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Abstract 

The pores in shale gas reservoirs are represented on a nanometer scale. In addition to 

having smaller pore sizes than conventional reservoirs, shale gas reservoirs exhibit 

different mechanisms of gas storage, i.e. gas stored as adsorbed gas. In a confined 

environment the physics of fluid transport do not conform to Darcy flow. Current and 

ongoing research efforts have documented that more appropriate physical models are 

needed to describe flow in nanopourous media. In particular, predicting the density of 

fluid within a shale environment becomes a critical factor to model flow. Density is a 

basic transport property that influences the rate at which momentum, heat, and matter is 

transferred. Understanding density is important because it influences basic fluid 

transport. Making more accurate density predictions inside nanopores is imperative to 

predict transport more precisely. Further, density is instrumental in determining the gas 

storage capacity, transport of fluids, reserve estimation, and long term production 

forecasting and planning of shale reservoirs.  

 

Prediction of density in shale formations is a complicated issue and the simplified 

density model (SLD) coupled with an equation of state has provided considerable 

insight into how density changes in a nanoscale environment. Our approach applies the 

cylindrical form of the SLD-Peng Robinson EOS model to study the effects of 

confinement on density in a shale gas formation. In particular, our study provides 

meaningful insight of gas behavior on a nanoscopic, molecular, and macroscopic level.  

At the nanoscopic level we examined the density distribution of a multicomponent 

mixture and observed its dependence on properties such as pressure, temperature, and 
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pore size.  At the molecular level we studied the interactions between the fluid 

molecules and porous wall inside nanopores by analyzing compositional distributions of 

multicomponent gas mixtures within the pore space. Currently, compositional 

distributions cannot be routinely observed or measured by laboratory experiments due 

to physical constraints. At the macroscopic level, we examined the significance of pore 

size distributions on density by considering identical pore volumes with the aid of the 

gamma probability density function.  

 The conclusions derived from this work are as follows: 

 Density in shale formations is influenced by pore size due to the fluid-wall 

interactions and the resulting Van der Waal forces. 

 The presence of micropores in shales is associated with more gas in place when 

pore volumes are identical because the density in smaller pores is larger. 

 In a confined environment, the adsorbed phase density is influenced by pore 

size, temperature, and pressure. 

 The overall size of an organic molecule has a significant effect on its adsorption 

potential. Larger molecules have a tendency to occupy the majority of the pore 

space along the pore wall. 

 Pore size distribution has a tremendous impact on average density in a shale 

formation and neglecting pore size distribution was shown to yield more than a 

69% error for average absorbed phase density estimates. 



1 

Chapter 1: Introduction 

1.1 Introduction to Shale Resources 

In the last decade, the economic development of ultra-tight formations has become 

feasible with advancements in technology in the areas of horizontal drilling, 

completions, and stimulation. Because shale formations have very low permeability, the 

productivity must be improved by means of hydraulic fracturing and horizontal wells to 

make production from the reservoir economic.  In fact, the permeability of shale 

formations is so miniscule; Darcy’s equation suggests that there should be no flow 

occurring within the reservoir.  For these reasons, the fracture networks produced by 

hydraulic fracturing (also called the Stimulated Reservoir Volume (SRV)) completely 

define the drainage volume within shale reservoirs (Mayerhofer et al. 2010). As a result 

of technological innovations, the U.S has shifted its focus from conventional reservoirs 

to unconventional reservoirs. Unconventional reservoirs include liquid rich shale, gas 

shale, tight gas, and coalbed methane. Figure 1.1 shows the major producing and 

prospective shale plays in North America as of May 2011. 
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Figure 1.1 — Current and prospective shale gas and shale oil plays in North 

America as of May 2011 (EIA 2011) 

 

 Figure 1.2 shows that unconventional gas will play a significant role in the future of 

the United States energy demand. According to the US Energy Information 

Administration (EIA), by the year 2040 gas produced from unconventional resources is 

predicted to contribute to over 50% of the total gas production in the United States (EIA 

2013). 
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Figure 1.2 — EIA outlook of natural gas production by source for the United 

States from 2013-2040 (EIA 2015) 

 

In addition to increased production from shale gas resources, condensate and liquid oil 

production from shale oil plays is becoming a larger part of the North America energy 

mix. Figure 1.3 shows oil production from North America tight oil plays starting from 

January 2005. 
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Figure 1.3 — North America tight oil production from January 2005-Febuary 

2014 (EIA 2014)  

 

Currently, the majority of the tight oil production in North America is produced from 

the Eagle Ford in South Texas and the Bakken in North Dakota and Montana. In 

February 2014, oil production in the Eagle Ford was averaging 1.21 MMbbl/d and the 

Bakken was averaging 0.94 MMbbl/d. During this time period, the two shale plays 

accounted for 63% of the total tight oil production in North America. The assessment of 

North America data from the EIA clearly shows that there is an abundance of 

technically recoverable hydrocarbon from shale resources. These resources have the 

potential to impact both the political and economic landscape in the United States for 

years into the future. Economic forecasts from Ozkan (2014a), demonstrate that the 

profit margin of unconventionals will eventually succeed those of new conventionals 

for reserve replacement as shown in Figure 1.4. 
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Figure 1.4 — Profit margin of different types of reserve replacement (Ozkan 

2014a)  

 

From Figure 1.4 above, it is clear that the largest profit will continue to come from 

existing conventionals. However as oil and gas companies look to expand their portfolio 

and replace reserves, new conventionals will eventually prove to be more costly than 

unconventionals because they will be harder to find and more expensive to produce. To 

continue to succeed/survive in the oil and gas business, unconventionals will have to be 

produced and exploited in the near future. Furthermore, new technology will have to be 

developed to increase the profit margin of production from unconventional resources. 

 

Shale formations are predominantly comprised of consolidated clay particles where the 

rock serves as both the source rock and reservoir rock for the production of 
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hydrocarbons (DOE 2009). Recent advancements in high resolution imaging techniques 

have allowed the microstructure of shale samples to be investigated. For example, 

scanning electron microscopy (SEM) coupled with focused ion beam (FIB) techniques 

can produce 3D and 2D images of shale samples (Curtis et al. 2011, Driskill et al. 

2013). Using these two techniques together has provided key insight into the 

petrophysical properties of shale formations, including pore size distribution, porosity,  

connectivity, and TOC content (Zhang et al. 2012). Improved imaging technology 

continues to enhance our understanding of shale formations. The most recent 

advancement in imaging technology, Helium Ion imaging (HIM), includes much greater 

detail. Compared to SEM and FIB imaging techniques, HIM is able to show sharper 

pore boundaries and provides a higher resolution of pores less than 10 nm in diameter 

(Cananaugh and Wallis 2015). Figure 1.5 shows images of a shale sample using FIB-

SEM and HIM imaging techniques. 

 



7 

 

Figure 1.5 — Comparison of FIB-SEM (left) and HIM (right) images of a Bossier 

shale sample (Cananaugh and Wallis 2015). 

 

The images distinguish organic matter (kerogen) from clay and other minerals. 

Additionally it reveals the amount of void space and the size and distribution of 

nanopores within the sample. In shale formations, the introduction of confinement 

effects and kerogen alters the phase behavior of the fluid within the nanopores, causing 

the fluid to be adsorbed along the pore walls. The fluid-wall interactions cause the fluid 

to deviate significantly from its bulk state properties thus altering fluid critical 

properties, density, compressibility factor, viscosity, orientation  profiles, structural 

properties of chemical compounds, and other fluid properties (Jin, Ma, and Jamili 

2013). As a consequence of confinement effects, current mathematical models used by 

industry cannot accurately describe the storage and transport of hydrocarbons in shale 

reservoirs. In order to carry out meaningful reservoir engineering of shale formations, 

one needs to understand the phase behavior of the fluid within organic rich nanopores.  
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1.2 Phase Behavior 

Although the production of shale plays in the US has increased significantly in the past 

decade, hydrocarbon flow in nanoporous media is not fully understood. The low 

permeability (1 to .0001 md) of shale formations and high initial production rates 

followed by a high decline rate makes it difficult to predict performance and EURs for 

unconventional reservoirs (Xu et al. 2015). Figure 1.6 compares the production decline 

curves of a conventional and unconventional well. 

 

Figure 1.6 — Compares the production decline of vertical wells in conventional 

plays (red) and horizontal wells in unconventional plays (blue) (Ozkan 2014b) 

 

Specifically, fluids in shale plays exhibit significantly different flow properties and 

phase behavior. This is a result of confinement effects and fluid-wall interactions. 

Understanding the migration and phase behavior of hydrocarbons in nanopores is 

critical for continued growth and sustainability of unconventional hydrocarbon 

resources. Traditional phase behavior models, requiring a cubic equation of state (EOS), 
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are inadequate for describing fluid behavior in shale formations. Current engineering 

practice is to apply traditional phase behavior models with minor adjustments to fulfill 

industry immediate needs, however they have limited capabilities. To develop a more 

fundamental understanding of flow in nanoporous unconventional reservoirs, 

researchers have been conducting experimental and numerical studies on hydrocarbon 

phase behavior in shale formations in hopes of delivering better tools to practicing 

engineers. 

