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Abstract

Thunderstorms, including straight-line (non-tornadic) winds, cause an average

of over 100 deaths and $10 billion of insured damage per year in the United

States. In the past decade machine learning has led to significant improvements

in the prediction of other convective hazards, such as tornadoes, hail, lightning,

and convectively induced aircraft turbulence. However, very few studies have

used machine learning specifically to predict damaging straight-line winds. We

have developed machine-learning models to predict the probability of damaging

straight-line wind, defined as a gust ≥ 50 kt (25.72 m s-1), for a given storm cell.

Predictions are made for three buffer distances around the storm cell (0, 5, and

10 km) and five lead-time windows ([0, 15]; [15, 30]; [30, 45]; [45, 60]; and [60, 90]

minutes).

Three types of data are used to train models: radar images from the

Multi-year Reanalysis of Remotely Sensed Storms (MYRORSS); atmospheric

soundings from the Rapid Update Cycle (RUC) model and North American Re-

gional Reanalysis (NARR); and near-surface wind observations from the Me-

teorological Assimilation Data Ingest System (MADIS), Oklahoma Mesonet,

one-minute meteorological aerodrome reports (METARs), and National Weather

Service local storm reports. Radar images are used to determine the structural

and hydrometeorological properties of storm cells, while soundings are used to

determine properties of the near-storm environment, which are important for

xvi



storm evolution. Both of these data types are used to create predictor vari-

ables. Meanwhile, near-surface wind observations are used as verification data

(to determine which storm cells produced damaging straight-line winds).

For each buffer distance and lead-time window, we experiment with five

machine-learning algorithms: logistic regression, logistic regression with an elas-

tic net, feed-forward neural nets, random forests, and gradient-boosted tree

(GBT) ensembles. Forecast probabilities from each model are calibrated with

isotonic regression, which makes them more reliable. Forecasts are verified

mainly with three numbers: area under the receiver-operating-characteristic

curve (AUC), maximum critical success index (CSI), and Brier skill score (BSS).

AUC and maximum CSI range from [0, 1], where 0 is the worst score and 1

is a perfect score. BSS ranges from (−∞, 1], where −∞ is the worst score; 1

is a perfect score; and > 0 means that the model is better than climatology.

Models are ranked by AUC. The best model (for a buffer distance of 0 km and

lead time of [15, 30] minutes) has an AUC of 0.996, maximum CSI of 0.99, and

BSS of 0.88. The worst model (for a buffer distance of 10 km and lead time of

[60, 90] minutes) has an AUC of 0.89, maximum CSI of 0.20, and BSS of 0.12.

All models outperform climatology.

Finally, for each buffer distance and lead-time window, we use three meth-

ods to select the most important predictor variables: sequential forward selec-

tion, J -measures, and decision trees.
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Chapter 1

Introduction

In an average year in the United States, thunderstorms cause over 100 deaths and

$10 billion of insured damage1. Some of these losses are caused by non-tornadic

(straight-line) wind events, such as downbursts, gust fronts, bow echoes, and

derechoes. Although information is not available on the exact losses caused

by straight-line winds versus tornadoes, damaging straight-line winds are much

more common than tornadoes2, so there is reason to believe that they cause a

comparable amount of losses.

Both thunderstorm occurrence and near-surface wind are non-linearly related

to many meteorological factors, which cannot be predicted adequately by numer-

ical weather prediction (NWP) models. This is because NWP models (a) do not

solve the equations of motion exactly and (b) cannot resolve motions at a scale

below their grid spacing. The finest-scale operational models [e.g., the 4-km

North American Mesoscale (NAM-4km) (Aligo et al., 2014), High-Resolution

Rapid Refresh (HRRR) (Clark et al., 2012), and Advanced Research Weather

Research and Forecasting (WRF-ARW) (Skamarock and Klemp, 2008) models]

have a grid spacing of 3-4 km, which allows them to predict thunderstorm occur-

rence with some fidelity, but they have trouble predicting thunderstorm-related
1http://www.iii.org/fact-statistic/catastrophes-us
2http://www.nssl.noaa.gov/education/svrwx101/wind
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phenomena such as damaging straight-line wind. This is why meteorologists

often use machine learning to predict such phenomena.

Machine learning is a type of artificial intelligence in which computers learn

knowledge that has not been explicitly programmed. Usually the goal is to

predict one dependent variable y based on many predictor variables xj. Machine

learning consists of three steps.

1. Training. The goal is to learn a relationship between the xj and y that opti-

mizes some performance measure (e.g., mean absolute error, mean squared

error, classification accuracy). The performance measure is computed by

comparing the predicted y-values to actual y-values. This relationship is

learned from many examples, which comprise the training set, and is called

a “model”.

2. Testing. The model is tested on a new set of examples, which should be

(a) independent of the training set and (b) similar to examples that the

model will encounter in the future. If these criteria are met, performance

on the testing set should be similar to future performance (e.g., when the

model is deployed in a forecasting office).

3. Deployment. Here the model is used to predict new examples.

Some advantages of machine learning are as follows.

1. In the deployment phase, a machine-learning model (unlike human reason-

ing) is determinstic. In other words, given the same predictor values xj, it

will always predict the same value y.

2. Deployment time is usually very fast (� 1 second to predict a new example,

whereas running an NWP model takes ~1 hour).
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3. It can predict the outcome of a physical process without fully understand-

ing said process (and without the developers or users fully understanding

said process)3.

4. Output from NWP models can be used to create predictors, which helps

to keep machine-learning predictions realistic.

5. Certain machine-learning and variable-selection methods can be used to

gain insight into the underlying physical processes.

The goal of this project is to predict the occurrence of damaging straight-

line wind for a given storm cell. “Damaging wind” is defined as a gust ≥ 50 kt

(25.72 m s-1), which is the National Weather Service’s (NWS) threshold for severe

thunderstorms4. Specifically, we develop models to predict damaging straight-

line wind at three buffer distances around the storm cell (0, 5, and 10 km) and

five lead-time windows ([0, 15]; [15, 30]; [30, 45]; [45, 60]; and [60, 90] minutes).

Our hypothesis was that for each combination of buffer distance, lead-time

window, and forecast probability, we could produce reliable forecasts that out-

perform climatology. We could not directly compare our performance to previous

models, because previous models either (a) forecast many thunderstorm hazards

at once, rather than focusing specifically on straight-line wind, or (b) forecast

straight-line wind only for storms that are known to be severe.

We make the following improvements over previous studies: (a) using station-

based wind observations, rather than only human reports; (b) using multiple
3This can also be a disadvantage, because it can lead to over-reliance on machine learning

and a lack of emphasis on physical understanding, which is why we use variable selection to

aid physical understanding (see item 5).
4http://www.spc.noaa.gov/misc/about.html
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data sources to create predictors; (c) predicting only straight-line wind, sepa-

rate from other thunderstorm hazards; (d) using composited, rather than single-

radar, data; (e) using advanced machine-learning algorithms with probability

calibration; and (f) using a large number of predictors.
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Chapter 2

Related Work

Section 2.1 explains the physical mechanisms behind damaging straight-line con-

vective winds; the remaining subsections are a review of machine-learning appli-

cations in radar and convective meteorology. First, we review expert systems,

which are the earliest and best-known machine-learning applications in said field.

Then we review other machine-learning methods used for radar and convective

meteorology. Finally, we review applications of machine learning to predict dam-

aging straight-line convective winds specifically.
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2.1 Physical Mechanisms Behind Damaging

Straight-line Convective Winds

There are three general types of damaging straight-line convective wind1, which

will be described in turn: downbursts (including macrobursts and microbursts),

gust fronts, and bow echoes (including derechoes).

A downburst (Fujita, 1990; Ferrero et al., 2014; Jesson et al., 2013) is an area

of strong wind caused by a downdraft hitting the surface and spreading out hori-

zontally (Figure 2.1). Two mechanisms are primarily responsible for downbursts.

The first is evaporative cooling, which occurs when hydrometeors (particles of

rain, snow, hail, etc.) fall into subsaturated air (air with less than the saturation

water-vapour content) below the cloud base. The hydrometeors evaporate (if

liquid) or sublimate (if ice), which is an endothermic reaction, requiring heat

from the surrounding air. This cools the surrounding air, making it denser and

causing it to sink. The second mechanism is precipitation drag, which occurs

when falling hydrometeors exert a frictional force on the surrounding air, thus

accelerating the air downward. These two mechanisms can occur at the same

time and have additive effects.

Downbursts are generally characterized in two ways: macroburst vs. mi-

croburst and dry vs. wet. A macroburst has a horizontal area > 4 km2, and

a microburst has an area < 4 km2. A wet downburst is accompanied by heavy
1http://www.nssl.noaa.gov/education/svrwx101/wind/types splits damaging

straight-line convective wind into five types: downbursts, microbursts, gust fronts, derechoes,

and haboobs. However, a microburst is a special type of downburst, and a derecho is

a bow echo or series thereof. This section is organized by the general category, rather

than subcategory. Also, haboobs (walls of dust carried along with a gust front) are highly

dependent on local land cover and moisture (i.e., there must be dry, fine soil at the surface),

so they will not be discussed in this document.
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Figure 2.1: Schematic of a downburst. The “outflow front” is the same as the

gust front, or outflow boundary, discussed in Section 2.1. Image from Federal

Aviation Administration (ed. D.C. Beaudette), vectorized by FOX 52, public

domain, https://commons.wikimedia.org/w/index.php?curid=46182311.

precipitation, which occurs when the cloud base is low enough that not all hy-

drometeors evaporate/sublimate before they reach the ground. A dry downburst

occurs with no precipitation, because the cloud base is high enough that all hy-

drometeors evaporate/sublimate in the dry air below the cloud base. (Fujita,

1990) There are intermediate cases between wet and dry downbursts. The main

difference between macrobursts and microbursts, other than their horizontal

area, is their strength and duration2. A macroburst usually lasts for about 30

minutes and may produce winds up to 130 mi h-1 (~110 kt or 60 m s-1), whereas

a microburst usually lasts for about five minutes and may produce winds up to

160 mi h-1 (~140 kt or 70 m s-1). There are no clear differences in strength or

duration between wet and dry downbursts. (Fujita, 1990)

The following environmental conditions are most conducive to downbursts

(Rose, 1996).
2http://www.nssl.noaa.gov/education/svrwx101/wind/types
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1. Absolute static instability. This occurs when the environmental lapse rate

(downward partial derivative of temperature, or −∂T
∂z
) is greater than the

dry adiabatic lapse rate (~9.8 ◦C km-1), which allows the descending air

parcel to remain cooler than the environment all the way to the ground. As

long as the descending parcel is cooler than the environment, it will receive

a negative buoyant force, which will increase its downward velocity.

2. Subsaturated air below the cloud base. Hydrometeors can evaporate/sublimate

only in subsaturated air, so if the air is saturated, one of the two primary

downburst mechanisms is lost.

3. Moist air near the surface. At a given temperature and pressure, moist air

is less dense than dry air. Thus, if the near-surface air is moister, it will

impart an even greater downward acceleration to the descending air parcel

when the two meet.

4. Frozen precipitation above the subsaturated air. If hydrometeors fall into

the subsaturated air as ice particles (e.g., snow, hail, or graupel), they will

remove more heat from the air, because sublimation requires more heat

than evaporation.

A gust front (or “outflow boundary”) (Delanoy and Troxel, 1993) occurs

when strong horizontal winds in a downburst propagate away from the storm,

creating a boundary between evaporatively cooled air in the downburst and

warmer air in the surrounding environment (Figure 2.1). Because the two air

masses have a large temperature difference (and the cooler air mass is usually

drier), they also have a large density difference. The evaporatively cooled air,

which is denser, displaces the surrounding air and forces it upward. This often

creates a shelf cloud along the leading edge of the storm. More importantly,

though, convergence along the gust front causes turbulence and wind shear,

which may be extremely hazardous to aircraft.
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A bow echo (Johns, 1993) is a bow-shaped line of storm cells, usually asso-

ciated with damaging straight-line wind along its leading edge. There are three

steps in the formation of a bow echo.

1. A downburst, produced by a single storm cell, propagates away from the

cell as a gust front (Figure 2.2). The strongest winds along the gust front

are in the middle (near the core of the downburst), which forces the gust

front into a bow shape.

2. Convergence along the gust front leads to new convective development,

which leads to a bow-shaped line of storm cells (Figure 2.3).

3. Divergence at the surface, associated with the downburst and gust front,

is balanced by convergence in the mid-troposphere. Convergence is con-

centrated near the apex of the bow (dashed orange line in Figure 2.4),

where it is fed by a rear-inflow jet (Figure 2.5). The rear-inflow jet de-

scends at the leading edge of the system, which produces more downbursts.

This strengthens the gust front, which strengthens convergence and rising

motion ahead of the gust front. Rising motion ahead of the gust front

balances downward motion behind the gust front (in the rear-inflow jet),

which closes the positive-feedback loop.

Eventually, either (a) the bow echo moves into an unfavourable environment

(insufficient moisture, instability, wind shear, etc.) or (b) the apex pushes out

so far that the system becomes distorted, causing the circulation to break down.

Finally, a derecho is a long-lived bow echo or series thereof, usually associated

with a mesoscale convective system (MCS) (Coniglio et al., 2004). An MCS is

a cluster of storm cells, organized on a scale larger than that of the individual

storm cells but smaller than that of an extratropical cyclone (synoptic-scale low-

pressure system) (Zipser, 1982). Winds in a derecho may reach 130 mi h-1 (~110
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Figure 2.2: Step 1 in the formation of a bow echo. A downburst, produced by a

single storm cell, propagates away as a gust front. Image from

http://www.spc.noaa.gov/misc/AbtDerechos/derechofacts.htm, modified

from illustration by Dennis Cain.
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Figure 2.3: Step 2 in the formation of a bow echo. Convergence along the

bow-shaped gust front leads to new storm initiation. Image from

http://www.spc.noaa.gov/misc/AbtDerechos/derechofacts.htm, modified

from illustration by Dennis Cain.
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Figure 2.4: Step 3 in the formation of a bow echo. Divergence at the surface is

balanced by convergence in the mid-troposphere (near the head of the dashed

orange line). Image from

http://www.spc.noaa.gov/misc/AbtDerechos/derechofacts.htm, modified

from illustration by Dennis Cain.
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Figure 2.5: Vertical cross-section of a mature bow echo. Rising motion ahead

of the gust front (associated with convection) is balanced by downward motion

behind the gust front (in the rear-inflow jet). Image from http://www.meted.

ucar.edu/mesoprim/severe2/print_version/_p_4.3BE-Features.htm.
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kt or 60 m s-1)3. Traditionally, a derecho has also been defined by the following

criteria (Corfidi et al., 2016), where “severe wind” is defined as a gust ≥ 50 kt

or one that produces significant damage. “F1 wind” is defined as a gust ≥ 65 kt

or one that produces damage similar to an F1 tornado.

1. The severe-wind area must have a major axis ≥ 400 km.

2. Individual severe-wind reports must exhibit a non-random pattern. Specifi-

cally, reports must occur in a swath or series thereof (which may correspond

to a bow echo or series thereof).

3. The severe-wind area must contain ≥ 3 reports of F1 wind, separated by

a distance of ≥ 64 km.

4. There may be no more than 3 hours between successive severe-wind reports.

Corfidi et al. (2016) recently proposed the following definition, which is more

restrictive and physically based: “A family of damaging downburst clusters as-

sociated with a forward-propagating, mesoscale convective system (MCS) that,

during part of its existence, displays evidence of one or more sustained bow

echoes with mesoscale vortices and/or rear-inflow jets.” This new definition also

includes the following criteria.

1. The severe-wind area must have a major axis ≥ 650 km and minor axis ≥

100 km along most of the major axis.

2. Severe-wind reports are counted only after preliminary storms (e.g., the

storm cell shown in Figure 2.2, which initiates a bow echo) have organized

themselves into a cold-pool-driven MCS.

Favourable conditions for derechoes are more difficult to discuss, because

they occur in a wide variety of environments. Since derechoes are much longer-

lived and larger-scale than individual downbursts or gust fronts, they may be
3http://www.spc.noaa.gov/misc/AbtDerechos/derechofacts.htm
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strongly influenced by synoptic-scale forcing. Thus, when analyzing derecho en-

vironments, it is common to separate derechoes into categories based on the

amount of synoptic-scale forcing. Coniglio et al. (2004) separated derechoes

into those with weak, moderate, and strong synoptic-scale forcing, based on the

Q-vector divergence, which is a proxy for synoptically forced vertical motion

(Section 5.7.4 of Bluestein, 1992). Beyond the conditions associated with in-

dividual downbursts (discussed earlier), Coniglio et al. (2004) found that the

following conditions are associated with each type of derecho.

1. Weakly and moderately forced derechoes tend to have very high CAPE

(mean of ~3000 J kg-1 for cases analyzed in Coniglio et al., 2004). Strongly

forced derechoes have more moderate CAPE values (mean of ~1400 J kg-1

with many cases < 1000 J kg-1).

2. Strongly forced derechoes tend to have very high low-level shear (mean of

~30 kt from 0-1 km above ground level [AGL]) and moderate low–mid-level

shear (mean of ~46 kt from 0-5 km AGL). Weakly and moderately forced

derechoes tend to have much weaker low-level shear (means of ~13 and

~16 kt from 0-1 km AGL, respectively) but moderate low–mid-level shear

(both with means of ~37 kt from 0-5 km AGL, which is more similar to

the strongly forced category).

3. Strongly forced derechoes tend to have high near-surface relative humidity

(RH) and low RH from the near-surface to mid-troposphere. Specifically,

the median profile has an RH > 80% from 0-1 km AGL and ~40% around

3 km. Meanwhile, weakly and moderately forced derechoes tend to have

moderate near-surface RH (median values > 60% and 70%, respectively,

from 0-1 km AGL) and low RH from the near-surface to mid-troposphere

(minimum of ~40% around 3 km, as for the strongly forced category).
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In summary, strongly forced derechoes tend to have greater low-level shear,

smaller CAPE, and smaller near-surface relative humidity. Weakly and mod-

erately forced derechoes tend to have smaller low-level shear, greater CAPE,

and greater near-surface relative humidity. Not surprisingly, weakly and moder-

ately forced derechoes are more common during the warm season (May-August),

whereas strongly forced derechoes are more common during the cool season

(September-April) (Coniglio et al., 2004).

2.2 Expert Systems in Radar and Convective

Meteorology

Machine learning has been used to post-process radar data and predict thunder-

storm-related phenomena since the early 1980s. The first machine-learning tech-

niques used for this purpose were expert systems, which attempt to explicitly

represent human knowledge in an objective form. Thus, unlike most machine

learning, the goal of expert systems is knowledge representation and deployment,

rather than knowledge discovery. Expert systems are usually encoded as a set

of if-then rules, for which the thresholds may be determined either a priori or

by another machine-learning algorithm.

The expert system developed by Zrnić et al. (1985), called the Build 9.0

Mesocyclone Algorithm (B9MA), was the first mesocyclone-detection algorithm

(MDA) for Next-Generation Radar (NEXRAD) (Crum and Alberty, 1993). NEX-

RAD is a network of ~160 radars in the continental United States (CONUS)

(Figure 2.6). The B9MA is described below, to give the reader a flavour of

expert systems.
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1. Find areas where ∂vr

∂θ
(the azimuthal gradient of radial velocity, or horizon-

tal velocity parallel to the radar beam) is either consistently increasing or

decreasing. These are called “one-dimensional (1-D) shear areas”.

2. For each 1-D shear area, calculate five predictors: start/end azimuth,

start/end radial velocity, and range (distance from radar).

3. Eliminate 1-D shear areas below the low angular-momentum threshold (50

km m s-1).

4. Eliminate 1-D shear areas below the low shear threshold (2 m s-1 km-1).

5. Eliminate 1-D shear areas below the high angular-momentum threshold

(150 km m s-1) and high shear threshold (4 m s-1 km-1).

6. Combine 1-D shear areas into 2-D shear areas.

7. Eliminate 2-D shear areas containing less than six 1-D shear areas.

8. Eliminate asymmetric shear areas (this involves many criteria, discussed

in Section 4c of Zrnić et al., 1985).

The main shortcoming of the B9MA (and many other expert systems) is

that it applies many detection thresholds in series and any object (candidate

mesocyclone) failing one of these thresholds is discarded. This serial approach

was necessary at the time (objects were eliminated in each step, so fewer objects

remained to be processed at each successive step), but it led to many false

negatives and thus a low probability of detection (POD) (Equation 4.22a).

Wieler (1986) developed an expert system to detect “shear areas,” which

include both mesocyclones and other phenomena. This system, called the Meso-

cyclone Tornadic Vortex Signature Detection Algorithm (MTDA), employed a

similar procedure to the B9MA. However, the MTDA had the following advan-

tages.

1. Joined shear areas both vertically and horizontally (into 3-D features),

whereas the B9MA joined areas only horizontally (into 2-D features).
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Figure 2.6: NEXRAD sites in the CONUS. Figure obtained from

https://www.roc.noaa.gov/wsr88d/maps.aspx.
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2. Matched shear areas to storm cells (detected by another algorithm).

3. Detected vortices from the scale of a tornado-vortex signature (TVS) (~100

m) to large mesocyclone (20 km), whereas the B9MA detected only vortices

with a diameter of at least ~2 km.

4. Detected both cyclonic and anticyclonic shear areas, whereas the B9MA

detected only cyclonic shear.

5. Classified shear areas into six types: asymmetric shear, convergence, di-

vergence, couplet, mesocyclone, and TVS.

Also, Campbell and Olson (1987) created an expert system to detect low-

altitude wind-shear hazards, primarily microbursts and gust fronts. They made

their system more robust by (a) using several feature-detection methods, each

with different strengths and weaknesses, and (b) including a confidence factor

for each detected feature, based on the strength of the feature and the quality of

radar data used to identify said feature. Thus, by the late 1980s, expert systems

had become very advanced and were used to detect many thunderstorm-related

hazards.

One of the best-known expert systems in radar meteorology is the National

Severe Storms Laboratory’s mesocyclone-detection algorithm (NSSL MDA)

(Stumpf et al., 1998). This system was also procedurally similar to the B9MA

but made the following improvements.

1. Did not immediately discard 1-D shear segments below a certain strength

threshold.

2. Used much lower (less restrictive) strength thresholds.

3. Checked for vertical and temporal continuity of candidate mesocyclones.

Due to improvements 1 and 2, the NSSL MDA had a much higher POD. How-

ever, it also had a much higher probability of false detection (POFD) (Equation

4.22c). This POFD was greatly reduced in future studies by applying neural nets
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to the NSSL MDA objects (detected mesocyclones) to determine whether or not

they were “significant” (severe-weather-producing) mesocyclones (e.g., Marzban

and Stumpf, 1996, 1998; Marzban, 2000). In convective and radar meteorol-

ogy, expert systems have also been combined with fuzzy logic (Lakshmanan and

Witt, 1997; Pal et al., 2006), genetic algorithms (Lakshmanan, 2000), other ap-

plications of neural nets (Lakshmanan et al., 2010; Lakshmanan et al., 2014),

clustering (fuzzy c-means in Pal et al., 2006; K -means in Lakshmanan et al.,

2010), and random forests (Clark et al., 2015).

2.3 Other Machine Learning in Radar and

Convective Meteorology

Analogue methods have been used in meteorology since at least the early 1910s

(Bowie and Weightman, 1914) and have probably been used informally for much

longer. The main idea behind analogue methods is that, to predict the out-

come (dependent variable) of a new event, one can use the outcomes of previous

events with similar characteristics (predictor variables). For example, to pre-

dict the maximum wind speed produced by a new storm cell, one could look at

the maximum wind speeds of previous storm cells with similar motion vectors,

shapes, radar signatures, etc.

Analogue methods in machine learning can be split into two categories: clus-

tering and nearest-neighbour methods. For a clustering method, previous events

(those in the training set) are grouped into several clusters (often called “pro-

totypes” or “map types” in meteorology). Each event is defined by a predictor

vector ~x. To predict the outcome of a new event ~xnew, the nearest cluster C

is found (e.g., that whose centroid ~xC minimizes the Euclidean distance with

~xnew). Then the outcomes of previous events in cluster C are used to predict
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the outcome of the new event (e.g., by taking the mean or median of all out-

comes in cluster C ). For a nearest-neighbour method, previous events (those in

the training set) are not pre-assigned to clusters. Instead, for a new event ~xnew,

the k nearest neighbours (e.g., the k previous events whose predictor vectors ~x

minimize the Euclidean distance with ~xnew) are found and their outcomes are

used to predict the outcome of the new event.

In radar and convective meteorology, Baldwin et al. (2005) used hierarchical

clustering to classify precipitation areas as convective-linear, convective-cellular,

or stratiform. Gagne et al. (2009) used K -means clustering to segment a radar

image into contiguous precipitation areas. Also, Lakshmanan et al. (2010) and

Lakshmanan et al. (2014) used K -means clustering to segment a map of radar-

echo classifications (either precipitation or non-precipitation) into relatively uni-

form areas.

Linear regression has been used in weather prediction since at least the early

1950s (Malone, 1955). Linear regression predicts the dependent variable y based

on a linear combination of predictor variables xj, using the following equation.

y = β0 + β1x1 + β2x2 + . . .+ βNxN = β0 +
N∑
j=1

βjxj (2.1)

The coefficients βj are learned by a statistical algorithm, usually gradient descent

(Section 4.4.3 of Mitchell, 1997). Logistic regression is similar, except that the

dependent variable is transformed to ln( y
1−y ) (see Figure 4.1). This makes logistic

regression ideal for predicting probabilities, because y is constrained to [0, 1] (see

Section 4.1.1.1).

However, neither linear nor logistic regression have found many uses in radar

and convective meteorology, because relationships between thunderstorm phe-

nomena and other weather variables are highly non-linear. Some exceptions are

Kitzmiller et al. (1995), which used linear regression to forecast the probability

of severe weather (damaging straight-line winds, tornadoes, or hail) for a storm
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cell; Billet et al. (1997), which used linear regression to forecast maximum hail

size, and logistic regression to forecast large-hail probability, from a storm cell;

and Mecikalski et al. (2015), which used logistic regression to forecast the prob-

ability of convective initiation (first appearance of reflectivity ≥ 35 dBZ at the

-10 ◦C temperature level) within a cumulus cloud.

Although the first objective decision-tree-learning method was not developed

until the mid-1980s (Quinlan, 1986), subjective (human-derived) decision trees

have been used in meteorology since at least the mid-1960s (Chisholm et al.,

1968). At each node (Figure 4.4), a binary question is asked for one predictor

variable xj. For each event (defined by a predictor vector ~x), if the answer is

yes, ~x is sent down the right branch; if the answer is no, ~x is sent down the left

branch. This continues until ~x reaches a leaf node n, from which there are no

further branches. Then the outcomes of previous events (those in the training

set) reaching leaf node n are used to predict the outcome of the new event.

Decision trees can be used for either classification or regression (prediction of a

real value, rather than discrete category).

Williams et al. (2008a) used random forests (decision-tree ensembles) to pre-

dict vertically integrated liquid for a storm cell; Williams et al. (2008b) used

random forests to predict four categories (none, light, moderate, and severe) of

turbulence produced by a storm cell; Gagne et al. (2009) used decision trees to

classify precipitation regions into six categories (isolated pulse, isolated strong,

and multicellular storms; and trailing, leading, and parallel stratiform regions);

Williams (2014) used random forests to predict two categories (severe or non-

severe) of turbulence from a storm cell; and Clark et al. (2015) used random

forests to reduce false detections from an expert dryline-identification system.

Spatiotemporal relational probability trees (SRPTs) were developed by Mc-

Govern et al. (2008). There are two main differences between a traditional
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decision tree and an SRPT. First, for a traditional decision tree each event is

represented by a predictor vector ~x, whereas for an SRPT each event is repre-

sented by many interrelated fields and objects. Second, whereas a traditional

decision tree can ask only whether a single predictor xj is above or below a certain

threshold, an SRPT can ask five types of questions for each event (McGovern

et al., 2013). In the following list, an “item” refers to either an object or a

relation between objects.

1. Basic questions (non-spatial and non-temporal). An example is the “exists”

question (does an item of type t exist?).

2. Temporal questions. An example is the temporal-ordering question (do

items in group A occur in a temporal relationship with items in group

B?). The seven types of temporal relationships are “before,” “meets,”

“overlaps,” “equals,” “starts,” “finishes,” and “during”.

3. Field-related questions. An example is the field-divergence question, which

is relevant only for vector fields (is the {minimum, mean, maximum, stan-

dard deviation} divergence of field f ever ≥ v?).

