 
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geometry, foam EP, and unoccluded ear canal P1 waveforms. Table 8 gives the measured 

peak pressure values at the monitored P1 and P2 locations, the EP attenuation (pressure 

at the TM subtracted from the introduced pressure at the canal entrance, [P0 – P1]), and 

the predicted insertion loss (P1 level of unoccluded ear minus P1 level with EP).  

 

 

Figure 26: Comparing 0.5 mm diameter orifice contractions with the input, 

unoccluded, foam, and constant diameter cases. 
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Table 8: Compilation of conceptual model predicted pressure values and EP 

attenuation and Insertion Loss. 

Geometry P1 (kPa) P1 (dB) P2 (kPa) Atten. (dB) IL (dB) 

Foam 5.8  

11.3 

15 

5.0 

3.7 

3.2 

168 

165 

164 

2.4 

2.1 

1.8 

6.0 

8.6 

9.9 

13 

15 

17 

Straight 5.8 

11.3 

15 

6.9 

6.7 

7.5 

171 

171 

172 

2.7 

2.5 

2.5 

3.3 

3.5 

2.5 

10 

10 

9 

Entry 0.5 

1.0 

3.4 

3.8 

165 

166 

1.6 

1.7 

9 

8 

16 

15 

Mid 0.5 

1.0 

3.4 

3.5 

165 

165 

1.7 

1.6 

10 

9 

16 

16 

End 0.5 

1.0 

3.4 

3.4 

165 

165 

1.7 

1.6 

9 

9 

16 

16 

BP 0.5 

1.0 

2.4 

2.9 

162 

163 

1.3 

1.5 

12 

11 

19 

17 

 

 This study illuminated the relationship between basic EP geometric 

configurations and the resulting pressure waveforms monitored near the TM. The 

findings are summarized below.  
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 For foam EP without orifice, a greater insertion depth results in greater pressure 

level attenuation at P1; foam EP with constant diameter HPC does not show the 

same trend, with the greatest insertion depth resulting in the highest pressure. 

 The HPC orifice contraction diameter does not significantly alter the peak P1 

level, although a larger diameter does result in more area under the curve during 

the first millisecond.  

 A single orifice contraction, regardless of location, will result in nearly identical 

waveforms as measured at P1 (shown by overlapping waveforms in Figure 26). 

 Multiple orifice contractions (as in the BP case) provide greater attenuation as 

measured at P1 than single contraction orifices.  

 Note: although analyses with HPC inserted into foam EP do not model either of 

the investigated NL EPs accurately, this study is applicable for comparative 

purposes.  

 Hearing-level harmonic testing is still necessary to accurately characterize HPC 

orifice function. 
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Chapter 4: Human Ear Model to Predict Earplug Attenuation under 

Blast Conditions 
 

Currently, the only computational approach that is capable of successfully 

predicting linear and nonlinear EP attenuation and inner ear response due to high-

intensity pressure impulse is the AHAAH model created by the Army Research 

Laboratory. As with the HEM, AHAAH analyses may be driven by experimentally 

measured waveforms. The most notable limitation of the AHAAH model, however, is its 

inability to assess pressure profile throughout the ear canal and the stress distributions 

imparted on the tympanic membrane (TM). The FEM coupled with CFD allows for the 

deduction of fluid pressure propagation and the development of velocity streamlines with 

respect to time, as well as stress concentrations developed in the structure caused during 

FSI.  

 This chapter aims to describe the newly created HEM to predict linear and 

nonlinear NL EP attenuation during mid- and high-level impulse blast conditions. The   

3-D meshes of the two EPs were created to occlude the ear canal and the ear canal was 

modified to more closely resemble those found in Sgard’s work [18]. Strongly coupled 

FSI analyses were conducted that were driven by experimentally measured P0 waveforms 

(located near the ear canal entrance) ranging from 14 – 40 kPa. The predicted waveforms 

were compared against experimental waveforms; the comparisons are discussed and 

future improvements to the model are examined.  

