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Abstract

Meteorologists have access to more model guidance and observations than ever

before, but this additional information does not necessarily lead to better fore-

casts. New tools are needed to reduce the cognitive load on forecasters and

to provide them with accurate, reliable consensus guidance. Techniques from

the data science community, such as machine learning and image processing,

have the potential to summarize and calibrate numerical weather prediction

model output and to generate deterministic and probabilistic forecasts of high-

impact weather. In this dissertation, I developed data-science-based approaches

to improve the predictions of two high-impact weather domains: hail and solar

irradiance. Both hail and solar irradiance produce large economic impacts, have

non-Gaussian distributions of occurrence, are poorly observed, and are partially

driven by processes too small to be resolved by numerical weather prediction

models.

Hail forecasts were produced with convection-allowing model output from

the Center for Analysis and Prediction of Storms and National Center for Atmo-

spheric Research ensembles. The machine learning hail forecasts were compared

against storm surrogate variables and physics-based diagnostic models of hail

size. Initial machine learning hail forecasts reduced size errors but struggled

with predicting extreme events. By coupling the machine learning model to

predicting hail size distributions and estimating the distribution parameters

xviii



jointly, the machine learning methods were able to show skill and reliability in

predicting both severe and significant hail.

Machine learning model and data configurations for gridded solar irradiance

forecasting were evaluated on two numerical modeling systems. The evalua-

tion determined how machine learning model choice, closeness of fit to training

data, training data aggregation, and interpolation method affected forecasts of

clearness index at Oklahoma Mesonet sites not included in the training data.

The choice of machine learning model, interpolation scheme, and loss function

had the biggest impacts on performance. Errors tended to be lower at testing

sites with sunnier weather and those that were closer to training sites. All of

the machine learning methods produced reliable predictions but underestimated

the frequency of cloudiness compared to observations.
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Chapter 1

Introduction

The weather community sails on a turbulent sea of noisy data. The accuracy

of weather forecasts is driven by two main factors: (1) the quality of the obser-

vational data and model guidance available to forecasters, and (2) the ability of

the forecasters to properly interpret that information (Stewart 2001). The effect

of improving guidance quality is evident in tornado warning verification trends

(Fig. 1.1) with the largest, recent increases in probability of detection occurring

with the deployment of the NEXRAD network in the early 1990s (Brooks 2004).

The finer resolution of numerical weather prediction modeling systems and the

increasing availability of ensemble guidance require forecasters to analyze and

consider the likelihood of a wider range of possible weather scenarios. Radar

and satellite observations are also increasing in temporal and spatial resolution,

revealing new weather features but also requiring more time to analyze. Smart

phones, crowdsourcing, and personal weather stations are conveying all kinds of

potentially relevant data that has shown the ability to improve forecasts (Mass

and Madaus 2014), but they also bring a lot of noise due to poor calibration,

siting issues, and human biases. Even with all this change, weather forecaster

displays and methods have not been evolving fast enough to keep pace with the

explosion of data. Poor integration of new data sources with forecasters could

result in static or decreasing performance along with greater incentive for more

forecaster duties to be replaced with automation (Snellman 1977).
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Figure 1.1: Yearly National Weather Service tornado warning verification statis-
tics for the US. Source: NOAA.

The heuristics and biases present in human cognition have a limiting effect on

the ability of using more information to improve forecasts (Stewart et al. 1992;

Doswell III 2004). While providing forecasters with more information does have

a slightly positive impact on accuracy, it can lead to negative impacts on relia-

bility as forecasters become overconfident in their decision (Stewart et al. 1992,

1997). Through education, training, and experience, forecasters develop a set

of rules and heuristics for evaluating weather guidance and generating forecasts

(Doswell III 2004). Forecasters may not benefit from additional guidance if it

does not match with their conceptual model of the situation (representativeness

bias), if it is a tool or situation outside of the previous experience of the fore-

caster (availability bias), or if the subsequent information differs significantly

from initial guidance (anchoring) (Tversky and Kahneman 1974; Doswell III

2004). The anchoring effect can lead to confirmation bias when forecasters ac-

cept additional information that supports their initial instinct, while rejecting
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anything contrary. In order to minimize the effects of these biases, the guidance

used should be as relevant, reliable, and unbiased as possible (Stewart 2001).

Statistically-corrected consensus ensemble prediction systems would then be

the logical choice for initial guidance, but forecasters have expressed distrust of

ensembles and statistical correction methods (Novak et al. 2008). Instead, they

prefer to use deterministic numerical weather prediction (NWP) models or a

subset of individual ensemble members to predict high impact events. Consen-

sus ensemble guidance in the form of ensemble mean or probability tends to

smooth gradients and decrease the amplitude of extremes. Deterministic guid-

ance is more physically consistent and can show extreme events, but it may over-

state the likelihood of an extreme event occurring, especially if forecasters are

biased toward looking at the extreme solutions. Existing linear bias-correction

techniques like Model Output Statistics (Glahn and Lowry 1972) can correct

for some issues with ensembles but have a limited ability to improve the rep-

resentation of extreme events. Forecasters have expressed that they are more

likely to adopt a new technique if it demonstrates a significant improvement

over existing approaches and gives more direct guidance for the phenomenon

being forecast (Morss and Ralph 2007).

In this dissertation, I develop data-science-based approaches to improve the

predictions of two high-impact weather domains: hail and solar irradiance.

While the two areas may seem to share little in common at first glance, both

phenomena produce large economic impacts on a frequent basis. Hail causes

billions of dollars in property and crop damage in the United States each year

(Changnon 2009) and is a major yearly liability for insurance companies (Brown

et al. 2015) with $850 million in average annual claims. Urban sprawl and pop-

ulation growth in large cities such as Dallas/Fort Worth, St. Louis, Chicago,
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and Denver have made large amounts of property damage from hail events more

likely (Rosencrants and Ashley 2015). Solar energy is a rapidly growing source

of electricity whose variability needs to be predicted accurately, so electricity

loads can be properly balanced and operational costs can be minimized. While

solar irradiance itself does not cause disaster, poor forecasts and underestima-

tion of the uncertainty could lead to major monetary losses for electric utilities

and energy trading firms, and brownouts and blackouts due to an inadequate

electricity supply could occur.
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Figure 1.2: Observed distributions of hail sizes and clearness index during May
and June 2015. A gamma distribution is fitted to the hail size values, and a
beta distribution is fitted to the clearness index values.

Both hail and solar irradiance exhibit non-Gaussian distributions in their

range of values (Fig. 1.2). Hail size follows a gamma distribution, and clear-

ness index, a scaled measure of observed versus idealized irradiance, exhibits a

beta distribution (Falls 1974) with a larger peak near the maximum (Jurado

et al. 1995). Large hail occurs rarely at a given location but happens almost

daily somewhere in the contiguous US during the months from April through
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July. While partly cloudy skies are rarer than mostly clear or cloudy days,

they still occur fairly frequently at most locations. Both are rare events but

common enough that collecting forecasts and observations over the period of a

few months and a wide area can capture much of the variability associated with

each phenomenon. This level of relative rareness makes these phenomena more

amenable to prediction using statistical and machine learning methods.

Techniques from the data science community have the potential to address

the needs of high-impact weather event forecasters by integrating the large

amounts of information available into reliable hazard forecasts. Advances in

computing and storage have allowed us to amass vast archives of data and

process it in real-time. Image processing techniques can filter gridded data to

identify salient features, which can make the analysis of data over long periods

of time easier and more consistent (Lakshmanan and Smith 2009). Machine

learning methods can generate highly accurate predictive models from complex,

multidimensional datasets by discovering underlying structures in the data with

less reliance on theoretical assumptions about its origins (Breiman 2001b). The

best machine learning methods balance predictive accuracy with robustness to

noisy data and provide some level of interpretability. Ensemble decision tree

methods, including random forests (Breiman 2001a) and gradient boosted re-

gression (Friedman 2001), use interpretable base models while providing con-

sistently high performance across many datasets (Caruana and Niculescu-Mizil

2006; McGovern et al. 2015). To produce these significant performance gains,

however, machine learning models require one crucial item: a large set of fore-

cast data paired with observations. High-impact weather events tend to be

both extreme and rare, so a large amount of data is generally required to cap-

ture them well. Physical understanding is also helpful in constraining the data
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sources needed for prediction and ensuring that the predictions are physically

consistent.

How much of a role should automated guidance play in the forecast pro-

cess? For forecasts of standard weather variables, such as temperature and

precipitation, the National Weather Service (NWS) currently operates with a

human-in-the-loop paradigm in which forecasters subjectively blend and adjust

multiple sources of guidance to create a final forecast. While the NWS approach

is very time and labor intensive, local offices may be able to add predictive value

in situations where local effects have a larger impact on the forecast. At the

NWS Weather Prediction Center, which issues temperature and precipitation

forecasts over the entire US, the human forecasts now perform significantly

worse than down-scaled, bias-corrected ensemble forecasts for temperature and

precipitation (Novak et al. 2014). Official NWS track forecasts of hurricanes, a

major form of high impact weather, also perform worse than weighted ensemble

consensus forecasts (Cangialosi and Franklin 2015). There are also issues with

spatial discontinuities in forecasts and warnings between the domains of differ-

ent forecast offices (Gilbert et al. 2015). Many private weather firms, including

the Weather Company, operate in a human-over-the-loop paradigm in which an

optimal blend of bias-corrected model output is generated as needed by users,

and human forecasters can adjust blending weights to account for observed

short-term biases or data quality issues (Williams et al. 2016). This approach

scales easily and only requires a small team of meteorologists to oversee a mostly

automated system. The downside of a heavily automated approach is that fore-

casters may become disengaged from the forecast process (Pliske et al. 2004)

and struggle to take appropriate corrective action when automation fails (Skitka
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et al. 1999; Pagano et al. 2016). By studying the error characteristics of dif-

ferent machine learning methods in high-impact weather situations, researchers

and forecasters can identify when the automated guidance should be trusted

and when it is more likely to struggle.

The primary hypothesis of this dissertation is that properly configured deci-

sion tree ensemble machine learning models will produce day-ahead predictions

of hail size and solar irradiance that show significantly more skill than raw

NWP model output, physics-based diagnostic models, and linear regression.