4. Shape-related questions. An example is the primary-shape question, which

can be asked for both 2-D and 3-D objects (e.g., is the primary shape of

field f a rectangular prism, sphere, cylinder, or cone?).

5. Operators, which combine two questions for the same event. An example is

the Boolean-and operator (does the current event answer yes to questions

a and b?).

The advantage of SRPTs is their use of high-level reasoning. Human forecast-

ers are successful because they focus on high-level objects (e.g., cyclones, cold

fronts, warm fronts, drylines, low-level jets, storm cells, mesocyclones, etc.),

their spatiotemporal properties, and the relationships between them. SRPTs

[and ensembles thereof, called spatiotemporal relational random forests (SRRFs)
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(Supinie et al., 2009)] allow this spatiotemporal relational reasoning to be emu-

lated, but unlike expert systems they allow for the discovery of new knowledge,

rather than mere knowledge representation and deployment.

Gagne et al. (2012) used SRRFs to predict the probability of tornadogenesis

for each storm cell, based on surface observations and NWP output; Gagne et al.

(2013) used SRRFs to predict the probability of severe hail at each point in a

grid, at 18–30-hour lead times, based on storm cells produced by an ensemble

of convection-allowing NWP models; McGovern et al. (2014a) used SRRFs for

the same problem as in Gagne et al. (2012) and to predict the probability of

severe aircraft turbulence at each point in a grid; and McGovern et al. (2014b)

used SRRFs to classify low-altitude rotation (a proxy for tornado occurrence)

for modeled storm cells into three categories (weak, moderate, and strong).

In Gagne et al. (2013) the SRRF outperformed traditional random forests,

and in McGovern et al. (2014a) it outperformed a widely used turbulence-

forecasting method called Graphical Turbulence Guidance (GTG), which is based

on logistic regression.

The use of fuzzy logic in meteorology dates back to at least the early 1990s

(Reiter, 1991). The advantage of fuzzy logic is that it accounts for uncertainty

in the forecasting process, which is valuable for a stochastic system. Although

the atmosphere may be regarded as deterministic (above the scale of quantum

physics), there are several reasons to consider it stochastic for the sake of weather

prediction. As mentioned in Chapter 1, NWP models (a) do not solve the

equations of motion exactly and (b) cannot resolve motions at a scale below

their grid spacing; also, (c) our observations of the atmosphere are uncertain

due to instrument error. These factors make fuzzy logic a valid approach for

weather prediction.
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Fuzzy logic is most often used for classification, not regression. In this con-

text, for each predictor variable xj and each class yk, there is a membership

function p(yk | xj), indicating the degree of membership in the kth class for

each value of xj. The form of this membership function (e.g., linear, parabolic,

trapezoidal) is usually determined a priori, but the function has parameters that

may be learned. For example, a linear membership function (Figure 2.7) has the

parameters x(1)
jk and x(2)

jk , which act in the following equation.

p(yk | xj) =



xj−x
(1)
jk

x
(2)
jk
−x(1)

jk

, if xj−x
(1)
jk

x
(2)
jk
−x(1)

jk

∈ [0, 1]

0, if xj−x
(1)
jk

x
(2)
jk
−x(1)

jk

< 0

1, if xj−x
(1)
jk

x
(2)
jk
−x(1)

jk

> 1

(2.2)

To classify a new event with predictor vector ~x, there are three steps.

1. Fuzzification. All membership functions p(yk | xj) are computed.

2. Aggregation. For each class yk, the membership functions are combined

(e.g., averaged) into an aggregate score.

3. Defuzzification4. The class with the highest aggregate score is predicted.

Lakshmanan and Witt (1997) used fuzzy logic to detect bounded weak-echo

regions (BWERs) in storm cells; Lakshmanan (2000) and Pal et al. (2006) used

different algorithms to tune the parameters of the membership functions in Lak-

shmanan and Witt (1997); Adrianto et al. (2009) used fuzzy logic to predict

tornado probability over the next 30 minutes at each point in a grid; and Park

et al. (2009) used fuzzy logic, along with confidence factors (one for each xj)

and discrimination efficiencies (one for each xj and yk), to classify radar echoes

into 10 categories (ground clutter, biological, dry snow, wet snow, ice crystals,

graupel, big drops, rain, heavy rain, and rain/hail).
4To make probabilistic predictions, this step could be replaced with a calibration procedure,

in which the sum of all class probabilities is constrained to equal 1.
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Figure 2.7: Linear fuzzy-logic membership function. xj is a predictor variable,

and yk is the degree of membership in the kth class based on the value of xj.

For the blue curve, x(1)
jk = −3 and x(2)

jk = 4. For the red curve, these values are

opposite.
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The use of feed-forward neural nets (FFNNs) in meteorology dates back to

at least the late 1980s (Key et al., 1989). An FFNN contains multiple layers

of neurons, with connections between neurons in subsequent layers (Figure 4.2).

The first layer is the input layer, to which values of the predictor variables are

fed, and the last is an output layer, which generates predictions. The input and

output layers are separated by one or more internal layers, called “hidden layers”.

Each neuron in the kth layer applies both a linear and non-linear transformation

to outputs from the (k - 1)th layer, so the more layers there are, the more non-

linear are the relationships that can be learned. Thus, the strength of an FFNN

is that it can learn the complex relationships needed to predict thunderstorm-

related phenomena.

Bankert (1994) used an FFNN to classify satellite imagery into 10 cloud

categories (cirrus, cirrocumulus, cirrostratus, altostratus, nimbostratus, stra-

tocumulus, stratus, cumulus, cumulonimbus, and clear); Marzban and Stumpf

(1996) used FFNNs to predict tornado occurrence, and Marzban and Stumpf

(1998) used FFNNs to predict damaging-wind occurrence (either straight-line or

tornadic), for detected mesocyclones from the NSSL MDA; Marzban and Witt

(2001) used FFNNs to predict hail size and category (small, medium, large) for

objects from the NSSL hail-detection algorithm; Anagnostou (2004) used FFNNs

to classify radar echoes as either stratiform or convective precipitation; Laksh-

manan et al. (2010) used two FFNNs in series, and Lakshmanan et al. (2014)

used four FFNNs in parallel, to classify radar echoes as either precipitation or

not; and Manzato (2013) used an FFNN ensemble to predict hail occurrence and

size.
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2.4 Using Machine Learning to Predict

Damaging Straight-line Convective Winds

To our knowledge, four previous studies have used machine learning to predict

damaging straight-line convective winds. Kitzmiller et al. (1995) developed the

Severe Weather Potential (SWP) algorithm for NEXRAD, which predicts the

probability of severe weather (damaging straight-line winds, tornadoes, or hail)

for a storm cell within the next 20 minutes. They used linear regression with five

predictors (where VIL is vertically integrated liquid): VILWGT ([the number of

4-by-4-km boxes in the storm cell with VIL ≥ 10 kg m-2] × [maximum VIL in the

storm cell]), SVG10, SVG15, SVG20, and SVG25 (the number of radar pixels in

the storm cell with VIL ≥ 10, 15, 20, and 25 kg m-2 respectively). The dependent

variable is called the Severe Weather Potential (SWP) and varies from [0, 40] in

the results shown. In general, the SWP may vary over a wider range.

Marzban and Stumpf (1998) applied a feed-forward neural net to mesocyclone

objects from the NSSL MDA, in order to predict the probability of all damaging

winds (both straight-line and tornadic). They used 23 predictor variables, all of

which are radar-derived and listed in Section 4 of Marzban and Stumpf (1996).

They compared two classification schemes (i.e., two ways of combining values

from the FFNN’s output nodes), as well as different numbers of hidden neurons

and sampling distributions of the training data.

Alexiuk et al. (1999) used four algorithms (feed-forward neural nets, fuzzy c-

means clustering, decision trees, and k nearest neighbours) to classify storm cells

into four categories: those that produce damaging straight-line winds, tornadoes,

hail, and heavy rain. They used 22 predictors, all of which are radar-derived and
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listed in their Table 1. For verification data, they used reports from meteorolo-

gists and ground observers. They ran each algorithm separately and found that

fuzzy c-means clustering produced the best results.

Finally, Cintineo et al. (2014) used naïve Bayes to predict the probability of

severe weather (damaging straight-line winds, tornadoes, or hail) for each storm

cell. They used five predictor variables: maximum estimated hail size (MESH),

derived from radar data; most unstable convective available potential energy

(MUCAPE) and effective-layer bulk shear (EBS), derived from the Rapid Refresh

(RAP) model; and ∆εtot (temporal derivative of 11-µm cloud emissivity at the

tropopause) and ∆ice (temporal derivative of cloud-ice fraction, or “glaciation

rate”), derived from satellite data. They used NWS local storm reports, severe-

thunderstorm warnings, and tornado warnings as verification data. However,

they omitted storm cells that produced only straight-line-wind reports, thus de-

emphasizing straight-line wind in favour of tornadoes and hail.

Shortcomings of these studies are listed below.

1. All used only human observations and/or severe-weather warnings as ver-

ification data. Human observations have a large number of false negatives

(because severe weather often occurs in sparsely populated areas and most

people do not report severe weather), and warnings have a large number of

both false negatives and false positives. (See Section 4.3.3 for the formal

definitions of “false positive” and “false negative”.)

2. Kitzmiller et al. (1995), Marzban and Stumpf (1998), and Alexiuk et al.

(1999) used only radar-derived predictor fields. It has been generally ac-

cepted that the quality of machine-learning predictions increases when mul-

tiple data sources are used (e.g., Gagne et al., 2012, 2013; Cintineo et al.,

2014; Williams, 2014; Hwang et al., 2015; Mecikalski et al., 2015).
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3. Kitzmiller et al. (1995) and Cintineo et al. (2014) predicted severe weather

in general, rather than specific phenomena. Marzban and Stumpf (1998)

predicted damaging wind in general, rather than damaging straight-line

wind. Although Alexiuk et al. (1999) specifically predicted damaging

straight-line wind, they had no null cases (storms not associated with any

severe weather). Thus, they predicted only the conditional probability of

damaging straight-line wind, given that the storm produces severe weather.

This would not be very useful in an operational environment.

4. Kitzmiller et al. (1995), Marzban and Stumpf (1998), and Alexiuk et al.

(1999) used single-radar data, which has many quality issues that are al-

leviated by compositing data from nearby radars.

5. Kitzmiller et al. (1995) and Cintineo et al. (2014) used very simple machine-

learning algorithms and did not compare with more advanced algorithms.

6. All used very few predictors (23 at the most).

This study addresses all of the above shortcomings.
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Chapter 3

Data Sources and Processing

3.1 Data Sources

We use three types of data, listed in Table 3.1. Radar images, from the Multi-year

Reanalysis of Remotely Sensed Storms (MYRORSS) (Ortega et al., 2012), and

model soundings, from the Rapid Update Cycle (RUC) (Benjamin et al., 2004)

and North American Regional Reanalysis (NARR) (Mesinger et al., 2006), are

used to create predictors for the “event” (wind gust ≥ 50 kt). Near-surface wind

observations from the Meteorological Assimilation Data Ingest System (MADIS)

(McNitt et al., 2008), Oklahoma Mesonet (McPherson et al., 2007), one-minute

meteorological aerodrome reports (METARs)1, and NWS local storm reports2

are used to determine when and where the event occurred.

3.1.1 Radar Images

In general, radar is used to determine the structural and hydrometeorological

properties of storm cells. A single-polarization radar (the type used to create the

MYRORSS dataset) emits a horizontally polarized beam of microwave radiation
1ftp://ftp.ncdc.noaa.gov/pub/data/asos-onemin/td6406.txt
2Local storm reports are downloaded in .csv files from http://www.spc.noaa.gov/climo/

online.
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Data Type Sources Resolution Time Period

(if applicable)

Radar images MYRORSS 0.01◦ (~1 km), 5

minutes

2000-11 (excluding

2009)

Model sound-

ings

RUC 13 or 20 km, 1

hour

Apr 1994 – Apr

2012

NARR 32 km / 3 hours 1979-present

Near-surface

wind observa-

tions

MADIS variable July 2001 – present

Oklahoma Mesonet variable, 5 min-

utes

1994-present

One-minute

METARs

variable, 1

minute

2000-present

NWS local storm

reports

variable 1955-present

Table 3.1: Summary of datasets. Spatial coverage for the Oklahoma Mesonet

includes only the state of Oklahoma. Spatial coverage for all other datasets

includes the entire continental United States.
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Figure 3.1: Basic radar operation. The radar emits horizontally polarized

waves (along the dashed line pointing outward) and receives scattered waves

from atmospheric particles.

and receives scattered waves from said beam (Figure 3.1). Two fundamental

variables are calculated from the scattered wave field: reflectivity and radial

velocity.

Reflectivity is defined as follows.

z =
∫ ∞

0
D6N(D) dD (3.1)

D is the diameter (mm) of a scattering particle; N(D) is the number concentra-

tion (mm-1 m-3) of particles with diameter D; and z is the radar reflectivity factor

(RRF) (mm6 m-3). Note that a scattering particle is not necessarily a hydrome-

teor (i.e., particle containing atmospheric water vapour). Thus, a hydrometeor-

classification algorithm is applied in MYRORSS (Lakshmanan et al., 2010; Tang

et al., 2011) to eliminate echoes from non-hydrometeors (e.g., birds, insects, and
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topography). Also, in practice, the above equation is discretized and transformed

to decibel scale.

Z = 10 log10(z) = 10 log10

[
K∑
k=1

Dk
6N(Dk)∆D

]
(3.2)

K is the number of diameter bins; Dk is the mean diameter (mm) of the kth bin;

N(Dk) is the number concentration (mm-1 m-3) of hydrometeors in the kth bin;

∆D is the difference (mm) between successive bin centers; and Z is the radar

reflectivity factor in decibel scale (dBZ). Henceforth, following meteorological

convention, I will refer to Z simply as “reflectivity”.

Of all variables in Equation 3.1, only the RRF, which is the sixth moment of

the drop-size distribution (DSD), is measured directly by the radar. The DSD is

simply the number concentration as a function of diameter, or N(D) (Figure 3.2).

A single-polarization radar also measures the third moment of the DSD, which

is Equation 3.1 with D3 instead of D6. By fitting these moments to a canonical

DSD (e.g., the Marshall-Palmer, exponential, or gamma distribution), one can

estimate the full DSD. This procedure, called a “DSD retrieval,” can be used to

estimate properties such as maximum hail size in the storm cell. Maximum hail

size can be used to estimate the updraft speed, which is a good indicator of both

storm longevity (how long the storm will last) and downburst potential (Section

2.1), which makes reflectivity useful for this study.

The equation for radial velocity involves many radiation concepts, including

scattering phase, amplitude, and geometry. Thus, it is outside the scope of this

document. Conceptually, the radial velocity in each pixel is the mean hydrom-

eteor velocity parallel to the radar beam. This is similar, but not identical, to

background wind velocity parallel to the radar beam. Thus, radial velocity can

be used to estimate (a) the raw wind speed; (b) the strength of convergence

or divergence (Figure 3.3), the latter of which may be associated with down-

bursts; and (c) the strength of rotation (Figure 3.4). The strength of rotation
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Figure 3.2: Three canonical drop-size distributions, to which radar

measurements are often fit.
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is a good indicator of storm longevity, because strong rotation tends to organize

the updraft and downdraft into different columns (e.g., in a supercell), which

prevents the downdraft from extinguishing the updraft, thus allowing convection

to continue.

Thus, reflectivity and radial velocity (the two fundamental radar variables)

are both related to horizontal wind speed. However, the relationship with reflec-

tivity is very indirect, and radial velocity can be used to estimate only one wind

component. Another disadvantage, shared by both reflectivity and radial veloc-

ity, is that they are measured at varying heights – sometimes several kilometres

– above the surface. This is because the radar beam has a “tilt angle” above the

surface (Figure 3.1). Even for the lowest tilt angle (0.5◦ for NEXRAD), the beam

reaches a height of 10 m (the standard measurement height for near-surface wind

speed) at a horizontal distance of only 1.1 km from the radar. The beam reaches

a height of 100 m (an order of magnitude beyond the standard measurement

height) at only 10.6 km from the radar.3 Thus, radar measurements can be used

as a predictor, but not a direct indicator, of near-surface winds.

Until now, this section explains why we use radar data to predict near-surface

winds and the shortcomings involved therein. We use MYRORSS specifically be-

cause it is a quality-controlled composite of all NEXRAD radars in the CONUS

(Figure 2.6). MYRORSS is created by the Warning Decision Support System –

Integrated Information (WDSS-II), which is a software package for the analysis

and visualization of remotely sensed (mainly thunderstorm-related) weather data

(Lakshmanan et al., 2007). MYRORSS composites radial velocity (Lakshmanan

et al., 2006) from overlapping radars (i.e., radars with overlapping horizontal

ranges) to obtain two variables: low-level (0–2-km) and mid-level (3–6-km) az-

imuthal shear, which indicate the strength of rotation. MYRORSS composites
3These calculations were made with the first equation at http://www.wdtb.noaa.gov/

tools/misc/beamwidth.
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Figure 3.3: Example of convergence in radar-derived wind field. Convergence is

indicated by a couplet of strong inbound and outbound velocities along the

same azimuth (line pointing radially outward from the radar). For a divergent

wind field, the locations of inbound and outbound velocities would be flipped.

Image obtained from

http://www.meted.ucar.edu/radar/severe_signatures/index.htm.
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Figure 3.4: Example of rotation in radar-derived wind field. Rotation is

indicated by a couplet (just below center of image) of strong inbound and

outbound velocities along the same range ring (green line of constant distance

from the radar). Image obtained from

http://www.meted.ucar.edu/radar/severe_signatures/index.htm.

38



Figure 3.5: Sample radar images. (a) Low-level azimuthal shear; (b) 50-dBZ

echo tops; (c) MESH; (d) -10 ◦C reflectivity; (e) composite reflectivity; (f) VIL.

reflectivity (Lakshmanan et al., 2006) from overlapping radars to obtain another

45 variables. Of these 45 variables, there are two types: single-level and com-

posite. The single-level variables include reflectivity at 35 heights (0, 0.25, 0.5,

0.75, . . . km above ground level) and three temperature levels (-20, -10, and 0
◦C). The composite variables include all others listed in Table 3.2.

We do not use the 35 height-specific reflectivity fields, because (a) we assume

that most of this information is subsumed by the isothermal and composite

variables; (b) this would add 770 predictors to our training and testing data (22

per radar variable, as explained in Section 3.5), which would greatly increase

computational requirements. Figure 3.5 shows examples of six radar variables

in Table 3.2.
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Variables Stats Calculated for Each

Low-level (0–2-km) azimuthal shear 0th percentile (minimum)

Mid-level (3–6-km) azimuthal shear 5th percentile

18-dBZ echo top 25th percentile (1st quartile)

50-dBZ echo top 50th percentile (median)

Max estimated hail size (MESH) 75th percentile (3rd quartile)

-20 ◦C reflectivity 95th percentile

-10 ◦C reflectivity 100th percentile (maximum)

0 ◦C reflectivity Mean (1st moment)

Composite (column-max) reflectivity Standard deviation (related to 2nd

moment)

Lowest-altitude reflectivity Skewness (related to 3rd moment)

Severe-hail index (SHI) Kurtosis (related to 4th moment)

Vertically integrated liquid (VIL)

Table 3.2: Radar statistics. For each variable, each statistic is calculated for all

pixels inside the storm object. This is done for both raw values and gradient

magnitudes.

40



Figure 3.6: Sample sounding. The blue line is the lifting condensation level;

red line is the level of free convection; and grey line is the equilibrium level, all

for the most unstable parcel.

3.1.2 Model Soundings

A sounding is a vertical profile of five atmospheric variables: temperature, hu-

midity, pressure, zonal wind speed (u-wind), and meridional wind speed (v-

wind). See Figure 3.6. Soundings are used to calculate properties of the near-

storm environment (NSE), which is important for determining how storm cells

evolve. We use modeled rather than observed soundings, because observed

soundings are very sparse (less than 100 sites in the CONUS, launching every

12 hours).
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The Rapid Refresh (RAP) model is widely used to create other NSE datasets,

such as the Storm Prediction Center’s mesoanalysis4. However, the RAP was

not available until May 2012, and our training/testing period ends in 2011 (see

Section 3.2). Therefore, we use the RUC model, which is the RAP’s predecessor.

We use only zero-hour analyses (rather than true forecasts), because only zero-

hour analyses are consistently available in the archive for the training/testing

period.

The NARR is our backup model, used only when RUC data are not available.

Since the NARR is a reanalysis (as opposed to a real-time forecasting model like

the RUC), its archive is consistent and complete, which makes it ideal for this

purpose. Again we use only zero-hour analyses, (a) to maintain consistency with

the RUC data and (b) because the NARR does not provide true forecasts. We

could have used many other reanalyses, but the NARR was the most convenient

choice, because we had worked with it extensively in the past. We consider this a

minor decision, since RUC data are missing for only 103 of 20,019 hours needed

for the training/testing period.

3.1.3 Near-surface Wind Observations

At the outset of this project, we considered using remotely sensed data. For

remotely sensed data to be viable, we would need a fine-resolution, high-quality,

and wide-coverage (e.g., several years and a significant portion of the CONUS)

dataset with near-surface wind speeds. To our knowledge, the two closest facsim-

iles are radar-derived wind speeds (determined from radial velocities at overlap-

ping radars, as discussed in Section 3.1.1) and synthetic-aperture radar (SAR)

imagery, which is obtained by satellites. The main problem with radar-derived

wind speeds is that radars measure at varying heights, usually far above the
4http://www.spc.noaa.gov/exper/mesoanalysis
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standard measurement height of 10 m. The main problem with SAR is that

its wind-speed-retrieval method works only above large water bodies. Thus, we

abandoned the idea of using remotely sensed data and decided to use only in

situ observations.

To our knowledge, MADIS is the largest collection of in situ weather obser-

vations in the world. MADIS is split into “data streams,” each with data from a

different type of observing platform. We use all data streams with wind observa-

tions from surface weather stations: cooperative stations, the Climate Reference

Network (CRN), the Historical Climate Network (HCN), five-minute METARs,

hourly METARs, maritime observations, mesonet stations, the New England

Pilot Project (NEPP), standard aviation observations (SAOs), and urbanet sta-

tions. Unfortunately, MADIS does not contain data from the Oklahoma Mesonet

or one-minute METARs. Both datasets contain high-quality observations with

fine temporal resolution (five and one minutes, respectively), so we merge these

with the MADIS dataset.

Finally, due to our need for more severe cases, we merge NWS severe-wind

reports with the first three datasets. The NWS defines severe wind as a gust ≥

50 kt, so we assume that all reports coincide with a gust ≥ 50 kt. Figure 3.7

shows an example of wind observations overlain with radar data.

We assume that all wind observations in the four datasets are straight-line

(non-tornadic). This assumption is justified below.

1. NWS storm reports are split into three categories: straight-line winds,

tornadoes, and hail. Thus, if wind damage were associated with a tornado,

presumably the event would be recorded as a tornado rather than straight-

line wind. We do not include tornado reports in our dataset.
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Figure 3.7: Wind observations overlain with radar data. The colour fill is

composite reflectivity at 230011 UTC Apr 4 2011, and wind barbs show the

maximum gust at each location over the next 90 minutes (230011 UTC Apr 4

. . . 003011 UTC Apr 5 2011). Wind gusts of ≥ 50 kt (orange and red) from due

north are NWS reports. Since NWS reports do not contain a direction, these

are plotted as due north by default.

2. Tornadoes are much less common5 and more intense than damaging straight-

line winds. Thus, very few tornadoes hit weather stations, and they are

likely to destroy the anemometer if they do.

However, we accept that our dataset is probably contaminated by a small number

of tornadic cases.
5http://www.nssl.noaa.gov/education/svrwx101/wind
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3.2 Training and Testing Days

The datasets in Table 3.1 have a common period of July 2001 – December 2011,

excluding 2009 (for which MYRORSS data were not available at processing

time). However, we did not have enough computing power to process the ~3500

days in this period, so we eliminated the following:

1. Years 2001-03, for which MADIS and one-minute METARs (the two largest

wind datasets) have many fewer stations.

2. Days with < 30 NWS severe-wind reports in the CONUS. See Figure 3.8

for the cumulative density function (CDF) of daily severe-wind reports.

820 of 2557 days meet this criterion.

3. Days with > 5 time steps of missing radar data (leads to missing predictor

variables and broken storm tracks). 804 of 820 days satisfy this criterion,

and we use these 804 days for all training and testing.

Using only days with ≥ 30 severe-wind reports (Figure 3.8) ensures a large

number of both positive and negative cases (severe and non-severe-wind-producing

storms, respectively). Clearly, on a day with many severe-wind reports, there

should be many positive cases. However, there should also be many negative

cases, because (a) severe-wind-producing storms are usually confined to a small

area and time period; (b) even in the midst of a severe-wind outbreak, many

storms are weak and do not produce severe winds.

3.3 Storm Detection and Tracking

Storm detection (the outlining of storm objects6) is done by w2segmotionll

(Lakshmanan and Smith, 2010), which is an algorithm in the WDSS-II software
6Henceforth, I will use the terms “storm cell,” “storm object,” and “storm track”. A “storm

cell” will be a single thunderstorm (updraft-downdraft pair), consistent with common usage
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Figure 3.8: CDF of daily severe-wind reports for 2004-08 and 2010-11.

Approximately 38% of days have no severe-wind reports, and approximately

30% reach the threshold (dashed red line) of 30 reports.
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package (introduced in Section 3.1.1). The method used by w2segmotionll is

called extended-watershed image segmentation (Lakshmanan et al., 2009) [an

improvement over the original watershed method developed by Beucher and

Lantuejoul (1979) and Beucher (1982)], which segments the radar image into

locally maximum areas of the target variable (usually one of the reflectivity

fields listed in Table 3.2).

Storm detection involves three input parameters: the target variable, mini-

mum threshold for the target variable, and minimum storm-object area. We use

-10 ◦C reflectivity with a minimum threshold of 30 dBZ, following Saxen (2002)

and colleagues at the Cooperative Institute for Mesoscale Meteorological Studies

(personal correspondence), who used these parameters successfully for lightning

prediction. We use an area threshold of 50 km2, based on subjective map analy-

sis in which we found that this produces the best outline of the reflectivity core.

For example, Figure 3.9 shows storm objects with a minimum area threshold of

25, 50, and 75 km2. The 25-km2 threshold leads to very small objects, which do

not appear to be organized storm cells, and most of these are filtered out by the

50-km2 threshold. Meanwhile, the 75-km2 threshold leads to an oddly shaped

storm cell (just east of 92◦ W, between 30◦ 36’ and 30◦ 48’ N) and filters out

what appears to be a moderate-strength cell (maximum reflectivity of 45 dBZ,

around 31◦ 24’ N and 90◦ 30’ W). Based on this and similar maps, we decided

that 50 km2 is the best compromise.

in meteorology. A “storm object” will be one storm cell at one time step, and a “storm track”

will be a succession of storm objects linked in time (different snapshots of the same storm cell).
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Figure 3.9: Comparison of minimum area thresholds for w2segmotionll: (a)

25, (b) 50, and (c) 75 km2. The colour fill is -10 ◦C reflectivity, and the black

outlines are detected storm objects.
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Storm-tracking is done in two phases: real-time and post-event. Real-time

tracking is done by w2segmotionll, and post-event tracking is done by a MAT-

LAB implementation of w2besttrack (Lakshmanan et al., 2015), which is an-

other WDSS-II algorithm7. The main difference is that, in order to connect a

storm object with a track, w2segmotionll (and real-time algorithms in general)

can use only information from the past, whereas w2besttrack (and post-event

algorithms in general) can use information from both the past and future. This

difference is illustrated in Figure 3.10.

The two algorithms are run sequentially. w2segmotionll creates prelimi-

nary storm tracks, which are updated by w2besttrack. The main advantage of

w2besttrack is that it merges “broken” (falsely truncated) storm tracks, result-

ing in longer tracks on average. This allows storm objects to be linked with wind

observations at greater lead times (Section 3.4), which allows machine-learning

models to predict severe wind at greater lead times.

