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Abstract 

Two-component signaling is the primary means by which bacteria, archaea and certain 

eukaryotes sense and respond to their environments. Signal transfer proceeds through 

sequential His-to-Asp phosphorylation of upstream histidine kinases and downstream 

response regulators. These systems share highly modular designs and have been 

incorporated into a myriad of cellular processes. The highly labile chemical natures of 

phosphoaspartate and phosphohistidine lead to relatively short experimental life-times, 

making study of the modified signaling proteins challenging. The focus of this research 

was to develop computational and experimental approaches for characterizing 

phosphorylated two-component signaling proteins. Following an introductory chapter, 

the first experimental section presents a computational technique for simulating the 

activation of individual response regulator proteins. This is accomplished using known 

experimental data on conserved active site chemistry to define a common set of 

restraints to drive each simulation. The protocol was verified on five genetically diverse 

response regulators with known experimental structures. The second section applies this 

principle to signaling complexes to study the effects of phosphorylation on protein-

protein interactions within the Saccharomyces cerevisiae osmoregulatory signaling 

system. The third section describes the experimental characterization of a specific 

signaling complex from Saccharomyces cerevisiae between the response regulator Ssk1 

and a point mutant (G68Q) of the histidine phosphotransfer protein Ypd1 using X-ray 

crystallography. This mutation occurs near the active site of both proteins and appears 

to interfere with phosphotransfer. Further in silico studies were performed to observe 

the role of G68 in catalysis of phosphotransfer. 
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Chapter 1: Introduction 

1.1 Signal transduction 

To survive, organisms must rapidly and continuously adapt to their 

environments. The process of detecting, internalizing, transmitting and 

responding to extracellular signals is known as signal transduction [1-3]. Cells 

are highly sensitive to their chemical environments and have developed 

numerous methods to detect minor changes in their surroundings. Most of 

these involve the use of membrane-bound receptors to bind specific ligands, 

though some non-polar molecules are able to diffuse directly through the 

membrane [1, 4-7]. These ligands, also known as primary messengers, are the 

first step in the cellular signaling process [1, 7].  

Once a signal has been detected and internalized through a cellular 

receptor, it must then be converted into different chemical form(s) through a 

process known as transduction [1]. This generates another group of small 

signaling molecules within the cell, known as secondary messengers. These are 

involved in relaying signals from the receptors to the rest of the cellular 

machinery [8]. Several well-characterized examples of secondary messengers 

include calcium, cyclic AMP and cyclic GMP [9-11]. Secondary messengers 

can be used to both amplify a signal and activate further cellular components, 

such as enzymes or membrane channels. This entire signaling circuit is often 

referred to as a signal transduction cascade. 
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1.2 Protein phosphorylation in signaling cascades 

Reversible, post-translational modifications are common regulatory 

mechanisms found in signal-transduction cascades [12]. One such modification 

involves the phosphorylation of a protein substrate. Phosphorylation is  

ubiquitous in both prokaryotic and eukaryotic organisms (reviewed in [13-15]). 

The first formal description of a phosphorylation-dependent signaling cascade 

was made over sixty years ago by two independent groups. Krebs and Fischer 

[16, 17] and Rall [18] demonstrated the interconversion of phosphorylase a 

and b by phosphorylase kinase. This discovery was the earliest documented 

example of reversible protein phosphorylation, a critical process eventually 

found in nearly every living cell [14]. The reversible process of 

phosphorylation/dephosphorylation is controlled by two families of enzymes: 

kinases and phosphatases [19]. Kinases are frequently activated by secondary 

messenger molecules and are responsible for binding ATP and transferring γ-

phosphoryl groups to chemically appropriate acceptor residues [20]. 

Phosphatases are involved in the catalytic removal of these phosphoryl groups 

[21]. Eukaryotic kinases typically phosphorylate serine, threonine or tyrosine 

residues, often as part of a kinase cascade [14, 22-25]. 

Serine/threonine/tyrosine kinases are relatively stable in their phosphorylated 

forms and must be enzymatically dephosphorylated, usually by their 

phosphatase counterparts [26-28]. In prokaryotes, histidine and aspartate 

phosphorylation is the primary method of signal transduction (reviewed in [29, 
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30]). His-to-Asp phosphotransfer is fundamentally different from Ser/Thr/Tyr 

phosphorylation. Eukaryotic Ser/Thr/Tyr phosphorylation occurs as 

independent events, with each step requiring a molecule of ATP and a kinase 

[31, 32]. In contrast, prokaryotes utilize histidine and aspartate residues as 

relay points, shuttling the same phosphoryl group between multiple signaling 

components [31, 32]. This method takes advantage of the chemical labilities of 

phosphorylated histidine and aspartate residues to drive transduction [27, 28]. 

1.3 Mechanism of reversible phosphorylation 

Due to its prevalence, phosphorylation is arguably the most highly-

studied of all post-translational modifications. The covalent attachment of a 

negatively charged phosphoryl group onto an appropriate active site residue 

has been shown to cause dramatic structural and functional changes in target 

proteins [33-38]. This allosteric effect makes phosphorylation an ideal 

regulatory technique for cellular signaling pathways. The mechanism of 

phosphorylation begins with the universal phosphoryl donor, adenosine 

triphosphate (ATP). The energy found in ATP is stored in two high-energy 

phosphoanhydride bonds. Protein kinases bind ATP, catalyze the breaking of 

these linkages and facilitate the transfer of the terminal phosphate group (γ-

PO3
2-) to chemically appropriate amino acid residues (reviewed in [20, 39]). 

The large amount of energy released by the breaking of these bonds makes this 

reaction unidirectional [40].  
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Figure 1. Hydrolytic dephosphorylation of phosphoaspartate. 
An acidic side chain (Asp/Glu) is used to activate a nearby water molecule, which performs an 
in-line, nucleophilic attack at the phosphorus atom [28]. This results in the hydrolysis of the 
phosphoaspartate species and the generation of inorganic phosphate. The high energy acyl 
phosphate bond makes phosphoaspartate highly labile [28]. 
 

In eukaryotes, hydroxyl groups on serine, threonine and tyrosine side 

chains are activated by nearby bases to perform a nucleophilic attack on the 

phosphorus atom of the γ-PO3
2- group. The process requires the presence of a 

divalent metal cation (e.g. Mg2+) to neutralize the negatively-charged 

phosphate groups and facilitate the nucleophilic attack [20, 39]. In prokaryotes, 

the mechanism is similar, though it is usually the side chains of histidine and 

aspartate residues that act as nucleophiles [41]. The phosphoramidate and acyl 

phosphate bonds of phosphohistidine and phosphoaspartate are higher energy 

than their eukaryotic counterparts (see Table 1) [42, 43]. This explains their 

highly labile chemical natures and susceptibility to rapid hydrolytic 

dephosphorylation [44, 45] (see Fig. 1). 

Table 1. Standard Gibbs free energy of hydrolysis 

Phospho-amino acid ΔGhydrolysis (kcal/mol) Reference(s) 
Phosphohistidine -12 [48] 
Phosphoaspartate -10.3* [30, 45] 
Phosphotyrosine -9.5 [49, 50] 
Phosphoserine -6.5 [51] 
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Adenosine triphosphate -7.3 [52] 
* Approximation, based on phosphorylation by acetyl phosphate 
 

1.4 Two-component signaling systems 

 

Figure 2. Architectures for a basic TCS system and a phosphorelay. 
(A) Canonical two-component signaling pathway. Signals are sensed by the histidine kinase, 
which binds ATP in the catalytic (CA) domain, and autophosphorylates on a histidine residue 
in the dimerization and histidine phosphotransfer (DHp) domain. The phosphoryl is transferred 
to an aspartate on the receiver (rec) domain of a downstream response regulator (RR) protein. 
(B) Expanded multistep phosphorelay. Contains a hybrid HK, with its own receiver domain, 
and an intermediate known as a histidine-containing phosphotransfer (HPt) protein. 
 
 

Two-component signaling (TCS) systems are the primary means by 

which all bacteria, as well as certain eukaryotes and archaea, detect and 

respond to their environments (extensively reviewed in [30] and [29]). TCS 

pathways utilize reversible protein phosphorylation and phosphotransfer as a 

means to couple external stimuli with a cellular response. A prototypical TCS 

system contains two signaling proteins: an upstream sensor histidine kinase 

(HK) and a downstream response regulator protein (RR) [29, 30]. The HK is 

responsible for detecting or receiving the extracellular stimulus, binding ATP 
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and a metal cation (Mg2+), and autophosphorylating on a histidine residue. The 

RR receives this same phosphoryl from the HK on an aspartate residue within 

its receiver (rec) domain and triggers an appropriate cellular response, often 

through regulating the output of an attached effector domain [29, 30] (see Fig. 

2A). 

TCS systems are ubiquitous in bacteria, responsible for such diverse 

cellular functions as cellular communication, growth and propagation, stress 

response and pathogenesis [46-49]. Bacterial HKs are frequently encoded on 

the same operon as their cognate RRs, making bioinformatic census-taking 

relatively straightforward [50]. Genetic analysis suggests that the number of 

TCS genes for a given organism grows approximately as a square of genome 

size [51]. Most bacteria contain an average of 20-50 cognate HK-RR pairs, 

though numbers vary greatly, with some genomes encoding several hundred 

individual proteins [50, 51]. The number of encoded TCS proteins in a genome 

also appears to be related to the ecological niche filled by the organism [50-

54]. Bacteria that inhabit relatively stable environments frequently contain few 

TCS genes, while the opposite is true for organisms that inhabit more volatile 

settings. The presence of so many paralogous signaling proteins within a single 

organism creates the possibility of cross-talk between different TCS systems 

[50, 55, 56]. While little sequence similarity exists between them, TCS 

proteins frequently share high structural and catalytic homology. Cellular 

viability depends on preventing the promiscuity of individual TCS 
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components. Though the mechanism(s) for regulating TCS proteins and 

preventing cross-talk is not fully understood, recent studies suggests that 

promiscuity within bacteria remains relatively low [46, 50, 56-58]. Most HKs 

display a marked kinetic preference for their cognate RR, as reviewed in [57]. 

Examples of this include EnvZ with OmpR (osmoregulation), CC1181 with 

CC1182 (function unknown), and RstB with RstA (biofilm formation and iron 

acquisition) [59-62]. While molecular recognition at an amino acid level is 

thought to generate the largest influence on the specificity of signaling 

interactions, recent work indicates that co-localization, transcriptional 

regulation and phosphatase activity all play parts in preventing heterologous 

activation [23, 56, 63-66]. In addition to preventing cross-talk between 

pathways, many of these same regulatory measures are required within single 

pathways, especially in complex eukaryotic systems that may contain multiple 

branch points. 

1.5 Multi-step phosphorelays 

Occurrence in prokaryotes 

The modularity of two-component signaling pathways has allowed for 

the evolution of more complex system architectures [67, 68]. While the 

majority of prokaryotic TCS systems utilize a single HK and RR pair, 

expanded pathways that incorporate multiple phosphotransfer events have been 

observed [69, 70]. These systems are referred to as multi-step phosphorelays, 

in which the same phosphoryl group is shuttled from His-to-Asp-to-His-to-
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Asp. Phosphorelays commonly utilize a hybrid HK, incorporating both an HK 

and RR rec domain in a single protein (Fig. 2B). Introduction of this hybrid 

protein coincides with the addition of an intermediary histidine 

phosphotransfer (HPt) domain. The Escherichia coli RcsC-YojN-RcsB 

signaling pathway, responsible for swarming behavior and capsular synthesis, 

is one example of this type of expanded system found in bacteria [71-73]. The 

kinase RcsC autophosphorylates on a histidine residue, transfers the 

phosphoryl to the HPt domain of YojN, which finally transfers to the cytosolic 

response regulator RcsB. Other phosphorelay architectures exist, such as the 

sporulation pathway in Bacillus subtilis [74]. This system includes separate 

proteins for every domain. Transduction begins with the autophosphorylation 

of a sensor kinase (KinA, KinB or KinC), which then transfers the phosphoryl 

to Spo0F. The intermediate regulator then phosphorylates Spo0B, which 

finally transfers the phosphoryl to Spo0A [75, 76]. A third type of expanded 

system also uses a hybrid HK, with the kinase, rec and HPt domains 

incorporated into the same protein. The Bordetella pertussis BvgS-BvgA 

system is one example of such a system, involving the transcriptional 

regulation of virulence factors [77, 78]. 

Occurrence in eukaryotes 

For decades, Ser/Thr/Tyr phosphorylation was thought to be restricted 

to eukaryotic organisms, while His-to-Asp phosphotransfer was considered 

thoroughly prokaryotic. However, multiple studies published in 1993 
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overturned this belief with the discovery of bacterial Ser/Thr kinases and 

eukaryotic TCS proteins [79-81]. As genomic information became more 

widely available, two-component signaling was revealed to be surprisingly 

prevalent in eukaryotes, though overall TCS systems make up a relatively 

small percentage of their signaling pathways. Most eukaryotic TCS systems 

have been found in plants, slime mold and other fungi [82]. Genetic analysis of 

available prokaryotic and eukaryotic genomes reveals that hybrid HKs make 

up less than 20% of all bacterial TCS kinases, but more than 90% of eukaryotic 

histidine kinases [67]. This suggests that the majority of eukaryotic TCS 

systems are expanded phosphorelays, rather than canonical TCS pathways 

more commonly found in prokaryotes. To date, no TCS systems have been 

identified in animals [83]. Eukaryotic phosphorelays utilize the same principle 

for signal transduction as bacterial TCS systems, though they frequently 

include a greater number and diversity of signaling proteins. Almost every 

fungal and slime mold TCS pathway includes a hybrid HK, incorporating both 

a kinase and rec domain, and a stand-alone HPt protein [82, 84, 85] (Fig. 2B). 

The osmoregulatory Sln1 pathway found in Saccharomyces cerevisiae is one 

well-characterized example [86]. The membrane-bound hybrid sensor HK 

known as Sln1 binds ATP and autophosphorylates on a histidine residue under 

normal conditions. The phosphoryl group is then transferred to an attached rec 

domain, which binds and phosphorylates the intermediate HPt, Ypd1. The HPt 

can then phosphorylate two downstream RRs, Skn7 or Ssk1 [87-91]. Under 
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osmotic stress conditions, Sln1 ceases to autophosphorylate, allowing 

unphosphorylated downstream elements to accumulate and activating a cellular 

response. This branching architecture is a common feature of many eukaryotic 

TCS systems.  

Evolutionary advantages of expanded phosphorelays 

No definitive explanation exists for the development of phosphorelays 

or their prevalence in eukaryotes, though many have speculated on the 

evolutionary advantages that such systems might provide. The 

compartmentalization of the eukaryotic cell may explain the widespread 

adoption of the HPt protein [84]. A membrane-bound sensor kinase would 

likely be unable to transfer a phosphoryl to different compartments, such as the 

nucleus, where eukaryotic RR proteins frequently reside. A cytoplasmic HPt 

protein, such as Ypd1, would fulfill the role of an intermediate shuttle between 

the upstream and downstream components [92]. The presence of additional 

proteins provides more regulatory checkpoints within the pathway, as well as 

potential intersections with other signaling systems [69, 70]. Hybridization of 

HKs with their own downstream partners may also eliminate the danger of 

cross-talk between pathways. Fusion of two proteins effectively uses co-

localization to prevent promiscuity [93]. Recent studies using systems biology 

approaches have suggested that expanded phosphorelays may provide multiple 

signal-processing advantages to organisms. Kinetic variation in transfer and 

hydrolysis rates can cause changes in the signal-response relationship of a 
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pathway, allowing either binary responses or responses that scale with the level 

of the incoming signal [94]. Response dynamics of phosphorelays also impart 

ultrasensitivity to the intermediate layers of the pathway above a certain 

threshold, but low responses below this threshold [95]. This creates a natural 

tolerance for cross-talk within the system, as well as a high signal-to-noise 

ratio at the final layer of the pathway.  

1.6 Histidine kinases 

Histidine kinase structure 

Histidine kinases (HKs) are typically found at the apex of TCS 

pathways and are responsible for sensing, internalizing and transmitting the 

extracellular stimuli to the rest of the pathway [30]. They are frequently multi-

domain proteins that exhibit significant architectural diversity. Activity is 

typically regulated by an attached sensor domain. Each HK is grouped into one 

of three different structural classes, based on the location of this sensory region 

[96]. Class I HKs are membrane-bound and utilize an extracellular sensor. 

Class II HKs are also membrane-bound, but their sensory region is thought to 

reside within the transmembrane domain. Class III HKs include a single 

cytoplasmic sensory domain. The large majority of HKs are Class I, coupling 

an extracellular sensor with a cytoplasmic, C-terminal catalytic region 

(reviewed extensively in [29, 97]). Though sensor domains are highly variable 

in structure and function, due to the wide range of environmental stimuli they 

must detect, the cytoplasmic kinase domain is far more conserved and contains 
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several sequence motifs that are characteristic of nearly all HKs. These motifs 

are known as the H, N, G1, G2 and F boxes, based on the conserved residues 

associated with the motif [98].  

Canonical HKs are typically constitutive homodimers (Fig. 3). Each 

monomeric subunit begins with an N-terminal, antiparallel helix, a periplasmic 

sensor domain and a second antiparallel helix [97]. Upon dimerization, the 

helices, also known as the transmembrane (TM) domain, form a four-helix 

bundle linking the extracellular sensor to the cytoplasmic kinase region. The 

TM helices are followed by an intracellular signal-transducing region, often 

incorporating HAMP, PAS, GAF and coiled coil domains [97]. Next is the 

dimerization and histidine phosphotransfer (DHp) domain, defined by two 

antiparallel helices connected through a hairpin loop. Upon dimerization, these 

helices form a conserved, homodimeric, four-helix bundle. The DHp domain 

contains the phosphorylatable histidine residue on the first helix, located within 

a region known as the H-box [97]. This area also forms a binding surface for 

downstream elements within the pathway. Finally, connected to the DHp 

domain by a flexible linker loop is the C-terminal catalytic and ATP-binding 

domain (CA). This region adopts a highly conserved α/β sandwich fold, 

formed by three α-helices and a five-stranded, mixed β-sheet. ATP binds 

between two helices within the N, G1, G2 and F box motifs and is locked in 

place through a flexible a loop known as the “ATP lid.”  The final helix within 

the CA domain, called the “Gripper” helix by Bhate, et al. (2015), interacts 
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with the DHp domain alongside the F box in response to nucleotide binding 

[97]. 

 

Figure 3. Ribbon representation of the dimeric histidine kinase, EnvZ. 
(A) Chimeric homodimer of EnvZ (PDB 4KP4) from Eschericia coli/Thermotoga maritima. 
Shown are the dimerization and histidine phosphotransfer domain (DHp) and the catalytic 
domain (CA). Color corresponds to monomeric subunits. (B) Phosphorylatable histidine 
(purple) and bound ATP molecule (orange) shown in stick model.  

 

Histidine kinase function 

Kinase activity begins with the detection of an extracellular stimulus 

within the sensor domain [99]. Sensory regions vary greatly in both sequence 

and structure, producing significant effects on pathway function and 

architecture. A basic detection event involves direct interaction between the 

sensor domain and a cognate ligand, such as a small molecule or an additional 

binding protein. A well-studied example of this is the nitrate reductase (Nar) 

TCS system found within E. coli [100, 101]. In this phosphorelay, both NarX 

and NarQ fill the role of sensor kinsases, binding nitrate and nitrite groups 

independently. Detection activates the response regulators NarL and NarP, 
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which then modulate gene expression. In other instances, the sensor responds 

to mechanical or electrochemical stress, such as turgor pressure or an ionic 

gradient. The PhoQ/PhoP TCS system, responsible for pathogenesis in many 

Gram-negative bacteria, contains a sensor kinase (PhoQ) that is activated based 

cationic concentration, such as Mg2+ levels [102]. 

Activation of the sensor domain is believed to be transmitted through 

the periplasmic helix connecting the sensor to the TM domain [97]. This passes 

the signal through the signal-transducing domain to the cytoplasmic catalytic 

core, initiating nucleotide binding and autophosphorylation. ATP is bound 

within the CA domain, inducing a dramatic conformational change that 

reorients the CA and DHp domain through changes in the hydrophobic 

“Gripper” helix [97]. Autophosphorylation involves the transfer of a γ-

phosphate from the nucleotide to the Nε-atom of the catalytic histidine, 

forming a high-energy phosphoramidate bond [26, 103]. While catalysis is 

influenced primarily through the CA domain, with numerous side chain 

interactions to the oxygen atoms of the γ-phosphate, the DHp domain also 

provides several conserved residues involved in the overall reaction [97, 104]. 

An acidic residue (Asp or Glu) located next to the catalytic histidine functions 

as a hydrogen bond acceptor, preparing the histidine for nucleophilic attack on 

the phosphate. A basic residue (Lys or Arg), located three positions from the 

histidine, is also believed to interact with or stabilize the acidic phosphate 

groups of the nucleotide [97, 104]. Fig. 3 shows the cytoplasmic structure of a 
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chimeric construct of the kinase EnvZ from Thermotoga maritima [104]. The 

dimeric nature of the HK produces a structure reminiscent of a butterfly [29]. 

The autophosphorylation reaction can occur in both a cis and trans manner, 

depending on the handedness of the hairpin loop found between the DHp 

helices [97, 104-106]. If the loop turns left, the CA domain of one monomer 

ends up nearer to its own catalytic histidine and favors a cis reaction (same 

subunit). If the loop turns right, the opposite is true, and the CA domain of one 

subunit ends up nearer the catalytic histidine of the other subunit and favors a 

trans reaction (different subunits). Activation of the HK ultimately results in 

autophosphorylation and the binding of a downstream rec domain, either on a 

separate RR protein or its own attached domain in the case of a hybrid HK. 

1.7 Histidine phosphotransfer proteins 

Histidine phosphotransfer protein structure 

Expanded TCS or multi-step His-to-Asp phosphorelay systems require 

the addition of intermediate phosphotransfer steps. This is accomplished 

through the histidine phosphotransfer (HPt) domain. HPt proteins are found in 

both prokaryotic and eukaryotic systems, though in prokaryotes they are 

frequently part of hybrid kinases, while eukaryotes typically utilize standalone 

domains [30, 84, 107, 108]. They are relatively small when compared to HKs, 

usually around 100-200 residues in length. Sequence conservation among HPts 

is quite low, though they do contain an invariant catalytic histidine residue 

surrounded by a short consensus motif that aids in phosphotransfer [109, 110]. 
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HPt domains exhibit neither kinase nor phosphatase activity, making them well 

suited for their intermediate role in the relay [108, 109]. All HPts characterized 

to date adopt a universal, four-helix bundle structure shown in Fig. 4. This 

conserved tertiary motif is unusually reminiscent of the four-helix bundle 

created by canonical HKs, though HPts typically function as monomers and 

share little sequence homology with their kinase counterparts. Fig. 4 shows the 

crystal structure of the S. cerevisiae HPt, Ypd1 [84, 111]. The core bundle is 

formed by four helices, αB-αC-αD-αG. Additionally, helix αA appears to 

stabilize the bundle by shielding hydrophobic residues on helices αB and αG 

and the conserved reverse turn connecting αC and αD. Helix αA is also 

important, as it has been shown to be involved in RR partner binding [112]. 
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Figure 4. Ribbon representation of HPt protein Ypd1 from S. cerevisiae. 
Crystal structure of the intermediate HPt protein, Ypd1, from the fungal Sln1 phosphorelay 
(PDB 1OXB:A). Shown is the conserved four-helix bundle fold adopted by all HPt domains. 
α-helices are labeled A-G. Phosphorylatable histidine is shown in stick model (green). 

 

Histidine phosphotransfer protein function 

In HPt domains, the invariant phosphorylatable histidine residue is 

located within the middle of the αC helix, and is almost completely exposed to 

solvent. The active sites of the few known HPt structures suggest that the 

surrounding residues are arranged to maintain the solvent accessibility of this 

histidine [112]. In Ypd1 (Fig. 4), a highly conserved glycine residue (Gly68) is 

located four positions downstream from the phosphorylatable His64 (H+4). 

This position is highly conserved in nearly every HPt protein. It has been 

hypothesized that this small residue may be necessary to allow access to the 

histidine side chain [113]. Recent findings also suggest that it may be required 
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for catalytic interaction with partner receiver domains (West lab, unpublished 

data). Additionally, the side chains of nearby Asn61 and Lys67 are pulled 

away from the imidazole ring of His64, maximizing accessibility and 

potentially stabilizing inter-helical structure through electrostatic interactions 

[112, 113]. The position occupied by HPts within phosphorelay systems 

indicates that they must be able to interact with multiple rec domain partners. 

High structural homology suggests that this occurs through a common 

interaction surface shared by all HPt domains [114, 115]. The structure of 

Ypd1 (Fig. 4) shows the phosphorylatable histidine residue (His64) in stick 

model located on the αC helix. This, along with helices αA, and αD, 

constitutes the conserved rec domain binding surface [116, 117]. Conserved 

side chains near the histidine are likely used to ensure proper orientation and 

accessibility of the imidazole ring for the donor/acceptor aspartate on a bound 

rec domain. A more in-depth analysis of Ypd1 can be found in Chapter 4. 

1.8 Response regulator proteins 

Response regulator structure 

Response regulators (RRs) are typically found at the terminal end of 

TCS systems. They are responsible for regulating the output of the pathway, 

often at the level of transcription, ultimately resulting in a cellular response to 

the initial stimulus (reviewed in [29, 30, 118]). Many RRs are multi-domain 

proteins, composed of rec domains fused to secondary functional regions 

known as effector domains. While effector domains vary greatly in structure, 
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all RRs share a conserved receiver (rec) domain that acts as the 

phosphorylation-mediated switch for the rest of the protein. Sequence 

homology between RRs is typically <30%, but nearly all rec domains adopt a 

conserved (βα)5 fold, consisting of a five-stranded parallel β-sheet flanked by 

five amphipathic α-helices [118]. The C-terminal ends of the β-strands form a 

phosphorylatable active site, and the loops arrange into a phosphotransfer-

competent binding surface. Fig. 5A shows this universal (βα)5 topology using 

the crystal structure of the well-characterized chemotaxis RR, CheY (PDB 

3CHY) [119]. 

 

 

Figure 5. Ribbon representation of the rec domain for CheY from E. coli. 
The single-domain chemotaxis RR, CheY bound with BeF3

- (stick model; yellow). Shown is 
the prototypical (βα)5 topology adopted by nearly every rec domain. Shown in stick model are 
the conserved active site residues surrounding a divalent metal cation (Mn2+; sphere; green). 
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Response regulator function 

RR function is heavily dependent on the effector domain(s). Because of 

this, classification is normally based on effector domain sequence homology. 

The vast majority of effector domains have DNA-binding activity and are 

involved in transcriptional regulation [120]. Other categories include RNA-

binding, protein binding and various enzymatic functions. Additionally, certain 

RRs lack an effector domain altogether and operate as stand-alone components 

within their signaling pathways, such as CheY from E. coli [121]. Because of 

this diversity, RRs are involved in an extremely wide range of cellular 

processes,  including chemotaxis [121], sporulation [75], biofilm formation 

[122], and membrane-protein synthesis [123].  

Rec domains fulfill two distinct chemical functions. Both involve a 

highly conserved phosphorylatable aspartate residue. In simple TCS systems, 

rec domains act as phosphoacceptors for the upstream phosphohistidine donor. 

In multi-step phosphorelays, rec domains can also function as phosphodonors 

to downstream histidine residues. Rec domain active sites feature a quintet of 

conserved, catalytic residues centered around interactions with a divalent metal 

cation  and the phosphoryl group (reviewed in [118]; see Fig. 5B). The cation 

likely helps neutralize the highly negative nature of the active site pocket and 

is essential for the addition and removal of phosphoryl groups. Three 

conserved acidic residues participate in the coordination of this metal: the 

phosphorylatable aspartate, an aspartate near the β1-strand, and a third acidic 
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residue nearby (indirectly through an ordered water molecule). Metals such as 

Mg2+, Mn2+, Cu2+ and Ca2+ have all been observed in rec domain active sites 

[124, 125]. On the other side of the active site is a conserved lysine residue on 

the β5-strand and conserved Thr/Ser and Ala residues on the β4-strand/loop, 

both of which directly interact with the phosphoryl group. The organization of 

this active site allows rec domains to catalyze their phosphorylation, as 

evidenced by their ability to autophosphorylate in vitro using various small-

molecule donors such as acetyl phosphate [126]. Autophosphorylation and/or 

phosphotransfer are initiated by the phosphorylatable aspartate, which 

performs an in-line, nucleophilic attack on the phosphorus atom and the donor 

bond (e.g., the phosphoramidate bond on phosphohistidine). This is thought to 

form a bipyramidal, pentavalent transition state, consisting of a planar PO3
2- 

and axial attacking and leaving groups [118, 127]. The metal cation along with 

the conserved lysine and Thr/Ser residues are hypothesized to help stabilize 

this transition state by neutralizing the negative charges on the oxygen atoms 

of the phosphoryl group [128]. Autodephosphorylation likely occurs in a 

similar manner, with a hydrolytic water molecule assuming the nucleophilic 

attacking role (see Fig. 1). While the exact nature of this mechanism is poorly 

understood and difficult to verify experimentally, phosphotransfer mechanisms 

in proteins are typically classified by the tightness of the transition state, often 

described by their level of associative character [104, 129, 130].  
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Phosphorylation is known to induce several key conformational 

changes in rec domains. In addition to ordering the active site around the metal 

cation and the phosphoryl oxygen atoms, two key residues undergo allosteric 

rearrangement in response to phosphorylation (reviewed in [131]). In the few 

known active rec domain structures, a conserved Thr/Ser on the β4-strand 

repositions to hydrogen bond with a phosphoryl oxygen. This coincides with a 

shift in the β4α4 loop region. This change also typically results in the 

rotamerization of a conserved aromatic residue (Phe/Tyr/His) on the β5-strand 

towards an inward orientation, though this does not always occur. These two 

positions are known as “switch residues” and are traditional indicators for the 

conformational state of rec domains [131]. Ultimately, phosphorylation results 

in allosteric changes that propagate throughout the entire rec domain, leading 

to a diverse range of outputs, such as changes in dimerization [132] and partner 

binding [133]. 

1.9 Computational techniques provide complementary data 

to experimental methods 

Protein structure and dynamics 

Many experimental approaches exist for characterizing macromolecular 

structures, such as nuclear magnetic resonance (NMR), X-ray crystallography, 

small-angle X-ray scattering (SAXS) and electron microscopy (EM). 

Crystallography is often considered the gold standard of structural biology due 

to the high-resolution details it provides about protein structure. However, in 
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addition to the many challenges involved in X-ray crystallography, one of its 

biggest disadvantages is the static nature of the structures it reveals. An 

individual crystal structure essentially represents a conformationally averaged 

snapshot of a macromolecule. This can be misleading, as proteins are 

intrinsically dynamic and undergo constant and enormous conformational flux 

[134-138]. Large portions of the conformational space of a protein are hidden 

from experimental methods due to the low probability of observing high-

energy conformers. Computational methods provide a link between protein 

structure and dynamics [139, 140]. With these methods, transient or high-

energy sub-states of proteins can be observed, as well as events such as 

conformational transitions, allostery, ligand binding and protein folding 

(reviewed in [135, 141, 142]). 

Molecular dynamics 

Molecular dynamics (MD) is the science of simulating and observing 

the time-dependent behavior of a system of particles [143]. An MD simulation 

requires a three-dimensional structure or model as a starting point. An 

empirical force field is used to define the total potential energy surface for the 

particles within the structure, as a sum of potentials derived from simple 

physical forces such as bond-stretching and van der Waals contributions [139]. 

Newton’s laws of motion can be used to determine the time-dependent 

evolution of the system [139]. Integration of Newton’s equation of motion 

yields a trajectory that describes atomic positions, velocities and acceleration 
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as a function of time. This information can be used to predict the state of the 

system at any moment. With the virtual explosion in computing power and 

availability in the last decade, computational techniques like MD have become 

commonplace for large systems such as proteins, which can often contain 

hundreds of thousands of atoms. However, limitations still exist on the 

timescales that are accessible to these methods. Classical MD simulations must 

typically be sampled on similar timescales as the events they are studying, 

though certain biasing methods can be used to reduce this. Conventional 

techniques for simulating large, all-atom protein models are still impractical on 

the high microsecond to low millisecond timescales for most research 

laboratories. Ultimately, computational approaches like MD provide a 

powerful bridge between protein structure and protein dynamics, but they 

should be used in tandem with more traditional experiments. Data may be used 

to guide future laboratory studies and should always be supported by 

experimental evidence. 
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1.10 Sln1 pathway of S. cerevisiae as a model system 

 

Figure 6. Diagram of the Sln1 phosphorelay from S. cerevisiae. 
Expanded fungal phosphorelay system. Under non-stress conditions, Sln1 is constitutively 
autophosphorylated. It then transfers phosphoryl groups to Ypd1, which in turn relays 
phosphoryl groups to Ssk1. Phospho-Ssk1 is inhibited from interacting with Ssk2. Under 
hyperosmotic stress, the phosphorelay is attenuated, and unphosphorylated Ssk1 accumulates, 
activating the Ssk2-Pbs2-Hog1 system and triggering intracellular glycerol production to 
restore osmotic balance. Under cell wall stress, Ypd1 phosphorylates the transcription factor 
Skn7 in the nucleus, which regulates the expression of related genes in response. 

 

S. cerevisiae has long been used as a model organism for studying two-

component signaling, due to its genetic tractability and use of only a single 

TCS system (reviewed in [86]). The Sln1 pathway is an extended, branching 

phosphorelay with two roles. One branch detects and responds to osmotic 

stress [87-89]; the other branch responds to changes in cell wall integrity and 

oxidative stress [91]. Fig. 6 shows a diagram of the pathway. Many pathogenic 
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fungi, such as Cryptococcus neoformans and Candida albicans, share 

homologous systems. Due to the absence of TCS systems in animals, these 

proteins have received much attention in recent years as potential therapeutic 

targets [144-147]. 

At the beginning of the pathway is a dimeric, trans-membrane hybrid 

HK known as Sln1 ([87], reviewed in [86]). Under normal environmental 

conditions, Sln1 constitutively binds ATP and autophosphorylates on a 

histidine residue. It then passes the phosphoryl to an aspartate on its attached 

rec domain [79]. The phosphoryl is then transferred to an intermediate HPt, 

Ypd1 [87]. In the absence of stress, Ypd1 passes the phosphoryl on to the 

downstream RR, Ssk1. While phosphorylated, Ssk1 is unable to activate the 

HOG pathway. Under hyperosmotic conditions, Sln1 autokinase activity is 

diminished, leading to an accumulation of unphosphorylated Ssk1, which then 

binds Ssk2 or Ssk22 [90, 148]. These MAP3Ks go on to activate the High 

Osmolarity Glycerol (HOG) response pathway, leading to increased 

intracellular glycerol production that restores osmotic balance [149, 150]. 

Upon cell wall perturbation, Ypd1 instead transfers the phosphoryl group to 

the nuclear RR/transcription factor, Skn7, altering expression of cell wall-

related genes [151]. 

The mechanism by which Ypd1 is able to differentiate between three 

individual rec domains within its pathway is poorly understood. Each rec 

domain within the Sln1 pathway shares high structural homology and a 
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common hydrophobic binding site on the surface of Ypd1, while having low 

sequence homology and diverse molecular functions.. These facts indicate that 

the mechanism likely relies upon molecular specificity, or unique residues used 

for the individual interactions within the pathway that are outside the 

conserved common binding surface. 

1.11 Research Focus 

The chemical labilities of phosphohistidine and phosphoaspartate make 

experimental studies of modified phospho-proteins challenging. Of the 

hundreds of thousands of rec domain sequences available [152], a mere 150 

non-redundant proteins have been structurally characterized with experimental 

methods [153]. Of these, only 20% have been obtained in a modified (i.e. 

phosphorylated) state, usually with the aid of phosphoryl analogs [153, 154]. 

This lack of structural information leaves our understanding of two-component 

signaling systems incomplete. In addition, the dynamic properties of the 

extremely diverse rec domain superfamily are almost completely unknown. By 

incorporating experimental data (structural, chemical, etc.) with MD, we can 

address these gaps in knowledge. This work is divided into three parts. 

Chapters 2 and 3 were written as manuscripts for peer review, though they 

have been formatted to better fit this dissertation. Chapter 4 is part of a 

collaborative effort with other members of the West laboratory. 

For the first study, a method for simulating the “activation” of 

phosphorylated, monomeric rec domains is described. Kinetic data suggests 
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that phosphotransfer and associated conformational changes within rec 

domains occur on millisecond timescales [155-157]. Studying these timescales 

is impractical for standard research laboratories using classical MD 

simulations. To address this, conserved active site restraints are used to help 

drive the structure towards an active conformation, drastically reducing the 

required simulation time [158]. The accuracy of this method was first validated 

on five well-characterized rec domains. It was then applied to the rec domains 

found within the Sln1 pathway of S. cerevisiae. With this computational 

methodology, we can predict highly accurate phosphorylated models that 

closely resemble active crystal structures of rec domains. These models reveal 

unique structural features and physicochemical properties of their diverse RR 

proteins. 

In the second study, the aforementioned computational approach is 

applied to heterodimeric signaling complexes within the fungal Sln1 pathway. 

This is done to explain differences in the interactions between the rec domains 

and Ypd1. In addition, the apo (unphosphorylated) proteins are simulated to 

detect transient structural features that may be hidden in their purely static 

crystal structures. 

The third study contains an experimental and computational 

characterization of the Ypd1 mutant, G68Q. This residue, Gly68, is almost 

completely conserved in HPt domains. The mutation was previously 

determined to disrupt phosphotransfer from Sln1 to Ypd1 and from Ypd1 to 
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Ssk1 by a significant amount [113]. Along with its close proximity to the site 

of phosphorylation (His64) on Ypd1, these results suggest that it plays a key 

role in protein-protein binding and/or the catalysis of phosphotransfer with 

Ypd1. In an effort to explain this observation, crystallographic studies were 

carried out to co-crystallize the complex between Ypd1 G68Q and the 

downstream rec domain of Ssk1. In silico mutagenesis studies were also 

performed on the existing complex structure between Ypd1 G68Q and the 

upstream rec domain of Sln1. 
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Chapter 2: Simulating phosphorylated rec domains 

2.1 Introduction 

Two-component signaling (TCS) systems allow bacteria to respond to 

external environments using the reversible phosphorylation of conserved 

histidine and aspartate residues [1, 2]. Environmental changes stimulate a 

histidine kinase (HK) to autophosphorylate on a histidine residue. The 

phosphoryl group is then passed to an aspartate on the receiver (rec) domain of 

a downstream response regulator (RR), which modulates a cellular response 

(Fig. 7A, top panel). Some organisms, like plants, fungi and certain bacteria, 

have developed an expanded system known as a multistep His-Asp 

phosphorelay. This uses a hybrid HK that autophosphorylates on a His residue 

and passes the phosphoryl group to an Asp on an attached rec domain. The 

phosphoryl group is then transferred to a histidine-containing phosphotransfer 

(HPt) protein (Fig. 7A, bottom panel) [2]. In plants and fungi, HPt proteins 

often occupy branch points in the signaling pathway and can transfer 

phosphoryl groups to multiple downstream RRs. The osmosensing Sln1 

pathway in Saccharomyces cerevisiae contains such a system. The HPt protein, 

Ypd1, acts as the relay point between the upstream hybrid sensor HK, Sln1, 

and the two downstream RRs, Ssk1 and Skn7 [3, 4]. To prevent cross-talk 

between multiple partners and pathways, protein-protein interactions within 

branched systems must be tightly regulated and/or highly specific [5-9]. 
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Figure 7. Domain arrangements for TCS systems; topology and induced 
conformational changes of RR rec domains.  
 (A) Canonical two-component signaling pathway (top) and expanded multistep phosphorelay 
(bottom). In a typical TCS pathway, the signal is sensed by a histidine kinase, which binds 
ATP in a catalytic domain (CA) and autophosphorylates a histidine residue within the 
dimerization histidine phosphotransfer domain (DHp). The phosphoryl group is transferred to 
an aspartate on the receiver domain (rec) of a downstream response regulator protein (RR). 
Activation of the rec domain elicits a cellular response. Expanded phosphorelay systems 
contain a hybrid HK, with its own receiver domain, and an intermediate known as a histidine-
containing phosphotransfer protein (HPt). (B) Crystal structure of the representative RR, CheY 
(PDB 3CHY), in its unphosphorylated or inactive state shows the common (βα)5 topology. (C) 
Major conformational shifts upon phosphorylation occur within the β4-α4-β5 regions (circled). 
Inactive CheY (PDB 3CHY) in light cyan. BeF3

- activated CheY (PDB 1FQW) in darker 
purple. Asp57-BeF3

- is labeled and shown in stick model. 