The secondary hypothesis is that properly configured decision tree ensemble

machine learning models will produce distributions of forecasts that are physi-

cally consistent with distributions of observations. In Chapter 3, I evaluate ma-

chine learning regression models that directly predict maximum hail size from

convection-allowing model output against a physics-based diagnostic method

and determine whether any of the approaches can produce both low size er-

rors and identify extreme hail events accurately. Utilizing the experiences from

Chapter 3, in Chapter 4 I develop machine learning models with constraints in

their pre-processing and training procedures aimed at producing more accurate

and physically-realistic hail size forecasts. The machine learning hail forecasts

are evaluated against other physics-based methods to determine how well each

method detects hail events and how likely false alarms are for a given proba-

bility of detection. In Chapter 5, I create solar irradiance forecasting systems

with varied machine learning model configurations. I evaluate the prediction

errors to determine which models and configurations have a significant impact

on performance. I also stratify errors by forecast value and site to identify the

major physical sources of error in the predictions. In Chapter 6, I discuss the

insights gained from this investigation and future directions for this research.
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Chapter 2

Background

Meteorologists create high-quality weather forecasts by synthesizing infor-

mation from an array of observations and guidance provided by numerical

weather prediction (NWP) models. In order for NWP model guidance to be

interpretable and useful, it must first be post-processed. Post-processing in gen-

eral transforms raw model output into a form that is more easily interpreted by

the forecaster. Basic post-processing involves interpolating NWP model output

from the original grid to other coordinate systems, such as constant pressure

levels or height above ground, and calculating derived quantities and diagnos-

tic variables from the fundamental prognostic variables. Feature identification

catalogs different areas of interest for particular forecasting tasks. Statistical

post-processing combines NWP model output with outside observations and

other data sources to produce a calibrated forecast product. This chapter de-

scribes these different post-processing methods in more detail and discusses the

merits and limitations of different approaches. The ingredients and forecasting

approaches for hail and solar irradiance are then examined.

2.1 Convection-Allowing Model Ensembles

As computational speed and storage capacities have increased in the past

20 years, research groups and operational weather forecast centers have run
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real-time NWP models capable of explicitly representing deep, moist convec-

tion (Kain et al. 2008). NWP models with grid spacing larger than 4 km must

parameterize deep convection in order to capture the thermodynamic and pre-

cipitation effects from convective overturning properly. At coarser grid spacings,

convection occurs on a slower time scale than observed, resulting in convective

structures, heat and moisture fluxes, and precipitation amounts being repre-

sented incorrectly (Weisman et al. 1997). While not all convective processes

are adequately resolved between 1 and 4 km, individual updrafts and their

associated heat and moisture fluxes can be represented with a reasonable de-

gree of accuracy. Because some convective processes are not fully resolved, these

models are called Convection Allowing Models (CAMs). Even with their imper-

fect representation of convection, CAMs have shown skill over mesoscale NWP

models in precipitation forecasting and in forecasting convective evolution and

morphology (Weisman et al. 2008). However, errors in the initial conditions

and model physics lead to spatial errors in storm placement and timing errors

in convective initiation and storm evolution. In order to account for the uncer-

tainty associated with these errors, modelers have developed CAM ensembles

that perturb the initial and boundary conditions, physics parameterizations,

and the dynamical cores to create a set of realizations that capture the range

of possible convective solutions for a given day. CAM ensembles of many dif-

ferent configurations have run in real time as part of the NOAA Hazardous

Weather Testbed Spring Experiment since 2007 (Clark et al. 2012a). The Na-

tional Weather Service is already running deterministic CAMs operationally

and is planning to deploy CAM ensembles in the near future (Benjamin 2014).
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While CAMs cannot directly resolve the severe hazards associated with thun-

derstorms, which include tornadoes, hail, high winds, and flash floods, diagnos-

tic information extracted from individual storms has shown skill in inferring

the potential for these hazards. Because storms can greatly evolve in structure

and intensity on the order of minutes, hourly instantaneous snapshots of CAM

output will likely miss the time when the storm is at its greatest intensity. More

frequent model output may capture these extremes, but requires more storage

space. A useful compromise is to track the maximum value of a quantity at

a grid point over a given time period and output that field every hour. These

hourly maximum fields can provide a proxy for both storm track and intensity

(Kain et al. 2010). For severe weather forecasting, updraft helicity, the inte-

grated product of vertical velocity and vertical vorticity, between 2 and 5 km is

a good proxy for strong, rotating updrafts (Kain et al. 2008) and shows some

correlation with tornado path length (Clark et al. 2013). Other hourly maxi-

mum fields include updraft and downdraft speeds, radar reflectivity at the -10C

level and column-integrated graupel.

Products derived from the hourly maximum fields can help diagnose severe

weather likelihood and intensity. The length and direction of the tracks pro-

vides an estimate of storm speed and motion. Reliable probabilistic guidance

for severe weather can be derived from hourly maximum fields by selecting a

threshold, marking grid points where the threshold was exceeded within a given

radius, and then applying a Gaussian smoother to the surrogate severe report

grid (Sobash et al. 2011). These probabilities can be generated for both deter-

ministic and ensemble configurations (Fig. 2.1) and are very computationally

efficient to generate. Varying the standard deviation of the Gaussian smoother
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Figure 2.1: (a) Storm Surrogate Reports on an 80 km grid. (b) Storm Surrogate
Probability Forecast from a single ensemble member. (c) Ensemble probabil-
ity (mean of (a)) on coarse grid. (d) Ensemble Storm Surrogate Probability
Forecast. Figure from Sobash et al. (2016).
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can allow the user to calibrate the storm surrogate probabilities based on the

severe weather report of choice (Sobash et al. 2016).

Storm surrogate products have some inherent limitations. The current storm

surrogate fields do not directly predict the occurrence of severe weather hazards.

The distributions of intensities of the storm surrogate products are model core,

grid spacing, and parameterization scheme dependent(Kain et al. 2008), which

can make them more challenging for forecasters to process when examining

model output from multiple ensemble prediction systems. Most of the storm

surrogate products are only indirectly verifiable in that the surrogate variables

are not observed but can be correlated with severe reports. A forecast product

that directly forecasts the chance or occurrence of a particular severe threat

would be more useful if the predictions were well-calibrated and if they were

physically consistent with the model forecast.

2.2 Feature Identification and Tracking Methods

Feature-based post-processing techniques are often used for forecasting at-

mospheric phenomena that occupy a discrete area and move and evolve with

time. Commonly tracked features include cyclones (Blend and Schubert 2000),

precipitation areas (Davis et al. 2009), thunderstorms (Dixon and Wiener 1993),

fronts (Hewson 1998), and jet streams (Limbach et al. 2012). With feature iden-

tification and tracking, scientists can catalog the locations, intensities, and du-

rations of features and compare them across space, time, and different datasets.

Feature-based datasets generally require much less data to be stored per event,

which allows for larger archives given fixed storage amounts. High-impact
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weather events tend to be associated with discrete features, so using feature-

based analysis for forecasting can reduce the computational and cognitive load

for both forecasters and their guidance models. In this dissertation, I use feature

identification and tracking to identify potential hailstorms. I can then extract

information about each feature and feed it into machine learning models to

produce predictions.

This analysis can be done either subjectively by individuals who hand-label

each feature or objectively by automated algorithms that apply the same criteria

to every event. Subjective feature identification takes advantage of people’s

natural pattern recognition skills and is better for capturing complex features

and edge cases. However, the process is very labor intensive and time-consuming

(Lakshmanan and Smith 2009), and it often requires someone with training

and expertise on the given phenomenon. Subjective identification can also be

inconsistent with different experts, or even the same expert at different times,

analyzing the same feature or similar features differently depending on their

experience or fatigue levels (Hewson 1998). Objective, or automated, feature

identification tends to be faster and more consistent than humans and can be

run in real-time or archival situations. It can be scaled very cheaply across

multiple processors or machines, and it can be performed with different settings

on the same dataset to ensure greater robustness. On the other hand, automated

approaches generally require a lot of up-front labor to develop, and often require

data to first be quality-controlled and smoothed in order to produce good results.

While many automated techniques are available for feature identification, all of

them have to be fine-tuned for the needs and challenges of a particular domain

before being used operationally.
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Enhanced Watershed Objects Min: 3 Step: 1 Max: 80 Size: 50 Delta: 20) Time: 24

Figure 2.2: An example of features identified in a total column graupel field
using the enhanced watershed technique on convection-allowing model output.
The features are colored by ID number. The red rectangles show the bounding
box around each feature.
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Feature identification on a spatial grid typically involves a process of iden-

tifying candidate center points, growing regions of influence, merging features,

and filtering those that do not meet certain criteria. Simple feature identifica-

tion methods, such as those used in TITAN (Dixon and Wiener 1993), SCIT

(Johnson et al. 1998), and MODE (Davis et al. 2009), look for contiguous areas

that exceed a single intensity threshold, but they may capture too many spuri-

ous objects if the threshold is set too low or merge objects together that should

be considered separate. Objects with maximum values near the threshold may

also disappear and reappear due to small fluctuations and would be considered

separately by the algorithm. The hysteresis method, which requires each fea-

ture to contain at least one point exceeding a higher threshold, in addition to

all points exceeding a lower threshold, helps filter some spurious objects. The

enhanced watershed method (Lakshmanan et al. 2009) grows objects until they

reach a specified saliency, or area criterion. This change in criteria makes the

method more scale-aware and reduces its sensitivity to the choice of intensity

threshold. An example of the features identified by the enhanced watershed

method is shown in Fig. 2.2.

Feature tracking methods use some combination of centroid matching and

feature cross-correlation. In centroid matching methods, distances are com-

puted from all centroids at one time step to all centroids at another time step.

Then features meeting the minimum distance criteria are matched, and those

without a matching pair are considered either terminated or new features. The

TITAN storm-tracking algorithm (Dixon and Wiener 1993) uses a globally op-

timal matching algorithm (Munkres 1957) to find the best pairings of storms

and to resolve track continuations in the cases of mergers and splits. Han et al.

(2009) created an enhanced version of TITAN that first matched objects that
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overlapped spatially before matching with a global cost function. Lakshmanan

and Smith (2010) evaluated 5 commonly used storm tracking algorithms and

devised a new hybrid tracking algorithm that combined the best features from

all of the other ones. One notable improvement in Lakshmanan and Smith

(2010) was using a cross-correlation filter to estimate storm motion by find-

ing the amount of translation that led to the highest spatial correlation with

the grid at the previous time step. Limbach et al. (2012) used the overlap of

jet stream features in time and space to perform 4-dimensional tracking. The

MODE-Time Domain algorithm (Clark et al. 2014) also uses feature overlap to

track objects in time.

2.3 Statistical Post-Processing

Statistical models for post-processing NWP model output have evolved within

two general frameworks. Perfect-prog, the first framework, fits a statistical

model between observed or analyzed variables and observations of a weather

feature, such as temperature or precipitation (Klein et al. 1959). The statisti-

cal model is then applied to NWP forecasts that assume the model is perfect.