 

Numerous studies have demonstrated that fluid systems in nanopourous media exhibit 

different properties and behavior from those observed in the bulk state. There have been 

a large number of experimental studies related to the physical adsorption of 

hydrocarbons on solid surfaces. Such studies are especially important to the 

transportation and storage of hydrocarbons in unconventional reservoirs. In an 

exhaustive review, Menon (1968) summarized adsorption behavior of fluids under high 

pressure for various nanoporous media. Experimental results revealed adsorption 

isotherms at sufficiently high pressures always exhibited a maximum followed by a 

decrease in adsorption capacity with increasing pressure. Menon’s study was limited to 

single component gases. Sigmund et al. (1973)  experimentally and theoretically 

investigated the effect of curvature and pore size on the phase behavior of hydrocarbon 

binary mixtures. He found that for pore sizes less than 10 nm, bubble point pressures 

decreased and vapor compositions where significantly altered from measurements taken 

in a conventional PVT cell.  Experimental data in Zarragoicoechea and Kuz (2004) 

revealed that  critical properties of single component gases in confined porous media 
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was suppressed compared to its bulk state. Zeigermann et al. (2009) investigated 

diffusion properties of n-pentane in mesopores undergoing a phase transition to the 

supercritical state and found similar results. Comparing phase behavior measurements 

of n-pentane in three different pore sizes, a decrease in pore critical points was observed 

with decreasing pore size across a wide range of temperatures.  Wang et al. (2014) 

applied nanofluidic devices to visualize phase behavior of pure and multicomponent 

hydrocarbon mixtures under nanoconfinment. They used two parallel micro-channels 

that were connected perpendicular to 21 nano-channels to simulate a connected pore 

distribution system. After reducing the pressure drop incrementally, they discovered 

that vaporization first occurred in the large pores. As a result, the composition and the 

bubble point pressures of the remaining liquid in the channels were constantly changing 

throughout the pressure depletion process. All of the experiments described above 

suggest the phase behavior of fluids is altered in small pores. However, conclusions 

derived from these experiments vary and a common consensus has not been achieved. 

The disagreement of lab data is most likely due to measurements taking place in a 

nanoscale environment, which proves to be a difficult task with current lab instruments.   

 

Prediction of phase behavior in nanopores is a difficult issue and poses an enormous 

challenge for conventional laboratory experiments. To circumvent the problem of 

experimental measurements, thermodynamic numerical models have been used. Some 

of the most frequently applied numerical models include molecular dynamics 

simulation, grand canonical statistical ensemble, density functional theory, and 

modified equations of state. Ambrose et al. (2012) used molecular dynamic simulation 
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to investigate the adsorption of methane in small, carbon slit pores at various 

temperatures to predict a density profile. The methane density profiles showed that the 

density values were significantly greater near the pore walls, exceeding twice the value 

of the bulk phase density in some instances. In addition, they observed that as pore size 

decreased, adsorbed phase density increased. Using Monte Carlo simulation methods, 

Hartman et al. (2011) numerically predicted the adsorbed phase density of methane in a 

graphite slit pore. Their results suggested that the amount adsorbed was sensitive to 

pore size and inversely related to temperature.  Devegowda et al. (2012) applied 

modifications to existing numerical simulation software to analyze the phase behavior 

of a gas condensate fluid in shale gas reservoirs. They recorded the liquid dropout 

percentage in nanopores of 2, 4, and 5 nm of a gas condensate sample by applying a 

modified EOS.  There results showed that pore proximity had beneficial effects of 

reducing liquid dropout. They generalized that it is likely that condensate dropout may 

never occur in smaller pores, thus enhancing well productivity in unconventional 

systems. The variation of critical properties in porous media characterized by pore size 

distributions was also investigated with numerical approaches. Using Monte Carlo 

simulation, Ortiz, López-Álvarez, and López (2005) considered the capillary 

condensation effect of methane in a uniformly sized pore system and pore size 

distribution of nanotubes. A decrease in critical temperature values was observed in 

both systems with decreasing pore size. However compared to a uniformly sized porous 

system, fluid-tube interactions dominated fluid-fluid interactions in a random 

distribution of nanopores, hence the adsorption of vapor and liquid phases increased. 

Because shale reservoirs are characterized by pore size distributions on the nanometer 
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scale, consideration must be given to fluid-fluid and fluid-solid interactions in such 

systems in order to accurately model the phase behavior of hydrocarbon fluids. Michel 

Villazon et al. (2011) developed a model to describe the transportation of gas in shale 

reservoirs taking into account real gas behavior and effects of pore size distributions. 

Their study indicated that two effective pore sizes are required to characterize gas flow 

in shale reservoirs, i.e. a correction factor related to absolute permeability and a 

transport correction. Numerical simulation of phase behavior in shale resources 

provides insight into the storage and transport properties of hydrocarbon fluids at the 

atomic level. Most notably, it provides a time lapsed evolution of a dynamic system, 

which otherwise might be difficult or impossible to realize by laboratory experiments. 

More details on the application and implication of various numerical models in regards 

to shale gas research will be discussed in later chapters. 

 

In conclusion, the transport and storage of hydrocarbon fluids in unconventional shale 

resources is not fully understood. The presence of nanopores and organic matter in shale 

reservoirs has altered the phase behavior of fluids and cannot be accurately described by 

traditional PVT measurements.  Experimental results from laboratory measurements 

have revealed that TOC content, size and surface area of the pores, and geological 

conditions have an impact on the mechanisms of storage and transport of fluids in shale 

reservoirs (Clarkson and Bustin 1999, Ross and Marc Bustin 2009). However due to lab 

instrument and measurement constraints, the data has been sporadic and inconsistent in 

regards to engineering applications. Another approach to investigating the phase 

behavior of fluids in nanopores is with numerical simulation. Numerical simulation 
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approaches are able to reveal more detailed adsorption and diffusion phenomena within 

nanopores at the atomic level. In addition numerical approaches can bypass constraints 

presented to current lab measuring and reporting techniques. 

 

1.3 Research Goal 

The goal of our research is to investigate the effects of confinement on hydrocarbon 

phase behavior. In this thesis, we have proposed to use the cylindrical form of the 

simplified local density model coupled with the Peng-Robinson equation of state to 

solve the hydrocarbon local density distribution for a multicomponent gas mixture 

within a given pore size. We used the mathematical model to study the interactions 

between the fluid molecules and porous wall inside the nanopores by analyzing 

compositional distributions of multicomponent gas mixtures. Additionally, sensitivity 

analysis was performed to study the effects of temperature, pressure, and pore size on 

the density distribution of a multicomponent gas mixture. Further, we extended this 

model to study the effects of pore size distribution on gas storage in shale formations by 

developing a calculation procedure that includes core data, fluid characterization, 

pressure, and temperature. Sensitivity analysis was performed with the aid of the 

gamma distribution to see the effects of pore size distribution on Original Gas in Place 

values when pore volumes are identical. 

 

1.4 Scope of Thesis 

This thesis contains four chapters. Chapter 1 provides an updated assessment of data on 

shale resources, a literature review of the challenges of shale research, and research goal 
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and motivation as pertaining to this thesis. Chapter 2 outlines the mathematical model 

described by Simplified Local Density Theory and provides the methodology for 

Original Gas in Place Calculations of pore size distributions using MICP data coupled 

with the cylindrical SLD-PR EOS algorithm. Chapter 3 provides the results from our 

analysis which includes case studies and sensitivity analysis. Chapter 4 includes 

conclusions derived from our work. 
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Chapter 2: Predicting Fluid Density In Nanopores Using The 

Cylindrical Form Of the Simplified Local Density Model Coupled 

With the Peng Robinson Equation Of State 

 

2.1 Background and Previous Work 

There are many types of models that are used for describing adsorption of fluids under 

high pressure. These models range from empirical fits, such as multilayer adsorption 

Brunauer-Emmet-Teller (BET) theory (Lowell and Shields 1991) and the Langmuir 

model (Langmuir 1918), to computational intensive thermodynamic based methods 

such as Density Functional Theory (DFT) (Ma and Jamili 2014b), Molecular dynamics 

(Alder and Wainwright 1959), Grand Canonical Monte Carlo Simulation (GCMCS) (Al 

Ismail and Horne 2014, Van Megen and Snook 1982), and Ideal Adsorption Solution 

Theory (IAST) (Myers and Prausnitz 1965). The Langmuir model assumes that the 

absorbed substance on a surface does not exceed one molecule in thickness. In addition 

the Langmuir model is based on experimental results taken at low pressures which 

allow for easier measurement of adsorbed gases (Langmuir 1918).  Recent studies have 

shown that the Langmuir monolayer adsorption model is inadequate in modeling 

adsorption, especially at high pressures (Dhanapal et al. 2014). BET theory extends the 

Langmuir model to multilayer adsorption phenomena, however the assumptions that 

goes into the model limits its application in quantifying storage in shale reservoirs. The 

BET and Langmuir models assume that there are no lateral adsorbent interactions 

between molecules. In addition, both empirical methods are limited to subcritical 

temperatures and assumes ideal gas behavior in the vapor phase (Rangarajan, Lira, and 
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Subramanian 1995).  Although these empirical models are computationally 

undemanding, their scope of application is limited and unable to quantify storage in 

organic shale nanopores. Theoretically sound methods such as Molecular Dynamic 

Simulations (MDS) numerically solve Newton’s equations of motion both in 

equilibrium and non-equilibrium statistical mechanics (Alder and Wainwright 1959). In 

a Grand Canonical Monte Carlo scheme, a Markov chain of molecular configurations is 

produced by performing three trial moves: (1) particle displacement, (2) particle 

insertion, and (3) particle removal (Frenkel and Smit 2001). The random insertion and 

deletion of particles continues until a solution is achieved.  However, such methods 

require a significant amount of computing time and/or a supercomputer to model 

adsorption in nanopores, which makes MDS and GCMCS too computationally 

demanding for engineering practical use. Ideal Adsorption Solution Theory describes 

adsorption behavior with Raoult's law for vapor-liquid equilibrium. The disadvantage of 