For example, suppose that a storm track lasts 90 minutes (1800-1930 UTC)

according to w2besttrack but only 15 minutes (1800-1815 UTC) according

to w2segmotionll. Also, suppose that a severe wind gust is linked (by the

procedure in Section 3.4) to the storm object at 1930 UTC (S1930). Using

w2besttrack, this gust would also be linked to the storm object at 1800 UTC

(S1800), because w2besttrack knows that S1800 and S1930 are part of the same

track (different snapshots of the same storm cell). However, using w2segmotionll,

the wind gust would not be linked to S1800, because S1800 and S1930 are not

considered part of the same track. In other words, w2besttrack allows wind

observations to be linked to storm cells with a greater lead time, which allows

machine-learning models to make predictions with a greater lead time.
7Differences between the original WDSS-II code and MATLAB code are discussed at the

end of this section.
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Figure 3.10: Comparison of storm-tracking procedures. When assigning the

storm object at time t0 (green) to a track, w2besttrack (thick black line) looks

at storm objects in both the past (red) and future (blue). w2segmotionll (thin

black line) looks only at storm objects in the past.
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Figure 3.11: Comparison of storm-tracking results for a 24-hour period. Thick

grey lines are tracks created by w2segmotionll; thin multi-coloured lines are

tracks created by w2besttrack.
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The main difference between the original and MATLAB versions of

w2besttrack is that the MATLAB version is more memory-efficient8, which

allows more data (i.e., more preliminary tracks from w2segmotionll) to be

processed at the same time. This is important, because the training/testing

period (Section 3.2) contains many sets of consecutive days, which must be

processed at the same time. If consecutive days were not processed at the same

time, storm tracks would be falsely truncated at the end of each day9.

However, tracks are still falsely truncated at the end of each consecutive

period (set of consecutive days). The only way to fix this problem would be to

run w2segmotionll and w2besttrack for 90 minutes (the maximum lead time)

after each consecutive period. However, this would take weeks of computing

time, and we did not identify the issue until recently. Instead, when labeling

storm objects (to indicate which ones are responsible for damaging straight-line

wind) (Section 3.6), we ignore objects near the end of a consecutive tracking

period.
8Data are continually swapped between random-access memory (RAM) and disk. When

processing storm tracks from day n, a one-day buffer (tracks from days n - 1 and n + 1) is

stored in RAM. All other data, including intermediate results, are cleared from RAM and

stored on disk. The one-day buffer is sufficient, because storm cells never last longer than 24

hours.
9Tracks would also be falsely truncated at the beginning of each day. However, for each

storm object we predict only winds in the future (at positive lead times), not in the past. Also,

we do not use any data from the storm cell’s past to create predictors, except for the speed

of storm motion (see Section 3.5). Thus, we are not concerned with false truncation at the

beginning of the day.
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3.4 Linking Wind Observations to Storm Cells

The goal of this procedure is to causally attribute wind observations to storm

cells. The procedure is described below for each wind observation W and buffer

distance d (0, 5, or 10 km).

1. If W does not coincide with a radar-scan time, interpolate storm objects

along their respective tracks to the time of W (tW). Storm objects are in-

terpolated as a whole – i.e., their bounding polygons are simply advected,

so their shapes do not change. Storm objects are interpolated from the

nearest radar-scan time, so that interpolated polygons are most similar to

the actual polygons that existed at tW. This is important, because wind

observations are linked to the nearest polygon edge, not to the nearest

centroid.

2. Find the storm object with the nearest polygon edge. Let this object be S

and the corresponding track be S*.

3. If the nearest edge of S is within buffer distance d, link W to all storm

objects in track S*. Otherwise, do not link W at all.

Sample output is shown in Figure 3.12. In step 3, for each wind observation

linked to a storm cell, this information is shared across all storm objects in the

track. Linkages created by the above procedure are exploited in Section 3.6,

where a label is calculated for each storm object (either severe-wind-producing

or not, over a given buffer distance and lead-time window).

3.5 Calculation of Predictors

Four types of predictors are calculated for each storm object: radar statistics,

storm motion, shape parameters, and sounding parameters.
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Figure 3.12: Sample output for linkage. The green polygon is the first, and red

polygon is the last, storm object in the track. The black line is the track itself

(trajectory formed by the centroids of all storm objects). The purple diamonds

are wind observations linked to the storm cell at a buffer distance of 10 km.
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First, 11 statistics are calculated for each of the 12 radar variables (see Table

3.2), using only values inside the storm object10. In other words, the storm object

is used as a “cookie-cutter,” to extract only the region of interest (Figure 3.13).

Then the gradient field (consisting of first-order spatial differences) is calculated

for each of the 12 variables, and the same 11 statistics are calculated for gradient

magnitudes inside the storm object.

Second, storm motion (speed and direction) is computed from tracks pro-

duced by w2besttrack. For the first storm object in the track (S1), motion is

estimated by a first-order forward difference (position of S2− position of S1
time of S2− time of S1

); for the last

storm object in the track (Send), motion is estimated by a first-order backward

difference (position of Send− position of Send−1
time of Send− time of Send−1

); for all other objects in the track (Sk),

motion is estimated by a first-order centered difference ( pstn of Sk+1−pstn of Sk−1
time of Sk+1− time of Sk−1

).

Third, shape parameters are listed below.

1. Area: The areal extent (e.g., 125 km2) of the bounding polygon.

2. Orientation: The orientation of the best-fit ellipse for the bounding poly-

gon. This angle is measured counterclockwise from the positive x-axis (due

east) to the major axis and may vary from [0, 180)◦.

3. Eccentricity: The eccentricity of the best-fit ellipse.

4. Solidity: Proportion of pixels in the bounding polygon that are also in its

convex hull.
10For low-level and mid-level azimuthal shear, values in the storm object are dilated, because

strong rotation (e.g., associated with mesocyclones) often occurs outside of the reflectivity core

(which the storm object is meant to outline). Specifically, at each pixel (i, j), both the 10th

and 90th percentiles (p10 and p90) of azimuthal shear are taken from a 5-by-5 window centered

on (i, j). Then the percentile with the greatest absolute value (either p10 or p90) replaces

the value at (i, j). Considering both p10 and p90 ensures that areas of both positive and

negative shear are captured. This procedure is carried out independently for both low-level

and mid-level azimuthal shear.
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Figure 3.13: The red polygon is the raw, and blue polygon is the smoothed,

version of the storm object. The grey dots are radar pixels inside the raw

storm object. These pixels are used to calculate radar statistics.
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5. Extent: Proportion of pixels in the bounding polygon that are also in its

smallest bounding rectangle.

6. Curvature: Mean absolute curvature over all vertices of the bounding poly-

gon.

7. Bending energy: Sum of squared curvatures (over all vertices of the bound-

ing polygon), divided by perimeter.

8. Compactness: Squared perimeter, divided by 4π times the area.

Curvature, bending energy, and compactness are based on the smoothed

polygon; all other parameters are based on the raw polygon (Figure 3.13). This

is because 90◦ angles in the raw polygon (which is simply an outline of all radar

pixels in the storm object) lead to unrealistically large curvature and perimeter

values. We use smoothing via iterative averaging (SIA) (Mansouryar and Heday-

ati, 2012), with five iterations and a two-vertex radius of influence. We exper-

imented with other values and found (subjectively) that these are the smallest

values required to produce a realistic (not obviously pixelated) polygon. Thus,

any further smoothing would have been unnecessary and might have removed

important shape characteristics.

Fourth, the RUC sounding is interpolated to the time and centroid of the

storm object. Specifically, the following variables are interpolated independently

at each pressure level (Table 3.3): temperature, relative humidity, geopotential

height, u-wind, and v-wind. The near-surface version of each variable is also

interpolated. Linear temporal interpolation is done first (to the time of the

radar scan), and then bicubic spatial interpolation is done (to the centroid of

the storm object at said time). We would have preferred a more sophisticated

temporal method, such as cubic splines, but this increased computing time for

interpolation approximately tenfold, which was unacceptable.
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Model Pressure Variables at Each Near-surface

Levels Pressure Level Variables

RUC [100, 1000] mb Temperature 2-m temperature

in 25-mb intervals Relative humidity 2-m relative humidity

Geopotential height Surface pressure

u-wind 10-m u-wind

v-wind 10-m v-wind

NARR [100, 300] mb Temperature 2-m temperature

in 25-mb intervals Specific humidity 2-m specific humidity

[350, 700] mb Geopotential height Surface pressure

in 50-mb intervals u-wind 10-m u-wind

[725, 1000] mb v-wind 10-m v-wind

in 25-mb intervals

Table 3.3: Models used to create soundings. 2-m and 10-m stand for 2-metre

and 10-metre, respectively.

If RUC data are missing for either the previous or next hour, soundings

are created with NARR data, instead. All interpolation methods are the same,

except that the NARR has a different moisture variable (specific humidity) and

different pressure levels (Table 3.3).

For each storm object, we use the SHARPpy software (Halbert et al., 2015)

to calculate the 97 parameters listed in Table 3.4. For all parameters involving

storm motion [except those based on a “left-mover” or “right-mover,” which use

Bunkers et al. (2000) motion estimates], we use the first-order motion estimate

calculated from w2besttrack, as described above.

All vector quantities (e.g., storm motion, wind vectors, wind-shear vectors)

are decomposed into magnitude, sine, and cosine, so that values scale linearly
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for learning. Decomposing into magnitude and direction would have introduced

a circular variable, which most learning algorithms are unable to handle. Also,

decomposing into the x- and y-components would have de-emphasized the im-

portance of the overall magnitude. The only exception to this procedure is for

orientation. Although orientation is a vector quantity, it is a unit vector (sim-

ply pointing in a certain direction), which means that its magnitude is always

1.0. Thus, we decompose orientation into only sine and cosine. After decompos-

ing vectors, there are 431 predictor variables: 264 radar statistics; magnitude,

sine, and cosine of the motion vector; 9 shape parameters; and 155 sounding

parameters.

We also considered using temporal changes of some predictors to create new

predictors. For the original predictor xj, the temporal predictor would be a first-

order backward difference. For a storm object at time tk, this would be
(xj for S at tk)−(xj for S at tk−1)

tk−tk−1
. However, we decided against this, because our mod-

els are designed for use in a real-time forecasting environment (Section 6.3). In

a real-time environment, only real-time storm tracks (from w2segmotionll) are

available, which tend to be very short (Figure 3.11). Thus, many storm objects

(S at tk) are the first in their respective tracks, which means that they have no

predecessor (S at tk−1). Temporal variables could not be calculated for these

objects.

Variable Description of Variable Units Vector?

brn Bulk Richardson number

(BRN)

None

brnDenom BRN denominator m2 s-2

brnShear BRN shear term m s-1 Yes

capStrength Cap strength K

Continued on next page
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Table 3.4 – continued from previous page

Variable Description of Variable Units Vector?

cape Convective available potential

energy (CAPE)

J kg-1

cape3km CAPE from 0-3 km above

ground level (AGL)

J kg-1

cape6km CAPE from 0-6 km AGL J kg-1

capeFreezing CAPE from surface – freezing

level

J kg-1

cin Convective inhibition J kg-1

convectiveTemp Convective temperature K

critAngle Critical angle ◦

crossTotals Cross-totals index K

dcape Downdraft CAPE J kg-1

dcp Derecho composite parameter None

effBwd Wind difference over effective

bulk layer (EBL)

m s-1 Yes

effLayerBottom Effective-layer bottom m

effLayerDepth Effective-layer depth m

effLayerTop Effective-layer top m

effShear Effective-layer shear m s-1 Yes

ehi1km Energy helicity index (EHI)

from 0-1 km AGL

J kg-1

ehi3km EHI from 0-3 km AGL J kg-1

ehiLeft Effective-layer EHI for left-

mover

J kg-1

Continued on next page
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Table 3.4 – continued from previous page

Variable Description of Variable Units Vector?

ehiRight Effective-layer EHI for right-

mover

J kg-1

elHeight Height AGL of equilibrium

level

m

esp Enhanced stretching potential None

fosberg Fosberg fire-weather index None

height0C Height AGL of 0 ◦C isotherm m

height-10C Height AGL of -10 ◦C isotherm m

height-20C Height AGL of -20 ◦C isotherm m

height-30C Height AGL of -30 ◦C isotherm m

kIndex K-index K

lapseRate3km Lapse rate from 0-3 km AGL K km-1

lapseRate3-6km Lapse rate from 3-6 km AGL K km-1

lapseRate700-500mb Lapse rate from 700-500 mb K km-1

lapseRate850-500mb Lapse rate from 850-500 mb K km-1

lclHeight Height AGL of lifting conden-

sation level

m

lfcHeight Height AGL of level of free

convection

m

lhp Large-hail parameter None

li300mb Lifted index from surface – 300

mb

K

li500mb Lifted index from surface – 500

mb

K

Continued on next page
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Table 3.4 – continued from previous page

Variable Description of Variable Units Vector?

liMax Max lifted index in column

(surface – any level)

K

maxWindPbl Max wind in planetary bound-

ary layer (PBL)

m s-1 Yes

mburst Microburst index None

meanEffBulkWind Mean EBL wind m s-1 Yes

meanEffWind Mean effective-layer wind m s-1 Yes

meanMixr100mb Mean mixing ratio in first 100

mb AGL

g kg-1

meanRh1km Mean relative humidity (RH)

from 0-1 km AGL

%

meanRh150mb Mean RH from 0-150 mb AGL %

meanRh150-350mb Mean RH from 150-350 mb

AGL

%

meanRhPbl Mean RH in PBL %

meanWind1km Mean wind from 0-1 km AGL m s-1 Yes

meanWind3km Mean wind from 0-3 km AGL m s-1 Yes

meanWind6km Mean wind from 0-6 km AGL m s-1 Yes

meanWind8km Mean wind from 0-8 km AGL m s-1 Yes

meanWindLclEl Mean wind from lifting con-

densation level – equilibrium

level (LCL-EL)

m s-1 Yes

meanWindPbl Mean wind in PBL m s-1 Yes

minBuoyancy Minimum buoyancy in column K

Continued on next page
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Table 3.4 – continued from previous page

Variable Description of Variable Units Vector?

mmp Mesoscale convective system

(MCS) maintenance probabil-

ity

%

mplHeight Height AGL of max parcel

level

m

pblDepth Depth of PBL m

pw Precipitable water mm

rhSurface Surface RH %

scpLeft Supercell composite parameter

(SCP) for left-mover

None

scpRight SCP for right-mover None

shear1km Wind shear from 0-1 km AGL m s-1 Yes

shear3km Wind shear from 0-3 km AGL m s-1 Yes

shear6km Wind shear from 0-6 km AGL m s-1 Yes

shear8km Wind shear from 0-8 km AGL m s-1 Yes

shear9km Wind shear from 0-9 km AGL m s-1 Yes

shearLclEl Wind shear from LCL-EL m s-1 Yes

sherb Severe hazards in environ-

ments with reduced buoyancy

(SHERB) parameter

None

ship Significant-hail parameter None

sigSevere Significant-severe parameter None

srh1km Storm-relative helicity (SRH)

from 0-1 km AGL

J kg-1

Continued on next page
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Table 3.4 – continued from previous page

Variable Description of Variable Units Vector?

srh3km SRH from 0-3 km AGL J kg-1

srhLeft Effective-layer SRH for left-

mover

J kg-1

srhRight Effective-layer SRH for right-

mover

J kg-1

srw1km Storm-relative wind (SRW)

from 0-1 km AGL

m s-1 Yes

srw2km SRW from 0-2 km AGL m s-1 Yes

srw3km SRW from 0-3 km AGL m s-1 Yes

srw4-5km SRW from 4-5 km AGL m s-1 Yes

srw4-6km SRW from 4-6 km AGL m s-1 Yes

srw6km SRW from 0-6 km AGL m s-1 Yes

srw8km SRW from 0-8 km AGL m s-1 Yes

srw9-11km SRW from 9-11 km AGL m s-1 Yes

srwBulk Mean SRW in EBL m s-1 Yes

srwEff Mean effective-layer SRW m s-1 Yes

srwLclEl Mean SRW from LCL-EL m s-1 Yes

stpEff Significant-tornado parameter

(STP) for effective layer

None

stpFixed STP for fixed layer None

sweat SWEAT index None

thetaeDiff Difference between min and

max equivalent potential tem-

perature (θe) from 0-3 km AGL

K

Continued on next page
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Table 3.4 – continued from previous page

Variable Description of Variable Units Vector?

thetaeIndex θe-index K

totalTotals Total-totals index K

updraftTilt Updraft tilt ◦

verticalTotals Vertical-totals index K

wdi Wind-damage index None

Table 3.4: Sounding parameters.

3.6 Calculation of Labels

The storm object is labeled for each buffer distance (0, 5, and 10 km) and lead-

time window ([0, 15]; [15, 30]; [30, 45]; [45, 60]; and [60, 90] minutes). This label

(either 0 or 1) indicates whether or not the storm is responsible for damaging

straight-line wind and is used as the predictand (dependent variable) for machine

learning.

The labeling procedure is described by Algorithm 3.1, where the “end of

consecutive period” criterion ensures that labels are not affected by breaks in

storm-tracking (see Section 3.3). Sample output is shown in Figure 3.14.

3.7 Choice of Buffer Distances and Lead

Times

This section justifies the choice to make separate forecasts for each buffer dis-

tance and lead-time window. Primarily, we assume that predictor-predictand
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Figure 3.14: Labeling of a storm object for each buffer distance and lead-time

window. Buffer distance increases from top to bottom: 0 km in panels (a)-(e),

5 km in (f)-(j), and 10 km in (k)-(o). Lead time increases from left to right:

[0, 15] minutes in panels (a), (f), (k); [15, 30] minutes in panels (b), (g), (l);

[30, 45] minutes in panels (c), (h), (m); [45, 60] minutes in panels (d), (i), (n);

and [60, 90] minutes in panels (e), (j), (o). The dark green polygon is the storm

object at time t0, which is to be labeled. The light green fill is the buffered area

covered by distance d around all storm objects in the same track from times

[t0 + ∆tmin, t0 + ∆tmax], where ∆tmin and ∆tmax are the minimum and

maximum lead times. Red diamonds are severe wind gusts (≥ 50 kt); blue

diamonds are non-severe. For each panel, if there is at least one red diamond in

the buffered area, the storm object is labeled 1; otherwise, it is labeled 0.
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Algorithm 3.1: label_storm_object
Input: d = buffer distance; [∆tmin, ∆tmax] = lead-time window; S = storm

object

Output: label

if S is linked to wind gust ≥ 50 kt within buffer distance d and lead-time

window [∆tmin, ∆tmax] then
label = 1;

else

if S occurs within tmax of end of consecutive period then
label = null;

else
label = 0;

end

end

relationships change with buffer distance and lead time. For example, if a storm

cell produces severe wind at t0 + 90 minutes, it should have certain features at t0

that foretell its longevity. If a storm cell produces severe wind at t0 + 5 minutes,

it need not have such features.

Also, note that the lead-time windows ([0, 15]; [15, 30]; [30, 45]; [45, 60]; and

[60, 90] minutes) are disjoint but the spatial buffers are overlapping. As shown

in Figure 3.14, the 0-km buffer includes all points inside the storm object; the

5-km buffer includes all points inside and within 5 km of the storm object; and

the 10-km buffer includes all points inside and within 10 km of the storm object.

In other words, the 5-km buffer includes the 0-km buffer and the 10-km buffer

includes the 5-km buffer. In order to fully separate the predictor-predictand

relationships at different spatial scales, these buffers should have been made

disjoint, as shown in Figure 3.15.
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Figure 3.15: Disjoint spatial buffers around a storm object.
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Figure 3.16: Sample forecast (graph at left) for one storm object from the 2016

SFE.

However, for the Spring Forecasting Experiment, forecasts were shown in the

Probabilistic Hazard Information (PHI) tool (described in Section 6.3). The PHI

tool can show probability-time graphs (e.g., Figure 3.16), but it cannot display

spatial buffers around the storm object. In other words, PHI allows temporal

forecasts to be composited in a visually intuitive way, but it does not do the

same for spatial forecasts. Thus, if we had used disjoint spatial buffers (Figure

3.15), users would have been forced to imagine polygons with holes – rather

than filled polygons, which are much easier to visualize.
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Chapter 4

Machine-learning Methods

4.1 Algorithms

This section will discuss two types of algorithms: those used to create the base

model and those used for probability calibration. Probability calibration is nec-

essary because (a) most base models generate poorly calibrated probabilities

(Niculescu-Mizil and Caruana, 2005) and (b) the base model is trained on a

uniform distribution of maximum storm-object winds, which is very unlike the

population distribution. For more on sampling techniques, see Section 4.2.

4.1.1 Base Models

4.1.1.1 Logistic Regression

Logistic regression (LR) (Walker and Duncan, 1967) is similar to linear regres-

sion, except that it fits a logit curve to the training data, rather than a straight

line. The logit curve is described by the following equation (see Figure 4.1).

fi =
exp(−β0 −

N∑
j=1

βjxij)

1 + exp(−β0 −
N∑
j=1

βjxij)
= e

(−β0−
N∑

j=1
βjxij)

1 + e
(−β0−

N∑
j=1

βjxij)
(4.1)

70



Figure 4.1: The logit curve is plotted as e−x

1+e−x . The logistic curve is plotted as
1

1+e−x .

fi is the forecast probability of label = 1 for the ith storm object; xij is the

value of the jth predictor for the ith storm object; N is the number of predictors

(431); β0 is the bias term; and βj is the coefficient for the jth predictor. As the

exponent r → −∞, er → 0 and fi → 0. As the exponent r → +∞, er →∞ and

fi → 1. Thus, fi is bounded by [0, 1], which is analogous to a true probability.

This is why LR is so often used for binary classification.

During training, gradient descent (Section 4.4.3 of Mitchell, 1997) is used

to minimize the model deviance. In other words, the model deviance, defined

below, is the “objective function”.

D = − 1
M

M∑
i=1

[yi log2(fi) + (1− yi) log2(1− fi)] (4.2)
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yi is the label for the ith storm object; fi has the same meaning as in Equation

4.1; and M is the number of storm objects in the training set.

Unfortunately, LR is not well suited for problems with a large number of

predictor variables. This is because LR does not perform variable selection,

so it usually includes many unimportant variables (i.e., those that are weakly

correlated with the predictand or redundant with other predictor variables).

Thus, we use LR for only two purposes: (a) as a baseline method, against which

to compare more sophisticated methods, and (b) as a base model for sequential

forward selection (Section 5.1.1).

4.1.1.2 Logistic Regression with an Elastic Net

Logistic regression with an elastic net (Zou and Hastie, 2005) (LREN) is similar

to basic LR, except that the objective function is different. LREN uses gradient

descent to minimize the “penalty,” defined below.

P = D + λ
N∑
j=1

[1
2(1− α)βj2 + α|βj|

]
(4.3)

D, M, and βj have the same meanings as in Equations 4.1 and 4.2. λ is the

regularization parameter, and α is the elastic-net parameter. For greater λ-

values, fewer non-zero coefficients are produced and fewer variables are admitted

into the model. For smaller λ-values, the opposite is true. This allows LREN

to perform variable selection, unlike basic LR. Meanwhile, for greater α-values,

the L1-penalty is weighted more heavily; for smaller α-values, the L2-penalty

is weighted more heavily. The L1- and L2-penalties are 1
2(1 − α)βj2 and α|βj|,

respectively. In the limit of α = 1, LREN simplifies to lasso regression; for α = 0,

LREN simplifies to ridge regression. Thus, an “elastic net” is simply a weighted

combination of lasso and ridge regression.

LREN usually outperforms basic LR, because it eliminates unimportant vari-

ables.
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4.1.1.3 Feed-forward Neural Nets

A feed-forward neural net (FFNN) (Haykin, 2001) consists of several layers of

neurons, with connections between neurons in adjacent layers1. Usually the

network is fully connected, which means that each neuron in the kth is connected

to all neurons in the (k - 1)th and (k + 1)th layers. The simplest FFNN has three

layers: an input layer, hidden layer, and output layer. In general FFNNs can

have multiple hidden layers, but there is almost always one input layer and

one output layer. More hidden layers allow an FFNN to learn more complex

relationships between the predictors and predictand. However, runtime and

memory requirements increase sharply with the number of layers, so in practice

most studies use only a few hidden layers.

Each neuron has three properties: its weighted connections to other neurons

(both forward, towards the output layer, and backwards, towards the input

layer); an input function, which transforms the neuron’s inputs into a scalar;

and an activation function, which transforms this scalar into an output. The

input function is usually a linear transformation, defined below.

aj
(k+1) = w0j

(k) +
N(k)∑
i=1

wij
(k)zi

(k) (4.4)

aj
(k+1) is the result of the input function, sometimes called the “activation,” for

the jth neuron in the (k + 1)th layer; wij(k) is the weight for the connection from

the ith neuron in the kth layer to the jth neuron in the (k + 1)th layer; zi(k) is the

output from the ith neuron in the kth layer; and N (k) is the number of neurons

in the kth layer. For the input layer, change zi(k) to xi, the ith predictor variable,

and N (k) to N = 431, the number of predictor variables.
1A neural net may also have “shortcut connections,” between neurons in non-adjacent

layers, in which case it is called a cascade-forward neural net. See Figure 4.2. However, this

greatly increases the number of connections, which greatly increases runtime and memory

requirements, so we use only FFNN.
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Figure 4.2: Schematic of an FFNN. In the first column, each blue ellipse is a

predictor value and each red line connects a predictor value to an input neuron.

In all subsequent columns, each blue ellipse is a neuron and each red line

connects neurons in adjacent layers. Each red line is associated with a weight.

Black (grammatical) ellipses indicate that there may be arbitrarily many

predictors or neurons in each layer.
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For some FFNNs (including those created by MATLAB’s patternnet2), the

input function for the input layer is as follows.

aj
(1) = xj (4.5)

In other words, the input for the jth input neuron is simply the value of the jth

predictor variable. In this case the input layer has no bias neuron, so there is no

a0
(1).

There are many different activation functions. We use tansig for the hidden

layers and softmax for the output layer (Figure 4.3), both of which are defaults

in patternnet.

tansig(aj(k+1)) = 2
1 + exp(−2aj(k+1)) − 1 = 2

1 + e(−2aj
(k+1)) − 1 (4.6a)

softmax(aj(k+1)) = exp(aj(k+1))
N(k)∑
p=1

exp(ap(k+1))
= e(aj

(k+1))

N(k)∑
p=1

e(ap
(k+1))

(4.6b)

All variables are the same as in Equation 4.4. By default, patternnet sets the

number of neurons in the output layer to the number of classes for the predic-

tand. Since we consider only binary classification, the output layer always has

two neurons. The result of Equation 4.6b for the first neuron is the forecast

probability of label = 0; the result for the second neuron is the forecast prob-

ability of label = 1. Like the output for logistic regression (Equation 4.1), the

result of Equation 4.6b is bounded by [0, 1], which permits this interpretation.

During training, the weights wij(k) are learned by gradient descent with back-

propagation (Chapter 4 of Mitchell, 1997). For classification problems, the objec-

tive function (to be minimized by gradient descent) is usually deviance (Equation

4.2). With enough hidden layers, FFNNs usually outperform traditional methods

such as LR and LREN, because they can model more complex (i.e., non-linear)

relationships.
2http://www.mathworks.com/help/nnet/ref/patternnet.html
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Figure 4.3: The tansig curve is plotted as 2
1+exp(−2x) − 1. The softmax curve is

plotted as exp(x)
K∑

k=1
exp(xk)

, where K is the number of x-coordinates in the graph, and

then scaled to [0, 1].
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Figure 4.4: Schematic of a decision tree. At each branch node (black ellipse), a

binary question is asked for one of the predictors xj. Examples for which the

answer is “yes,” are sent down the right branch (green). Examples for which

the answer is “no,” are sent down the left branch (red). Each example

eventually reaches a leaf node (black rectangle), where it is assigned a forecast

f based on training examples that reached the same leaf node. This tree is only

an illustrative example, not one that we actually trained.

4.1.1.4 Decision Trees

A decision tree (DT) (Chapter 3 of Mitchell, 1997) consists of several layers of

nodes, where each node splits training examples into two subsets, based on a

binary question. See Figure 4.4. Thus, each node is connected to one parent (in

the layer above) and two children (in the layer below). The only exceptions are

the root node, which has no parents, and the leaf nodes, which have no children.

The DT learning procedure is given in Algorithm 4.1.
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Basically, each node n receives a subset of training examples (except for the

root node, which receives all training examples), each consisting of N predictor

values and a label. Then the node loops over all possible values xjk of each

predictor variable xj (continuous variables are discretized) and determines the

best split point, which is the {xj, xjk} pair leading to the greatest information

gain (Equations 4.7). Then all examples (in the subset at node n) with xj < xjk

are sent to the left child, and all examples with xj ≥ xjk are sent to the right

child. The left and right children are new nodes, which makes the function

recursive. The stopping criteria (“base cases” in recursion terminology) are as

follows.