Model Output Statistics (MOS), the second framework, fits a statistical model

between NWP output at a given time horizon and observations at that time

(Glahn and Lowry 1972). Because MOS fits to the NWP output directly, it

can correct for systematic biases assuming that the configuration of the NWP

model does not change. When NWP model configurations are updated, the

MOS equations have to be regenerated after a sufficient number of new model
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forecasts are made. Perfect-prog models are generally less accurate than a well-

tuned MOS model, but they are less sensitive to model configuration changes

and tend to be more robust over time.

Both perfect-prog and MOS models have traditionally used multiple linear

regression in which the input variables are selected through an iterative screen-

ing process. Hundreds of potential input variables are usually available, but the

strength of the correlation with the predicted value may be low, or they may be

highly correlated with other input variables (Glahn and Lowry 1972). Forward

screening selection addresses this problem by fitting linear regression models to

all input variables and selecting the model that produces the largest reduction

in variance, then finding a second variable that provides the largest reduction

in variance when combined with the first, and so on until some stopping cri-

teria is met in terms of number of variables or minimal reduction in variance

(Glahn and Lowry 1972). The method produces a set of strong predictors that

also minimize cross-correlation, but also requires fitting thousands to millions

of linear models before settling on a final one. MOS can produce deterministic,

categorical, or probabilistic predictions that are constrained by transforming

the input variables into binary values.

The training and forecast data for MOS models need to exhibit as much

stationarity as possible in order to maximize predictive skill. MOS equations

are generally trained for single sites at each lead time in order to capture lo-

cal effects closely. For variables that have more skewed distributions, regional

aggregation of similar sites helps capture rare events (Lowry and Glahn 1976).

While regional models are expected to perform well within their specified re-

gion, application of these models on a high-resolution grid can lead to dis-

continuities at the borders of regions. When developing gridded MOS, Glahn
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et al. (2009) minimized spatial discontinuities by using a successive correction

method (Cressman 1959), spatial smoothing, land-sea masking, and elevation

information. The gridded MOS approach does produce effective forecasts, but

it requires a large number of individual regression models for each location and

lead time to produce effective forecasts.

2.4 Machine Learning

Modern datasets are constantly increasing in size and complexity, and greater

demands are being placed on people to make predictions from these datasets.

The assumptions of Gaussian-distributed data and constant variance that un-

derly the simple multiple linear regression used by MOS mean that the approach

does not scale well as more examples and predictors are added. Machine learning

models, however, are designed to extract information from large, multidimen-

sional, noisy datasets and produce predictions that generalize well. Unlike tra-

ditional statistical modeling approaches, which look for empirical distributions

that best fit a smaller sample of data as closely as possible, machine learning

modeling approaches derive as much information as possible from the data di-

rectly and focus on maximizing predictive performance on data independent of

what was used to fit the model (Breiman 2001b). Machine learning models make

gains in predictive performance by fitting to data in a way that is constrained

by model structure and parameters to maximize signal and to reduce noise.

2.4.1 Regularized Linear Models

Regularization techniques allow linear models to fit noisy, high-dimensional

data while minimizing the potential for overfitting. Simple linear regression
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determines its weights by minimizing the mean squared error between the

model and observations, which can be done numerically using a gradient de-

scent method. The loss function is defined in Eq. 2.1

min
w

1

2n
‖Xw − y‖22 , (2.1)

where w is the weight vector, X is the matrix of predictor values, n is the number

of rows in the predictor matrix, and y is the predictand vector. If the input

data to the model are noisy such that for a given set of input values there are

multiple output values or contains many input variables with varying degrees

of relevance, the least squares fit would either overfit the noise or not converge

to an unbiased solution at all. A solution to this problem is to add a bias term

to the minimization function that constrains the possible coefficient values.

Ridge regression (Hoerl and Kennard 1970) addresses this issue by adding a

penalty term to the minimization function that is the L2 norm of the coefficient

vector as shown in Eq. 2.2:

min
w

1

2n
‖Xw − y‖22 +

α

2
‖w‖22 , (2.2)

where α scales the effect of the Ridge term. The ridge term penalizes large-

magnitude coefficients and shifts the optimal solution toward a set of small-

magnitude coefficients. Lasso regression (Tibshirani 1996) uses the L1 norm of

the weights in place of the L2 norm as shown in Eq. 2.3:

min
w

1

2n
‖Xw − y‖22 + α ‖w‖1 . (2.3)
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This minor change results in the potential for a sparse set of coefficients such

that some of them are set to 0. This feature of Lasso allows it to do implicit

variable selection as part of the optimization process. Unlike Ridge, Lasso has

no analytical solution. The Elastic Net (Zou and Hastie 2005) combines the

Ridge and Lasso terms in the loss function and balances their effects using a

weighting term ρ (Eq. 2.4):

min
w

1

2n
‖Xw − y‖22 + αρ ‖w‖1 +

α(1− ρ)

2
‖w‖22 . (2.4)

The magnitude of their effects is governed by α. By using cross-validation to

determine the best ρ and α, a more robust set of coefficients can be found.

2.4.2 Decision Trees

Decision trees are a class of machine learning model that use a hierarchical

set of decision thresholds to recursively partition a complex, multidimensional

feature space into many, more uniform subsets (Breiman et al. 1984). A decision

tree consists of binary decision nodes that ask yes-or-no questions about the

input features, such as “Does the temperature exceed 20 °C?” The decision

nodes eventually branch out to leaf nodes that output a prediction based on the

training data that reached them. The prediction can be a class label, probability

distribution, or continuous value depending on whether the decision tree is being

used for classification or regression. An example of a decision tree can be found

in Fig. 2.3.

Decision trees are grown by greedily determining the best input feature and

threshold for splitting a given set of data into many more uniform subsets. In

the traditional decision tree framework, all input features are evaluated at each
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Figure 2.3: An example of a decision tree predicting whether or not hail will
occur trained on data from the 2014 Center for Analysis and Prediction of
Storms ensemble. See Chapter 4 for more details.

node, and candidate splitting thresholds are picked from transitions in labels for

the training data. An impurity metric, such as cross-entropy or the Gini index

for classification and mean squared error for regression (Hastie et al. 2009),

is calculated for the current node and for both possible child nodes for every

potential feature-threshold combination (Table 2.1). The combination with the

largest reduction in impurity is selected for inclusion in the tree, and the training

data are then split and sent downward where the growth process continues.

Decision tree growth stops when a certain level of uniformity, a maximum depth,

a minimum number of training cases, or a lack of significant decreases in error is

reached. Through the tree-growing process, irrelevant features are not included,

and a human-interpretable model is constructed. Because the predictions are

only based on the training data labels, decision trees are resistant to noisy and

missing input data, but they also do not extrapolate beyond values found in the

training set.
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Table 2.1: The definitions of commonly used impurity metrics for classification
and regression decision trees (Hastie et al. 2009). p̂mk is the probability of class
k of classes K in decision node m. Nm is the number of training cases reaching
node m. xi ∈ Rm describes the training cases that have a value xi within region
Rm. The training labels yi are compared with the mean of the training cases
within a node ĉm.

Impurity Metric Equation

Gini Index
∑K

k=1 p̂mk(1− p̂mk)
Cross-Entropy −

∑K
k=1 p̂mk log p̂mk

Mean Squared Error 1
Nm

∑
xi∈Rm

(yi − ĉm)2

Decision trees also have many inherent limitations when used in isolation.

When compared with other machine learning models, decision trees often pro-

duce less accurate predictions. The models are sensitive to slight changes in

the training data, which can have a cascading effect on what input features

are included in the tree. Deeper splits in the tree may not be informative if

the number of training examples is small, resulting in overfitting (Hastie et al.

2009).

2.4.3 Decision Tree Ensembles

Some of the limitations of decision trees can be ameliorated through different

forms of ensembles along with the addition of stochastic processes. Two of the

most powerful decision tree ensemble techniques are random forests and gradi-

ent boosting trees. Random forests (Breiman 2001a) are unweighted ensembles

of randomized decision trees. Each decision tree in the random forest is trained

using a bootstrap-resampled dataset, and a random subset of the input variables

are evaluated for inclusion in the tree at each node during the tree growth pro-

cess. These randomization steps increase the independence of the trees in the
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ensemble and lead to greater exploration of the feature space (Ho 1998). Eval-

uating random subsets of the features instead of all possible ones also reduces

the computational cost of building a large ensemble. Typically, the square root

of the number of input variables is used for random subset sampling although

a larger number may be necessary for datasets with many weak inputs (Hastie

et al. 2009). By averaging the predictions from a set of low-training-set-error

trees, the variance of the predictions is reduced, so the resulting predictions

generally are smooth and have low error. Growing each tree independently also

means that the tree growth can be easily parallelized for large datasets. Com-

pared to other nonlinear machine learning methods, such as neural networks

and support vector machines, random forests have fewer tunable parameters.

In addition, a wide range of parameter values will generally produce good per-

formance. Increasing the number of trees in the forest improves performance by

reducing the variance of the ensemble average, but performance increases tend

to diminish beyond about 100 trees (Breiman 2001a; Hastie et al. 2009). Adding

more trees leads to the ensemble mean prediction converging toward a single

value due to the central limit theorem and weak law of large numbers, so con-

tinuing to add trees will not result in overfitting (Breiman 2001a). The depth of

the trees effects the variance of the predictions. A smaller tree depth results in

more training samples at a given leaf node, resulting in the individual trees and

thus the ensemble average having less variance and sharpness. Random forests

are typically grown to the point where each leaf node has a very small number

of examples to increase the sharpness, and the ensemble averaging process will

then reduce the systematic bias and variance of the predictions (Breiman 2001a;

Hastie et al. 2009). Due to their strong performance and relative ease of use,

random forests have been increasingly adopted by the members of the weather
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community for a wide range of nowcasting and forecasting problems, including

storm classification (Lakshmanan et al. 2010; Gagne II et al. 2009), convec-

tion initiation (Ahijevych et al. 2016), aircraft turbulence (Williams 2014), and

hurricane power outages (Nateghi et al. 2014).

Gradient boosting trees (Friedman 2001) are additive, stagewise ensembles

of decision trees. In a stagewise ensemble, a series of relatively weak models is

fit sequentially to minimize the errors on the training set predictions made by

the previous model. In the case of gradient boosting trees, the weak model is a

decision tree. The initial tree is fit directly to the training set labels, while each

additional model is fit to the negative gradient of the loss function. For the mean

squared error loss function, the negative gradient is the residual of the training

label and the prediction from the previous tree. Training examples that have

larger residuals will receive higher weights in the fitting process. The predicted

residual from each tree is then added to the sum of the previous tree predictions.