 

Nearly all rec domains adopt a common (βα)5 topology (Fig. 7B) [2], 

consisting of a five-stranded, parallel β-sheet surrounded by five amphipathic 

α-helices. Loops located at the C-terminal ends of β1, β3 and β5 form a 

docking surface for cognate HKs and HPt proteins. Fig. 7B shows a 
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representative structure of the chemotaxis RR, CheY [10]. Experimental 

structures show that rec domains use a highly conserved active site geometry 

that is essential for phosphotransfer. Rec domain active sites contain three 

conserved acidic residues (Asp or Glu) for coordinating a divalent metal 

cation, such as Mg2+. The Asp at the C-terminal end of β3 serves as the site of 

phosphorylation [2, 11, 12]. Two additional residues complete the active site: a 

highly conserved lysine and a moderately conserved residue (often Gln, Asn or 

Lys) located two positions downstream from the phosphorylatable aspartate 

(D+2 position) [2, 11, 12]. 

The favored model of rec domain switching posits the existence of a 

dynamic equilibrium between apo and phosphorylated states. [13-19]. 

Phosphorylation is known to induce allosteric and functional changes in rec 

domains [11, 20-24]. This is thought to cause a population shift by stabilizing 

the modified state, thereby redistributing the equilibrium [17]. This shift is not 

fully understood, and additional intermediate states have been observed [13, 

25-28]. The equilibrium shift model, also known as conformational selection, 

is in contrast to the more traditional idea of induced fit. In the induced fit 

scenario, phosphorylation is required to drive the conformational changes in 

the rec domain, which only occur when the ligand is bound (summarized in 

[29], specifically for rec domains in [13]). Despite more recent support for the 

conformational selection theory, controversy still surrounds the exact mode of 

rec domain switching. 
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Structural changes associated with phosphorylation are often subtle and 

difficult to identify. Structural alignments indicate average RMSDs between 

apo and phosphorylated conformations range from 1 to 3 Å, but deviations can 

be significantly greater (>7 Å) in functionally relevant areas. Experimental 

structures reveal several features common to most known modified rec domain 

structures [11, 23, 30-33]. Fig. 7C shows a rec domain alignment of CheY 

(PDB 3CHY [10] in its apo state; cyan) with CheY in its BeF3
- bound state 

(PDB 1FQW [11]; purple). In CheY and the majority of other rec domains, 

large shifts consistently occur within the β4-α4-β5 region. Two conserved 

residues, a Ser/Thr on β4 and a Phe/Tyr/His on β5, adopt characteristically 

altered orientations in the crystal structures. Upon phosphorylation, the Ser/Thr 

rotamerizes and/or shifts with the β4α4 loop to form a hydrogen bond with the 

phosphoryl group, typically at a distance of 2.5-2.8 Å. The aromatic side chain 

of Phe/Tyr/His initially points away from the phosphoryl group, exposed to 

solvent in the apo state. Upon phosphorylation, it rotamerizes inwards to bury 

its side chain in a hydrophobic pocket recently vacated by the Ser/Thr on β4. 

These two conserved amino acids are referred to as “switch residues” and are 

used as traditional indicators of conformational state for rec domains [28]. 

Some studies have also implicated the aromatic residue (Phe/Tyr/His) as a 

factor in rec domain dimerization, due to its location in the center of a common 

dimerization interface [34, 35]. In CheY, these switch residues are Thr87 and 

Tyr106. More recently, a quartet of coupled residues have been implicated in 
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directing allosteric changes in CheY [16]. The model speculates that Trp58 

(D+1) rotamerizes and shifts upwards, simultaneously increasing contact with 

Glu89 and decreasing contact with Met85. These changes are thought to be 

related to the rotamerization of Tyr106 and shifts in the β4α4 region. While 

these residues are only partially conserved, the relative phosphorylation-

induced changes are visible in many experimental structures [30, 32, 33, 36, 

37]. 

Even with highly conserved tertiary structure, genetic diversity between 

rec domains has led to divergent functional properties, making studies of 

individual rec domains necessary [11, 20, 21, 23, 24, 38-41]. Depending on 

their biological role, autodephosphorylation rates of rec domains can span 

several orders of magnitude, suggesting other structural elements may be 

affecting the stability of the phosphoaspartate [12, 42-44]. Many rec domains 

also oligomerize upon phosphorylation, usually through the α4-β5-α5 face [30, 

34, 45-47]. Non-canonical interfaces utilizing the α1α5 helices have been 

observed as well [46, 48, 49]. Structural rearrangements associated with 

phosphorylation can cause changes in surface shape and physicochemical 

properties, affecting interactions with binding partners [47, 50-56]. While rec 

structures in their apo states provide basic structural information, they do not 

reveal the important allosteric changes that occur upon phosphorylation. 

Of the >300,000 rec domain sequences found in the NCBI database, 

approximately 150 (non-redundant) have structures available in the RCSB 
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Protein Data Bank (PDB; http://www.rcsb.org) [57-59]. The majority of these 

structures are unphosphorylated, due to the difficulty of capturing the 

chemically labile phosphoaspartate species [60-64]. Most “phosphorylated” 

structures were obtained using phosphoryl analogs, like BeF3
- [11, 23, 30-33]. 

This approach has met with limited success; fewer than 30 rec domains have 

been characterized in a conformationally modified state [57, 58]. Molecular 

dynamics (MD) can be used to circumvent the difficulties of characterizing 

these transient conformations. However, kinetic studies reveal that rec domain 

phosphoryation and conformational changes occur on high microsecond to low 

millisecond timescales [20, 21, 65]. Simulating these timescales at atomic 

resolution would be prohibitively expensive and impractical for most research 

laboratories. To make these studies more accessible, biasing terms can reduce 

the amount of sampling required [66-68]. The most conserved rec domain 

feature is the active site geometry required for phosphotransfer [11, 12, 33]. 

Restraints can be used to drive the formation of this active site configuration 

for any rec domain. This shifts the protein towards a phosphorylated state, 

leading to allosteric rearrangements throughout the structure. Though these 

phosphorylated conformations are theoretically observable without restraints, 

they would require millisecond-timescale simulations to reliably sample. The 

active site restraints drastically reduce the conformational search space and 

allow us to sample phosphorylated conformations in a fraction of the time [69]. 

http://www.rcsb.org/
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With this approach, laboratories that lack the capability of millisecond 

timescale simulations are able to effectively simulate these events.  

We have developed a methodology for accessing the phosphorylated 

conformation of a rec domain protein in a direct and expedient path using 

active site restraints. To validate this approach, we performed biased, all-atom 

simulations on five diverse rec domains with known modified structures. This 

produced models for the rec domains that are nearly identical to the 

experimental data, both in global conformation and in key local features. The 

success of this methodology suggests that while rec domains may utilize some 

form of conformational selection to achieve allosteric switching, the 

application of an induced fit model is sufficient to achieve an equivalent effect. 

Additionally, data on conformational dynamics obtained from each simulation 

were used to identify areas of major functional significance associated with 

phosphorylation. Finally, we applied the approach to two rec domains found 

within the osmoregulatory Sln1 pathway of S. cerevisiae, the upstream Sln1-

rec and the downstream Ssk1-rec, to compare their structural and functional 

changes upon activation. The principle of using active site restraints to reduce 

conformational search space can be applied to other protein families 

individually, such as kinases and HPt proteins. In addition, this method can be 

expanded to study the effects of phosphorylation on rec domain interactions 

with related protein families. 
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2.2 Materials and Methods 

Modeling and preparation 

Initial structures. Crystal structures of single domain RRs (CheY and 

Spo0F), rec domains from multi-domain RRs (PhoP-rec and FixJ-rec), and the 

rec domain of a hybrid HK (Sln1-rec) were obtained from the PDB [57]. 

Modified rec structures contained both a metal cation and the modified 

aspartate residue, either with BeF3
- or PO3

2-. For a full list of the proteins used, 

see Table 2. 

 

Table 2. Protein crystal structures used during simulations. 

Protein (Organism) Inactive 
(PDB) 

Active 
(PDB) 

PO3
2- analog Ref. 

CheY (E. coli) 3CHY:A 1FQW:A BeF3
- [10, 11] 

PhoP-rec (E. coli) 2PKX:A 2PL1:A BeF3
- [30] 

Sln1-rec (S. cerevisiae) 1OXB:B 2R25:B BeF3
- [4, 33] 

FixJ-rec (S. meliloti) 1DCK:A 1D5W:A PO3
2- [23, 37] 

Spo0F (B. subtilis) 1NAT:A 2FTK:G BeF3
- [32, 70] 

 

Ssk1-rec structure prediction. The Protein Homology/analogY 

Recognition Engine v.2.0 (Phyre2) was used to generate a homology model of 

apo Ssk1-rec from S. cerevisiae [71]. The Ssk1-rec domain sequence (residues 

505-580:603-651) was used as input for intensive modeling mode. Non-

conserved α3β4 loop residues (581-602) were excluded due to poor modeling 

quality and their location on the surface opposite the active site. The initial 
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model was refined using approximately 5 ns of all-atom MD simulation. The 

resulting equilbrated structure was extracted and examined using Verify3D and 

RAMPAGE to assess model quality [72, 73]. The Ssk1-rec model was then 

prepared and simulated as described in subsequent sections to sample its 

phosphorylated state. 

System preparation. Starting models were prepared from the apo 

crystal structures. Phosphoaspartate was modeled into the active sites with 

Coot [74]. A Mg2+ atom was also added based on available experimental 

coordinates. If no cation was present in the experimental structure, coordinates 

were copied from a homologous structure containing metal. While other metal 

types have been found in rec domain active sites, Mg2+ is sufficient for 

function of nearly all rec domains [75-77]. The initial positioning of the metal 

cation is not criticial in the context of the simulations. Each protein will 

ultimately adopt its phosphorylated conformation around the cation as long as 

it is present in the general vicinity of the active site. Initial structures were 

stripped of all other crystallographic waters, ligands and additional subunits 

prior to simulation. 

Dowser was used to fill internal water cavities with a default probe 

radius of 0.2 Å [78, 79]. The SOLVATE program was then used to create a 

contoured solvent shell around each model with a shell thickness of 6.0 Å [67]. 

Systems were loaded into VMD and processed using the AutoPSF plug-in 

[80]. Finally, structures were immersed in a full orthorhombic water box with 
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15.0 Å padding on each side using a TIP3P water model with the VMD solvate 

plug-in [80]. Systems were neutralized and K+/Cl- ions were added to a final 

concentration of 100 mM using the VMD Autoionize plug-in [80]. 

Table 3. Partial charges assigned for phosphoaspartate. 

Custom residue type - AST 

Atom name Atom type Partial charge 
CB CT2 -0.18 

HB1 HA 0.09 

HB2 HA 0.09 

CG CD 0.51 

OD1 OB -0.51 

P P 1.10 

OD2 ON2 -0.40 

H2 HN4 none 

OP1 ON3 -0.90 

OP2 ON4 -0.90 

OP3 ON3 -0.90 
 

Phosphoaspartate. Parameters for dianionic phosphoaspartate (AST) 

were defined for the CHARMM36 force field based on Damjanović et al. 

(2009) [81-83]. A tetrahedral phosphoryl group exists predominantly in the 

dianionic form at physiological pH (7.4) [63]. All simulations were run using 

the dianionic group instead of the monoanionic form. As described in [83], 

charges for the phosphoryl group along with various bond and angle terms 

were taken from dianionic methylphosphate. Additional dihedral angle terms 

were taken from phenol phosphate. The torsion angle (X-CD-ON2-X) and 
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partial charges (CG and OD1 atoms) were obtained from previous 

parameterization studies [83]. See Table 3 for partial charges. Formatted 

entries for the CHARMM32 force field topology and parameter files are 

included below. 

 

AST residue entry from CHARMM force field topology file. 
 
RESI AST -2.00 
GROUP  
ATOM  N NH1 -0.47  !  |   
ATOM  HN  H   0.31  !   HN-N   
ATOM  CA  CT1  0.07  ! |   HB1       OD1 
ATOM  HA  HB1  0.09  !    |      |          // 
GROUP                       !       HA-CA--CB--CG 
ATOM  CB  CT2  -0.18  ! |      |           \ 
ATOM  HB1  HA2  0.09  ! |   HB2       OD2 
ATOM  HB2   HA2  0.09  !     O=C                    |  
ATOM  CG  CD   0.51  ! |             O1P-P-O3P  
ATOM  OD1  OB  -0.51  !            | 
ATOM  OD2  ON2  -0.40  !        O2P 
ATOM  P  P   1.10  !      
ATOM  O1P  ON3  -0.90  ! 
ATOM  O2P  ON3  -0.90  ! 
ATOM  O3P  ON3  -0.90  ! 
GROUP   
ATOM  C  C   0.51 
ATOM  O  O  -0.51 
BOND  CB  CA  CG  CB  OD2  CG  
BOND  N  HN  N  CA C CA C  +N  
BOND  CA  HA  CB  HB1  CB  HB2 
BOND  P  OD2  O1P  P  O3P  P  OT  P 
DOUBLE  O  C  CG  OD1 
IMPR  N  -C  CA  HN  C  CA  +N  O  
IMPR  CG  CB OD2  OD1 
CMAP  -C  N  CA  C  N  CA  C  +N 
DONOR  HN  N  
ACCEPTOR  OD1  CG  
ACCEPTOR  OD2  CG  
ACCEPTOR  O  C  
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IC  -C  CA  *N  HN  1.3465 125.3100 180.0000 112.9400 
0.9966 
IC  -C  N  CA  C   1.3465 125.3100 180.0000 105.6300 
1.5315 
IC  N  CA  C  +N  1.4490 105.6300 180.0000 117.0600 
1.3478 
IC  +N  CA  *C  O   1.3478 117.0600 180.0000 120.7100 
1.2330 
IC  CA  C  +N  +CA  1.5315 117.0600 180.0000 125.3900 
1.4484 
IC  N   C  *CA  CB  1.4490 105.6300 122.3300 114.1000 
1.5619 
IC  N  C  *CA  HA  1.4490 105.6300 -116.4000 106.7700 
1.0841 
IC  N  CA  CB  CG  1.4490 111.1000 180.0000 112.6000 
1.5218 
IC  CG  CA  *CB  HB1  1.5218 112.6000 119.2200 109.2300 
1.1086 
IC  CG  CA  *CB  HB2  1.5218 112.6000 -121.6100 110.6400 
1.1080 
IC  CA  CB  CG  OD1  1.5619 112.6000 180.0000 117.9900 
1.2565 
IC  OD1  CB  *CG  OD2  1.2565 117.9900 -17 

 

AST residue entry from CHARMM force field parameter file. 
! Bond for phosphoaspartate 
ON2 CD  230.00  1.4000 
! Angles for phosphoaspartate 
CD ON2 P 20.0  120.0  35  2.33 
ON2 CD CT2 55.000  110.5000 
ON2 CD CT3 55.000  110.5000 
ON2 CD OB 50.000  123.00  210.00  2.26200 
! Dihedrals for phosphoaspartate 
X CD ON2 X 10.0  1 180.0 
X CD ON2 X 2.25  2 180.00 
X  CD ON2 X 1.36  3 180.00 
CD  ON2 P  ON3 0.1  3 0.00 
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Molecular dynamics 

Simulations. Simulations were prepared and run using VMD and 

NAMD 2.9 [80, 84] with the CHARMM36 protein force field [81, 82]. A 12.0 

Å cutoff was used for van der Waals interactions with a switching function 

distance of 10.0 Å. Long-range electrostatics were evaluated using the PME 

(Particle Mesh Ewald) method with a tolerance, interpolation order and grid 

spacing of 10e-6, 4.0 and 1.0 Å, respectively. A two fs integration step was 

used for all simulations. The SHAKE algorithm was applied to constrain 

covalent bonds involving hydrogen atoms throughout. Initial energy 

minimization was performed on non-backbone atoms for 100 ps of NVT MD. 

An all-atom minimization step was then done for an additional 100 ps of NVT 

MD with harmonic constraints of 0.5 kcal/mol applied to all Cα atoms. 

Following this, systems were heated to 310 K by increments of 1 K/ps over 

approximately 310 ps of NVT MD. Equilibration was then performed with Cα 

atoms restrained for 500 ps of NPT MD. A final, unrestrained equilibration 

step of 4 ns NPT MD was run to prepare systems for production. Proteins were 

equilibrated and then simulated in multiple 10 ns production runs to collect 

100 ns of effective production data for each rec domain. Trajectories were 

combined for analysis. Parallel runs were performed to increase 

conformational sampling. 

Simulation restraints. Biasing terms are frequently used to steer 

systems towards desired states for study. Parameters that regulate this are 
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known as collective variables (colvars) [69]. A colvar ξ is defined as a 

differentiable function of the vector of 3N atomic Cartesian coordinates, X: 

𝜉(𝑋) = 𝜉(𝑥1,𝑥2, … 𝑥𝑁) 

 ξ(X) is generally a function with many fewer arguments than 3N, or is a 

combination of these functions: 

𝜉(𝑋) = 𝜉�𝑧(1)(𝑋), 𝑧(2)(𝑋), … 𝑧(𝛼)(𝑋) … �  

with the Cartesian gradient: 

𝛻𝑥𝜉(𝑋) = �𝛻𝑥1𝜉(𝑋),𝛻𝑥2𝜉(𝑋), … � 

where the number of functions z(α) is much smaller than the number of atoms. 

The term z(α)(X) describes a component and is a function of several atomic 

coordinates. A colvar is defined by a combination of one or more components. 

In the simplest scenario, the colvar ξ identifies a single component z, and often 

relates to properties such as atomic distances or dihedral angles. 

Table 4. Colvars applied to drive active site formation in CheY. 

Type Group1 atoms Group2 atoms Boundaries 
Distance Asp57 OD1 Mg2+ 1.9-2.2 Å 

CoordNum Asp57 PO3
2- Mg2+ 1 group 

Distance Mg2+ COM 0.0-0.1 Å 

Distance Ala88 N Asp57 OP2 2.0-3.3 Å 

CoordNum Asp13 R Mg2+ 1 group 

Distance Asp57 OP1 Mg2+ 0.0-2.2 Å 

Distance Asp13 OD1 Mg2+ 0.0-2.2 Å 

Distance Gln59 O Mg2+ 0.0-2.2 Å 
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 Using the colvar module in NAMD, we applied half-harmonic potential 

restraints to each rec domain to drive the formation of the appropriate active 

site geometry [84]. Restraints were added during equilibration and maintained 

for the full 100 ns production runs. For a full list of the restraints used in the 

CheY representative experiments, see Table 4. While this list was used on 

every system, minor changes were made if a given protein could not adopt a 

fully correct active site, often due to initial non-physiological conformations. A 

sample colvars list is provided below for the CheY simulations. It can be 

adapted for any target rec domain by changing the atomNumbers. 

 

Sample NAMD colvars (.in) file for CheY. 
 

colvarsTrajFrequency  5000 
colvarsRestartFrequency  5000 
 
colvar { 
name asp57od1_to_mg  # distance of carbonyl to mg 
width 0.1 
lowerboundary 1.9 
upperboundary 2.2 
lowerWallConstant 100.0 
upperWallConstant 100.0 
 
distance { 
group1 { atomNumbers 1986 } 
group2 { atomNumbers 875 } 
} 
} 
 
colvar { 
name asp57phos_coord_to_mg # coordination of phosphoryl to mg 
 
lowerboundary 0.0 
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upperboundary 1.0 
lowerWallConstant 100.0 
upperWallConstant 100.0 
 
coordNum { 
group1 { atomNumbers 878 879 880 } 
group2 { atomNumbers 1986} 
cutoff 3.3 
} 
} 
 
colvar { 
name mgcom   # anchor mg to its own starting coordinates 
width 0.001 
 
lowerboundary 0.0 
upperboundary 0.1 
lowerWallConstant 100.0 
upperWallConstant 100.0 
 
distance { 
group1 { atomNumbers 1986 } 
group2 { dummyAtom (0.069, 44.943, 123.420) } 
} 
} 
 
colvar { 
name ala88n_to_asp57ot  # distance of alanine to phosphoryl to 
overcome initial clashes 
width 0.001 
 
lowerboundary 2.0 
upperboundary 3.3 
lowerWallConstant 100.0 
upperWallConstant 100.0 
 
distance { 
group1 { atomNumbers 1345 } 
group2 { atomNumbers 879 } 
} 
} 
 
colvar { 
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name asp13_coord_to_mg  # coordination of active site aspartate to 
mg to allow water 
 
lowerboundary 0.0 
upperboundary 1.0 
lowerWallConstant 100.0 
upperWallConstant 100.0 
 
coordNum { 
group1 { atomNumbers 193 194 195 } 
group2 { atomNumbers 1986} 
cutoff 3.3 
} 
} 
 
colvar { 
name asp57o1p_to_mg  # distance of phosphoryl to mg 
width 0.05 
 
lowerboundary 2.2 
upperboundary 2.3 
lowerWallConstant 100.0 
upperWallConstant 100.0 
 
distance { 
group1 { atomNumbers 1986 } 
group2 { atomNumbers 878 } 
} 
} 
 
colvar { 
name asp13od1_to_mg  # distance of active site aspartate to mg 
 
lowerboundary 0.0 
upperboundary 2.2 
lowerWallConstant 100.0 
upperWallConstant 100.0 
 
distance { 
group1 { atomNumbers 194 } 
group2 { atomNumbers 1986 } 
} 
} 
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colvar { 
name gln59co_to_mg  # distance of main chain carbonyl on D+2 to mg 
 
lowerboundary 0.0 
upperboundary 2.2 
lowerWallConstant 100.0 
upperWallConstant 100.0 
 
distance { 
group1 { atomNumbers 920 } 
group2 { atomNumbers 1986 } 
} 
} 

 

Data analysis 

Trajectory analysis. Trajectories were analyzed using VMD and the 

Bio3D package in R [80, 85, 86]. Production runs were stripped of all non-

protein atoms using VMD. Partial trajectories were then aligned by Cα atoms 

using the RMSDTT plug-in [80] and combined to form single trajectories for 

analysis. 

Each simulation produced >20,000 conformations (snapshots) of its 

protein. Analysis of such high-dimensionality data is challenging. We 

performed principal component analysis (PCA) on the full  combined 

trajectories to reduce the complexity of the data and analyze only the dominant 

conformations. PCA is a multivariate technique to simplify and visualize 

patterns within structural ensembles, including inter-conformer relationships 

[85, 87]. Typically it is performed using a reduced set of atoms, such as an Cα 

representation. The first step, after trajectory alignment, is construction of a 
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covariance matrix, C, for each trajectory. The elements, Cij, of the 3N 

dimensional matrix are defined as: 

𝐶𝑖𝑗 = ⟨(𝑥𝑖 − ⟨𝑥𝑖⟩)(𝑥𝑗 − ⟨𝑥𝑗⟩)⟩ 

where xi and xj are Cα coordinates, i and j represent all possible pairs of 3N 

Cartesian coordinates (N = number of atoms being considered) and the 

brackets denote an ensemble. The covariance matrix is then diagonalized, with 

the columns of the transformation matrix becoming eigenvectors with 

corresponding eigenvalues. Each eigenvector represents a correlated 

displacement of groups of atoms through space, with the eigenvalues 

describing the variance of distribution along the corresponding eigenvector. 

Projection of the conformational distribution onto the subspace defined by the 

first few principal components (PCs; by eigenvalues) creates a lower-

dimensional representation of the data, making analysis easier and faster [85, 

87]. We then used a k-medoids approach to cluster the distribution in PC-

space, grouping conformers based on structural similarity [88, 89]. The 

CLARA (Clustering for Large Applications) algorithm was used to handle the 

large data sets [89, 90]. 

 We performed dynamical cross-correlation (DCC) analysis on the full 

100 ns combined trajectories to detect collective motions between Cα atoms 

during each simulation. Trajectories were first superimposed against the initial 

frame. A cross-correlation coefficient, Cij, was calculated for the Cα atoms 

with the expression:  
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𝐶𝑖𝑗 =
�∆𝑟𝑖 ∙ ∆𝑟𝑗�

���∆𝑟𝑖2��∆𝑟𝑗2��
 

where Δri and Δrj are the displacements from the mean position of the ith and 

jth atoms with respect to time [91]. Cij values were either positive, 

representing in-phase or positively correlated motion, or negative, representing 

out-of-phase or negatively correlated motion. These were collected in matrix 

form and mapped for analysis. 

Structural analysis. Structural alignments and analyses were 

performed using UCSF Chimera [92]. Superpositioning was done using the 

internal β-sheet, as it showed minimal deviation upon activation in rec domain 

crystal structures. Per residue RMSDs were exported for graphing and 

comparison in R [86]. Electrostatic surface potential was calculated with 

Adaptive Poisson-Boltzmann Solver (APBS) package in 0.1 M KCl [93]. 

Surface cavities were calculated using the 3D-Surfer server with the Visgrid 

algorithm [94-96]. 

Software. MD simulations were performed with NAMD [84] on 

resources provided by the OU Supercomputing Center for Education and 

Research (OSCER) at the University of Oklahoma. System preparation, 

visualization and initial trajectory analyses were performed in VMD [80]. 

Models and figures were made in Coot and PyMOL [74, 97]. Structural 

analyses were performed in UCSF Chimera [92]. Trajectory analyses and plots 

were done with R using the Bio3D, fpc and cluster packages [85, 89, 98]. 
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2.3 Results and Discussion 

Restraints drive phosphorylation-induced conformational changes 

Crystal structures of five apo rec domains were obtained from the PDB 

(see Table 2) for simulations. Phosphorylatable aspartate residues were 

replaced in the apo models with a custom dianionic phosphoaspartate (AST). A 

Mg2+ cation was modeled into the center of the active sites to act as a pivot 

point for each protein. Two options exist and were tested for the positioning of 

this cation in the apo model(s). The first was to use the same coordinates as the 

cation found in the modified (BeF3
- bound) experimental structure for a given 

rec domain. The second was to align the apo model(s) to a known modified 

structure of a homologous rec domain containing a bound cation. The metal’s 

coordinates were copied from the homologous structure and inserted into the 

unphosphorylated system(s). Results from the validation set showed that both 

approaches are effective, demonstrating how a rec domain with no known 

modified or metal-bound structure can be simulated by manually modeling the 

bound cation. Half-harmonic potential restraints were applied centered on this 

metal cation (see Table 4). Any restraints during a simulation can affect the 

dynamics of the system. Caution should be used when speculating on any 

mechanism of conformational transition. Nevertheless, we know that the active 

site is almost always arranged in the previously described geometry, as it is 

necessary for the chemistry of phosphotransfer. Sampling phosphorylated rec 

domain conformations without the active site restraints is possible, but would 
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require far longer (millisecond) timescales that are prohibitively expensive and 

impractical for standard research laboratories. We repeatedly failed to observe 

complete transitions from apo to phosphorylated states for the rec domains in 

the validation set without the correct combination of restraints. This suggests 

that on this timescale, we cannot reliably or adequately sample phosphorylated 

conformations without the biasing terms. 

Biased MD simulations were performed in explicit solvent for each 

system. Structural comparisons of phosphorylated and apo rec domain crystal 

structures suggest that the shift towards a phosphorylated conformation is 

subtle when the entire domain is included (average RMSDs of 1-3 Å) [11, 33]. 

Cα deviations observed during the production simulations corroborated this, 

with most systems stabilizing within 5 ns and maintaining RMSDs of 1-2 Å 

throughout the runs (data not shown). This indicates that the simulated 

phosphorylation of these rec domains occurs on a similar magnitude as the 

experimental structures. The subtlety of these perturbations makes overall 

structural comparisons difficult for both experimental data and predicted 

models. In contrast, major changes are almost always seen along the β4-α4-β5 

region, with some deviations occurring on magnitudes of >7 Å in known 

structures [30, 32, 33, 36, 37]. To explore if these changes were due to 

increased flexibility within this region, or more concerted intramolecular 

movements, we calculated the per residue RMSF for each protein during the 

production simulations. Fig. 8 shows the plots for the rec domains in the 
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validation set. As expected, the loop regions generally possessed the highest 

levels of flexibility. The β4-α4-β5 region demonstrated no outstanding 

flexibility relative to the rest of the protein in the majority of the rec domains, 

suggesting that it is most likely involved in more concerted or specific changes 

associated with phosphorylation. FixJ-rec is a possible exception. Comparison 

of existing crystal structures reveals that the β4-α4-β5 region of FixJ-rec 

undergoes the most dramatic shift within the validation set. The high RMSF in 

this region suggests that the protein’s intrinsic flexibility may contribute 

significantly to this deviation, in addition to the allosteric changes induced by 

phosphorylation. 
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Figure 8. Residue mobilities during simulation for the five phosphorylated 
rec domains. 
Comparison of average root mean square fluctuations (RMSFs) for combined MD trajectories 
shows regions of relative flexibility in each protein. β-strands (magenta); α-helices (cyan). 
 

Analysis of collective motions reveals areas of functional relevance 

Protein dynamics are intimately involved in enzyme activity and 

catalysis. Previous work has speculated that areas undergoing collective 

motions within proteins are likely distinct subdomains of functionally related 
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residues [91, 99-105]. To identify these regions, with the notion that they may 

prove relevant to the phosphorylated state and protein function, we generated 

dynamical cross-correlation maps (DCCM) for all five rec domains [85]. 

Cross-correlation plots show how various regions of a protein communicate by 

quantifying their relative motions. Motion can be positively correlated, 

meaning in the same direction, or negatively correlated (anticorrelated), 

meaning in the opposite direction. Fig. 9 shows maps of correlated and 

anticorrelated motion within each protein calculated using the combined 

trajectories. These represent motions with the active site restraints already 

enforcing the conserved catalytic geometry. Correlation was normalized and 

scaled between -1.0 and 1.0. Collective motions between -0.25 and 0.25 were 

not considered significant (Fig. 9 white) [101, 106]. For CheY, the middle and 

upper right areas show positively correlated motions between residues 80-89 

and 101-110 (Fig. 9, yellow/green). These correspond to the α3-β4-α4 and α4-

β5-α5 regions, suggesting correlated motions between the β4α4 and β5α5 loops 

and throughout the β4 and β5 strands themselves. In previous studies on 

activated rec domains, most dramatic shifts were typically observed in these 

areas, particularly in the loops adjacent to the active site [11, 23, 30-33]. 

Residues 50-61 and 79-87 (α2-β3-α3 and α3-β4-α4 regions) also displayed 

positively correlated motions, again suggesting concerted loop movements and 

β-strand interactions. In the lower left, residues 4-14 and 31-38 (β1α1 and α1-

β2-α2 regions) and residues 4-14 and 50-61 (β1α1 and α2-β3-α3 regions) also 
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showed similar positively correlated motions throughout every simulation. The 

areas of positive correlation suggest high overall stability of the central β-sheet 

(as expected) and its interactions with loops, but relatively little correlated 

motion between it and the flanking helices. Strong negatively correlated 

motion was found within the CheY molecule between the C-terminal portion 

of the α5 helix and the β5 strand and between regions of the α5 helix and most 

of the α4 helix. This indicates significant concerted movement within the α4-

β5-α5 face of CheY. Other studies have shown that many rec domains 

dimerize through this surface [30, 34, 45-47]. While CheY does not form a 

homodimer, it does binds the downstream flagellar motor switch protein, FliM, 

through this surface [36]. Phosphorylation of CheY is known to increase its 

binding affinity for FliM 20-fold [107]. The trajectory data revealed significant 

reorientation of key residues (Ala90, Ile95, Tyr106, Lys119, Lys122; relative 

to the apo conformation) involved in, or potentially blocking, interaction with 

FliM [36]. Each of the five proteins produced remarkably similar patterns of 

positively correlated motions involving loop regions and the central β-strands. 

Due to the high similarity between profiles, this pattern of positively correlated 

motion can provide a check for the proper simulation of rec domains. Perhaps 

more important are the unique patterns of negatively correlated motion 

produced by each protein (Fig. 9, blue/black). These variations offer valuable 

insights related to differences in rec domain function and effects after allosteric 

modification. The results suggest that putative regions of functional 
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significance tied to phosphorylation-induced changes can be identified based 

on (anti)correlated motions. This provides potential targets for further 

experimental studies. However, it must be noted that DCCM alone cannot 

provide conclusive information on conformational transitions. Further study 

would be valuable for characterizing the extent of these changes, using 

complementary approaches such as normal mode analysis. The following 

sections briefly summarize the DCCM results for the four remaining rec 

domains in the validation set. 
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Figure 9. Dynamical cross-correlation maps (DCCM) reveal collective 
motions within the phosphorylated rec domains. 
Positive correlation (yellow/green) suggests movement in phase, or in the same direction. 
Negative correlation (blue/black) suggests movement out of phase, or in along the opposite 
direction. β-strands (magenta); α-helices (cyan). 

 

Major regions of FixJ-rec that exhibited significant negatively 

correlated motions were the α4-β5-α5 surface, including a large shift in the α4 

helix, and the loop regions accessible on the active site surface. 

Phosphorylation-dependent FixJ dimerization and further downstream 
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signaling is believed to occur through the α4-β5-α5 interface (similar to CheY-

FliM binding) [23, 53]. Key residues implicated in homodimerization that 

adopted altered orientations during simulation and were involved in negatively 

correlated motions include His84, Val87, Val91, Lys95 and the switch residue 

Phe101 [23]. Additionally, correlated perturbations seen in the α1α5 region are 

likely involved in the binding of the upstream partner, FixL. This is supported 

by the work of Saito, et al. (2003), which suggests that mutations at this 

surface (particularly on the α1 helix) interfere with phosphotransfer from FixL 

to FixJ [108]. As FixL also exhibits phosphatase activity, this likely affects the 

stability of phosphorylated FixJ-rec.  

Regions of negatively correlated motion seen in PhoP-rec correspond to 

the α2α3 and α1α5 regions, similar to other rec domains. Also present is the 

characteristic movement of the α4-β5-α5 face, though to a much smaller 

degree than the other rec domains. PhoP dimerizes, even in an 

unphosphorylated form, through an asymmetric interface, but phosphorylation 

is required for downstream function (DNA binding) [30, 109]. Phosphorylation 

causes a shift in the α4 helix, potentially stabilizing the dimerization interface. 

Cross-correlation analysis also revealed significant correlated movements in 

the loop regions near the active site surface of PhoP-rec. All known rec 

domains must bind their upstream donors through this active site to facilitate 

phosphotransfer, suggesting that the correlated loop motions may be involved 

in interactions with the upstream partner, PhoQ. 
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Spo0F regions that demonstrated significant negatively correlated 

motion correspond to a characteristic rearrangement of the α4-β5-α5 face, 

along with more subtle motions at the α1α5 surface and the loops near the 

active site. The α4-β5-α5 surface of Spo0F is not involved in dimerization and 

does not directly bind its partner, Spo0B [32]. The exact purpose of this area is 

unknown, and these results suggest a target for additional studies. Collective 

motion observed between the α1 helix and the α4α5 region is most likely 

involved in protein-protein interactions with Spo0B, as phosphorylation is 

speculated to increase the binding affinity between the two proteins. The co-

crystal structure of the Spo0F•Spo0B complex confirms this, showing direct 

intermolecular contacts located within this region [32]. In addition, previous 

studies indicated that mutations in α1 helix and the β4α4 region caused defects 

in binding with KinA [110]. 

Major regions in Sln1-rec that exhibited significant negatively 

correlated motion correspond to movements between active site loop regions 

and between the α2α3, α1α5 and α4-β5-α5 surfaces. Sln1 is a fungal hybrid 

histidine kinase believed to dimerize through its DHp  domain [111]. The rec 

domain alone is believed to function as a monomer, though no full-length 

structure of the Sln1 hybrik HK exists. Cross-correlation analysis suggests that 

the α4-β5-α5 surface, and possibly the α1α5 and α2α3 helices, may have 

significant roles in the signaling pathway.These movements may involve 

interactions with the downstream partner HPt, Ypd1, or with its own hybrid 
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HK domain. Examination of the existing crystal structures suggest that the 

α2α3 and α1α5 helix regions are directly involved in binding Ypd1, though the 

purpose of the α4-β5-α5 region remains unknown [4, 33]. A more detailed 

analysis and comparison with another fungal rec domain, Ssk1-rec, is 

discussed in later sections. 

Trajectory analysis and extraction of representative rec domain structures 

Due to the dynamic nature of proteins, no single “correct” 

phosphorylated conformation exists for a rec domain. But based on the 

characteristic changes associated with rec domain phosphorylation found in 

existing structures, we can identify a representative structure that is most likely 

to resemble a phosphorylated conformation in a crystal structure. Determining 

which conformation(s) from within a trajectory best accomplishes this is 

indeed challenging. Each simulation produced a substantial amount of 

conformational data (>20,000 observations). We first had to simplify these 

complex datasets to identify which conformers were the most significant to this 

goal. To reduce the dimensionality of the data, we performed PCA on the 

combined trajectories for each rec domain (data not shown). Performing PCA 

prior to clustering can save significantly on computational cost and time, as 

well as filter out high-frequency conformational variance (noise) from the data 

[112]. 

Trajectories were then clustered in the resulting PC space to 

quantitatively identify the dominant conformations adopted by the proteins 
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during simulation. Due to the large size of each data set, an implementation of 

the CLARA algorithm was used. CLARA is an extension of the k-medoids 

clustering approach and can be used to extract the medoid for each identified 

partition [88, 89]. A medoid is an object within the cluster for which the 

dissimilarity to all other objects within the cluster is minimal. The CLARA 

algorithm requires an initial estimate of the desired number of clusters during 

input. To predict the ideal cluster number for each data set, we used the pamk 

function within the R package fpc. This estimates the ideal number of clusters 

for a data set by calculating the optimum average silhouette width for a range 

of clusters [90, 98, 113, 114]. Data were clustered using the top seven PCs to 

incorporate ~50% of the observed data variance. To produce a reasonable 

number of candidate structures from which to choose a final active structure, 

the minimum number of clusters was set to four, and the maximum was set to 

fifteen, with a corresponding medoid predicted for each identified group. For 

our purposes, the medoids best represent the dominant conformations observed 

during the activation of the rec domains. Among these models is the 

conformation(s) most likely to resemble the active crystal structure of the 

protein under study. Figs. 10-14 show conformer plots produced for all five rec 

domain structures projected onto the top three PCs for simplicity (PC1-3). 