IAST is it is only valid for ideal solutions. Thus the model is unable to correctly model 

adsorption isotherms for non-ideal systems frequently encountered in engineering 

practice (Erto, Lancia, and Musmarra 2011).  The Simplified Density Model (SLD) 

predicts the adsorption behavior of hydrocarbons by utilizing a cubic equation of state 

(EOS). The SLD model reduces mathematical complexity and has broad applications 

because of its EOS foundation. Contrary to Langmuir and BET models, the SLD model 

includes interactions between the adsorbed molecules and the pore walls. In addition, it 

is orders of magnitude faster than molecular dynamic and Grand Canonical Monte 

Carlo Simulations (GCMC). The purpose of the SLD model is to bridge the gap 

between the computationally intensive but analytically sound simulation models and the 
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limited but widely used empirical methods (Rangarajan, Lira, and Subramanian 1995).  

  

In past studies the SLD-Peng-Robinson Equation of State (SLD-PREOS) model has 

been extended to different pore geometries, pure component, and multicomponent 

mixtures. Fitzgerald et al. (2003) applied the SLD procedure to model adsorption and 

predict recovery of pure methane in coalbeds assuming a slit geometry. Peng and Yu 

(2008) confirmed that adsorption and desorption isotherms from DFT agreed extremely 

well with GCMC simulations for argon and nitrogen pure component gases when 

modeled in a cylindrical pore geometry.  Most prior studies have focused on the effect 

of nanoconfinement on a single pore size. However, in reality pore sizes rarely exist as 

a uniform pore size in reservoirs. Instead pores form complex interconnected networks 

that communicate with each other, affecting the gas storage and transport of 

hydrocarbons. Figure 2.1 shows the pore size distribution of a Barnett shale core 

sample from a mercury injection capillary pressure test. 

 



18 

 

Figure 2.1 — Pore size distribution from a MICP test of a Barnett gas shale core 

(Bruner and Smosna 2011) 

 

The results from Figure 2.1 confirm 80% of the pore throats have a radius of less than 5 

nm, with pore throat sizes as small as 1 nm and possibly smaller (Bowker 2007). 

Similarly, mercury injection profiles for both crushed and plugged core samples from 

the Eagle Ford liquid rich shale reservoir demonstrated that the dominant pore size fell 

below 10 nm for the majority of the samples tested by Honarpour et al. (2012). FIB-

SEM 3D reconstruction of Utica shale samples revealed that the pore size distributions 

was dominated by submicron pores  with the highest frequency of pores corresponding 

to 20 nm in diameter (Zhang et al. 2012). Typically pore sizes for organic rich shale 

reservoir rocks range from a few nanometers to hundreds of nanometers with the 

majority of the pore volume contribution coming from pore sizes less than 10 nm 

(Rezaee 2015). The effect of pore size distributions has rarely been studied and remains 
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a challenging subject for researchers. For instance, Dhanapal et al. (2014) attempted to 

extend the PR-EOS to determine the effective pore size for shale pore size distributions. 

However, several case studies have shown that it is extremely challenging to define an 

effective pore size for a given pore size distribution. Wang et al. (2014) investigated the 

effect of pore size distribution on the phase behavior of hydrocarbon mixtures by 

combining the Peng Robinson-EOS with capillary pressure. However the authors noted 

that there model was only valid for pores that are greater than 10 nm in diameter. In 

general, a fundamental approach for describing the effect of pore size distributions of 

shale reservoirs on gas storage modeling has not been reached. 

 

It is well recognized that the interactions between the fluid molecules and the porous 

walls inside nanopores alters the phase behavior of fluids. Overwhelming experimental 

evidences suggests that the fluid density, critical properties, and other thermo-physical 

properties significantly deviate from their bulk values when confined to nanopores. 

Often experimental results are in disagreement with each other. Trebin and Zadora 

(1968)  reported that the dew point of gas condensate mixtures can be 10 to 15 percent 

higher than those observed in a traditional PVT cell. Using nano-fluidic chips to 

simulate porous tubes, Parsa, Yin, and Ozkan (2015) observed that the gas phase 

condensed to a liquid phase at pressures below the standard vapor pressure. Using 

controlled pore glasses (CPGs) , Luo, Lutkenhaus, and Nasrabadi (2015) observed that 

the bubble point is dramatically effected by pore size with deviations as great as ±15 K 

in bubble point temperature, suggesting two populations of evaporating fluid. Sigmund 

et al. (1973) reported that bubble point pressures decrease at higher surface curvatures 
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inside porous media. The reason shale systems are difficult to describe is because gas 

shale reservoirs are typically organic rich. This implies that an appreciable amount of 

hydrocarbons can be adsorbed/stored inside nanopores due to the strong surface-fluid 

interactions. These interactions lead to a heterogeneous distribution of molecules within 

the pore space in which conventional bulk phase thermodynamics fail to describe. In 

these cases, an accurate description of multicomponent gas adsorption is required to 

accurately estimate reserves, rates, and gas in place. Further, a better understanding of 

how the fluid behaves on a molecular level is crucial to understanding mechanisms of 

mass, momentum, and energy transport in confined environments. Many studies have 

been dedicated to describing competitive adsorption of multicomponent mixtures. 

Lyklema (2005) and Lipatov, Todosijchuk, and Chornaya (1993) developed models 

describing competitive adsorption of liquid media. Appelo, Hendriks, and van 

Veldhuizen (1993) performed multicomponent adsorption experiments of metal ions to 

model transport in aquifers and soils. Fewer studies have investigated multicomponent 

distributions inside graphite nanopores. Applying the SLD-PR model,  Ma and Jamili 

(2014a) were able to predict the compositional distribution of a binary mixture across a 

10 nm carbon slit. At this time, there is no explicit description of how a fluid exceeding 

two components interacts in a confined environment on a molecular level. We seek to 

address this issue in this study. 

 

In this work, the cylindrical form of the SLD-Peng-Robinson Equation of State (SLD-

PR EOS) model will be used to investigate the effects of confinement on density in a 

shale gas formation. As a first step towards a better understanding of adsorption 
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behavior in organic rich shale, this study specifically focuses on the following: 

 

 Describing the influence of pore size, temperature, and pressure on the fluid 

density distribution of a multicomponent mixture by applying sensitivity 

analysis with the SLD-PR EOS model. 

 Providing an explicit understanding of competitive adsorption by analyzing 

compositional distributions of a multicomponent gas mixture using the SLD-PR 

EOS model. 

 Adopting the SLD-PR EOS model to quantify the pore distribution effect on 

estimation of original gas in place (OGIP) for a multi-component gas shale 

reservoir. 

 

In addition, we will compare original gas in place estimates between a newly proposed 

procedure using the SLD-PR EOS model and the most widely used model in the 

industry, the Langmuir monolayer adsorption model. Further, the effect of pore size 

distribution on OGIP calculations will be evaluated with the aid of the Gamma 

distribution. 

 

2.1 Model Description 

 2.1.1 SLD-PR EOS Multicomponent Cylindrical Model 

Multiple studies have confirmed that the SLD model has been capable of describing the 

adsorption and desorption of gases for coalbed sequestration of CO2 and coalbed 

methane production (Chen et al. 1997, Fitzgerald et al. 2003). The same thermodynamic 

and equilibrium relations used in previous studies will be extended to fluid mixtures to 
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predict the density distribution in cylindrical shaped pores that represent kerogen 

nanopores inside shale formations. 

The SLD model makes the following basic assumptions (Chen 2005): 

 The chemical potential at any point near the adsorbent surface is equal to the 

chemical potential of the bulk phase. 

 The chemical potential at any point above the surface is the sum of the fluid-

fluid and fluid-solid interactions. 

 The attractive potential between fluid and solid is independent of the number of 

molecules at and around a point. 

 

The SLD-Peng Robinson framework is based on the principles of chemical 

equilibrium and is outlined in the following. Instead of using the slit shaped pore 

space model, which is reasonable for coalbed methane reservoirs, we propose to use 

the cylindrical shaped model for the pore space in the organic matter. As shown in 

Figure 2.2 below by Curtis, Ambrose, and Sondergeld (2010), kerogen pores are 

better characterized by a cylindrical shaped pore space  rather than a slit shaped pore 

space. 
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Figure 2.2 — Magnified image of a kerogen sample with cylindrical pores of 

various sizes 

 

 Let r represent the radial distance from the center of a cylindrical pore. The 

chemical potential of a fluid within a cylindrical porous system at a given radial 

distance ri is a function of the fluid-fluid and fluid-solid interaction potentials. 