1. The tree has reached some maximum depth.

2. The number of examples at node n has reached some minimum value.

3. All examples at node n have the same label.

The maximum depth and minimum number of examples are specified by

the user. These parameters help to prevent overfitting. Without them, the tree

would be grown until all leaf nodes are pure (i.e., all leaf nodes contain examples

with only one label).

For binary classification, information gain is defined as follows.

G = I(M1

M
)− Mleft

M
I(M1,left

Mleft

)− Mright

M
I(M1,right

Mright

) (4.7a)

I(p) = − [p log2(p) + (1− p) log2(1− p)] (4.7b)

G is the information gain, and I is the information function. M, M1, Mleft, and

M1, left are – respectively – the total number of examples, number of examples

with label = 1, number sent to the left child, and number sent to the left child

with label = 1. From this one can easily infer what Mright and M1, right are. Thus,

in Equation 4.7b, p is the proportion of examples with label = 1. By maximizing
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information gain, the DT algorithm essentially maximizes the purity of each node

(the difference between proportions of label = 0 and label = 1).

When a new example is passed through the decision tree, it will end up at

a certain leaf node n*. There are two ways to predict the label for this new

example.

1. Deterministic voting. The predicted label is the mode of labels for all

training examples passed to node n*.

2. Probabilistic voting. The predicted probability of label = 1 is the propor-

tion of training examples passed to node n* with label = 1.

Decision trees have three major advantages. One is that they perform auto-

mated variable selection (by selecting the best split point at each node), which

allows them to handle a large number of predictor variables. Second, they are

easy to interpret, which is important for end users of machine-learning mod-

els. Third, they can learn complex relationships between the predictors and

predictand.

Decision trees can learn complex relationships because, unlike the other al-

gorithms described heretofore, they are not restricted to linear transformations

of the training data. Although logistic regression appears non-linear, the logit

function can be expressed as ln( fi

1−fi
) = −β0 −

N∑
j=1

βjxij, so it is linear in the

space formed by fi

1−fi
and the predictors xj. The same is true for LREN, which is

simply logistic regression with a different objective function. Also, under the in-

put function defined in Equation 4.4, each layer of an FFNN is essentially linear

(the activation functions in Equations 4.6 are linear in logarithmic space), so an

FFNN is essentially a series of linear functions. Thus, decision trees are the first

algorithm described heretofore that completely dispense with linear transforma-

tions. This is important, because relationships between meteorological variables

are highly non-linear.
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The main disadvantage of decision trees is that they are unstable, which

makes them prone to overfitting. For example, suppose that A and B are storm

objects with the exact same properties, except that A has 1499 J kg-1 of convec-

tive available potential energy (CAPE) and B has 1501 J kg-1 of CAPE. They

both have a maximum reflectivity of 60 dBZ and downdraft CAPE of 1200 J

kg-1. If the decision tree in Figure 4.4 were applied to both storm objects, it

would forecast f = 0.05 for object A and f = 0.6 for object B. In other words, it

would forecast a 5% probability of severe wind for object A and 60% probability

for object B, even though the two storm objects are essentially the same.

In general, due to the instability of decision trees, they may overfit noise in

the training data, which prevents them from generalizing well to new datasets.
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Algorithm 4.1: split_node: Used to grow decision tree.
Input: examples = training examples, each with N predictors and a label

predictors = list of N predictors; minExamples = min # examples at node

currentDepth = current depth of tree; maxDepth = maximum depth of tree

Output: tree

// Create new tree and check stopping criteria.

tree = new tree, consisting only of root node;

if length(examples) < minExamples ∪ all examples have same label ∪

currentDepth = maxDepth then
return tree;

end

// Find best split point (the one with max info gain).

maxGain = -∞;

foreach predictor xj do

foreach possible value xjk do
thisGain = gain caused by splitting on xj at xjk;

if thisGain > maxGain then
maxGain = thisGain; bestPredictor = xj; bestValue = xjk;

end

end

end

leftExamples = examples where bestPredictor < bestValue;

leftSubtree = split_node(leftExamples, predictors, minExamples,

currentDepth + 1, maxDepth);

rightExamples = examples where bestPredictor ≥ bestValue;

rightSubtree = split_node(rightExamples, predictors, minExamples,

currentDepth + 1, maxDepth);

add leftSubtree and rightSubtree to tree; return tree;
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4.1.1.5 Random Forests

A random forest (RF) (Breiman, 2001) is an ensemble of decision trees. Indi-

vidual decision trees are trained as in Algorithm 4.1, with two exceptions.

1. Each tree is trained with a resampled set of storm objects, rather than the

full training set. In general, resampling may be done with a replacement

factor anywhere from [0, 1]. Usually this is done with a replacement factor

of 1, which is equivalent to bootstrapping3. This procedure in general

(resampling data for each tree) is called “tree-bagging”.

2. At each node only a subset of the predictor variables is sampled. Thus,

when looking for the best split point, the DT algorithm checks all values

of Ns ≤ N predictor variables, rather than checking all N. This procedure

is called “feature-bagging”.

For a new input example, predictions from the individual trees are aggregated

in one of three ways.

1. Deterministic majority vote. The predicted label is the mode of determin-

istic predicted labels (either 0 or 1) from the individual trees.

2. Probabilistic majority vote. The predicted probability of label = 1 is the

proportion of trees with deterministic predictions of label = 1.

3. Soft voting (also probabilistic). The predicted probability of label = 1 is

the mean of the individual trees’ predicted probabilities of label = 1.

The goal of tree-bagging and feature-bagging is to maintain diversity among

individual trees in the ensemble. If each tree is trained with different examples
3Henceforth, I will define “bootstrapping” as in Breiman (2001), to mean resampling with

a uniform probability of replacement. This is not the same definition as in Efron (1979), who

developed the bootstrap method. In Efron (1979) a statistic (e.g., the mean) is “bootstrapped”

by calculating it for many resampled versions of the original dataset, where resampling is done

with a uniform probability of replacement.
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and each split point chooses from different predictors, although individual trees

will still overfit their respective training sets, they should overfit in different

ways. In other words, the individual trees should have offsetting biases, which

largely cancel out when they are ensembled. This allows the random forest to

alleviate the overfitting problem discussed at the end of Section 4.1.1.4.

4.1.1.6 Ensembles of Gradient-boosted Trees

Gradient-boosting (GB) (Friedman, 2001) is another way to ensemble decision

trees. GB starts with a constant model F0, given by the following equation.

F0(x1, x2, ..., xN) = F0(~x) = argmin
γ

M∑
i=1

L(yi, γ) (4.8)

F0(~x) is function notation, indicating that the model is a function of the predictor

vector ~x; L is the loss function; and γ is the constant that minimizes the loss

function, which can be found by a line search (Section 4.8.2 of Mitchell, 1997).

When GB is used for binary classification, typical loss functions are deviance

(Equation 4.2) and exponential loss. In the case of exponential loss, defined

below, the algorithm is called AdaBoost (Freund and Schapire, 1997). This is

short for “adaptive boosting,” because the exponential loss emphasizes especially

bad predictions, which makes it more adaptive to difficult training examples.

Lexp = 1
M

M∑
i=1

exp(−yi∗fi) = 1
M

M∑
i=1

e−yi
∗fi (4.9)

Note that yi and yi∗ have different meanings. yi = 1 if the event (wind gust ≥

50 kt) occurred and 0 otherwise, whereas yi∗ = 1 if the event occurred and -1

otherwise.

After finding γ for the constant model, GB does the following for each iter-

ation q.

1. Compute pseudo-residuals generated by the previous model.

riq = −∂L(yi, Fq−1(~xi))
∂Fq−1(~xi)

(4.10)

83



riq is the pseudo-residual for the ith training example, and Fq−1(~xi) is func-

tion notation for the previous model (operating only on the predictor vector

for the ith training example).

2. Fit a new decision tree (“correction model”) to the pseudo-residuals. Be-

cause the pseudo-residuals are real numbers and not categories, this is a

regression tree, not a classification tree. Let the correction model be hq(~x).

3. Add the correction model to the previous model in a weighted sum. This

involves finding the best multiplier γq, which, like γ in Equation 4.8, can

be found by a line search.

γq = argmin
γ

M∑
i=1

L(yi, Fq(~xi)) (4.11a)

Fq(~xi) = Fq−1(~xi) + γqhq(~xi) (4.11b)

Fq−1(~xi), hq(~xi), and Fq(~xi) are function notation for the previous model,

correction model, and new model respectively.

The main difference between GB and random forests is that GB creates an

additive ensemble, where the kth tree is fit to the pseudo-residual from the first

k−1 trees. Thus, trees must be trained in series. Meanwhile, a random forest is

a non-additive ensemble, where all trees are fit to the label y and then ensembled

afterwards. Thus, trees in a random forest can be trained in parallel.

Gradient-boosted tree (GBT) ensembles often outperform random forests, es-

pecially when AdaBoost is used, because they focus learning on difficult training

examples.

4.1.2 Calibration Models

We consider two types of calibration models, which we found to be much more

common in the literature than all others: Platt scaling and isotonic regression.

84



4.1.2.1 Platt Scaling

Platt scaling is sigmoid regression, where the single predictor is the forecast

probability from the base model and the predictand is defined below.

yi,P latt =


M1+1
M1+2 , if yi = 1

1
M0+2 , if yi = 0

(4.12)

yi is the label for the ith training example; Mk is the number of training examples

with yi = k; and yi,P latt is the resulting label, which is similar to yi. The use of

yi,P latt is justified in Platt (1999).

Thus, Platt scaling fits a sigmoid curve to the base-model probabilities. The

sigmoid function is also called the “logistic function,” but this is not the same as

the logit function (Equation 4.1) used for logistic regression. The general form

of the sigmoid function is given below (see Figure 4.1).

fi = 1

1 + exp(−β0 −
N∑
j=1

βjxij)
= 1

1 + e
(−β0−

N∑
j=1

βjxij)
(4.13)

All variables are the same as in Equation 4.1. However, since there is only one

predictor for Platt scaling, this can be simplified.

fi = 1
1 + exp(−β0 − β1f̂i)

= 1
1 + e(−β0−β1f̂i)

(4.14)

f̂i is the forecast probability from the base model, and fi is the forecast probability

from Platt scaling, for the ith training example.

Since Platt scaling is a sigmoid transformation of the base-model proba-

bilities, it works best for base models with a sigmoid-shaped reliability curve.

Reliability curves (and their generalization, the attributes diagram) as a forecast-

verification method will be discussed in Section 4.3.6. For the purpose of this

discussion, a sigmoid-shaped reliability curve is shown in Figure 4.5. Forecasts

are grouped into 10 bins, plotted on the x-axis, and for each bin the posterior
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Figure 4.5: The solid red line is a sigmoid-shaped reliability curve. The dashed

grey line is the perfect-reliability line. For points above this line, the predictor

is “underconfident” (forecasts the event less often than it truly occurs). For

points below the grey line, the predictor is “overconfident” (forecasts the event

more often than it truly occurs).

probability of the event (probability of label = 1, given the forecast) is plotted

on the y-axis. A sigmoid-shaped reliability curve is generated by a predictor

that “hedges its bets” and does not forecast extreme probabilities, near 0 and 1.

Niculescu-Mizil and Caruana (2005) examined the reliability curves produced

by 10 base models, including the six discussed in our Section 4.1.1. Of the 10 base

models, only three typically produce sigmoid-shaped reliability curves: support-

vector machines, GBT ensembles, and gradient-boosted stump ensembles (GBT

ensembles with only two leaf nodes per tree). Thus, of the six models discussed
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in Section 4.1.1, Platt scaling is appropriate only for GBT ensembles. For the

other base models, a more general calibration method is required.

4.1.2.2 Isotonic Regression

Like Platt scaling, isotonic regression (IR) has only one predictor, which is the

forecast probability from the base model. However, the predictand for IR is sim-

ply the label y, rather than the quantity defined in Equation 4.12. IR minimizes

the Brier score (BS), subject to the constraint that fA ≥ fB for all f̂A ≥ f̂B,

where f̂C is the base-model forecast for storm object C and fC is the calibrated

forecast for storm object C. In other words, isotonic regression ensures rank

invariance between the base-model and calibrated forecasts.

BS = 1
M

M∑
i=1

(yi − fi)2 (4.15)

M, yi, and fi have the same meanings as in Equation 4.2. The BS is simply the

mean squared error for binary classification.

Unlike most types of regression, IR does not return an equation that can be

used to predict new examples. Instead, IR returns a mapping from the base-

model probabilities to calibrated probabilities. For each range of base-model

probabilities, [p̂min, p̂max), this mapping gives the calibrated probability p. This

mapping is learned by the pool-adjacent violators algorithm (PAVA) (Niculescu-

Mizil and Caruana, 2005). Sample output is shown in Figure 4.6.

4.2 Sampling Techniques

We subsample data for both training and testing, for the following reasons.

1. The 804 training/testing days (Section 3.2) have a total of 19,965,275 storm

objects. Predictors and labels for these storm objects take up 60.4 GB of

memory, and intermediate data created during training would take up even
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Figure 4.6: Results of isotonic regression for 100 testing examples (independent

of training data, using the 24-hour criterion discussed in Section 4.2.4). The

x-axis is used only to order the forecasts, so forecasts at the same x-position

are for the same storm object. Before plotting, the base-model forecasts were

sorted from left to right. Calibrated forecasts also increase from left to right,

because isotonic regression ensures rank invariance between the base-model

and calibrated forecasts.
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more memory. The computers used for this project have no more than

64 GB of RAM, so training with all data would have required memory-

shuffling (as for w2besttrack in Section 3.3). However, the runtime would

have still been extremely long (days to train a single model), and this

would have been exacerbated by the input-output operations associated

with memory-shuffling.

2. The distribution of maximum storm-object winds (Umax) is highly skewed.

For a buffer distance of 0 km and lead time of [60, 90] minutes, the pro-

portion of Umax ≥ 50 kt (thus, the proportion of label = 1) is only 0.03%

(Figure 4.7a). For a buffer distance of 10 km and lead time of [0, 15] min-

utes, the proportion of Umax ≥ 50 kt is 0.21% (Figure 4.7b). These are the

minimum and maximum proportions, respectively, over all combinations

of buffer distance and lead time.

In general, machine-learning algorithms do not learn well from highly

skewed data. This is because the objective function is dominated by the

large number of negative examples (with label = 0) and relatively insen-

sitive to the small number of positive examples (with label = 1). Thus,

the objective function does not suffer much from simply predicting zero

(or very small probabilities) for all examples. Although the model could

increase its sharpness by predicting higher probabilities for some examples,

this would likely improve predictions for a small number of positive exam-

ples and worsen predictions for a very large number of negative examples,

leading to a worse value of the objective function.

3. The distribution of Umax in the full dataset is certainly not representative

of the real-world distribution. Umax is based only on wind observations

from weather stations and humans, which are often insufficient to resolve

the maximum winds produced by a storm cell. For example, if storm object
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Figure 4.7: CDF of Umax in full dataset (no subsampling) for (a) buffer distance

of 0 km and lead time of [60, 90] minutes; (b) buffer distance of 10 km and lead

time of [0, 15] minutes. If a storm object has no wind observations over the

given buffer distance and lead-time window, its maximum wind is assigned as 0.

S is linked to only one wind observation (of < 50 kt), one cannot say with

certainty that S never produced severe winds. It is quite likely that severe

winds occurred and simply were not observed.

In the following subsections, sampling is done independently for each buffer

distance and lead-time window.

4.2.1 Training the Base Model

To train the base model, we sample uniformly from the distribution of Umax.

Specifically, for each buffer distance d and lead-time window [∆tmin,∆tmax], we

draw an equal number of storm objects from each of the following categories.

See Figure 4.8.

• Umax < 10kt

• Umax ∈ [10, 20) kt

• Umax ∈ [20, 30) kt
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Figure 4.8: CDF of Umax after uniform sampling, for buffer distance of 5 km

and lead time of [30, 45] minutes (median values).
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• Umax ∈ [30, 40) kt

• Umax ∈ [40, 50) kt

• Umax ≥ 50kt

• Umax undefined (because the storm no longer exists after ∆tmin; in other

words, the storm is dead)

The number of storm objects drawn from each category is the minimum over

all categories. In other words,

Mmin = min
k
Mk, (4.16)

where Mk is the number in the kth category. The Mmin most observed storm

objects (i.e., those with the greatest numbers of linked wind observations) are

drawn from each category. Clearly the most-observed criterion is irrelevant for

the least common category, which has only Mmin storm objects, and the dead-

storm category, which has no wind observations linked with storm objects after

∆tmin (the minimum lead time). However, for all other categories, this ensures

that the most observed storm objects (i.e., those with the least uncertainty in

Umax) are used.

Sampling uniformly with respect to Umax allows the model to learn from

storms with all values of Umax, which should allow it to predict new storms with

all values of Umax. Allowing for dead storms is important, because it elimi-

nates “survivor bias” in the model. If a model is trained only with storms that

still exist after ∆tmin, it will learn to predict Umax only for these storms. In

other words, the model will learn the conditional probability p(Umax ≥ 50 kt |

storm exists after ∆tmin), rather than the simple probability p(Umax ≥ 50 kt).

Our goal is to predict the simple probability, because predicting storm longevity

itself is non-trivial.
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4.2.2 Training the Calibration Model

As mentioned in Section 4.1, most base models generate poorly calibrated prob-

abilities. Also, even for those that do not, we have ensured poor calibration by

training with an unrealistic distribution of Umax. The calibration model should

be trained with a probability distribution similar to the real world. As men-

tioned in Section 4.2, the full dataset is not representative of the real world,

so random sampling from the full dataset would not suffice here. Instead, we

use the best-observed storms, for which we can be confident that the label is

accurate. “Best-observed” is defined by the following criteria.

1. If Umax ≥ 50 kt, we can be certain that the true label is 1, so the storm

object is included.

2. If the number of linked wind observations reaches some minimum value

N∗obs, we can be confident in the assigned label either way (whether it is 0

or 1), so the storm object is included.

3. The proportion of dead storms (those that do not exist after ∆tmin) in the

training set should equal that in the full dataset. Thus, after steps 1 and 2,

enough dead storms are randomly selected to make the proportions equal.

p∗dead = pdead

⇒ M∗
dead

M∗ = pdead

⇒ M∗
dead

M∗
dead +M∗

alive

= pdead

⇒M∗
dead = pdead(M∗

dead +M∗
alive)

= pdeadM
∗
dead + pdeadM

∗
alive

⇒ (1− pdead)M∗
dead = pdeadM

∗
alive

∴M∗
dead = pdead

1− pdead
M∗

alive (4.17)
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Figure 4.9: CDF of Umax after sampling from best-observed distribution, for

buffer distance of 5 km and lead time of [30, 45] minutes. Again, if a storm

object has no wind observations over the given buffer distance and lead-time

window (possibly because the storm is dead), its maximum wind is assigned as

0.

pdead is the proportion of dead storms in the full dataset; p∗dead is the propor-

tion of dead storms in the sampled dataset; M∗
dead is the raw number of sampled

storm objects that are dead after ∆tmin; and M∗
alive is the raw number of sam-

pled storm objects that are still alive after ∆tmin. Thus, M∗
dead is the number of

dead storms needed in the sampled dataset to make p∗dead = pdead. This step is

necessary to eliminate survivor bias from the calibration model. See Figure 4.9

for a typical CDF from this sampling method.
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4.2.3 Testing the Combined Model

The “combined model” is the base model after calibration. As in training the

calibration model, the Umax distribution used to test the combined model should

be similar to the real world, so that testing results indicate how the model would

perform in a real-world setting (e.g., in a forecasting office). Thus, we use the

best-observed distribution (Section 4.2.2) for testing as well.

4.2.4 Independence of Sample Sets

There are three sample sets for each combined model: the base-model-training

set, calibration-model-training set, and testing set. To ensure that the combined

model can be generalized to new data, the three sets should be mutually in-

dependent. To ensure independence, an example used in one set cannot occur

within 24 hours of an example used in another set. This prevents two types of

contamination among the sample sets.

1. Storm-track contamination. This occurs when storm objects in the same

track are split among multiple sets. If one storm object in track S* is

linked with severe winds, it is likely that other objects in S* are linked

with severe winds.

2. Storm-environment contamination. This occurs when storm cells from the

same environment are split among multiple sets. If one storm cell on day n

produced severe winds, it is likely that other cells on day n produced severe

winds, since they occurred in similar environments. Of course this is not

true for storm cells separated by long distances (e.g., one in Tuktoyaktuk

and another in Qikiqtarjuaq) or time periods (e.g., one at 0600 UTC and

another at 1800 UTC). Thus, we could have developed a sharper (less

cautious) independence criterion. However, we decided against this, since
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the 24-hour criterion is clearly sufficient and does not lead to many storm

objects being unused.

4.3 Forecast Verification

Forecast verification (FV) is a rich field of study: hundreds of methods have been

developed for binary classification alone. Thus, in deciding which FV methods

to use, we approach the problem in a systematic way. All FV methods are based

on some property of the joint distribution of forecasts and observations, so we

start with this joint distribution.

4.3.1 Joint Probability-density Functions

The most fundamental way to verify forecasts is to plot all forecast-observation

pairs. However, this is rarely done in practice, because most forecast models are

verified with a large number of examples, which makes such analysis both time-

consuming and difficult to generalize into conclusions. For any FV method, there

is a trade-off between the information content and “glance value” (how much a

human analyst can conclude from output produced by said method). Plotting

all forecast-observation pairs has high information content but low glance value.

Thus, in practice the most fundamental way to verify forecasts is to plot

the joint probability-density function (PDF) of the forecasts and observations

(Figure 4.10). The joint PDF estimates the proportion of examples occurring in

each region of the forecast-observation space.

p(fij, ykm) = p(f ∈ [fi, fj] ∩ y ∈ [yk, ym]) (4.18)

96



Figure 4.10: Basic joint PDF. The colour in region f ∈ [fi, fj] ∩ y = yk

indicates the proportion of examples falling in this region.

f is the forecast; [fi, fj] is the region of interest for the forecast; y is the ob-

servation; and [yk, ym] is the region of interest for the observation. For binary

classification there are only two possible values of y, so this can be simplified.

p(fij, yk) = p(f ∈ [fi, fj] ∩ y = yk) (4.19)

If the testing data are independent of the training data (discussed in Section

4.2.4) and distributed similarly to real-world data (discussed in Section 4.2.3),

p(fij, yk) is also the proportion of real-world examples expected in region f ∈

[fi, fj] ∩ y = yk. In the following subsections, when referring to the joint PDF,

notation will be simplified to p(f, y). Keep in mind that, in order to evaluate

the joint PDF, values of fi, fj, and yk are needed.
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Figure 4.11: Similar to Figure 4.10, except that there is an obvious problem in

the bottom-right of the distribution.

The advantage of the joint PDF is that it highlights regions of the forecast-

observation space where examples occur most and least frequently. This can

help to diagnose specific problems with the model. For instance, if there are

many examples in the region f ∈ [0.95, 1.00] ∩ y = 0 (as in Figure 4.11), this

means that many high-probability forecasts are made for non-events. Perhaps

this is because there is a bug in the code, inverting either the forecasts or the

observations. Such a hypothesis would be difficult to draw from an FV method

with less information content.

98



4.3.2 Aspects of Forecast Quality

Murphy (1993) discusses 10 aspects of forecast quality. These are defined in Ta-

ble 4.1 (adopted from Murphy’s Table 2). Table 4.1 highlights two factorizations

of the joint PDF, which will be used in the following subsections: the calibration-

refinement (CR) factorization and the likelihood–base-rate (LBR) factorization.

These factorizations are shown in Equations 4.20a and 4.20b, respectively.

p(f, y) = p(f)p(y | f) (4.20a)

p(y, f) = p(y)p(f | y) (4.20b)

From Table 4.1, resolution and reliability are clearly related to the CR factoriza-

tion; discrimination I and II are clearly related to the LBR factorization. The

other six aspects of forecast quality do not depend on these factorizations.

Aspect Definition Distributions As Shown in

Accuracy Mean correspondence be-

tween forecasts and ob-

servations. For deter-

ministic forecasts, fre-

quency of agreement be-

tween forecasts and ob-

servations.

p(f, y) ROC curve

Association Strength of linear re-

lationship between fore-

casts and observations.

p(f, y) Joint PDF

Continued on next page
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Table 4.1 – continued from previous page

Aspect Definition Distributions As Shown in

Bias Correspondence between

mean forecast and mean

observation.

p(f) and

p(y)

Performance

diagram

Discrimination

I

Correspondence between

conditional mean fore-

cast and conditioning ob-

servation, averaged over

all observations.

p(y) and

p(f | y)

ROC curve

Discrimination

II

Correspondence between

conditional mean fore-

cast and unconditional

mean forecast, averaged

over all observations.

p(y) and

p(f | y)

ROC curve

Reliability Correspondence between

conditional mean obser-

vation and conditioning

forecast, averaged over

all forecasts.

p(f) and

p(y | f)

Attributes di-

agram

Resolution Difference between con-

ditional mean observa-

tion and unconditional

mean observation, aver-

aged over all forecasts.

p(f) and

p(y | f)

Attributes di-

agram

Continued on next page
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Table 4.1 – continued from previous page

Aspect Definition Distributions As Shown in

Sharpness Variability of forecasts. p(f) Attributes

diagram

(forecast

histogram)

Skill Value of some verifica-

tion statistic, relative to

a baseline (e.g., climatol-

ogy or another forecast

model).

p(f, y) Attributes

diagram (no-

skill line and

positive-skill

area)

Uncertainty Variability of observa-

tions.

p(y) Attributes di-

agram

Table 4.1: Aspects of forecast quality. This table is adapted from Murphy’s

(1993) Table 2. Mathematical notation and vocabulary have been adjusted to

suit this document.
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Figure 4.12: Basic contingency table. Entries a, b, c, and d are explained in the

text.

4.3.3 Contingency Tables

Almost all verification statistics for binary classification are based on the con-

tingency table (CT), or “confusion matrix”. This is a two-by-two matrix with

the following entries (Figure 4.12).

• Top-left corner (1, 1). a = number of true positives (where the event was

both forecast and observed).

• Top-right corner (1, 2). b = number of false positives (where the event was

forecast but not observed).

• Bottom-left corner (2, 1). c = number of false negatives (where the event

was observed but not forecast).

• Bottom-right corner (2, 2). d = number of correct negatives, or “correct

nulls” (where the event was neither forecast nor observed).

This table is clearly missing one type of information, which is the probabil-

ity associated with each forecast. To transform the probabilistic forecasts into

deterministic ones, a threshold f* is defined so that

ŷ =


1, if f ≥ f ∗

0, if f < f ∗
(4.21)

where f is the forecast probability and ŷ is the resulting deterministic forecast.
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There are eight “default” (single-row or single-column) statistics based on

the CT, defined below.

POD = a

a+ c
(4.22a)

FOM = c

a+ c
= 1− a

a+ c
= 1− POD (4.22b)

POFD = b

b+ d
(4.22c)

NPV = d

b+ d
= 1− b

b+ d
= 1− POFD (4.22d)

SR = a

a+ b
(4.22e)

FAR = b

a+ b
= 1− a

a+ b
= 1− SR (4.22f)

DFR = c

c+ d
(4.22g)

FOCN = d

c+ d
= 1− c

c+ d
= 1− FOCN (4.22h)

POD is the probability of detection, or “hit rate”; FOM is the frequency of

misses; POFD is the probability of false detection; NPV is the negative predictive

value; SR is the success ratio; FAR is the false-alarm ratio; DFR is the detection-

failure ratio; and FOCN is the frequency of correct nulls. Column-based statistics

(4.22a-4.22d) are related to the likelihood–base-rate (LBR) factorization, and

row-based statistics (4.22e-4.22h) are related to the calibration-refinement (CR)

factorization (Section 4.3.2). All of these statistics range from [0, 1]. For the

FOM, POFD, FAR, and DFR, lower values are considered better. For the POD,

NPV, SR, and FOCN, higher values are considered better.

There are two more CT-based statistics used in this study.

FB = a+ b

a+ c
(4.23a)

CSI = a

a+ b+ c
(4.23b)

FB (frequency bias) is the number of forecast events over the number of actual

events, while CSI (critical-success index) is the accuracy ( a+d
a+b+c+d) with correct
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nulls removed. This is useful, because correct nulls are often trivial to predict

and difficult to count. For example, it is difficult to prove, based on limited

surface observations, that a storm cell never produced severe winds. FB ranges

from [0,∞), with values near 1 considered better. CSI ranges from [0, 1], with

higher values considered better.

The main disadvantage of the CT and CT-based statistics is that they de-

pend on deterministic forecasts, which are less informative than probabilistic

forecasts. However, this disadvantage can be alleviated by creating a CT for

each probability threshold, which is the basis of Sections 4.3.4 and 4.3.5.