Each color represents an individual conformational cluster that was identified. 
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Figure 10. Projections of instantaneous CheY conformations onto the top 
three principal components. 
Conformers were extracted from snapshots of each production run and plotted along the top 
three PCs (based on data variance). Shown are plots for the single domain RR, CheY, along 
with corresponding eigenvalue rankings. Each point represents one conformation adopted by 
CheY during MD simulations. Points were assigned colors based on groupings calculated 
using a k-medoids clustering approach. 
 

 
Figure 11. Projections of instantaneous PhoP-rec conformations onto the 
top three principal components. 
Conformers were extracted from snapshots of each production run and plotted along the top 
three PCs (based on data variance). Shown are plots for PhoP-rec, along with corresponding 
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eigenvalue rankings. Each point represents one conformation adopted by PhoP-rec during MD 
simulations. Points were assigned colors based on groupings calculated using a k-medoids 
clustering approach. 
 

 

Figure 12. Projections of instantaneous FixJ-rec conformations onto the 
top three principal components. 
Conformers were extracted from snapshots of each production run and plotted along the top 
three PCs (based on data variance). Shown are plots for FixJ-rec, along with corresponding 
eigenvalue rankings. Each point represents one conformation adopted by FixJ-rec during MD 
simulations. Points were assigned colors based on groupings calculated using a k-medoids 
clustering approach. 
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Figure 13. Projections of instantaneous Sln1-rec conformations onto the 
top three principal components. 
Conformers were extracted from snapshots of each production run and plotted along the top 
three PCs (based on data variance). Shown are plots for Sln1-rec, along with corresponding 
eigenvalue rankings. Each point represents one conformation adopted by Sln1-rec during MD 
simulations. Points were assigned colors based on groupings calculated using a k-medoids 
clustering approach. 
 

 

Figure 14. Projections of instantaneous Spo0F conformations onto the top 
three principal components. 
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Conformers were extracted from snapshots of each production run and plotted along the top 
three PCs (based on data variance). Shown are plots for Spo0F, along with corresponding 
eigenvalue rankings. Each point represents one conformation adopted by Spo0F during MD 
simulations. Points were assigned colors based on groupings calculated using a k-medoids 
clustering approach. 
 

Each point in Figs. 10-14 represents a single conformation extracted 

from the combined trajectory of that rec domain. Colors correspond to the ideal 

number of clusters identified using CLARA based on the optimum average 

silhouette width. Sln1-rec and PhoP-rec possessed the fewest distinct 

conformational clusters, with the other three proteins having seven or more 

groups. 

Coordination of water to the divalent metal cation is an important 

indicator of correct RR active site geometry. Due to computational limitations, 

solvent molecules are typically stripped from trajectories prior to PCA and 

clustering methods. Using a k-medoids method of clustering allowed us to 

circumvent these limitations. After identifying medoids using the stripped 

trajectory data, the corresponding frames were extracted from the fully 

solvated partial trajectories. Through this process, a list of final candidate 

structures in explicit solvent was compiled for each of the rec domains that 

were simulated. 

Identification and validation of representative predictions using 

experimental rec domain structures 

Ideally, each candidate (medoid) structure should be analyzed 

individually for physiological relevance, as all are potentially valid 
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conformations of phosphorylated rec domains. No single scoring method exists 

to adequately identify the most representative structure of a phosphorylated rec 

domain. But to fulfill the ultimate goal of this study and for validation 

purposes, we developed a set of criteria to identify the top 1-2 candidate 

structures most likely to resemble the phosphorylated crystal structure of each 

rec domain. All factors must be examined collectively to make an informed 

decision. The process (depicted in the flowchart in Fig. 15) includes 

comparisons with the apo conformation to detect characteristic allosteric 

changes associated with phosphorylation, quantifying and ranking switch 

residue and quartet residue reorientations, eliminating inappropriate active site 

arrangements and ranking by conformer cluster population sizes.  
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Figure 15.  Flowchart describing the methodology.  
(A) Initial apo structure is phosphorylated and simulated with active site restraints. (B) 
Resulting trajectory is aligned to remove translational and rotational fluctuation. (C) 
Conformers are clustered together based on similarity using k-medoids based algorithm. 
Candidate structures (medoids) are extracted for each cluster. (D) Each medoid is analyzed to 
identify candidate most likely to resemble a phosphorylated crystal structure. Candidates are 
aligned to the apo structure to eliminate medoids that show little to no conformational shift. 
Switch residue and quartet residue positions are measured. Active site geometry is checked. 
Medoids from transient clusters are eliminated. (E) Final representative structure is identified. 
(F) Representative structure is validated against existing crystal structure(s). 
 

 

Tabulated results and summaries from the protocol are provided for 

each of the rec domains below (Tables 5-9).  The process is then described in 

detail for CheY in the subsequent sections.   

 

Table 5. Results for identification of representative structure for CheY. 
Protein 

or 
1Pop. 2Max 

RMSD 
T87 Y106 χ1 

3W58-
T87 

4W58-
M85 W58 χ2 M85 χ1 

5E89-
W58 Active 

6PO3
2 

geometry 
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Medoid (Å) (degrees) (Å) (Å) (degrees) (degrees) (Å) Site (degrees) 

Apo N/A N/A No -25 4.2 4.3 78 70 9.1 No N/A 

BeF3
- N/A ~5 Yes 76 3.4 6.6 136 -178 4.8 Yes -168 

1 1575 ~5 Yes 79 3.3 5.8 79 136 5.3 No -167 

2 1139 ~3 Yes 60 3.4 6.1 90 174 5.5 No -158 

3 6468 ~4 Yes 78 3.5 6.3 95 -165 6.9 No -157 

4 3019 ~5 Yes 68 3.3 6.9 109 174 4.9 Yes -174 

5 5494 ~4 Yes 65 3.7 6.5 104 176 5.7 No -144 

6 3187 ~4 Yes 78 3.2 7.0 90 -171 4.5 No -161 

7 182 ~4.5 Yes 65 3.5 5.9 93 -162 5.7 No -152 

1 conformer cluster population; 2 in the β4-α4-β5 region; 3 Cβ-Oε; 4 Cβ-Cβ; 5 Cβ-Cβ; 6 dihedral angle, 
phosphoanhydride bond 

 

Summary: 

Cells are shaded grey when they meet a specific criteria. 

Medoids 1, 2 and 7 were placed at a lower priority due to their low conformer cluster 
populations (Pop.)   

Phosphorylation is known to induce significant changes in the β4-α4-β5 region. 
Structural alignment reveals changes of up to 5 Å within the area in the crystal 
structures. All medoids exhibited similar changes, except medoid 2, which was placed 
at a lower priority.  

Upon phosphorylation, T87 is known to shift to within 2.5 Å of the phosphoryl group, 
forming a hydrogen bond. Medoids found with this shift were assigned “Yes” in this 
column. T87 was found switched in 100% of the trajectory, meaning all medoids 
were retained. Upon phosphorylation, Y106 rotamerizes inwards, quantified by its χ1 
torsion angle changing from -25⁰ (apo) to 76⁰ (BeF3

-). This corresponds to a fully 
buried orientation. Medoids 2, 5 and 7 showed lower degrees of rotamerization and 
were placed at a lower priority, meaning only ~68% of the trajectory showed 
completely rotamerized orientations.  

Phosphorylation consistently causes W58 to shift closer to T87, going from 4.2 Å to 
3.4 Å (Cβ-Oε atoms). This is shown in all medoids, though medoids 3, 5 and 7 
exhibited smaller shifts and were placed at a lower priority. Simultaneously, W58 
shifts away from M85 upon phosphorylation. This is seen in all medoids, though 
medoids 1, 2, 3 and 7 showed much smaller shifts and were placed at a lower priority. 
W58 is known to rotamerize upon phosphorylation, measured by the χ2 side chain 
torsion angle (78⁰ to 136⁰). This was found to a significant degree in only medoids 4 
and 5, representing ~40% of the trajectory. M85 also rotamerizes upon 
phosphorylation, going from a χ1 torsion angle of 70⁰ to -178⁰. Rotamerization was 
observed in all medoids, though medoids 1, 3 and 7 exhibited smaller shifts and were 
placed at a lower priority. E89 is also known to shift down upon phosphorylation, 
increasing its contact with W58. This shift was found in all medoids, though strong 
interactions were only observed in medoids 4 and 6, representing ~29% of the 
trajectory.  
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Analysis of the active site geometry in each medoid revealed that all candidates 
displayed distorted phosphoryl group geometry (quantified by the dihedral angle of 
the phosphoanhydride bond) and/or K109 arrangement, except medoid 4, representing 
only ~14% of the trajectory.  

Comparing each row, medoid 4 (dark) shows the greatest number of shaded cells and 
was chosen as the most representative structure for phosphorylated CheY, 
representing only ~14% of the trajectory. 

 

Table 6. Results for identification of representative structure for PhoP. 
Protein 

or 
Medoid 

1Pop. 
2Max 

RMSD 
(Å) 

T79 Y98 χ1 
(degrees) 

3L52-
T79 
(Å) 

4L52-
V77 
(Å) 

L52 χ2 
(degrees) 

V77 χ1 
(degrees) 

5R81-
L52 
(Å) 

Active 
Site 

6PO3
2- 

geometry 
(degrees) 

Apo N/A N/A No -59 4.7 6.3 N/A N/A 7.4 No N/A 

BeF3
- N/A ~3.5 Yes 71 3.7 6.3 N/A N/A 5.3 Yes -165 

1 4979 ~4 No* -59 3.8 6.8 N/A N/A 6.1 No -155 

2 2303 ~3.5 No* -63 3.8 6.8 N/A N/A 5.4 No -163 

3 6998 ~3.5 Yes -72 3.7 6.4 N/A N/A 6.0 Yes -161 

4 1961 ~3.5 Yes -62 3.9 6.9 N/A N/A 5.6 Yes -155 

5 4823 ~3.5 No* -76 4.0 6.8 N/A N/A 6.0 No -154 

1 conformer cluster population; 2 in the β4-α4-β5 region; 3 Cβ-Oε; 4 Cβ-Cβ; 5 Cβ-Cβ; 6 dihedral angle, 
phosphoanhydride bond 
*Refers to distance between A80 amine and phosphoryl group, similar to T79 

 
Summary: 

Cells are shaded grey when they meet a specific criteria. 

All medoids were retained based on conformer cluster population (Pop.)   

Phosphorylation is known to induce significant changes in the β4-α4-β5 region. 
Structural alignment reveals unusually small changes of up to 3.5 Å within the area in 
the crystal structures. All medoids exhibited similar levels of change and were 
retained.  

Upon phosphorylation, T79 is known to shift to within 2.8 Å of the phosphoryl group, 
forming a hydrogen bond. Medoids found with this shift were assigned “Yes” in this 
column.   This was observed in all medoids. However, the closely related A80 was 
found to be positioned farther away than normal in medoids 1, 2 and 5 (3.1-3.4 Å). 
These were placed at lower priority. Upon phosphorylation, Y98 rotamerizes inwards, 
quantified by its χ1 torsion angle changing from -59⁰ (apo) to 71⁰ (BeF3

-). This 
corresponds to a fully buried orientation. No medoids were found in a fully buried 
orientation. A possible reason for this is addressed in the corresponding Results 
subsection within the text.  

Phosphorylation consistently causes L52 to shift closer to T79, going from 4.7 Å to 
3.7 Å (Cβ-Oε atoms), similar to the analogous residues in CheY (W58-T87). This 
shift is found in all medoids, meaning 100% of the trajectory. Normally, this would 
suggest that L52 should also shift away from V77 (analogous to M85 in CheY). 
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Though this is not observed in the crystal structures (where the distance is maintained 
at 6.3 Å), every medoid showed a slight increase in this distance. L52 and V77 were 
not examined for rotamerization. However, R81 (analogous to E89 in CheY) should 
shift to increase contact with L52. This is seen in the crystal structures (going from 
7.4 Å to 5.3 Å upon modification) as well as in every medoid structure.  

Analysis of the active site geometry in each medoid revealed that only medoids 3 and 
4 formed proper catalytic geometry. Medoids 2 and 5 were unable to form a complete 
active site due to A80. Medoid 1 had a weaker orientation of the conserved K101 
residue. Medoid 4 introduced significant distortion to the phosphoryl group geometry.  

Comparing each row, medoid 3 (dark) shows the greatest number of shaded cells and 
was chosen as the most representative structure for phosphorylated PhoP-rec, 
representing ~33% of the trajectory. 

 

Table 7.  Results for identification of representative structure for FixJ. 
Protein 

or 
Medoid 

1Pop. 
2Max 

RMSD 
(Å) 

T82 F101 χ1 
(degrees) 

3L55-
T82 
(Å) 

4L55-
V80 
(Å) 

L55 χ2 
(degrees) 

V80 χ1 
(degrees) 

5H84-
L55 
(Å) 

Active 
Site 

6PO3
2- 

geometry 

(degrees) 

Apo N/A N/A No -41 6.6 5.3 -158 N/A 11.5 No N/A 

BeF3
- N/A ~7 Yes 70 3.3 5.5 N/A N/A 6.5 Yes -177 

1 749 ~1.5 No -58 5.8 6.0 N/A N/A 11.2 No -138 

2 3551 ~3.5 Yes 68 3.3 5.8 N/A N/A 10.5 Yes -120 

3 2052 ~4.5 No 61 3.6 5.4 N/A N/A 10.1 No -153 

4 3084 ~4 Yes 62 3.1 6.2 N/A N/A 10.3 Yes -140 

5 2495 ~4 Yes 72 3.2 5.9 N/A N/A 10.6 No -130 

6 1385 ~6.5 Yes 62 3.9 6.6 N/A N/A 7.6 Yes -131 

7 3870 ~4.5 Yes 63 3.5 5.8 N/A N/A 11.0 Yes -113 

8 1311 ~4 Yes 74 3.4 6.2 N/A N/A 10.7 Yes -123 

9 904 ~3.5 Yes 55 3.3 6.2 N/A N/A 9.5 No -132 

10 1663 ~4 No 58 4.2 7.4 N/A N/A 11.0 No -148 

1 conformer cluster population; 2 in the β4-α4-β5 region; 3 Cβ-Oε; 4 Cβ-Cβ; 5 Cβ-Cβ; 6 dihedral angle, 
phosphoanhydride bond 

 

Summary: 

Cells are shaded grey when they meet a specific criteria. 

Because of the high amount of conformational variance observed for FixJ-rec, along 
with conflicting criteria results, the population cutoff was lowered from 1500 to 1000. 
Medoids 1 and 9 were placed at a lower priority due to their low conformer cluster 
populations (Pop.)   

Phosphorylation is known to induce significant changes in the β4-α4-β5 region. 
Structural alignment reveals changes of up to 7 Å within the area in the crystal 
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structures. Medoids 1, 2 and 9 exhibited unusually small deviations in this region (< 
3.5 Å) and were placed at a lower priority.  

Upon phosphorylation, T82 is known to shift to within 2.7 Å of the phosphoryl group, 
forming a hydrogen bond. Medoids found with this shift were assigned “Yes” in this 
column.   T82 was found switched in ~79% of the trajectory. Medoids 1, 3 and 10 
were placed at lower priority due to lack of T82 switching. Upon phosphorylation, 
F101 rotamerizes inwards, quantified by its χ1 torsion angle changing from -41⁰ (apo) 
to 70⁰ (BeF3

-). This corresponds to a fully buried orientation. Only medoids 2, 5 and 7 
showed fully buried side chain orientaitons for F101, representing ~35% of the 
trajectory.  

Phosphorylation consistently causes L55 to shift closer to T82, going from 6.6 Å to 
3.3 Å (Cβ-Oε atoms), similar to the analogous residues in CheY (W58-T87). This 
shift is found in all medoids except 1, and is weaker in medoids 6 and 10. These were 
placed at a lower priority. Normally, this would suggest that L55 should also shift 
away from V80 (analogous to M85 in CheY). A slight increase is observed in the 
crystal structures (5.3 to 5.5 Å), though larger changes were exhibited in every 
medoid. To simulate a predictive situation, medoids with little to no increases were 
placed at a lower priority, mimicking CheY. L55 and V80 were not examined for 
rotamerization. However, H84 (analogous to E89 in CheY) should shift to increase 
contact with L55. This is seen in the crystal structures (going from 11.5 Å to 6.5 Å 
upon modification). However, H84 is flanked on by glycine residues and exhibits 
extremely high flexibility during simulation. It is likely that this relationship is less 
homologous to the CheY E89-W58 shift. Every medoid showed a decrease in this 
distance, though only medoid 6 showed a large change. Medoid 6 was also eliminated 
based on its partially exposed aromatic switch residue orientation. Because of this, 
any medoid exhibiting an H84-L55 distance of < 11 Å was retained.  

Analysis of the active site geometry in each medoid revealed that only medoids 4, 6, 7 
and 8 formed a proper catalytic geometry. The other medoids (representing ~37% of 
the trajectory) do not resemble the apo conformation, but their side chain arrangement 
is non-optimal. Significantly more phosphoryl group geometry distortion was 
observed for FixJ-rec, also seen in the experimental crystal structures. However, 
medoids 2 and 7 exhibited reverse orientation of the phosphorylatable aspartate 
residue and were placed at a lower priority.  

Comparing each row, medoid 8 (dark) shows the greatest number of shaded cells and 
was chosen as the most representative structure for phosphorylated FixJ-rec, 
representing an unusually low ~6% of the trajectory. 

 

Table 8.  Results for identification of representative structure for Sln1-rec. 
Protein 

or 
Medoid 

1Pop 
2Max 

RMSD 
(Å) 

T1173 F1192 χ1 
(degrees) 

3V1145-
T1173 

(Å) 

4V1145-
A1171 

(Å) 

V1145 χ2 
(degrees) 

A1171 χ1 
(degrees) 

5F1175-
V1145 

(Å) 

Active 
Site 

6PO3
2- 

geometry 

(degrees) 

Apo N/A N/A No -41 4.4 5.2 N/A N/A 7.5 No N/A 

BeF3
- N/A ~3 Yes 63 3.9 6.4 N/A N/A 5.8 Yes -174 

1 6307 ~3 Yes 47 3.8 5.4 N/A N/A 6.6 No -151 

2 5482 ~2.5 Yes 53 3.9 5.9 N/A N/A 6.3 Yes -153 

3 5246 ~3 Yes 64 3.9 6.4 N/A N/A 8.6 Yes -152 
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4 2533 ~3 Yes 60 3.7 6.3 N/A N/A 6.6 No -174 

5 1496 ~4 Yes 38 3.8 5.9 N/A N/A 6.7 No -161 

1 conformer cluster population; 2 in the β4-α4-β5 region; 3 Cβ-Oε; 4 Cβ-Cβ; 5 Cβ-Cβ; 6 dihedral angle, 
phosphoanhydride bond 

 

Summary: 

Cells are shaded grey when they meet a specific criteria. 

Medoid 5 was placed at a lower priority due to its smaller cluster population (Pop.)  

Phosphorylation is known to induce significant changes in the β4-α4-β5 region. 
Structural alignment reveals unusually small changes of up to ~3 Å within the area in 
the crystal structures. All medoids exhibited similar levels of change and were 
retained, except medoid 2.  

Upon phosphorylation, T1173 is known to shift to within 2.6 Å of the phosphoryl 
group, forming a hydrogen bond. Medoids found with this shift were assigned “Yes” 
in this column.   This was observed in all medoids. Upon phosphorylation, F1192 
rotamerizes inwards, quantified by its χ1 torsion angle changing from -41⁰ (apo) to 
63⁰ (BeF3

-). This corresponds to a fully buried orientation. Medoids 3 and 4 also 
exhibited this fully buried orientation. Medoids 1, 2 and 5 showed only partial 
rotamerization.  

Phosphorylation consistently causes V1145 to shift closer to T1173, going from 4.4 Å 
to 3.9 Å (Cβ-Oε atoms), similar to the analogous residues in CheY (W58-T87). This 
shift is found in all medoids, meaning 100% of the trajectory. This suggests that 
V1145 should also shift away from A1171 (analogous to M85 in CheY). This is seen 
in the crystal structures, going from 5.2 Å to 6.4 Å. An increase is observed in every 
medoid, though medoids 1, 2 and 5 showed much smaller shifts and were placed at a 
lower priority. V1145 and A1171 were not examined for rotamerization. F1175 
(analogous to E89 in CheY) was expected to shift towards V1145, as seen in the 
crystal structures. Minor shifts were seen in all medoids except medoid 3. However, 
since medoid 3 was the only candidate that met the other criteria, it was retained. 

Analysis of the active site geometry in each medoid revealed that only medoids 2 and 
3 formed a proper catalytic geometry. In medoids 1, 4 and 5, residues E1094 and 
D1095 were unable to coordinate the divalent Mg2+.    

Comparing each row, medoid 3 (dark) shows the greatest number of shaded cells and 
was chosen as the most representative structure for phosphorylated Sln1-rec, 
representing ~25% of the trajectory. 

 

 

 

Table 9.  Results for identification of representative structure for Spo0F. 
Protein 

or 
Medoid 

1Pop. 
2Max 

RMSD 
(Å) 

T82 H101 χ1 
(degrees) 

3M55-
T82 
(Å) 

4M55-
I80 
(Å) 

M55 χ2 
(degrees) 

I80 χ1 
(degrees) 

5E89-
M55 
(Å) 

Active 
Site 

6PO3
2- 

geometry 

(degrees) 
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Apo N/A N/A No -39 4.5 5.6 -54 -67 7.3 No N/A 

BeF3
- N/A ~3.5 Yes -61 3.2 6.0 -49 169 5.8 Yes -143 

1 1180 ~2.5 No -48 4.2 6.0 -71 -73 7.8 No 178 

2 1831 ~3.5 Yes -65 3.8 7.0 -81 191 6.7 Yes -160 

3 1434 ~2.5 Yes 53 4.0 6.8 -67 195 6.7 Yes -159 

4 1740 ~3.5 Yes 43 4.1 7.1 -77 -84 7.0 Yes -158 

5 4567 ~4 Yes 43 3.8 6.7 -59 -79 8.1 Yes -179 

6 3228 ~4 Yes 33 4.1 6.6 -79 -67 6.4 No -175 

7 1135 ~9 Yes 38 4.2 6.3 -176 182 9.0 Yes -173 

8 2009 ~3 Yes 42 3.7 6.9 -71 -81 8.0 Yes -166 

9 2000 ~4 Yes 49 4.0 7.3 -80 -77 7.0 Yes -170 

10 1053 ~2.5 Yes 51 3.9 6.7 -56 192 6.2 Yes 173 

11 511 ~5 Yes 55 3.7 7.1 -73 -71 6.4 Yes 179 

12 376 ~4 Yes 59 4.2 6.4 -67 -67 7.5 Yes -179 

1 conformer cluster population; 2 in the β4-α4-β5 region; 3 Cβ-Oε; 4 Cβ-Cβ; 5 Cβ-Cβ; 6 dihedral angle, 
phosphoanhydride bond 

 

Summary: 

Cells are shaded grey when they meet a specific criteria. 

Medoids 1, 3, 7, 10, 11 and 12 were placed at a lower priority due to their smaller 
cluster populations (Pop.) 

Phosphorylation is known to induce significant changes in the β4-α4-β5 region. 
Structural alignment reveals changes of up to ~4 Å within the area in the crystal 
structures. Medoids 4, 5, 6, 7, 9, 11 and 12 exhibited changes from 4-9 Å and were 
retained. Medoids 1, 3, 8 and 10 were placed at a lower priority because of their 
smaller deviations. 

Upon phosphorylation, T82 is known to shift to within 2.6 Å of the phosphoryl group, 
forming a hydrogen bond. Medoids found with this shift were assigned “Yes” in this 
column.   This was observed in all candidates except medoid 1. Upon 
phosphorylation, H101 was found to remain fully solvent exposed, closely resembling 
the apo orientation (-39⁰ and -61⁰). This was found only in medoids 1 and 2. Medoids 
3-12 exhibited partial rotamerization, adopting intermediate orientations and 
representing ~86% of the trajectory. These medoids were placed at a lower priority.  

Phosphorylation consistently causes M55 to shift closer to T82, going from 4.5 Å to 
3.2 Å (Cβ-Oε atoms), similar to the analogous residues in CheY (W58-T87). 
Significant shifts between these residues were only observed in medoids 2, 5, 8 and 
11. This suggests that M55 should also shift away from I80 (analogous to M85 in 
CheY). This is seen in the crystal structures, going from 5.6 Å to 6.0 Å. An increase is 
observed in every medoid, though medoids with the largest changes were placed at a 
higher priority. M55 was also examined for rotamerization (analogous to W58 in 
CheY). In the crystal structures, no significant rotamerization was observed, unlike in 
CheY. Only medoid 7 showed a significant rotamerization and was placed at a lower 
priority. I80 rotamerization was also examined. In the crystal structures, we see a 
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change in the χ1 torsion angle from -67⁰ (apo) to 169⁰ (BeF3
-). Similar significant 

rotamerizations are only found in medoids 2, 3, 7 and 10.  E86 (likely analogous to 
E89 in CheY) was expected to shift towards M55. This is observed in the crystal 
structures, shifting from 7.3 Å (apo) to 5.8 Å (BeF3

-). Medoids 2, 3, 6, 10 and 11 
showed similar significant shifts. Medoids 1, 4, 5, 7, 8, 9 and 12 were placed at a 
lower priority because they lacked this change. 

Analysis of the active site geometry in each medoid revealed that all formed correct 
active site geometry arrangements except medoids 1 and 6, which showed distortion 
of the K104 residue.    

Comparing each row, medoid 2 (dark) shows the greatest number of shaded cells and 
was chosen as the most representative structure for phosphorylated Spo0F, 
representing only ~9% of the trajectory. 

 

 
 

 
Figure 16. Alignments of phosphorylated candidates to the apo structure 
of CheY. 
(A) Superposition of apo crystal structure (PDB 3CHY, black) with candidate (medoid) 
structures identified during cluster analysis. (B) Per residue, all-atom RMSD for 
phosphorylated structures vs. the apo crystal structure. Shaded area corresponds to β4-α4-β5 
regions. Trace color corresponds to chosen structures in alignment: example candidate 
structure vs. apo crystal (green); BeF3

- crystal vs. apo crystal (black). Traces for additional 
candidate structures appear in gray. α-helix (cyan); β-strand (magenta). 
 
 

Structural alignments were performed with each set of candidate 

structures and their corresponding apo crystal structure. Fig. 16A shows a 

superposition of all seven candidate structures extracted from the CheY 
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trajectories aligned to the apo CheY structure (PDB 3CHY; black ribbon) 

using the invariant β-sheet core [10]. Most of the conformational variance we 

observed between clusters was small (~1.5 Å) and unsurprisingly located in the 

flexible loop regions. Qualitatively, this can be seen in the CheY alignment in 

Fig. 16A, where the majority of the conformers show little deviation, 

especially throughout the helix and strand elements. Other rec domains (such 

as Spo0F and FixJ-rec) exhibited far more diversity among the medoid 

conformers. The largest changes induced by phosphorylation occur in the β4-

α4-β5 region of CheY. This area has consistently shown high deviations in 

nearly all modified rec structures [11, 23, 31-33]. The shift from apo to 

phosphorylated state is quantified in Fig. 16B for CheY, which shows the per 

residue all-atom RMSD after alignment between the apo (PDB 3CHY) and 

BeF3
- bound crystal (PDB 1FQW) in black trace. The grey traces in Fig. 16B 

shows the same for each medoid of CheY aligned to the apo crystal. The 

colored trace shows the RMSD between the apo crystal structure and a sample 

medoid structure, demonstrating a significant conformational shift 

characteristic of phosphorylation. By examining the deviations in the β4-α4-β5 

region (Fig. 16B, shaded area), we were able to eliminate any candidate 

structures that showed unusually low relative conformational changes 

associated with activation, indicating a closer resemblance to the apo 

conformation. For CheY, typical max deviations observed among the medoids 

were ~4.5-5 Å within this area (see Table 5). A single medoid was found 
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(representing ~5% of the trajectory) with significantly smaller changes (~2.5-3 

Å) . This medoid was assigned lower priority based on these RMSD 

calculations. The remaining candidates displayed more characteristic changes 

when aligned to the apo structure, and comparison between the colored and 

black traces suggest a phosphorylation-induced conformational shift on a 

similar magnitude. Similar analyses were performed on the other protein 

systems (Figs. 17-20). 

 

 

Figure 17. Alignments of phosphorylated candidates to the apo structure 
of PhoP-rec. 
(A) Superposition of apo crystal structure (PDB 2PKX:A; black) with candidate (medoid) 
structures identified during cluster analysis. (B) Per residue all-atom RMSD for 
phosphorylated structures vs. the apo crystal structure. Shaded area corresponds to β4-α4-β5 
regions. Trace color corresponds to chosen structures in alignment: example candidate 
structure vs. apo crystal (lime); BeF3

- crystal vs. apo crystal (black). Traces for additional 
candidate structures appear in gray. α-helix (cyan); β-strand (magenta). 
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Figure 18. Alignments of phosphorylated candidates to the apo structure 
of FixJ-rec. 
(A) Superposition of apo crystal structure (PDB 1DCK:A; black) with candidate (medoid) 
structures identified through cluster analysis. (B) Per residue all-atom RMSD for 
phosphorylated structures vs. the apo crystal structure. Shaded area corresponds to β4-α4-
β5regions. Trace color corresponds to chosen structures in alignment: example candidate 
structure vs. apo crystal (purple); phosphorylated crystal vs. apo crystal (black). Traces for 
additional candidate structures appear in gray. α-helix (cyan); β-strand (magenta). 
 
 

 
Figure 19. Alignments of phosphorylated candidates to the apo structure 
of Sln1-rec. 
(A) Superposition of apo crystal structure (PDB 1OXB:B; black) with candidate (medoid) 
structures identified through cluster analysis. (B) Per residue all-atom RMSD for 
phosphorylated structures vs. the apo crystal structure. Shaded area corresponds to β4-α4-
β5regions. Trace color corresponds to chosen structures in alignment: example candidate 
structure vs. apo crystal (salmon); BeF3

- crystal vs. apo crystal (black). Traces for additional 
candidate structures appear in gray. α-helix (cyan); β-strand (magenta). 
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Figure 20. Alignments of phosphorylated candidates to the apo structure 
of Spo0F. 
(A) Superposition of apo crystal structure (PDB 1NAT; black) with candidate (medoid) 
structures identified through cluster analysis. (B) Per residue all-atom RMSD for 
phosphorylated structures vs. the apo crystal structure. Shaded area corresponds to β4-α4-
β5regions. Trace color corresponds to chosen structures in alignment: example candidate 
structure vs. apo crystal (purple); BeF3

- crystal vs. apo crystal (black). Traces for additional 
candidate structures appear in gray. α-helix (cyan); β-strand (magenta). 

 
 

Switch residue orientation was also examined in each of the extracted 

candidate structures. Fig. 21 shows a close-up comparison of the switch 

residues found in CheY. In Fig. 21A, the apo crystal structure of CheY shows 

the unmodified positions of the switch residues. The side chain of Tyr106 

adopts a torsion angle (χ1) of -25⁰ and Thr87 is positioned 6.1 Å away from the 

phosphorylatable Asp57. Fig. 21B shows how Thr87 shifts to within 2.5 Å of 

Asp57, and Tyr109 adopts a torsion angle (χ1) of 76⁰ in the BeF3
- bound 

crystal structure. Fig. 21C demonstrates the same “switched” orientations in a 

sample medoid structure predicted for CheY. A similar shift of Thr87 was 
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observed in 100% of frames for CheY, indicating an almost complete and 

instantaneous switch upon adoption of the catalytic active site geometry. 

However, medoids representing ~32% of frames exhibited a smaller 

rotamerization of Tyr109 (torsion angle χ1 of ~60⁰). These medoids were 

assigned lower priority. Medoids representing the other ~68% of the trajectory 

adopted rotamers corresponding to more buried orientations characteristic of 

phosphorylated conformations (torsion angle χ1 of ~75-80⁰). In CheY these 

differences were subtle, but in other rec domains (Sln1-rec, Spo0F) the switch 

residues showed far greater deviations. Candidates that did not exhibit proper 

switch residue reorientations were eliminated as possible representative 

structures (see Tables 5-9 for detailed measurements). Figures of switch 

residues for the remaining rec domains are shown below (Figs. 22-24). 

 

 

Figure 21. Characteristic switch residues shift in CheY. 
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(A) Apo orientation (PDB 3CHY). (B) BeF3
- bound orientation (PDB 1FQW). Thr87 has 

shifted to form a hydrogen bond with Asp57. Tyr106 has rotamerized inwards into the 
hydrophobic pocket. (C) A sample candidate structure of phosphorylated CheY demonstrates 
near-identical orientations to the BeF3

- bound crystal. 
 

 

Figure 22. Characteristic switch residues shift in PhoP-rec. 
(A) Apo orientation (PDB 2PKX:A). (B) Phosphorylated orientation (PDB 2PL1). Thr78 has 
shifted to form a hydrogen bond with Asp51. Tyr98 has rotamerized inwards into the 
hydrophobic pocket. (C) A sample candidate structure of phosphorylated PhoP-rec shows 
Thr78 orientation is identical to the BeF3

- bound crystal. Tyr98 remains in the solvent-exposed 
orientation. Examination of the BeF3

- bound structure of PhoP-rec reveals that the receiver 
domain crystallizes as a homodimer. Tyr98 is located in the central region of the dimerization 
inteface, suggesting that its side chain orientation plays an important role in dimerization and 
vice versa. 
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Figure 23. Characteristic switch residues shift in FixJ-rec. 
(A) Apo orientation (PDB 1DCK:A). (B) Phosphorylated orientation (PDB 1D5W:A). Thr82 
has shifted to form a hydrogen bond with Asp54. Phe101 has rotamerized inwards into the 
hydrophobic pocket. (C) A sample candidate structure of phosphorylated FixJ-rec 
demonstrates near-identical orientations to the phosphorylated crystal. 

 

 

Figure 24. Characteristic switch residues shift in Sln1-rec. 
(A) Apo orientation (PDB 1OXB:B). (B) Phosphorylated orientation (PDB 2R25:B). Thr1173 
has shifted to form a hydrogen bond with Asp1144. Phe1192 has rotamerized inwards into the 
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hydrophobic pocket. (C) A sample candidate structure of phosphorylated Sln1-rec 
demonstrates near-identical orientations to the BeF3

- bound crystal. 
 

 

Figure 25. Characteristic switch residues shift in Spo0F. 
(A) Apo orientation (PDB 1NAT:A). Thr82 is too far to form a hydrogen bond with the 
phosphorylatable aspartate, and His101 is solvent exposed, pointing away from the active site. 
(B) Phosphorylated orientation (PDB 2FTK:G). Thr82 has shifted to form a hydrogen bond 
with Asp54. His101 remains solvent-exposed. (C) A sample candidate structure of 
phosphorylated Spo0F demonstrates near-identical orientations to the BeF3

- bound crystal. 
His101 remains solvent-exposed. 
 
 

Each of the five rec domains in the validation set produced at least one 

candidate structure with switch residue orientations matching the modified 

crystal structures, except for PhoP-rec, where Tyr98 remained completely in a 

solvent-exposed orientation in 100% of the trajectory. Further examination of 

the PhoP-rec structure reveals that the rec domain crystallized as a homodimer, 

with Tyr98 located in the center of the dimerization interface [30]. Previous 

studies have implicated the aromatic switch residue in certain dimeric RR 

interactions [34, 35]. Comparison of the modified crystal structure and the 
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predicted model reveals similar environments around the Tyr98 side chain, 

with adequate volume to allow rotamerization in both. In E. coli PhoP, the 

pocket created by the shift in the β4α4 loop is less hydrophobic in nature than 

the other rec domains in the validation set, likely making rotamerization less 

favorable. We speculate that by using only monomeric PhoP-rec during the 

simulations, the rotamerization was not inducible. Also of significant note is 

the aromatic switch residue His101 in Spo0F. In the crystal structures of 

Spo0F, the side chain of His101 adopts multiple conformations, but remains 

solvent-exposed regardless of phosphorylation state [32]. This residue and 

region have no known role in dimerization or partner binding for Spo0F, which 

may be why it fails to rotamerize [15, 32, 115, 116]. Most of the extracted 

Spo0F candidate structures exhibited various degrees of rotamerization at 

His101. The majority adopted a partially buried orientation (medoids 

representing ~91% of the population), likely resembling an intermediate 

conformation. A single medoid (~9%) was identified that remained fully 

solvent-exposed. No candidates were observed to adopt a completely buried 

orientation. This supports the existence of an intermediate state(s) in solution, 

though medoids with partially exposed rotamers were eliminated as possible 

representative structures. More importantly, it indicates that this computational 

approach can capture unique allosteric changes associated with 

phosphorylation that may differ between rec domain proteins. 
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Quartet residue positions were also analyzed within the medoid 

structures. These residues have been hypothesized to form an allosteric 

network, able to switch between apo and phosphorylated-like conformational 

states [16]. Comparisons rely on the relative changes in interatomic distances 

between residues upon transitioning from apo to phosphorylated conformation. 

While most quartet residues share moderate to low sequence conservation, we 

found that their relationships are relatively maintained in the rec domains used 

in the study and likely in most rec domains. In the CheY candidates (Table 5), 

we examined the distance between Trp58 (D+1 position) and the switch Thr87, 

which are consistently found in closer proximity in modified crystal structures. 

All medoids showed a decrease in the atomic distance between these side 

chains, though only the most dramatic shifts were considered for potential 

representative structures. We also examined the distance between Trp58 and 

Met85, which is believed to increase upon phosphorylation. Again, all medoids 

showed an increase in relative distance upon phosphorylation, but higher 

priority was placed on the medoids that exhibited the largest shifts. Interaction 

between Trp58 and Glu89 is also thought to increase as a result of 

phosphorylation. Each medoid showed various interatomic distances, but only 

two exhibited strong interaction between these residues, representing ~29% of 

the trajectory. Also analyzed were the rotamerization of Trp58, related to the 

interaction with Glu89, and the rotamerization of Met85. Only two medoids 

(representing ~40%) showed sufficiently large rotamerization at Trp58, going 
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from 75⁰ to ~110⁰ upon phosphorylation. The χ1 torsion angle of Met85 shifts 

from 70⁰ (apo crystal) to -178⁰ (BeF3
- crystal). A similar rotamerization is 

observed in four different CheY medoids (representing ~61% of the 

trajectory). Interestingly, the complete “phosphorylated” organization of 

quartet residues is observed in only two candidates (representing ~31% of the 

trajectory). Analysis of the final quartet residue, Tyr109, can be found in the 

previous section. By ranking the changes in interatomic distance between the 

quartet residues in relation to the apo state, we were able to narrow down 

which medoids were more likely to resemble the phosphorylated crystal 

structures for each rec domain. Tabulated results for the other systems (M55, 

I80, E89 in Spo0F; V1145, A1171, F1175 in Sln1-rec; L55, V80, H84 in FixJ-

rec; L52, V77, R81 in PhoP-rec) can be found in Tables 6-9. 