Hence, when the system is at equilibrium the chemical potential (μ) at any location 

(ri) from the center of a cylindrical pore can be expressed by the following equation: 

𝜇(𝑟) = 𝜇𝐵𝑢𝑙𝑘 = 𝜇𝑓𝑓(𝑟𝑖) + 𝜇𝑓𝑠(𝑟𝑖) (1) 

The subscripts “Bulk”, “ff”, and “fs” refers to the bulk fluid, fluid-fluid, and fluid-

solid interactions, respectively. At equilibrium, the chemical potential is constant 

throughout the pore, i.e. there is no chemical potential gradient from the outer wall 

of the pore structure to the bulk fluid in the center of the pore.  The chemical 

potential of a non-ideal bulk fluid expressed in terms of fugacity is the following:  
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μBulk = 𝜇0(𝑇) + 𝑅𝑇𝑙𝑛 (
𝑓𝐵𝑢𝑙𝑘

𝑓0
) (2) 

The subscript “0” denotes the reference state. Similarly, the fluid-fluid chemical 

potential is defined in the equation below: 

μff(r) = μ0(T) + RTln(
fff(r)

f0
) (3) 

For a cylindrical geometry, the fluid-solid chemical potential expressed in its 

reduced form can be written as the following: 

μfs = NAψ(r, R) (4) 

Where NA is Avogadro’s number and ψ is the fluid-solid potential. Note that the 

fluid-solid potential is a function of the pore radius (R) and radial distance from the 

center of the pore (r). It is well documented that under confinement effects a fluids 

thermodynamic properties are altered and deviate from their bulk values (Travalloni 

et al. 2010, Zarragoicoechea and Kuz 2004). Thus to describe the molecular 

interactions (molecule-molecule and molecule-wall effects), Lennard-Jones 

Potential was applied. Many previous studies assume a slit model, i.e. an open 

system to model the interaction between the adsorbent and adsorbed hydrocarbon 

(Chen et al. 1997, Fitzgerald et al. 2003). Our study modified upon the SLD slit 

model framework of previous authors by assuming that the adsorbed molecules 

reside in a cylindrical pore structure, i.e. a closed system, as shown in Figure 2.3.   

 



25 

 

Figure 2.3 — Cylindrical model showing that the fluid-solid interactions are a 

function of the pore size (R) and distance from the center of the cylindrical 

geometry (r) 

 

Tjatjopoulos et al. (1988) was the first to develop a mathematical model to describe 

fluid-solid interactions for a cylindrical surface.  Unlike the slit model, a cylindrical 

surface includes the effects of curvature. A more detailed comparison between the 

slit pore model and the cylindrical pore model along with the major assumptions 

that go into either is discussed in Saito and Foley (1991). The fluid-solid potential 

across a cylindrical pore space can be modeled by the Leonard-Jones (6-12) 

potential function given below: 

ψ(r, R) = π2ρatomsεfsσfs
2 [
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r

σfs
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R
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(5) 

The equation above is defined in the work of Ravikovitch, Haller, and Neimark 

(1998) where ρatoms is the number of carbon plane atoms per unit area, ϵfs is the 
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fluid-solid interaction energy parameter, σfs is the fluid-solid average molecular 

diameter, R is the radius of the cylindrical pore, and F is the hypergeometric series 

function. ρatoms is taken to be a value of 38.2 atoms/nm
2
. The fluid-solid parameter is 

defined as the following: 

σfs =
σff + σSS

2
 (6) 

In our analysis the solid-solid molecular diameter (σss) is taken to be the value of 

graphite, i.e. 0.335 nm (Chen 2005). Substituting Eq. (2) through (4) into Eq. (1), 

the fluid-fluid fugacity can be solved in terms of the Lennard-Jones (6-12) Potential 

function and the bulk fugacity as shown in the equation below: 

fff(r) = fbulk exp (−
ψ𝑓𝑠(r)

RT
) (7) 

In this analysis, the bulk fugacity and bulk density is determined with the PR-EOS. 

The PR-EOS fundamental formula is shown below: 

𝑃

𝜌𝑅𝑇
=

1

1 − 𝜌𝑏
−

𝛼𝑇𝜌

𝑅𝑇[1 + (1 − √2)𝜌𝑏][1 + (1 + √2)𝜌𝑏]
 (8) 

where αT and b are given by the mixing rules (McCain 1990): 

𝑏 = ∑ 𝑦𝑗𝑏𝑗 (9) 

𝑎𝑇 = ∑ ∑ 𝑦𝑖𝑦𝑗(𝑎𝑇𝑖𝑎𝑇𝑗)
1
2(1 − 𝛿𝑖𝑗) (10) 

𝑏𝑖 = 0.07780
𝑅𝑇𝑐

𝑃𝑐
 (11) 

𝑎𝑇𝑖
= 0.45724𝛼𝑗 (

𝑅2𝑇𝑐
2

𝑃𝑐
) (12) 
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𝐵𝑗
′ =

𝑏𝑗

𝑏
 (13) 

𝐴𝑗
′ =

1

𝑎𝑇
2𝑎

𝑇𝑗

1
2 ∑ 𝑦𝑖𝑎𝑇𝑖

1
2 (1 − 𝛿𝑖𝑗)

𝑖

 (14) 

The subscripts “i” and “j” represent different components of a mixture. The PR-

EOS Eq. (8) can be expressed in terms of the Z-factor as shown below: 

𝑧3 − (1 − 𝐵)𝑧2 + (𝐴 − 2𝐵 − 3𝐵2)𝑧 − (𝐴𝐵 − 𝐵2 − 𝐵3) = 0 (15) 

𝐴 =
αT𝑃

𝑅2𝑇2
 (16) 

𝐵 =
bp

RT
 (17) 

The cubic form of the PR-EOS has three roots. The lowest root is the z factor of the 

liquid (ZL), the middle root is discarded, and the highest root is the z factor of the 

vapor phase (Zv) (Whiston and Brule 2000). In our analysis, the z factor of the 

gaseous state was applied, i.e. the largest root value. Subsequently, the bulk phase 

density and bulk fugacity can be determined with the following equations from the 

PR-EOS: 

𝜌𝑏𝑢𝑙𝑘 =
P

TRZ
 (18) 

ln (
𝑓𝑖

𝐵𝑢𝑙𝑘

𝑃
) = − ln(𝑧 − 𝐵) + (𝑧 − 1)𝐵𝑗

′ −
𝐴

21.5𝐵
(𝐴𝑗

′ − 𝐵𝑗
′) ln (

𝑧 + (2
1
2 + 1) 𝐵

𝑧 + (2
1
2 + 1) 𝐵

) (19) 

The fluid-fluid fugacity for a component can then be determined by substituting the 

bulk fugacity solved from Eq. (19) into Eq. (7). The fluid-fluid fugacity can be 

expressed in terms of the local density (ρ(ri)) for component i as shown in the 

equation below: 
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ln (
𝑓𝑖

𝑓𝑓

𝑦𝑖𝑃
) =

𝑏𝑖

𝑏
(

𝑃

𝑅𝑇𝜌(𝑟𝑖)
− 1) − ln [

𝑃

𝑅𝑇𝜌(𝑓𝑖)
−

𝑃𝑏

𝑅𝑇
]

+
𝑎𝑓𝑓(𝑧)

2√2𝑏𝑅𝑇
(

𝑏𝑖

𝑏
−

2 ∑ 𝑦𝑗𝑎𝑖𝑗
𝑓𝑓(𝑧)𝑗

𝑎𝑓𝑓(𝑧)
) ln [

1 + (1 + √2)𝜌(𝑟𝑖)𝑏

1 + (1 − √2)𝜌(𝑟𝑖)𝑏
] 

(20) 

For the mixture adsorption calculation, half of the diameter of the cylindrical pore is 

subdivided into a finite number of intervals. The local density at each interval within 

the cylindrical pore is determined by solving the equilibrium criterion equation Eq. 

(1) subject to the following mole fraction constraint: 

∑ 𝑦𝑖 = 1 (21) 

For i number of components, there are i+1 unknowns. The unknowns are the mole 

fraction (yi) for each component and the local density value (ρ(ri)). Consequently, 

there are i+1 equations needed to solve for the unknowns: An equation of the form 

of Eq. (20) for each component i and the mole fraction constraint Eq. (21). The 

local density can then be determined by applying a constrained optimization 

technique to solve the nonlinear system of equations. In our study, the trust regions 

algorithm was applied. The trust region method combines Cauchy’s steepest descent 

and the Newton Raphson method in a convenient manner to exploit the strengths of 

both, i.e. it has the convergence speed of the Newton Raphson method when the 

Hessian matrix is positive definite and is globally convergent like Cauchy’s steepest 

descent method (Ravindran, Ragsdell, and Reklaitis 2006). More details of the 

numerical optimization technique is discussed in Conn, Gould, and Toint (2000) and 

its applications to multiphase flash calculations is discussed in Petitfrere and Nichita 
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(2014). Once the local density profile is developed across the cylindrical pore, the 

average density can be determined by integration using the equation below: 

�̅�𝑟 =
∫ 𝜌(𝑟)𝑑𝑟

𝑅

0

∫ 𝑑𝑟
𝑅

0

=
∑ [𝜌(𝑟𝑖)Δ𝑟𝑖]

𝑁
𝑖=1

∑ [Δ𝑟𝑖]
𝑁
𝑖=1

 (22) 

An algorithm to determine the bulk state and adsorbed state densities for a multi-

component system using the SLD-PR EOS model is shown in Figure 2.4 below: 

 

 

 

 

 

 

 

Step 1: Input Parameters 

Step 2: Calculate bulk fluid 

properties 

Step 3: Calculate adsorbed 

fluid properties 
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Figure 2.4 — Flow chart for SLD-PR EOS multicomponent model algorithm 
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In summary, the SLD-PR EOS multicomponent algorithm outlined in Figure 2.4 can be 

described by the following step by step procedure: 

1. The inputs are gas bulk phase characterization, reservoir pressure, reservoir 

temperature, and pore size. 