 

4.1 Generating Meshes 

 For this preliminary set of EP analyses, the construction of three individual HEMs 

were required to represent the cases of the unoccluded ear canal and ear canal occlusion 
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via the foam and CA EPs; HyperMesh was used for all meshing operations. To produce 

a model that more closely follows examples of other FE models of EPs in literature [13] 

[14], a layer of skin with an average thickness of 1.5 mm was added to the ear canal in 

the HEM referenced to in Chapter 2. In the referenced journal articles, the FE models, 

which terminate at the TM, also include cartilage and bone surrounding the ear canal. It 

may be important to include these components into the model during future studies of 

blast’s effects on the cochlea, as it has been shown that bone conduction produces 

cochlear response [38]. The HEM modified to include ear canal skin was used for the 

unoccluded case.  

 Creating the foam occlusion HEM required modifying the fluid domain of the ear 

canal in addition to generating the structure of the foam EP (shown in Figure 27). The 

foam EP was modeled to completely occlude the ear canal; i.e. no leaks were present and 

the nodes of the foam EP and skin were coincident along the wall of the ear canal. The 

foam EP insertion depth as measured from the entrance of the canal to the EP’s apex was 

12 mm. The foam EP and the fluid of the ear canal were comprised of 711 and 8,563 

elements, respectively. 
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Figure 27: Ear canal modified to include foam EP and (Transparent) skin and ear 

canal fluid. 

 

 During experiments of the CA EP, it was observed that the third and largest dome 

was seldom inserted into the ear canal. In the average ear, only the first two domes are 

fully inserted into the ear canal, with only the apex of the third dome set inside; the 

primary function of the third dome is to obstruct the entrance to the ear canal (shown in 

Figure 28).  
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Figure 28: Combat Arms EP inserted into scale ear model. [Shows the third of the 

triple-domes blocking, but not entering the ear canal.] 

 

As the HPC of the CA EP terminates prior to the apex of the third dome, the HPC 

was not included in the HEM. Thus, only the CA EP silicon triple-dome was generated 

within the HEM. A Vernier caliper was used to measure the dimensions of the CA EP, 

which are shown with respect to the resulting mesh in Figure 29. The triple-dome 

structure consisted of 23,440 elements – this large number is due to the small element 

size of the inner face of the orifice. The orifice and flanges of the triple-dome structure 

resulted in additional fluid volumes through and between the flanges of the CA triple-

dome. The total modified ear canal fluid mesh consisted of 39409 elements. 
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Figure 29: Wiremesh representation of Triple-dome used in HEM analyses with 

selected dimensions. 

 

 The three models of the unoccluded ear canal and the ear canal occluded by foam 

EP and CA EP triple-dome were then imported into ANSYS Workbench for strongly 

coupled FSI analyses. 

 

4.2 Earplug Analysis Method 

 In order to discern the HEM’s predictability of EP attenuation under blast 

conditions, the model must be prescribed appropriate material properties and boundary 

conditions under valid physical assumptions. Should these conditions be met, the 

resulting pressure waveforms as monitored at P1, just before the TM in the ear canal, and 

P2, inside the middle ear cavity, will closely agree with experimental data measured 

during cadaver ear blast studies. Waveforms from a single experimental specimen,          
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TB 16-30R, were used to both drive the HEM analyses and compare to the resulting 

predicted waveforms as a means for model verification. TB 16-30R was subjected to a 

battery of blasts at two blast levels – mid-level (14 – 19 kPa) and high-level (38 – 51 

kPa). At each pressure level, the sample was exposed to blast overpressure while fitted 

the foam EP, the CA EP at maximum (closed orifice) and minimum (open orifice) 

protection settings, and the CA triple-dome-only before finally being blasted with an 

unoccluded ear canal. During blast exposure, pressure waveforms were measured at P0, 

near the ear canal entrance, and P1 and P2.  