 

 



 

103 

 

Figure 26. Highly conserved active site geometry of active CheY. 
(A) Disordered active site side chains of apo CheY (PDB 3CHY). (B) Active site side chains 
of CheY bound to BeF3

- (PDB 1FQW). The addition of Mg2+ orders the active site, generating 
an octahedral coordination geometry with the recruitment of two additional water molecules. 
Switch residue Thr87 has shifted to hydrogen bond with Asp57. (C) Active site side chains in a 
sample candidate structure of phosphorylated CheY demonstrates near-identical geometry to 
the BeF3

- bound crystal. 
 
 

We next examined the phosphorylated active sites of each candidate 

structure. Proper active site geometry is essential for the phosphotransfer 
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reaction to occur in all rec domains, and a divalent metal cation is required for 

catalysis. Fig. 26 shows this geometry for CheY. In Fig. 26A, the active site 

lacks the metal cation, leading to a disordered side chain arrangement. With 

the addition of a Mg2+ cation and the phosphoryl analog BeF3
-, the active site 

side chains arrange in an octahedral configuration centered around the metal 

ion (Fig. 26B). This is also demonstrated in a sample medoid for CheY (Fig. 

26C). Despite the restraints, we frequently observed incomplete or incorrect 

active sites in the extracted medoids. If a candidate structure failed to fully 

adopt the conserved active site arrangement, we eliminated it as a possible 

representative structure. One of the most frequently seen deviations was a 

failure to recruit the two water molecules needed to complete the octahedral 

coordination around the cation. This was usually due to one of the conserved 

acidic residues forming multiple points of coordination between their side 

chains and the metal, rather than a single point of coordination from each. 

Those candidate structures with a warped phosphoryl group geometry were 

placed assigned lower priority as well. Among the CheY candidates, a single 

medoid structure adopted the ideal catalytic active site, representing ~14% of 

the trajectory. This medoid also had the closest to ideal linear phosphoryl 

geometry as well (measured by dihedral angle of the phosphoaspartate bond). 

The remaining candidates failed to properly coordinate the metal cation and/or 

the phosphoryl group. Active site results for the other rec domains used in this 

study were analyzed and tabulated (see Tables 6-9; Figs. 27-30). 
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Figure 27. Highly conserved active site geometry of PhoP-rec. 
(A) Disordered active site side chains of apo PhoP-rec (PDB 2PKX:A). (B) Active site side 
chains of PhoP-rec bound to BeF3

- (PDB 2PL1). The addition of Mg2+ orders the active site, 
generating an octahedral coordination geometry with the recruitment of two additional water 
molecules. Switch residue Thr79 has shifted to hydrogen bond with Asp51. (C) Active site 
side chains in a sample candidate structure of phosphorylated PhoP-rec demonstrates near-
identical geometry to the BeF3

- bound crystal 
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Figure 28. Highly conserved active site geometry of FixJ-rec. 
(A) Disordered active site side chains of apo FixJ-rec (PDB 1DCK:A). (B) Active site side 
chains of phosphorylated FixJ-rec (PDB 1D5W:A). Crystal structure lacks defined waters and 
the metal cation. Switch residue Thr82 has shifted to hydrogen bond with Asp54. (C) Active 
site side chains in a sample candidate structure of phosphorylated FixJ-rec demonstrates  near-
identical geometry to the phosphorylated crystal. 
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Figure 29. Highly conserved active site geometry of Sln1-rec. 
(A) Disordered active site side chains of apo Sln1-rec (PDB 1OXB:B). (B) Active site side 
chains of Sln1-rec bound to BeF3

- (PDB 2R25:B). The addition of Mg2+ orders the active site, 
generating an octahedral geometry with the recruitment of two additional water molecules. 
Switch residue Thr1173 has shifted to hydrogen bond with Asp1144. (C) Active site side 
chains in a sample candidate structure of phosphorylated Sln1-rec demonstrates near-identical 
geometry to the BeF3

- bound crystal. 
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Figure 30. Highly conserved active site geometry of Spo0F. 
(A) Disordered active site side chains of apo Spo0F (PDB 1NAT:A). (B) Active site side 
chains of Spo0F bound to BeF3

- (PDB 2FTK:G). The addition of Mg2+ orders the active site, 
generating an octahedral geometry (note: water molecules were not defined in the crystal 
structure). Switch residue Thr82 has shifted to hydrogen bond with Asp54. (C) Active site side 
chains in a sample candidate structure of phosphorylated Spo0F demonstrates near-identical 
geometry to the BeF3

- bound crystal. 
 
 

Finally, the population sizes of the clusters were calculated. When 

performing geometrical clustering on MD simulations, we assume that 
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conformations grouped into the same cluster are structurally similar, and 

therefore lie within the same basin on the free-energy landscape of the protein 

[117]. Clusters are typically different sizes, due to conformational sampling 

progressing according to a Boltzmann distribution during simulation. Sparsely 

populated clusters are more likely to represent transient and/or higher energy 

states. When trying to identify which conformations will best resemble a 

crystal structure, which we normally assume is at an energetic minimum, 

neither of these effects is desirable. For this reason, conformers extracted from 

minor clusters (< ~1500) were typically eliminated, unless otherwise 

described. Additionally, if multiple medoids were identified as likely 

representative structures, the candidate from the larger cluster was retained. 

 

 

Figure 31. Global structural alignment of the top predicted model to the 
active CheY crystal structure and comparisons of the β4-α4-β5 region. 
(A) Final predicted model (light cyan). Active crystal structure of CheY with BeF3

- bound 
(PDB 1FQW, dark blue). (B) Per residue Cα RMSD for inactive vs. active crystals (black), and 
for predicted model vs. active crystal (cyan). The black trace shows the differences between 
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the active and inactive conformations. The cyan trace shows how closely the prediction 
matches the true active crystal structure. α-helix (cyan); β-strand (magenta). 
 
 

Taking all of these criteria into consideration, a process of elimination 

allowed for the convenient identification of the top representative structure 

most likely to resemble a phosphorylated structure for each rec domain. This is 

apparent in the tabulated results (Tables 5-9). Table cells retained for analysis 

are shown in grey. Medoids with solid grey in every column were found to be 

most representative of a phosphorylated conformation. Each of these 

representative structures was then compared to their modified crystal structure 

counterpart to test the predictions. We first performed overall structural 

alignments to compare global protein structure. Fig. 31A shows the final CheY 

representative model (representing ~14% of the trajectory) superimposed to the 

BeF3
- bound crystal structure (PDB 1FQW, dark blue ribbon). Structural 

alignments were also performed on each of the other rec domains (see Figs. 

32-35). Overall average RMSDs for the predicted models ranged from 0.5 to 

1.0 Å when compared to the existing modified crystal structures obtained from 

the PDB. While these measurements suggest that the models are nearly 

identical to their experimental counterparts, RMSD averages are often 

misleading, especially considering that the majority of the important 

conformational changes occur in flexible loop areas. Global RMSDs 

comparing apo and modified crystal structures are typically higher, but only 

moderately so. In addition, both our simulations and structures of identical 

proteins obtained from different experimental sources (crystallography, NMR) 
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suggest that the same rec domain in a common phosphorylated state may 

deviate by up to 2 Å, presumably through the protein’s inherent flexibility. 

This likely generates considerable “noise,” making it challenging to identify 

significant conformational differences. A more prudent analysis should focus 

on those areas known to change significantly and directly in response to 

phosphorylation. To this end, we generated per residue Cα RMSD traces for 

the β4-α4-β5 region, to compare the deviations between both the apo vs. BeF3
- 

bound crystal structures and the predicted models vs. BeF3
- bound crystal 

structures. Structures were aligned by the invariant β-sheet core, as this was 

found to exhibit the least amount of deviation upon phosphorylation. Fig. 31B 

contains two RMSD traces for CheY. The black trace represents the deviation 

between the apo crystal (PDB 3CHY) and BeF3
- bound crystal (PDB 1FQW) 

structures, showing the degree to which the experimental conformations 

change. The colored trace represents the deviation between the top predicted 

model and the BeF3
- bound crystal (PDB 1FQW) structure, showing how 

closely the prediction matches the experimental conformation. While natural 

fluctuations were present in most, the top representative models were still 

consistently and significantly closer to the experimental modified structures in 

every example, except for PhoP-rec, which showed only moderate 

improvement (see Fig 32B). In experimental structures, PhoP-rec experiences 

only minor changes upon phosphorylation, suggesting that visualizing the 

significant differences using simple RMSD measurements may be ineffective.  
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Figure 32. Global structural alignment of the top predicted model to the 
active PhoP-rec crystal and comparisons of the β4-α4-β5 region. 
(A) Final predicted model (gold). Active crystal structure of PhoP-rec with BeF3

- bound (PDB 
2PL1, brown). (B) Per-residue RMSD for inactive vs. active crystals (black), and for predicted 
model vs. active crystal (gold). The black trace shows the differences between the active and 
inactive conformation. The gold trace shows how closely the prediction matches the true 
experimental structure. α-helix (cyan); β-strand (magenta). 
 
 

 

Figure 33. Global structural alignment of the top predicted model to the 
active FixJ-rec crystal and comparisons of the β4-α4-β5 region. 
(A) Final predicted model (magenta). Active crystal structure of FixJ-rec with BeF3

- bound 
(PDB 1D5W:A, dark purple). (B) Per-residue RMSD for inactive vs. active crystals (black), 
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and for predicted model vs. active crystal (magenta). The black trace shows the differences 
between the active and inactive conformation. The magenta trace shows how closely the 
prediction matches the true experimental structure. α-helix (cyan); β-strand (magenta). 
 

 

Figure 34. Global structural alignment of the top predicted model to the 
active Sln1-rec crystal and comparisons of the β4-α4-β5 region. 
(A) Final predicted model (purple). Active crystal structure of Sln1-rec with BeF3

- bound 
(PDB 2R25:B, green). (B) Per-residue RMSD for inactive vs. active crystals (black), and for 
predicted model vs. active crystal (purple). The black trace shows the differences between the 
active and inactive conformation. The purple trace shows how closely the prediction matches 
the true experimental structure. α-helix (cyan); β-strand (magenta). 
 

 

Figure 35. Global structural alignment of the top predicted model to the 
active Spo0F crystal and comparisons of the β4-α4-β5 region. 



 

114 

(A) Final predicted model (pink). Active crystal structure of Spo0F with BeF3
- bound (PDB 

2FTK:G, red). (B) Per-residue RMSD for inactive vs. active crystals (black), and for predicted 
model vs. active crystal (pink). The black trace shows the differences between the active and 
inactive conformation. The pink trace shows how closely the prediction matches the true 
experimental structure. α-helix (cyan); β-strand (magenta). 
 

To further analyze the conformational changes in the β4-α4-β5 region, 

we calculated the pseudodihedral angle formed by consecutive Cα atoms in the 

β4α4 loop for each of the rec domains. This loop is related to the reorientation 

of the conserved switch Thr/Ser residue and is intimately involved in the 

transition between apo and phosphorylated conformations. Representing 

flexible regions in proteins using pseudodihedral angles is an effective way of 

comparing local conformations without relying on structural alignment 

methods and RMSD calculations [118]. Table 10 contains the angles observed 

in the modified crystal structures, the top predicted models and the apo crystal 

structures for each of the proteins within the validation set. 

Table 10. Pseudodihedral angles defined by Cα atoms in the β4α4 loop. 

Protein Active Crystal  Predicted  Inactive Crystal  Residues  
CheY 160.36 161.12 -125.10 Ala88-Lys91 

PhoP-rec 172.45 167.78 -168.23 Ala80-Ser83 

Sln1-rec -169.75 -177.81 160.29 A1174-D1177 

FixJ-rec 132.20 127.22 -7.51 Gly83-Asp86 

Spo0F 52.56, 109.61* 65.09 56.46 Ala83-Glu86 
* Multiple conformations in the active crystal structure. 

All models match their corresponding modified crystal structure 

closely, except for the seemingly incorrect Spo0F. Futher investigation 

revealed the existence of multiple conformations for the β4α4 loop in the BeF3
- 

bound crystal structure of Spo0F (PDB 2FTK), suggesting that the 
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phosphorylated rec domain can adopt at least two separate forms. In addition, 

this BeF3
- bound Spo0F structure was crystallized bound to its cognate 

phosphotransferase, Spo0B, which interacts extensively with the β4α4 loop. In 

the absence of its binding partner, the β4α4 loop likely adopts an altered 

conformation. Analysis of the NMR structural ensemble of BeF3
- bound Spo0F 

(PDB 1PUX) shows pseudodihedral angles for the β4α4 loop ranging from 70 

to 95⁰. These results suggest that our predicted structure likely resembles a 

phosphorylated crystal structure of monomeric Spo0F. 
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Figure 36. Changes in physicochemical properties of CheY. 
Structures were aligned and partitioned into quadrants. View is of the same region on every 
structure. (A) Electrostatic surface potential calculated for the CheY crystal structures and the 
representative model. Shown is the β4-α4-β5 face. A ribbon representation of the BeF3

- 
structure of CheY bound to FliM (PDB 1F4V) is shown for reference. Negative potential is 
blue; positive potential is red; FliM is magenta. (B) Detected molecular cavity located near the 
active site of CheY. (C) Detected molecular cavity located on the β4-α4-β5 surface. (D) 
Detected molecular protrusion located near the active site of CheY. 
 
As a final validation step, we compared the physicochemical characteristics of 

the existing crystal structures with the predicted representative models. 

Properties such as electrostatic potential, hydrophobicity and geometric surface 
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features provide insight into the biological functions of proteins. By identifying 

differences between the phosphorylation states of the rec domain crystal 

structures, and testing if those differences are also present in the representative 

models, we can more accurately determine the quality of the models as 

predictive tools. Any visible changes that occur upon phosphorylation can be 

used to identify functionally relevant areas and targets for future experimental 

studies. Fig. 36 shows the most significant changes found in the CheY 

structures. Structures were aligned and then arranged side-by-side to compare 

common regions. We first calculated the electrostatic surface potential for each 

of the structures (apo crystal, BeF3
- bound crystal, predicted model) using the 

Adaptive Poisson-Boltzmann Solver (APBS) package [93]. Fig. 36A shows 

the results for CheY when viewed along the β4-α4-β5 surface. Upon 

phosphorylation, characteristic shifts facilitated by the movement of the β4α4 

loop in CheY lead to a 20-fold increase in binding affinity for its partner, FliM 

[107]. This is accompanied by a change in the electrostatic potential of the α4-

β5-α5 face, caused by residue shifts near the α4 and α5 helices and the β4α4 

loop (Fig. 36A). The structure of CheY bound to FliM (PDB 1F4V) reveals 

that the areas of altered potential, particularly the β4α4 loop, interact directly 

with the N-terminal region of FliM (Fig. 36A) [36]. These changes are nearly 

identical in the BeF3
- bound crystal structure and predicted model, but are 

absent in the apo structure. An implementation of the VisGrid algorithm on the 

3D-SURFER server was then used to characterize the local geometric features 
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of the proteins [94, 96]. VisGrid classifies the shape of a molecule’s surface 

based on a visibility criterion, essentially the fraction of open or visible 

directions from a given target position. Cavities and protrusions are defined as 

clusters of positions based on the level of their visibility. VisGrid provides a 

simple and robust method of comparing the relative geometric shapes and 

regions of potential functional significance for different protein structures. Fig. 

36B shows the first pocket detected in CheY. The BeF3
- bound structure and 

model both show a cavity near the center of the active site surface, but this 

cavity is largely absent in the apo structure. Fig. 36C shows a second pocket 

found on the β4-α4-β5 surface. While the pocket is detected in all three 

structures, it has a significantly altered shape and location in the apo structure. 

Fig. 36D shows a protrusion detected on the active site surface. This protrusion 

is formed by the loops adjacent to the active site. No large or continuous 

protrusion was detected at this location in the apo crystal structure. Similar 

comparisons were performed for each of the other rec domains from this study 

(data not shown). The predicted models closely matched the modified crystal 

structures for all members of the validation set. Nearly every unique structural 

difference identified between the modified and apo crystal structures was 

accounted for in the models, including regions of known functional 

significance. 
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Figure 37. Changes in physicochemical properties of PhoP-rec. 
Structures were aligned and partitioned into quadrants. View is of the same region on every 
structure. (A) Electrostatic surface potential calculated for the PhoP-rec crystal structures and 
the representative model. Shown is the β4-α4-β5 face. A ribbon representation of the BeF3

- 
bound structure of PhoP-rec (PDB 2PL1) is shown for reference. Negative potential is blue; 
positive potential is red. (B) Calculated hydrophobicity of the PhoP-rec active site surface. (C) 
Detected molecular cavity located on the β4-α4-β5 surface. This cavity is absent in the apo 
structure (PDB 2PKX:A). (D) Detected molecular cavity located near α5- α1. 
 



 

120 

 
 
Figure 38. Changes in physicochemical properties of FixJ-rec. 
Structures were aligned and partitioned into quadrants. View is of the same region on every 
structure. (A) Electrostatic surface potential calculated for the FixJ-rec crystal structures and 
the chosen representative model. Shown is the active site, and along the α5-α1 face. A ribbon 
representation of the phosphorylated structure of FixJ-rec (PDB 1D5W:A) is shown for 
reference. Negative potential is blue; positive potential is red. (B) Calculated hydrophobicity of 
the FixJ-rec active site surface, highlighting the drastic shape change upon phosphorylation. 
(C) Detected molecular cavity located at the surface of the active site. (D) Detected molecular 
protrusions located along the ridge of the β4-α4-β5 face. Positioning of the residues located 
near the β4-α4 loop (upper left) is critical for dimerization and function. (apo crystal PDB 
1DCK:A). 
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Figure 39. Changes in physicochemical properties of Sln1-rec. 
Structures were aligned and partitioned into quadrants. View is of the same region on every 
structure. No electrostatic potential differences were detected between the apo and BeF3

- 
bound crystal structures of Sln1-rec. (A) Detected molecular cavity located at the β4-α4-β5 
face, near the α5 helix. This cavity is absent in the apo crystal structure (PDB 1OXB:B). A 
ribbon representation of the active structure of Sln1-rec (PDB 2R25:B) is shown for reference. 
(B) Detected molecular cavity located on the active site surface. (C) Detected molecular 
protrusions located along the α5- α1 face. 
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Figure 40. Changes in physicochemical properties of Spo0F. 
Structures were aligned and partitioned into quadrants. View is of the same region on every 
structure. (A) Electrostatic surface potential calculated for the Spo0F crystal structures and the 
chosen representative model. Shown is the active site surface. A ribbon representation of the 
BeF3

- bound structure of Spo0F (PDB 2FTK:G) is shown for reference. Negative potential is 
blue; positive potential is red. (B) Detected molecular cavity located at the α4 helix. (C) 
Detected molecular cavity located at the α2-α3 surface. (D) Detected molecular protrusions 
located along the ridge of the β4-α4-β5 face. 
 

 
By combining comparisons of global structure, functionally relevant 

areas, physicochemical characteristics and local geometric features, we have 

demonstrated that the models predicted using the previously described 
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approach provide accurate representations of phosphorylated rec domain 

structures. Though changes are challenging to detect, the predictions are able 

to capture the key structural features associated with the phosphorylation of rec 

domains. The fact that these features are not detectable in the apo crystal 

structures shows the value that such models hold for guiding experimental 

studies. 

Phosphorylation of Ssk1-rec and comparison with the upstream Sln1-rec 

Having validated the new methodology, we then compared the rec 

domains of the upstream hybrid HK, Sln1, with the downstream RR, Ssk1, 

from the S. cerevisiae osmotic stress response pathway. Ssk1-rec is slightly 

unusual in that the phosphorylated conformation is the resting state, and 

activation occurs only upon dephosphorylation. While crystal structures of apo 

and BeF3
- bound Sln1-rec exist [4, 33], no structure is currently available for 

the Ssk1-rec domain. A homology model for apo Ssk1-rec was generated using 

the Phyre2 server as an alternative [71]. Though they share little overall 

sequence similarity, Ssk1-rec possesses a canonical rec domain at residues 

506-651 that aligns well with Sln1-rec, except for a short, 22-residue loop 

(residues 580-603) between α3 and β4 on the surface distal to the active site. 

This loop consistently modeled poorly and was excluded from the final 

structure prediction. 

We subjected the apo Ssk1-rec model to energy minimization and 

equilibration to alleviate any non-physiological structural features or model 
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bias produced by homology modeling. The resulting structure was validated 

with the Verify3D server [72]. Ramachandran plots generated with 

RAMPAGE indicated that ~99% of residues fell within favored or allowed 

regions [73]. This “relaxed” model was phosphorylated and used for restrained 

MD. Trajectories were analyzed and clustered to extract candidate structures 

for phosphorylated Ssk1-rec. A final representative medoid was chosen based 

on the previously described criteria. We then compared this model and the 

dynamic information obtained from the simulations with the Sln1-rec data, to 

provide insight into the components of the fungal signaling pathway. 

 

Figure 41. Dynamical cross-correlation maps for Sln1-rec and Ssk1-rec. 
Positive correlation (yellow/green) suggests movement in phase, or in the same direction. 
Negative correlation (blue/black) suggests movement out of phase, or along the opposite 
direction. α-helix (cyan); β-strand (magenta). 
 

The characteristic pattern of positively correlated motion found in all 

rec domains can be seen in the DCCM for Ssk1-rec (Fig. 41). Additional 

patches were also observed between the β1 strand with the α2 helix, and the β3 

strand with the α4β5 region. None of the other rec domains in this study 

displayed positively correlated motion in these areas. Ssk1-rec also 
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demonstrated a large network of negatively correlated movements, far more 

extensive than in Sln1-rec. These areas of negative correlation correspond to 

the β1 strand with the α5 helix, the β1 strand with the α3 helix/loop, the α1 

helix/loop with the β3 strand, the α1 helix/loop with the β4 loop/strand, the α1 

helix/loop with the β5 strand, the entire β2-α2-β3 region with the α3β4 region, 

the entire β4-α4-β5 region with the α5 helix, and the α5 helix with the β1, β2 

and β3 strands. The results suggest that Ssk1-rec undergoes a multitude of 

significant collective movements in its phosphorylated state, in addition to the 

characteristic perturbations at the β4-α4-β5 surface. Ssk1-rec and Sln1-rec 

appear to share negatively correlated motions between their α2 and α3 regions 

and their α4 and α5 regions, though in both cases the affected areas are larger 

in Ssk1-rec.  

The differences seen in the collective motions of Ssk1-rec and Sln1-rec 

are likely attributable to the distinct functional roles of each protein. Sln1-rec, 

as part of a hybrid HK, interacts with its upstream donor (its own catalytic 

kinase domain) and downstream acceptor (the HPt protein, Ypd1) through a 

common binding surface formed by the loops adjacent to the active site and 

portions of the α1 and α5 helices. The interface between the rec and HK 

domains of Sln1 is likely similar, though no structure currently exists for the 

complex. The concentrated regions of negatively correlated motion seen in 

Sln1-rec are localized to these relatively small areas. We speculate that this is 

due to the presence of only the single binding surface. In contrast, Ssk1-rec 
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must bind the upstream Ypd1, the downstream Ssk2 and possibly its own 

extensive N-terminal domain. The Ypd1 binding interface is known to be 

homologous to Sln1-rec, formed at the active site surface by adjacent loop 

regions [4]. However, mutational studies by Horie et al. (2008) suggest that the 

Ssk2 binding site is located elsewhere on the rec domain [119]. The same 

researchers also determined that Ssk1 forms a homodimer in solution, though 

whether the dimerization interface is a part of the rec domain or the N-terminal 

region is unknown. These multiple regions of functional significance likely 

correspond to the far more complex network of collective motions detected in 

phosphorylated Ssk1-rec. 

 Most significant structural changes induced by phosphorylation in 

Ssk1-rec were centered around the β4-α4-β5 region, with the β4α4 loop and N-

terminal portion of the α4 helix undergoing a dramatic shift away from the α4-

β5-α5 face. Large changes also occurred in the α1, α2 and C-terminal half of 

α5 helices. Smaller shifts were observed in the N-terminal portion of the α3 

helix and the β1α1, β3α3 and β5α5 loops. Fig. 42 shows a structural alignment 

of the top representative structure and the apo Ssk1-rec model. Visually, the 

shift in the α4 helix and loop is far more dramatic than in Sln1-rec. The α1, α2 

and α5 helices of Ssk1-rec may also be functionally important, as their shifts 

correspond to strong, broad collective motions not seen in Sln1-rec. Surface 

analysis shows that phosphorylated Ssk1-rec forms additional protrusions on 

the β4α4 loop and helix, the β5α5 loop and down the α5 helix (data not 
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shown). Additionally, the α4-β5-α5 surface cavity undergoes significant shape 

changes (data not shown).  

 

Figure 42. Structural alignment of predicted model and apo Ssk1-rec. 
Final predicted model (orange). Homology model of apo Ssk1-rec (green). 

 

Horie et al. (2008) discovered a mutation (D628G) on Ssk1-rec that 

abolished binding with Ssk2 and inhibited the activation of Ssk2 by wild-type 

Ssk1-rec through dimerization [119]. This suggests that the likely binding 

surface for Ssk2 is located on the α4-β5-α5 surface of Ssk1-rec. The D628G 

mutation occurs next to the aromatic switch residue, Tyr629. The authors 

hypothesized that replacing this aspartate with a glycine locks the protein into 

a conformation that is unable to bind Ssk2. They also speculated that 

phosphorylation induces a similar shift, possibly through the characteristic 

rotamerization of the aromatic switch residue. Our results may shed further 

light on this phenomenon.  
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Surprisingly, Tyr629 did not rotamerize in any of the phosphorylated 

simulations, remaining completely solvent-exposed in both phosphorylated and 

apo conformations. We speculate that this is caused by the severe shift of the 

β4α4 loop and α4 helix upon phosphorylation. Unlike most of the other rec 

domains, the pocket created by the shift of the Thr/Ser switch residue in Ssk1-

rec is significantly less hydrophobic due to Lys618. In the apo Ssk1-rec 

structure, the side chains Lys618 and Tyr629 are hydrogen-bonded and 

solvent-exposed, pointing outwards. Upon phosphorylation, the 

conformational change causes Lys618 to shift up and in, partially occupying 

the pocket that would normally be filled by the rotamerized Tyr629 and 

forming hydrogen bonds with residues on the α4 helixand β4α4 loop. PhoP-rec 

contains a similar organization with residues Lys87 and Tyr98, though it lacks 

the dramatic shift in the α4 helix upon phosphorylation. Because of this, Lys87 

never enters the pocket, and Tyr98 is able to rotamerize and satisfy an 

additional hydrogen bond with Arg81. These results suggest that unlike the 

majority of rec domains, Tyr629 is incapable of rotamerizing while Ssk1-rec is 

phosphorylated. This may be related to Ssk1-rec requiring dephosphorylation 

to activate further downstream binding. 

Although Asp628 does not appear to affect the rotamerization of 

Tyr629, it may play a role in the overall conformational change that occurs in 

the α4-β5-α5 surface. Comparison of the Ssk1-rec models reveals that 

phosphorylation causes the α4 and α5 helices to shift away from the β5 strand 
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in an opening motion. The DCCM also shows negatively correlated motion 

between several areas on the α5 helix and the β5 strand (Fig. 41), including 

Asp628. In the representative phosphorylated model, the side chain of Asp628 

forms an hydrogen bond with Trp646 on the α5 helix. Lys642 is also near, 

potentially creating an additional salt bridge. We compared brief trajectories of 

phosphorylated and unphosphorylated Ssk1-rec to investigate the role of 

Asp628 (data not shown) . When phosphorylated, Asp628 forms a salt bridge 

with Lys642 in ~67% of frames, and a hydrogen bond with Trp646 in ~32% of 

frames. When unphosphorylated, Asp628 forms a salt bridge with Lys642 in 

~85% of frames, and a hydrogen bond with Trp646 in ~84% of frames. These 

preliminary numbers suggest a significant change in interaction stability 

corresponding to the α5 helix shifting closer to the β5 strand upon 

dephosphorylation. We speculate that mutating Asp628 to glycine abolishes 

this effect, preventing binding to Ssk2 through the α4-β4-α5 surface. 

2.4 Conclusions 

We have presented a computational methodology that utilizes biased 

molecular dynamics to predict the phosphorylated conformations of response 

regulator rec domains. This approach uses multiple half-harmonic restraints to 

drive formation of the conserved rec domain active site. This rearrangement 

pulls the rest of the protein into its phosphorylated state, allowing sampling of 

modified conformations on a nanosecond timescale. The biasing terms make 

these studies accessible to research laboratories that may lack the specialized 
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equipment and experience required to observe this process on the millisecond 

timescale on which it normally occurs. We validated this technique on five 

diverse, well-characterized rec domains: CheY, PhoP-rec, FixJ-rec, Sln1-rec 

and Spo0F. Cross-correlation analysis revealed areas of correlated motion that 

have been implicated in phosphorylation-mediated behavior for the five rec 

domains. This information can be used to guide further experimental studies 

towards areas of functional interest. We extracted representative models for 

each rec domain and compared them to the existing crystal structures using 

global structure, switch residue and quartet residue orientations, active site 

geometry, loop conformations and physicochemical surface properties to 

demonstrate the accuracy of the predictions. The models closely matched the 

experimentally-determined structures of the conformationally modified rec 

domains in all aspects, validating the approach and suggesting that an induced 

fit model of conformational switching is sufficient to sample these transient 

phosphorylated conformations. Researchers studying two-component signaling 

pathways can use this approach to gain structural insight into specific rec 

domain characteristics, such as changes in surface properties and binding 

surface accessibility. We demonstrated this by comparing the known and 

predicted structures of the S. cerevisiae signaling proteins, Sln1-rec and Ssk1-

rec, respectively. This information allows for more complete analysis of the 

functional differences in these two rec domains in the absence of experimental 

structural data. We predict that this approach can also be applied to signaling 
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complexes, to study changes in protein-protein interactions within two-

component signaling systems as rec domains transition from apo to 

phosphorylated conformations. 
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Chapter 3: Simulating complexes from the Sln1 pathway 

3.1 Introduction 

In bacteria and certain eukaryotes, two-component signaling (TCS) is 

the most prevalent strategy for sensing and adapting to environmental stimuli 

[1, 2]. Signal transduction occurs through serial phosphorylation, facilitated by 

an upstream histidine kinase (HK) and a downstream response regulator (RR) 

protein (reviewed in [1]). The HK detects a specific stimulus, internalizes the 

signal, and responds by binding ATP and autophosphorylating on a histidine 

residue. The phosphoryl group is then passed to an aspartate on the receiver 

(rec) domain of an RR, which modulates the cellular response. Some 

organisms, like plants, fungi and certain bacteria, use an expanded version of 
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this system called a multi-step phosphorelay. These systems incorporate 

multiple phosphotransfer events into a single pathway [1, 2]. This more 

complex architecture coincides with the introduction of an intermediate 

signaling module known as a histidine phosphotransfer (HPt) protein [3, 4]. 

The HPt is a non-enzymatic domain containing a phosphorylatable histidine 

residue that acts as a relay point between the upstream and downstream 

components. In plants and fungi, HPt proteins often occupy branch positions in 

signaling pathways, transferring phosphoryl groups to multiple downstream 

RRs [5-8]. To prevent cross-talk between multiple partners and individual 

pathways, these interactions must be tightly regulated and/or highly specific 

[5-9]. The widespread use and importance of two-component signaling in the 

microbial world has drawn considerable attention in recent years. The absence 

of any known TCS systems in animals makes them ideal therapeutic targets 

against both pathogenic bacteria, such as Bacillus anthracis [9, 10], 

Clostridium difficile [11] and Staphylococcus aureus [12], as well as 

pathogenic fungi, such as Cryptococcus neoformans [13] and Candida 

albicans [14-16]. 

Saccharomyces cerevisiae has long been used as a model organism for 

research on two-component signaling, due to both its genetic tractability and 

its use of a single TCS system [17, 18]. Discovered in the 1990s, the Sln1 

pathway is a branched, multi-step phosphorelay involved in the fungal 

osmoregulatory response [19-21]. At the head of the pathway is a membrane-
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bound, hybrid sensor HK known as Sln1. The intermediate HPt protein, Ypd1, 

occupies a branch position, acting as a relay between the upstream Sln1 and 

two different downstream RR proteins, Ssk1 and Skn7 [3, 4]. How Ypd1 is 

able to differentiate between these multiple partners is of significant interest to 

researchers. Each rec domain is highly homologous structurally, though 

sequence similarity is only ~20-30%. Yeast two-hybrid data suggest that each 

rec domain in the Sln1 pathway shares a common hydrophobic docking site on 

Ypd1, formed by regions of the αA, αB and αC helices [22]. This appears to be 

a conserved feature of most HPt domains, as evidenced by studies on E. coli 

ArcB [23] and CheA-P1 [24, 25]. Reconstitution of the Sln1 pathway in vitro 

has allowed for limited biochemical and kinetic characterization of the proteins 

involved. The following provides a brief overview on the two best-

characterized rec domains, Sln1-rec and Ssk1-rec, and their interactions with 

Ypd1. 

Sln1 is a prototypical homodimeric, hybrid HK found at the head of the 

pathway [20]. The N-terminal portion contains an extracellular sensor domain 

linked to the C-terminal catalytic kinase and rec domains through a helical 

trans-membrane region. Under normal conditions, the kinase actively binds 

ATP and constitutively autophosphorylates on His576 within its catalytic 

region [18, 20]. As a hybrid HK, it then transfers the phosphoryl group to the 

phospho-accepting Asp1144 within its own C-terminal rec domain [21]. The 

ability of many rec domains to utilize small molecule phospho-donors, like 
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acetyl phosphate, suggests that this final step is catalyzed by the rec domain 

itself [26]. The phosphorylated rec domain then dissociates from the HK and 

binds to the downstream HPt, Ypd1 [27]. In the presence of hyperosmotic 

stress, the Sln1 kinase activity is diminished, allowing the accumulation of 

unphosphorylated downstream elements (reviewed in [28]).  

 Occupying an intermediate position in the pathway, the standalone 

Ypd1 is a relatively small (167 residue) protein that adopts the canonical four-

helix bundle characteristic of most HPt domains. The phospho-accepting His64 

is located in a surface-exposed region upon the αC (third) helix [29]. The 

adjacent surface forms the bulk of the binding site for the three rec domains 

within the pathway [22]. Phosphotransfer between Sln1-rec and Ypd1 occurs at 

a maximum rate of 29 ± 3 s-1 during the forward reaction [30]. While reverse 

transfer is possible and observable, based on in vitro experiments (maximum 

rate of 230 ± 130 s-1), the rapid dissociation of Sln1-rec and Ypd1 (~30x faster 

than the reverse transfer rate) ensures that 97% of Ypd1 remains 

phosphorylated [30]. The experimentally determined binding affinity of Ypd1 

and Sln1-rec (Kd = 1.4 μM) classifies the complex as a weak-transient 

interaction, typical of a two-component signaling pathway ([30], West lab 

unpublished data). The combination of these factors results in a net forward 

direction of phosphotransfer within the upstream portion of the relay, moving 

from kinase to rec domain to HPt protein (Sln1-HK → Sln1-rec → Ypd1). 
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 Located at the tail end of the Sln1 pathway, Ssk1 is a cytoplasmic, 

multi-domain RR protein (712 residues) that incorporates a large, N-terminal 

region of unknown function with a conserved, C-terminal rec domain [20]. The 

C-terminal region adopts the canonical (βα)5 topology shared by most rec 

domains (see Chapter 2), formed by a five-stranded β-sheet flanked by five 

amphipathic α-helices. The N-terminal regions of β1, β3 and β5 contain the 

conserved phosphorylatable aspartate residue (Asp554) and form the bulk of 

the Ypd1 binding surface. Under normal osmotic conditions, Ssk1-rec is 

constitutively phosphorylated, suppressing its ability to interact with the 

downstream MAP3Ks, Ssk2 and Ssk22 [20]. In response to osmotic shock, the 

accumulation of unphosphorylated Ssk1-rec activates Ssk2/22, which in turn 

activate the HOG pathway, resulting in the production of intracellular glycerol 

and the restoration of osmotic balance [20, 28]. 

Rapid-quench phosphotransfer experiments indicate that forward 

transfer from Ypd1 to Ssk1-rec occurs at a maximum rate of 160 ± 70 s-1 [30]. 

Interestingly, no reverse transfer was observable under the same conditions 

[30]. Unlike the upstream components, the experimentally determined binding 

affinity of Ypd1 and Ssk1-rec (Kd = 25 nM) is much stronger, indicative of a 

strong-transient interaction ([31], Katie Branscum, unpublished data). The 

kinetic data suggest that Ypd1 and Ssk1-rec spend a significant percentage of 

time in complex with each other. Overall, these characteristics propagate a 

strong forward direction of phosphotransfer within the pathway, from HPt to 



 

150 

downstream rec domain (Ypd1 → Ssk1-rec). In vitro radiolabeled 

phosphotransfer assays have shown that Ypd1 exhibits a significant kinetic 

preference for Ssk1-rec over both Sln1-rec and the pathway’s other RR 

protein, Skn7-rec [30]. 

In addition to this unidirectional kinetic preference, phosphorylated 

Ssk1-rec exhibits an altered stability under certain conditions [32]. In vitro 

experiments suggest that the Sln1-rec, Ssk1-rec and Skn7-rec domains 

individually exhibit comparable phosphorylated half-lives of approximately 

10-15 minutes. This is likely due to the chemical lability of the 

phosphoaspartate species, which is prone to rapid hydrolytic 

autodephosphorylation in solution [33]. However, the presence of Ypd1 

dramatically extends the half-life of phosphorylated Ssk1-rec to over 40 hours 

(likely longer, but not observable due to degradation). This effect was not 

observed for either Sln1-rec or Skn7-rec [32]. 

The strong kinetic preference and stabilization of phosphorylated Ssk1-

rec by Ypd1 are understandable from a physiological standpoint. As described 

above, Ssk1-rec must remain in a phosphorylated state to prevent unnecessary 

activation of the HOG pathway, as uncontrolled glycerol production would 

ultimately lead to cellular death [20, 28]. The high binding affinity and 

phosphostabilizing effect between Ypd1 and Ssk1-rec suggest that the proteins 

form a relatively stable complex, effectively shielding the phosphoaspartate 

from hydrolysis and sequestering the rec domain in an “inactive” state. When 
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cells are exposed to hyperosmotic conditions, the rapid efflux of water alters 

intracellular osmolyte concentrations and suppresses Sln1 kinase activity [28]. 

Without the upstream source of phosphoryl groups, unphosphorylated Ssk1-rec 

accumulates. In addition, increased concentrations of salt and glycerol are 

known to negatively affect the interaction between Ssk1-rec and Ypd1, 

removing the stabilizing effect on the phosphoaspartate [34]. The accumulation 

of unphosphorylated Ssk1-rec ultimately triggers the HOG pathway, resulting 

in the activation of genes involved in intracellular glycerol production and a 

return to osmotic balance. At higher concentrations (~1.0 M salt/glycerol), the 

previously destabilizing osmolytes were found to actually stabilize the 

interaction of Ssk1-rec and Ypd1, suggesting a regulatory mechanism for 

returning the pathway to homeostasis [34]. 