2. Calculate phase Z factors from the PR-EOS and select the largest root which 

represents the Z factor for the vapor phase. 

3. Calculate component bulk fugacity’s (𝑓𝑖
𝑏𝑢𝑙𝑘) from the PR-EOS and the bulk 

density of the multicomponent mixture Eq. (18). 

4. Calculate component fluid-solid potential at a position 𝑟𝑖  Eq. (5). 

5. Calculate the fluid-fluid fugacity for each component(𝑓𝑖
𝑓𝑓

).  

6. Calculate local density 𝜌(𝑟𝑖) by solving the constrained nonlinear optimization 

problem using the trust regions algorithm. 

7. Repeat calculation procedure described in steps 1-6 until the local density 

profile is determined across the cylinder. 

8. Calculate the average adsorbed phase density �̅�𝑟 by integration Eq. (26). 

 

Note that the bulk phase and adsorbed phase densities are expressed in units of lb-

mol/ft
3
. A conversion constant of 379.4 

𝑠𝑐𝑓

𝑙𝑏−𝑚𝑜𝑙
 will be valuable in the proceeding 

sections for determining the original gas in place for organic rich shale from the 

calculated density values. 
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2.1.2 Pore Size Distribution Model 

Shale pore size distributions can be characterized by a variety of measuring techniques, 

e.g. Nuclear Magnetic Resonance (NMR), Mercury Injection Capillary Pressure (MICP) 

tests, or by FIB-SEM imaging (Sondergeld et al. 2010). An advantage of MICP tests is 

they can be performed on fresh cuttings as well as cores. In addition, MICP tests allow 

the gathering of porosity data and pore size distributions.  A MICP test is performed by 

placing a rock sample in an empty instrument chamber then flooding it with mercury. 

Pressure is incrementally increased in the chamber, forcing the mercury to fill the pore 

throats of the sample. The experiment is carried out to 60,000 psi allowing the mercury 

to intrude into the smallest of pore throats. The volume of mercury that has intruded the 

rock by the end of the experiment is the volume of the porosity accessed in the sample. 

Fig. 1 in Sondergeld et al. (2010) shows an incremental mercury intrusion (Vin) curve as 

a function of mercury injection pressure (Pc) for a Barnett gas shale. Mercury injection 

pressure can be converted to a pore throat radius by applying Young’s equation given 

below: 

𝑟 =
2𝜎𝑐𝑜𝑠𝜃

𝑃𝑐
 (23) 

Using Young’s equation with a contact angle of 140° and interfacial tension of 480 

dyne/cm, the pore size distribution for the Barnett gas shale core sample can be derived. 

The resulting pore size distribution is shown in Figure 2.5 below: 
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Figure 2.5 — Pore size distribution of Barnett gas shale. The pore throat radius 

distribution ranges between 1.8 nm to 2,100 nm 

 

The flow diagram demonstrates the procedure to derive the average density of a pore 

size distribution for a gas shale core sample starting with an incremental mercury 

injection curve from a MICP test: 
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Figure 2.6 — Flow chart to determine average density of a pore size distribution 

starting with incremental mercury injection data 

 

In summary, obtaining the average density of a pore size distribution from a MICP test 

outlined in Figure 2.6 can be described by the following step by step procedure: 
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1. Perform a MICP test on a core sample to obtain the incremental intrusion curve. 

2. Convert the pressure to a pore throat radius using Young’s Eq. (23). Use the 

contact angle and interfacial tension for mercury (140°, 480 dynes/cm). 

3. Normalize the y-axis of the incremental intrusion curve to get the pore volume 

contribution of each pore throat size.  

4. Plot the pore size distribution. 

5. Calculate the average adsorbed density of each pore throat size by applying the 

SLD-PR EOS algorithm shown in Figure 2.4.   

6. Calculate the average density of the pore size distribution taking into account the 

pore volume contribution of each pore throat size.  

 

This procedure will be applied in later examples to calculate OGIP at different pressure 

values. 

 

2.1.3 Shale Gas in Place Calculations 

To accurately predict the gas storage capacity in organic rich shale reservoirs one needs 

to understand the physical mechanisms for gas trapping. Unlike conventional reservoirs, 

there are four forms of gas storage in organic rich shale reservoirs. The forms described 

by Adesida et al. (2011) are the following: (1) free gas volume (Gf), (2) adsorbed gas 

volume (Gads), (3) gas dissolved in liquid hydrocarbon (Gso), and (4) gas dissolved in 

formation water (Gsw). Hence, the total gas storage in organic rich shale is described by 

the following equation: 

𝐺𝑠𝑡 = 𝐺𝑓 + 𝐺𝑎𝑑𝑠 + 𝐺𝑠𝑜 + 𝐺𝑠𝑤  (24) 
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In standard industry practice, it is assumed that the volume of gas dissolved in 

formation water and liquid hydrocarbons is negligible for shale gas and coal bed 

methane reservoirs (Ambrose et al. 2012).  However, molecular simulations conducted 

by Diaz Campos, Akkutlu, and Sigal (2009) suggests gas solubility is enhanced when 

the fluid system is confined to micropores found in shale reservoirs. Although the work 

by Diaz Campos, Akkutlu, and Sigal (2009) is insightful, there is no experimental 

evidence that can validate their model, thus in this paper the gas dissolved in formation 

water will not be considered. Based on the previous assumptions, Eq. (24) reduces to 

include only the adsorbed gas volume and free gas volume as shown below: 

𝐺𝑠𝑡 = 𝐺𝑓 + 𝐺𝑎𝑑𝑠 (25) 

Unlike other rock types, shales contain organic matter in the form of kerogen. The 

molecular interactions between the organic matter and hydrocarbon molecules allow 

shales to store a significant amount of gas in an adsorbed state.  The free gas resides in 

the inorganic voids such as macropores, fractures, and fissures  (Ambrose et al. 2012). 

This dual pore system (inorganic/organic) adds additional complexity; however it needs 

to be accounted for in gas in place calculations. Figure 2.7  shows a conceptual model 

of the gas storage mechanisms considered in organic rich shale.  
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Figure 2.7 — Conceptual model for gas storage in organic rich shale 

 

As shown above in Figure 2.7, we assume both free and adsorbed gas is associated with 

the organic pore matrix. This implies that free and adsorbed gas can exist 

simultaneously within the organic pore space. The contribution of adsorbed and free gas 

components within the organic pore space is primarily a function of pore size due to 

fluid-wall effects. Only free gas is found in the inorganic pore space because fluid-wall 

effects are considered to be negligible. A further discussion on the distribution of 

organic and inorganic materials in shale and its effect on gas storage can be found in 

Kang et al. (2011). When a reservoir is depleted to a new pressure, the equilibrium of 

fluid in both organic and inorganic matter will be re-established in the new condition. 

Therefore, the produced gas comes from both free gas and adsorbed gas. This 

conceptual model was used to formulate a procedure to calculate OGIP using the SLD-

PR EOS model.  
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Two procedures of calculating OGIP was evaluated and compared in this work. The 

methodologies of each calculation are presented below: 

 

1. Langmuir Monolayer adsorption theory: Free + Adsorbed Gas Calculation: 

In this method, the free gas volume and adsorbed gas volume is considered in OGIP 

estimations. If we neglect the gas dissolved in water, the governing equations are 

presented below. Further details on the calculation procedure can be found in Ambrose 

et al. (2012). 

𝑂𝐺𝐼𝑃 = 𝐺𝑓 + 𝐺𝑎𝑑𝑠  (26) 

  

𝐺𝑓 =
32.0368𝜑𝑇𝑜𝑡𝑎𝑙(1 − 𝑆𝑤)

𝜌𝐵𝐵𝑔
 (27) 

 

𝜑𝑇𝑜𝑡𝑎𝑙 = 𝜑𝑜𝑟𝑔𝑎𝑛𝑖𝑐 + 𝜑𝐼𝑛𝑜𝑟𝑔𝑎𝑛𝑖𝑐 (28) 

 

𝐺𝑎𝑑𝑠 =
𝐺𝑆𝐿𝑃

𝑃 + 𝑃𝐿
 (29) 

 

where: 𝐺𝑓 = 𝑓𝑟𝑒𝑒 𝑔𝑎𝑠 𝑣𝑜𝑙𝑢𝑚𝑒 (
𝑠𝑐𝑓

𝑡𝑜𝑛
) 

 𝐺𝑎𝑑𝑠 = 𝐴𝑑𝑠𝑜𝑟𝑏𝑒𝑑 𝑔𝑎𝑠 𝑣𝑜𝑙𝑢𝑚𝑒 (
𝑠𝑐𝑓

𝑡𝑜𝑛
) 

 𝐺𝑆𝐿 = 𝑇ℎ𝑒 𝐿𝑎𝑛𝑔𝑚𝑢𝑖𝑟 𝑉𝑜𝑙𝑢𝑚𝑒 (
𝑠𝑐𝑓

𝑡𝑜𝑛
) 

 𝑃𝐿 = 𝑇ℎ𝑒 𝐿𝑎𝑛𝑔𝑚𝑢𝑖𝑟 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑝𝑠𝑖) 

 𝑃 = 𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑝𝑠𝑖) 
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The Langmuir Volume and Langmuir Pressure are acquired from laboratory 

measurements of crushed rock samples. The absorbed gas volume value is calculated by 

an empirical correlation derived from the experimental work of Langmuir (1918) Eq. 