4.3.4 Receiver-operating-characteristic Curves

For several probability thresholds (used in Equation 4.21 to convert probabilis-

tic to deterministic forecasts), the receiver-operating-characteristic (ROC) curve

plots probability of detection (Equation 4.22a) on the y-axis and probability of

false detection (Equation 4.22c) on the x-axis. See Figure 4.13. In other words,

the ROC curve plots POD as a function of POFD, both of which decrease from

1 to 0 as the threshold is increased from 0 to 1.

To describe the quality of a ROC curve, the area under the ROC curve (AUC)

is used as a verification statistic. The following criteria are typically associated
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Figure 4.13: The solid red line is the ROC curve. The dashed grey line is the

perfect-reliability line. For points above this line, the predictor has positive

skill (better than a random predictor). For points below the grey line, the

predictor has negative skill (worse than a random predictor).
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with different AUC values (e.g., Luna-Herrera et al., 2003; Muller et al., 2005;

Mehdi et al., 2011).

AUC



= 1.0, perfect

∈ [0.9, 1.0) , excellent

∈ [0.8, 0.9) , good

∈ [0.7, 0.8) , fair

∈ [0.6, 0.7) , poor

< 0.6, unacceptable

The ROC curve has two main advantages. One is that it plots values for

many probability thresholds, which allows an optimal threshold to be found for

Equation 4.21. Also, it is insensitive to the class distribution (i.e., the relative

proportions of events and non-events – in our case, the relative proportions

of Umax ≥ 50 kt and Umax < 50 kt), so large AUC values can be achieved

even for highly skewed datasets. However, this is also a disadvantage, because

it obfuscates issues that most forecast models encounter with highly skewed

datasets. In particular, for extremely rare events, the success ratio (Equation

4.22e) tends to be very low and false-alarm ratio (Equation 4.22f) tends to be very

high. For extremely common events, the frequency of correct nulls (Equation

4.22h) tends to be very low and detection-failure ratio (Equation 4.22g) tends

to be very high. Since these statistics are based on the CR factorization, they

are not shown in ROC curves, which are based on the LBR factorization (see

Section 4.3.2 for discussion of factorizations).
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Figure 4.14: Basic performance diagram. The solid red line is the performance

curve. The dashed grey lines are FB contours. The colour fill is CSI.

4.3.5 Performance Diagrams

The performance diagram is an extension of the performance curve. For several

probability thresholds (f* in Equation 4.21), the performance curve plots prob-

ability of detection (Equation 4.22a) on the y-axis and success ratio (Equation

4.22e) on the x-axis. See Figure 4.14. In other words, the performance curve

plots POD as a function of SR. As the threshold increases from 0 to 1, the POD

decreases from 1 to 0, while the SR increases from 0 to 1. This is unlike the

ROC curve, where both POD and POFD decrease. This is why the performance

curve looks like a ROC curve that has been flipped left-to-right.
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In addition to this curve, the performance diagram contains a set of CSI and

FB contours. Equations 4.24 and 4.25 are used to transform FB and CSI into

POD-SR space.

FB = a+ b

a+ c

= a+ b

a+ c

a

a

= a+ b

a

a

a+ c

= ( a

a+ b
)−1 a

a+ c

= (SR)−1POD

∴ FB = POD
SR (4.24)

CSI = a

a+ b+ c

⇒ (CSI)−1 = a+ b+ c

a

= a+ b

a
+ c

a

= a+ b

a
+ (a+ c

a
− a

a
)

= a+ b

a
+ a+ c

a
− 1

= ( a

a+ b
)−1 + ( a

a+ c
)−1 − 1

= (SR)−1 + (POD)−1 − 1

∴ CSI = 1
1

SR + 1
POD − 1 (4.25)

To our knowledge, the statistics most commonly used to describe the quality

of a performance diagram are the maximum CSI and FB at maximum CSI.

CSImax = max
f∗

CSI(f ∗) (4.26a)
FBbest = FB(f ∗best)

f ∗best = argmax
f∗

CSI(f ∗)
(4.26b)
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f* is a probability threshold from Equation 4.21; f ∗best is the probability

threshold at maximum CSI; and FBbest is the FB at maximum CSI. CSI(f ∗)

and FB(f ∗best) are function notation, to indicate that the two quantities are func-

tions of f*.

Unlike for AUC, there is no standard set of evaluative criteria for CSI. This is

because values are highly dependent on the class distribution, which varies from

problem to problem. For some problems (e.g., Rico-Ramirez and Cluckie, 2008)

a CSI of 0.8 is considered poor, and for some (e.g., Gagne et al., 2015) a CSI

of 0.4 is considered good. However, in all cases the CSI-maximizing frequency

bias should be close to 1 (e.g., between 0.75 and 1.25). Probablity calibration

(Section 4.1.2), which is verified with the attributes diagram (Section 4.3.6), can

help to move this FB closer to 1.

The main advantage of the performance diagram is that it shows much of

the information missing from the ROC curve. This is because the performance

diagram is based on both the CR and LBR factorizations (see Section 4.3.2),

whereas the ROC curve is based only on the LBR factorization. The main

disadvantage of the performance diagram is that it does not explicitly show

probabilistic information, so it cannot be used to verify the reliability (see Table

4.1) of the model.

4.3.6 Attributes Diagrams

The attributes diagram (Figure 4.15) is an extension of the reliability curve,

which is used to verify probabilistic forecasts. The reliability curve divides the

forecast probabilities into 10 bins and, for each bin, plots the mean forecast

probability (bin center) on the x-axis and conditional event frequency on the

y-axis. In other words, the reliability curve plots p(y = 1 | f) as a function of f.

Thus, the reliability curve uses the CR factorization.
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Figure 4.15: Basic attributes diagram. The solid red line is the reliability

curve. All other lines are explained in the text.

In addition to the reliability curve, the attributes diagram contains a forecast

histogram and a set of reference lines. The forecast histogram shows the PDF

of forecasts only, p(f), regardless of the observations. Thus, the histogram can

be used to verify the sharpness of the model (see Table 4.1). The histogram also

indicates how many examples were used to create each point in the reliability

curve, which can be used to estimate uncertainty. However, this can also be

done by bootstrapping, which we do for all experimental results (Section 6.1).

The four reference lines in the attributes diagram are defined below.

1. Perfect-reliability line. This is the x = y line, where the conditional event

frequency always equals the forecast probability, or p(y = 1 | f) = f .

2. Climatology line. This is the vertical line at x = ȳ, where ȳ is the uncon-

ditional (climatological) event frequency.

3. No-resolution line. This is the horizontal line at y = ȳ, or the horizontal

version of the climatology line. For a model with no resolution (i.e., where

the conditional event frequency is ȳ for all forecasts), the reliability curve

will coincide with this line.
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4. No-skill line. This is the diagonal line in light blue, passing from (x =

0, y = 1
2 ȳ) to (x = 1, y = 1

2 [1 + ȳ]). Where the reliability curve passes

through the shaded area, the model has a positive Brier skill score (BSS).

This is shown in Hsu and Murphy (1986).

BS = ȳ(1− ȳ) + 1
M

K∑
k=1

Mk(fk − ȳk)2 − 1
M

K∑
k=1

Mk(ȳk − yk)2 (4.27)

M is the number of examples; K is the number of forecast bins (10); Mk is the

number of examples in the kth forecast bin; fk is the mean forecast for the kth bin;

and ȳk is the conditional event frequency for the kth bin. BS ranges from [0, 1],

with lower values considered better. This equation is mathematically identical

to Equation 4.15. The only difference is that Equation 4.27 is more convenient

for the interpretation of the attributes diagram. An even more convenient form

of the BS is given below.

BS = UNC + REL− RES

UNC = ȳ(1− ȳ)

REL = 1
M

K∑
k=1

Mk(fk − ȳk)2

RES = 1
M

K∑
k=1

Mk(ȳk − yk)2

(4.28)

UNC is the uncertainty, ranging from [0, 0.25]; REL is the reliability, ranging

from [0, 1]; and RES is the resolution, ranging from [0, 1]. These are three of the

10 aspects of forecast quality, defined conceptually in Table 4.1. Lower values

of REL are considered better, and higher values of RES are considered better.

However, no such evaluative assessments are made for UNC, since it depends

only on climatology and is therefore out of human control.
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In general, a “skill score” is the value of some verification statistic relative to

a baseline. When using the BSS to evaluate the attributes diagram, the baseline

is always climatology. The climatological BS is defined below.

BS∗ = ȳ(1− ȳ) + 1
M

K∑
k=1

Mk(ȳk − ȳk)2 − 1
M

K∑
k=1

Mk(ȳk − ȳk)2

∴ BS∗ = ȳ(1− ȳ) = UNC (4.29)

Thus, the BSS is as follows.

BSS = BS∗ − BS
BS∗ = RES− REL

UNC (4.30)

Like any skill score, the BSS ranges from (−∞, 1], with higher values considered

better. A positive BSS (RES > REL) means that the model is better than

climatology. This makes sense, because (a) lower values of REL are better, and

higher values of RES are better; (b) a climatological forecast model always has

RES = REL = 0. Thus, as long as RES > REL, the model is better than

climatology.

To our knowledge, unlike for AUC, there is no standard set of evaluative

criteria for RES, REL, or BSS – except that a positive BSS is better than

climatology.

The main advantage of the attributes diagram is that provides explicit in-

formation on the quality of probabilistic forecasts. Altogether, the joint PDF,

ROC curve, performance diagram, and attributes diagram provide information

on all 10 aspects of forecast quality (Table 4.1).
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Chapter 5

Variable Selection

In general, there are two goals of variable selection: to find (a) an optimal set of

variables for machine learning and (a) the most physically relevant variables for

the problem. In our case the “problem” is predicting which storm cells will pro-

duce a wind gust ≥ 50 kt. These goals should be consistent with each other, but

for practical reasons they are sometimes not. For example, if the most physically

relevant variables are highly collinear, some learning algorithms (e.g., those that

depend on matrix inversion) might become unstable and perform poorly. Also, if

there are too many physically relevant variables, the computational requirements

might become too large for certain algorithms.

To satisfy these two goals, we use several methods and compare their results.

The following subsections describe the methods used, which are split into two

categories: wrapper methods and filter methods.

5.1 Wrapper Methods

The goal of a wrapper method (Kohavi and John, 1997) is to find the optimal

set of variables for a specific machine-learning model (e.g., logistic regression,

feed-forward neural net, random forest, etc.). However, it is often impossible to

explore the full hypothesis space (all combinations of variables). In general, if
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there are N predictor variables, the number of possible combinations is
N∑
j=1

(
N
j

)
.

For N = 431, this number is
(

431
1

)
+
(

431
2

)
+ . . . +

(
431
431

)
= 5.5 × 10129. Even if

each combination could be explored in 10-100 seconds, this procedure would take

longer than the age of the universe. Thus, wrapper methods are often limited

to finding a near-optimal set of variables.

The advantage of wrapper methods is that, because they explicitly optimize

model performance, they usually lead to better predictions than filter methods.

However, because wrapper methods depend on a specific model, their results are

less widely applicable. Listed below are three reasons that results of a wrapper

method may have limited application.

1. If a wrapper method is used with a model that cannot handle many vari-

ables (e.g., logistic regression), the selected variables may exclude some

that are still physically relevant.

2. If a wrapper method is used with a model that performs built-in variable

selection (e.g., decision trees), the selected variables may include some that

have little physical relevance.

3. In both cases, although selected variables may lead to near-optimal per-

formance of the given model, they will probably lead to highly suboptimal

performance of other learning models.

These shortcomings can be addressed by using filter methods, as well as wrapper

methods with different underlying models, then comparing results.

For all wrapper methods, storm objects are sampled as described in Sec-

tion 4.2: from the uniform distribution to train the base model, from the best-

observed distribution to train the calibration model (isotonic regression), and

from the best-observed distribution to test the combined model (base model +

isotonic regression).
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5.1.1 Sequential Forward Selection

Sequential forward selection (SFS) (Aha and Bankert, 1996) is a general wrap-

per method, which means that it can be used with any learning model. The

procedure is described in Algorithm 5.1 and Figure 5.1.

SFS begins with a constant model, which predicts the mean label of all

training examples (this is known as a “climatology forecast”). Then, at each

selection step i, SFS begins with a model containing i - 1 variables and finds the

best model containing one additional variable. In other words, SFS performs a

greedy search at each selection step, adding the best of the remaining N - (i - 1)

variables to the model. SFS stops when either (a) model performance has not

improved in the last k selection steps (k is latencyTime in Algorithm 5.1) or

(b) all N variables have been added. In our experience (thousands of runs with

k = 5), case (b) has never occurred.

The main advantage of SFS is that, by not allowing backtracking (i.e., not

allowing a variable to be deselected), it reduces the number of combinations

tested to 1
2N(N − 1), which is only 92,665 when N = 431. However, this is

still intractable for more sophisticated learning models such as FFNN, random

forests, and GBT ensembles.

We use two learning algorithms with SFS: logistic regression as the base

model and isotonic regression for probability calibration. We use logistic regres-

sion because it is fast, does not perform built-in variable selection (which would

invalidate the results of SFS), and is well suited for binary classification (Section

4.1.1.1). We use isotonic regression because it is more appropriate than Platt

scaling when the base model is logistic regression (see end of Section 4.1.2.1).
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Figure 5.1: Schematic for sequential forward selection. Each blue box is an

action, and the green ellipse to the right is the resulting model. Black

(grammatical) ellipses indicate that the process may continue.
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Algorithm 5.1: Sequential forward selection.
Input: trainExamples = trng examples, each with N predictors and label

testExamples = testing examples; predictors = list of N predictors

verifStat = verification stat (used to quantify model performance)

latencyTime = stop if verifStat not improved over this many selection steps

Output: bestPredictors = list of predictors selected for final model

// bestPerformance starts at index 0; other arrays start at 1.

model = constant model (predicts mean label of all trainExamples);

bestPerformance(0) = verifStat(model(testExamples));

for i = 1. . . length(predictors) do
testPredictors = all predictors not in bestPredictors;

testPerformance = empty set;

for j = 1. . . length(testPredictors) do
trainPredictors = bestPredictors ∩ testPredictors(j);

model = model trained with trainExamples.trainPredictors;

testPerformance(j) = verifStat(model(testExamples));

end

// If smaller verifStat is better, change “max” to “min”.

(bestPerformance(i), maxIndex) = max(testPerformance);

bestPredictors(i) = testPredictors(maxIndex);

// If smaller verifStat is better, change last operator to ≥.

if i ≥ latencyTime ∩ bestPerformance(i) ≤ bestPerformance(i -

latencyTime) then
return bestPredictors(1...(i - latencyTime));

end

end
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5.1.2 Sequential Backward Selection

Sequential backward selection (SBS) (Aha and Bankert, 1996) is also a general

wrapper method, so can be used with any type of learning model. The main

difference between this and SFS is that SBS serially eliminates variables, rather

than adding them. The procedure is described in Algorithm 5.2 and Figure 5.2.

At each selection step i, SBS begins with a model containing N - (i - 1)

variables and finds the best model containing one fewer variable. In other words,

SBS performs a greedy search at each selection step, removing the worst of N -

(i - 1) variables from the model. SBS stops when either (a) model performance

has not improved in the last k selection steps (k is latencyTime in Algorithm

5.2) or (b) all N variables have been removed, yielding a constant model.

Because SFS and SBS work in opposite directions, they usually give at least

slightly different answers, which can be compared. When a variable is selected

by both methods, one can be fairly certain that it (a) is physically relevant and

(b) will lead to good performance for other learning models.

The main disadvantage of SBS is that, when N is large, it requires much more

computing time than SFS. This is because the first few selection steps in SFS

involve training a model with only a few variables, whereas the first few steps

in SBS involve training a model with ~N variables. Thus, if both algorithms

stop well before N selection steps (which in our experience is always the case),

the average number of variables per SBS-trained model is much greater than per

SFS-trained model. Also, simple learning models (which are required for SFS

and SBS, due to runtime issues discussed in Section 5.1.1) tend to be unstable

with a large number of variables, so removing one variable xj often leads to very

different performance, even if xj is not physically relevant. Thus, when N is large

SFS and SBS usually give very different results, which does not allow for a useful

comparison.
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Figure 5.2: Schematic for sequential backward selection. Each red box is an

action, and the green ellipse to the right is the resulting model. Black

(grammatical) ellipses indicate that the process may continue.
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Algorithm 5.2: Sequential backward selection.
Input: same as Algorithm 5.1

Output: same as Algorithm 5.1

// worstPerformance starts at index 0; other arrays start at 1.

model = model trained with all predictors;

worstPerformance(0) = verifStat(model(testExamples));

worstPredictors = empty set;

for i = 1. . . length(predictors) do
testPredictors = all predictors not in worstPredictors;

testPerformance = empty set;

for j = 1. . . length(testPredictors) do
trainPredictors = all testPredictors except testPredictors(j);

model = model trained with trainExamples.trainPredictors;

testPerformance(j) = verifStat(model(testExamples));

end

// If smaller verifStat is better, change “min” to “max”.

(worstPerformance(i), minIndex) = min(testPerformance);

worstPredictors(i) = worstPredictors(maxIndex);

// If smaller verifStat is better, change last operator to ≤.

if i ≥ latencyTime ∩ worstPerformance(i) ≥ worstPerformance(i -

latencyTime) then
return bestPredictors = all predictors except

worstPredictors(1...(i - latencyTime));
end

end

return bestPredictors = empty set;
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5.1.3 Decision-tree Method

The decision-tree method (DTM) may be used for a single decision tree, random

forest, or GBT ensemble. For a single decision tree, the importance of variable

xj is the average reduction in deviance over all splits involving xj. For a random

forest or GBT ensemble, the importance of xj is the same, except that splits

involving xj may occur in multiple trees. The “reduction in deviance” is simply

deviance at the parent node minus summed deviances at the child nodes, as

defined below. D comes from Equation 4.2.

∆D = Dparent −Dleft −Dright (5.1)

Variable importance (VI) is defined below.

VI(xj) =

∑
s∈ splits on xj

∆Ds∑
s∈ splits on xj

1 (5.2)

The main advantage of the DTM is that, unlike SFS and SBS, it can be

run quickly for random forests and GBT ensembles. This is important, because

random forests and GBT ensembles are usually the best models (Section 6.1.3)

and the credibility of variable importance increases with model quality. The

main disadvantage of the DTM is that it cannot be used with other learning

models.

5.2 Filter Methods

Filter methods select predictor variables based on how well they discriminate

between values of the dependent variable (Kohavi and John, 1997). For binary

classification, filter models select variables based on how well they discriminate

between labels of 0 and 1. If the class-conditional PDFs of xj (p(xj | y = 0) and

121



p(xj | y = 1)) are very similar, xj has low discrimination between the two classes.

If the PDFs are very different, xj has high discrimination.

The advantage of filter methods is that, because they do not depend on a

specific learning model, their results are more widely applicable. In other words,

variables selected by a filter method should lead to satisfactory performance

for many learning models. Also, because filter methods are not affected by

the peculiarities of a specific learning model (e.g., an inability to deal with

many variables or collinear variables), their results may be more appropriate for

physical interpretation.

For all filter methods, storm objects are sampled from the best-observed

distribution (Section 4.2.2), which is most representative of the real world.

5.2.1 J-measures

The J -measure is the Kullback-Leibler divergence (Jeffreys, 1946; Lin, 1991)

between probability distributions p(xj | y = 0) and p(xj | y = 1). See Figure

5.3. For a discrete xj, the J -measure is defined below, where K is the number of

possible values for xj.

J(xj) =
K∑
k=1

[p(xj = xjk | y = 0)− p(xj = xjk | y = 1)] log2

[
p(xj = xjk | y = 0)
p(xj = xjk | y = 1)

]
(5.3)

If xj is continuous (like all of our predictor variables), it is discretized into K

bins, where Xjk is the range of values in the kth bin.

J(xj) =
K∑
k=1

[p(xj ∈ Xjk | y = 0)− p(xj ∈ Xjk | y = 1)] log2

[
p(xj ∈ Xjk | y = 0)
p(xj ∈ Xjk | y = 1)

]
(5.4)

The J -measure ranges from [0,∞). A higher J -measure means that there

is more difference between the class-conditional PDFs (p(xj | y = 0) and p(xj |
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Figure 5.3: PDFs used to calculate J -measure for a single variable. The orange

curve is the PDF for storm objects with label = 1; the purple curve is for storm

objects with label = 0. Each solid line is a mean, and each shaded area is a

95% confidence interval, determined by bootstrapping.

y = 1)), which means that xj is a better discriminator between severe and non-

severe-wind-producing storms. A J -measure of zero means that xj has absolutely

no discrimination between severe and non-severe-wind-producing storms.

5.3 From Variable-ranking to Selection

Two of the four methods in Sections 5.1-5.2 (decision trees and J -measures) only

rank variable importance, rather than selecting variables. We consider two ways

to use these rankings for explicit selection. The linear-dependence-controlling

(LDC) method is used only for J -measures, which have no other way to account
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for collinearity, because they consider only one variable at a time. The LDC

would be inappropriate for ranking variable importances from the decision-tree

(or any other wrapper) method, because the point of a wrapper method is to

find variables that optimize the performance of a learning model, regardless

of whether or not these variables are collinear. The linear-dependence-agnostic

(LDA) method can be used for any set of variable importances, because it simply

selects the top-ranked variables with no further processing.

5.3.1 Linear-dependence-agnostic Method

Variables may be selected by one of three criteria (letting VI be variable impor-

tance, as in Section 5.1.3):

1. Choose the top N* variables.

2. Choose all variables with VI ≥ VI*.

3. Keep choosing from the top, until the relative difference in VI between

two successively ranked variables exceeds some threshold. This criterion is

stated mathematically in Equation 5.5, where VI(xk) is the importance of

the kth-ranked variable and r is the aforementioned threshold.

VI(xj)− VI(xj+1)
VI(xj)

≥ r (5.5)

The advantage of the LDA method is that many collinear variables may

be selected, which may aid physical insight into the problem. For example,

if 0–3-km, 3–6-km, 850–500-mb, and 700–500-mb lapse rates are selected, this

indicates that both low- and mid-level lapse rates are important for severe wind.

If collinear variables were eliminated, perhaps only one lapse rate would be

returned, which would obfuscate this fact. Disadvantages of the LDA method are

that (a) too many collinear variables might be returned, thus overwhelming the

user and hindering physical interpretation; (b) some learning methods perform
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poorly with many collinear variables; and (c) it is highly subjective, since both a

criterion and parameter (N*, VI*, or r) must be chosen. The parameter should

be chosen in a way that gives a manageable number of variables (usually on the

order of 10), but to our knowledge there are no widely accepted values for any

of these parameters.

5.3.2 Linear-dependence-controlling Method

Variables are selected by the procedure described in Algorithm 5.3. Each time

that a variable xj is selected, all variables xk meeting the following criteria are

eliminated:

1. VI(xk) < VI(xj) at confidence level α.

2. |Pearson(xj, xk)| ≥ r∗ at confidence level α, where |Pearson(xj, xk)| is the

absolute Pearson correlation and r* is a threshold.

The confidence interval for each variable importance and absolute Pearson cor-

relation may be determined by bootstrapping.

The main advantage of the LDC method is that it is less subjective than LDA.

For the LDA method, one must choose from three selection criteria, then choose

the parameter that goes with said criterion. For the LDA method, although

two parameters must be chosen, there are widely accepted values for a strong

confidence interval (95%, leading to α = 0.05 for the one-tailed hypothesis tests

in steps 1 and 2) and moderate (0.3) or strong (0.6) correlation.
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Algorithm 5.3: Linear-dependence-controlling variable selection. CI =

confidence interval; VI = variable importance.
Input: predictors = list of N predictors

impDiff(i, j) = bottom of CI for VI(predictors(i)) - VI(predictors(j))

absCorr(i, j) = bottom of CI for |Pearson(predictors(i),

predictors(j))|

meanImp(i) = mean importance (VI) of predictors(i)

r* = threshold for absolute Pearson correlation

Output: bestPredictors = list of predictors selected

bestPredictors = empty set;

while predictors is not empty do

// Let i = index of best remaining predictor.

(maxImportance, i) = max(meanImp);

Append predictors(i) to bestPredictors;

// Remove if significantly correlated with, and significantly

less important than, predictors(i).

for j = 1. . . length(predictors) do

if impDiff(i, j) > 0 ∩ absCorr(i, j) > r* ∩ i 6= j then
Remove predictors(j) from predictors;

Remove corresponding entries from impDiff, absCorr, meanImp;

j = j - 1 ; // So that entries are not skipped.

end

end

Remove predictors(i) from predictors;

Remove corresponding entries from impDiff, absCorr, meanImp;
end

return bestPredictors;

126



Chapter 6

Experiments

6.1 Experiment 1: Comparison of

Machine-learning Algorithms

We compare the performance of five base-model algorithms: logistic regression

(described in Section 4.1.1.1), LREN (Section 4.1.1.2), FFNN (Section 4.1.1.3),

random forests (Section 4.1.1.5), and GBT ensembles (Section 4.1.1.6). Isotonic

regression (Section 4.1.2.2) is used to calibrate probabilities for all base models.

We ruled out Platt scaling a priori, because (a) of the five base-model algorithms,

Platt scaling is appropriate only for GBT ensembles (see end of Section 4.1.2.1);

(b) even for GBT ensembles, Platt scaling does not appear to perform better than

isotonic regression (Figures 2-3 of Niculescu-Mizil and Caruana, 2005). The five

base-model algorithms are compared for each buffer distance (0, 5, and 10 km)

and lead-time window ([0, 15]; [15, 30]; [30, 45]; [45, 60]; and [60, 90] minutes).

Sampling techniques are as described in Section 4.2. Storm objects are drawn

from a uniform distribution of Umax for training the base model, from the best-

observed distribution (with N∗obs = 25) for training the isotonic model, and from

the best-observed distribution (again with N∗obs = 25) for testing the combined

model (base model plus isotonic regression). 50% of available examples (those
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drawn from the uniform distribution) are used to train the base model; 75%

of available examples (those from the best-observed distribution that are inde-

pendent of base-model-training data) are used to train the isotonic model; and

remaining examples (those from the best-observed distribution that are indepen-

dent of both training sets) are used to test the combined model. All discussions

of “independence” in this chapter use the 24-hour criterion defined in Section

4.2.4.

We set N∗obs = 25 for the best-observed distribution, which means that all

storm objects with Umax ≥ 50 kt or Nobs ≥ 25 are used. We found that lower

values allow many more negative cases (storm objects with label = 0, which may

actually have produced severe winds that were unobserved), leading to a sharp

decrease in forecast resolution (an inability to forecast probabilities near 100%),

even after calibration.

Model selection is described in Section 6.1.1; cross-validation methods are

described in Section 6.1.2; and the parameters used for each model, as well as

details of its execution, are given in Appendix A. The procedures described in all

subsections are repeated for each buffer distance and lead-time window. Figure

6.1 shows how these procedures fit together.

6.1.1 Model Selection

Each base model is trained with all combinations of parameters listed in Ap-

pendix A, then calibrated with isotonic regression. This leads to 1786 combined

models: one with logistic regression as the base model, 25 for LREN, 800 for

FFNN, 210 for random forests, and 750 for GBT ensembles.

Combined models are ranked by area under the ROC curve (AUC) (Section

4.3.4). We also considered using maximum critical success index (CSI) (Section

4.3.5) and Brier skill score (BSS) (Section 4.3.6). We decided against maximum
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Figure 6.1: Flow chart for Experiment 1. Each red box is an action, and each

green ellipse is an object (or set of objects). Steps 1-6 are repeated for each

buffer distance, lead-time window, and each of 1786 sets of base-model

parameters.
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CSI because it is an unstable statistic: it considers only one probability threshold

(f* in Equation 4.21), whereas AUC considers all probability thresholds. Thus, it

is easier to obtain a spuriously high maximum CSI than a spuriously high AUC.

We decided against the BSS because we found that, even when two models

have very different AUC and maximum CSI, they often have very similar BSS.

Furthermore, we found that models with the best AUC tend to have nearly the

best maximum CSI and BSS.

Ideally, we would use the following method to select combined models.

1. Use the same training set A for all base models and B for all isotonic

models, so that the same testing set C can be used for all combined models.

2. Bootstrap the testing set K times. For each model, find the AUC for each

bootstrapped testing set and the mean AUC over all bootstrapped sets.

3. Let the model with the highest mean AUC be F1. For all other models F,

find AUC(F1)− AUC(F ) for all bootstrapped testing sets. Then find the

5th percentile of AUC(F1)− AUC(F ) and call this (∆AUC)5.