The co-crystal structures between the upstream Sln1-rec and Ypd1 

provided valuable insights into the mechanisms governing the Sln1 pathway 

[29, 35]. However, little was revealed that might explain key differences 

between the interactions of Ypd1 with Sln1-rec and Ssk1-rec. Recently, a 

beneficial point mutation was discovered on Ssk1-rec (W638A) that allowed 

for the successful co-crystallization and structural characterization of Ssk1-rec 

W638A and Ypd1 (Katie Branscum, Smita Menon, unpublished). This 

complex structure explained much about the unique interface features between 

Ypd1 and its downstream partner, confirming and elaborating on the 

significant role that electrostatics play in their interaction. The Ssk1-rec 
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W638A mutant was characterized as a pseudo-wild-type variant, due to its 

comparable binding affinity and phosphotransfer ability. In addition, 

phosphorylated Ssk1-rec W638A is similarly stabilized by the presence of 

Ypd1. However, in vitro radiolabeled phosphotransfer assays indicate that 

reverse transfer from Ssk1-rec W638A to Ypd1 is possible, though to what 

extent is unknown. 

Our understanding of the differences between Sln1-rec and Ssk1-rec 

function remains incomplete. Comparisons between the co-crystal complexes 

have shown structural features unique to each rec domain that help explain the 

differences in binding affinity and responses to osmolyte concentration. 

However, the static nature of the structures does not reveal how these features 

affect the interactions of the active sites. Outstanding questions that remain to 

be answered include how Ypd1 is able to stabilize the phosphorylated state of 

Ssk1-rec, as well as what causes the unidirectional nature of phosphotransfer 

within the pathway. In addition, the full effect of the W638A mutation is 

unknown. These gaps in knowledge highlight one of the most significant 

disadvantages of X-ray crystallography, that it provides only a snapshot of the 

protein in question. Dynamic structural information would provide valuable 

insight into these phenomena, allowing for a more complete characterization of 

the signaling pathway. 

To the best of our knowledge, of the ~300,000 rec domain sequences 

within the NCBI database [36], approximately a dozen have been solved in co-
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crystal structures with their cognate partner (either a phosphodonor or 

acceptor) [37]. Of these, only three also possess a co-crystal structure with the 

rec domain in a “phosphorylated” state [35, 38, 39]. This lack of structural 

information, particularly of allosterically modified conformations, is likely due 

to the difficulties of successfully co-crystallizing these signaling complexes. 

The chemical lability of phosphoaspartate also makes capturing a true 

“phosphorylated” rec domain challenging [33]. A previously proposed 

methodology (described and validated in Chapter 2) can be used to overcome 

this difficulty. Briefly, biased molecular dynamics can be used to directly 

sample rec domain phosphorylated conformations [40-42]. Phosphotransfer 

and rec domain activation occurs on high microsecond to low millisecond time 

scales [43-45]. Simulating such time scales is still largely impractical for the 

majority of the scientific community. Through the application of conserved 

active site restraints on the rec domain, we can drive the protein towards its 

phosphorylated conformation, enhancing sampling and reducing the 

conformational search space [35, 46, 47]. This same principle can be used to 

observe how phosphorylation and activation affect interaction between the rec 

domain and its cognate partners. We must stress that the application of the 

active site restraints is simply a tool to enhance and direct sampling towards 

the active conformations. These same conformations are theoretically 

accessible in unrestrained simulation, assuming proper phosphoaspartate 

parameters are used. However, the nature of rec domain activation would 
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require microsecond if not millisecond time scale simulations to adequately 

sample. Previous work indicates that applying even a few active site restraints 

reduces the required sampling time to within 100 ns. It also suggests that fully 

active conformations likely cannot be reliably accessed on this time scale 

without the full set of restraints. 

The purpose of this work is to more fully characterize the regulatory 

interactions between Ypd1 and its upstream and downstream partners, Sln1-rec 

and Ssk1-rec. Combining biased MD and experimentally determined structural 

data, we simulated the activation of three artificially phosphorylated rec 

domains while in complex with Ypd1 (Sln1-rec, Ssk1-rec, and Ssk1-rec 

W638A). In addition, unrestrained simulations were performed on the apo 

complexes for comparative purposes. The dynamic data were then used to 

provide putative explanations for the unidirectional nature of the Sln1 multi-

step phosphorelay, the role of Ypd1 in the stabilization of phosphorylated 

Ssk1-rec, and the mechanistic effects of the W638A mutation found in the 

recently obtained co-crystal structure. This information provides useful 

insights into the regulatory mechanisms of the Sln1 pathway, potential targets 

for future experimental studies and a further proof of concept for applying the 

biased MD methodology to signaling complexes. 
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3.2 Materials and Methods 

Modeling and preparation 

Initial crystal structures. Co-crystal structures of Sln1-rec•Ypd1 and 

Ssk1-rec W638A•Ypd1 were obtained from the PDB [37]. Sln1-rec has been 

crystallized in both an apo and BeF3
- bound “active” form [29, 35]. 

Coordinates for the divalent metal cation (Mg2+) during the Sln1-rec 

simulations were copied from the existing BeF3
- bound structure. The Ssk1-rec 

W638A structure is only available in the apo form. To obtain the wild-type 

Ssk1-rec structure, the Ala638 in the crystal structure was mutated back to a 

tryptophan residue manually. The existing crystal structure of Ssk1-rec 

W638A•Ypd1 does not contain electron density for residues ~110-130 on 

Ypd1 and ~580-600 on Ssk1-rec. Both of these regions make up highly 

flexible loops located on surfaces distal to the binding interface and active 

sites. These segments were omitted from the Ssk1-rec•Ypd1 simulations. 

Coordinates for the metal cation in the Ssk1-rec models were obtained by 

aligning the rec domain structures with the BeF3
- bound Sln1-rec and simply 

copying the metal atom [35]. 

Protein-protein docking. To demonstrate the viability of applying this 

methodology to a previously unknown dimeric structure, and to act as a control 

for the Sln1-rec•Ypd1 simulations, the High Ambiguity Driven protein-protein 

DOCKing (HADDOCK) server was used to dock known monomers of Sln1-

rec and Ypd1, taken from the crystal structure (PDB 1OXB) [29, 48]. Likely 
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intermolecular contacts were identified as highly conserved positions found 

within all three rec domains (Sln1-rec, Ssk1-rec and Skn7-rec) that are known 

to be located at the interface with Ypd1, based on existing crystal structure. 

These residues were used as ambiguous interaction restraints (AIRs) to guide 

the HADDOCK complex docking protocol. For Ypd1, AIRs were identified 

using yeast two-hybrid data showing critical residues required for interaction 

with Sln1-rec in vivo [22]. The following lists the residues used as active 

restraints. Passive restraints were automatically determined as adjacent 

residues. 

 

Sln1-rec residues used as active restraints: 

Asp1095, Asn1096, Asn1099, Asp1144, Pro1148, Lys1195, Pro1196 

Ypd1 residues used as active restraints:  

Ile13, Glu16, Met20, Asp21, Asp23, Asp24, Glu27, Leu31, Gln38, Asp60, 

Phe65, Lys67, Gly68, Ser69, Ser70, Leu73, Gln76, Trp80, Glu83 

 

To demonstrate the utility of this method in sampling a true active complex, 

even when the starting structure is an imperfectly docked model, the inactive 

subunit of Sln1-rec in the Sln1-rec•Ypd1 HADDOCK model was then replaced 

with a “pre-activated” Sln1-rec chosen from the top representative structures 

predicted in Chapter 2. This generated an imperfect co-complex, with the 
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phosphodonor and acceptor atoms out of alignment. The model was then 

simulated as described below. 

System preparation. Starting models were prepared from inactive 

crystal structures unless otherwise described. Phosphoaspartate was modeled 

into the active sites with Coot [49]. A Mg2+ atom was also added based on 

available experimental coordinates from the co-crystal structure of Sln1-rec 

and Ypd1 bound to BeF3
- (PDB 2R25)[35]. As shown in Chapter 2, precise 

positioning of the metal cation is not critical for the activation of the protein as 

long as the metal is present near the active site. Structures were stripped of all 

other crystallographic waters, ligands and subunits prior to preparation and 

simulation. 

Dowser was used to fill internal water cavities with a probe radius of 

0.2 Å [50, 51]. The SOLVATE program was then used to create a contoured 

solvent shell around each model with a shell thickness of 6.0 Å calculated 

using 6 gaussians [41]. Systems were loaded into VMD and processed using 

the AutoPSF plug-in [52]. Finally, structures were immersed in a full 

orthorhombic water box with 15.0 Å padding on each side using a TIP3P water 

model with the VMD solvate plug-in [52]. Systems were neutralized and 

K+/Cl- ions were added to a final concentration of 100 mM using the VMD 

Autoionize plug-in [52]. 

Phosphoaspartate. Parameters for dianionic phosphoaspartate (AST) 

were defined for the CHARMM36 force field based on Damjanović et al. 
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(2009) [53-55]. For a full list of partial charges used for AST, see Table 3 in 

Chapter 2.  

Molecular dynamics 

Simulations. Simulations were prepared and run using VMD and 

NAMD 2.9 [52, 56] with the CHARMM36 protein force field [53, 54]. A 12.0 

Å cutoff was used for van der Waals interactions with a switching function 

distance of 10.0 Å. Long-range electrostatics were evaluated using the PME 

(Particle Mesh Ewald) method with a tolerance, interpolation order and grid 

spacing of 10e-6, 4.0 and 1.0 Å, respectively. A two fs integration step was 

used for all simulations. The SHAKE algorithm was applied to constrain 

covalent bonds involving hydrogen atoms throughout. Initial energy 

minimization was performed on non-backbone atoms for 100 ps of NVT MD. 

An all-atom minimization step was then done for an additional 100 ps of NVT 

MD with harmonic constraints of 0.5 kcal/mol applied to all Cα atoms. 

Following this, systems were heated to 310 K by increments of 1 K/ps over 

approximately 310 ps of NVT MD. Equilibration was then performed with Cα 

atoms restrained for 500 ps of NPT MD. A final, unrestrained equilibration 

step of 4 ns NPT MD was run to prepare systems for production. A total of 50-

100 ns of effective production data were then collected following equilibration 

in 10 ns partial runs. 

The following table lists the multiple setups for each simulation. 

Systems were simulated under identical conditions unless otherwise specified. 
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Table 11. Simulations variants performed in this study. 

Proteins used Initial model source Ligands present 
Sln1-rec•Ypd1 Crystal (PDB 1OXB) Mg2+, PO3

2- 

Sln1-rec•Ypd1 Crystal (PDB 1OXB) N/A 

Sln1-rec•Ypd1 HADDOCK* (model) Mg2+, PO3
2- 

Ssk1-rec•Ypd1 Crystal (unpublished) Mg2+, PO3
2- 

Ssk1-rec•Ypd1 Crystal (unpublished) N/A 

Ssk1-rec W638A•Ypd1 Crystal (unpublished) Mg2+, PO3
2- 

Ssk1-rec W638A•Ypd1 Crystal (unpublished) N/A 
*An “pre-activated” model of Sln1-rec was first inserted into a docked complex between Ypd1 
and Sln1-rec predicted using experimentally determined restraints. The complex was them 
simulated as previously described. 

 
 

Simulation restraints. Biasing terms were applied during the 

simulations to enrich sampling of active rec domain conformations. Restraints 

are frequently used to steer systems towards desired states for study. Kinetic 

data suggest that phosphotransfer and rec domain conformational transitions 

occur on millisecond time scales [41, 45]. Simulating such events at all-atomic 

resolutions is impractical for most research laboratories. The application of 

restraints can reduce the amount of time required by decreasing the 

conformational search space. In NAMD, parameters that regulate this are 

known as collective variables (colvars) [57]. Using the colvars module, we 

applied half-harmonic potential restraints to Sln1-rec and Ssk1-rec during 

simulation to drive the formation of the appropriate active site geometry. 

Table 12 provides a brief summary of these restraints. Formatted colvars input 

files (.in) are also provided for both Sln1-rec and Ssk1-rec. These colvars 
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parameters were chosen to successfully achieve a phosphotransfer-competent 

active site geometry. 

Table 12. Summary of colvars applied to drive active site formation. 

Type Group1 atoms* Group2 atoms Boundaries 
Distance Asp1144 OD1 Mg2+ 1.9-2.2 Å 

CoordNum Asp1144 PO3
2- Mg2+ 1 group 

Distance Mg2+ COM 0.0-0.1 Å 

Distance Ala1174 N Asp57 OP2 2.0-3.3 Å 

CoordNum Asp1095 R Mg2+ 1 group 

Distance Asp1095 OD1 Mg2+ 0.0-2.2 Å 

Distance Asp1144 OP1 Mg2+ 0.0-2.2 Å 

Distance Asp1094 OE1 Mg2+ 0.0-2.2 Å 

Distance Asp1146 O Mg2+ 0.0-2.2 Å 
*Residue numbers based on Sln1-rec 

 

Formatted NAMD colvars (.in) file for Sln1-rec. 
 
colvarsTrajFrequency   5000 
colvarsRestartFrequency  5000 
 
colvar { 
name asp1144od1_to_mg  #distance of carbonyl to mg 
width 0.1 
 
lowerboundary 1.9 
upperboundary 2.2 
lowerWallConstant 100.0 
upperWallConstant 100.0 
 
distance { 
group1 { atomNumbers 3595 } 
group2 { atomNumbers 2673 } 
} 
} 
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colvar { 
name asp1144phos_coord_to_mg #coordination of phosphoryl to mg 
 
lowerboundary 0.0 
upperboundary 1.0 
lowerWallConstant 100.0 
upperWallConstant 100.0 
coordNum { 
group1 { atomNumbers 3598 3599 3600 } 
group2 { atomNumbers 2673 } 
cutoff 3.3 
} 
} 
 
colvar { 
name mgcom    #anchor mg to its own starting 
coordinates 
width 0.001 
 
lowerboundary 0.0 
upperboundary 0.1 
lowerWallConstant 1000.0 
upperWallConstant 1000.0 
 
distance { 
group1 { atomNumbers 2673 } 
group2 { dummyAtom (-6.600, 5.708, 12.497) } 
} 
} 
 
colvar { 
name ala1174n_to_asp1144ot  #distance of ala to phosphoryl ot 
width 0.001 
 
lowerboundary 2.6 
upperboundary 2.8 
lowerWallConstant 100.0 
upperWallConstant 100.0 
 
distance { 
group1 { atomNumbers 4069 } 
group2 { atomNumbers 3599 } 
} 
} 
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colvar { 
name asp1095_coord_to_mg  #coordination of asp to mg 
 
lowerboundary 0.0 
upperboundary 1.0 
lowerWallConstant 100.0 
upperWallConstant 100.0 
coordNum { 
group1 { atomNumbers 2817 2818 2819 } 
group2 { atomNumbers 2673} 
cutoff 3.3 
} 
} 
 
colvar { 
name asp1144o1p_to_mg  #distance of asp to mg 
width 0.05 
 
lowerboundary 2.2 
upperboundary 2.3 
lowerWallConstant 100.0 
upperWallConstant 100.0 
 
distance { 
group1 { atomNumbers 3598 } 
group2 { atomNumbers 2673 } 
} 
} 
 
colvar { 
name asp1095od1_to_mg  #distance of asp to mg 
 
lowerboundary 0.0 
upperboundary 2.2 
lowerWallConstant 1000.0 
upperWallConstant 1000.0 
 
distance { 
group1 { atomNumbers 2818 } 
group2 { atomNumbers 2673 } 
} 
} 
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colvar { 
name gln1146co_to_mg #distance of mainchain carbonyl (d+2) to mg 
 
lowerboundary 0.0 
upperboundary 2.2 
lowerWallConstant 100.0 
upperWallConstant 100.0 
 
distance { 
group1 { atomNumbers 3635 } 
group2 { atomNumbers 2673 } 
} 
} 
 
colvar { 
name glu1094oe1_to_mg  #distance of glu to mg 
 
lowerboundary 4.0 
upperboundary 4.5 
lowerWallConstant 100.0 
upperWallConstant 100.0 
 
distance { 
group1 { atomNumbers 2806 } 
group2 { atomNumbers 2673 } 
} 
} 
 

Formatted NAMD colvars (.in) file for Ssk1-rec. 
 
colvarsTrajFrequency  5000 
colvarsRestartFrequency 5000 
 
colvar { 
name asp554od1_to_mg  #distance of asp to mg 
width 0.1 
 
lowerboundary 1.9 
upperboundary 2.2 
lowerWallConstant 100.0 
upperWallConstant 100.0 
 
distance { 
group1 { atomNumbers 4884 } 
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group2 { atomNumbers 9 } 
} 
} 
 
colvar { 
name asp554phos_coord_to_mg #coordination of phosphoryl to mg 
 
lowerboundary 0.0 
upperboundary 1.0 
lowerWallConstant 100.0 
upperWallConstant 100.0 
coordNum { 
group1 { atomNumbers 12 13 14 } 
group2 { atomNumbers 4884 } 
cutoff 3.3 
} 
} 
 
colvar { 
name mgcom    #anchor mg to its own starting 
coordinates 
width 0.001 
 
lowerboundary 0.0 
upperboundary 0.1 
lowerWallConstant 1000.0 
upperWallConstant 1000.0 
 
distance { 
group1 { atomNumbers 4884 } 
group2 { dummyAtom (29.561, 74.060, 50.744) } 
} 
} 
 
colvar { 
name ala611n_to_asp554ot  #distance of ala to phosphoryl 
width 0.001 
 
lowerboundary 2.6 
upperboundary 2.8 
lowerWallConstant 100.0 
upperWallConstant 100.0 
 
distance { 
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group1 { atomNumbers 4093 } 
group2 { atomNumbers 13 } 
} 
} 
 
colvar { 
name asp511_coord_to_mg  #coordination of asp to mg 
 
lowerboundary 0.0 
upperboundary 1.0 
lowerWallConstant 100.0 
upperWallConstant 100.0 
coordNum { 
group1 { atomNumbers 2746 2747 2748 } 
group2 { atomNumbers 4884} 
cutoff 3.3 
} 
} 
 
colvar { 
name asp554o1p_to_mg  #distance of asp to mg 
width 0.05 
 
lowerboundary 2.2 
upperboundary 2.3 
lowerWallConstant 100.0 
upperWallConstant 100.0 
 
distance { 
group1 { atomNumbers 4884 } 
group2 { atomNumbers 12 } 
} 
} 
 
colvar { 
name asp511od1_to_mg  #distance of asp to mg 
 
lowerboundary 0.0 
upperboundary 2.2 
lowerWallConstant 1000.0 
upperWallConstant 1000.0 
 
distance { 
group1 { atomNumbers 4884 } 
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group2 { atomNumbers 2747 } 
} 
} 
 
colvar { 
name gln556co_to_mg #distance of mainchain carbonyl (d+2) to mg 
 
lowerboundary 0.0 
upperboundary 2.2 
lowerWallConstant 100.0 
upperWallConstant 100.0 
 
distance { 
group1 { atomNumbers 4884 } 
group2 { atomNumbers 3478 } 
} 
} 
 
colvar { 
name glu510oe1_to_mg  #distance of glu to mg 
 
lowerboundary 4.0 
upperboundary 4.5 
lowerWallConstant 100.0 
upperWallConstant 100.0 
 
distance { 
group1 { atomNumbers 4884 } 
group2 { atomNumbers 2735 } 
} 
} 
 

In addition to the regular restraints, an extra distance restraint was used for the 

simulation involving the “pre-activated” Sln1-rec•Ypd1 model. During the 

equilibration stage, a catalytic pre-transition state geometry was enforced upon 

the donor phosphoaspartate (Asp1144) and acceptor histidine (His64) residues. 

A distance restraint of  2.2-3.5 Å was applied between the Nε2 atom on the 

histidine residue and the phosphoryl group, mimicking the distances observed 
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in known BeF3
- structures. This effectively reorients the imperfectly docked 

complex by pulling the donor and acceptor together. The restraint was 

removed after equilibration and was not enforced during production runs.  

Data analysis 

Trajectory preparation. Trajectories were analyzed using VMD and 

the Bio3D package in R [52, 58, 59]. Production runs were stripped of all non-

protein atoms using VMD. Partial trajectories were aligned by Cα atoms using 

the RMSDTT plug-in and combined to form single trajectories for analysis 

[52].  

Consensus maps. MDCons was used to calculate and score 

intermolecular residue contacts (ICs) during the simulations [60]. Two residues 

were considered intermolecular contacts if at least two heavy atoms were 

detected within 5.0 Å of each other during simulation. Stripped production 

runs were first loaded into VMD. Residues on Ypd1 were designated chain A 

and residues on the rec domain were designated chain B. Individual frames 

(snapshots) were exported individually at 50 ps intervals, using the following 

Tcl script: 

for {set i 1} {$i < 2000} {incr i} { 
[atomselect top all frame $i] writepdb frame_$i.pdb } 
 
The resulting 2000 snapshots were then used to calculate a consensus 

score for each intermolecular contact that was detected. Percentages correlate 

with the frequency at which each contact is detected. Scores were output to 

MATLAB for plotting (MATLAB v2016a, MathWorks Inc., © 2016). 
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Intermolecular contacts (ICs) with conservation scores <15% were eliminated. 

Scores >70% were considered stable. Available crystal structures (PDB 1OXB; 

2R25; unpublished Ssk1-rec W638A) were similarly processed. 

Crystallographic contacts were considered stable for comparison purposes. 

 Buried solvent accessible surface area (SASA) calculations. The 

interfacial buried surface area between the rec domain and Ypd1 in each 

complex was determined using the following formula: 

𝐵𝑢𝑟𝑖𝑒𝑑 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 = (𝑆𝐴𝑆𝐴𝐴 +  𝑆𝐴𝑆𝐴𝐵) −  𝑆𝐴𝑆𝐴𝐴𝐵 

Calculations were done using the following Tcl script template: 

set fp [open “SASA-output_complex.dat” w] 
set nf [molinfo top get numframes] 
set complex [atomselect top “protein and noh”] 
for {set i 0} {$i < $nf} {incr i} { 
$complex frame $i 
Set sasa_complex [measure sasa 1.40 $complex –restrict] 
puts $fp “$i $sasa_complex” 
} 
close $fp 
 

MATLAB was used to plot the buried interface surface area for each trajectory 

frame. Mean interfacial SASA was calculated by averaging the calculated 

SASA over all frames in the trajectories. 

 Hydrogen bond detection. The H-bond plugin within VMD was used 

to calculate the number of potential hydrogen bonds formed between specified 

atom selections during each simulation [52]. Hydrogen bonding occupancies 

were also calculated between the catalytic His64 on Ypd1 and the phosphoryl 

group and/or phosphorylatable aspartate residue on the rec domains. A 
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hydrogen bond distance cutoff of 4.0 Å and an angle cutoff of 35⁰ between 

heavy atom donor and acceptor were used for each calculation. The number of 

hydrogen bonds per trajectory frame was tracked and plotted using MATLAB. 

Distance calculations. The distance between the His64 Nε2 atom on 

Ypd1 and the phosphorus atom on the rec domain was plotted as a function of 

time using VMD’s native atom selection tools. For apo structures, the distance 

between the His64 Nε2 atom on Ypd1 and the phosphorylatable aspartate CG 

atom on the rec was used. Mean distances were calculated by averaging over 

all frames in the combined trajectories. 

RMSD calculations. Full trajectories were aligned using Cα atoms. Cα 

RMSD values were calculated for each frame and graphed using MATLAB. 

Mean RMSDs were calculated by averaging over all frames in the combined 

trajectories.  

Active site hydration analysis. Water accessibility of the active sites 

during simulation was analyzed using several techniques. First, the number of 

intact water molecules within 5.0 Å of the phosphorylatable aspartate residues 

was tracked for each frame within the trajectories using the following Tcl 

script (using Sln1-rec residue numbering): 

set mol [molinfo top] 
set out [open “water_within_5A_of_resid1144.txt” w] 
set sel [atomselect $mol “(water and oxygen within 5 of (protein and 
resid 1144 and name P))”] 
set frames [molinfo $mol get numframes] 
for {set i 0} {$i < $frames} {incr i} { 
$sel frame $i 
set n [$sel num] 
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puts $out “$i $n” 
} 
close $out 

 
The mean number of water molecules near the phosphorylatable residue was 

calculated by averaging the total number of waters detected over all frames in 

the combined trajectories. To more quantitatively represent the amount of 

water around and within the active site during the simulations, the average 

volume occupied by water molecules (density using water oxygen atoms) 

within the active site was calculated using the VolMap plugin within VMD 

[52]. Fully solvated trajectories were first combined at 50 ps frame intervals 

(~2000 snapshots) and aligned to a Cα trace. Water densities were calculated 

with a grid spacing of 1.0 Å, producing volumetric maps containing the 

average density of water oxygen atoms over a matrix of cubic voxels (1.0 Å3 

each) observed during the simulation. Higher density correlates with a greater 

the number of water molecules. Water occupancies were also calculated using 

the VolMap plugin, showing the percent occupancies of water molecules 

averaged over each trajectory. Occupancy indicates how frequently the space is 

occupied by water molecules. Each volumetric data set was visualized in VMD 

using a three-dimensional isosurface positioned above the phosphorylatable 

aspartate (drawn at 15% and 50% for density and occupancy, respectively). 

Electrostatic potential maps. Electrostatic potential for each trajectory 

was computed using the PME method within NAMD [56, 61, 62]. Potential 

maps were obtained using the PMEpot plugin with VMD using a grid 
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resolution of 1 and an Ewald factor of 0.25. Maps were visualized using a two-

dimensional slice along the XY-plane, showing a heat map of the active site 

centered on the phosphoryl group, and a molecular surface view with each 

atom colored by potential. Potential values were scaled between -15 and +30 

kT/e. 

Software. Structural alignments and analyses were performed using 

UCSF Chimera [63]. Figures were generated in both PyMOL (PyMOL, v1.8. 

2015, Schrodinger LLC, © 2016) and VMD [52]. Data plotting was performed 

in MATLAB (MATLAB v2016a, MathWorks Inc., © 2016) and R [58]. MD 

simulations were performed with NAMD [56] on resources provided by the 

OU Supercomputing Center for Education and Research (OSCER) at the 

University of Oklahoma. System preparation, visualization and initial 

trajectory analyses were performed in VMD [52]. 

3.3 Results and Discussion 

Effects of phosphorylation and activation on complex stability 

 Overall effects of phosphorylation on the stability and structure of the 

signaling complexes were examined using the following comparisons: 

phosphorylated vs. apo Sln1-rec•Ypd1; phosphorylated vs. pre-activated Sln1-

rec•Ypd1;  phosphorylated vs. apo wild-type Ssk1-rec•Ypd1; phosphorylated 

vs. apo Ssk1-rec W638A•Ypd1. Effective production simulations (100 ns) 

were collected for each regular system. In each phosphorylated scenario, 

harmonic restraints were applied centered around the Mg2+ atom bound to the 
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rec domain active site. Apo complexes were left completely unrestrained. 

Standard structural checks revealed proper rec domain active site alignment in 

each of the systems, as well as characteristic switch residue and 

conformational changes upon activation (typically in the β4α4-β5α5 regions) 

during the simulations. The only exception to this was the orientation of 

Phe1192 on Sln1-rec. In the active crystal structure, the conserved aromatic 

ring rotamerizes inward, to point towards the phosphoryl group. In previous 

monomeric simulations, Phe1192 readily rotamerizes, but only rarely was this 

observed in the dimeric simulations. These findings suggests that Phe1192 

likely rotamerizes prior to binding with Ypd1. While this appears to have no 

effect on the overall conformation of active Sln1-rec, the pre-active Sln1-

rec•Ypd1 HADDOCK model was used as a control for comparison. As 

generating the model produced an imperfect catalytic active site, an extra 

distance restraint was applied between His64 on Ypd1 and the phosphoryl 

group on Sln1-rec to enforce ideal phosphotransfer geometry. This restraint 

was only present during the initial equilibration period. 50 ns of effective 

production data were collected using the normal restraints described above. 

The resulting data set was then compared to the normal Sln1-rec•Ypd1 

simulations. 
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Figure 43. RMSD traces from Sln1-rec•Ypd1 simulations. 
Cα deviations for combined trajectories. (A) Phosphorylated Sln1-rec•Ypd1 (100 ns). (B) Apo 
Sln1-rec•Ypd1 (100 ns). (C) Pre-activated phosphorylated Sln1-rec•Ypd1 (50 ns). Shaded 
regions represent minimization/equilibration segments. 
 

Convergence and initial stabilization upon phosphorylation were 

monitored using total Cα RMSD. Each trajectory was aligned to its Cα trace 

using the RMSDTT plugin. Corresponding inactive X-ray crystal structures 

were used as reference points. RMSD measurements typically reached a 

plateau within the first 500-1000 snapshots (2.5-5.0 ns) for both apo and 

phosphorylated systems. Fig. 43 shows RMSD traces per frame for 
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phosphorylated (A) and apo (B) Sln1-rec•Ypd1 and the pre-activated 

phosphorylated (C) Sln1-rec•Ypd1 complex. Curiously, barring the anomalous 

segment within the phosphorylated data set between frames ~2000 and 3000, 

the traces exhibit noticeably different profiles. The apo complex (B) appears to 

fluctuate slightly but significantly more than the phosphorylated system (A). 

This effect may be partially attributable to the application of the active site 

restraints, as would be expected in this scenario. The trend is maintained in the 

pre-activated complex system (C) as well. However, examination of the 

phosphorylated Ssk1-rec•Ypd1 and apo Ssk1-rec•Ypd1 traces (Fig. 44A-B) 

shows a reversal of this phenomenon, with the apo structure exhibiting less 

fluctuation and an overall lower level of deviation. 

 

Figure 44. RMSD traces from wild-type Ssk1-rec•Ypd1 simulations. 
Cα deviations for combined trajectories. (A) Phosphorylated Ssk1-rec•Ypd1 (100 ns). (B) Apo 
Ssk1-rec•Ypd1 (100 ns). Shaded regions represent minimization/equilibration segments. 
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Figure 45. RMSD traces from the Ssk1-rec W638A•Ypd1 simulations. 
Cα deviations for combined trajectories. (A) Phosphorylated Ssk1-rec W638A•Ypd1 (100 ns). 
(B) Apo Ssk1-rec W638A•Ypd1 (100 ns). Shaded regions represent minimization/equilibration 
segments. 
 

Ssk1-rec W638A•Ypd1 simulations show RMSD profiles more similar 

to the Sln1-rec•Ypd1 data, though the disparity between apo and 

phosphorylated systems is slightly greater (Fig. 45A-B). Table 13 lists average 

Cα RMSD values and standard deviations calculated over the combined 

production trajectories.  

Table 13. Cα RMSDs for heterodimeric complexes (production only) 

Proteins Average Cα RMSD Standard deviation 
P~Sln1-rec•Ypd1 1.77 Å 0.31 Å 

P~Sln1-rec•Ypd1* N/A N/A 
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Sln1-rec•Ypd1 1.81 Å 0.25 Å 

P~Ssk1-rec•Ypd1 2.66 Å 0.42 Å 

Ssk1-rec•Ypd1 1.98 Å 0.28 Å 

P~Ssk1-rec W638A•Ypd1 2.16 Å 0.25 Å 

Ssk1-rec W638A•Ypd1 2.43 Å 0.27 Å 
*Pre-activated phosphorylated Sln1-rec docked to Ypd1, 50 ns trajectory. 
 

To compare the relative stabilities of the observed protein-protein 

interfaces, we measured the buried interfacial surface area for each complex. 

The interfacial surface area was defined as the sum of the solvent accessible 

surface area (SASA) for both monomers minus the SASA of the total protein 

complex. ~2000 snapshots were produced for each trajectory at 50 ps intervals 

(25 ps for pre-activated model). The interfacial SA was computed for each 

frame and plotted as a function of time to observe changes in interfacial SASA.  
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Figure 46. Interfacial surface area for Sln1-rec•Ypd1. 
The change in buried interfacial surface area ([SASAYpd1 + SASASln1-rec] -SASAComplex) 
plotted for each trajectory frame. (A) Interfacial surface area for phosphorylated Sln1-
rec•Ypd1. (B) Interfacial surface area for apo Sln1-rec•Ypd1. (C) Interfacial surface area for 
pre-activated phosphorylated Sln1-rec•Ypd1. 
 

Fig. 46 shows a comparison of the relative interface stabilities for 

phosphorylated and apo Sln1-rec•Ypd1. It is immediately apparent that the 

phosphorylated complex forms a more stabilized protein-protein interface in 

terms of surface area (again, barring the anomalous event within frames ~200-

300), with the apo form exhibiting significantly larger fluctuation. Stabilization 

of the binding interface and active site has been hypothesized as a feature of 
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Sln1-rec to aid in the formation of a phosphotransfer-competent alignment 

with His64 on Ypd1. The average surface area for both apo and 

phosphorylated complexes remained comparable, though both systems showed 

large, almost immediate decreases in interfacial surface area relative to their 

corresponding crystal structures. The significance of this effect is unknown at 

this time, though it is likely a natural result of molecular “breathing” and 

directly affected by interface flexibility. Crystallization conditions and crystal 

packing may also affect the “tightness” of the interface, factors that are 

obviously absent in the in silico studies. Comparison to the pre-activated 

phosphorylated Sln1-rec•Ypd1 system (Fig. 46C) maintains the trend, 

suggesting increased stability as a result of phosphorylation. 

 

Figure 47. Interfacial surface area for wild-type Ssk1-rec•Ypd1. 
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The change in buried interfacial surface area ([SASAYpd1 + SASASsk1-rec] -SASAComplex) 
plotted as a function of trajectory frame. (A) Interfacial surface area for phosphorylated wild-
type Ssk1-rec•Ypd1. (B) Interfacial surface area for apo wild-type Ssk1-rec•Ypd1. 
 

 

Figure 48. Interfacial surface area for Ssk1-rec W638A•Ypd1. 
The change in buried interfacial surface area ([SASAYpd1 + SASASsk1-rec] -SASAComplex) 
plotted as a function of trajectory frame. (A) Interfacial surface area for phosphorylated Ssk1-
rec W638A•Ypd1. (B) Interfacial surface area for apo Ssk1-rec W638A•Ypd1. 
 

As before, the complex structure of wild-type Ssk1-rec•Ypd1 tells a 

different story (Fig. 47). For these systems, phosphorylation appears to 

“weaken” the protein-protein interface (relative to the co-crystal structure), 

increasing surface area fluctuation. The apo and phosphorylated Ssk1-rec 

W638A•Ypd1 mutant complexes (Fig. 48) produced results more similar to 

Sln1-rec•Ypd1. In the mutant system, phosphorylation appears to 

simultaneously stabilize and increase the size of the interface, causing a 300 Å2 

jump in the buried surface area relative to the co-crystal structure. Due to the 
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time scales used for these simulations (50-100 ns), it is unlikely that the larger 

decreases in interfacial surface area were the result of true dissociation events. 

Each complex remained relatively intact for the duration of the simulations. 

Table 14 lists average interfacial surface areas and standard deviations 

calculated for each trajectory.  

Table 14. Average buried interfacial surface area. 

Proteins Data set Interfacial SA Std. 
P~Sln1-rec•Ypd1 Simulation 1438.4 (1460.3) Å2 147.22 (102.10) Å2 

P~Sln1-rec•Ypd1 HADDOCK Model N/A N/A 

Sln1-rec•Ypd1 Simulation 1454.0 Å2 179.0 Å2 

Sln1-rec•Ypd1 Crystal (1OXB) 1921.2 Å2 N/A 

BeF3
- Sln1-rec•Ypd1 Crystal (2R25) 1976.4 Å2 N/A 

P~Ssk1-rec•Ypd1 Simulation 1183.9 Å2 207.2 Å2 

Ssk1-rec•Ypd1 Simulation 1187.6 Å2 120.4 Å2 

P~Ssk1-rec W638A•Ypd1 Simulation 1549.2 (1570.4) Å2 117.1 (95.4) Å2 

Ssk1-rec W638A•Ypd1 Simulation 1328.4 Å2 121.8 Å2 

Ssk1-rec W638A•Ypd1 Crystal (unpublished) 1380.7 Å2 N/A 

(Values in parentheses were calculated by excluding anomalous frames ~200-300) 

Intermolecular interactions related to phosphorylation 

The program MDCons was used to construct consensus contact maps 

for each of the complexes [60]. This involved ranking detected intermolecular 

contacts (ICs), defined as any two inter-subunit atoms of distinct residues 

within 5.0 Å of one another, based on the frequency of occurrence within a 

trajectory. Consensus maps provide a level of dynamic detail on specific 

intermolecular interactions that may be hidden or misleading in static crystal 

structures. They are a relatively simple yet robust method for detecting patterns 
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within protein-protein interactions that may be affected by events such as 

ligand binding or post-translational modification and related conformational 

shifts. They also allow quantification of interface conservation, as a measure of 

similarity between different snapshots. Using these measurements, we can 

infer properties about protein-protein complexes such as relative stability and 

interface flexibility. Additionally, areas of interest can be easily identified as 

targets for future experimental work. 

 2000 snapshots were extracted (at 50 ps intervals) from the production 

trajectories, representing 100 ns of effective simulation for each system. These 

were processed for formatting and used as input to the MDCons program. The 

resulting ICs and conservation rates (frequencies) were then imported into 

MATLAB for further analysis. For each simulation, a set of visual consensus 

maps was generated and compared to a corresponding set of co-crystal 

structures. Crystallographic contact maps were calculated and each contact was 

arbitrarily set to 100% conservation. ICs conserved in <15% of frames were 

discarded. The remaining residue pairs were plotted and colored according to 

conservation rate. This provided a filtered overview regarding the 

intermolecular interactions of each complex, useful for detecting changes in 

overall patterns. Contacts conserved in ≥70% of frames were classified as 

“stable” interactions. Stable ICs were plotted separately and examined for 

overlap with the crystallographic contacts. Comparisons between apo and 

phosphorylated forms were also made using the stable IC lists. Remaining 
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contacts between 15 and 70% conservation were classified as “transient.”  

These were plotted to examine overlap with the remaining crystallographic 

pairs that was not detected among the stable IC list. MDCons was used to 

calculate C90, C70 and C50 scores, representing the fraction of maintained ICs in 

90%, 70% and 50% of frames, respectively. Consistently higher values 

correspond approximately to higher interfacial stability. Table 15 shows these 

three parameters computed for each of the simulated systems. The scores again 

suggest that phosphorylation stabilizes the interfaces within Sln1-rec•Ypd1 and 

Ssk1-rec W638A•Ypd1, but strongly destabilizes the interface within wild-

type Ssk1-rec•Ypd1.  

Table 15. Overall IC conservation scores. 

Proteins C90 C70 C50 
Sln1-rec•Ypd1 57 % 76% 100% 

P~Sln1-rec•Ypd1 63% 79% 92% 

Ssk1-rec•Ypd1 61% 78% 89% 

P~Ssk1-rec•Ypd1 50% 64% 87% 

Ssk1-rec W638A•Ypd1 62% 73% 96% 

P~Ssk1-rec W638A•Ypd1 62% 80% 96% 
 

Fig. 49 shows a comparison between the filtered consensus maps 

generated from the phosphorylated and apo simulations of Sln1-rec•Ypd1. 