 The analysis method for predicting P1 and P2 waveforms in the unoccluded HEM 

is identical to that mentioned in Chapter 2, with the exception of additional considerations 

due to the addition of the ear canal skin component. Material properties were extracted 

from Sgard’s group [14] who defined skin as an elastic isotropic solid with properties of: 

0.42 MPa (Young’s modulus), 1050 kg/m3 (density), 0.43 (Poisson’s ratio), and 0.2 (loss 

factor). Material beta damping was applied to the skin to introduce loss factor, a 

convenient value to represent viscoelastic behavior, via Equation 10,  

 𝛽 =
𝜂

𝜋𝑓
 (10) 

where, β is the material beta damping factor, η is the loss factor, and f is frequency. A 

complication arises when prescribing beta damping in a transient analysis due to the 

frequency component of the damping. Therefore, the average value of beta damping was 

taken from 0 – 10 kHz. Additional fluid-structure interfaces were applied between the 

skin and fluid of the ear canal in ANSYS Mechanical and Fluent, respectively. Two 

analyses were initiated through application of the mid- and high-level P0 waveforms 

recorded from TB 16-30R unoccluded blast exposures onto the skin and fluid boundaries 
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at the ear canal entrance. The proceeding P1 and P2 pressure waveforms were then 

compared to experimental waveforms from the same exposures. 

 The foam EP occluded ear canal HEM (displayed in Figure 30) utilized identical 

material properties for foam as discussed in Chapter 3. To allow for the transfer of 

pressure into the fluid of the ear canal, fluid-structure interactions were defined on the 

EP/ear canal boundary. Experimental P0 waveforms were applied directly onto the 

structures of the skin and foam EP at the ear canal entrance.  

 

 

Figure 30: Complete HEM with foam EP occlusion. 

 

Figure 31 shows the HEM with CA triple-dome occlusion. The applied silicon 

material properties were adapted from literature [14]. The EP was defined an elastic 

isotropic solid with properties: 1.2 MPa (Young’s modulus) 1150 kg/m3 (density), 0.48 

(Poisson’s ratio), and 0.12 (loss factor). As in the case of the ear canal skin, the loss factor 

was represented as the average material beta damping factor from 0 – 10 kHz. Four FSIs 

were applied between the EP and air in the ear canal. Since the HEM model does not 

include the HPC, the CA maximum and minimum protection settings exposure 
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waveforms were not utilized in this study. Triple-dome-only P0 blast exposure 

waveforms were applied to the skin and triple-dome EP at the entrance of the canal in 

ANSYS Mechanical; in Fluent, the identical waveforms were applied to the entrance of 

the EP orifice. 

 

Figure 31: Complete HEM with CA triple-dome occlusion. 

 

4.3 Results and Predicted Waveforms 

 There are three primary means of evaluating hearing protection devices – that is 

via determining P1/P0 ratio, EP attenuation, or IL. Attenuation is the measure of how 

much an incident pressure level outside the ear was reduced as compared to the pressure 

level at the TM; mathematically, EP attenuation is P1 subtracted from P0. IL is 

determined by subtracting the pressure level near the TM with EP inserted from the 

pressure level near the TM of the unoccluded ear canal. All evaluation methods are used 

during the comparison of the HEM predicted waveforms to the experimentally measured 

waveforms of sample TB 16-30R.  
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Figure 32: Unoccluded mid-level exposure experimental vs. predicted pressure 

profiles. 
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Figure 33: Unoccluded high-level exposure experimental vs. predicted pressure 

profiles. 

 

 Figures 32 and 33 above show 2 ms of the unoccluded ear experimental pressure 

waveforms compared to the HEM predicted waveforms for mid- and high-level blast 

exposures, respectively. The predicted P1 and P2 levels of the mid-level exposure 

exceeded the peak pressure values measured during experimentation; this occurrence was 
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more exaggerated in the case of high-level exposure. Overall, the predicted and measured 

P1 and P2 waveforms were in agreement. The predicted versus measured P1/P0 values 

were 1.4 versus 1.2 and 2.0 versus 1.3 for mid- and high-level exposures, respectively.  

 

Figure 34: Foam EP occluded mid-level exposure experimental vs. predicted 

pressure profiles. 
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 The waveforms of the foam EP occluded ear canal in response to mid-level blast 

exposure as measured via experimentation and predicted via HEM are shown in Figure 

34 above. It was apparent that the HEM with foam EP occlusion and current analysis 

settings were insufficient to adequately predict the P1 and P2 waveforms, although both 

measured and predicted P1/P0 values were 0.16. Only mid-level blast exposure analysis 

was conducted with this model; high-level pressures distorted the foam EP to the point of 

analysis termination. Although the linear elastic representation of the foam EP has been 

implemented successfully in other studies [13] [14], this material model is unsuitable for 

the high pressure and high strain rate analyses inherent when modeling blast exposures. 