Because adding more trees to boosting eventually leads to overfitting, each tree’s

residual prediction is multiplied by a learning rate parameter that reduces the

magnitude of the residual by a constant value (Hastie et al. 2009). A smaller

learning rate parameter requires more trees to achieve the same level of training

error but tends to provide lower testing set error. Unlike a random forest,

which tends to perform better with large trees, the gradient boosting procedure

favors small trees for both faster computation and lower test set errors. The

algorithm is not parallelizable but can be computationally efficient if the tree

size is limited. Gradient boosting trees were not widely used in the meteorology

community until the AMS Solar Energy Prediction Contest, in which the top

4 teams all used some variation of the model for their entry (McGovern et al.

2015).
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2.5 Forecast Ingredients

2.5.1 Hail Forecasting

While hail growth and melting is governed by the complex microphysical

processes that a hailstone experiences along its trajectory through a storm, hail

forecasting methods have relied on a combination of coarse approximations of

the expected storm environment and local hail climatology with varying degrees

of success (Johns and Doswell III 1992). Most existing hail forecast methods

(e.g., Fawbush and Miller 1953; Moore and Pino 1990; Brimelow et al. 2002) are

based on information extracted from a sounding representative of the convective

environment. All of these models estimate potential updraft strength from the

buoyancy between the melting layer and the equilibrium level as the integrated

buoyancy provides an estimate of the maximum potential updraft speed in a

given environment. In order to determine the hail size at the ground, the hail

size models also include a melting effects component based on the height of the

wet-bulb temperature zero level, which is approximately where melting would

begin in hail falling through downdraft air. Shallower, cooler, and drier melting

layers lead to less melting; and larger hailstones have higher terminal fall speeds,

leading to shorter transit times (Johns and Doswell III 1992).

The sounding-based hail forecasting methods have fundamental limitations

that limit their skill. The sounding used to assess hail potential should be rep-

resentative of the storm environment, which can be problematic when observed

soundings are generally available only twice a day. This issue can be addressed

by either correcting the sounding based on recent surface observations (Moore

and Pino 1990) or by utilizing model forecast soundings near the time and loca-

tion of expected hail. The updraft strength estimated from the sounding may

25



not be representative of the updrafts that actually produce hail. Updraft speed

computed from CAPE is estimated at the top of the updraft and not within the

hail growth region. The largest hail may not come from the strongest part of the

updraft because the hail embryos may be lofted out of the hail growth region

if the speed is too high (Johns and Doswell III 1992). In storms with tilted

updrafts, hailstones may have significant horizontal motions in their growth

trajectories (Nelson 1983), leading to additional growing time.

Some of the issues with purely sounding-based hail diagnostics were ad-

dressed by feeding sounding information into a 1-dimensional hail growth model.

This approach, called HAILCAST (Brimelow et al. 2002), creates an ensemble

of updrafts based on perturbations of the temperature and moisture profile. A

parameter called the Energy Shear Index governs the predicted lifetime of the

updraft and the amount of entrainment that will reduce updraft speed. Hail

embryos are then released into the updraft and grow until they can no longer

be sustained by the updraft or the updraft collapses. A bulk melting scheme

is then applied to approximate the hailstone size at the ground. Jewell and

Brimelow (2009) found that HAILCAST generally provides a reliable forecast

of hail size, especially in comparison to other sounding based methods. Adams-

Selin et al. (2014) has incorporated a variation of HAILCAST directly into the

WRF model that uses modeled vertical velocities in place of those estimated

from a sounding profile.

2.5.2 Solar Irradiance Forecasting

With the rapid growth of electricity generation from solar energy, there is

a greatly increased interest in forecasting solar irradiance at the surface. Solar

irradiance, also known as global horizontal irradiance (GHI), is defined as the
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amount of radiative energy from the sun striking a flat surface of a fixed area

over a fixed time period and is generally recorded in units of W m−2. GHI can

be decomposed into two components, as shown in Eq. 2.5.

GHI = DHI + DNI cos(θz) (2.5)

The two components are direct normal irradiance (DNI), the radiation coming

directly from the sun, and diffuse horizontal irradiance (DHI), the total radia-

tion reflected by the sky and clouds (Eq. 2.5). DNI is multiplied by the solar

zenith angle θz to determine the component striking a horizontal surface. The

amount of solar irradiance at a particular location and time is subject to factors

with varying degrees of predictability from directly computable based on sim-

ple geometry to highly uncertain. The top-of-atmosphere irradiance depends

on the distance between Earth and the sun, which varies cyclically based on

Earth’s orbit. Diurnal effects are determined by calculating the solar zenith

and azimuth angles for a location and time. At higher zenith angles, solar radi-

ation has to travel a longer distance through the atmosphere, leading to a larger

DHI component. Clouds absorb and reflect solar irradiance to varying degrees

depending on their thickness, height, composition, and position relative to the

sun. Aerosols directly absorb a fraction of solar radiation and can indirectly

lead to the formation of clouds (Jimenez et al. 2016).

The best type of forecast guidance for solar irradiance forecasting depends

heavily on the lead time (Diagne et al. 2013). On timescales of a few minutes

to an hour, persistence and autoregressive models are hard to beat. From 1 to

6 hours, statistical models and advection of clouds from satellite data perform

well. From 6 hours to multiple days, NWP models combined with a MOS-type
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Figure 2.4: Appropriate solar irradiance forecasting models for different time
and spatial scales from Diagne et al. (2013).

correction will outperform any purely statistical or extrapolation based methods

(Diagne et al. 2013; Lorenz et al. 2009). For MOS-like systems, the modelers

either spatially average and bias-correct solar irradiance before feeding it into a

simulated PV system (Lorenz et al. 2009), or they predict solar power output

directly using an archive of PV power output (Zamo et al. 2014). Lorenz et al.

(2009) found that spatial averaging of NWP solar irradiance helped improve

predictions by better accounting for cloud effects. Zamo et al. (2014) tested a

wide range of machine learning models on predicting PV power output from a

group of plants in France, and found that random forests produced the lowest

errors and outperformed gradient boosting, linear regression, and support vector

regression even after having them all optimized through grid search and cross-

validation. While a wide range of NWP variables were provided, shortwave

solar irradiance, sun angle, low level relative humidity, and low level cloud cover

recorded high values of variable importance (Zamo et al. 2014). Since low-level
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clouds tend to be thicker and closer to the surface, they are more likely to block

the sun than higher level clouds. The random forest in this case is properly

ordering the degree of physical impact from each type of variable.

2.6 Forecast Evaluation

The goodness of a forecast is a function of its consistency, value, and quality

(Murphy 1993). Consistent forecasts reflect the best judgement of the forecaster

and are not skewed to to maximize a verification metric. Forecast value is a

function of how much an end user benefits from the information in a forecast.

Forecast quality is determined by how well forecasts correspond with observa-

tions. Consistency is determined by the forecaster or forecast system and is

difficult to assess directly. Value is dependent on the end user and their circum-

stances and can vary greatly such that a lower quality forecast could potentially

have more value. This dissertation focuses on evaluating different aspects of

forecast quality. Forecast quality is described by several related attributes that

can be expressed as scalar scores (Wilks 2011). Wilks (2011) and Murphy (1993)

describe seven of the primary aspects of forecast quality that manifest them-

selves through different evaluation techniques. The attributes are described in

Table 2.2. Each attribute is linked to an aspect of the joint probability distri-

bution between forecasts and observations.

Most types of forecasts can be reduced to a deterministic prediction of

whether or not a certain event will occur. Verification of binary discrete forecasts

is performed with a binary contingency table (Table 2.3). The table represents
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Table 2.2: Descriptions of the attributes of forecast quality based on Murphy
(1993). The probability of a forecast value is p(f) while the probability of an
observed value is p(x).

Attribute Description Distributions

Accuracy Correspondence between individual
forecasts and observations.

p(f, x)

Skill Accuracy of forecast relative to accu-
racy of a reference forecast.

p(f, x)

Systemic bias Difference between mean forecast and
mean observation.

p(f) & p(x)

Reliability Correspondence between conditional
mean observation and conditioning
forecast, aggregated over all forecasts.

p(x|f) & p(f)

Resolution Difference between conditional mean
observation and and unconditional
mean observation, aggregated over all
forecasts.

p(x|f) & p(f)

Sharpness Variability of forecast distribution. p(f)
Discrimination Correspondence between conditional

mean forecast and conditioning obser-
vation, aggregated over all observa-
tions.

p(f |x) & p(x)

Table 2.3: Example of a binary contingency table.

Observed

Forecast
Yes No

Yes True Positive (TP) False Positive (FP)
No False Negative (FN) True Negative (TN)
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Table 2.4: Verification scores derived from a binary contingency table.

Score Name Equation

Percent Correct (PC) TP+TN
TP+TN+FP+FN

Critical Success Index (CSI) TP
TP+FP+FN

Probability of Detection (POD) TP
TP+FN

Probability of False Detection (POFD) FP
TN+FP

False Alarm Ratio (FAR) FP
TP+FP

Success Ratio (SR) TP
TP+FP

Frequency Bias (Bias) TP+FP
TP+FN

the joint distribution of all possible forecast and observation pairs. Scores de-

scribing many properties of the forecasts can be calculated from the contingency

table (Table 2.4). Since high impact weather events tend to be rare, there is

more interest in predicting the positive events correctly. However, the negative

events usually far outweigh positive events in frequency, so statistics that give

equal weight to positive and negative events or only focus on negative events,

such as Percent Correct and Probability of False Detection, will still return

really high scores even if the positive events are poorly forecasted. Critical Suc-

cess Index (CSI; Gilbert 1884) serves as a better measure of accuracy for rare

events by ignoring true negatives entirely. Frequency bias determines if an event

is being overforecasted (bias > 1) or underforecasted (bias < 1). False Alarm

Ratio (FAR) is a measure of reliability for a positive event while Probability of

Detection (POD) measures the ability of the forecast to discriminate between

positive and negative events (Wilks 2011).