Seven main IC groupings are visible, encompassing the following areas on 

Ypd1: the majority of the αA and the N-terminal half of the αB helix; the 

majority of the αC helix and its C-terminal linker; the C-terminal region of the 
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αD helix. Overall, more stable contacts are seen on the phosphorylated map 

(yellow), specifically within groups 1, 2 and 4. Each of these groups involves 

interactions with the α4-β5-α5 region on Sln1-rec. Crystallographic data from 

other rec domains suggest this region is at the center of the allosteric changes 

induced by phosphorylation, particularly involving the conserved Thr/Ser 

switch residue found on β4-strand and the β4α4 loop. The increase in the 

number of stable ICs corroborates the previously observed trend in buried 

interfacial surface area, suggesting that phosphorylation helps to stabilize the 

interaction between Sln1-rec and Ypd1. 

 

Figure 49. Filtered consensus intermolecular contact maps for Sln1-
rec•Ypd1 simulations. 
Combined ICs with conservation scores ≥15% were graphed and colored based on 
conservation. (Left panel) Filtered ICs for phosphorylated Sln1-rec•Ypd1. (Right panel) 
Filtered ICs for apo Sln1-rec•Ypd1. A conservation score of 1.0 corresponds to detection in 
100% of frames. β-strands (magenta); α-helices (cyan). 
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Figure 50. Comparisons between simulated and crystallographic ICs for 
phosphorylated Sln1-rec•Ypd1. 
ICs with conservation scores ≥70% were classified as stable. Remaining ICs with scores 
between 15% and 70% were classified as transient. (Left panel) Stable ICs were compared 
with crystallographic contacts. Unique ICs seen only in the simulation are shown in blue. 
Crystallographic ICs not found as stable contacts in the trajectory are shown in red. 
Overlapping contacts are shown in green. (Right panel) Transient ICs were compared with the 
remaining crystallographic contacts not found in the left panel. Unique transient ICs observed 
only in the simulation are shown in blue. Truly unique crystallographic contact pairs found in 
neither stable nor transient classes are shown in red. Overlapping contact pairs are shown in 
green. β-strands (magenta); α-helices (cyan). 
 
 

 

Figure 51. Comparisons between simulated and crystallographic ICs for 
apo Sln1-rec•Ypd1. 
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ICs with conservation scores ≥70% were classified as stable. Remaining ICs with scores 
between 15% and 70% were classified as transient. (Left panel) Stable ICs were compared 
with crystallographic contacts. Unique ICs seen only in the simulation are shown in blue. 
Crystallographic ICs not found as a stable contacts in the trajectory are shown in red. 
Overlapping contacts are shown in green. (Right panel) Transient ICs were compared with the 
remaining crystallographic contacts not found in the left panel. Unique transient ICs observed 
only in the simulation are shown in blue. Truly unique crystallographic contact pairs found in 
neither stable nor transient classes are shown in red. Overlapping contact pairs are shown in 
green. β-strands (magenta); α-helices (cyan). 
 

 Fig. 50 shows a comparison between the simulated ICs and the BeF3
- 

bound crystal structure for Sln1-rec•Ypd1 (PDB 2R25). Most crystallographic 

contacts are detected as stable IC pairs from the simulation, with the few 

remaining contacts being accounted for by the detected transient ICs. Every 

crystallographic inter-residue pair was identified within the simulation data. In 

addition, numerous unique IC pairs were observed that were not seen in the 

crystal complex. These novel residue pairs are listed in Table 16. The results 

demonstrate that not only is the significant interaction data provided by the co-

crystal structure replicated by the simulation data, but the novel ICs provide 

prime targets for future mutagenesis studies.  

Table 16. Novel ICs observed in phosphorylated Sln1-rec•Ypd1. 

Ypd1 - Residue Sln1-rec - Residue 
Ala72 Ile1197 

Ala72 Lys1195 

Ala72 Val1098 

Arg90 Asn1180 

Asp23 Arg1105 

Gln34 His1097 

Gln38 Asn1099 

Gln38 His1097 
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Gly68 Asn1096 

Leu31 His1097 

Phe65 His1097 

Ser69 Lys1195 
 

Many novel pairs were also observed within the transient group, though at 

relatively low conservation levels, suggesting they are likely a result of 

flexibility around the binding interface and not filling specific functional roles. 

Similar comparisons were performed on the apo complex against the inactive 

co-crystal structure (PDB 1OXB). Fig. 51 shows a greater number of 

crystallographic contacts not observed in the stable residue pairs list. The vast 

majority of these contacts were observed as transient ICs during the 

simulation, but several crystallographic contacts were absent from this list (see 

Table 17). Each of these ICs were detected in the simulation with conservation 

scores below the 15% cutoff, except for Met20-Leu1107, which was 

completely absent.  

Table 17. Crystallographic ICs not observed in >15% of frames of the apo 
Sln1-rec•Ypd1 simulation. 

Ypd1 - Residue Sln1-rec - Residue 
Ala71 Asn1099 

Arg84 Phe1175 

Asn10 Lys1198 

Asn61 Asp1095 

Glu83 Ala1174 

Gly68 Val1098 

Gly74 Pro1196 
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His64 Asp1095 

Lys67 Asn1099 

Lys67 Thr1173 

*Met20 *Leu1107 

Thr12 Lys1198 
*All pairs were detected below the 15% cutoff except for Met20-Leu1107, which was not 
observed during simulation. 
  

 Stable ICs for the apo and phosphorylated Sln1-rec•Ypd1 trajectories 

were compared to identify interface changes as a result of phosphorylation 

(Fig. 52). A large increase in unique stable ICs associated with 

phosphorylation was observed in areas near the β4α4-β5α5 region of Sln1-rec, 

corresponding to regions of the αA, αC and parts of the αD helices on Ypd1. In 

the apo simulation, a similar effect is visible at residues adjacent to the Sln1-

rec active site and involving parts of the αC and αD helices on Ypd1. The loss 

of these stable contacts upon phosphorylation is likely a response to the 

additional volume introduced by the phosphoryl group in the active site cavity. 

Table 18 lists ICs identified as stable contacts (>70%) only in the 

phosphorylated Sln1-rec•Ypd1 simulation. Key interactions of significant 

interest include Arg90-Asn1180 and Gly68-Ala1174. Arg90 on Ypd1 has been 

speculated to aid in stabilizing the αC-D helices, as well as contributing to the 

formation of the active site geometry through Gln1146 on Sln1-rec. No prior 

studies have suggested its interaction with Asn1180, located on the α4 helix 

that undergoes a large conformational shift upon phosphorylation of Sln1-rec. 

Disruption of this interaction may have unforeseen consequences on the 
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conformational shift upon activation of the rec domain. The highly conserved 

residues Gly68 on Ypd1 and Ala1174 (also called the T+1 position) on Sln1-

rec have both been implicated in affecting the catalysis of phosphotransfer (see 

Chapter 4). Table 19 contains a similar list found only in the apo Sln1-

rec•Ypd1 simulation. Key interactions include Arg90-Gln1146, Asp60-

Gln1146, Gln86-Gln1146 and Lys67-Phe1175, all of which have been 

postulated to be involved in the formation of a phosphotransfer-competent 

active site. 

 

Figure 52. Comparison of stable ICs calculated from apo and 
phosphorylated Sln1-rec•Ypd1 simulations. 
Stable residue pairs extracted from the apo and phosphorylated trajectories were overlaid to 
identify interactions novel to each form. ICs only observed in the apo simulation are in blue. 
ICs only observed in the phosphorylated simulation are in red. Overlapping ICs found in both 
simulations are in green. β-strands (magenta); α-helices (cyan). 

 

Table 18. Stable ICs unique to phosphorylated Sln1-rec•Ypd1. 

Ypd1 - Residue Sln1-rec - Residue 
Ala71 Lys1195 
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Ala72 Lys1195 

Arg90 Asn1180 

Gln34 Glu1101 

Glu16 Arg1199 

Glu16 Met1106 

Gly68 Ala1174 

Gly68 Asn1096 

His64 Phe1175 

Ile13 Pro1196 

Ser69 Lys1195 

 

Table 19. Stable ICs unique to apo Sln1-rec•Ypd1. 

Ypd1 - Residue Sln1-rec - Residue 
Arg90 Gln1146 

Asn61 Pro1148 

Asp24 Arg1105 

Asp60 Gln1146 

Gln86 Gln1146 

Gly68 Pro1196 

His64 Met1147 

Lys67 Phe1175 

Phe65 Asn1099 

 
 

Fig. 53 shows the stable interface maps of the normal phosphorylated 

Sln1-rec•Ypd1 system overlaid with the pre-activated HADDOCK model of 

Sln1-rec•Ypd1. Due to its nature as a docked model, the pre-activated complex 

almost certainly exhibits more transient contacts overall than the 

crystallographic-based simulation. However, the two trajectories share 
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impressive similarity. All but two of the stable ICs detected in the pre-activated 

complex are also detected in the normal simulation. These two ICs are present 

in the more transient IC list for the regular simulation, suggesting they were 

simply lower than the 70% cutoff used for the stable ICs. Taken with the 

previous data, the results indicate that the information provided by the normal 

activated complex and the pre-activated HADDOCK model is comparable, 

with both revealing highly similar characteristics. The significance of these 

findings is not limited to their role as a control for this study. They also suggest 

that an active complex can be generated even from an imperfect protein-

protein interaction, simply by temporarily enforcing alignment of the catalytic 

donor-acceptor pair. The pre-activated control demonstrates how a protein-

protein complex of previously unknown structure can be predicted and 

simulated to extract novel and useful information. 

 

Figure 53. Comparison of stable ICs calculated from the original 
phosphorylated Sln1-rec•Ypd1 and the HADDOCK model simulations. 
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Stable residue pairs extracted from the phosphorylated trajectories were overlaid to identify 
interactions novel to each form. ICs only observed in the original phosphorylated simulation 
are in blue. ICs only observed in the HADDOCK model simulation are in red. Overlapping ICs 
found in both simulations are in green. β-strands (magenta); α-helices (cyan). 
 

Fig. 54 shows a comparison between the filtered consensus maps 

calculated for the phosphorylated and apo wild-type Ssk1-rec•Ypd1 

simulations. Seven major IC groupings are visible, similar to those detected in 

the Sln1-rec•Ypd1 interactions. Immediate differences are visible between the 

phosphorylated and apo maps. In the apo simulations, group 2, (αC helix on 

Ypd1 and β5α5 region on Ssk1-rec) contains an increased number of stable 

interactions. In addition, groups 3-4 (αC and αD helices on Ypd1 and β4α4 

region of Ssk1-rec) disappear almost completely in the unphosphorylated 

complex. This is different from the Sln1-rec•Ypd1 complexes, where these ICs 

are detectable in both apo and phosphorylated forms. Overall, a general 

decrease in IC stability was detected upon phosphorylation. This result again 

corroborates the previously observed trend in buried interfacial surface area, 

further supporting the hypothesis that phosphorylation actually destabilizes the 

interface between wild-type Ssk1-rec and Ypd1. 
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Figure 54. Filtered consensus intermolecular contact maps for wild-type 
Ssk1-rec•Ypd1 simulations. 
Combined ICs with conservation scores ≥15% were graphed and colored based on 
conservation. (Left panel) Filtered ICs for phosphorylated Ssk1-rec•Ypd1. (Right panel) 
Filtered ICs for apo Ssk1-rec•Ypd1. A conservation score of 1.0 corresponds to detection in 
100% of frames. β-strands (magenta); α-helices (cyan). 

 

 

Figure 55. Comparisons between simulated and crystallographic ICs for 
phosphorylated wild-type Ssk1-rec•Ypd1. 
ICs with conservation scores ≥70% were classified as stable. Remaining ICs with scores 
between 15% and 70% were classified as transient. (Left panel) Stable ICs were compared 
with crystallographic contacts. Unique ICs seen only in the simulation are shown in blue. 
Crystallographic ICs not found as a stable contact in the trajectory are shown in red. 
Overlapping contacts are shown in green. (Right panel) Transient ICs were compared with the 
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remaining crystallographic contacts not found in the left panel. Unique transient ICs observed 
only in the simulation are shown in blue. Truly unique crystallographic contact pairs found in 
neither stable nor transient classes are shown in red. Overlapping contact pairs are shown in 
green. β-strands (magenta); α-helices (cyan). 
 

Fig. 55 shows a comparison between the simulated ICs for wild-type 

phosphorylated Ssk1-rec•Ypd1 and the inactive co-crystal structure for Ssk1-

rec W638A•Ypd1 (no other crystal structure is currently available). Nearly all 

crystallographic contacts were detected within the simulation data, either as 

stable or transient ICs, with only His64-Asp511 being absent. This is likely a 

result of phosphorylation, as this pair is detected within the apo simulation data 

set. Multiple stable IC pairs were observed that are not seen in the co-crystal 

structure. Table 20 lists those novel ICs with conservation scores ≥70%. 

Residues of interest include Gly68-Ala611, His64-Ala611 and His64-Ser612. 

Gly68 and Ala611 have been implicated in affecting the catalysis of 

phosphotransfer. Additionally, the interactions His64-Ala611 and His64-

Ser612 may be involved in the reversibility of the phosphotransfer event. 

Table 20. Novel ICs observed in phosphorylated wild-type Ssk1-rec•Ypd1. 

Ypd1 - Residue Ssk1-rec - Residue 
Ala72 Ile514 

Asp23 Lys525 

Glu16 His637 

Gly68 Ala611 

Gly68 Asn512 

Gly68 Pro633 

His64 Ala611 

His64 Ser612 
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Fig. 56 shows the same comparison for the apo wild-type Ssk1-

rec•Ypd1 simulation and the apo Ssk1-rec W638A•Ypd1 co-crystal structure. 

Again, every crystallographic contact is accounted for within the filtered IC list 

(>15%), and multiple novel interactions were detected. Table 21 lists ICs 

observed in the apo Ssk1-rec•Ypd1 simulation that are not present in the co-

crystal structure of Ssk1-rec W638A•Ypd1. 

 

Figure 56. Comparison between simulated and crystallographic ICs for 
apo wild-type Ssk1-rec•Ypd1. 
ICs with conservation scores ≥70% were classified as stable. Remaining ICs with scores 
between 15% and 70% were classified as transient. (Left panel) Stable ICs were compared 
with crystallographic contacts. Unique ICs seen only in the simulation are shown in blue. 
Crystallographic ICs not found as a stable contact in the trajectory are shown in red. 
Overlapping contacts are shown in green. (Right panel) Transient ICs were compared with the 
remaining crystallographic contacts not found in the left panel. Unique transient ICs observed 
only in the simulation are shown in blue. Truly unique crystallographic contact pairs found in 
neither stable nor transient classes are shown in red. Overlapping contact pairs are shown in 
green. β-strands (magenta); α-helices (cyan). 
 

Table 21. Novel ICs observed in apo wild-type Ssk1-rec•Ypd1. 

Ypd1 - Residue Ssk1-rec - Residue 
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Ala72 Ile514 

Ala72 Val634 

Glu16 Phe522 

Gly68 Asn512 

Gly68 Pro633 

His64 Pro558 

Leu66 Asn512 

Lys67 Pro633 

Phe65 Val513 
 

 Stable contact pairs detected during the apo and phosphorylated Ssk1-

rec•Ypd1 trajectories were compared to identify the effects of phosphorylation 

on the interface (Fig. 57). The apo contact map shows strong concentrations of 

stable ICs involving the αA and αC helices on Ypd1 and the β5α5 region on 

Ssk1-rec. These ICs are largely absent in the phosphorylated simulation, 

suggesting a significant shift in the orientation of the complex. Similarly, a 

small but highly conserved concentration of ICs was seen in the 

phosphorylated simulation involving the αC helix of Ypd1 and the β4α4 region 

of Ssk1-rec. These contacts appear as poorly conserved, transient ICs in the 

apo simulation and are absent in the co-crystal structure. Additionally, a large 

group of transient ICs found in the phosphorylated simulation (shown in Fig. 

54 group 4) are completely absent in both the apo simulation and crystal 

complex. Table 22 lists ICs identified as stable contacts (>70%) only in the 

phosphorylated wild-type Ssk1-rec•Ypd1 simulation. Key interactions of 

interest include those involving Ala611 and Ser612, both of which have been 
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implicated in affecting the catalysis of phosphotransfer. Table 23 contains a 

similar list found only in the apo Ssk1-rec•Ypd1 simulation. 

 

Figure 57. Comparison of stable ICs calculated for apo and 
phosphorylated wild-type Ssk1-rec•Ypd1. 
Stable residue pairs extracted from the apo and phosphorylated trajectories overlaid to identify 
interactions novel to each form. ICs only observed in the apo simulation are in blue. ICs only 
observed in the phosphorylated simulation are in red. Overlapping ICs found in both 
simulations are in green. β-strands (magenta); α-helices (cyan). 
 
 

Table 22. Stable ICs unique to phosphorylated wild-type Ssk1-rec•Ypd1. 

Ypd1 - Residue Ssk1-rec - Residue 
Asp23 Lys525 

Gly68 Ala611 

His64 Ala611 

His64 Ser612 
 

Table 23. Stable ICs unique to apo wild-type Ssk1-rec•Ypd1. 

Ypd1 - Residue Ssk1-rec - Residue 
Ala72 Val634 
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Glu16 Phe522 

His64 Asp511 

His64 Gln556 

His64 Lys632 

His64 Pro558 

Ile17 Leu 636 

Leu66 Asn512 

Lys67 Pro633 

Phe65 Val513 
 

Fig. 57 shows a comparison between the filtered consensus maps 

calculated for the phosphorylated and apo Ssk1-rec W638A•Ypd1 simulations. 

Seven major IC groupings are again present, like those found in the wild-type 

Ssk1-rec•Ypd1 simulation. However, phosphorylation of the mutant complex 

appears to increase the stability of the IC pairs, specifically in areas involving 

the αC-D helices on Ypd1 and the β3α3, β4α4 and β5α5 regions on Ssk1-rec 

W638A. Phosphorylation stabilizes the contacts within groups 2, 3 and 4. 

Additionally, groups 1 and 5 show an increase in the overall number of ICs. 

These results suggest divergent characteristics between the wild-type and 

mutant Ssk1-rec•Ypd1 complexes that may help explain their kinetic 

differences.  
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Figure 58. Filtered consensus intermolecular contact maps for Ssk1-rec 
W638A•Ypd1 simulations. 
Detected ICs with conservation scores lower than 15% (corresponding to 15% frequency of 
trajectory frames) were discarded. Remaining ICs were graphed and colored based on 
conservation scores. (Left panel) Filtered ICs for phosphorylated Ssk1-rec W638A•Ypd1. 
(Right panel) Filtered ICs for apo Ssk1-rec W638A•Ypd1. A conservation score of 1.0 
corresponds to detection in 100% of frames. β-strands (magenta); α-helices (cyan). 

 

Fig. 58 shows a comparison between the simulated ICs for 

phosphorylated Ssk1-rec W638A•Ypd1 and the inactive co-crystal structure 

for Ssk1-rec W638A•Ypd1. Almost every crystallographic contact was 

detected during the simulation, with most being identified as stable ICs. 

Overall, only His64-Asp511 was lost during simulation. Numerous stable IC 

pairs were observed during the simulation that are absent within the crystal 

complex. Table 24 contains novel residue pairs observed in the phosphorylated 

simulation with conservation scores ≥70%. Interactions of interest include 

Arg90-Asp617 and Arg90-Ser614, which may be involved in the 

conformational shift upon phosphorylation of Ssk1-rec W638A. Additionally, 
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Gly68-Ala611 and Gly68-Lys632 may serve roles in the catalysis of 

phosphotransfer, and Gln86-Ser612, Glu83-Asn613, His64-Ser612, His64-

Ala611, Lys67-Ala611, Lys67-Asn613 and Lys67-Ser612 may include 

residues involved in formation of a phosphotransfer-competent active site 

and/or influence the directionality of the phosphotransfer reaction. 

 

Figure 59. Comparisons between simulated and crystallographic ICs for 
phosphorylated Ssk1-rec W638A•Ypd1. 
ICs with conservation scores ≥70% were classified as stable. Remaining ICs with scores 
between 15% and 70% were classified as transient. (Left panel) Stable ICs were compared 
with crystallographic contacts. Unique ICs seen only in the simulation are shown in blue. 
Crystallographic ICs not found as a stable contact in the trajectory are shown in red. 
Overlapping contacts are shown in green. (Right panel) Transient ICs were compared with the 
remaining crystallographic contacts not found in the left panel. Unique transient ICs observed 
only in the simulation are shown in blue. Truly unique crystallographic contact pairs found in 
neither stable nor transient classes are shown in red. Overlapping contact pairs are shown in 
green. β-strands (magenta); α-helices (cyan). 
 

Table 24. Novel ICs observed in phosphorylated Ssk1-rec W638A•Ypd1. 

Ypd1 - Residue Ssk1-rec - Residue 
Ala71 Lys632 

Ala72 Ile514 

Ala72 Lys632 
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Ala72 Val634 

Arg90 Asp617 

Arg90 Ser614 

Asn61 Gln556 

Asp23 Lys525 

Gln86 Ser612 

Glu83 Asn613 

Gly68 Ala611 

Gly68 Asn512 

Gly68 Lys632 

Gly74 Pro633 

His64 Ala611 

His64 Asp554 

His64 Leu555 

His64 Ser612 

His64 Thr610 

Ile32 Ile514 

Leu31 Val513 

Leu66 Asn512 

Lys67 Ala611 

Lys67 Asn613 

Lys67 Ser612 

Phe27 Ile514 

Phe65 Val513 
 

Fig. 60 shows the same comparison for the apo Ssk1-rec W638A•Ypd1 

simulation and the apo Ssk1-rec W638A•Ypd1 crystal complex. Like the 

phosphorylated simulation, most crystallographic contacts were also observed 
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in the filtered list of ICs (>15% conservation), and multiple stable contacts 

were detected that are not present in the crystal structure (see Table 25).  

 

Table 25. Novel ICs observed in apo Ssk1-rec W638A•Ypd1 

Ypd1 - Residue Ssk1-rec - Residue 
Ala72 Ile514 

Arg90 Ser612 

Asn61 Gln556 

Asp23 Lys525 

Gln86 Ala611 

Gly68 Asn512 

Gly68 Lys632 

Gly68 Pro633 

His64 Ala611 

His64 Asp554 

His64 Leu555 

Leu66 Asn512 

Lys67 Ala611 

Lys67 Pro633 

Phe65 Val513 

Ser69 Ile518 
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Figure 60. Comparisons between simulated and crystallographic ICs for 
apo Ssk1-rec W638A•Ypd1 simulation. 
ICs with conservation scores ≥70% were classified as stable. Remaining ICs with scores 
between 15% and 70% were classified as transient. (Left panel) Stable ICs were compared 
with crystallographic contacts. Unique ICs seen only in the simulation are shown in blue. 
Crystallographic ICs not found as a stable contact in the trajectory are shown in red. 
Overlapping contacts are shown in green. (Right panel) Transient ICs were compared with the 
remaining crystallographic contacts not found in the left panel. Unique transient ICs observed 
only in the simulation are shown in blue. Truly unique crystallographic contact pairs found in 
neither stable nor transient classes are shown in red. Overlapping contact pairs are shown in 
green. β-strands (magenta); α-helices (cyan). 
 

The lists of stable ICs seen during the apo and phosphorylated Ssk1-rec•Ypd1 

trajectories were compared to identify interface changes related to 

phosphorylation (Fig. 61). The phosphorylated consensus map shows a trend 

reminiscent of the Sln1-rec•Ypd1 changes upon phosphorylation, with large 

concentrations of stable ICs forming between residues of the β4α4 and β5α5 

regions on Ssk1-rec W638A and the αA, αC and αD helices of Ypd1. 

However, Ssk1-rec W638A appears to form a greater number of ICs within 

these regions than both Sln1-rec and wild-type Ssk1-rec. Table 26 lists ICs 

identified as stable contacts (>70%) only in the phosphorylated Ssk1-rec 
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W638A•Ypd1 simulation. Residue pairs of interest include Arg90-Asp617, 

Arg90-Ser614, Gln86-Ser612, Glu83-Asn613, Lys67-Asn613 and Lys67-

Ser612, all of which may be involved in the conformational change induced by 

the phosphorylation of Ssk1-rec W638A. Table 27 contains a similar list found 

only in the apo Ssk1-rec W638A•Ypd1 simulation. 

 

Figure 61. Comparison of stable ICs calculated for apo and 
phosphorylated Ssk1-rec W638A•Ypd1. 
Stable residue pairs extracted from the apo and phosphorylated trajectories overlaid to identify 
interactions novel to each form. ICs only observed in the apo simulation are in blue. ICs only 
observed in the phosphorylated simulation are in red. Overlapping ICs found in both 
simulations are in green. 
 

Table 26. Unique stable ICs in phosphorylated Ssk1-rec W638A•Ypd1. 

Ypd1 - Residue Ssk1-rec - Residue 
Ala71 Lys632 

Ala72 Lys632 

Ala72 Val634 

Arg90 Asp617 

Arg90 Ser614 
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Gln86 Ser612 

Glu16 Asn635 

Glu16 His637 

Glu83 Asn613 

Gly68 Ala611 

Gly74 Pro633 

His64 Ser612 

His64 Thr610 

Ile13 Pro633 

Ile32 Ile514 

Leu31 Val513 

Lys67 Asn613 

Lys67 Ser612 

Phe27 Arg524 

Phe27 Ile514 
 

Table 27. Unique stable ICs in apo Ssk1-rec W638A•Ypd1. 

Ypd1 - Residue Ssk1-rec - Residue 
Arg90 Ser612 

Gln86 Ala611 

Gly68 Pro633 

Ile17 Leu636 

Lys67 Pro633 

Ser69 Ile518 
 

 In summary, phosphorylation and its related structural changes were 

found to stabilize the interface between Sln1-rec•Ypd1 and Ssk1-rec 

W638A•Ypd1, but appeared to destabilize wild-type Ssk1-rec•Ypd1. It should 
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be noted that the (de)stabilization of the interface does not necessarily equate 

to affecting the binding of the proteins, in kinetic terms. Rather, the flexibility 

of the protein-protein interface is affected once bound. This may ultimately 

affect the binding affinity of the partners, as is the case with Sln1-rec and Ypd1 

[30]. The largest changes in intermolecular contact stability involve regions of 

the αC and αD helices on Ypd1, and the β4α4 and β5α5 surfaces on the rec 

domains. Ssk1-rec W638A forms the most numerous and stable ICs within this 

region amongst the three rec domains, while wild-type Ssk1-rec forms the 

fewest. It is perhaps no coincidence that the W638A mutation is located near 

the center of this region. Removal of the large tryptophan side chain has a 

dramatic effect on the flexibility and/or stability of the interface and appears to 

cause a shift in the orientation of the phosphotransfer complex. 

Active site geometry affects the reversibility of the phosphotransfer event 

 Radiolabeled phosphotransfer experiments have demonstrated the 

apparent irreversibility of transfer from Ypd1 to wild-type Ssk1-rec [30]. No 

plausible explanation has yet been presented that can account for this unusual 

characteristic, as chemically the transfer should be reversible. In contrast, the 

recently characterized Ssk1-rec W638A shows at least some level of reverse 

transfer when exposed to unphosphorylated Ypd1 (Katie Branscum, 

unpublished). It was previously postulated that replacing the large Trp638 side 

chain with a smaller amino acid, like alanine, might shift the orientation of the 

rec domain and/or Ypd1 interface (Katie Branscum, unpublished). This shift 
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could alter interatomic distances within the active site, bringing donor and 

acceptor residues (Asp554 and His64, respectively) into closer proximity.  

 In an attempt to further explain this observation, the simulations were 

used to examine the number of potential hydrogen bonds formed between the 

side chain of His64 on Ypd1 (acceptor, Nε2-atom) and the conserved, 

phosphorylatable aspartate (Asp1144 in Sln1-rec, Asp554 in Ssk1-rec) on the 

bound rec domain. For phosphotransfer to occur, donor and acceptor must be 

at least partially accessible geometrically and in relative proximity to one 

another. In the BeF3
- bound structure of Sln1-rec•Ypd1 (PDB 2R25), the 

distance between the donor (Asp1144 Oδ1) and acceptor (His64 Nε2) residues 

is 4.9 Å, with the nitrogen and hydrogen atoms forming a hydrogen bond with 

the tetrahedral BeF3
- group in a nearly linear geometry appropriate for 

phosphotransfer. A similar arrangement is seen in the BeF3
- bound structure of 

Spo0F/Spo0B. Presumably these structures represent pre-transition state 

transfer complexes, suggesting that these are the approximate distances for 

catalytic alignment. To detect if similar geometries and interactions occur 

within the simulated active sites, the number of potential hydrogen bonds 

formed between His64 on Ypd1 and the phosphoryl group or phosphorylatable 

aspartate on each rec domain was calculated and tracked over the trajectories. 

Average interatomic distance between donor and acceptor atoms was also 

determined for each simulation. Fig. 62 shows hydrogen-bond calculations for 

both the phosphorylated (A) and apo (B) simulations of Sln1-rec•Ypd1. During 
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the phosphorylated simulation, His64 remained in relatively close proximity to 

the phosphoryl group, forming an average of 0.96 hydrogen bonds per frame 

and maintaining an average distance between the Nε2 and phosphorus atoms of 

3.93 Å. This corresponds to a hydrogen-bond occupancy (fraction of time that 

a hydrogen bond is formed) of ~96%. The apo simulation suggests that these 

levels are maintained regardless of phosphorylation state, with a hydrogen-

bond occupancy of ~100%. Similar results were obtained for the pre-activated 

phosphorylated Sln1-rec•Ypd1 simulation, with His64 and the phosphoryl 

group forming an average of 0.96 hydrogen bonds per frame and maintaining 

an average distance between the Nε2 and phosphorus atoms of 3.42 Å. This 

corresponds to a hydrogen-bond occupancy of ~96%. 

 

Figure 62. Number of hydrogen bonds between His64 and Asp1144. 
(A) The number of potential hydrogen bonds formed in each frame between the side chain of 
His64 and the phosphoryl group during the phosphorylated Sln1-rec•Ypd1 simulation. (B) The 
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number of potential hydrogen bonds formed in each frame between the side chain of His64 and 
Asp1144 during the apo Sln1-rec•Ypd1 simulation. 
 

 Fig. 63 shows a dramatic change in the wild-type Ssk1-rec•Ypd1 

simulations. The average number of hydrogen bonds formed between His64 on 

Ypd1 and Asp554 on Ssk1-rec drops to 0.12, and the average distance between 

the Nε2 and phosphorus atoms rises to 6.30 Å for the phosphorylated 

simulation (0.0 hydrogen bonds and 7.1 Å in the apo simulation). These 

correspond to a hydrogen-bond occupancy of ~12%. The almost complete 

abolishment of hydrogen-bonding capability strongly suggests that donor and 

acceptor are no longer accessible to one another. His64 was repeatedly 

observed interacting with residues on the β4α4 loop, including Ala611 and 

Ser612.  

 

Figure 63. Number of hydrogen bonds between His64 and Asp554. 



 

209 

(A) The number of potential hydrogen bonds formed in each frame between the side chain of 
His64 and the phosphoryl group during the phosphorylated wild-type Ssk1-rec•Ypd1 
simulation. (B) The number of potential hydrogen bonds formed in each frame between the 
side chain of His64 and As554 during the apo wild-type Ssk1-rec•Ypd1 simulation. 
 

 Fig. 64 shows the same analysis for the mutant Ssk1-rec W638A•Ypd1. 

In the phosphorylated simulation, His64 on Ypd1 remains near the phosphoryl 

group for the majority of the trajectory, forming an average of 0.86 hydrogen 

bonds per frame and maintaining an average distance of 3.7 Å to the 

phosphorus atom (0.69 hydrogen bonds and 4.36 Å in the apo simulation). 

These correspond to a hydrogen-bond occupancy of ~86%.  

 

Figure 64. Number of hydrogen bonds between His64 and Asp554. 
(A) The number of potential hydrogen bonds formed in each frame between the side chain of 
His64 and the phosphoryl group during the phosphorylated Ssk1-rec W638A•Ypd1 simulation. 
(B) The number of potential hydrogen bonds formed in each frame between the side chain of 
His64 and Asp554 during the apo Ssk1-rec W638A•Ypd1 simulation. 
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 The significant differences between the systems suggest that under 

normal conditions, the phosphorylatable His64 is either unable to hydrogen 

bond with the phosphoryl or is preoccupied with additional interactions that 

make the hydrogen bonding less favorable in wild-type Ssk1-rec. The lack of 

interaction and overall increase in the interatomic distance between donor and 

acceptor makes phosphotransfer unlikely. This may explain the lack of 

observable reverse transfer from Ssk1-rec to Ypd1. Taking into account the 

hydrogen bonding tendency of the donor and acceptor in Sln1-rec•Ypd1 and 

Ssk1-rec W638A•Ypd1, as well as the stabilization effect observed in both of 

their interfaces upon phosphorylation, it is reasonable to speculate that the 

infrequent interaction between donor and acceptor atoms in wild-type Ssk1-

rec•Ypd1 is due to the instability of its interface contacts. Mutation of Trp638 

to an alanine stabilizes these contacts, thereby stabilizing the interaction 

between donor and acceptor residues and allowing for reverse transfer to 

occur. 

Complex formation occludes hydrolytic water from the active site and 

alters the local chemical environment 

 Despite utilizing highly conserved active site geometrics, rec domain 

autodephosphorylation rates are extremely variable, spanning nearly six orders 

of magnitude [64]. These rates typically correlate with the biological processes 

controlled by the rec domain [65]. How rec domains are able to customize their 

own dephosphorylation kinetics is unknown. The high genetic diversity found 
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within the rec domain family indicates that the answer is likely different for 

each protein. Autodephosphorylation (hydrolytic) is thought to occur through 

an in-line attack at the phosphorus atom by a nucleophilic water molecule 

positioned directly above the phosphoryl group [39]. The reaction then 

proceeds through a trigonal bipyramidal transition state, similar to the normal 

associative phosphotransfer mechanism [66]. The metal cation and conserved 

lysine residue are essential for the reaction, likely for neutralizing and 

stabilizing the highly charged transition state [67].  

Alone, both Ssk1-rec and Sln1-rec possess comparable half-lives of 

approximately 10-15 minutes [32]. However, in the presence of Ypd1, the 

phosphorylated half-life of Ssk1-rec (both wild-type and W638A) is stabilized 

to over 40 hours [32]. This same effect is not observed with Sln1-rec or the 

third rec domain of the pathway, Skn7-rec. Several possibilities exist that may 

explain the stabilization of phosphorylated Ssk1-rec by Ypd1 (reviewed in 

[65]). Because the hydrolysis reaction must proceed along an in-line route at 

the phosphorus atom, lowering the accessibility of the phosphoryl group to 

solvent may protect the phosphorylated state. Ypd1 may aid in occluding water 

from the proximity of the phosphoryl group, or may facilitate the same effect 

through another residue on Ssk1-rec. If dephosphorylation is linked to the 

conformational change seen in Ssk1-rec upon activation, sequestering the rec 

domain in an active conformation may also affect hydrolysis rates. Finally, 

Ypd1 may alter the chemical environment of the active site, making it less 
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favorable energetically for the reaction to occur or making the phosphorus a 

less attractive site for nucleophilic attack. 

To examine the solvent accessibility of the phosphoryl group, average 

water densities and occupancies were calculated for each of the simulated 

systems. Fully solvated snapshots were taken from each production trajectory 

at 50 ps intervals (~2000 snapshots total). Frames were first aligned by Cα 

atoms using their initial frame as a reference. The average number of waters 

near the phosphorylatable aspartate of each rec domain was then calculated and 

is shown in Table 28.  

Table 28. Water molecules within 5 Å of the catalytic aspartate residue. 

Proteins Waters 
P~Sln1-rec•Ypd1 4 

Sln1-rec•Ypd1 5 

P~Ssk1-rec•Ypd1 5 

Ssk1-rec•Ypd1 5 

P~Ssk1-rec W638A•Ypd1 5 

Ssk1-rec W638A•Ypd1 4 
 

 To more accurately quantify the relative positions and concentrations of 

active site water molecules, the VMD VolMap plugin was then used to 

calculate the average atomic densities and occupancies contributed by water 

(oxygen) atoms within each simulation. Data were mapped as isosurfaces, 

showing the three-dimensional locations and relative densities of water 

molecules. Fig. 65 shows these maps calculated from the phosphorylated Sln1-
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rec•Ypd1simulation. While each figure shows relatively high active site 

accessibility to bulk solvent, no waters were observed directly above the 

phosphoryl group, where an in-line attack would originate. Fig. 66 shows the 

same view of apo Sln1-rec•Ypd1 for reference. Here, the lack of an organized 

active site appears to inhibit the ordered arrangement of active site waters as 

seen in Fig. 65. 

 

 

Figure 65. Time-averaged water density and occupancy maps calculated 
for phosphorylated Sln1-rec•Ypd1. 
(A) Atomic water density (oxygen atoms) averaged over 100 ns (pink wire-frame). Density 
isosurface is shown at 0.05 (on a range of 0-0.15) (B) Atomic water occupancy (oxygen atoms) 
averaged over 100 ns (green wire-frame). Occupancy isosurface is shown at 50%. 
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Figure 66. Time-averaged water density and occupancy maps calculated 
for apo Sln1-rec•Ypd1. 
(A) Atomic water density (oxygen atoms) averaged over 100 ns (pink wire-frame). Density 
isosurface is shown at 0.05 (on a range of 0-0.15) (B) Atomic water occupancy (oxygen atoms) 
averaged over 100 ns (green wire-frame). Occupancy isosurface is shown at 50%. 
 

Comparison with volumetric maps for wild-type Ssk1-rec•Ypd1 (Fig. 67 

phosphorylated; Fig. 68 apo) indicates that this effect is common to both rec 

domain complexes and is likely a result of Ypd1 partitioning the active site 

away from the bulk solvent. Overall active site water density and occupancy 

were lower in the wild-type Ssk1-rec•Ypd1 simulation than in the Sln1-

rec•Ypd1 complex. Originally it was hypothesized that this may also 

contribute to the more protective effect Ypd1 shares with Ssk1-rec. However, 

analysis of the mutant Ssk1-rec W638A•Ypd1 simulations suggests that this is 

not the case (Figs. 69-70). These showed high active site water density and 

occupancy in locations similar to the Sln1-rec•Ypd1 complex (Fig. 65), though 

no water was detected directly above the phosphoryl group. 
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Figure 67. Time-averaged water density and occupancy maps calculated 
for phosphorylated wild-type Ssk1-rec•Ypd1. 
(A) Atomic water density (oxygen atoms) averaged over 100 ns (pink wire-frame). Density 
isosurface is shown at 0.05 (on a range of 0-0.15) (B) Atomic water occupancy (oxygen atoms) 
averaged over 100 ns (green wire-frame). Occupancy isosurface is shown at 50%. 
 