(29). 

 

2. SLD-Peng Robinson: Free + Adsorbed Gas Calculation 

Similar to the Langmuir calculation procedure, this method considers the free gas 

volume and adsorbed gas volume components. However, the SLD-PR EOS algorithm 

outlined in Figure 2.4 is used to calculate the average density across the various pore 

sizes for the organic kerogen pore space. In the inorganic pore space fluid-wall 

interactions are negligible, thus only a single bulk density value was required to 

calculate the gas storage contribution from the inorganic pore space. Laboratory 

measurements are not required for this method. The governing equations are presented 

below: 

𝑂𝐺𝐼𝑃 = 𝐺𝑓 + 𝐺𝑎𝑑𝑠  (26) 

  

Gf =
32.0368φinorganic(1 − Sw)

ρBBg
 

 

(30) 

𝐺𝑎𝑑𝑠 =
32.0368𝜑𝑜𝑟𝑔𝑎𝑛𝑖𝑐(1 − 𝑆𝑤)

𝜌𝐵𝐵𝑔
 

 

(31) 

Figure 2.8 below illustrates the difference in the calculation procedure between the 

Langmuir method and the new proposed method using the SLD-PR EOS model. 
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Figure 2.8 — Illustrates the differences in calculation procedure between the 

Langmuir method and the SLD-PR EOS method 

 

As shown above, the Langmuir OGIP calculation procedure associates the free gas 

volume with the entire pore space likely leading to an overestimation in the amount of 

total free gas. The adsorbed gas volume is determined by the Langmuir isotherm 

equation which requires the experimentally determined constants, GSL and PL. Often 

these constants are inaccurate and sample dependent, producing erroneous results 

because of the existing limitations on sorption measurement and reporting techniques. 

More details on data variability of OGIP calculations using the Langmuir isotherm 

calculation procedure is discussed in Das, Jonk, and Schelble (2012). The new proposed 

method using the SLD-PR EOS model associates the free gas volume with both the 

inorganic and organic pore space. However the free gas volume is dependent on the 

amount adsorbed. Thus the organic pore space may or may not contain free gas.  The 

adsorbed gas volume is only associated with the organic pore space. This agrees with 
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the conceptual model shown in Figure 2.7.  In Chapter 3, the OGIP values of the two 

calculation procedures will be compared. 

 

2.1.4 Manipulating Pore Size Distributions with the Gamma Probability Density 

Function 

Generally, the smaller the pore size the greater the density of the adsorbed phase in the 

rock due to the fluid-solid interactions. Mosher et al. (2013) compared the densities 

measured in 0.4 nm and 9 nm sized pores at 1 MPa using molecular simulation. They 

determined that the 0.4 nm pores contained 84 times more methane than the 9 nm pores. 

Given the abundance of pore sizes found in shale samples, the consideration of the pore 

size effect is of utmost importance when carrying out adsorption and reserve studies. As 

a demonstrative example, this study will consider several samples of identical pore 

volumes but different pore size distributions to see what effect it has on OGIP values. 

 

For convenience, the gamma distribution will be used to manipulate the pore size 

distribution for our analysis. The gamma distribution is a continuous probability 

distribution model with two adjustable parameters: the scale parameter (θ) and the 

shape parameter (k). Manipulating the value of the scale parameter affects the spread of 

the distribution. Changing the value of the shape parameter alters the shape of the 

distribution. The functional form of the probability density function (PDF) for the 

gamma distribution is the following: 

𝑓(𝑋; 𝑘, 𝜃) =
1

𝛤(𝑘)𝜃𝑘
𝑥𝑘−1𝑒−

𝑥
𝜃 (32) 
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𝛤(𝑘) = ∫ 𝑡𝑘−1𝑒−𝑡𝑑𝑡
∞

0

 (33) 

The mean and variance of the gamma distribution are given by the following equations: 

𝜇𝑚𝑒𝑎𝑛 = 𝑘𝜃 (34) 

𝜎𝑠𝑡𝑑
2 = 𝑘𝜃2 (35) 

The figure below shows the different shapes of the gamma distribution by altering k or 

θ: 

 

Figure 2.9 — Graphs of various gamma distributions with different values of k 

and θ 

 

As can be seen in the figure above the gamma distribution can take on various shapes 

and forms. Thus the gamma distribution can model various forms of experimental data 

(Joshi 2011). In our case, the gamma distribution will allow us to model various pore 

size distributions while maintaining a constant pore volume. 

 

The continuous gamma distribution probability density function (PDF) is applied to 

model various pore size distributions by dividing the area under the curve into sections. 
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By definition, the area under any PDF from 0 to ∞ is equal to one. This is shown 

schematically in the figure below with the appropriate units for this analysis:  

 
Figure 2.10 — Graph of a gamma probability density function. The area under the 

curve is equal to one 

 

The bin width, ∆𝑟, assures that the area under the curve will always be equal to one. In 

our analysis, the area of a section is defined as the normalized pore volume fraction 

(
Vin

𝑃𝑉
) for a range of pore throat sizes ri-1 to ri. Because the total area under the curve is 

equal to unity the gamma PDF can be used to model various shapes of a pore size 

distribution while maintaining a constant pore volume (PV). The pore volume 

contribution of radius ri can be determined by the following equation and is 

schematically illustrated in Figure 2.11. 

(
𝑉𝑖𝑛

𝑃𝑉
)

𝑟𝑖

= ∫ 𝑓(𝑥)𝑑𝑟
𝑟𝑖

𝑟𝑖−1

 (36) 
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Figure 2.11 — Schematic showing the graphical interpretation of the area under 

the curve of a gamma probability density function. The difference between the 

area between two values of r represents the pore volume radius contribution for a 

given radius ri 

 

The above approach can be carried out easily with spreadsheet calculations. Once the 

pore volume contribution is determined for each pore throat size for a given gamma 

distribution, the average density of the pore size distribution can be determined using 

the algorithm in Figure 2.4.  

 

In literature, there are many ways to classify small pores in shales, e.g. nanopores, 

macropores, mesopores. In this work, we will use the International Union of Pure and 

Applied Chemistry (IUPAC) pore size classification system reported in Sing (1985). 

The pore sizes are defined below: 

 Micropores: Pores with widths less than 2 nanometers 
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 Mesopores: Pores with widths between 2 and 50 nanometers 

 Macropores: Pores with widths greater than 50 nanometers 

The IUPAC standard pore classification system is the standard terminology used in the 

presentation and interpretation of adsorption data. The classification system is even 

more appropriate for shales because the majority of the shale pore volume consists of 

nanometer-sized pores.  

 

The presence of extremely small pores in shales is documented in several studies. 

Schieber et. al (1988) defined shale or mudstone as a fine grained sedimentary rock 

with a dominant grain size less than 63 μm.  Dong et al. (2015) calculated pore size 

distributions from nitrogen adsorption analysis on representative shale samples. They 

reported that the dominant pore size fell below 10 nm with the highest frequency of 

pores contributing being less than 2 nm in diameter (micropores). Rutherford et al. 

(1997) studied montmorillonite clay with nitrogen and neo-hexane adsorption 

techniques. They reported the total pore volume of samples contained between 14-66% 

micropores. In the following sections, the IUAPC pore size classification system will be 

used to classify pore size distributions.  
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Chapter 3: Results and Discussion 

The previous chapter was focused on the development of the mathematical model used 

to study the effects of confinement on phase behavior in nanopores. We discussed the 

cylindrical form of the SLD-PR EOS model which allows us to predict the fluid density 

at any location within the pore space. Further, a calculation procedure for average 

adsorbed phase density considering pore size distributions using MICP data was 

summarized. In this chapter, we study the effects confinement on the phase behavior of 

multicomponent mixtures on a nanoscopic, molecular, and macroscopic level. First, we 

consider the effect of pore size, pressure, and temperature on the density distribution of 

a multicomponent mixture by performing sensitivity analysis. Second, we study the 

interactions between the fluid molecules and porous wall inside nanopores on a 

molecular level by analyzing compositional distributions of multicomponent gas 

mixtures within the pore space. Lastly, we examine what is happening to the fluid 

mixture on a macroscopic level by considering the pore size distribution effect on 

average adsorbed phase density within a core sample using MICP data. We use the 

calculation procedure in combination with the gamma distribution to compare OGIP 

estimates of various pore size distributions with identical pore volumes.    