Probabilistic forecasts of binary events are evaluated using diagrams and

scores that examine the different properties of forecast quality at each probabil-

ity threshold. The accuracy of probability forecasts is evaluated with the Brier
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Score (Brier 1950), which shows the squared difference between probability fore-

casts and the occurrence of the event. The Brier Score can be decomposed into

three terms in Eq. 2.6:

BS =
1

N

K∑
k=1

nk(pk − ōk)2 −
1

N

K∑
k=1

nk(ōk − ō)2 + ō(1− ō), (2.6)

where N is the number of forecasts, K is the number of probability bins, nk

is the number of forecasts in each bin, pk is the forecast probability, ōk is the

observed relative frequency for a given probability, and ō is the climatological

relative frequency (Murphy 1973). The first term indicates the reliability of

the probabilities as the distance between the forecast probability and observed

relative frequency, the second term determines the resolution as the difference

between the observed and climatological relative frequencies, and the uncer-

tainty reflects the underlying predictability of the problem. Rare events tend

to have low uncertainty. Good probability forecasts minimize the reliability

term while maximizing the resolution term. The attributes diagram (Hsu and

Murphy 1986) is a graphical representation of the Brier Score decomposition.

An example of an attributes diagram is shown in Fig. 2.5. The diagram ex-

pands on the reliability diagram, which plots the forecast probability versus the

observed relative frequency, to include lines demarcating “No Skill” and “No

Resolution”. The “No Skill” line marks the points where the reliability term

equals the resolution term, which results in a Brier Skill Score of 0 (Hsu and

Murphy 1986). The “No Resolution” line indicates probability forecasts that

have the same observed relative frequency as the climatological probability. The

attributes diagram can be used to assess whether the forecasts for a particular

probability threshold are contributing resolution and positive skill. Forecasts
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Figure 2.5: An example of an attributes diagram.

with negative Brier Skill Scores can still be useful if the slope of their reliability

curve is positive, which indicates the potential for additional calibration at the

expense of sharpness (Wilks 2011).

The ability of a probabilistic forecast to discriminate between two outcomes

can be assessed using a Relative Operating Characteristic (ROC) diagram (Ma-

son 1982). The diagram (Fig. 2.6) is a plot of Probability of False Detection

on the x-axis versus Probability of Detection on the y-axis. A set of thresh-

olds are chosen to make binary deterministic forecasts from probabilistic on

continuous-valued forecasts, and binary contingency tables are constructed for

each threshold. The POD and POFD are calculated at each threshold to form

a curve. At the lowest threshold, all forecasts are yes forecasts, which results

in a POD of 1 and a POFD of 0. At the highest threshold, the opposite is
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Figure 2.6: Examples of ROC (left) and performance (right) diagrams.

true, resulting in a POD of 0 and POFD of 1. If the POD equals the POFD,

then the forecast is no better than a random or uniform forecast. Positive skill

over climatology occurs when the POD exceeds the POFD. The area under the

ROC Curve (AUC) is a summary metric for the skill across all thresholds with

1 indicating a perfect forecast and 0.5 equal to a random forecast. The ROC

curve is insensitive to calibration and the underlying distribution of the event

in question, which makes it a good estimator of potential skill but could lead to

poor conclusions if calibration is important (Wilks 2011). Because ROC curves

weigh positive and negative events equally, ROC curves may not be the best

tool for evaluating rare event forecasts. The performance diagram (Roebber

2009), a variation on the ROC curve that replaces the probability of false detec-

tion with the false alarm ratio along the x-axis, is able to display measures of

accuracy, bias, reliability, and discrimination all in one diagram (Fig. 2.6). It is

more sensitive to the ability to predict positive events because all the statistics

plotted ignore true negatives (Roebber 2009).
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Evaluation of continuous-valued deterministic forecasts can also be framed

in a distributions-oriented way. Accuracy is assessed through the mean squared

error (MSE) and mean absolute error (MAE). The MSE is the mean of the

squared difference between each forecast and observation pair while the MAE

is the mean of the absolute value of the difference between each forecast and

observation pair. MSE is differentiable for all possible error values, which makes

it a popular choice for loss functions (Hastie et al. 2009), but the squared error

penalizes large deviations heavily and makes the score more sensitive to outliers.

MAE linearly weights errors, so it is viewed as a more robust score. Mean

error (ME), or the mean of the differences between forecasts and observations,

is a measure of systemic bias. Reliability and discrimination can be assessed

by binning the continuous forecasts and examining the marginal distributions

of the observations conditioned on the forecasts and forecasts conditioned on

the observations, respectively. Sharpness is proportional to the variance of the

forecasts.

One major goal of forecast evaluation is determining which forecast system

produces the highest quality forecasts. In order to do so, multiple forecasting

systems are evaluated over a large sample of cases using a common set of mea-

sures and are ranked. If two forecast systems have similar scores, then their

differences and relative rankings may be due to random chance within the sam-

ple rather than forecast system design. Statistical hypothesis testing can help

determine if two sets of forecasts originate from the same distribution or not.

Traditional hypothesis testing requires the assumption of certain properties of

the forecast distribution, such as normality. Resampling tests, however, are

non-parametric and only require that each item in a sample be independent of

the others (Efron and Tibshirani 1994).
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Bootstrapping is a method for calculating confidence intervals for any ar-

bitrary statistic by repeatedly resampling a dataset with replacement and cal-

culating the statistic on each of the replicate samples. The percentiles of the

bootstrap statistic distribution then are used as confidence intervals for that

statistic. The width of the bootstrap confidence interval indicates the uncer-

tainty of the statistic calculated on the dataset, which is a function of the

variance and sample size of the dataset. The difference between two samples

can be inferred as statistically significant if the bootstrap distribution of the

difference in sample statistics does not overlap 0. If two bootstrap distributions

do not overlap each other, statistical significance can be inferred; but if there is

overlap, statistical significance may still be possible depending on the amount

of overlap (Cumming and Finch 2005).

If bootstrap confidence intervals computed independently for each forecast-

ing system overlap, then statistically significant differences in performance can

still be inferred if the different models forecast the same cases. If the case in-

dices are resampled the same way for each model, then the performance statistics

calculated for each bootstrap replicate can be ranked. If one model is ranked

higher than another model for most bootstrap samples, then there is more con-

fidence that the difference in scores is statistically significant even if the actual

difference is small. Small but consistent differences in performance are impor-

tant in applications where many forecasts are used, and forecast errors lead to

decisions that incur a certain cost. The cumulative cost reduction of a small

but consistent forecast improvement could be very significant, particularly in

a domain like electric utility forecasting where power purchasing decisions are

made hourly.
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Permutation tests can estimate the p-value of the difference in a statistic be-

tween two paired sets of data (Efron and Tibshirani 1994). Paired data means

that each item in one sample is a paired with another item from the other

sample, such as forecasts from two different models for the same event. In a

permutation test, the difference in test statistics is calculated for the original

samples. Then a null distribution of that statistic is computed by randomly

shuffling paired items from one sample to the other and recalculating the statis-

tic a large number of times under the null hypothesis that both samples come

from the same population. The percentile of the original statistic in the null

distribution is its p-value. In cases where the bootstrap confidence intervals of

paired data overlap with each other, a permutation test can be used to deter-

mine if the difference is statistically significant.

Performing multiple statistical hypothesis tests on the same dataset increases

the probability that at least one of the tests will falsely indicate statistical sig-

nificance. This is known as the multiple comparisons problem and is an increas-

ingly important issue as the dimensionality of datasets continues to increase

(Jensen and Cohen 2000; Lindquist and Mejia 2015). The challenge is to find a

significance threshold α that accounts for the increased chance of false alarms

while still minimizing the probability of missing a result that is statistically

significant. The Bonferroni correction (Dunn 1961) is a simple but conservative

way to correct the p-values of individual hypothesis tests to maintain a desired

Family-Wise Error Rate by dividing the original p-value by the number of hy-

pothesis tests. The resulting individual p-values tend to be very small, which

increases the likelihood of falsely failing to reject the null hypothesis. An al-

ternative approach is to minimize the False Discovery Rate by determining the

number of null hypotheses to reject based on the distribution of ranked p-values
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(Benjamini and Hochberg 1995). First the p-values from each hypothesis in a

group of size N are ranked from smallest to largest, and then the p-value of the

false discovery rate pFDR is calculated such that:

pFDR = max
j=1,...,N

{
p(j) : p(j) ≤

j

N
αglobal

}
, (2.7)

where αglobal is the desired global significance level (Wilks 2006, 2011). Null

hypotheses with p-values below the global significance threshold but above pFDR

are not rejected. This test is less conservative than the Bonferroni correction

and results in fewer false negatives at the expense of an expected number of

false positives.
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Chapter 3

Day-Ahead Hail Prediction Integrating Machine

Learning with Storm-Scale Numerical Weather Models

Hail, or large spherical ice precipitation produced by thunderstorms, has

caused billions of dollars in losses by damaging buildings, vehicles, and crops

(Changnon 2009). Economic losses from hail have been increasing over the past

two decades as populations have increased and cities have expanded in the hail-

prone regions of the central United States (Changnon et al. 2000; Rosencrants

and Ashley 2015). Some losses from hail could be mitigated with accurate

forecasts of severe hail potential that give people and companies time to protect

vehicles and property from an incoming hailstorm.

Forecasting hail size and location is a challenging problem for meteorologists

due to major uncertainties in both the forecasting and observing processes. Un-

like more traditional meteorological conditions such as temperature and rain-

fall, hail size is not measured directly by automated instruments. The primary

source of empirical observations comes from humans estimating the largest size

found at their location, and hail size estimated from radar is calibrated on those

imperfect human observations. Within a storm, hail size can vary dramatically

and is generally not spatially contiguous. Accurate hail forecasts require pre-

dictions about the characteristics of potential hail-producing storms and the

environmental conditions surrounding them. Ensembles of numerical weather

prediction models can estimate the range of possible atmospheric conditions
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and can partially resolve the individual storm cells that produce hail up to a

day in advance (Clark et al. 2012b). Current numerical models do not produce

explicit hail size forecasts. Hail potential can be inferred indirectly through

proxy variables related to storm intensity (Clark et al. 2013), or more directly

through a physical (Brimelow et al. 2006) or a machine learning model (Man-

zato 2013) approach linking atmospheric conditions to the largest possible hail

size in a given area and time period. While previous studies have focused on

predicting hail sizes over large areas and time period, this chapter investigates

how the latest high-resolution numerical weather prediction model output can

be integrated with machine learning models to predict hail potential over more

specific areas and times. Because of the much larger data volumes associated

with these models, I adapted advanced techniques from the image processing

and machine learning fields to make hail predictions in an operational setting.

The purpose of this chapter is to describe and evaluate techniques for pro-

ducing day-ahead, hourly forecasts of hail diameter using storm-scale numer-

ical weather prediction models, image processing, and machine learning. The

hypothesis is that the machine-learning-based techniques equal or exceed the

performance of a physics-based hail size model. Forecasts from both machine-

learning and physics-based techniques were generated during the 2014 National

Oceanic and Atmospheric Administration (NOAA) Hazardous Weather Testbed

Experimental Forecast Program (EFP) and were evaluated statistically and

subjectively by teams of research and operational meteorologists (Clark et al.