 

Figure 68. Time-averaged water density and occupancy maps calculated 
for apo wild-type Ssk1-rec•Ypd1. 
(A) Atomic water density (oxygen atoms) averaged over 100 ns (pink wire-frame). Density 
isosurface is shown at 0.05 (on a range of 0-0.15) (B) Atomic water occupancy (oxygen atoms) 
averaged over 100 ns (green wire-frame). Occupancy isosurface is shown at 50%. 
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Figure 69. Time-averaged water density and occupancy maps calculated 
for phosphorylated Ssk1-rec W638A•Ypd1. 
(A) Atomic water density (oxygen atoms) averaged over 100 ns (pink wire-frame). Density 
isosurface is shown at 0.05 (on a range of 0-0.15) (B) Atomic water occupancy (oxygen atoms) 
averaged over 100 ns (green wire-frame). Occupancy isosurface is shown at 50%. 
 

 

Figure 70. Time-averaged water density and occupancy maps calculated 
for apo Ssk1-rec W638A•Ypd1. 
(A) Atomic water density (oxygen atoms) averaged over 100 ns (pink wire-frame). Density 
isosurface is shown at 0.05 (on a range of 0-0.15) (B) Atomic water occupancy (oxygen atoms) 
averaged over 100 ns (green wire-frame). Occupancy isosurface is shown at 50%. 
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Figure 71. Time-averaged water density and occupancy maps calculated 
for phosphorylated Ssk1-rec W638A. 
(A) Atomic water density (oxygen atoms) averaged over 100 ns (pink wire-frame). Density 
isosurface is shown at 0.05 (on a range of 0-0.15) (B) Atomic water occupancy (oxygen atoms) 
averaged over 100 ns (green wire-frame). Occupancy isosurface is shown at 50%. 
 

 To test if this protective effect was directly caused by complex 

formation, Ypd1 was removed and phosphorylated Ssk1-rec W638A was 

simulated as a monomer in solution (100 ns). Fig. 71 shows the water density 

and occupancy maps calculated from this monomeric simulation, indicating 

consistently high water concentration positioned directly above the phosphoryl 

group. These results suggest that binding Ypd1 at least partially protects the 

phosphorylated rec domains by preventing the hydrolytic water from 

positioning in the proper orientation for an in-line nucleophilic attack. Ypd1’s 

high affinity and preference for Ssk1-rec leads to the formation of an unusually 

strong transient complex, protecting the phosphoryl group from hydrolysis for 

an extended period. However, Sln1-rec and Ypd1 dissociate too rapidly to 

capitalize on any possible protective effect [30]. Recent work demonstrates a 
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precedent for this mechanism, showing the protection of the response regulator 

PmrA from phosphatase activity by binding the connector protein PmrD at the 

rec domain active site [68]. 

 To examine if complex formation alters the chemical environment of 

the active site, thereby further affecting dephosphorylation rates, the 

electrostatic potential of each complex was calculated using the PMEpot 

plugin within VMD [52]. Electrostatic potential was averaged over 100 ns for 

each simulation. Potential values were mapped (scaled from -15 to +30 kT/e) 

first to a molecular surface representation showing a top-down view of the 

active site. A volumetric slice projected along the XY plane was also 

generated, positioned directly above the phosphorylatable aspartate and 

showing a close-up of the rec domain active site. Fig. 72 shows this heat map 

for the phosphorylated and apo Sln1-rec•Ypd1 complexes. The major areas of 

positive potential are centered around both the metal cation and the conserved 

active site lysine (Lys1195).  
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Figure 72. Time-averaged electrostatic potential for phosphorylated and 
apo Sln1-rec•Ypd1 simulations. 
Shown are molecular surface representations of the rec domains, extracted from the complex 
simulations. Atoms are colored based on average electrostatic potential, scaled from -15 to +30 
kT/e, computed using the PMEpot plugin. (A) Potential for phosphorylated Sln1-rec•Ypd1. 
The inset shows a volumetric slice, generated along the XY plane, showing the immediate 
environment around the phosphoryl group. (B) Potential for apo Sln1-rec•Ypd1. The inset 
shows a volumetric slice, generated along the XY plane, showing the immediate environment 
around the phosphorylatable Asp1144.  
 

Fig. 73 shows the same comparison for wild-type Ssk1-rec. Notice the large 

increase in positive potential surrounding the highly negatively charged 

phosphoryl group, an effect that is significantly diminished in the Sln1-

rec•Ypd1 active site. The effect is even more pronounced in the Ssk1-rec 

W638A•Ypd1 active site (Fig. 74). The positively charged potential 

surrounding the phosphoaspartate is almost completely absent when 

phosphorylated Ssk1-rec W638A and wild-type Ssk1-rec were simulated as 

monomers in solution (Fig. 75). Only by binding Ypd1 is the Ssk1-rec active 

site altered so dramatically. Previous work suggests that autophosphorylation 
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and phosphotransfer reactions are highly sensitive to changes in salt 

concentration [47, 65, 69, 70]. Due to the highly charged nature of the rec 

domain active site, any disruption in the normal electrostatic environment 

would likely lead to a change in reaction rates and stability. The positively 

charged potential seen in the Ssk1-rec•Ypd1 active site may be acting to 

neutralize the negatively charged phosphoryl group, lowering its ground state 

energy and increasing the activation energy of the dephosphorylation reaction. 

This would ultimately slow the rate of hydrolysis. 

 

 
Figure 73. Time-averaged electrostatic potential for phosphorylated and 
apo wild-type Ssk1-rec•Ypd1. 
Shown are molecular surface representations of the rec domains, extracted from the complex 
simulations. Atoms are colored based on average electrostatic potential, scaled from -15 to +30 
kT/e, computed using the PMEpot plugin. (A) Potential for phosphorylated Ssk1-rec•Ypd1. 
The inset shows a volumetric slice, generated along the XY plane, showing the immediate 
environment around the phosphoryl group. (B) Potential for apo Ssk1-rec•Ypd1. The inset 
shows a volumetric slice, generated along the XY plane, showing the immediate environment 
around the phosphorylatable Asp554.  
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Figure 74. Time-averaged electrostatic potential for phosphorylated and 
apo Ssk1-rec W638A•Ypd1. 
Shown are molecular surface representations of the rec domains, extracted from the complex 
simulations. Atoms are colored based on average electrostatic potential, scaled from -15 to +30 
kT/e, computed using the PMEpot plugin. (A) Potential for phosphorylated Ssk1-rec 
W638A•Ypd1. The inset shows a volumetric slice, generated along the XY plane, showing the 
immediate environment around the phosphoryl group. (B) Potential for apo Ssk1-rec 
W638A•Ypd1. The inset shows a volumetric slice, generated along the XY plane, showing the 
immediate environment around the phosphorylatable Asp554.  
 

 

Figure 75. Time-averaged electrostatic potential for phosphorylated wild-
type Ssk1-rec and Ssk1-rec W638A (monomers). 
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Shown are molecular surface representations for both forms of the rec domain, simulated as 
monomers in solution. Atoms are colored based on average electrostatic potential, scaled from 
-15 to +30 kT/e, computed using the PMEpot plugin. (A) Potential for phosphorylated Ssk1-rec 
W638A alone. The inset shows a volumetric slice, generated along the XY plane, showing the 
immediate environment around the phosphoryl group. (B) Potential for phosphorylated wild-
type Ssk1-rec. The inset shows a volumetric slice, generated along the XY plane, showing the 
immediate environment around the phosphoryl group.  
 

3.4 Conclusions 

 Active site restraints were used to study the activation of rec domains 

from the fungal osmoregulatory Sln1 pathway in complex with their cognate 

partner, Ypd1. Observations on interface stability and specific intermolecular 

contacts suggest that phosphorylation stabilizes the protein-protein interfaces 

within Sln1-rec•Ypd1 and Ssk1-rec W638A•Ypd1, but destabilizes the 

interface within wild-type Ssk1-rec•Ypd1. This destabilization is likely related 

to the poor catalytic and geometric alignment of donor and acceptor atoms 

(His64-Asp554) within the wild-type Ssk1-rec•Ypd1 active site. These factors 

may contribute to the perceived absence of reverse phosphotransfer from wild-

type Ssk1-rec to Ypd1. The W638A mutation stabilizes both the overall 

interface and the catalytic alignment of His64-Asp554, likely increasing the 

propensity for reverse phosphotransfer.  

Simulation in explicit solvent provided valuable insight into the 

accessibility and positioning of active site waters in relation to the 

phosphoaspartate residue. In both Sln1-rec•Ypd1 and the two Ssk1-rec•Ypd1 

complexes, water is prevented from positioning directly above the phosphoryl 

group in an appropriate orientation for in-line nucleophilic attack. Comparison 
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with monomeric rec domain simulations indicates that this protective effect is a 

direct feature of binding Ypd1. As Ssk1-rec forms a relatively stable complex 

with Ypd1, the active site aspartate residue is partially sequestered from 

solvent for an extended period of time, dramatically increasing its 

phosphorylated life-time. The rapid dissociation of Sln1-rec and Ypd1 prevents 

any such stabilization.  

Both Ssk1-rec•Ypd1 active sites were found to be significantly more 

positively charged than the Sln1-rec•Ypd1 active site. This appears to be an 

effect of both phosphorylation and complex formation with Ypd1, as it is 

significantly diminished in the apo and monomeric simulations. Surrounding 

the highly negatively charged phosphoryl group with positive electrostatic 

potential may contribute to the stabilization of the phosphoryl group, 

significantly slowing autodephosphorylation rates by increasing the activation 

energy of the reaction.  

It should be noted that the majority of the complexes used for this study 

started in initial inactive conformations. Rec domain active site restraints were 

used to simulate activation post-complex formation to make consistent 

comparisons. While physiologically this makes sense for Ssk1-rec•Ypd1, Sln1-

rec is likely already activated prior to binding its partner. A control was run 

using a pre-activated Sln1-rec docked to Ypd1. Results suggest no appreciable 

difference between the original Sln1-rec•Ypd1 and the pre-activated system. 

The control also demonstrates how an accurate pre-transition state 
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phosphotransfer complex might be simulated when starting with an imperfectly 

docked complex model. Application of an extra distance restraint to enforce 

linear geometry between donor and acceptor atoms was able to reproduce a 

phosphotransfer-competent active site, despite His64 and the phosphorylatable 

aspartate residue being out of alignment in the initial model. 

These results provide valuable insights into the mechanisms governing 

complex formation and phosphotransfer within the osmoregulatory Sln1 

pathway and demonstrate the value of biased MD simulations for studying 

events that would otherwise be difficult to observe with traditional methods. 

However, these studies do not replace the need for experimental validation. 

While the conclusions presented here may provide intellectually appealing 

explanations for these various phenomena, they should be used as 

complementary tools to guide future studies, both experimental and 

computational. 

  



 

225 

References 

 

1. Ann M. Stock, Victoria L. Robinson a, Goudreau PN. Two-component 
signal transduction. Annual Rev Biochemistry. 2000;69(1):183-215. 

2. Alex LA, Simon MI. Protein histidine kinases and signal transduction 
in prokaryotes and eukaryotes. Trends Genet. 1994;10(4):133-8. 

3. Fassler JS, West AH. Histidine Phosphotransfer Proteins in Fungal 
Two-Component Signal Transduction Pathways. Eukaryotic Cell. 
2013;12(8):1052-60. 

4. West AH, Stock AM. Histidine kinases and response regulator proteins 
in two-component signaling systems. Trends Biochem Sci. 
2001;26(6):369-76. 

5. Blair JA, Xu Q, Childers WS, Mathews, II, Kern JW, Eckart M, 
Deacon AM, Shapiro L. Branched signal wiring of an essential 
bacterial cell-cycle phosphotransfer protein. Structure. 
2013;21(9):1590-601. 

6. Hutchison CE, Kieber JJ. Signaling via Histidine-Containing 
Phosphotransfer Proteins in Arabidopsis. Plant Signaling & Behavior. 
2007;2(4):287-9. 

7. Porter SW, Xu Q, West AH. Ssk1p response regulator binding surface 
on histidine-containing phosphotransfer protein Ypd1p. Eukaryot Cell. 
2003;2(1):27-33. 

8. Brown JL, Bussey H, Stewart RC. Yeast Skn7p functions in a 
eukaryotic two-component regulatory pathway. EMBO J. 
1994;13(21):5186-94. 

9. Vetter SM, Schlievert PM. The two-component system Bacillus 
respiratory response A and B (BrrA-BrrB) is a virulence factor 
regulator in Bacillus anthracis. Biochemistry. 2007;46(25):7343-52. 



 

226 

10. Dhiman A, Bhatnagar S, Kulshreshtha P, Bhatnagar R. Functional 
characterization of WalRK: A two-component signal transduction 
system from Bacillus anthracis(). FEBS Open Bio. 2014;4:65-76. 

11. Suárez JM, Edwards AN, McBride SM. The Clostridium difficile cpr 
Locus Is Regulated by a Noncontiguous Two-Component System in 
Response to Type A and B Lantibiotics. J Bact. 2013;195(11):2621-31. 

12. Martin PK, Li T, Sun D, Biek DP, Schmid MB. Role in Cell 
Permeability of an Essential Two-Component System in 
Staphylococcus aureus. J Bact. 1999;181(12):3666-73. 

13. Bahn YS, Kojima K, Cox GM, Heitman J. A unique fungal two-
component system regulates stress responses, drug sensitivity, sexual 
development, and virulence of Cryptococcus neoformans. Molecular 
biology of the cell. 2006;17(7):3122-35. 

14. Calera JA, Calderone R. Flocculation of hyphae is associated with a 
deletion in the putative CaHK1 two-component histidine kinase gene 
from Candida albicans. Microbiology. 1999;145 ( Pt 6):1431-42. 

15. Yamada-Okabe T, Mio T, Ono N, Kashima Y, Matsui M, Arisawa M, 
Yamada-Okabe H. Roles of three histidine kinase genes in hyphal 
development and virulence of the pathogenic fungus Candida albicans. 
J Bact. 1999;181(23):7243-7. 

16. Desai C, Mavrianos J, Chauhan N. Candida albicans SRR1, a putative 
two-component response regulator gene, is required for stress 
adaptation, morphogenesis, and virulence. Eukaryot Cell. 
2011;10(10):1370-4. 

17. Hinnebusch AG, Johnston M. YeastBook: an encyclopedia of the 
reference eukaryotic cell. Genetics. 2011;189(3):683-4. 

18. Fassler JS, West AH. Genetic and Biochemical Analysis of the SLN1 
Pathway in Saccharomyces cerevisiae. Methods Enzymol. 
2010;471:291-317. 



 

227 

19. Maeda T, Wurgler-Murphy SM, Saito H. A two-component system that 
regulates an osmosensing MAP kinase cascade in yeast. Nature. 
1994;369(6477):242-5. 

20. Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H. 
Yeast HOG1 MAP kinase cascade is regulated by a multistep 
phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" 
osmosensor. Cell. 1996;86(6):865-75. 

21. Ota IM, Varshavsky A. A yeast protein similar to bacterial two-
component regulators. Science. 1993;262(5133):566-9. 

22. Porter SW, West AH. A common docking site for response regulators 
on the yeast phosphorelay protein YPD1. Biochimica et biophysica 
acta. 2005;1748(2):138-45. 

23. Kato M, Mizuno T, Shimizu T, Hakoshima T. Refined structure of the 
histidine-containing phosphotransfer (HPt) domain of the anaerobic 
sensor kinase ArcB from Escherichia coli at 1.57 A resolution. Acta 
crystallographica Section D, Biological crystallography. 1999;55(Pt 
11):1842-9. 

24. Mourey L, Da Re S, Pedelacq JD, Tolstykh T, Faurie C, Guillet V, 
Stock JB, Samama JP. Crystal structure of the CheA histidine 
phosphotransfer domain that mediates response regulator 
phosphorylation in bacterial chemotaxis. J Biol Chem. 
2001;276(33):31074-82. 

25. Zhou H, Dahlquist FW. Phosphotransfer site of the chemotaxis-specific 
protein kinase CheA as revealed by NMR. Biochemistry. 
1997;36(4):699-710. 

26. Lukat GS, McCleary WR, Stock AM, Stock JB. Phosphorylation of 
bacterial response regulator proteins by low molecular weight phospho-
donors. Proc Natl Acad Sci. 1992;89(2):718-22. 

27. Lu JM, Deschenes RJ, Fassler JS. Saccharomyces cerevisiae histidine 
phosphotransferase Ypd1p shuttles between the nucleus and cytoplasm 



 

228 

for SLN1-dependent phosphorylation of Ssk1p and Skn7p. Eukaryot 
Cell. 2003;2(6):1304-14. 

28. Saito H, Posas F. Response to Hyperosmotic Stress. Genetics. 
2012;192(2):289-318. 

29. Xu Q, Porter SW, West AH. The yeast YPD1/SLN1 complex: Insights 
into molecular recognition in two-component signaling systems. 
Structure. 2003;11(12):1569-81. 

30. Janiak-Spens F, Cook PF, West AH. Kinetic analysis of YPD1-
dependent phosphotransfer reactions in the yeast osmoregulatory 
phosphorelay system. Biochemistry. 2005;44(1):377-86. 

31. Perkins JR, Diboun I, Dessailly BH, Lees JG, Orengo C. Transient 
Protein-Protein Interactions: Structural, Functional, and Network 
Properties. Structure. 2010;18(10):1233-43. 

32. Janiak-Spens F, Sparling JM, Gurfinkel M, West AH. Differential 
stabilities of phosphorylated response regulator domains reflect 
functional roles of the yeast osmoregulatory SLN1 and SSK1 proteins. 
J Bact. 1999;181(2):411-7. 

33. Attwood PV, Besant PG, Piggott MJ. Focus on phosphoaspartate and 
phosphoglutamate. Amino Acids. 2011;40(4):1035-51. 

34. Kaserer AO, Andi B, Cook PF, West AH. Effects of osmolytes on the 
SLN1-YPD1-SSK1 phosphorelay system from Saccharomyces 
cerevisiae. Biochemistry. 2009;48(33):8044-50. 

35. Zhao X, Copeland DM, Soares AS, West AH. Crystal structure of a 
complex between the phosphorelay protein YPD1 and the response 
regulator domain of SLN1 bound to a phosphoryl analog. J Mol Biol. 
2008;375(4):1141-51. 

36. The NCBI Reference Sequence collection 
.http://www.ncbi.nlm.nih.gov/RefSeq. 

http://www.ncbi.nlm.nih.gov/RefSeq


 

229 

37. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, 
Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids. 
2000;28(1):235-42. 

38. Varughese KI, Tsigelny I, Zhao H. The crystal structure of 
beryllofluoride Spo0F in complex with the phosphotransferase Spo0B 
represents a phosphotransfer pretransition state. J Bact. 
2006;188(13):4970-7. 

39. Zhao R, Collins EJ, Bourret RB, Silversmith RE. Structure and 
catalytic mechanism of the E. coli chemotaxis phosphatase CheZ. Nat 
Struct Biol. 2002;9(8):570-5. 

40. Carter EA, Ciccotti G, Hynes JT, Kapral R. Constrained reaction 
coordinate dynamics for the simulation of rare events. Chemical 
Physics Letters. 1989;156(5):472-7. 

41. Grubmüller H. Predicting slow structural transitions in macromolecular 
systems: Conformational flooding. Phys Rev E. 1995;52(3):2893-906. 

42. Huber T, Torda A, van Gunsteren W. Local elevation: A method for 
improving the searching properties of molecular dynamics simulation. J 
Computer-Aided Mol Des. 1994;8(6):695-708. 

43. Bourret RB. Receiver domain structure and function in response 
regulator proteins. Current Opinion in Microbiology. 2010;13(2):142-9. 

44. Bobay BG, Hoch JA, Cavanagh J. Dynamics and activation in response 
regulators: The β4-α4 loop. Biomol Concepts. 2012;3(2):175-82. 

45. Feher VA, Cavanagh J. Millisecond-timescale motions contribute to the 
function of the bacterial response regulator protein Spo0F. Nature. 
1999;400(6741):289-93. 

46. Lee SY, Cho HS, Pelton JG, Yan D, Henderson RK, King DS, Huang 
L, Kustu S, Berry EA, Wemmer DE. Crystal structure of an activated 
response regulator bound to its target. Nat Struct Biol. 2001;8(1):52-6. 



 

230 

47. Thomas SA, Brewster JA, Bourret RB. Two variable active site 
residues modulate response regulator phosphoryl group stability. Mol 
Micro. 2008;69(2):453-65. 

48. Dominguez C, Boelens R, Bonvin AMJJ. HADDOCK:  A 
Protein−Protein Docking Approach Based on Biochemical or 
Biophysical Information. J Am Chem Soc. 2003;125(7):1731-7. 

49. Emsley PL, Bernhard; Scott, W.G.; Cowtan, Kevan. Features and 
development of Coot. Acta Cryst D. 2010;66:15. 

50. Zhang L, Hermans J. Hydrophilicity of cavities in proteins. Proteins. 
1996;24(4):433-8. 

51. Gumbart J, Trabuco LG, Schreiner E, Villa E, Schulten K. Regulation 
of the protein-conducting channel by a bound ribosome. Structure. 
2009;17(11):1453-64. 

52. Humphrey W, Dalke A, Schulten K. VMD: Visual molecular 
dynamics. J Mol Graphics. 1996;14(1):33-8. 

53. Brooks BR, Brooks CL, 3rd, Mackerell AD, Jr., Nilsson L, Petrella RJ, 
Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves 
L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, 
Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post 
CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, 
Yang W, York DM, Karplus M. CHARMM: The biomolecular 
simulation program. J Comput Chem. 2009;30(10):1545-614. 

54. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, 
Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir 
L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, 
Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, 
Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M. All-
atom empirical potential for molecular modeling and dynamics studies 
of proteins. J Phys Chem B. 1998;102(18):3586-616. 



 

231 

55. Damjanović A, García-Moreno E B, Brooks BR. Self-guided Langevin 
dynamics study of regulatory interactions in NtrC. Proteins. 
2009;76(4):1007-19. 

56. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, 
Chipot C, Skeel RD, Kale L, Schulten K. Scalable molecular dynamics 
with NAMD. J Comput Chem. 2005;26(16):1781-802. 

57. Fiorin G, Klein ML, Hénin J. Using collective variables to drive 
molecular dynamics simulations. Mol Physics. 2013;111(22-23):3345-
62. 

58. Team RDC. R: A language and environment for statistical computing. 
R Foundation. 2013. 

59. Grant BJ, Rodrigues APC, ElSawy KM, McCammon JA, Caves LSD. 
Bio3d: an R package for the comparative analysis of protein structures. 
Bioinformatics. 2006;22(21):2695-6. 

60. Abdel-Azeim S, Chermak E, Vangone A, Oliva R, Cavallo L. MDcons: 
Intermolecular contact maps as a tool to analyze the interface of protein 
complexes from molecular dynamics trajectories. BMC Bioinformatics. 
2014;15(5):1-11. 

61. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. 
A smooth particle mesh ewald potential. J Chem Phys. 1995;103. 

62. Aksimentiev A, Schulten K. Imaging alpha-hemolysin with molecular 
dynamics: ionic conductance, osmotic permeability, and the 
electrostatic potential map. Biophys J. 2005;88(6):3745-61. 

63. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, 
Meng EC, Ferrin TE. UCSF Chimera--a visualization system for 
exploratory research and analysis. J Comput Chem. 2004;25(13):1605-
12. 

64. Bourret RB, Thomas SA, Page SC, Creager-Allen RL, Moore AM, 
Silversmith RE. Measurement of response regulator 



 

232 

autodephosphorylation rates spanning six orders of magnitude. 
Methods Enzymol. 2010;471:89-114. 

65. Pazy Y, Wollish AC, Thomas SA, Miller PJ, Collins EJ, Bourret RB, 
Silversmith RE. Matching biochemical reaction kinetics to the 
timescales of life: Structural determinants that influence the 
autodephosphorylation rate of response regulator proteins. J Mol Biol. 
2009;392(5):1205-20. 

66. Stock AM, Martinez-Hackert E, Rasmussen BF, West AH, Stock JB, 
Ringe D, Petsko GA. Structure of the Mg(2+)-bound form of CheY and 
mechanism of phosphoryl transfer in bacterial chemotaxis. 
Biochemistry. 1993;32(49):13375-80. 

67. Lukat GS, Stock AM, Stock JB. Divalent metal ion binding to the 
CheY protein and its significance to phosphotransfer in bacterial 
chemotaxis. Biochemistry. 1990;29(23):5436-42. 

68. Luo S-C, Lou Y-C, Rajasekaran M, Chang Y-W, Hsiao C-D, Chen C. 
Structural Basis of a Physical Blockage Mechanism for the Interaction 
of Response Regulator PmrA with Connector Protein PmrD from 
Klebsiella pneumoniae. J Biol Chem. 2013;288(35):25551-61. 

69. Da Re SS, Deville-Bonne D, Tolstykh T, M Vr, Stock JB. Kinetics of 
CheY phosphorylation by small molecule phosphodonors. FEBS Lett. 
1999;457(3):323-6. 

70. Mayover TL, Halkides CJ, Stewart RC. Kinetic characterization of 
CheY phosphorylation reactions: comparison of P-CheA and small-
molecule phosphodonors. Biochemistry. 1999;38(8):2259-71. 



 

233 

Chapter 4: Elucidating the role of Gly68 in Ypd1 

4.1 Introduction 

Histidine phosphotransfer (HPt) proteins play a critical role within 

expanded TCS pathways. The chemical nature of phosphotransfer requires an 

alternating pattern of phosphorylatable histidine and aspartate residues for 

signal transmission (reviewed in [1]). Simple TCS systems achieve this with 

the upstream HK, autophosphorylating on a histidine residue, and the 

downstream RR rec domain, catalyzing the transfer of the phosphoryl to its 

own aspartate residue. The modular nature of these pathways provides 

tremendous opportunity for variations on the prototypical signaling scheme. 

The evolution of additional components within the pathway, such as hybrid 

HKs, containing both histidine and aspartate residues, necessitated the rise of a 

phosphorylatable histidine-containing intermediate, now referred to as the HPt 

domain [1-3]. Phylogenetic analysis of multi-step phosphorelays suggests that 

these expanded systems are likely bacterial in origin, with some evidence 

indicating a common ancestor with Hsp90, MutL and type II topoisomerases 

[2, 4, 5]. Though the majority of prokaryotes utilize basic TCS systems, nearly 

one-third of bacterial genomes contain at least one hybrid HK, indicating the 

prominence of phosphorelays [2]. Eukaryotic TCS systems are almost 

exclusively multi-step phosphorelays, incorporating hybrid HKs that are 

thought to have originated through lateral gene transfer with bacterial systems 
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[4]. Unlike bacterial systems, however, eukaryotic HPt domains are normally 

standalone proteins operating downstream from the rec domain of a hybrid HK 

[1]. 

One of the most well-characterized of the eukaryotic HPts, Ypd1, is 

found within the S. cerevisiae osmoregulatory Sln1 phosphorelay [6-14]. Ypd1 

occupies a branch point within the system, able to receive a phosphoryl from 

the upstream hybrid HK, Sln1, and transfer to two downstream RRs, the 

cytoplasmic Ssk1 and the nuclear Skn7 [10, 11, 15-21]. Ssk1 is involved in 

responding to hyperosmotic stress through regulation of the HOG pathway 

[22]. Under non-stress conditions, Ypd1 constitutively phosphorylates Ssk1, 

suppressing its ability to interact with components of the HOG pathway [19, 

20, 22, 23]. Hyperosmotic stress prevents Sln1 from autophosphorylating, 

ultimately contributing to the accumulation of unphosphorylated Ssk1 and the 

activation of the HOG pathway, which increases glycerol production to restore 

osmotic balance. Skn7 is involved in the cell wall and/or oxidative stress 

response [24]. Upon detection, Ypd1 translocates the signal across the nucleus, 

phosphorylating Skn7 and altering the transcription of stress response-related 

genes. 
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Figure 76. Structure and active site of the S. cerevisiae HPt, Ypd1. 
(A) Crystal structure of Ypd1 (PDB 1OXB). Shown in stick model and is the phosphorylatable 
histidine residue (magenta). (B) Active site of Ypd1, with conserved residues shown in stick 
model (magenta). These residues form part of the common binding surface shared by all HPt 
domains. 
 

 

Despite a highly conserved tertiary structure, little sequence homology 

exists between HPt domains. These proteins typically function non-

enzymatically, unable to catalyze their own phosphorylation or the transfer of a 

phosphoryl group downstream [1]. What little sequence similarity exists is 

found near the phosphorylatable histidine. HPt domains adopt a common four-

helix bundle fold. Fig. 76A shows this common structure with the standalone 

fungal HPt, Ypd1 [12]. In Ypd1, His64 is the conserved site of 

phosphorylation (Fig. 76A, stick). Adjacent residues, such as Asn61, Lys67, 

Gly68, Gln86 and Arg90, are also conserved and appear to contribute to the 

overall arrangement and solvent accessibility of the histidine residue (Fig. 

76B) [14]. Yeast two-hybrid studies and available crystal structures have 
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revealed the existence of a common hydrophobic docking site around these 

residues utilized by all three rec domains in the Sln1 pathway [25, 26]. This 

feature occurs in nearly all HPt proteins [12, 13, 27, 28].  

Based on the high-resolution crystal structure of Ypd1 and Sln1, point 

mutations of several conserved residues at the interface were discovered that 

disrupt phosphotransfer both to and from Ypd1 [17]. Gly68, located four 

positions downstream from the phosphorylatable histidine (H+4), was found to 

have a particularly deleterious effect upon mutation. Yeast two-hybrid studies 

suggest that its substitution to a glutamine (G68Q) severely impairs binding 

with all three rec domains within the Sln1 pathway [25, 26]. However, kinetic 

analysis found that while the same mutation has a negative effect on 

phosphoryl transfer, the binding itself is relatively unaffected [10]. A 

bioinformatic survey shows that 88% of all HPt sequences have a glycine at 

this position, with the remaining sequences containing mainly serine [29, 30]. 

Taken together, these results emphasize the essential nature of this position, 

but the somewhat contradictory information makes it challenging to determine 

the role Gly68 plays in the interactions between Ypd1 and its cognate rec 

domains. 

To address this ambiguity, a two-fold approach was taken. 

Computational modeling and structural analysis were done for various 

substitution mutants to investigate Ypd1’s interaction with the upstream hybrid 

HK, Sln1. This was possible due to the relatively large amount of structural 
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information available for Sln1 and Ypd1 [12, 14]. A more traditional 

characterization was attempted to study the Ypd1 G68Q mutant’s interaction 

with the downstream RR rec domain, Ssk1-rec, using X-ray crystallography. 

The first section of this chapter will describe the computational results, and the 

second section will focus on the co-crystallization of Ypd1 G68Q and Ssk1-

rec. 

4.2 Computational studies to investigate the role of Gly68 in 

phosphotransfer between Sln1  and Ypd1 

Two possible explanations exist for the effects of the G68Q mutation 

on the phosphotransfer between Sln1 and Ypd1. They are not mutually 

exclusive.  The first hypothesis is that replacing the small glycine residue with 

a bulkier glutamine directly disrupts binding between Ypd1 and its partners. 

Both the position of Gly68 at the common binding interface (Fig. 76B) and the 

yeast two-hybrid data support this hypothesis [25, 26]. However, an in vitro 

fluorescence-based binding assay showed no significant changes in binding 

affinity between Sln1 and a variety of mutants at position 68 in Ypd1 when 

compared to wild-type (Skyler Hebdon, unpublished data). The second 

hypothesis is that substitutions at Gly68 affect the catalysis of phosphotransfer, 

likely through interactions with residues on the rec domain of Sln1. As 

explained in earlier sections, RR rec domains are responsible for catalyzing 

their own phosphotransfer reactions [31]. This is accomplished through a 

delicate series of conserved inter-atomic interactions at the active site, 
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involving a bound divalent metal cation and the phosphoryl group itself. Any 

disruption of these interactions would almost certainly have an effect on 

phosphotransfer.  

A series of Ypd1 point mutants was created and analyzed using an in 

vitro, radiolabeled phosphotransfer assay to determine their phosphotransfer 

activity (Emily Kennedy, unpublished data). Table 29 lists the substitutions 

and their phospho-accepting efficiencies (Emily Kennedy, unpublished data). 

Table 29. Relative phospho-accepting abilities of Ypd1 mutants 

Protein Efficiency 
Ypd1 Wild-type 100.0 

Ypd1 G68S 94.1±3.6 
Ypd1 G68A 82.0±15.6 
Ypd1 G68V 2.5±3.5 
Ypd1 G68L 0.4±0.6 
Ypd1 G68E 0.3±0.6 
Ypd1 G68Q 40.2±8.3 

*Efficiencies are defined as relative to wild-type, which is set to 100% 

These results suggest that large and/or hydrophobic side chains, such as 

glutamine, aspartate, valine and leucine, lead to an inability to receive a 

phosphoryl group. This partially explains the overwhelmingly conserved 

presence of a small and/or hydrophilic residue at this position in HPt domains. 

But this doesn’t fully explain why these side chains decrease or eliminate the 

phosphotransfer ability of Ypd1. To investigate this further, mutations were 

modeled onto known crystal structures and relaxed using molecular dynamics 

(MD) simulations to provide estimates of their effects on the local chemical 

environment. 
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Materials and Methods 

The following Ypd1 G68X mutations were simulated, in addition to a 

wild-type control: S, V, E, L and Q. Existing crystal structures were obtained 

for wild-type Ypd1 in complex with the BeF3
- bound rec domain of Sln1 (PDB 

2R25) [13]. These structures were used as templates for each point mutant. 

Mutations were modeled individually using the PyMOL program (v1.8. 2015, 

Schrodinger LLC ©2016). For Ypd1 G68Q and G68E, mutant crystal 

structures (Smita Menon and Krutik Soni, unpublished data) were taken and 

aligned to wild-type Ypd1 within the complex structure. The mutant Ypd1 and 

Sln1 structures were then extracted together. For the remaining mutants (G68S, 

G68L, G68V), side chains were modeled directly onto the BeF3
- bound co-

crystal structure (PDB 2R25) [14]. 

For each model, the BeF3
- molecule was replaced with a PO3

2- ligand. 

Systems were stripped of all other crystallographic waters and ligands, leaving 

only the Mg2+ cation in the active site. Proteins were submerged in an 

orthorhombic solvent box using the TIP3P water model. Systems were then 

neutralized and set to a final concentration of 0.15 M NaCl. Proteins were 

prepared and visualized using the Schrodinger Maestro suite (Maestro, version 

10.6, Schrödinger, LLC, New York, NY, 2016).  

Simulations were performed with Desmond using the OPLS 2005 force 

field [32, 33]. The default Desmond relaxation protocol was used, featuring 

two rounds of energy minimization (restrained and unrestrained), a series of 
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gradually diminishing restraints over ~270 ps, and a brief 100 ps step of 

unrestrained NPT simulation. To preserve the pre-phosphotransfer active site 

and the relative locations of the phosphorylatable histidine and aspartate, a 

position restraint with a force constant of 100 kcal/mol/Å was applied to the 

Nε2 atom of His64 and the phosphoryl group during each simulation. Final 

structures were extracted from trajectories using Maestro and analyzed with 

PyMOL (v1.8. 2015, Schrodinger LLC ©2016). 

Mutations at the Gly68 position lead to changes in the active site residues 

involved in the catalysis of phosphotransfer 

The mechanism of His-to-Asp phosphotransfer in proteins has not been 

studied directly, due to the difficulty of visualizing the reaction, but non-

enzymatic reactions and kinetic information provide important clues as to the 

nature of the process. The generally accepted view involves a nucleophilic 

histidine or aspartate attacking the phosphorus atom of the phosphoryl group 

covalently bound to a donor atom [34]. Transition-state theory describes 

catalysis as preferential stabilization of a transition state [35-37]. Enzymes like 

rec domains must be able to facilitate and stabilize the pentavalent transition 

state that is formed during the phosphotransfer reaction [37]. This is achieved 

through a complex network of interactions around the phosphoryl group. Rec 

domains are known to bind a divalent metal cation in their negatively charged 

active site pocket [14, 38-42]. This metal is likely responsible for neutralizing 

the negative charge on the pentavalent transition state, stabilizing the high 
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energy species and ultimately making the reaction more favorable [34]. The 

same effect can also be accomplished by arranging neutralizing side chains 

near the phosphoryl group [43]. In rec domains, conserved active site residues, 

such as the Lys1195, Thr1173 and Ala1174 in Sln1, likely all stabilize the 

negatively charged transition state formed by transfer between Sln1 and Ypd1 

[14]. 

 

Figure 77. Chemical environment of the Sln1/Ypd1 active site. 
(A) Close-up view of the pre-transition state active site from the Sln1/Ypd1~BeF3

- crystal 

structure. Shown in stick model are BeF3
- (yellow) bound to Asp1144, along with the 

conserved active site residues of Sln1. His64 on Ypd1 is aligned directly above the phosphoryl 
analog, ready for nucleophilic attack at the “phosphorus” atom. Gly68 of Ypd1 is shown as a 
sphere (red). Mg2+ is shown as a non-bonded sphere (green). (B) Side view of the active site, 
showing the conserved interactions between Ala1174 (T+1 position) and Thr1173 (switch 
residue) with the phosphoryl analog. These interactions are critical for stabilizing the 
negatively charged “phosphoryl” group. (C) Top-down view of the phosphorylatable aspartate 
(Asp1144). A molecular channel is formed by adjacent residues on both Sln1 and Ypd1. Any 
disruption to this channel can negatively affect phosphotransfer. 
 

By modeling each mutation onto the “phosphorylated” complex 

structure of Sln1 and Ypd1, and allowing the structures to relax with MD 

simulations, the local structural changes caused by each substitution were 

revealed. Structural analysis was performed on the BeF3
- bound complex 

between Sln1 and wild-type Ypd1 to determine the native active site 
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environment. Fig. 77A shows the presumably phosphotransfer-competent 

active site arrangement of the crystal structure. Fig. 77B shows the interactions 

between the conserved switch residue Thr1174 and the T+1 residue Ala1174 

with the BeF3
- group on Sln1. Fig. 77C shows the “channel” through which 

His64 on Ypd1 arranges to access the phosphoryl group on Sln1 for 

nucleophilic attack. 

 

Figure 78. Chemical environment of the simulated Sln1•Ypd1 active site. 
(A) Close-up view of the pre-transition state active site from the simulated wild-type control. 
Shown in stick model are PO3

2- (orange) bound to Asp1144, along with the conserved active 
site residues of Sln1. His64 on Ypd1 is largely unaffected, still positioned directly above the 
phosphoryl group, ready for nucleophilic attack at the phosphorus atom. Gly68 of Ypd1 is 
shown as a sphere (red). Mg2+ is shown as a non-bonded sphere (green). (B) Side view of the 
active site, showing the conserved interactions between Ala1174 (T+1 position) and Thr1173 
(switch residue) with the phosphoryl analog. The interactions are maintained in the wild-type 
control. (C) Top-down view of the phosphorylatable aspartate (Asp1144). The molecular 
channel is still formed, largely due to the positioning of the β4α4 loop. 
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Figure 79. Structural changes caused by the G68S mutation. 
(A) Close-up view of the pre-transition state active site from the simulated G68S mutant. 
Shown in stick model are PO3

2- (orange) bound to Asp1144, along with the conserved active 
site residues of Sln1. His64 on Ypd1 is largely unaffected (the side chain can freely 
rotamerize), still positioned above the phosphoryl group. Mutation has caused slight distortion 
of the phosphoryl geometry. Ser68 of Ypd1 is shown as a sphere (red). Mg2+ is shown as a 
non-bonded sphere (green). (B) Side view of the active site, showing the conserved 
interactions between Ala1174 (T+1 position) and Thr1173 (switch residue) with the 
phosphoryl analog. The interactions are maintained, despite the G68S mutation. (C) Top-down 
view of the phosphorylatable aspartate (Asp1144). The molecular channel is left unaffected. 
 