 

3.1 Nanoscopic Level 

3.1.1 Density Distributions under Confinement Effects: Pore Size, Pressure, and 

Temperature Sensitivities 

In this section, we will investigate the influence of pore size, pressure, and temperature 

on the fluid density distribution of a multicomponent mixture by applying the 
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cylindrical version of the SLD-PR EOS model. A four component mixture consisting of 

methane, ethane, propane, and butane with the following bulk composition shown in 

Table 3.1 will be evaluated: 

 

Table 3.1 — Bulk Composition of Four Component Mixture 

Component Bulk Composition Fraction (zi) 

C1 40% 

C2 30% 

C3 20% 

C4 10% 

 

It is well recognized that pore size influences the fluid density distributions in a 

confined space. Consider the multicomponent mixture given in Table 3.1 in a five and 

ten nm cylindrical shaped pore. The density distributions across a 5 and 10 nm 

cylindrical pore are juxtaposed in Figure 3.1. The density distributions are evaluated at 

pressure conditions ranging between 1,000 and 6,000 psia and a temperature of 300 °F. 
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Figure 3.1 — Density profiles of a multicomponent gas mixture consisting of 4 

components across a five and ten nm cylindrical pore at a temperature of 300 °F 

 

 The density profiles from Figure 3.1 suggest that pore size has a significant influence 

on the adsorbed phase density of multicomponent gas mixtures. For example, at 3000 

psia the average adsorbed phase density in the 5 nm pore (0.82 lb mol/ft^3) is much 

higher than the average adsorbed phase density of the 10 nm pore (0.65 lb mol/ft^3) at 

the same pressure. Comparing the density distributions in Figure 3.1, it is obvious that 

the density profile near the center of the pores shifts upwards with decreasing pore size 

at each pressure. This suggests that the influence of the pore wall becomes more 

significant as the pore size decreases. 

 

Other than pore size, pressure can influence the density distributions within confined 

nanopores. As shown in Figure 3.1 at increasing pressures, the density profiles has a 

tendency to shift upwards when pore size is fixed. This is expected because as pressure 
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increases the number of molecules striking the surface per unit time increases, therefore 

the quantity adsorbed increases. In other words, the number of molecules adsorbed at 

any moment of time is a function of pressure. At higher pressures, multiple layers of 

molecules begin to form and most of the adsorption sites along the pore wall are filled. 

Figure 3.2 compares the average adsorbed phase density values across a 5 and 10 nm 

pore to the bulk phase density values over a wide range of pressures for identical fluids. 

 

 

Figure 3.2 — Compares the average adsorbed phase density value across a 5 and 

10 nm cylindrical pore to the bulk density values across a wide range of pressures 

at a fixed temperature of 300 °F 
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At sufficiently high pressures, the difference between the average adsorbed phase 

density and the bulk density value will show a maximum as indicated in Figure 3.2. 

After this maximum, the average adsorbed phase density begins to approach the bulk 

density value for both the 5 and 10 nm pore sizes. This suggests that the gas molecules 

have occupied all the adsorption sites and adsorption no longer occurs. The pressure at 

which this maximum occurs largely depends on the affinity of the fluid molecules for 

the surface and pore size.  Figure 3.2  indicates that the 5 nm pore size reaches its 

maximum adsorbed phase density value at a faster rate than the 10 nm pore size. This is 

expected because the 5 nm pore size has less surface area or fewer adsorption sites than 

the 10 nm pore.  Further the results imply that pressure has a much greater impact on 

the amount adsorbed when the fluids are less compressed, i.e. at pressures below the 

maximum.  

 

Temperature can also influence the density distribution of a multicomponent mixture. 

The density distribution across a 5 nm cylindrical pore is shown in Figure 3.3 below 

across a range of temperatures: 
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Figure 3.3 — Density profiles across a range of temperatures at a pressure of 3000 

psia for a 5 nm pore 

 

One observation of interest is the density profile shifts upward with decreasing 

temperature. This is expected because at lower temperatures, the average kinetic energy 

of the particles is much less. Because the system has less energy, the adsorption layer 

involves a much more compact packing. Consequently the density is higher at lower 

temperatures. The results described above are consistent with the works of Dhanapal et 

al. (2014) and Hartman et al. (2011). Further, the results are consistent with standard 

fluid PVT relations, where an increase in temperature results in a decrease in density. 
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3.2 Molecular Level 

3.2.1 Component Compositional Distributions 

In the previous section, the influence of pore size, temperature, and pressure on the fluid 

density distribution of a multicomponent mixture was investigated. In this section, we 

will study the effects of confinement on a molecular level by applying the cylindrical 

form of the SLD-PR EOS algorithm to model the compositional distribution of 

components within a cylindrical pore. The multicomponent mixture with compositional 

data given in Table 3.1 will be investigated. 

 

Consider the multicomponent mixture given in Table 3.1 with the bulk compositional 

values. The fluid density distribution of the mixture in a 10 nm pore is given in Figure 

3.4 below. Table 3.2 compares the average adsorbed density with the bulk density 

values for this particular case. 
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Figure 3.4 — Fluid density distribution of a multicomponent mixture consisting of 

40% methane, 30% ethane, 20% propane, and 10% butane for a 10 nm cylindrical 

pore at a pressure of 3000 psia and temperature of 300°F 

 

Table 3.2—Compares the Average Adsorbed Phase Density Across a 10 nm Pore 

with the Bulk Density Value Evaluated at a Pressure of 3000 psia and 

Temperature of 300°F 

Bulk Density, lb mol/ft
3
 0.467 

Average Adsorbed Phase Density, lb mol/ft
3
 0.647 

Percentage difference 28% 

 

From Figure 3.4 it is clear that density distribution under confinement effects 

approaches the bulk density value near the center region of the pore. In contrast, as one 

moves closer to the wall, the density distribution deviates further from the bulk density 

value. The resulting density distribution with higher density near the pore walls and 

lower density near the center of the pore can be explained by analyzing the system on a 
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molecular level. Hence, we will investigate compositional distributions within the 10 

nm pore space for the fluid mixture at identical pressure and temperature conditions. 

Figure 3.5 shows the compositional distributions within the 10 nm pore space for the 

multicomponent gas mixture being studied. 

 

 

Figure 3.5 — Compositional distributions across a 10 nm pore for a four 

component mixture containing methane, ethane, propane, and butane at a 

pressure of 3000 psia and temperature of 300°F 

 

Analyzing Figure 3.5, it is obvious that the composition of each component varies 

throughout the pore space. The heavier or larger components dominate along the pore 

wall and the lighter or smaller components approach their peak value near the center of 

the pore. Figure 3.6-3.9 shows the compositional distribution for each component 
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(methane, ethane, propane, and butane) within the 10 nm pore space. Further each 

figure compares the compositional distribution to its bulk state composition.  

 

 

Figure 3.6 — Compares the compositional distribution of methane within the 10 

nm pore under confinement effects to the bulk phase composition  
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Figure 3.7 — Compares the compositional distribution of ethane within the 10 nm 

pore under confinement effects to the bulk phase composition 
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Figure 3.8 — Compares the compositional distribution of propane within the 10 

nm pore under confinement effects to the bulk phase composition 
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Figure 3.9 — Compares the compositional distribution of butane within the 10 nm 

pore under confinement effects to the bulk phase composition 

 

Figures 3.6-3.9 suggests that the overall size of the hydrocarbon molecule has a 

significant influence on its adsorption potential. Note that the composition of butane, 

i.e. the largest component in the mixture, varies between 10% and 93%. The 

composition of methane, i.e. the smallest component in the mixture, varies between 0% 

and 38%. Under confinement conditions, the larger the molecule, the greater its 

propensity it is to be in the adsorbed state. One of the main causes of this is the presence 

of Van der Waals forces.  Van der Waals forces are the weakest of all intermolecular 

forces and result from individual electrostatic attractions between molecules. Van der 

Waals forces arise because of the unsymmetrical electron distribution among molecules. 

The unsymmetrical distribution of electrons induces a dipole on neighboring molecules 
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or surfaces resulting in a weak bonding force, known as the Van der Waals force. The 

strength of Van der Waals forces varies considerably with the size and shape of a 

molecule. The greater number of electrons a molecule possess and the more surface area 

over which the electrons are allowed to travel, the bigger the induced dipole becomes. 

This results in a stronger Van der Waals force.  Larger molecules have a greater number 

of electrons and a larger radius, thus they exhibit stronger Van der Waals forces. 

Because larger molecules exhibit greater temporary dipoles, these molecules are 

considered to be “stickier” and have a tendency to form along the pore wall in the 

adsorbed phase region. This concept is justified by the compositional distributions 

presented by our analysis. As seen in Figure 3.6, as one approaches the wall, the 

methane composition drops dramatically, approaching zero. When the methane 

composition of the mixture becomes negligible, the fluid composition becomes 

dominated by butane along the pore wall as shown in Figure 3.9.    Another observation 

that can be made from Figures 3.6-3.9 is that as one approaches the center region of the 

pore space, the composition of each component approaches its bulk phase composition. 

This means as one moves toward the center of the pore space, the influence of the fluid-

solid interactions becomes minimized and the fluid density approaches its bulk phase 

density. Compositional distributions for a five component mixture and a six component 

mixture at identical pressure and temperature conditions are given below: 
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Figure 3.10 — Compositional distributions across a 10 nm pore for a five 

component mixture containing methane, ethane, propane, butane, and pentane at 

a pressure of 3000 psia and temperature of 300°F 
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Figure 3.11 — Compositional distributions across a 10 nm pore for a six 

component mixture containing methane, ethane, propane, butane, pentane, and 

hexane at a pressure of 3000 psia and temperature of 300°F 

 

In Figures 3.10-3.11, similar trends can be observed. As heavier components are 

introduced to the system, the compositional distributions are altered along the pore wall. 