2012b). Hail size forecasts are derived from each ensemble member by identify-

ing forecast hailstorms, matching the forecast storms with observed hailstorms,

extracting data within the storm areas, and then fitting a machine learning

model between the atmospheric variables and the observed hail size. Forecasts
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are produced for whether or not any hail will occur, the maximum hail diameter

produced from a particular storm, and the probability of hail at least 25.4 mm

(1 inch) in diameter within 40 km of a point, which are the size criteria for

severe hail and the spatial verification threshold used by the National Weather

Service.

3.1 Hail Observations

Developing a machine learning model to predict hail requires a reliable es-

timate of hail spatial coverage and diameter. No automated network exists

to detect hail at the ground, so hail size observations come from either storm

spotter reports or estimates derived from NEXRAD radar. Reports of hail at

least 1 inch in diameter are collected by the NOAA National Weather Service

Storm Prediction Center (SPC). The database is extensive and publicly avail-

able, but it suffers from many limitations. The recorded hail diameters are

often estimated by comparing the stone to analog objects, such as golf balls.

This estimation technique results in unnatural peaks in the hail size distribution

(Jewell and Brimelow 2009). The locations of hail in the dataset are also biased

toward population centers and major highways.

Radar-estimated hail size offers a solution to the population bias issue plagu-

ing hail reports. The NOAA NSSL Multi-Radar Multi-Sensor (MRMS) gridded

Maximum Estimated Size of Hail (MESH), which derives a maximum hail size

from gridded 3D radar reflectivity (Witt et al. 1998), is used as the best approx-

imation for the observed hail size. A multi-year comparison of MRMS MESH to

storm reports found that MESH was unbiased and had superior spatial coverage
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to hail reports (Cintineo et al. 2012). The native MESH data were interpolated

to the model domain using cubic spline interpolation.

3.2 Storm-Scale Ensemble

Output from the Center for Analysis and Prediction of Storms (CAPS)

Storm-Storm Scale Ensemble Forecast (SSEF) system (Kong 2014), which was

run in conjunction with the NOAA Hazardous Weather Testbed Experimen-

tal Forecast Program, is used as the forecast input into the machine learning

models. The SSEF consists of an ensemble of Weather Research and Forecast-

ing (WRF) Advanced Research WRF models with randomly perturbed initial

and boundary conditions. In addition, each ensemble member used a different

combination of microphysics (physics describing how water changes phase and

grows into precipitation), planetary boundary layer (atmosphere near the sur-

face), and land surface model (vegetation and soil processes) parameterization

schemes in order to increase the diversity of model solutions. Each SSEF run

was initialized at 00 UTC and produced hourly output during the period from

late April to early June. The 2013 SSEF was used to train and validate the

machine learning models while the 2014 SSEF was used for testing. The 2013

SSEF consisted of 30 model runs from 26 April to 7 June 2013, and the 2014

SSEF consisted of 12 model runs between 15 May and 6 June 2014. The 18 to

30 hour forecasts valid from 18 to 6 UTC are evaluated as they cover the time

frame when hailstorms are most likely and contain storms that were not present

when the SSEF initiated.
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3.3 Machine Learning Framework

The procedure for extracting storm information from NWP models and in-

putting it into machine learning models to produce hail size forecasts is described

in Fig. 3.1.
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Figure 3.1: A summary of the procedure for predicting hail size using machine
learning models.
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3.3.1 Hailstorm Identification and Matching

Hail size prediction first requires determining the areas in which hail is likely

to occur. Model atmospheric conditions related to hail should only occur in

the areas where the model produces ice-containing storms, so identifying likely

storm areas in the model both reduces the noise in the training data and greatly

reduces the required computational power. To find ice-containing storms, I

examine the 1-hour maximum column total graupel field, which indicates the

maximum value over the previous hour of the total mass of spherical ice particles

in a column of air. For object identification, I use the enhanced watershed

technique (Lakshmanan et al. 2009). As with the traditional watershed, local

maxima in the column total graupel field are first identified, and then objects are

grown from the maxima in discrete steps until stopping criteria are met. While

the traditional watershed uses a global lower threshold or maximum number

of steps as its stopping criteria, the enhanced watershed also includes an area

criterion and buffer zones around local maxima. Prior to applying the enhanced

watershed to the data, a Gaussian filter was applied to each grid in order to

increase spatial correlations and generate smoother objects.

The enhanced watershed is applied to both the model column total graupel

fields and the observed MESH field. The enhanced watershed was manually

tuned to capture a wide range of hail swath intensities while keeping neighbor-

ing swaths as separate objects. Forecast and observed hailstorm objects are

matched iteratively based on their Euclidean centroid distance. The closest

objects are matched first, then the next closest, and so on until all unpaired

objects under 200 km apart are matched with one other object. Since each

observed hail object can only be matched with one forecast hail object, some
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storms near isolated hail observations do not get matched. An example of the

enhanced watershed and object matching being applied is shown in Fig. 3.2.
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Figure 3.2: In the first panel, the 1-hour maximum column-summed graupel
from a member of the SSEF at 22 UTC on 6 June 2014 is shown. The second
panel shows the hailstorm objects extracted from the column graupel grid by the
enhanced watershed technique in solid colors. The connecting lines indicate the
closest matches between the forecasted hailstorms and observed MESH (blue
contours) objects.
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Once storms are identified and matched, statistics describing different prop-

erties of the storm and atmosphere are extracted from each hailstorm object.

These statistics include the mean, standard deviation, minimum, and maxi-

mum of WRF output variables describing the strength of the storm as well as

the conditions of the storm environment (Table 3.1). The forecast label is the

maximum hail size within the matched MESH object, or 0 if no match was

found.

3.3.2 Hail Classification and Size Regression

Machine learning models first determine if a specific forecast storm will pro-

duce any hail, and given that the storm does produce hail, what size the hail

will be. A classification model was trained on all cases to produce a binary pre-

diction of whether or not the storm would produce hail, and a regression model

was trained on only the storms that were matched with an observed hail event.

Three machine learning models are tested: random forest, gradient boosting

regression trees, and a combination of a logistic classification model and Ridge

regression. All methods were implemented using the Python scikit-learn library

(Pedregosa et al. 2011). Random forests (Breiman 2001a) are ensembles of

decision trees that use bootstrap resampling of the training data and random

subsampling of input variables to increase the diversity of the member decision

trees and improve predictive accuracy. For this experiment, a 100-tree random

forest with the default parameters for scikit-learn was used. Gradient boosting

regression trees (Friedman 2001) are a stagewise, additive ensemble of decision

trees that are iteratively trained to predict the residuals of the summed predic-

tions from all of the previous trees. The contribution of each tree to the final
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Table 3.1: Input variables for the machine learning models from the SSEF
ensemble members. Storm variables (S) describe conditions within the storm
and environment variables (E) describe the surrounding atmosphere.

Variable Description Units

Max Updraft Speed (S) Upward vertical wind speed m s−1

Max Downdraft Speed (S) Downward vertical wind speed m s−1

Max Updraft Helicity (S) Proxy for updraft intensity m2 s−2

Radar Reflectivity (S) Simulated radar intensity dBZ
Max Column Graupel (S) Total mass of ice particles kg m−2

0-5 km Total Graupel (S) Mass of ice particles kg m−2

Storm Height (S) Height of top of storm m
Bunker’s Storm Motion (S) Storm speed and direction m s−1

Mean Layer CAPE (E) Mean instability J kg−1

Most Unstable CAPE (E) Max possible instability J kg−1

Mean Layer CIN (E) Mean Inhibition J kg−1

Most Unstable CIN (E) Lowest possible inhibition J kg−1

Lifted Condensation Level (E) Distance to cloud base m
Precipitable Water (E) Water contained in air column mm
0-6 km Wind Shear (E) Magnitude of wind difference m s−1

0-3 km Storm-Rel. Helicity (E) Horizontal rotation m2 s−2

0-3 km Lapse Rate (E) Vertical temperature change K km−1

850 mb Specific Humidity (E) Water vapor amount g kg−1
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prediction is regulated by a learning rate that scales the prediction from each

tree. The gradient boosted regression tree models in this experiment used 1000

trees, a learning rate of 0.05, and a maximum tree depth of 5. Both methods

have produced strong predictive performance in many domains and both can

be analyzed using variable importance measures and partial dependence plots.

A logistic regression is a linear classifier that translates input parameters into a

probability through a logistic function (Wilks 2011). Ridge regression is a form

of linear regression with a penalty term to restrict the size of the coefficients

and make the regression more robust (Hoerl and Kennard 1970). When the pre-

dicted hail sizes were applied to the original forecast grid, the storms producing

no hail were removed from the grid, and the predicted size values were applied

to the grid points within the area covered by each forecast hail storm.

3.3.3 HAILCAST

HAILCAST is a one-dimensional, physics-based coupled cloud and hail model

(Brimelow et al. 2002). The technique has been further refined to run during

the integration of a storm-scale numerical model (Adams-Selin et al. 2014) and

has been released publicly in WRF version 3.6. In addition to being run dur-

ing the 2014 EFP, HAILCAST has been incorporated into the operational Air

Force Weather Agency storm-scale ensemble. HAILCAST is run at each SSEF

member grid point with an updraft speed at least 10 m s−1. The maximum

HAILCAST hail size within each forecast hailstorm object was used as the

comparison prediction with the machine learning methods because it provided

the most analogous estimate to the observed maximum hail size.
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3.3.4 Neighborhood Ensemble Probability

The machine learning methods produce a calibrated hail size forecast for

each ensemble member and each time step. These machine learning forecasts

do not cover the full range of possible hail sizes at every grid point because

the SSEF contains spatial and temporal errors in storm placement and inten-

sity and does not fully approximate internal storm dynamics as well as the

processes that govern precipitation formation and thermodynamic changes as-

sociated with them. These physics errors results in modeled storms that do

not form, move, and intensify at the same rate as the real ones. One approach

commonly used to account for this spatial error is the neighborhood ensemble

probability method (Schwartz et al. 2010). Conditional probabilities of severe

hail are calculated by counting the number of grid points in a local, circular

neighborhood in which severe hail occurs and dividing by the number of grid

points in which any hail occurs. The probability from all ensemble members

are averaged together, and a Gaussian filter is applied to smooth the edges of

the non-zero probabilities. Since each model forecast has been bias-corrected by

the machine learning regressions, the resulting probabilities should also be unbi-

ased. The size of the neighborhood can be adjusted to capture uncertainties at

varying scales. Weather forecasters prefer spatially smooth probabilities as they

more closely match human forecasts. The drawbacks of neighborhood ensemble

probabilities are that they weaken probability gradients and can understate the

threat of single isolated storms while highlighting clusters of more widespread

marginal storms.
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3.4 Results

I statistically validated the hail size and probability forecasts based on 12

hail days from 15 May to 6 June 2014. The predicted hail sizes were compared

with the maximum hail sizes within each matched observed hailstorm object.