A more appropriate nonlinear material model is necessary to accurately predict the EP 

attenuation of foam materials subjected to blast overpressures. 
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Figure 35: CA triple-dome occluded mid-level exposure experimental vs. predicted 

pressure profiles. 
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Figure 36: CA triple-dome occluded high-level exposure experimental vs. 

predicted pressure profiles. 

 

Shown above (Figures 35 and 36) are the experimental and predicted pressure 

waveforms from mid- and high-level blast exposures of CA triple-dome-only occluded 

ears. The predicted waveforms generally agreed with the shape of the experimental 

pressure profiles; the greatest discrepancy was in the duration of positive P1 overpressure 
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when compared to the relatively short duration of initially positive overpressure observed 

in the experiment (roughly 0.25 ms). A portion of this is explained by the initial drop in 

pressure level measured during experimentation that is likely due to experimental setup. 

The experimental P1waveform also contains a higher degree of undulation than was 

predicted, although this may be simply due to variations in canal geometry. For mid-level 

exposure, predicted versus measured P1/P0 value, EP attenuation, and IL were 0.46 

versus 0.39, 6.7 dB verses 8.2 dB, and 11.4 dB verses 11.3 dB, respectively. Predicted 

versus measured P1/P0 value, EP attenuation, and IL for high-level exposure were 0.34 

versus 0.29, 9.3 dB versus 10.8 dB, and 13.9 dB versus 12.0 dB, respectively. Table 9 

below consolidates the results of the analyses of the unoccluded and occluded models of 

the HEM. 
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Table 9: Consolidated representation of unoccluded and occluded HEM blast 

exposure results 

Exposure Waveform P1 

(kPa) 

P1 

(dB) 

P2 

(kPa) 

P1/P0 Atten. 

(dB) 

IL 

(dB) 

Mid-level 

unoccluded 

Exp. 

Pred. 

20 

24 

180 

182 

2.8 

5.3 

1.2 

1.4 

-1.6 

-3.1 

N/A 

N/A 

High-level 

unoccluded 

Exp. 

Pred. 

53 

77 

188 

192 

10 

11 

1.3 

2.0 

-2.6 

-5.9 

N/A 

N/A 

Mid-level 

Foam EP 

Exp. 

Pred. 

2.6 

2.6 

162 

162 

1.6 

0.8 

0.16 

0.16 

16 

16 

18 

19 

Mid-level 

Triple-dome 

Exp. 

Pred. 

5.4 

6.4 

167 

170 

1.6 

1.9 

0.39 

0.46 

8 

7 

11 

11 

High-level 

Triple-dome 

Exp. 

Pred. 

13 

16 

176 

178 

8.0 

4.0 

0.29 

0.34 

11 

9 

12 

14 

 

 The HEM was able to predict peak P1 levels (and identically P1/P0 values) within 

33% (averaged), 1.2 %, and 18% (averaged) of the experimental peak values for the 

unoccluded, foam EP occluded, and CA triple-dome occluded ear canal cases, 

respectively. The CA triple-dome analyses approximated EP attenuation and IL within 

16% (averaged) and 7.8% (averaged), respectively, as compared to measured values.  

 The HEM modified to include foam EP and CA triple-dome ear canal occlusion 

with strongly coupled FSI analyses conducted in Fluent/ANSYS Mechanical was capable 

of predicting EP function with respect to resulting pressure profiles that largely agrees 

with available experimental data. The CA EP maximum and minimum settings were not 



77 

examined in this study, as further modeling work must be completed to include the CA 

HPC in the HEM.   

 As an example of the possible utility of the HEM to aid in nonlinear EP design, 

consider Figure 37.  

 

Figure 37: Time history of velocity with streamlines in CA triple-dome occluded 

HEM. 