Wild-type Ypd1 and Ypd1 G68S showed little structural perturbation 

upon relaxation. In both proteins, the phosphoryl group’s linear, upright 

geometry is largely maintained. Both donor and acceptor atoms remain in the 

original pre-transfer arrangement (Figs. 78-79A). Conserved side chains of 

Lys1195, Ala1174 and Thr1173 are unchanged as well (Figs. 78-79B). Taking 

these results into consideration, it is logical that Ypd1 G68S possesses a near-

wild-type phosphotransfer efficiency.  
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Figure 80. Structural changes caused by the G68V mutation. 
(A) Close-up view of the pre-transition state active site from the simulated G68V mutant. 
Shown in stick model are PO3

2- (orange) bound to Asp1144, along with the conserved active 
site residues of Sln1. His64 on Ypd1 has shifted out of alignment with the phosphoryl group. 
Mutation has also distorted of the phosphoryl geometry. Val68 of Ypd1 is shown as a sphere 
(red). Mg2+ is shown as a non-bonded sphere (green). (B) Side view of the active site, showing 
the conserved interactions between Ala1174 (T+1 position) and Thr1173 (switch residue) with 
the phosphoryl analog. The amine nitrogen on Ala1174 has been shifted from 2.7 Å in wild-
type to 3.9 Å. (C) Top-down view of the phosphorylatable aspartate (Asp1144). The molecular 
channel has been altered, due to Ala1174 shifting on the β4α4 loop. 
 

Ypd1 G68V caused slight distortion of the phosphoryl geometry (Fig. 

80A), but led to a significant shift in the β4α4 loop of Sln1, specifically 

affecting Ala1174 (Fig. 80B). Typically, the amine nitrogen atom of Ala1174 

forms a hydrogen bond with one oxygen atom of the phosphoryl group, while 

Thr1173 forms an hydrogen bond with the opposite atom. By replacing the 

small glycine residue with valine, the nitrogen shifted well outside of hydrogen 

bonding range with the oxygen. Both this and the phosphoryl group distortion 

likely contribute to the mutant’s low (2.5%) phosphotransfer efficiency.  
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Figure 81. Structural changes caused by the G68E mutation. 
(A) Close-up view of the pre-transition state active site from the simulated G68E mutant. 
Shown in stick model are PO3

2- (orange) bound to Asp1144, along with the conserved active 
site residues of Sln1. His64 on Ypd1 has shifted out of alignment with the phosphoryl group. 
Mutation has also distorted the phosphoryl geometry. Glu68 of Ypd1 is shown as a sphere 
(red). Mg2+ is shown as a non-bonded sphere (green). (B) Side view of the active site, showing 
the conserved interactions between Ala1174 (T+1 position) and Thr1173 (switch residue) with 
the phosphoryl analog. Both residues have undergone drastic shifts away from the phosphoryl 
group. In addition, Glu68 can form direct hydrogen bonding interactions with each residue. 
The acidic side chain also forms a salt-bridge with Lys67. (C) Top-down view of the 
phosphorylatable aspartate (Asp1144). The molecular channel has been drastically altered, 
with the β4α4 loop almost completely absent from the region. 
 

Ypd1 G68E generated moderate distortion of the phosphoryl group 

(Fig. 81A), but caused an even larger shift of the β4α4 loop on Sln1 (Fig. 

81B). Interestingly, the mutant glutamate side chain formed a direct interaction 

with Sln1 at both Ala1174 and Thr1173 (Fig. 81B). These highly conserved 

residues are responsible for forming critical hydrogen bonds with the 

phosphoryl group in active rec domains [44]. The acidic side chain was also in 

close enough proximity to form a salt-bridge with Lys67 on Ypd1 (Fig 81B). 

Previously, mutation of Lys67 to alanine was found to severely impair 

phosphotransfer between Sln1 and Ypd1 [17]. The authors hypothesized that 

the positively charged lysine was involved in stabilizing the helical bundle of 
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Ypd1 through an inter-helical interaction with Glu83 [17]. The mutant salt-

bridge formed by G68E appears to interfere with this process.  

 

 

Figure 82. Structural changes caused by the G68L mutation. 
(A) Close-up view of the pre-transition state active site from the simulated G68L mutant. 
Shown in stick model are PO3

2- (orange) bound to Asp1144, along with the conserved active 
site residues of Sln1. His64 on Ypd1 has shifted out of alignment with the phosphoryl group. 
Mutation has also severely distorted the phosphoryl geometry. Leu68 of Ypd1 is shown as a 
sphere (red). Mg2+ is shown as a non-bonded sphere (green). (B) Side view of the active site, 
showing the conserved interactions between Ala1174 (T+1 position) and Thr1173 (switch 
residue) with the phosphoryl analog. The hydrogen bonds and β4α4 loop are largely 
unaffected. (C) Top-down view of the phosphorylatable aspartate (Asp1144). The molecular 
channel remains intact. 
 

Ypd1 G68L showed severe distortion of the phosphoryl group 

geometry, though the β4α4 loop was seemingly unaffected (Fig. 82AB). The 

distortion is likely caused by repulsive effects between the mutant leucine and 

the nearby Lys1195 on Sln1, which forms a highly conserved salt-bridge that 

stabilizes the negatively charged phosphoryl.  
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Figure 83. Structural changes caused by the G68Q mutation. 
(A) Close-up view of the pre-transition state active site from the simulated G68Q mutant. 
Shown in stick model are PO3

2- (orange) bound to Asp1144, along with the conserved active 
site residues of Sln1. His64 on Ypd1 is still in near alignment with the phosphoryl group. 
Mutation has caused some slight distortion to the phosphoryl geometry. Gln68 of Ypd1 is 
shown as a sphere (red). Mg2+ is shown as a non-bonded sphere (green). (B) Side view of the 
active site, showing the conserved interactions between Ala1174 (T+1 position) and Thr1173 
(switch residue) with the phosphoryl analog. The amine nitrogen on Ala1174 has shifted some, 
but is still within range of hydrogen bonding with the proper phosphoryl oxygen. (C) Top-
down view of the phosphorylatable aspartate (Asp1144). The molecular channel is maintained. 
 

Finally, Ypd1 G68Q caused moderate distortion, but also left the β4α4 

loop mostly unaffected (Fig. 83AB). Additionally, the mutant glutamine side 

chain satisfied additional hydrogen bonds with residues on Sln1, which may 

offset some of its likely negative steric effects on the active site. 

Examination of Figs. 77-83C shows the active site “channel” between 

the two proteins through which His64 on Ypd1 and Asp1144 on Sln1 are able 

to transfer the phosphoryl group. A delicate arrangement of adjacent residues 

is required for this proper alignment to occur, including the semi-conserved 

D+2 position Gln1146, the switch residue Thr1173 and the T+1 position 

Ala1174 on Sln1, as well as Gly68 on Ypd1. Without these residues to form 

the linear geometry appropriate for the reaction, phosphotransfer is likely 
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inhibited. Those mutations that abolished phosphotransfer typically disrupted 

this channel in some way, such as through interference with the β4α4 loop.  

Table 30 combines the relevant measurements (phosphor-accepting 

efficiency, dihedral angle of phosphoryl group, interatomic distances) to 

compare the effects of the various substitutions. Examination of the structural 

changes induced by the mutations reveals an approximate trend relating to 

Ypd1’s phospho-accepting ability. As the ideal phosphoryl geometry is 

distorted, phosphotransfer efficiency is decreased due to the in-line nature of 

the transfer reaction. This is quantified using the dihedral angle formed 

between the Cβ, Cγ, Oδ2, and P atoms. In addition, disruption of the 

Thr1173/Ala1174 interactions with the phosphoryl oxygen atoms appears to 

negatively affect phosphotransfer from Sln1 to Ypd1. These interactions likely 

serve the same purpose as the stabilizing interaction between the essential 

Lys1195 and the negatively charged phosphoryl group. Overall, introduction of 

bulky, hydrophobic side chains within the delicate arrangement of highly 

charged active site residues interferes with the catalysis of phosphotransfer in 

numerous ways. The exception to this is the G68E mutation, whose acidic side 

chain causes similar effects through direct electrostatic interactions with other 

critical residues on both Ypd1 and Sln1. 

Table 30. Comparison of efficiencies and active site properties 

Mutation Phospho-accepting % Dihedral 1 Thr11732 Ala11743 
Wild-type 100.0 -175.9 2.5 3.1 

G68S 94.1±3.6 173.1 2.6 3.2 
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G68V 2.5±3.5 166.7 2.6 3.9 
G68E 0.3±0.5 158.4 3.5 5.0 
G68L 0.4±0.6 147.9 2.6 3.0 
G68Q 40.2±8.3 151.4 2.6 3.4 

1 Dihedral angle (in degrees) of phosphoryl group, measured for Cβ-Cγ-Oδ2-P atoms 
2 Interatomic distance (in Å) between hydroxyl oxygen and phosphoryl oxygen 
3 Interatomic distance (in Å) between amine nitrogen and phosphoryl oxygen 

 

4.3 Co-crystallization of Ssk1 and Ypd1 G68Q 

The co-crystal structures of the apo and BeF3
- bound forms of 

Sln1/Ypd1 have provided significant insight into the function of eukaryotic 

phosphorelays. However, the branching nature of the pathway suggests that 

valuable insights could be obtained from a comparison between this upstream 

interaction and the interaction of Ypd1 with one of its downstream RR 

partners. Many years have been spent pursuing a co-crystal structure between 

the rec domain of Ssk1 (Ssk1-rec) and Ypd1, with limited success. The Ssk1-

rec protein has proven largely intransigent to purification and crystallization 

attempts. Recently, a fortuitous point mutation (W638A) on Ssk1-rec was 

found to significantly improve solubility and purification yields. The mutant 

possesses near wild-type properties and was characterized as a pseudo wild-

type variant (Katie Branscum, unpublished). These studies led to the successful 

co-crystallization and structural elucidation of the Ssk1-rec W638A•Ypd1 

complex structure (Katie Branscum, Smita Menon, unpublished). However, 

while invaluable, only the apo form was observed. The active site of the 

complex is characterized as “loose,” in that the phosphorylatable histidine and 
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aspartate residues are unusually far apart. The lack of a bound metal cation 

also leaves the rest of the conserved active site side chains disordered. Previous 

radiolabeled phosphotransfer assays suggest that the Ypd1 G68Q mutant is 

deficient in both accepting the phosphoryl group from Sln1 and transferring it 

downstream to Ssk1, though with different efficiencies. In order to visualize 

why this mutation may be negatively affecting downstream phosphotransfer, 

co-crystallization attempts were done to obtain the structures of the signaling 

complex in the apo and BeF3
- bound forms. This project was carried out in 

collaboration with Katie Branscum, who originally characterized the fortuitous 

Ssk1-rec W638A point mutant and succeeded in co-crystallizing the Ssk1-rec 

W638A•Ypd1 complex. 

Mutant constructs and cloning 

A construct of Ssk1-rec W638A was generated through QuikChange 

mutagenesis using an existing wild-type plasmid with a hybrid 

pET11a/pCYB2 vector design (see Appendix A). For wild-type Ypd1, the 

YPD1 gene from S. cerevisiae was inserted into a pME43 vector as detailed in 

[13]. The Ypd1 G68Q mutant was created with site-directed mutagenesis using 

this plasmid as a template and primers listed in Appendix A. 

Expression and purification 

Ypd1 G68Q was expressed and purified as previously described for 

wild-type Ypd1 [13]. Briefly, Ypd1 G68Q was grown in E. coli DH5α cells 

using 1 L of LB with 100 μg/mL of ampicillin. The protein was expressed 
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constitutively from a modified pUC12 vector, pME43, for 19 hours at 37 ⁰C, 

200 rpm. Cells were pelleted and lysed with French Press in a lysis buffer of 

100 mM sodium phosphate, pH 7.0, 1 mM EDTA and 1 mM βME. Lysate was 

clarified through centrifugation for 1 hour at 25,000 x g at 4 ⁰C. Following 

separation, saturated ammonium sulfate was gradually added to the supernatant 

up to 55% by volume. The solution was gently stirred for 30 minutes at 4 ⁰C. 

The resulting mixture was separated again with centrifugation, and the 

supernatant was discarded. The pellet was resuspended in a dialysis buffer of 

20 mM BisTris pH 6.5 and 1 mM βME. This was dialyzed into 2 L of buffer 

for several hours at 4⁰C. The buffer was exchanged with fresh dialysis buffer 

and dialyzed for another 9 hours to remove remaining ammonium sulfate. The 

protein sample was then subjected to centrifugation to remove precipitated 

debris. The supernatant was filtered and added to a 5 mL HiTrap Q anion 

exchange column (GE Healthcare) attached to an AKTA prime FPLC system. 

The sample was run in 20 mM BisTris pH 6.5 with an increasing concentration 

of NaCl, 0-1 M). Fig. 84 shows an SDS-PAGE gel with the Ypd1 G68Q 

fractions eluted from the column.  
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Figure 84. Anion exchange elutions for Ypd1 G68Q. 
Fractions collected from a 5 mL HiTrap Q anion exchange column. Ypd1 G68Q (19 kDa) 
elutes in fractions 24-36. These fractions were collected, concentrated and filtered for gel 
filtration. 
 
 

Fractions were pooled and concentrated to a final volume of <0.5 mL 

or until precipitation was observed. The sample was filtered and added to a 

Sephadex G-75 column equilibrated in 20 mM Tris, pH 8.0, 100 mM NaCl and 

1% glycerol. All solutions were passed through Chelex® resin to remove metal 

ions beforehand, as this was found to drastically extend the life of Ssk1-rec 

W638A. Fractions containing Ypd1 were identified and pooled for co-

concentration (see Fig. 85). 



 

253 

 

Figure 85. Gel filtration elutions for Ypd1 G68Q. 
Fractions collected from a hand-poured Sephadex G-75 column. Ypd1 G68Q (19 kDa) elutes 
in fractions 28-34. These fractions were collected and pooled for co-concentration. 
 

Ssk1-rec W638A was purified as previously described (Katie 

Branscum, unpublished data). Briefly, the protein was expressed in E. coli 

BL21 Star cells. Two 1 L flasks of LB with 100 μg/mL of ampicillin were 

inoculated with 10 mL of saturated cultures and grown at 37 ⁰C to an OD600 of 

≥0.8. Cultures were then cooled to 16 ⁰C and induced with 1 mM IPTG. These 

were grown for approximately 22 hours. Cells were pelleted and lysed with 

French Press, and lysate was clarified by centrifugation at 25,000 x g for 1 

hour at 4 ⁰C. Only fresh cells were used, as the freezing process was found to 

significantly decrease final protein yield. Supernatant was added to a 4 mL 

chitin column pre-equilibrated in lysis buffer of 20 mM Tris pH 8.0, 500 mM 

NaCl, 1 mM EDTA, 10% glycerol and 0.1% Triton X-100. Flow through was 

discarded and samples were washed with 40 mL of lysis buffer and 40 mL of a 

cleavage buffer with 20 mM Tris pH 8.0, 100 mM NaCl and 10% glycerol. 
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The column was incubated overnight at 4 ⁰C with cleavage buffer + 30 mM 

βME. Cleaved protein was eluted with Chelexed® cleavage buffer (see Fig. 

85). Samples were then filtered and concentrated to <500 mL. These were then 

run on a Sephadex G75 column equilibrated in 20 mM Tris pH 8.0, 100 mM 

NaCl and 1% glycerol. All solutions were Chelexed® beforehand, as this was 

found to drastically extend the life of Ssk1-rec W638A. Fractions containing 

Ssk1-rec W638A were identified and pooled for co-concentration (see Fig. 

86). 

 

Figure 86. Co-concentrated sample with Ssk1-rec W638A•Ypd1 G68Q. 
After gel filtration, equimolar amounts of both proteins were combined and co-concentrated in 
crystallization buffer. Here, the proteins were concentrated and filtered to a final concentration 
of 10.63 mg/mL. 24-well hanging drop crystallization trays were then set up with this sample. 
Note: the upper-band contaminant is characteristic of all Ssk1-rec batches and is likely an 
endogenous protein from the expression strain. 
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Co-crystallization attempts 

Equimolar amounts of Ssk1-rec W638A and Ypd1 G68Q were 

combined and co-concentrated to ~9-15 mg/mL using passivated Amicon Ultra 

Centrifugal filters with a molecular weight cutoff of 10K (EMD Millipore). A 

final co-concentration buffer of 20 mM Tris pH 8.0, 100 mM NaCl and 1% 

glycerol was used. Fig. 86 shows a Coomassie stained SDS-PAGE gel loaded 

with a typical co-concentrated sample used for crystallization. The initial 

conditions identified to produce the best results during the co-crystallization of 

Ssk1-rec W638A and wild-type Ypd1 were 0.1 M CAPS pH 10.5, 1.0-1.2 M 

NaH2PO4, 0.1-0.2 M LiSO4 and 0.8 M K2HPO4, based on well A5 of the 

MCSG-II broad crystallization screen. Hanging-drop, vapor-diffusion 24-well 

screens for Ssk1-rec and Ypd1 G68Q were set up around similar well 

conditions: 

Table 31. Initial co-crystallization well conditions 

  1 2 3 4 5 6 

A 
0.1 M CAPS pH 
10.5   0.8 M 
NaH2PO4         
0.1 M LiSO4                 
0.8 M K2HPO4  

0.1 M CAPS pH 
10.5   1.0 M 
NaH2PO4         
0.1 M LiSO40.8 
M K2HPO4  

0.1 M CAPS pH 
10.5   1.2 M 
NaH2PO4         
0.1 M LiSO40.8 
M K2HPO4  

0.1 M CAPS pH 
10.5   1.4 M 
NaH2PO4         
0.1 M LiSO40.8 
M K2HPO4  

0.1 M CAPS pH 
10.5   1.6 M 
NaH2PO4         
0.1 M LiSO40.8 
M K2HPO4  

0.1 M CAPS pH 
10.5   1.76 M 
NaH2PO4         
0.1 M LiSO40.8 
M K2HPO4  

B 
0.1 M CAPS pH 
10.5   0.8 M 
NaH2PO4         
0.2 M LiSO40.8 
M K2HPO4  

0.1 M CAPS pH 
10.5 1.0 M 
NaH2PO4         
0.2 M LiSO40.8 
M K2HPO4  

0.1 M CAPS pH 
10.5   1.2 M 
NaH2PO4         
0.2 M LiSO40.8 
M K2HPO4  

0.1 M CAPS pH 
10.5   1.4 M 
NaH2PO4         
0.2 M LiSO40.8 
M K2HPO4  

0.1 M CAPS pH 
10.5   1.6 M 
NaH2PO4         
0.2 M LiSO40.8 
M K2HPO4  

0.1 M CAPS pH 
10.5   1.76 M 
NaH2PO4        
0.2 M LiSO40.8 
M K2HPO4  
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C 
0.1 M CAPS pH 
10.5   1.2 M 
NaH2PO4         
0.1 M LiSO40.4 
M K2HPO4  

0.1 M CAPS pH 
10.5   1.2 M 
NaH2PO4         
0.1 M LiSO40.6 
M K2HPO4  

0.1 M CAPS pH 
10.5   1.2 M 
NaH2PO4         
0.1 M LiSO40.8 
M K2HPO4  

0.1 M CAPS pH 
10.5   1.2 M 
NaH2PO4         
0.1 M LiSO41.0 
M K2HPO4  

0.1 M CAPS pH 
10.5   1.2 M 
NaH2PO4         
0.1 M LiSO41.2 
M K2HPO4  

0.1 M CAPS pH 
10.5   1.2 M 
NaH2PO4         
0.1 M LiSO41.4 
M K2HPO4  

D 
0.1 M CAPS pH 
10.5   1.2 M 
NaH2PO4         
0.2 M LiSO40.4 
M K2HPO4  

0.1 M CAPS pH 
10.5   1.2 M 
NaH2PO4         
0.2 M LiSO40.6 
M K2HPO4  

0.1 M CAPS pH 
10.5   1.2 M 
NaH2PO4         
0.2 M LiSO40.8 
M K2HPO4  

0.1 M CAPS pH 
10.5   1.2 M 
NaH2PO4         
0.2 M LiSO41.0 
M K2HPO4  

0.1 M CAPS pH 
10.5   1.2 M 
NaH2PO4         
0.2 M LiSO41.2 
M K2HPO4  

0.1 M CAPS pH 
10.5   1.2 M 
NaH2PO4         
0.2 M LiSO41.4 
M K2HPO4  

 

Additional fine-screening was performed to identify optimal 

crystallization conditions for the mutant co-complex. The following conditions 

were found to produce the largest, best-diffracting crystals based on 24-well 

fine screens: 

 

Table 32. Further optimized co-crystallization well conditions. 

  1 2 3 4 5 6 

A 

0.1 M CAPS pH 
10.5   1.15 M 

NaH2PO4         
0.2 M 

LiSO40.65 M 
K2HPO4  

0.1 M CAPS pH 
10.5   1.16 M 

NaH2PO4         
0.2 M 

LiSO40.65 M 
K2HPO4  

0.1 M CAPS pH 
10.5   1.17 M 

NaH2PO4         
0.2 M 

LiSO40.65 M 
K2HPO4  

0.1 M CAPS pH 
10.5   1.18 M 
NaH2PO4         
0.2 M 
LiSO40.65 M 
K2HPO4  

0.1 M CAPS pH 
10.5   1.19 M 

NaH2PO4         
0.2 M 

LiSO40.65 M 
K2HPO4  

0.1 M CAPS pH 
10.5   1.20 M 

NaH2PO4        
0.2 M 

LiSO40.65 M 
K2HPO4  

B 

0.1 M CAPS pH 
10.5   1.15 M 

NaH2PO4         
0.2 M 

LiSO40.73 M 
K2HPO4  

0.1 M CAPS pH 
10.5   1.16 M 

NaH2PO4         
0.2 M 

LiSO40.73 M 
K2HPO4  

0.1 M CAPS pH 
10.5   1.17 M 

NaH2PO4         
0.2 M 

LiSO40.73 M 
K2HPO4  

0.1 M CAPS pH 
10.5   1.18 M 

NaH2PO4         
0.2 M 

LiSO40.73 M 
K2HPO4  

0.1 M CAPS pH 
10.5   1.19 M 

NaH2PO4         
0.2 M 

LiSO40.73 M 
K2HPO4  

0.1 M CAPS pH 
10.5   1.20 M 

NaH2PO4         
0.2 M 

LiSO40.73 M 
K2HPO4  

C 

0.1 M CAPS pH 
10.5   1.15 M 

NaH2PO4         
0.2 M 

LiSO40.78 M 
K2HPO4  

0.1 M CAPS pH 
10.5   1.16 M 

NaH2PO4         
0.1 M LiSO40.6 

M K2HPO4  

0.1 M CAPS pH 
10.5   1.17 M 

NaH2PO4         
0.1 M LiSO40.8 

M K2HPO4  

0.1 M CAPS pH 
10.5   1.18 M 

NaH2PO4         
0.1 M LiSO41.0 

M K2HPO4  

0.1 M CAPS pH 
10.5   1.19 M 

NaH2PO4         
0.1 M LiSO41.2 

M K2HPO4  

0.1 M CAPS pH 
10.5   1.20 M 

NaH2PO4         
0.1 M LiSO41.4 

M K2HPO4  
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D 

0.1 M CAPS pH 
10.5   1.15 M 

NaH2PO4         
0.2 M 

LiSO40.85 M 
K2HPO4  

0.1 M CAPS pH 
10.5   1.6 M 

NaH2PO4         
0.2 M LiSO40.6 

M K2HPO4  

0.1 M CAPS pH 
10.5   1.17 M 

NaH2PO4         
0.2 M LiSO40.8 

M K2HPO4  

0.1 M CAPS pH 
10.5   1.18 M 

NaH2PO4         
0.2 M LiSO41.0 

M K2HPO4  

0.1 M CAPS pH 
10.5   1.2 M 

NaH2PO4         
0.2 M LiSO41.2 

M K2HPO4  

0.1 M CAPS pH 
10.5   1.2 M 

NaH2PO4         
0.2 M LiSO41.4 

M K2HPO4  

 

The following sample conditions/additives were also attempted in order 

to optimize crystal quality and/or produce a co-crystal complex with a pre-

transition state active site arrangement:  

Table 33. Sample buffer conditions and additives for co-crystallization. 

Sample conditions Additives 
20 mM Tris pH 8.0, 75 mM NaCl, 1% glycerol N/A 
20 mM Tris pH 8.0, 100 mM NaCl, 1% glycerol N/A 
20 mM Tris pH 8.0, 125 mM NaCl, 1% glycerol N/A 
20 mM Tris pH 8.0, 100 mM NaCl, 1% glycerol 15 mM MgCl2 
20 mM Tris pH 8.0, 75 mM NaCl, 1% glycerol 15 mM MgCl2 
20 mM Tris pH 8.0, 100 mM NaCl, 1% glycerol 15 mM MgCl2, 5 mM BeCl2, 35 mM NaF 
20 mM Tris pH 8.0, 75 mM NaCl, 1% glycerol 15 mM MgCl2, 5 mM BeCl2, 35 mM NaF 
20 mM Tris pH 8.0, 150 mM NaCl, 1% glycerol N/A 
Note: Buffer was exchanged during final co-concentration step with Amicon filter. Additives 
were introduced to samples post-concentration. 
 

Results of co-crystallization screening 

1:1 μL hanging-drop screens were found to rapidly produce crystals 

~50-150 μm in diameter, typically within a week. Crystal formation was 

surprisingly sensitive to NaCl concentration, requiring 100 mM NaCl to 

produce crystals of any significant size; 75 mM NaCl produced numerous 

small crystals unsuitable for screening; >100 mM NaCl failed to produce 

crystals under any attempted conditions. Most large crystals were grown under 
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conditions with no additives at room temperature. A single condition was 

found to produce adequate crystals with 15 mM MgCl2, 5 mM BeCl2, 35 mM 

NaF included in the sample: 0.1 M CAPS pH 10.5, 1.15 M NaH2PO4, 0.2 M 

LiSO4, 0.65 M K2HPO4 (well A1). Addition of 15 mM MgCl2 alone appeared 

to inhibit crystal growth. 

After approximately 7 days, crystallization drops formed a resilient 

surface film, likely composed of denatured protein. Attempts to prevent this by 

varying salt concentration and protein purity were unsuccessful. Once exposed 

to air, the film rapidly thickened. This “skin” made manipulation challenging. 

In addition, most crystals were fragile and firmly adhered to the cover slip, 

despite using a hanging drop approach.  

 

Figure 87. Two-week crystal growth with MgCl2, BeCl2 and NaF. 
(A) Co-crystals grown at room temperature with 15 mM MgCl2, 5 mM BeCl2 and 35 mM NaF 
in the sample. (B) Crystals were harvested and rinsed in 1X Laemmli buffer, then run on an 
SDS-PAGE gel to confirm the presence of both Ssk1-rec W638A and Ypd1 G68Q. 
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Fig. 87A shows a representative co-crystal from sample containing 15 

mM MgCl2, 5 mM BeCl2, 35 mM NaF, 20 mM Tris pH 8.0, 100 mM NaCl and 

1% glycerol. Crystals were produced at room temperature under the following 

conditions: 0.1 M CAPS pH 10.5, 1.15 M NaH2PO4, 0.2 M LiSO4, 0.65 M 

K2HPO4. The same crystals were harvested, rinsed in 1X Laemmli buffer and 

run on a SDS-PAGE gel to verify the presence of both proteins. Fig. 87B 

shows a Coomassie stain of this sample, confirming that both Ssk1-rec W638A 

and Ypd1 G68Q exist in roughly equimolar concentrations. Fig. 88 shows 

typical crystals grown at room temperature from a sample containing 20 mM 

Tris pH 8.0, 100 mM NaCl and 1% glycerol with no additives under the 

following conditions: 0.1 M CAPS pH 10.5, 1.15 M NaH2PO4, 0.2 M LiSO4 

and 0.65 M K2HPO4.  

 

 

Figure 88. Typical two-week crystal growth with no additives. 
Co-crystals grown at room temperature from a sample with 20 mM Tris pH 8.0, 100 mM NaCl 
and 1% glycerol, and no additives. The rounded appearance was frequently observed under 
these conditions. 
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Figure 89. Co-crystal room temperature diffraction (3.5-4 Å). 
A crystal from the well seen above (Fig. 88) was harvested and placed into a MiTeGen Room 
Temperature capillary mount. The proteins produced diffraction out to approximately 3.5 Å at 
room temperature.  
 

Cryoprotectant optimization 

The optimal cryoprotectant conditions for the original Ssk1-rec 

W638A•Ypd1 complex were found to be 1.2 M NaH2PO4, 0.8 M K2HPO4, 0.2 

M LiSO4, 0.1 M CAPS pH 10.5 and 9% glycerol (Katie Branscum, Smita 

Menon, unpublished data). These conditions were tested for the Ssk1-rec 

W638A•Ypd1 G68Q crystals with poor results. Most crystals cracked when 

exposed to freezing temperatures. In addition, attempts to directly mount 

crystals under a cold stream rapidly produced ice. Mounting crystals at room 

temperature and collecting for several frames produced diffraction to 3.5-4 Å 

(see Fig. 89; crystal from well A2, Table 32) using the home source X-ray 

generator (1.541 Å Cu Kα rotating anode) with a Pilatus 200K detector 
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(Rigaku). The following conditions were then attempted to optimize 

cryoprotection: 

Table 34. Cryoprotection optimization trials. 

Condition Result 
15% ethylene glycol in mother liquor 5-6 Å diffraction (poor) 
Stepwise: 5 -> 10 -> 15% ethylene glycol in mother 
liquor 5-6 Å diffraction (poor) 

100% sodium malonate 5-6 Å diffraction (poor) 
14% triethylene glycol in mother liquor Rapid ice formation (poor) 
30% trehalose in mother liquor 5-6 Å diffraction (poor) 

30% sucrose in mother liquor 5-6 Å diffraction, distinct reflections 
(moderate) 

2.5 M LiSO4 Rapid ice formation 
100% 1-2-propanediol 5-6 Å diffraction (poor) 
Stepwise: 15 -> 30% sucrose, wait 1 hour for 
equilibration each step 

5-6 Å diffraction, distinct reflections 
(moderate) 

CryoProtX (Molecular Dimensions) Rapid ice formation (poor) 
PEG 3350 Crystals lose integrity (poor) 
*Saturated sucrose in mother liquor (1 hour 
equilibration time) 

4.5-5 Å diffraction, distinct 
reflections (moderate) 

*Saturated sucrose in mother liquor (5 hours 
equilibration time) 

4.5-5 Å diffraction, distinct 
reflections (moderate) 

**Krytox Fluorinated oil 3-4 Å diffraction (good) 
*2 μL drop of mother liquor was placed next to crystallization drop. A solid sucrose crystal 
was added directly to this. The two drops were bridged, and the well was resealed to allow for 
equilibration. 
**Drops were completely submerged in Krytox oil. 
 

Both direct mounting of crystals onto the goniometer under a 

cryostream and prior submersion in liquid nitrogen were attempted. The 

methods produced similar results. The most promising initial condition was a 

30% sucrose/mother liquor solution. This showed improvement in crystal 

diffraction by producing distinct, round reflections. However, the resolution 

was too poor for characterization of a single point mutant side chain.  
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Figure 90. Diffraction to 3.5-4 Å by co-crystal containing additives while 
using Krytox oil as cryoprotectant. 
Pattern produced by crystals seen in Fig. 87, from sample containing 15 mM MgCl2, 5 mM 
BeCl2, 35 mM NaF, 20 mM Tris pH 8.0, 100 mM NaCl and 1% glycerol. 
 
 

The next significant improvement was observed using Krytox 

Fluorinated oil. As previously described, crystallization drops invariably 

formed a surface “skin” after approximately one week. This skin made 

manipulating and harvesting crystals extremely challenging. Most 

crystallization conditions produced fragile crystals, likely due to a high solvent 

content (suggested by the round appearance and lack of facets on most 

crystals). Combined, these likely contributed to the poor diffraction that was 

observed during cryotrials. Skin formation was rapidly increased when drops 

were exposed to air. In an attempt to prevent this, wells were unsealed and 

drops were submerged completely in Krytox oil. Crystals were then harvested 

from this submersion and directly mounted under a cryostream. The oil not 

only prevented skin formation by minimizing air exposure, but also provided 
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an effective method for buffer exchange and cryoprotection. Fig. 90 shows a 

diffraction pattern obtained using Krytox oil for a drop containing 15 mM 

MgCl2, 5 mM BeCl2, 35 mM NaF (see Fig. 87A for an image of the crystals). 

The oil improved resolution to approximately 3.5-4 Å for 2 frames with a 120 

second exposure time. Additional crystals were attempted without the additives 

and produced slightly better results (see Fig. 91). Unfortunately, the data for 

these crystals would not index properly, making them unsuitable for a full 

dataset collection. 

 

Figure 91. Diffraction to 3.5-4 Å by co-crystal containing no additives 
while using Krytox oil as cryoprotectant. 
Pattern produced by similar crystals as seen in Fig. 88, from sample containing 20 mM Tris pH 
8.0, 100 mM NaCl and 1% glycerol. 
 

Future directions for characterizing the co-crystal structure 

Submersion in Krytox Fluorinated oil appears to be an effective 

cryoprotectant for the Ssk1-rec W638A•Ypd1 G68Q crystals. Screening 

produced diffraction data between 3.5-4 Å for some of the larger harvested 
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crystals. Best results were from crystals grown in the following conditions: 0.1 

M CAPS pH 10.5, 1.16 M NaH2PO4, 0.2 M LiSO4, 0.65 M K2HPO4 for 

samples with no additives (in 20 mM Tris pH 8.0, 100mM NaCl, 1% glycerol); 

0.1 M CAPS pH 10.5, 1.15 M NaH2PO4, 0.2 M LiSO4, 0.65 M K2HPO4 for 

samples containing 15 mM MgCl2, 5 mM BeCl2, 35 mM NaF (in 20 mM Tris 

pH 8.0, 100 mM NaCl, 1% glycerol). Poor results were obtained for crystals 

containing 15 mM MgCl2 alone. The success of using Krytox oil to prevent 

skin formation prompted an attempt to grow crystals in drops covered with 

Al’s oil, though this was unsuccessful. The crystals used to test Krytox as a 

cryoprotectant were several months old and despite the oil, had already formed 

a partial skin. Harvesting these likely damaged the crystals and incorporated 

skin onto the loop before mounting, as was repeatedly seen when testing the 

other cryoprotectants. Both could affect the quality of the diffraction data. The 

next step for this project is to grow additional crystals for diffraction screening. 

More attempts are needed to find an intact crystal suitable for the collection of 

a full dataset.  

4.4 Conclusions 

In conclusion, MD relaxation simulations of Ypd1 G68X mutations 

were used to reveal clues about the role that this residue plays in 

phosphotransfer between the upstream Sln1-rec and the intermediate HPt. 

Bulky or hydrophobic amino acids were found to disrupt critical side chain 

geometries involved in catalysis, but not complex formation. These results 
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explain the evolutionary conservation of this position in nearly all HPt 

domains. In addition, attempts to co-crystallize Ypd1 G68Q with the 

downstream Ssk1-rec W638A were successful. Optimal growth and 

cryoprotection conditions were identified. The cryo-conditions not only protect 

the crystals from ice formation, but also inhibit their characteristic skin growth 

upon exposure to air, making manipulation of the fragile constructs more 

successful. 
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Chapter 5: Appendix A 

5.1 List of Abbreviations 

General Abbreviations 

AST   Dianionic phosphoaspartate 
ATP   Adenosine triphosphate 
βME   β-mercaptoethanol 
CA   Catalytic and ATP-binding (kinase domain) 
cAMP   Cyclic adenosine monophosphate 
cGMP   Cyclic guanine monophosphate 
CLARA  Clustering for large applications 
DCCM   Dynamical cross-correlation map 
DHp   Dimerization and histidine phosphotransfer (kinase domain) 
EDTA   Ethylenediaminetetraacetic acid 
HK   Histidine kinase 
HPt   Histidine phosphotransfer (domain) 
IC   Intermolecular contact 
IPTG   Isopropyl β-D-1-thiogalactopyranoside 
LB   Luria broth 
MAP3K  Mitogen activated protein kinase kinase kinase 
MD   Molecular dynamics 
NAMD  Nanoscale Molecule Dynamics program 
NCBI   National Center for Biotechnology Information 
PCA   Principal component analysis 
PDB   Protein Data Bank 
RCSB   Research Collaboratory for Structural Bioinformatics 
Rec   Receiver (domain) 
RMSD   Root mean square deviation 
RMSF   Root mean square fluctuation 
RR   Response regulator 
SASA   Solvent accessible surface area 
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SDS-PAGE  Sodium dodecyl sulfate polyacrylamide gel electrophoresis 
TCS   Two-component signaling 
 
Protein Designations 

CheY   Chemotaxis protein Y; E. coli 
FixJ   Nitrogen fixation protein J; R. meliloti 
HOG1   High osmolarity glycerol response; S. cerevisiae 
PhoP   Transcriptional regulatory protein PhoP; E. coli 
Skn7   Suppressor of Kre Null; S. cerevisiae 
Sln1   Synthetic lethal of the N-end rule 1; S. cerevisiae 
Spo0F   Sporulation initial phosphotransferase F; B. subtilis 
Ssk1   Suppressor of the sensor kinase 1; S. cerevisiae 
Ssk2/22  Suppressor of sensor kinase; S. cerevisiae 
Ypd1   Tyrosine phosphatase dependent 1; S. cerevisiae 

5.2 Constructs 

Organism Protein 
Product 

Oligo 
No. 

Restriction 
Sites Plasmid 

Storage 
Strain 

No. 

Expression 
Strain No. 

S.c. Ssk1-rec 
W638A 

AW776/ 
AW777 NdeI/SmaI pl430 OU668 

(DH5α) 
OU738 - 

BL21 Star 

S.c. Ssk1-rec 
W638A 

AW776/ 
AW777 NdeI/SmaI pl430 OU668 

(DH5α) 
OU669 - 

BL21 Gold 

S.c. Ypd1 N/A NdeI/PstI pl15 OU830 
(DH5α) 

OU831 - 
DH5α 

S.c. Ypd1 
G68Q 

AW118/ 
AW155 NdeI/PstI pl51 OU832 

(DH5α) 
OU833 - 

DH5α 
*S.c. represents Saccharomyces cerevisiae 

5.3 Primers 

Oligo 
No. 

5’ or 
3’ Protein Sequence (5’ to 3’) 

AW776 5’ Ssk1-rec 
W638A CTGACTAAACCAGTGAATTTACACGCGCTTAGTAAGAAAATTACAGAGTG 

AW777 3’ Ssk1-rec 
W638A CACTCTGTAATTTTCTTACTAAGCGCGTGTAAATTCACTGGTTTAGTCAG 

AW118 5’ Ypd1 
G68Q AATCTGGGCCATTTTTTAAAGCAATCTTCTGCT 

AW155 3’ Ypd1 
G68Q GCCTAATGCAGCAGAAGATTGCTTTAAAAA 
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