4. Select all models with (∆AUC)5 ≤ 0 (for which one cannot say with 95%

confidence that F1 is better).

However, most of our testing sets (one for each buffer distance and lead-

time window) contain ~104, for which the creation of ROC curves takes a lot of

computing time. Thus, it was impractical to bootstrap the AUC many times

for each model. In previous experiments with bootstrapping (involving many

fewer models), we found that when the non-bootstrapped AUC (computed for

all testing data) differs by ≤ 0.01 between F and F1, (∆AUC)5 ≤ 0. In other

words, when the non-bootstrapped AUC differs by ≤ 0.01, the difference is not

statistically significant. Thus, we amended the above procedure as follows.

1. Find the non-bootstrapped AUC for each model.
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Algorithm Number of Folds Independent Folds? Criterion

Logistic regression 10 Yes AUC

LREN 2 Yes AUC

FFNN 2 Yes AUC

Random forests 2 No AUC

GBT ensembles 2 No AUC

Isotonic regression 10 Yes Brier score

Table 6.1: Cross-validation parameters for each machine-learning algorithm.

2. Let the highest AUC be AUCmax. Keep all models with AUC ≥ AUCmax−

0.01.

6.1.2 Cross-validation

Cross-validation methods are listed in Table 6.1. Ten-fold cross-validation is

preferred, but two-fold is used when ten-fold would be too computationally in-

tensive. In general, for K -fold cross-validation, training examples are split into

K mutually exclusive sets called “folds”. Then K models are trained, where

the kth model is validated with the kth fold and trained with all others. The

separation of training and validation examples for each model is called a “par-

tition”. Each model is verified on its respective validation fold, which allows the

best model to be kept and the others to be discarded. As long as the K folds

are mutually independent (addressed later in this section) and testing data are

independent of the training/validation data (addressed in Section 6.1, where the

training/validation data are just called the “training” data), the best model on

its respective validation fold should be the best model on the testing set.
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For base models, we keep the model with the highest AUC on its respective

validation fold. AUC is used for reasons discussed in Section 6.1.1. For isotonic

regression, we keep the model with the lowest Brier score (BS) (Equation 4.15)

on its respective validation fold. This is because (a) BS is the objective function

for isotonic regression (Section 4.1.2.2) and (b) often, when isotonic regression

causes a large decrease in BS (improvement in probability calibration), it causes

a slight decrease (worsening) in AUC. We are willing to accept this trade for

a well calibrated model. Unlike in Section 6.1.1, we do not test whether this

AUC is significantly higher (or BS is significantly lower) than those for the other

partitions. This is because, for a given set of model parameters, we do not need

to know which partition leads (or partitions lead) to the best model. We are

concerned only with finding and keeping the best model.

For logistic regression, LREN, FFNN, and isotonic regression, we ensure

mutual independence among the K folds. However, for random forests and

GBT ensembles, (a) cross-validation is built into the MATLAB function; (b)

cross-validation performs a crucial role in the MATLAB function; and (c) the

examples in each fold cannot be specified. Thus, for random forests and GBT

ensembles, we cannot make the training and validation data fully independent.

We accept that this may lead to the wrong cross-validated model being kept.

However, we still ensure that the testing data are independent of both training

and validation data, so this should have little effect on model selection.

6.1.3 Results

Selected models are shown in Appendix B. For a given buffer distance and lead-

time window, if more than 20 models have been selected, only the top 20 are

shown. We make two key observations from Appendix B, the first of which is that

most of the base models selected are either random forests or GBT ensembles
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Buffer Dist Lead Time # Tree Ensembles # Selected Models

0 km [0, 15] min 40 72

0 km [15, 30] min 35 39

0 km [30, 45] min 48 55

0 km [45, 60] min 17 17

0 km [60, 90] min 7 7

5 km [0, 15] min 15 19

5 km [15, 30] min 34 41

5 km [30, 45] min 89 120

5 km [45, 60] min 38 52

5 km [60, 90] min 13 18

10 km [0, 15] min 27 35

10 km [15, 30] min 28 42

10 km [30, 45] min 18 22

10 km [45, 60] min 11 17

10 km [60, 90] min 7 7

Table 6.2: Number of tree ensembles selected for each buffer distance and

lead-time window.
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(Table 6.2). This was expected, given (a) the ability of decision trees (and

ensembles thereof) to deal with a large number of predictor variables (Section

4.1.1.4) and (b) past successes of GBT ensembles in meteorology [e.g., the top

three finishers in a recent contest to predict surface incoming solar radiation

were all GBT ensembles (McGovern et al., 2015)].

Our second observation from Appendix B is that there is very little con-

sistency in the parameters for selected models, which may suggest one of two

things: (a) the parameters have little effect on performance in general or (b)

the parameters have little effect within the range of values tested. The second

explanation is more likely, since we worked extensively with the five base-model

algorithms before Experiment 1 and had roughly narrowed down a range of op-

timal values for each. Thus, in Experiment 1 we tested only values within these

ranges, which were likely to be more fruitful than values outside of said ranges.

For each buffer distance and lead-time window, Figures 6.2-6.6 show the ROC

curve, performance diagram, and reliability curve for the best model. These

figures are created by applying the combined model (base model + isotonic

regression) to the testing data (which are independent of both the base-model-

training and isotonic-training data). The attributes diagram for each buffer

distance and lead-time window is shown in Figures 6.7-6.11. We could not plot

more than one attributes diagram on the same axes, because the attributes

diagram includes four special lines and polygons – the climatology line, no-

resolution line, no-skill line, and positive-skill area (Section 4.3.6) – which vary

for each buffer distance and lead-time window.

Observations from Figures 6.2-6.11 are listed below.

1. For each buffer distance, the AUC, maximum CSI, and BSS decrease

(worsen) with lead time; for each lead-time window, the same values de-

crease with buffer distance (Figures 6.2-6.6). Both of these relationships
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make sense, since physical phenomena are generally more difficult to pre-

dict when they are more spatially and temporally distant.

2. The vast majority of each reliability curve (Figures 6.2-6.6) lies within the

positive-skill area (shaded in blue). This means that for most combinations

of buffer distance, lead-time window, and forecast probability, our models

have a positive BSS – i.e., they have a lower (better) Brier score (Equation

4.15) than a climatological forecast.

3. For each buffer distance, the climatology line in the attributes diagram

(Figures 6.7-6.11) moves to the left with lead time. This means that the

frequency of the event (maximum storm-object wind Umax ≥ 50 kt) de-

creases with lead time, as expected. Thunderstorms are short-lived phe-

nomena, and as lead time increases, it becomes more likely that the storm

will be either weaker or non-existent (and therefore incapable of producing

severe winds).

However, for each lead-time window, the climatology line also moves to

the left with buffer distance. This means that the frequency of the event

(Umax ≥ 50 kt) decreases with buffer distance, which is counterintuitive.

Increasing the buffer distance around the storm object can only increase

Umax, because this increases the area from which wind observations are

linked to the storm object. This paradox is explained by the way that

data are sampled for model calibration and testing (Section 4.2.2). For

each buffer distance and lead-time window, we use only storm objects with

Nobs ≥ 25 associated wind observations or Umax ≥ 50 kt (after ensuring

that the percentage of dead storms in the sampled dataset equals that in

the full dataset). As buffer distance increases, the number of storm objects

with Nobs ≥ 25 wind observations increases, and this apparently increases

at a faster rate than the number with Umax ≥ 50 kt. Thus, increasing the
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buffer distance allows for more “well observed” storm objects with Umax <

50 kt, which decreases the event frequency.

4. As the climatology line in the attributes diagram moves to the left (with

increasing buffer distance or lead-time window), the forecast histogram

(right-hand side of Figures 6.7-6.11) becomes more left-peaked. In other

words, as the event becomes rarer, high forecast probabilities become rarer

and low forecast probabilities become more common. This is an encourag-

ing result.

5. The AUC values (Figures 6.2-6.6) for 14 of 15 pairs of buffer distance and

lead-time window are ≥ 0.9, which is considered “excellent” by the criteria

listed in Section 4.3.4. Only for the greatest buffer distance (10 km) and

lead-time window ([60, 90] minutes) is the AUC < 0.9. Here the AUC is

0.89, which is still considered “good”.

6. As mentioned in Sections 4.3.5 and 4.3.6, there is no standard set of evalu-

ative criteria for maximum CSI or BSS. However, points 2, 4, and 5 suggest

that our models have achieved very good performance.

7. For each buffer distance and lead-time window, the maximum CSI (Figures

6.2-6.6) occurs with a frequency bias (Equation 4.23a) of ~1, which is ideal.

This means that the event is forecast nearly as often as it occurs.

6.2 Experiment 2: Variable Selection

Three methods are used for each buffer distance and lead-time window: sequen-

tial forward selection (SFS) (Section 5.1.1), the decision-tree method (DTM)

(Section 5.1.3), and J -measures (Section 5.2.1). Sequential backward selection

(SBS) is omitted for reasons discussed in Section 5.1.2 (mainly that it takes too

much computing time).
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Figure 6.2: (a) ROC curves, (b) performance diagram, and (c) reliability curves

for best models with lead time of [0, 15] minutes. Each solid curve is a mean,

and each shaded area is a 95% confidence interval, over 25 bootstrap replicates

of the testing data. Base model for 0-km buffer is a random forest; base model

for 5-km and 10-km buffers is a GBT ensemble.
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Figure 6.3: As in Figure 6.2, except for a lead time of [15, 30] minutes. Base

model for 0-km and 5-km buffers is a GBT ensemble; base model for 10-km

buffer is LREN.
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Figure 6.4: As in Figure 6.2, except for a lead time of [30, 45] minutes. Base

model for 0-km buffer is a random forest; base model for 5-km and 10-km

buffers is an FFNN.
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Figure 6.5: As in Figure 6.2, except for a lead time of [45, 60] minutes. Base

model for 5-km buffer is a random forest; base model for 0-km and 10-km

buffers is a GBT ensemble.
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Figure 6.6: As in Figure 6.2, except for a lead time of [60, 90] minutes. Base

model for 10-km buffer is a random forest; base model for 0-km and 5-km

buffers is a GBT ensemble.
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Figure 6.7: (a) Attributes diagram with (b) forecast histogram for buffer

distance of 0 km; (c) and (d) same for 5-km buffer distance; (e) and (f) same

for 10-km buffer distance. Lead-time window is [0, 15] minutes in all cases.

Each solid curve is a mean, and each shaded area is a 95% confidence interval,

over 25 bootstrap replicates of the testing data. Base model for 0-km buffer is

a random forest; base model for 5-km and 10-km buffers is a GBT ensemble.
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Figure 6.8: As in Figure 6.7, except for a lead time of [15, 30] minutes. Base

model for 0-km and 5-km buffers is a GBT ensemble; base model for 10-km

buffer is LREN.
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Figure 6.9: As in Figure 6.7, except for a lead time of [30, 45] minutes. Base

model for 0-km buffer is a random forest; base model for 5-km and 10-km

buffers is an FFNN.
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Figure 6.10: As in Figure 6.7, except for a lead time of [45, 60] minutes. Base

model for 5-km buffer is a random forest; base model for 0-km and 10-km

buffers is a GBT ensemble.
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Figure 6.11: As in Figure 6.7, except for a lead time of [60, 90] minutes. Base

model for 10-km buffer is a random forest; base model for 0-km and 5-km

buffers is a GBT ensemble.
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Parameter Value

Base model Logistic regression

Calibration model Isotonic regression

Latency time 5 selection steps

Verification statistic AUC

Table 6.3: Parameters for sequential forward selection.

6.2.1 Sequential Forward Selection

SFS is run with the parameters listed in Table 6.3. To understand the role of

the latency time and verification statistic, see Algorithm 5.1. The verification

statistic is AUC for reasons discussed in Section 6.1.1. Sampling techniques are

as described in Section 6.1. To reduce computing time, cross-validation is done

only for the isotonic model, using the two-fold method discussed in Section 6.1.2.

Of the two cross-validated models, the one with the lowest Brier score is kept,

for reasons discussed in Section 6.1.1.

For each buffer distance and lead-time window, the procedure shown in Figure

6.12 is iterated 25 times. For each iteration, data from the uniform and best-

observed distributions are bootstrapped independently. After 25 iterations, we

count how many times each predictor variable was included in the model (i.e.,

how many times it was included in bestPredictors by Algorithm 5.1).

6.2.2 Decision-tree Method

The vast majority of models selected in Experiment 1 are random forests and

GBT ensembles (Section 6.1.3), which are based on decision trees and therefore

eligible for the DTM. First we considered the following procedure for each buffer

distance and lead-time window.
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Figure 6.12: Flow chart for Experiment 2. Each red box is an action, and each

green ellipse is an object (or set of objects). Bootstrapping and steps 1-6 are

repeated 25 times for each buffer distance and lead-time window.
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1. Find the best model (F1) from Experiment 1.

2. Bootstrap the original training data1 K times. Apply the DTM to each

bootstrap replicate, using F1 as the underlying model.

However, this would be inappropriate, because random forests already involve

bootstrapping (called “tree-bagging” in Section 4.1.1.5). Thus, we use multiple

models to obtain confidence intervals for variable importance. Specifically, for

each buffer distance and lead-time window:

1. Find all random forests and GBT ensembles within 0.01 of the maximum

AUC (Section 6.1.1). Let this set of models be F.

2. Run the DTM for each model in F.

Since the DTM applies only to decision trees, no isotonic regression or other

probability calibration is used.

6.2.3 J-measures

Data are sampled from the best-observed distribution (Section 4.2.2), withN∗obs =

25 as for Experiment 1 (Section 6.1). For each buffer distance and lead-time win-

dow, J -measures are calculated for 25 bootstrap replicates from this distribution.

Each J -measure is calculated with 10 bins (K = 10 in Equation 5.3) and an equal

number of storm objects per bin.

6.2.4 From Variable-ranking to Selection

Each method described above returns a set of variable importances: number of

times included in model (SFS), mean reduction in deviance (DTM), and mean J -

measure. For reasons discussed in Section 5.3, the linear-dependence-controlling

(LDC) method is used to select variables with the highest J -measures, while
1The decision-tree method requires the original training data.
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the linear-dependence-agnostic (LDA) method is used for all sets of variable

importances.

At first we used the LDA method with the third criterion in Section 5.3.1,

which stops at k variables when there is a large decrease in importance between

the kth and (k + 1)th-ranked variables. However, this often led to too few (1-

3) or too many (> 20) variables being selected, which made results difficult to

interpret. Thus, for each set of variable importances, we manually find a large

decrease near 10 variables and select all variables above this cutoff.

6.2.5 Results

Figure 6.13 shows the four sets of variables selected for a buffer distance of 0 km

and lead time of [0, 15] minutes; Figure 6.14 shows results for 5 km and [30, 45]

minutes; and Figure 6.15 shows results for 10 km and [60, 90] minutes. These are

the smallest, median, and largest values respectively of both buffer distance and

lead-time window. Thus, progressing from Figure 6.13 to 6.15, results are valid

for increasingly distant predictions (both spatially and temporally). Results for

other combinations of buffer distance and lead time are shown in Appendix C.

Observations from Figure 6.13 (shortest buffer distance and lead time) are

as follows.

1. For J -measures with the linear-dependence-agnostic (LDA) selection, all

variables selected are radar statistics. Seven of the nine statistics involve

either -10 ◦C or -20 ◦C reflectivity, and the other two involve either maxi-

mum estimated hail size (MESH) or severe-hail index (SHI). None of these

statistics involve gradients or a moment higher than the 0th (mean).
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Figure 6.13: Variables selected for (a) J -measures with LDA selection; (b)

J -measures with LDC selection; (c) decision-tree method; and (d) sequential

forward selection at buffer distance of 0 km and lead time of [0, 15] minutes.
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2. For J -measures with the linear-dependence-controlling (LDC) selection

method, six of the seven variables are radar statistics. Three of these statis-

tics involve absolute values, and one involves gradients, of -10 ◦C reflec-

tivity. The other two statistics involve absolute values of SHI (maximum

and kurtosis). The last variable selected is the mean absolute curvature of

vertices in the storm object (Section 3.5).

3. For the decision-tree method (DTM), all 12 variables selected are radar

statistics. Seven of these involve either -10 ◦C or -20 ◦C reflectivity; four

involve MESH or SHI; and the last involves 50-dBZ echo tops. Again, none

of these statistics involve gradients or a moment higher than the 0th.

4. Sequential forward selection (SFS) has very different results than the other

methods. Of the nine variables selected, only two (mean -10 ◦C reflectivity

and median gradient of 50-dBZ echo tops) are radar statistics; the other

seven are sounding parameters. Three of the sounding parameters (0–3-km

lapse rate, precipitable water, and column-minimum buoyancy) are ther-

modynamic, involving only vertical profiles of temperature and humidity;

one (magnitude of mean planetary boundary layer [PBL] wind) is dynamic,

involving only the vertical profile of wind velocity; and three (Fosberg fire-

weather index, bulk Richardson number, and significant-severe parameter)

are composite indices, involving both dynamic and thermodynamic vari-

ables.

Observations from Figure 6.14 (median buffer distance and lead time) are as

follows.

1. For J -measures with LDA selection, results are nearly the same as in Figure

6.13. All variables selected are radar statistics; most involve -10 ◦C or -

20 ◦C reflectivity, while the others involve MESH or SHI; none involve

gradients; and none involve a moment higher than the 0th.
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Figure 6.14: As in Figure 6.13, except for a buffer distance of 5 km and lead

time of [30, 45] minutes.
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2. For J -measures with LDC selection, the top three of five variables are

radar statistics. As in Figure 6.13, these statistics involve either -10 ◦C

reflectivity or SHI. The other two variables (mesoscale convective system

[MCS] maintenance probability and 850–500-mb lapse rate) are sounding

parameters, which is different than in Figure 6.13.

3. For the DTM, results are nearly the same as in Figure 6.13. All variables

selected are radar statistics; most involve -10 ◦C reflectivity, -20 ◦C reflec-

tivity, MESH, or SHI; almost none involve gradients; and none involve a

moment higher than the 0th.

4. Again, SFS has very different results than the other methods. Of the six

variables selected, only two (mean -10 ◦C reflectivity and maximum 50-dBZ

echo top) are radar statistics; the other four are sounding parameters. One

of the sounding parameters (mean PBL relative humidity) is purely ther-

modynamic; one (magnitude of mean wind from the lifting condensation

level – equilibrium level [LCL-EL]) is purely dynamic; and the other two

(severe hazards in environments with reduced buoyancy [SHERB] param-

eter and derecho composite parameter) are composite indices.

The only variable selected in both Figures 6.13d (SFS at shortest buffer

distance and lead time) and 6.14d (SFS at median buffer distance and lead

time) is mean -10 ◦C reflectivity. However, a statistic involving 50-dBZ

echo top is also selected in both figures (median gradient in 6.13d and

maximum absolute value in 6.14d). The following variables are selected

in Figure 6.13d with no similar counterpart in 6.14d: Fosberg fire-weather

index, bulk Richardson number, magnitude of mean PBL wind, 0–3-km

lapse rate, precipitable water, significant-severe parameter, and column-

minimum buoyancy. Meanwhile, the following variables are selected in

Figure 6.14d with no similar counterpart in 6.13d: SHERB parameter,
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Figure 6.15: As in Figure 6.13, except for a buffer distance of 10 km and lead

time of [60, 90] minutes.

mean PBL relative humidity, derecho composite parameter, and magnitude

of mean LCL-EL wind.

Observations from Figure 6.14 (longest buffer distance and lead time) are as

follows.

1. For J -measures with LDA selection, results are basically the same as in

Figures 6.13 and 6.14.

2. For J -measures with LDC selection, five of the top six variables are statis-

tics involving -10 ◦C reflectivity and SHI, similar to Figures 6.13 and 6.14.

The remaining variable is the derecho composite parameter.

3. For the DTM, results are basically the same as in Figures 6.13 and 6.14.
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4. SFS produces very different results than the other methods. Of the 11

variables selected, only four (skewness of gradient of 18-dBZ echo top,

maximum 50-dBZ echo top, kurtosis of gradient of 50-dBZ echo top, and

kurtosis of gradient of lowest-altitude reflectivity) are radar statistics; one

is a shape parameter (cosine of orientation); and the other six are sounding

parameters. Two sounding parameters (0–3-km lapse rate and 0–6-km

convective available potential energy [CAPE]) are purely thermodynamic;

two (cosine of effective-layer shear and sine of mean 0–8-km storm-relative

wind [SRW]) are purely dynamic; and two (bulk Richardson number and

SHERB parameter) are composite indices.

No variable is selected by SFS in all three figures. However, at least one

statistic involving 50-dBZ echo top is selected in all three figures (median

gradient in 6.13d; maximum absolute value in 6.14d and 6.15d; kurtosis of

gradient in 6.15d). The following variables are selected in Figure 6.15d with

no similar counterpart in 6.13d: cosine of orientation, cosine of effective-

layer shear, sine of 0–8-km mean SRW, and 0–6-km CAPE.

To facilitate physical interpretation of the relationships found above, class-

conditional PDFs for some of the selected variables are shown in Figures 6.16-

6.18.

Figure 6.16 shows class-conditional PDFs of four statistics involving -10 ◦C

reflectivity, which are selected very often for all buffer distances and lead times.

PDFs in Figure 6.16 are conditioned on the storm-object label for a buffer dis-

tance of 5 km and lead time of [30, 45] minutes, which are median values. Anal-

ogous PDFs for other buffer distances and lead times are similar: the non-severe

PDF peaks at low reflectivity values, and the severe PDF peaks at high reflectiv-

ity values. This makes physical sense, because reflectivity is positively correlated
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Figure 6.16: Class-conditional PDFs for statistics involving -10 ◦C reflectivity.

The “class” is the label for the storm object (1 if Umax ≥ 50 kt, 0 otherwise) at

a buffer distance of 5 km and lead time of [30, 45] minutes. The orange curve is

the PDF for storm objects with label = 1; the purple curve is for storm objects

with label = 0. Each solid line is a mean, and each shaded area is a 95%

confidence interval, over 25 bootstrap replicates.
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Figure 6.17: Class-conditional PDFs of variables selected for buffer distance of

0 km and lead time of [0, 15] minutes. Meanings of solid lines and shaded areas

are as in Figure 6.16.

with updraft strength (Section 3.1.1), which is positively correlated with down-

draft strength and the potential for strong horizontal wind caused by downbursts

(Section 2.1).

Statistics involving -20 ◦C reflectivity, MESH, and SHI are also selected very

often for all lead times and buffer distances. Class-conditional PDFs for these

variables (Figures C.13-C.15) are similar to those for -10 ◦C reflectivity. Figures

C.13-C.15 can be interpreted in essentially the same way as Figure 6.16, since

all three variables are positively correlated with updraft strength.
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Figure 6.17 shows class-conditional PDFs of variables selected mainly at the

shorter buffer distances and lead times. Accordingly, these PDFs are conditioned

on the storm-object label for 0 km and [0, 15] minutes. This figure is discussed

below.

1. The severe PDF peaks at higher values of the Fosberg fire-weather in-

dex (FFWI), and the non-severe PDF peaks at lower FFWI values. In

other words, FFWI is positively correlated with severe wind. This makes

sense, because FFWI decreases with surface relative humidity (RH) and in-

creases with surface wind speed2. When surface RH is low, there is usually

ample subsaturated air below the cloud base, which increases the poten-

tial for evaporative cooling and damaging downbursts (Section 2.1). Also,

when the background wind speed is high, less storm-related enhancement

is needed to reach a wind speed of 50 kt.

2. Severe wind is positively correlated with mean wind in the planetary

boundary layer (PBL). The explanation for this relationship is the same

as for surface wind speed in point 1.

3. Severe wind is negatively correlated with precipitable water (PW), which is

the amount of water vapour per unit horizontal area. (Assuming a liquid-

water density of 1000 kg m-3, 1 mm of PW = 1 kg m-2 of PW, which makes

the “per unit horizontal area” clearer.) When the PW is higher, low-level

humidity tends to be higher, which means that there is less subsaturated

air below the cloud base – therefore, less potential for evaporative cooling

and damaging downbursts.
2Background wind speed, not associated with the storm itself. The exact calculation

method for FFWI is shown in the SHARPpy documentation (https://github.com/sharppy/

SHARPpy/blob/master/sharppy/sharptab/fire.py).
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Figure 6.18: Class-conditional PDFs of selected variables for buffer distance of

10 km and lead time of [60, 90] minutes. Meanings of solid lines and shaded

areas are as in Figure 6.16.

4. Severe wind is positively correlated with column-minimum buoyancy. When

the column-minimum buoyancy is higher (less negative), buoyancy through-

out the column (not just at the level of minimum buoyancy) tends to be

higher, which means that there is less negative buoyancy – therefore, less

resistance to convection and more potential for strong thunderstorms.

Figure 6.18 shows class-conditional PDFs of variables selected mainly at the

longer buffer distances and lead times. Accordingly, these PDFs are conditioned

on the storm-object label for 10 km and [60, 90] minutes. In the following discus-

sion, keep in mind that the cosine of a vector is proportional to its x-component
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(east-west) and the sine of a vector is proportional to its y-component (north-

south). East is defined as the positive x-direction, and north is defined as the

positive y-direction.

ux = ‖~u‖cos(~u) (6.1a)

uy = ‖~u‖sin(~u) (6.1b)

Figure 6.18 is discussed below.

1. Cosine of orientation (cos(θorient)). This is the cosine between the x-axis

and the storm’s major axis. When |cos(θorient)| <
√

2
2 , θorient ∈ (45, 135)◦,

which means that the storm is oriented mainly along the y-axis (north-

south). When |cos(θorient)| >
√

2
2 , θorient < 45◦ or > 135◦, so the storm

is oriented mainly along the x-axis (east-west). However, the relationship

between θorient and severe wind is difficult to interpret, because the severe

and non-severe PDFs are essentially the same. Despite this, cosine of

orientation was included in 12 of 25 models by sequential forward selection

at a buffer distance of 10 km and lead time of [60, 90] minutes (Figure

6.15). Perhaps θorient is important for only a small subset of storms, which

is why there is no clear correlation in Figure 6.18a.

2. Severe wind is positively correlated with the cosine (x-component) of eff-

layer shear. In general, wind shear is important for storm longevity, be-

cause it allows the updraft and downdraft columns to separate, which

prevents the downdraft from extinguishing the updraft. Also, when thun-

derstorms occur in a high-shear environment in the CONUS, the shear

vector is often westerly, due to southerly winds near the surface and west-

erly winds aloft. A westerly shear vector points eastward, which means

that it has a high cosine. Thus, it makes physical sense that the cosine of

effective-layer shear is positively correlated with severe wind.
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3. Severe wind is positively correlated with 0–6-km CAPE. Higher CAPE

means more positive buoyancy, which means more potential for strong

thunderstorms.

4. Severe wind is positively correlated with the SHERB parameter. The

SHERB parameter increases with 0–3-km lapse rate, 700–500-mb lapse

rate, and effective-bulk-layer shear3. When low-level lapse rate is high

(close to the dry adiabatic lapse rate), there tends to be ample subsatu-

rated air below the cloud base, which increases the potential for evaporative

cooling and downbursts. Also, as mentioned above, high shear is required

for storm maintenance.

Finally, we have three general observations from Experiment 2. First, two of

four variables selected primarily for longer lead times (cosine of effective-layer

shear and the SHERB parameter, as shown in Figure 6.18) are strongly related

to storm longevity. This makes physical sense, because to predict storm-scale

winds at a lead time of [60, 90] minutes, a significant subproblem is predicting

whether or not the storm will last long enough.

Second, statistics involving -10 ◦C and -20 ◦C reflectivity are selected much

more often than those involving any other radar variable. Also, statistics involv-

ing MESH and SHI are selected quite often. There are two possible explanations

for this.

1. Hail growth is strongest around the -10 ◦C level (Jewell and Brimelow,

2009), so hail is most common in this area. Since reflectivity is the sixth

moment of the drop-size distribution (Equation 3.1), it is dominated by

large particles such as hail stones. (For example, a 10-mm-diameter hail
3The exact calculation method for the SHERB parameter is shown in the SHARPpy

documentation (https://github.com/sharppy/SHARPpy/blob/master/sharppy/sharptab/

params.py).
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stone produces a reflectivity 106 times higher than a 1-mm-diameter rain

drop.) Thus, -10 ◦C (and to a lesser extent, -20 ◦C) reflectivity are strongly

correlated with hail size. When there is large hail, there is high potential

for downbursts caused by evaporative cooling and especially precipitation

drag (Section 2.1). This would also explain why statistics involving MESH

and SHI are selected quite often.