The smaller, low molecular weight molecules are replaced by the larger, high molecular 

weight molecules along the adsorbent surface.  
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3.3 Macroscopic Level: Multicomponent Shale Gas in Place 

Calculations with Adsorbed-Phase Considerations 

3.3.1 Langmuir Monolayer Adsorption and SLD-PR EOS Comparisons 

In the previous section, we applied the cylindrical form of the SLD-PR EOS algorithm 

to model the compositional distribution of components within a cylindrical pore of a 

multicomponent gas mixture. We were able to enhance our understanding on how the 

fluid molecules interact in a confined environment. In this section, we calculated the 

adsorbed gas volume, free gas volume, and total gas volume of a multicomponent 

mixture using the SLD-PR EOS cylindrical model. We compared the results against the 

Langmuir monolayer adsorption model outlined in Chapter 2. To compare the variance 

in OGIP values between the two different calculation procedures, a multicomponent 

mixture with the following composition and thermodynamic properties shown in the 

Table 3.3 below was evaluated across a wide pressure range (1,000 to 10,000 psi) at a 

reservoir temperature of 270 °F. The core data and OGIP calculation parameters are 

given in Table 3.3. Table 3.4 shows the petrophysical measurements derived from the 

Barnett core sample. 
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Table 3.3—Multicomponent Mixture Composition and Thermodynamic 

Properties 

Component 

Bulk 

Composition 

(Zi) 

Critical Pressure 

(PC), psia 

Critical 

Temperature (TC), 

°R 

Acentric 

Factor (Ѡ) 
σff ϵfs 

C1 61.9% 669 343 0.011 0.376 149 

C2 14.1% 709 550 0.099 0.444 216 

C3 8.4% 618 666 0.152 0.512 237 

C4 4.4% 552 765 0.200 0.469 531 

C5 2.3% 490 845 0.252 0.578 341 

C6 9.0% 440 914 0.300 0.595 399 

 

Table 3.4—Langmuir and SLD-PR EOS Calculation Parameters 

 

Parameters Values Units 

Total Porosity, φT 5.5%   

Kerogen Porosity (organic) 3.5%   

Inorganic Porosity 2.0%   

Water Saturation, Sw 25%   

Rock density 2.5 g/cm3 

Langmuir storage capacity (GsL) 20 scf/ton 

Langmuir Pressure (PL) 1500 psia 

 

Using the pore size distribution in Figure 2.5 and the parameters in Tables 3.3 and 3.4, 

the total gas storage capacity calculated for the gas mixture at different pressures using 

the two separate methods is presented in Figure 3.12. The gas storage values were 

converted to units of scf/ton. 
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Figure 3.12—Total gas storage capacity calculated values using the two separate 

calculation procedures for multicomponent mixtures 

 

For this particular case, the estimated total gas volumes from these two algorithms are 

similar below a pressure of 7000 psia. The model predicted values begin to deviate 

more as pressure increases beyond 7000 psia as shown by the trend. Though the 

differences look insignificant from a total gas storage perspective, the free gas and 

adsorbed gas volume values differentiate significantly. The adsorbed gas storage 

capacity calculated for the gas mixture at different pressures using the two separate 

methods is presented in Figure 3.13.  The percentage difference between adsorbed gas 

storage values is shown in Figure 3.14. 
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Figure 3.13 — Adsorbed gas storage capacity calculated values using the two 

separate methods for a multi-component mixture 
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Figure 3.14 — Adsorbed gas volume percentage difference based on the values 

calculated in Figure 3.13 

 

The results suggest the Langmuir model severely underestimates the adsorbed gas 

storage capacity, especially at high pressures. Figure 3.13 suggests the percentage 

difference between the adsorbed gas volume values for the Langmuir isotherm equation 
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They reported that three of four vendors conducted sorption measurements much below 

the saturation point of the gas and in-situ reservoir pressure. Das, Jonk, and Schelble 

(2012) declared that the extrapolation to higher pressures would produce erroneous 

results for adsorbed gas volume values calculated by the Langmuir isothermal equation. 

Either way the adsorbed gas volume values calculated by the two methods disagree with 

each other significantly at each pressure. 

 

The free gas storage capacity calculated for the gas mixture at different pressures using 

the two separate methods is presented in the Figure 3.15. 

 

Figure 3.15 — Free gas storage capacity calculated values using the two separate 

methods for a multi-component mixture 
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than the SLD-PR EOS model. This difference in values can be attributed to the 

calculation procedure illustrated in Figure 2.8. The Langmuir calculation procedure 

associates the free gas volume with the entire pore space where as the new proposed 

method may or may not include free gas volume in the organic pore space. The amount 

of free gas in the organic pore space depends on the amount adsorbed according to the 

new proposed method. Because of this fact, the Langmuir free gas volume predictions 

will always be overinflated.  

 

3.3.2 Pore Size Distribution Sensitivity Study 

In the following sensitivity study we will use the same multicomponent mixture and 

thermodynamic properties given in Table 3.3. In addition we will assume a reservoir 

temperature of 270°F and use the same inorganic and organic porosity values given in 

Table 3.4. Four case studies were evaluated using the gamma distribution. A summary 

of the gamma distribution parameters and meaningful statistics are presented in Table 

3.5.  The pore size distributions and pore volume contribution by pore size for each case 

are given in Figures 3.16-3.19. 

 

Table 3.5 — Gamma Distribution and Statistical Parameters 

 

Case k θ μmean, nm σstd, nm 

Case 1 0.5 5 2.5 3.5 

Case 2 1 5 5 5.0 

Case 3 3 5 15 8.7 

Case 4 8 5 40 14.1 
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Figure 3.16 — Pore volume distribution for Case 1 

 

Figure 3.17— Pore volume distribution for Case 2 
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Figure 3.18 — Pore volume distribution for Case 3 

Figure 3.19 — Pore volume distribution for Case 4 

 

Comparing Figures 3.16-3.19, we observe a significant difference between the pore 

volume contributions from micropores, mesopores, and macropores. For Case 1, 

micropores contribute to 47% of the total pore volume and there is no macropore 
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contribution. For Case 2, only 18% of the pore volume is represented by micropores. 

For Case 3, the pore volume contribution from the micropores is exactly zero. For Case 

4, the pore volume contribution is dominated by the macropores, contributing to exactly 

87% of the total pore volume. It is immediately apparent that Cases 1-4 simulate a wide 

range of pore size distributions that a gas shale core might exhibit. To further assess the 

importance of pore size distribution in shale gas reservoirs, OGIP values were 

calculated using the same SLD-PR EOS procedure illustrated in Figure 2.8 and core 

data in Table 3.4 for a wide range of reservoir pressures. The results are given in the 

Figure 3.20.  

 

 

Figure 3.20— OGIP values for Cases 1-4 across a wide pressure range 
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Figure 3.20 suggests for identical pore volumes evaluated at the same pressure and 

temperature conditions, more small pores correlates to more gas in place, especially at 

increasing pressures. Thus under a similar depletion process, one would expect higher 

gas recovery from smaller pores. It is clear from Figure 3.20 that the largest percentage 

difference between the calculated OGIP values occurs at a reservoir pressure of 10,000 

psia between Case 1 and Case 4. The percentage error is 43.9%. Another observation 

from Figure 3.20 is as the pore contribution from macropores increases, the influence 

of pore size distribution on OGIP values becomes less significant. As shown in Figure 

3.21, as the percentage of macropores increases in a sample, the average density of the 

pore size distribution begins to approach the bulk density, i.e. the density at which pore 

wall effects are not an influence. This is especially true for cases 3 and 4. 
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Figure 3.21 — Average pore size distribution densities for Cases 1 through 4 and 

bulk density values across a wide range of pressures 
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volumes are identical. Given the potential impact of micropore effects on adsorption 

storage capacities of shale gas samples, consideration of pore size distributions is very 

important for OGIP studies and predictions.  
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Chapter 4: Conclusions 

This work investigates multicomponent adsorption on a nanoscopic, molecular, and 

macroscopic level in gas shale reservoirs by applying the cylindrical form of the SLD-

PR EOS model. The following conclusions were derived from this work: 

 

1. In a confined environment, the adsorbed phase density is influenced by pore 

size, temperature, and pressure. The adsorbed phase density increases with 

decreasing pore size and decreases with increasing temperature.  Further, the 

adsorbed phase density increases with increasing pressure until all adsorption 

sites are filled. Once all the adsorption sites are filled, adsorption no longer 

occurs. 

2. The overall size of an organic molecule has a significant effect on its adsorption 

potential. When a fluid contains many components, the larger molecules have a 

tendency to occupy the majority of the pore space along the pore wall. 

3. A new calculation procedure using the cylindrical Simplified Local Density 

model with Peng-Robinson Equation of State (SLD-PR EOS) is proposed to 

replace the Langmuir isotherm-based monolayer adsorption model. The 

proposed method respects the dual porosity system of organic rich shale and is 

based on the fundamentals of chemical potential equilibrium. 

4. The presence of micropores in shales is associated with more gas in place when 

pore volumes are identical. 
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5. Pore size distribution has a tremendous impact on gas volume in a shale 

formation, and neglecting pore size distribution can yield more than 44% errors 

for original gas in place (OGIP) calculation. 

 

Future work will consider verifying the density profiles from the SLD-PR 

multicomponent cylindrical model with molecular dynamic simulation. 
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