The probability forecasts were compared at each grid point with whether or

not hail at least 25.4 mm in diameter was observed within 40 km of that point,

which are the evaluation criteria used by the SPC.

3.4.1 Hail Size Forecasts

The machine learning and HAILCAST size forecasts showed skill in predict-

ing hail sizes up to 60 mm in diameter, which account for the bulk of all hail

events. Both tree-based methods predicted that most severe hail would be be-

tween 25 and 60 mm, and most of their predictions were close to those values.

Observed hail over 60 mm was also predicted to be within the 25 to 60 mm

range (Fig. 3.3). While Ridge regression and HAILCAST predicted hail sizes

over the full range of observed values, both methods tended to overpredict the

maximum hail diameter, especially HAILCAST.

Examining the errors for each ensemble member reveals some links between

the error characteristics and the microphysics parameterization scheme used

by each member (Fig. 3.4). A lack of overlap of two 95% confidence intervals

indicates that their distributions share a probability density of less than 5%, so

the difference in errors can be considered statistically significant at the 5% level

(Cumming and Finch 2005). The bootstrap confidence intervals for HAILCAST

do not overlap with those of any of the machine learning methods for all but
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Figure 3.3: Heatmaps of the distributions of forecast errors for each hail size
model.

one member. The error was greatest in ensemble members using the Thompson

microphysics scheme. The Thompson scheme assumes a relatively larger graupel

density compared to the other schemes, which HAILCAST used as the basis for

growing its hailstones. The Milbrandt and Yau (MY) scheme has separate

graupel and hail densities, and HAILCAST performed best in the members

using that scheme and overlapped in confidence intervals with the machine

learning models. For the Thompson members, the confidence intervals of the

three machine learning methods overlapped with each other. The Gradient

Boosting and Random Forest confidence intervals contained errors lower than
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Figure 3.4: Comparison of the 95% bootstrap confidence intervals of the fore-
cast hail size mean absolute error by model type and ensemble member. The
microphysics scheme used in each ensemble member is indicated below the name
of the member.

linear regression for the Morrison and MY members. The WDM6 members

also reported low size errors but little difference among the predictions from the

different

The hail occurrence predictions also showed similar skill among all machine

learning methods and ensemble members . A performance diagram (Roebber

2009) displays the relationships among four binary contingency table scores

(Fig. 3.5). The machine learning methods had similar success ratios, but there
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was a wider variance in the percentage of hailstorms detected. HAILCAST

recorded higher POD and higher CSIs for most members. Some of the perfor-

mance issues stem from the enhanced watershed parameters fitting storms from

some models better than others due to differences in microphysics.
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Figure 3.5: A performance diagram measures the quality of each model and
ensemble member pairing to match forecast and observed hail storms spatially.
The solid contours indicate the critical success index, and the dashed contours
indicate frequency bias. Points along the diagonal are unbiased. Models with
better accuracy appear closer to the upper right corner of the diagram. In
keeping with the same color scheme as Fig. 3.4, the red points are Gradient
Boosting Trees, the orange points are Random Forests, the blue points are
Linear Regression, and the green points are HAILCAST.
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Figure 3.6: Attributes diagram that compares the forecast probabilities of each
model with their corresponding observed relative frequencies. Points in the
gray area have positive Brier skill scores, and points outside the gray area have
negative Brier skill scores. The inset indicates the observed frequency of each
probability forecast.

3.4.2 Neighborhood Probability Forecasts

Since the machine learning approaches produced hail forecasts with little

bias, the resulting neighborhood probabilities tended to be more reliable, or

occurring at the frequency given by the probability, than the corresponding

HAILCAST forecasts. For probabilities ranging from 0 to 20%, gradient boost-

ing trees are nearly reliable and the other methods are slightly overconfident

while HAILCAST is more overconfident (Fig. 3.6). At higher probabilities,

there was overconfidence from all methods. From subjective verification of the

different hail forecasts, this overconfidence is linked to a spatial displacement
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of the highest neighborhood probabilities away from where severe hail fell at a

particular time.

3.4.3 Case Studies

The hail event with the largest number of storm reports and greatest amount

of property damage during the experiment occurred on 3 June 2014 in Nebraska.

Multiple rounds of storms produced wind-driven baseball to softball sized hail

that left large dents and holes in cars, crops, and the sides and roofs of houses.

Each model generated a neighborhood probability prediction for each hour from

18 to 00 UTC. The maximum 1-hour probabilities during that time period are

displayed in Fig. 3.7. All models encompassed the full observed area of 25 mm

or greater hail with nonzero probabilities and have their highest confidence in

eastern Nebraska, where the largest hail was observed. All models also dis-

played enhanced probabilities in western Nebraska where isolated storms also

produced severe hail. Random forest produced the subjectively best forecast of

the machine learning methods because its maximum overlapped the 75 mm hail

most closely and because it had relatively lower probabilities for the western

Nebraska storms. HAILCAST produced the most confident forecast, but it had

high probabilities well outside the area where 25 mm hail was observed.

A more marginal but widespread hail event occurred on 21 May 2014 in

Colorado, Kansas, Oklahoma, and Texas. An isolated hailstorm dropped severe

hail and caused flooding in downtown Denver, and additional storms dropped

hail across eastern Colorado. The ensemble means of the hail size forecasts are

shown in Fig. 3.8. HAILCAST and ridge regression generally overestimated the
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Figure 3.7: Maximum neighborhood ensemble probabilities between 18 and 00
UTC on 3 June 2014. The blue contour indicates the areas that were within 40
km of 25 mm diameter hail, and the green contour indicates the same distance
from 75 mm diameter hail.
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Figure 3.8: Ensemble mean hail sizes from each model for 21 May 2014 from
22 to 02 UTC. Blue contours indicate observed hail sizes of at least 5 mm and
green contours indicate hail sizes of at least 25 mm.

maximum hail sizes for the day with widespread areas of over 50 mm hail. Ran-

dom forest and gradient boosting produced hail sizes closer to what occurred,

and gradient boosting also had a wider range of hail sizes than random forest.

The most intense portions of the forecast hail swaths were shifted northeast of

the observed hail swaths, so while the general character of the event is correctly

forecast, downtown Denver was forecast to receive no hail in 3 of the 4 mod-

els. The neighborhood probabilities in Fig. 3.9 account for this spatial error

and show non-zero probabilities over Denver. The random forest neighborhood
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Figure 3.9: Neighborhood ensemble probability of severe hail from each model
for 21 May 2014 from 22 to 02 UTC. Blue contours indicate hail sizes of at least
25 mm and green contours indicate hail sizes of at least 75 mm. The location
of Denver is shown with a green star.

probabilities capture the Colorado hail the best by showing two areas of high

hail potential and by having non-zero probabilities of hail over Denver.
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3.5 Discussion

Generating and validating daily hail forecasts with a group of experienced

meteorologists provided insights about the good qualities of the forecasts and

what needed improvements. The machine-learning neighborhood probabilities

were useful because the bias-correction reduced the false alarm area compared

to HAILCAST. The probability forecasts were closer to the best forecast from

a trained meteorologist given the same information. Further improvement to

machine learning model performance is constrained by the model storm in-

formation. The storm representation can be improved with better resolution,

model physics, and initial conditions, but it will always contain uncertainties

and errors because we cannot fully observe the atmosphere, the physical models

contain approximations, and computational power is limited. While the dif-

ferent machine learning models were not able to predict hail above 60 mm in

diameter, this was largely because there was very little training data at these

sizes. HAILCAST, on the other hand, predicted hail over 60 mm almost every

day during the experiment and was not trusted by the meteorologists because

of that issue. This was also the first operational test for both models, and

the forecaster feedback has been valuable for introducing improvements to both

systems. Overall, the lower size errors and greater reliability of the machine

learning models show that they are the superior method for predicting severe

hail. However, none of the methods evaluated show good enough performance

to predict 50 mm hail consistently. More optimizations need to be performed

on both HAILCAST and the machine learning models to capture these events

more reliably. This is addressed in the following chapter.
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3.6 Conclusions

Hail is a dangerous severe weather phenomenon that causes increasingly

extensive economic damage each year. Improving hail prediction with more ac-

curate information about expected hail locations and intensity will allow people

to mitigate some of the potential impact of hail. I have demonstrated in an

operational setting a hail prediction system that applies machine learning and

image processing techniques to storm-scale numerical model ensembles. The

approach shows accuracy in predicting hail location and in discriminating its

severity with lead times of up to a day in advance of a hailstorm. The machine

learning approaches demonstrated some advantages over physics-based hail size

calculations. Improvements to the numerical models and machine learning ap-

proaches should lead to increasingly accurate hail size and location forecasts.
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Chapter 4

Track-Based Day-Ahead Hail Forecasting with Machine

Learning

The purpose of this chapter is to describe track-based day-ahead probabilis-

tic hail forecasts generated from machine learning models and compare them

with existing storm surrogate and sounding-based hail forecasting methods to

determine what information and value the machine learning models add to the

forecasting process. The evaluation tests the hypotheses that a machine learn-

ing model will produce accurate and reliable hail forecasts, the machine learning

forecasts can detect more hail storms and produce fewer false alarms than other

hail size methods, and machine learning model performance is more consistent

across different NWP model configurations than other hail size diagnostics. The

methods introduced here extend the methods described in Chapter 3 by incor-

porating forecast and observational uncertainty into the forecast model along

with improved tracking and matching of forecast and observed hailstorms.

4.1 Methods

4.1.1 Data

Convection-allowing model ensemble output was drawn from two systems

with very different design choices. One set of ensemble forecasts came from the

61



Table 4.1: CAPS ensemble member physics parameterizations for 2014 and
2015. The planetary boundary layer (PBL) schemes tested are the Mellor-
Yamada-Janjic (MYJ; Mellor and Yamada 1982), Yonsei University (YSU; Hong
et al. 2006), Mellor-Yamada-Nakanishi-Niino (MYNN; Nakanishi and Niino
2004), and Quasi-Normal Scale Elimination (QNSE; Sukoriansky et al. 2005).