2. The popularity of -10 ◦C and -20 ◦C reflectivity may be an artifact of

storm detection, which is based on the -10 ◦C reflectivity field (Section 3.3).

w2segmotionll creates the storm object by outlining a locally maximum

area of -10 ◦C reflectivity, which probably contains the most salient features

of -10 ◦C reflectivity. However, if the storm is tilted away from the vertical

axis, this 2-D outline will not contain the most salient information at other

height or temperature levels.

Third, two of four predictor types (radar statistics and sounding parameters)

are selected quite often (several times for each buffer distance and lead-time

window). However, shape parameters are rarely selected, and storm motion is

never selected. There are two possible explanations.

1. There are many fewer shape parameters (9) and storm-motion components

(3) than radar statistics (264) and sounding parameters (155).

2. The unpopularity of shape parameters may be an artifact of storm detec-

tion. As mentioned above, each storm object is a 2-D outline based only

on the -10 ◦C reflectivity field, which may not be a good representation of

storm shape at other height and temperature levels.
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6.3 Experiment 3: Spring 2016 Forecasting

Experiment

Our models were demonstrated in the National Oceanic and Atmospheric Ad-

ministration’s (NOAA) 2016 Spring Forecasting Experiment (SFE). The SFE is

an annual event in which human forecasters test various NWP models, machine-

learning models, and other forecasting methods for thunderstorm-related hazards

(Clark et al., 2012).

There are four differences between the archived data used for model develop-

ment (Table 3.1) and real-time data used for the SFE. First, real-time radar im-

ages are from the Multi-radar Multi-sensor (MRMS) (Smith et al., 2016) dataset,

rather than MYRORSS. The main differences between MRMS and MYRORSS

are listed below.

1. MRMS undergoes slightly less quality control, because it must be available

in near-real time.

2. MRMS has a spatial resolution of 0.005◦ (~0.5 km) for low-level and mid-

level azimuthal shear, whereas MYRORSS has a resolution of 0.01◦ (~1.0

km). The spatial resolution for all other variable is 0.01◦ (~1.0 km) in both

MRMS and MYRORSS.

3. MRMS has a temporal resolution of ~2 minutes, compared to 5 minutes

for MYRORSS.

Second, near-storm environment (NSE) soundings are interpolated from the

Rapid Refresh (RAP) model, rather than the Rapid Update Cycle (RUC). The

RUC was discontinued in April 2012, and the RAP is its successor. RAP sound-

ings are temporally interpolated between forecast times, rather than initializa-

tion times. In other words, if the latest RAP solution was initialized at 1200
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UTC and soundings are needed for 1330 UTC, they are temporally interpolated

from the 1- and 2-hour forecasts (valid at 1300 and 1400 UTC, respectively).

During model development (Section 3.5), soundings would have been interpo-

lated from the 0-hour RUC analyses initialized at 1300 and 1400 UTC. Clearly

this is not an option in real-time, since the 1400 UTC initialization is not avail-

able at 1330 UTC. Also, the NARR could not be used as a backup model in

real-time, because it (like all other reanalyses) does not operate in real-time.

Third, wind observations are not linked to storm cells. During model devel-

opment, the point of linking wind observations is to create labels, which are used

to train the machine-learning models. However, in real-time the models are de-

ployed, rather than trained. In other words, models are used to predict unknown

labels, rather than being trained to learn the relationship between predictors and

labels. Also, labeling would be impossible in real-time, because labels are based

on future wind observations (at lead times of [0, 15]; [15, 30]; [30, 45]; [45, 60];

and [60, 90] minutes).

Fourth, storm tracks are based only on w2segmotionll, not w2besttrack.

Since w2besttrack is a post-event algorithm, it requires information from both

the past and future, which is clearly not available in real-time. In any case,

storm-tracking is unimportant in real-time, because its main purpose is to create

labels for model development. The only purpose of tracking in real-time is to

find the motion vector for each storm cell, which is used as a predictor (Section

3.5). For each storm object Sk, motion is estimated by a first-order backward

difference (position of Sk − position of Sk−1
time of Sk − time of Sk−1

), where Sk - 1 is the previous object in the

same track. If Sk is the first object in the track, storm motion is left blank and

not used as a predictor.

To select models for the 2016 SFE, we performed an experiment similar to

Experiment 1. For each buffer distance and lead-time window, we trained several
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base models with different sets of parameters, calibrated each base model using

isotonic regression, and selected the combined model (base model + isotonic

regression) with the highest AUC. The main difference is that in the pre-SFE

experiment we tested only two base models (random forests and GBT ensem-

bles); also, we tested fewer sets of parameters for these models. For this reason

the best SFE models were slightly inferior to the best models from Experiment

1. For 0 km and [0, 15] minutes, the best SFE model had an AUC of 0.975,

maximum CSI of 0.91, and BSS of 0.74 (compared to 0.996, 0.99, and 0.88 re-

spectively). For 10 km and [60, 90] minutes, the best SFE model had an AUC of

0.87, maximum CSI of 0.18, and BSS of 0.09 (compared to 0.89, 0.20, and 0.12

respectively).

Forecast probabilities from the best SFE models were shown in the Proba-

bilistic Hazard Information (PHI) (Karstens et al., 2014) tool, which is a visual-

ization tool for storm data and forecasts. Specifically, a probability-time graph

was shown for each storm object (e.g., Figure 3.16). Forecasts were updated

whenever new MRMS data arrived (every ~2 minutes), and the latency time

(processing time for each forecast update) was ~4 minutes. Since the SFE ended

in July, we have not had time to verify the SFE forecasts. This is a key priority

in the near future.
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Chapter 7

Conclusions

This study combined three datasets – radar images from MYRORSS, atmo-

spheric soundings from the RUC and NARR, and near-surface wind observations

from both weather stations and NWS local storm reports – to predict damaging

straight-line winds from thunderstorms. These datasets were processed in four

ways. First, storm cells were detected from the radar images and tracked in

time. Second, wind observations were linked to nearby storm cells. Third, a

set of 431 predictors (including radar statistics, storm motion, shape parameters

describing the storm boundary, and sounding parameters describing the near-

storm environment) was created for each storm object (one storm cell at one

time step). Fourth, labels were calculated for each storm object S, indicating

whether or not S was linked to a severe wind gust (≥ 50 kt) at the given buffer

distance and lead-time window. Since there were three buffer distances (0, 5,

and 10 km) and five lead-time windows ([0, 15]; ([15, 30]; ([30, 45]; ([45, 60]; and

([60, 90] minutes), 15 labels were calculated for each storm object.

These predictors and labels were used to train a combined model for each

buffer distance and lead-time window. Each combined model had two com-

ponents: a base model, which produced the original forecasts (probability of

maximum storm-object wind Umax ≥ 50 kt), and an isotonic-regression model,
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which calibrated these forecasts into reliable probabilities. We experimented

with five base models (logistic regression, logistic regression with an elastic net,

feed-forward neural nets, random forests, and gradient-boosted tree [GBT] en-

sembles) and determined that, for most buffer distances and lead-time windows,

the best base models are random forests and GBT ensembles.

Finally, we used three methods to select the most important predictors for

each buffer distance and lead-time window: sequential forward selection (SFS),

the decision-tree method (DTM), and J -measures. Two of the four predictor

types (radar statistics and sounding parameters) were frequently selected as

important variables. Shape parameters were very rarely selected, and storm

motion was never selected. Statistics of -10 ◦C reflectivity, -20 ◦C reflectivity,

maximum estimated hail size (MESH), and severe-hail index (SHI) – all of which

are strongly related to hail – were selected more often than other radar statistics.

However, this may be an artifact of storm detection, which is based only on the

-10 ◦C reflectivity field.

Our hypothesis was that for each combination of buffer distance, lead-time

window, and forecast probability, our models would outperform climatology.

According to the Brier skill score (which is positive – better than climatology –

in the blue shaded area of the attributes diagram), this is true for all but a few

combinations.

To our knowledge, only four previous studies (Kitzmiller et al., 1995; Marzban

and Stumpf, 1998; Alexiuk et al., 1999; Cintineo et al., 2014) have used machine

learning to predict damaging straight-line convective winds. We cannot compare

our performance directly to these models, because they either (a) forecast many

thunderstorm hazards at once, rather than focusing specifically on straight-line

wind (Kitzmiller et al., 1995; Marzban and Stumpf, 1998; Cintineo et al., 2014),

or (b) forecast straight-line wind only for storms that were already known to be
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severe (Alexiuk et al., 1999). However, we made clear contributions beyond these

studies: (a) using measured wind observations from weather stations, rather than

only human reports; (b) using multiple data sources to create predictors; (c) pre-

dicting only straight-line wind, separate from other thunderstorm hazards1; (d)

using composited, rather than single-radar, data; (e) using advanced machine-

learning algorithms with probability calibration; and (f) using a large number of

predictors.

Planned work for the near future is listed below.

1. Interpolation of sounding data. Currently, to predict winds at a lead time

of [∆tmin,∆tmax] for a storm object at t0, we interpolate sounding data to

the storm object at t0. Instead, we should extrapolate the storm along its

motion vector to some time in the forecast window [t0 + ∆tmin, t0 + ∆tmax],

then interpolate sounding data to this new position and time.

2. Interpolate storm-cell-wise probabilities to a grid. This would allow fore-

casts to be composited over the three buffer distances, which would facil-

itate interpretation. Also, this would allow disjoint spatial buffers to be

used (since forecaster interpretation of spatial buffers [Section 3.7] would

no longer be an issue), which would allow the predictor-predictand rela-

tionships at different spatial scales to be properly separated.
1It would be interesting to use our methodology to predict other storm-related hazards (e.g.,

tornadoes, hail, lightning, and aircraft turbulence). If the predictor-predictand relationships

were the same across hazards, this would support the use of a single model for multiple

severe-weather types. However, verification data for some of these hazards (especially hail,

which relies on human reports, and aircraft turbulence, which relies on proprietary data from

airlines) are very difficult to obtain. In any case, different physical mechanisms are responsible

for each hazard, so our physical intuition is that “one size does not fit all” for predicting

storm-related hazards.
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3. Better verification data. Currently we are using NWS severe-wind reports

from http://www.spc.noaa.gov/climo/online, which are of lower qual-

ity than those in the Storm Data publication.

4. Add variable-selection methods. We used only three methods (SFS, the

DTM, and J -measures), mainly because we were limited by computing

time. However, SFS results are very different than those of other methods,

which suggests that more methods are needed to form a consensus.

In the less immediate future we may also make the following enhancements.

1. Storm detection and tracking. We did not experiment with algorithms

other than w2segmotionll and w2besttrack, and we did not experiment

extensively with input parameters for these algorithms. Thus, we could

probably find a better detection and tracking configuration.

2. A major strength of this study is that it combined several data sources

(radar images, model soundings, and near-surface wind observations from

four datasets). However, we could probably improve results by using new

data sources (e.g., satellite and dual-polarization radar data) as predictors.

Also, we could use recent wind observations as predictors, which would be

similar to temporal auto-regression (if the storm cell has produced severe

wind in the past, it is more likely to produce severe wind in the future).

3. Sampling of storm objects. The “best-observed” distribution was our at-

tempt to deal with a paucity of near-surface wind observations and sample

only the best-observed storms, defined as those with ≥ 25 wind observa-

tions or a wind gust ≥ 50 kt. However, we did not consider spatial and

temporal characteristics of wind observations linked to the storm cell. For

example, if all wind observations occur at the same time or location, the

storm should not be considered well observed, because it is very likely that

these observations missed the highest winds produced by the storm.
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4. More advanced machine learning. We have a very large dataset with many

high-level objects and spatiotemporal properties, which is ideal for learning

with spatiotemporal relational probability trees (McGovern et al., 2008).

Also, we have a lot of three-dimensional radar and NWP model data, which

are ideal for learning with convolutional neural nets (Ciresan et al., 2011).

5. More detailed and relevant predictions. The current system forecasts only

the probability of severe wind (≥ 50 kt) for each storm cell. In addition

to interpolating storm-cell-wise probabilities to a grid (planned for near-

future work), it would be useful to predict multiple threshold exceedances

(e.g., 30 kt for aviation applications) and the real value of the maximum

storm wind.
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Appendix A

Model Setup for Experiment 1

A.1 Logistic Regression

Logistic regression is run with the parameters in Table A.1, using MATLAB’s

glmfit. These parameters force glmfit to run logistic regression (link = logit)

for binary classification (distr = binomial), with the bias term (β0 in Equa-

tion 4.1) included (constant = on). For each buffer distance and lead-time

window, only one logistic model is trained, since there is only one choice for each

parameter.

Parameter Values

distr binomial

link logit

constant on

Table A.1: Parameters for logistic regression, using MATLAB’s glmfit

(http://www.mathworks.com/help/stats/glmfit.html).
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A.2 Logistic Regression with an Elastic Net

LREN is run with the parameters in Table A.2, using MATLAB’s lassoglm. The

parameters distr and link force lassoglm to run logistic regression for binary

classification. Unlike glmfit, lassoglm does not need the parameter constant;

it automatically includes β0 in the model. alpha is α in Equation 4.3, which

determines the balance between ridge (α = 0) and lasso (α = 1) regression. Our

minimum value is 10-6 rather than 0, because lassoglm throws an error when

alpha = 0. numLambda is the number of λ-values attempted (used in Equation

4.3 to determine the weight of the coefficient penalty). lambdaRatio is the

ratio of the smallest to largest λ-values attempted (exact λ-values are chosen

by lassoglm). The default in lassoglm is lambdaRatio = 10-4, so we try five

orders of magnitude, spaced evenly around the default. Finally, relTol is the

stopping criterion. When the magnitudes of successive coefficient vectors (~β in

Equation 4.1) differ by < relTol, the algorithm stops. Although the default

in lassoglm is 10-4, in our experience the algorithm does not converge when

relTol is much less than 0.01.

For each set of parameters in Table A.2, lassoglm trains 50 models (one

for each λ-value). Ideally we would keep the model with the highest AUC, but

AUC calculations are very computationally expensive (see end of Section 6.1.1).

Thus, we keep the model with the lowest deviance (Equation 4.2), which is the

objective function for logistic regression.

For each buffer distance and lead-time window, 25 LREN models are trained

(one for each of five alpha values and five lambdaRatio values).
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Parameter Values

distr binomial

link logit

alpha 10-6, 0.25, 0.5, 0.75, 1

numLambda 50

lambdaRatio 10-6, 10-5, 10-4, 10-3, 10-2

relTol 0.01

Table A.2: Parameters for LREN, using MATLAB’s lassoglm

(http://www.mathworks.com/help/stats/lassoglm.html).

A.3 Feed-forward Neural Nets

FFNN is run with the parameters in Table A.3, using MATLAB’s patternnet.

Parameters are set in two steps. First, the neural-net object is created by call-

ing patternnet with hiddenSizes, trainFcn, and performFcn as input argu-

ments. Then, letting the object be ffnn, remaining parameters are set by calling

ffnn.trainParam.epochs = 1000, ffnn.trainParam.delta0 = 0.001, etc.

hiddenSizes is a two-element vector, with the number of neurons in the

first and second hidden layers respectively. Running neural nets with more than

two hidden layers, or more than ~20 neurons for each of the two layers, is too

computationally expensive. trainFcn is the backpropagation method; the two

options stand for resilient backpropagation (Riedmiller and Braun, 1993) and

scaled conjugate gradient (SCG) (Møller, 1993), respectively. performFcn is

crossentropy, which is another word for deviance (Equation 4.2). epochs is

the number of epochs, or number of times that each training example is pre-

sented to the neural net. The stopping criterion (that deviance on validation
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examples increases between successive epochs) is almost always reached before

1000 epochs. delta0 and deltamax are the initial and maximum update weights

for backpropagation, respectively. delt_dec and delt_inc are values by which

the update weight may be multiplied between successive epochs. These four

parameters are valid only for resilient backpropagation, while sigma and lambda

are valid only for SCG backpropagation. sigma and lambda (σ and λ respec-

tively in Equation 20 of Riedmiller and Braun, 1993) work together to determine

the update weight.

For each buffer distance and lead-time window, 800 FFNN models are trained

(one for each of two backpropagation methods, 16 combinations of hidden-layer

sizes, five values of delt_dec or sigma, and five values of delt_inc or lambda).

A.4 Random Forests

Random forests are run with the parameters in Table A.4, using MATLAB’s

fitensemble. Again, parameters are set in two steps. First, a decision-tree

template is created by calling templateTree with the input arguments type =

classification, nVarToSample, minLeaf, splitCriterion, and mergeLeaves.

Let the result be dtTemplate. Then fitensemble is called with method = bag

(to create a random forest rather than some other kind of ensemble), learners

= dtTemplate, type = classification, and all parameters listed in Table A.4

but not used for templateTree.

nVarToSample is the number of predictors to sample randomly at each split

(this sampling is called “feature-bagging” and described in Section 4.1.1.5). The

default value for random forests is
√
N , where N is the number of predictors

(~21 for N = 431). Thus, we try values on the same order of magnitude,

one below, and one above. minLeaf is the minimum number of training exam-

ples at a leaf node (one of three stopping criteria discussed in Section 4.1.1.5).
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Parameter Values

hiddenSizes {5, 5}; {5, 10}; {5, 15}; {5, 20}; {10, 5}; {10, 10}; {10, 15};

{10, 20}; {15, 5}; {15, 10}; {15, 15}; {15, 20}; {20, 5};

{20, 10}; {20, 15}; {20, 20}

trainFcn trainrp, trainscg

performFcn crossentropy

epochs 0.001

delta0 10-3

deltamax 1000

delt_dec 0.001, 0.01, 0.1, 0.5, 0.9

delt_inc 1.1, 1.5, 10, 100, 1000

sigma 5× 10−7, 5× 10−6, 5× 10−5, 5× 10−4, 5× 10−3

lambda 5× 10−9, 5× 10−8, 5× 10−7, 5× 10−6, 5× 10−5

Table A.3: Parameters for FFNN, using MATLAB’s patternnet

(http://www.mathworks.com/help/nnet/ref/patternnet.html).
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Parameter Values

nVarToSample 1, 5, 10, 25, 50, 75, 100

minLeaf 5, 10, 25, 50, 75

splitCriterion deviance

mergeLeaves on

nLearn 500

resample on

fResample 0.05, 0.20, 0.40, 0.60, 0.80, 1.00

replace on

Table A.4: Parameters for random forests, using MATLAB’s fitensemble

(http://www.mathworks.com/help/stats/fitensemble.html).

splitCriterion is the objective function (deviance is interpreted as informa-

tion gain [Equation 4.7] by fitensemble). mergeLeaves causes leaf nodes to be

merged if they originate from the same parent node and, when applied to vali-

dation data, lead to negative information gain. nLearn is the number of decision

trees in the ensemble. The ensemble is regularized after training (the number

of trees leading to the lowest deviance1 on validation data is chosen), and this

number of trees is almost always < 500. resample = on means that training

examples are resampled for each tree (this is called “tree-bagging” and described

in Section 4.1.1.5). fResample is the fraction of training examples resampled for

each tree, and replace = on ensures that sampling is done with replacement.

For each buffer distance and lead-time window, 210 random forests are trained

(one for each of seven nVarToSample values, five minLeaf values, and six fResample

values).
1Ideally we would keep the model with the highest AUC, but AUC calculations are very

computationally expensive (see end of Section 6.1.1).
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A.5 Ensembles of Gradient-boosted Trees

GBT ensembles are run with the parameters in Table A.5, using MATLAB’s

fitensemble. As for random forests, the parameters nVarToSample, minLeaf,

splitCriterion, and mergeLeaves are sent to templateTree; the others are

sent to fitensemble.

minLeaf, splitCriterion, mergeLeaves, nLearn, resample, and replace

all have the same meaning and values as for random forests. Larger values

of nVarToSample are tried, because in our experience GBT ensembles perform

badly with small values. Similarly, smaller values of fResample are tried, be-

cause we find that GBT ensembles perform badly with large values. Ensem-

bles are regularized in the same way as random forests. method is the boosting

method (AdaBoostM1 is AdaBoost [Section 4.1.1.6] for binary classification). For

a learnRate of α, fitensemble fits every new tree to αriq (α times the pseudo-

residual) rather than just riq (see Equation 4.10). learnRate varies from (0, 1];

the algorithm learns more quickly for larger values. In our experience (consistent

with Friedman, 2001), values & 0.2 lead to overfitting.

For each buffer distance and lead-time window, 750 GBT ensembles are

trained (one for each of five nVarsToSample values, five minLeaf values, six

fResample values, and five learnRate values).

A.6 Isotonic Regression

Isotonic regression is run with MATLAB’s lsqisotonic2, which requires no

input parameters beyond the training data.

2http://www.mathworks.com/matlabcentral/fileexchange/

47196-graph-based-clustering-and-data-visualization-algorithms/content/

improve_JP/toolbox_imp_JP/lsqisotonic.m
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Parameter Values

nVarToSample 10, 25, 50, 100, 431

minLeaf 5, 10, 25, 50, 75

splitCriterion deviance

mergeLeaves on

method AdaBoostM1

nLearn 500

resample on

fResample 0.05, 0.10, 0.15, 0.20, 0.25, 0.30

replace on

learnRate 0.01, 0.05, 0.10, 0.15, 0.20

Table A.5: Parameters for GBT ensembles, using MATLAB’s fitensemble.
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Appendix B

Selected Models for Experiment 1

Selected models for Experiment 1 (via the procedure in Section 6.1.1) are listed

in Tables B.1-B.15. For a given buffer distance and lead-time window, if more

than 20 models have been selected, only the top 20 are shown.

Base Model AUC Parameters

Random forest 0.9962 fResample = 0.20; nVarToSample = 50; minLeaf

= 10

GBT ensemble 0.9934 fResample = 0.20; nVarToSample = 25; minLeaf

= 50; learnRate = 0.2

GBT ensemble 0.9932 fResample = 0.05; nVarToSample = 431; minLeaf

= 5; learnRate = 0.2

GBT ensemble 0.9929 fResample = 0.20; nVarToSample = 50; minLeaf

= 75; learnRate = 0.15

Random forest 0.9927 fResample = 0.60; nVarToSample = 25; minLeaf

= 25

GBT ensemble 0.9926 fResample = 0.10; nVarToSample = 100; minLeaf

= 25; learnRate = 0.15

Continued on next page
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Table B.1 – continued from previous page

Base Model AUC Parameters

GBT ensemble 0.9921 fResample = 0.05; nVarToSample = 10; minLeaf

= 75; learnRate = 0.2

GBT ensemble 0.9920 fResample = 0.20; nVarToSample = 431; minLeaf

= 5; learnRate = 0.05

GBT ensemble 0.9919 fResample = 0.30; nVarToSample = 50; minLeaf

= 25; learnRate = 0.05

FFNN 0.9917 {5, 5} neurons; trainscg; sigma = 5 × 10-4;

lambda = 5 × 10-6

GBT ensemble 0.9916 fResample = 0.20; nVarToSample = 431; minLeaf

= 25; learnRate = 0.01

GBT ensemble 0.9914 fResample = 0.20; nVarToSample = 100; minLeaf

= 10; learnRate = 0.01

FFNN 0.9909 {5, 5} neurons; trainscg; sigma = 5 × 10-6;

lambda = 5 × 10-5

GBT ensemble 0.9907 fResample = 0.25; nVarToSample = 50; minLeaf

= 25; learnRate = 0.01

FFNN 0.9907 {5, 5} neurons; trainrp; delt_dec = 0.9;

delt_inc = 1.5

Random forest 0.9906 fResample = 1.00; nVarToSample = 10; minLeaf

= 25

FFNN 0.9904 {5, 15} neurons; trainscg; sigma = 5 × 10-6;

lambda = 5 × 10-5

Random forest 0.9904 fResample = 0.20; nVarToSample = 100; minLeaf

= 25

Continued on next page
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Table B.1 – continued from previous page

Base Model AUC Parameters

FFNN 0.9903 {20, 20} neurons; trainscg; sigma = 5 × 10-6;

lambda = 5 × 10-6

FFNN 0.9902 {10, 20} neurons; trainscg; sigma = 5 × 10-5;

lambda = 5 × 10-8

Table B.1: Selected models for buffer distance of 0 km and lead time of [0, 15]

minutes.
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Base Model AUC Parameters

GBT ensemble 0.9687 fResample = 0.15; nVarToSample = 10; minLeaf

= 75; learnRate = 0.1

GBT ensemble 0.9674 fResample = 0.25; nVarToSample = 431; minLeaf

= 10; learnRate = 0.01

Random forest 0.9652 fResample = 0.40; nVarToSample = 25; minLeaf

= 10

GBT ensemble 0.9642 fResample = 0.10; nVarToSample = 25; minLeaf

= 10; learnRate = 0.01

Random forest 0.9639 fResample = 0.40; nVarToSample = 75; minLeaf

= 50

GBT ensemble 0.9636 fResample = 0.30; nVarToSample = 25; minLeaf

= 10; learnRate = 0.1

Random forest 0.9631 fResample = 0.60; nVarToSample = 100; minLeaf

= 75

Random forest 0.9631 fResample = 0.60; nVarToSample = 50; minLeaf

= 25

GBT ensemble 0.9631 fResample = 0.10; nVarToSample = 25; minLeaf

= 5; learnRate = 0.1

GBT ensemble 0.9629 fResample = 0.15; nVarToSample = 50; minLeaf

= 25; learnRate = 0.15

GBT ensemble 0.9629 fResample = 0.30; nVarToSample = 100; minLeaf

= 5; learnRate = 0.05

GBT ensemble 0.9626 fResample = 0.25; nVarToSample = 100; minLeaf

= 10; learnRate = 0.1

Continued on next page
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Table B.2 – continued from previous page

Base Model AUC Parameters

GBT ensemble 0.9624 fResample = 0.20; nVarToSample = 25; minLeaf

= 25; learnRate = 0.15

Random forest 0.9622 fResample = 0.80; nVarToSample = 100; minLeaf

= 50

Random forest 0.9620 fResample = 0.60; nVarToSample = 5; minLeaf

= 5

Random forest 0.9619 fResample = 1.00; nVarToSample = 50; minLeaf

= 25

GBT ensemble 0.9613 fResample = 0.25; nVarToSample = 10; minLeaf

= 5; learnRate = 0.1

Random forest 0.9608 fResample = 1.00; nVarToSample = 75; minLeaf

= 50

Random forest 0.9606 fResample = 0.80; nVarToSample = 25; minLeaf

= 10

FFNN 0.9606 {20, 10} neurons; trainscg; sigma = 5 × 10-7;

lambda = 5 × 10-6

Table B.2: Selected models for buffer distance of 0 km and lead time of [15, 30]

minutes.
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Base Model AUC Parameters

Random forest 0.9470 fResample = 0.60; nVarToSample = 10; minLeaf

= 10

GBT ensemble 0.9450 fResample = 0.10; nVarToSample = 10; minLeaf

= 10; learnRate = 0.05

Random forest 0.9449 fResample = 0.80; nVarToSample = 75; minLeaf

= 75

GBT ensemble 0.9446 fResample = 0.15; nVarToSample = 50; minLeaf

= 50; learnRate = 0.01

GBT ensemble 0.9443 fResample = 0.15; nVarToSample = 10; minLeaf

= 25; learnRate = 0.05

GBT ensemble 0.9441 fResample = 0.20; nVarToSample = 10; minLeaf

= 25; learnRate = 0.05

Random forest 0.9441 fResample = 0.40; nVarToSample = 100; minLeaf

= 25

Random forest 0.9434 fResample = 0.40; nVarToSample = 25; minLeaf

= 5

GBT ensemble 0.9431 fResample = 0.10; nVarToSample = 50; minLeaf

= 10; learnRate = 0.1

Random forest 0.9427 fResample = 0.20; nVarToSample = 1; minLeaf

= 5

GBT ensemble 0.9426 fResample = 0.10; nVarToSample = 10; minLeaf

= 75; learnRate = 0.05

GBT ensemble 0.9426 fResample = 0.25; nVarToSample = 100; minLeaf

= 10; learnRate = 0.1

Continued on next page
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Table B.3 – continued from previous page