  

 The figure above shows the velocity streamlines through the orifice of the CA 

triple-dome and into the ear canal. Snapshots of the streamlines are taken at times 0.02, 

0.08, 0.24, and 0.96 ms simulation time. As the flow develops, a swirling effect manifests 

in the ear canal, especially near the bottom of the canal near the TM. Although the current 

HEM does not include the HPC of the CA EP, it is possible that such information 

regarding the flow pattern throughout the EP and ear canal may be utilized to design 

orifice geometries capable of efficiently dissipating impulse energy, saving the ear from 

overpressure magnitudes that are currently deemed dangerous.   
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Chapter 5: Conclusion 

5.1 Research Summary 

 There is a clear need for an advance analysis method capable of giving detailed 

information pertaining to the response of the human ear to blast impulse exposure. 

Additionally, hearing protection mechanisms must be explored and innovated such that 

soldiers may utilize military standard issue protection without hampering their 

effectiveness in combat. To provide a new means of evaluating human ear response to 

blast exposure and earplug function, the first human ear Finite Element model for high-

intensity blast impulse analysis was created in Fluent/ANSYS Mechanical. Waveforms 

measured outside of the ear during human cadaver temporal bone experiments were 

applied to the Human Ear Model as input to the FE analyses. The model has shown the 

capability of accurately predicting pressure waveforms at key locations within the ear. 

The results from such analyses provide great detail of middle ear structural response to 

blast impulse exposures. Validated against experiments, the model was then shown to 

have applications in explaining observations made during experimentation. A conceptual 

model was constructed to conduct a preliminary parametric study of nonlinear earplug 

orifice geometry, and it was found that an ideal orifice construct may consist of multiple 

chambers separated by small-diameter contractions. The Human Ear Model for blast 

impulse analysis was then modified to include ear canal skin and linear and nonlinear 

earplugs. Analyses show that the model is capable of accurately predicting earplug 

function, although the material model for the foam earplug must be improved upon in 

order to simulate high-intensity impulse pressures. The Human Ear Model has proven 

effective in providing comprehensive computational analyses of high-intensity blast 

transduction through the ear while providing an unmatched level of detail of the response 
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of middle ear structures and of pressure and velocity volumetric data. This model and 

computational method shows great promise in providing enhanced means of evaluating 

Damage Risk Criteria of military weapons and weapon platforms and of designing and 

optimizing advanced Hearing Protection Devices. 

 

5.2 Further Studies 

 In order to directly compare the Human Ear Model’s effectiveness at predicting 

hearing loss to the Army’s current prediction method (the AHAAH model), the cochlea 

with basilar membrane must be added to the model and the HEM must be shown capable 

of predicting hearing loss based on impulse waveforms and basilar membrane motion. A 

new mesh of the tympanic membrane to include the three composite layers that comprise 

the structure will provide a more detailed level of information regarding mode of 

tympanic membrane rupture. 

 A parametric study of orifice geometry effect must be conducted in the full HEM 

with a full representation of the nonlinear EP; EP function under blast impulse and 

hearing-level harmonic excitation must be well understood before the model may be 

applied to improve nonlinear EP design.  
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Appendix A: List of Abbreviations 
 

AHAAH Auditory Hazard Assessment Algorithm for Humans 

AHU  Auditory Hazard Units 

BP  Battle Plugs 

CA  Combat Arms 

CFD  Computational Fluid Dynamics 

DRC  Damage Risk Criteria 

EP  Earplug 

FE  Finite Element 

FEA  Finite Element Analysis 

FEM  Finite Element Method 

FSI  Fluid-Structure Interaction 

FVM  Finite Volume Method 

HEM  Human Ear Model 

HPC  Hard Plastic Core 

HPD  Hearing Protection Device 

IL  Insertion Loss 

IMJ  Incudo-Malleolar Joint 

ISJ  Incudostapedial Joint 

ME  Middle Ear 

PDE  Partial Differential Equation 

SAL  Stapedial Annular Ligament 

SPL  Sound Pressure Level 
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TB  Temporal Bone 

TM  Tympanic Membrane 

TMA  Tympanic Membrane Annulus 

 

 

 