Base Model AUC Parameters

FFNN 0.9424 {20, 5} neurons; trainscg; sigma = 5 × 10-4;

lambda = 5 × 10-5

GBT ensemble 0.9422 fResample = 0.30; nVarToSample = 10; minLeaf

= 10; learnRate = 0.01

GBT ensemble 0.9421 fResample = 0.25; nVarToSample = 10; minLeaf

= 75; learnRate = 0.01

GBT ensemble 0.9420 fResample = 0.20; nVarToSample = 50; minLeaf

= 50; learnRate = 0.2

GBT ensemble 0.9419 fResample = 0.25; nVarToSample = 100; minLeaf

= 75; learnRate = 0.1

Random forest 0.9418 fResample = 0.80; nVarToSample = 25; minLeaf

= 5

LREN 0.9418 alpha = 0.50, lambdaRatio = 10-2

GBT ensemble 0.9418 fResample = 0.10; nVarToSample = 10; minLeaf

= 25; learnRate = 0.1

Table B.3: Selected models for buffer distance of 0 km and lead time of [30, 45]

minutes.
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Base Model AUC Parameters

GBT ensemble 0.9440 fResample = 0.30; nVarToSample = 50; minLeaf

= 5; learnRate = 0.15

GBT ensemble 0.9414 fResample = 0.15; nVarToSample = 10; minLeaf

= 10; learnRate = 0.05

GBT ensemble 0.9410 fResample = 0.20; nVarToSample = 431; minLeaf

= 75; learnRate = 0.05

Random forest 0.9406 fResample = 0.80; nVarToSample = 25; minLeaf

= 50

GBT ensemble 0.9393 fResample = 0.15; nVarToSample = 10; minLeaf

= 10; learnRate = 0.1

GBT ensemble 0.9388 fResample = 0.20; nVarToSample = 431; minLeaf

= 75; learnRate = 0.01

GBT ensemble 0.9377 fResample = 0.10; nVarToSample = 10; minLeaf

= 10; learnRate = 0.1

Random forest 0.9375 fResample = 0.60; nVarToSample = 100; minLeaf

= 5

GBT ensemble 0.9372 fResample = 0.15; nVarToSample = 25; minLeaf

= 10; learnRate = 0.1

GBT ensemble 0.9366 fResample = 0.10; nVarToSample = 10; minLeaf

= 50; learnRate = 0.2

GBT ensemble 0.9361 fResample = 0.20; nVarToSample = 50; minLeaf

= 75; learnRate = 0.15

GBT ensemble 0.9358 fResample = 0.10; nVarToSample = 25; minLeaf

= 5; learnRate = 0.15

Continued on next page
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Table B.4 – continued from previous page

Base Model AUC Parameters

GBT ensemble 0.9354 fResample = 0.25; nVarToSample = 100; minLeaf

= 25; learnRate = 0.01

Random forest 0.9350 fResample = 0.80; nVarToSample = 50; minLeaf

= 10

GBT ensemble 0.9349 fResample = 0.25; nVarToSample = 100; minLeaf

= 50; learnRate = 0.2

Random forest 0.9348 fResample = 0.20; nVarToSample = 25; minLeaf

= 10

Random forest 0.9346 fResample = 0.60; nVarToSample = 100; minLeaf

= 10

Table B.4: Selected models for buffer distance of 0 km and lead time of [45, 60]

minutes.
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Base Model AUC Parameters

GBT ensemble 0.9371 fResample = 0.25; nVarToSample = 431; minLeaf

= 75; learnRate = 0.05

GBT ensemble 0.9334 fResample = 0.10; nVarToSample = 10; minLeaf

= 25; learnRate = 0.1

Random forest 0.9316 fResample = 0.80; nVarToSample = 100; minLeaf

= 10

GBT ensemble 0.9309 fResample = 0.10; nVarToSample = 25; minLeaf

= 10; learnRate = 0.1

GBT ensemble 0.9293 fResample = 0.05; nVarToSample = 10; minLeaf

= 50; learnRate = 0.05

Random forest 0.9289 fResample = 0.60; nVarToSample = 25; minLeaf

= 25

GBT ensemble 0.9276 fResample = 0.20; nVarToSample = 10; minLeaf

= 10; learnRate = 0.1

Table B.5: Selected models for buffer distance of 0 km and lead time of [60, 90]

minutes.
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Base Model AUC Parameters

GBT ensemble 0.9662 fResample = 0.15; nVarToSample = 10; minLeaf

= 25; learnRate = 0.1

GBT ensemble 0.9642 fResample = 0.10; nVarToSample = 100; minLeaf

= 5; learnRate = 0.05

GBT ensemble 0.9624 fResample = 0.20; nVarToSample = 50; minLeaf

= 50; learnRate = 0.1

GBT ensemble 0.9611 fResample = 0.25; nVarToSample = 10; minLeaf

= 50; learnRate = 0.01

GBT ensemble 0.9611 fResample = 0.10; nVarToSample = 431; minLeaf

= 50; learnRate = 0.05

GBT ensemble 0.9611 fResample = 0.10; nVarToSample = 10; minLeaf

= 5; learnRate = 0.01

GBT ensemble 0.9607 fResample = 0.05; nVarToSample = 431; minLeaf

= 50; learnRate = 0.05

GBT ensemble 0.9594 fResample = 0.30; nVarToSample = 10; minLeaf

= 75; learnRate = 0.1

FFNN 0.9582 {10, 15} neurons; trainscg; sigma = 5 × 10-3;

lambda = 5 × 10-7

Random forest 0.9580 fResample = 0.80; nVarToSample = 25; minLeaf

= 25

GBT ensemble 0.9579 fResample = 0.25; nVarToSample = 25; minLeaf

= 50; learnRate = 0.1

Random forest 0.9577 fResample = 0.80; nVarToSample = 25; minLeaf

= 5

Continued on next page

200



Table B.6 – continued from previous page

Base Model AUC Parameters

GBT ensemble 0.9576 fResample = 0.20; nVarToSample = 10; minLeaf

= 25; learnRate = 0.05

FFNN 0.9571 {10, 20} neurons; trainrp; delt_dec = 0.1;

delt_inc = 1.1

LREN 0.9568 alpha = 0.75, lambdaRatio = 10-6

GBT ensemble 0.9567 fResample = 0.30; nVarToSample = 25; minLeaf

= 5; learnRate = 0.1

Random forest 0.9566 fResample = 0.80; nVarToSample = 50; minLeaf

= 50

Random forest 0.9564 fResample = 0.80; nVarToSample = 5; minLeaf

= 25

FFNN 0.9563 {20, 20} neurons; trainrp; delt_dec = 0.1;

delt_inc = 1.1

Table B.6: Selected models for buffer distance of 5 km and lead time of [0, 15]

minutes.
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Base Model AUC Parameters

GBT ensemble 0.9482 fResample = 0.20; nVarToSample = 25; minLeaf

= 50; learnRate = 0.01

GBT ensemble 0.9480 fResample = 0.30; nVarToSample = 10; minLeaf

= 75; learnRate = 0.01

Random forest 0.9462 fResample = 0.40; nVarToSample = 50; minLeaf

= 5

GBT ensemble 0.9460 fResample = 0.30; nVarToSample = 50; minLeaf

= 10; learnRate = 0.05

GBT ensemble 0.9449 fResample = 0.10; nVarToSample = 50; minLeaf

= 75; learnRate = 0.05

GBT ensemble 0.9446 fResample = 0.20; nVarToSample = 431; minLeaf

= 75; learnRate = 0.05

GBT ensemble 0.9442 fResample = 0.15; nVarToSample = 10; minLeaf

= 75; learnRate = 0.05

GBT ensemble 0.9440 fResample = 0.20; nVarToSample = 50; minLeaf

= 50; learnRate = 0.05

Random forest 0.9438 fResample = 1.00; nVarToSample = 10; minLeaf

= 5

GBT ensemble 0.9433 fResample = 0.30; nVarToSample = 10; minLeaf

= 50; learnRate = 0.05

Random forest 0.9426 fResample = 0.20; nVarToSample = 50; minLeaf

= 25

FFNN 0.9424 {20, 10} neurons; trainscg; sigma = 5 × 10-4;

lambda = 5 × 10-9

Continued on next page
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Table B.7 – continued from previous page

Base Model AUC Parameters

Random forest 0.9422 fResample = 0.20; nVarToSample = 5; minLeaf

= 10

GBT ensemble 0.9418 fResample = 0.30; nVarToSample = 50; minLeaf

= 75; learnRate = 0.01

FFNN 0.9418 {20, 20} neurons; trainrp; delt_dec = 0.5;

delt_inc = 1.5

GBT ensemble 0.9416 fResample = 0.15; nVarToSample = 431; minLeaf

= 25; learnRate = 0.01

FFNN 0.9414 {15, 10} neurons; trainrp; delt_dec = 0.1;

delt_inc = 1.1

Random forest 0.9407 fResample = 0.80; nVarToSample = 100; minLeaf

= 50

Random forest 0.9403 fResample = 1.00; nVarToSample = 100; minLeaf

= 25

GBT ensemble 0.9403 fResample = 0.15; nVarToSample = 431; minLeaf

= 10; learnRate = 0.05

Table B.7: Selected models for buffer distance of 5 km and lead time of [15, 30]

minutes.
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Base Model AUC Parameters

FFNN 0.9265 {5, 5} neurons; trainscg; sigma = 5 × 10-5;

lambda = 5 × 10-8

GBT ensemble 0.9259 fResample = 0.25; nVarToSample = 50; minLeaf

= 50; learnRate = 0.01

FFNN 0.9255 {15, 5} neurons; trainscg; sigma = 5 × 10-5;

lambda = 5 × 10-5

Random forest 0.9252 fResample = 0.40; nVarToSample = 25; minLeaf

= 10

GBT ensemble 0.9251 fResample = 0.30; nVarToSample = 25; minLeaf

= 10; learnRate = 0.05

GBT ensemble 0.9249 fResample = 0.20; nVarToSample = 25; minLeaf

= 25; learnRate = 0.1

Random forest 0.9245 fResample = 1.00; nVarToSample = 10; minLeaf

= 50

GBT ensemble 0.9244 fResample = 0.10; nVarToSample = 25; minLeaf

= 75; learnRate = 0.1

GBT ensemble 0.9240 fResample = 0.30; nVarToSample = 25; minLeaf

= 50; learnRate = 0.1

Random forest 0.9239 fResample = 1.00; nVarToSample = 25; minLeaf

= 50

GBT ensemble 0.9239 fResample = 0.30; nVarToSample = 10; minLeaf

= 75; learnRate = 0.15

FFNN 0.9238 {20, 15} neurons; trainrp; delt_dec = 0.01;

delt_inc = 1.1

Continued on next page
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Table B.8 – continued from previous page

Base Model AUC Parameters

GBT ensemble 0.9237 fResample = 0.10; nVarToSample = 100; minLeaf

= 10; learnRate = 0.1

GBT ensemble 0.9236 fResample = 0.15; nVarToSample = 50; minLeaf

= 75; learnRate = 0.1

Random forest 0.9235 fResample = 1.00; nVarToSample = 75; minLeaf

= 25

Random forest 0.9233 fResample = 0.80; nVarToSample = 50; minLeaf

= 50

GBT ensemble 0.9232 fResample = 0.10; nVarToSample = 100; minLeaf

= 5; learnRate = 0.1

Random forest 0.9229 fResample = 0.80; nVarToSample = 5; minLeaf

= 10

Random forest 0.9229 fResample = 0.40; nVarToSample = 10; minLeaf

= 5

Random forest 0.9229 fResample = 0.40; nVarToSample = 50; minLeaf

= 10

Table B.8: Selected models for buffer distance of 5 km and lead time of [30, 45]

minutes.
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Base Model AUC Parameters

Random forest 0.9227 fResample = 0.60; nVarToSample = 25; minLeaf

= 5

Random forest 0.9219 fResample = 0.40; nVarToSample = 5; minLeaf

= 5

GBT ensemble 0.9210 fResample = 0.15; nVarToSample = 431; minLeaf

= 50; learnRate = 0.05

Random forest 0.9201 fResample = 0.80; nVarToSample = 50; minLeaf

= 25

Random forest 0.9194 fResample = 0.05; nVarToSample = 100; minLeaf

= 5

Random forest 0.9191 fResample = 0.60; nVarToSample = 100; minLeaf

= 25

GBT ensemble 0.9186 fResample = 0.20; nVarToSample = 100; minLeaf

= 50; learnRate = 0.15

LREN 0.9185 alpha = 0.75, lambdaRatio = 10-4

FFNN 0.9184 {20, 10} neurons; trainscg; sigma = 5 × 10-5;

lambda = 5 × 10-7

GBT ensemble 0.9178 fResample = 0.05; nVarToSample = 25; minLeaf

= 75; learnRate = 0.15

GBT ensemble 0.9177 fResample = 0.25; nVarToSample = 10; minLeaf

= 10; learnRate = 0.01

LREN 0.9177 alpha = 0.75, lambdaRatio = 10-6

Random forest 0.9172 fResample = 0.40; nVarToSample = 75; minLeaf

= 25

Continued on next page
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Table B.9 – continued from previous page

Base Model AUC Parameters

Random forest 0.9172 fResample = 0.80; nVarToSample = 25; minLeaf

= 25

Random forest 0.9165 fResample = 1.00; nVarToSample = 50; minLeaf

= 10

GBT ensemble 0.9164 fResample = 0.25; nVarToSample = 10; minLeaf

= 75; learnRate = 0.1

FFNN 0.9163 {10, 5} neurons; trainscg; sigma = 5 × 10-5;

lambda = 5 × 10-6

Random forest 0.9162 fResample = 1.00; nVarToSample = 10; minLeaf

= 5

Random forest 0.9161 fResample = 0.80; nVarToSample = 50; minLeaf

= 50

GBT ensemble 0.9161 fResample = 0.25; nVarToSample = 100; minLeaf

= 5; learnRate = 0.05

Table B.9: Selected models for buffer distance of 5 km and lead time of [45, 60]

minutes.
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Base Model AUC Parameters

GBT ensemble 0.9111 fResample = 0.30; nVarToSample = 25; minLeaf

= 10; learnRate = 0.01

GBT ensemble 0.9095 fResample = 0.20; nVarToSample = 25; minLeaf

= 25; learnRate = 0.05

GBT ensemble 0.9065 fResample = 0.15; nVarToSample = 100; minLeaf

= 50; learnRate = 0.05

FFNN 0.9065 {20, 10} neurons; trainscg; sigma = 5 × 10-5;

lambda = 5 × 10-6

GBT ensemble 0.9063 fResample = 0.25; nVarToSample = 25; minLeaf

= 75; learnRate = 0.05

Random forest 0.9059 fResample = 0.05; nVarToSample = 100; minLeaf

= 10

GBT ensemble 0.9059 fResample = 0.30; nVarToSample = 10; minLeaf

= 5; learnRate = 0.1

FFNN 0.9047 {15, 5} neurons; trainscg; sigma = 5 × 10-7;

lambda = 5 × 10-8

FFNN 0.9046 {10, 15} neurons; trainscg; sigma = 5 × 10-4;

lambda = 5 × 10-7

GBT ensemble 0.9042 fResample = 0.15; nVarToSample = 25; minLeaf

= 50; learnRate = 0.05

GBT ensemble 0.9040 fResample = 0.20; nVarToSample = 10; minLeaf

= 50; learnRate = 0.05

GBT ensemble 0.9027 fResample = 0.25; nVarToSample = 100; minLeaf

= 25; learnRate = 0.05

Continued on next page

208



Table B.10 – continued from previous page

Base Model AUC Parameters

Random forest 0.9025 fResample = 1.00; nVarToSample = 10; minLeaf

= 5

FFNN 0.9024 {15, 20} neurons; trainscg; sigma = 5 × 10-4;

lambda = 5 × 10-5

GBT ensemble 0.9023 fResample = 0.10; nVarToSample = 25; minLeaf

= 50; learnRate = 0.05

FFNN 0.9021 {15, 5} neurons; trainscg; sigma = 5 × 10-3;

lambda = 5 × 10-7

GBT ensemble 0.9021 fResample = 0.25; nVarToSample = 25; minLeaf

= 10; learnRate = 0.05

GBT ensemble 0.9016 fResample = 0.10; nVarToSample = 100; minLeaf

= 75; learnRate = 0.1

Table B.10: Selected models for buffer distance of 5 km and lead time of

[60, 90] minutes.
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Base Model AUC Parameters

GBT ensemble 0.9449 fResample = 0.20; nVarToSample = 25; minLeaf

= 5; learnRate = 0.15

LREN 0.9428 alpha = 0.50, lambdaRatio = 10-5

GBT ensemble 0.9421 fResample = 0.15; nVarToSample = 100; minLeaf

= 5; learnRate = 0.05

Random forest 0.9410 fResample = 1.00; nVarToSample = 100; minLeaf

= 50

GBT ensemble 0.9401 fResample = 0.20; nVarToSample = 431; minLeaf

= 50; learnRate = 0.05

FFNN 0.9394 {15, 5} neurons; trainscg; sigma = 5 × 10-4;

lambda = 5 × 10-5

Random forest 0.9392 fResample = 0.80; nVarToSample = 100; minLeaf

= 50

GBT ensemble 0.9391 fResample = 0.10; nVarToSample = 100; minLeaf

= 50; learnRate = 0.1

FFNN 0.9387 {10, 5} neurons; trainscg; sigma = 5 × 10-7;

lambda = 5 × 10-7

Random forest 0.9384 fResample = 0.60; nVarToSample = 50; minLeaf

= 25

GBT ensemble 0.9383 fResample = 0.20; nVarToSample = 25; minLeaf

= 25; learnRate = 0.05

GBT ensemble 0.9382 fResample = 0.10; nVarToSample = 25; minLeaf

= 5; learnRate = 0.2

FFNN 0.9380 {15, 10} neurons; trainscg; sigma = 5 × 10-7;

lambda = 5 × 10-8

Continued on next page
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Table B.11 – continued from previous page

Base Model AUC Parameters

Random forest 0.9379 fResample = 1.00; nVarToSample = 50; minLeaf

= 25

GBT ensemble 0.9378 fResample = 0.10; nVarToSample = 25; minLeaf

= 10; learnRate = 0.05

LREN 0.9378 alpha = 0.25, lambdaRatio = 10-6

Random forest 0.9378 fResample = 0.80; nVarToSample = 5; minLeaf

= 10

Random forest 0.9376 fResample = 0.80; nVarToSample = 25; minLeaf

= 5

GBT ensemble 0.9372 fResample = 0.20; nVarToSample = 431; minLeaf

= 75; learnRate = 0.1

GBT ensemble 0.9371 fResample = 0.10; nVarToSample = 100; minLeaf

= 10; learnRate = 0.05

Table B.11: Selected models for buffer distance of 10 km and lead time of

[0, 15] minutes.
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Base Model AUC Parameters

LREN 0.9317 alpha = 1.00, lambdaRatio = 10-6

Random forest 0.9302 fResample = 1.00; nVarToSample = 25; minLeaf

= 5

LREN 0.9300 alpha = 0.75, lambdaRatio = 10-2

GBT ensemble 0.9283 fResample = 0.20; nVarToSample = 100; minLeaf

= 50; learnRate = 0.01

FFNN 0.9283 {15, 10} neurons; trainscg; sigma = 5 × 10-4;

lambda = 5 × 10-7

GBT ensemble 0.9282 fResample = 0.25; nVarToSample = 25; minLeaf

= 25; learnRate = 0.01

Random forest 0.9280 fResample = 0.40; nVarToSample = 25; minLeaf

= 25

Random forest 0.9278 fResample = 0.40; nVarToSample = 10; minLeaf

= 5

Random forest 0.9276 fResample = 0.60; nVarToSample = 10; minLeaf

= 5

GBT ensemble 0.9276 fResample = 0.25; nVarToSample = 50; minLeaf

= 50; learnRate = 0.05

GBT ensemble 0.9272 fResample = 0.15; nVarToSample = 10; minLeaf

= 10; learnRate = 0.01

FFNN 0.9269 {15, 5} neurons; trainscg; sigma = 5 × 10-7;

lambda = 5 × 10-9

GBT ensemble 0.9265 fResample = 0.15; nVarToSample = 25; minLeaf

= 10; learnRate = 0.05

Continued on next page

212



Table B.12 – continued from previous page

Base Model AUC Parameters

Random forest 0.9265 fResample = 0.80; nVarToSample = 25; minLeaf

= 10

GBT ensemble 0.9260 fResample = 0.20; nVarToSample = 25; minLeaf

= 75; learnRate = 0.1

Random forest 0.9257 fResample = 0.40; nVarToSample = 10; minLeaf

= 10

GBT ensemble 0.9255 fResample = 0.30; nVarToSample = 10; minLeaf

= 5; learnRate = 0.2

GBT ensemble 0.9254 fResample = 0.25; nVarToSample = 431; minLeaf

= 5; learnRate = 0.2

FFNN 0.9252 {5, 5} neurons; trainscg; sigma = 5 × 10-5;

lambda = 5 × 10-9

FFNN 0.9251 {20, 20} neurons; trainscg; sigma = 5 × 10-5;

lambda = 5 × 10-5

Table B.12: Selected models for buffer distance of 10 km and lead time of

[15, 30] minutes.
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Base Model AUC Parameters

FFNN 0.9202 {10, 10} neurons; trainscg; sigma = 5 × 10-5;

lambda = 5 × 10-6

Random forest 0.9167 fResample = 0.60; nVarToSample = 75; minLeaf

= 10

GBT ensemble 0.9161 fResample = 0.25; nVarToSample = 25; minLeaf

= 10; learnRate = 0.05

Random forest 0.9158 fResample = 0.80; nVarToSample = 5; minLeaf

= 50

FFNN 0.9154 {20, 5} neurons; trainscg; sigma = 5 × 10-4;

lambda = 5 × 10-9

Random forest 0.9152 fResample = 1.00; nVarToSample = 5; minLeaf

= 5

GBT ensemble 0.9138 fResample = 0.25; nVarToSample = 100; minLeaf

= 50; learnRate = 0.05

GBT ensemble 0.9130 fResample = 0.15; nVarToSample = 100; minLeaf

= 5; learnRate = 0.1

Random forest 0.9127 fResample = 0.60; nVarToSample = 5; minLeaf

= 25

FFNN 0.9126 {10, 15} neurons; trainrp; delt_dec = 0.5;

delt_inc = 1.1

GBT ensemble 0.9126 fResample = 0.10; nVarToSample = 100; minLeaf

= 75; learnRate = 0.05

Random forest 0.9123 fResample = 0.80; nVarToSample = 100; minLeaf

= 25

Continued on next page
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Table B.13 – continued from previous page

Base Model AUC Parameters

GBT ensemble 0.9122 fResample = 0.30; nVarToSample = 25; minLeaf

= 10; learnRate = 0.05

GBT ensemble 0.9120 fResample = 0.30; nVarToSample = 100; minLeaf

= 10; learnRate = 0.1

GBT ensemble 0.9117 fResample = 0.10; nVarToSample = 25; minLeaf

= 50; learnRate = 0.01

GBT ensemble 0.9113 fResample = 0.30; nVarToSample = 100; minLeaf

= 75; learnRate = 0.05

GBT ensemble 0.9112 fResample = 0.15; nVarToSample = 10; minLeaf

= 10; learnRate = 0.01

GBT ensemble 0.9108 fResample = 0.15; nVarToSample = 50; minLeaf

= 25; learnRate = 0.05

GBT ensemble 0.9106 fResample = 0.20; nVarToSample = 100; minLeaf

= 50; learnRate = 0.05

Random forest 0.9105 fResample = 0.80; nVarToSample = 50; minLeaf

= 10

Table B.13: Selected models for buffer distance of 10 km and lead time of

[30, 45] minutes.
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Base Model AUC Parameters

GBT ensemble 0.9155 fResample = 0.20; nVarToSample = 10; minLeaf

= 75; learnRate = 0.05

GBT ensemble 0.9111 fResample = 0.30; nVarToSample = 50; minLeaf

= 10; learnRate = 0.15

Random forest 0.9110 fResample = 0.60; nVarToSample = 10; minLeaf

= 25

Random forest 0.9087 fResample = 0.80; nVarToSample = 75; minLeaf

= 5

FFNN 0.9087 {20, 5} neurons; trainscg; sigma = 5 × 10-4;

lambda = 5 × 10-5

FFNN 0.9077 {5, 20} neurons; trainscg; sigma = 5 × 10-3;

lambda = 5 × 10-6

FFNN 0.9073 {15, 10} neurons; trainrp; delt_dec = 0.5;

delt_inc = 1.1

Random forest 0.9071 fResample = 0.40; nVarToSample = 1; minLeaf

= 10

Random forest 0.9068 fResample = 0.60; nVarToSample = 75; minLeaf

= 25

LREN 0.9068 alpha = 0.75, lambdaRatio = 10-5

GBT ensemble 0.9066 fResample = 0.20; nVarToSample = 100; minLeaf

= 25; learnRate = 0.15

FFNN 0.9064 {20, 15} neurons; trainscg; sigma = 5 × 10-4;

lambda = 5 × 10-8

FFNN 0.9063 {10, 5} neurons; trainscg; sigma = 5 × 10-5;

lambda = 5 × 10-6

Continued on next page
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Table B.14 – continued from previous page

Base Model AUC Parameters

GBT ensemble 0.9060 fResample = 0.15; nVarToSample = 431; minLeaf

= 5; learnRate = 0.1

GBT ensemble 0.9058 fResample = 0.15; nVarToSample = 50; minLeaf

= 5; learnRate = 0.05

Random forest 0.9058 fResample = 0.80; nVarToSample = 1; minLeaf

= 25

Random forest 0.9057 fResample = 0.80; nVarToSample = 100; minLeaf

= 10

Table B.14: Selected models for buffer distance of 10 km and lead time of

[45, 60] minutes.
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Base Model AUC Parameters

Random forest 0.8912 fResample = 1.00; nVarToSample = 10; minLeaf

= 50

GBT ensemble 0.8883 fResample = 0.30; nVarToSample = 431; minLeaf

= 50; learnRate = 0.01

Random forest 0.8867 fResample = 1.00; nVarToSample = 10; minLeaf

= 10

GBT ensemble 0.8852 fResample = 0.15; nVarToSample = 25; minLeaf

= 10; learnRate = 0.05

Random forest 0.8851 fResample = 0.05; nVarToSample = 10; minLeaf

= 10

GBT ensemble 0.8825 fResample = 0.25; nVarToSample = 10; minLeaf

= 10; learnRate = 0.01

Random forest 0.8823 fResample = 0.20; nVarToSample = 25; minLeaf

= 10

Table B.15: Selected models for buffer distance of 10 km and lead time of

[60, 90] minutes.
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Appendix C

Additional Results for Experiment 2

Figures C.1-C.12 are analogous to Figures 6.13-6.15 in the main body; Figures

C.13-C.15 are analogous to 6.16-6.18 in the main body.
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Figure C.1: Top variables for (a) J -measures with LDA selection; (b)

J -measures with LDC selection; (c) decision-tree method; and (d) sequential

forward selection at buffer distance of 0 km and lead time of [15, 30] minutes.
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Figure C.2: As in Figure C.1, except for a buffer distance of 0 km and lead

time of [30, 45] minutes.
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Figure C.3: As in Figure C.1, except for a buffer distance of 0 km and lead

time of [45, 60] minutes.
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Figure C.4: As in Figure C.1, except for a buffer distance of 0 km and lead

time of [60, 90] minutes.
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Figure C.5: As in Figure C.1, except for a buffer distance of 5 km and lead

time of [0, 15] minutes.
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Figure C.6: As in Figure C.1, except for a buffer distance of 5 km and lead

time of [15, 30] minutes.
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Figure C.7: As in Figure C.1, except for a buffer distance of 5 km and lead

time of [45, 60] minutes.
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Figure C.8: As in Figure C.1, except for a buffer distance of 5 km and lead

time of [60, 90] minutes.
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Figure C.9: As in Figure C.1, except for a buffer distance of 10 km and lead

time of [0, 15] minutes.

228



Figure C.10: As in Figure C.1, except for a buffer distance of 10 km and lead

time of [15, 30] minutes.
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Figure C.11: As in Figure C.1, except for a buffer distance of 10 km and lead

time of [30, 45] minutes.
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Figure C.12: As in Figure C.1, except for a buffer distance of 10 km and lead

time of [45, 60] minutes.
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Figure C.13: Class-conditional PDFs for statistics involving -20 ◦C reflectivity.

The “class” is the label for the storm object (1 if Umax ≥ 50 kt, 0 otherwise) at

a buffer distance of 5 km and lead time of [30, 45] minutes. The orange curve is

the PDF for storm objects with label = 1; the purple curve is for storm objects

with label = 0. Each solid line is a mean, and each shaded area is a 95%

confidence interval, over 25 bootstrap replicates.
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Figure C.14: Class-conditional PDFs for statistics involving maximum

estimated hail size (MESH). Other details are the same as in Figure C.13.
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Figure C.15: Class-conditional PDFs for statistics involving severe-hail index

(SHI). Other details are the same as in Figure C.13.

234