Member 2014 Microphysics 2015 Microphysics 2014 PBL 2015 PBL

CN Thompson Thompson MYJ MYJ
M3 Morrison P3 YSU MYNN
M4 Thompson MY QNSE YSU
M5 Morrison Morrison MYNN MYNN
M6 MY MY MYJ MYJ
M7 WDM6 P3 YSU YSU
M8 WDM6 P3 QNSE MYJ
M9 MY MY MYNN MYNN
M10 Morrison Morrison YSU YSU
M11 Thompson Thompson YSU YSU
M12 Thompson Thompson MYNN MYNN
M13 Morrison Morrison QNSE MYJ

Center for Analysis and Prediction of Storms (CAPS) Storm-Scale Ensemble

Forecast (SSEF), which consists of 12 WRF-ARW models with varied combi-

nations of microphysics and planetary boundary layer (PBL) parameterizations

and perturbed initial and boundary conditions. The 2014 SSEF used 4 km hori-

zontal grid spacing while the 2015 SSEF was reduced to 3 km grid spacing. Both

versions of the SSEF were initialized with a 3DVAR data assimilation process

that included radar data and started running at 0000 UTC with hourly output

for 60 hours. Individual member parameterization configurations are listed in

Table 4.1. The SSEF uses the Thompson (Thompson et al. 2008), Morrison

(Morrison and Gettelman 2008), Milbrandt and Yau (MY; Milbrandt and Yau

2005), WRF Double Moment 6-class (WDM6; Lim and Hong 2010), and Pre-

dicted Particle Properties (P3; Morrison and Milbrandt 2015; Morrison et al.

2015) microphysics schemes. The other set of ensemble forecasts came from the
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National Center for Atmospheric Research (NCAR) Ensemble (Schwartz et al.

2015), which consists of 10 3-km grid spacing WRF members initialized from

the DART Ensemble Kalman Filter data assimilation system. All members use

the Thompson microphysics scheme (Thompson et al. 2008) and the Mellor-

Yamada-Janjic (MYJ; Mellor and Yamada 1982) PBL scheme. The ensemble

began running daily in April 2015 and will continue running for a full year.

Observations of hail size come from the NOAA National Severe Storms Lab-

oratory Multi-Radar Multi-Sensor (MRMS) radar mosaic (Zhang et al. 2011).

MRMS merges radar reflectivity from multiple radars onto a 0.01◦ × 0.01◦ uni-

form grid with 2-minute updates and performs a series of quality control pro-

cedures. The MRMS Maximum Expected Size of Hail (MESH) (Witt et al.

1998; Cintineo et al. 2012) product is used for the hail size observations. MESH

is a power law relationship between the Severe Hail Index, which is a product

derived from radar reflectivity values above the melting level, and hail reports

from 9 hail events in 1992 in Oklahoma and Florida. The MESH relationship

was calibrated such that the MESH value should exceed 75% of hail reports for

a given Severe Hail Index value. Because MRMS provides more complete infor-

mation about the full depth of a storm than a single radar, and because MESH

indirectly accounts for melting effects through melting layer height information

and calibration to hail reports, MRMS MESH shows low bias and good spatial

coverage when compared with high resolution hail reports (Cintineo et al. 2012).

4.1.2 Storm Object Identification, Tracking, and Matching

Object-based forecasting methods provide the dual advantages of identifying

relevant areas while also greatly reducing the amount of data needing to be
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Figure 4.1: Diagram of how hail forecast and observation data are pre-processed
before being used in the machine learning model. Storm tracking, track match-
ing, and separate processing of storm and environment variables have been
added to the pre-processing procedure in Fig. 3.1.

processed. The storm data processing procedure is summarized in Fig. 4.1.

The enhanced watershed method (Lakshmanan et al. 2009) identifies potential
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hailstorm objects from the storm proxy field by identifying local maxima and

then growing the objects until they meet area and intensity criteria. Hourly-

maximum column-integrated graupel mass was used as the hailstorm proxy

as it identifies any storm containing a significant number of graupel particles,

including both ordinary thunderstorms and supercells. A minimum area of 16

grid points and a maximum area of 100 grid points was used to isolate individual

storm cells while filtering storms that only lasted for a small amount of time.

The minimum area was chosen to correspond to the minimum resolvable area

for a single storm cell, and maximum area roughly corresponds to the area that

a single storm could traverse within an hour.

Once storm objects are identified at every time step in the model run and in

the observations, the objects are linked together into tracks. By grouping storms

into tracks, the data processing algorithm identifies temporal trends within the

storms and captures the full life cycle of a storm. A constrained version of

the Hungarian method (Munkres 1957), a globally optimal matching algorithm,

linked storm objects into tracks. The Hungarian method forms the basis of the

TITAN storm tracking algorithm (Dixon and Wiener 1993). Unlike radar-based

storm-tracking approaches, which typically receive 5-minute updates, CAMs

produce hourly maximum output each hour. The hourly-maximum objects tend

to be elongated along the axis of motion, so traditional Euclidean centroid dis-

tance metrics can fail in situations where individual storms are propagating par-

allel to each other in a line. To correct for this issue, a spatial cross-correlation

motion estimation method (Lakshmanan and Smith 2010) translates the storm

centroid before the matching algorithm is applied. The cross-correlation search

area is constrained by the storm dimensions to minimize motion estimation
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error. The maximum centroid distance for tracking is 24 km, which was em-

pirically found to connect storms appropriately while minimizing the issue of

tracks jumping to adjacent storms.

Matching forecast and observed storm tracks requires a distance metric that

can account for both spatial and temporal differences among tracks and can

fairly compare tracks with different time durations. This track matching dis-

tance function used for this experiment is

Dtm = 0.5
ds

160
+ 0.3

ts
3

+ 0.1
td
16

+ 0.1
ad

200
(4.1)

Eq. 4.1 contains a weighted combination of the distance between the starting

points of each track (ds), the difference in start times (ts), the difference in

durations (td), and the difference in mean areas (ad). Tighter maximum distance

constraints, which are the denominators for each term in Eq. 4.1, for start

location difference (160 km) and start time difference (3 hours) were used to

limit the search area, while duration (16 hours) and area (200 km2) were used

to break ties between storm objects and encourage more similar storms to be

matched together. The distances have units of km, time and duration differences

use hours, and area differences use km.2 If any of the components exceeded

the maximum value, the track pairing was then excluded from consideration.

Each forecast track was paired with the closest observed track that met all the

distance criteria, so multiple forecast tracks could be matched with the same

observed track.
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4.1.3 Machine Learning Procedure

After storm tracking and matching has occurred, forecast inputs are ex-

tracted from each storm object. This approach extracts statistics about the

distribution of meteorological variable values from pixels within the extent of

a storm object. These statistics are the mean, standard deviation, minimum,

maximum, percentiles, and skew. The full list of input variables for the CAPS

ensemble is listed in Table 4.2, and the full list for the NCAR ensemble is in

Table 4.3. The CAPS and NCAR ensembles use different post-processing sys-

tems and archive differing amounts of data, so some variables available in one

system were not available in the other.

The machine learning hail forecast procedure is summarized in Fig. 4.2.

Hail occurrence and the distribution of hail sizes are extracted from the MESH

tracks and are used as the output labels for the machine learning models. If a

forecast storm track is matched with a MESH track, then hail is assumed to

have occurred. Forecast storm tracks with no matching MESH track are false

alarms, and unmatched MESH tracks are misses. The hail size distribution

within a MESH object is modeled as a gamma distribution fit to the MESH

object values using maximum likelihood estimation. The gamma distribution

probability density function takes the form:

f(x) =
(x/β)α−1 exp(−x/β)

βΓ(α)
− x0, α, β > 0 (4.2)

where α is the shape parameter, x0 is the location parameter, and β is the scale

parameter. An example of a MESH object and the gamma distribution fit to

its hail size distribution is shown in Fig. 4.3. The shape parameter affects the
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Table 4.2: Input variables for the CAPS ensemble machine learning models.
The mean, maximum, minimum, median, standard deviation, skewness, 10th

percentile, and 90th percentile of the grid point values within the boundaries
of each storm object were calculated for the Storm Proxy and Environment
variables. CAPE is Convective Available Potential Energy, CIN is Convective
Inhibition, ML is the Mean Layer, MU is the Most Unstable layer, and LCL is
the Lifted Condensation Level.

Storm Proxy Environment Morphological

Column Total Graupel MLCAPE Area
2-5 km Updraft Helicity MLCIN Eccentricity
Reflectivity -10°C MUCAPE Major Axis Length
Updraft Speed MUCIN Minor Axis Length
Downdraft Speed LCL Height Orientation
Echo Top Height 0-3 km Storm Rel. Helicity Extent
Precipitation 0-6 km Wind Shear
Precipitable Water 500 mb Temperature
Bunkers U 700 mb Temperature
Bunkers V 2 m Dewpoint

2 m Temperature
850 mb Specific Humidity
0-3 km Lapse Rate
700-500 mb Lapse Rate
10 m U-Wind
10 m V-Wind
700 mb U-Wind
700 mb V-Wind

Location

Forecast Hour
Valid Hour UTC
Current Duration
Total Duration
W.-E. Storm Motion
S.-N. Storm Motion
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Table 4.3: Input variables for the NCAR ensemble machine learning models.
The mean, maximum, minimum, median, standard deviation, skewness, 10th

percentile, and 90th percentile of the grid point values within the boundaries
of each storm object were calculated for the Storm Proxy and Environment
variables.

Storm Proxy Environment Morphological

Column Total Graupel SBCAPE Area
2-5 km Updraft Helicity SBCIN Eccentricity
Composite Reflectivity MUCAPE Major Axis Length
Updraft Speed Precipitable Water Minor Axis Length
Downdraft Speed LCL Height Orientation
Thompson Hail Size Max. 0-3 km S.R. Helicity Extent
Thompson Hail Size Sfc. 0-6 km Wind Shear
0-3 km Updraft Helicity 0-1 km Wind Shear
2-5 km Min. Updraft Helicity
10 m Wind Speed
0-1 km Vorticity

Location

Forecast Hour
Valid Hour UTC
Current Duration
Total Duration
W.-E. Storm Motion
S.-N. Storm Motion
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Figure 4.2: Machine learning hail size forecasting procedure diagram.

skewness of the distribution with small shape parameter values causing more

skew and larger values leading to less skew. The location parameter determines

the minimum value of the distribution and was fixed at 6 mm. The scale pa-

rameter stretches or squeezes the gamma distribution and has the same units as

the quantity being modeled (Wilks 2011). The MESH size distributions exhibit

an inverse log-linear relationship between the shape and scale parameters.
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Figure 4.3: An example MESH object and the resulting discrete and parametric
MESH size distributions.

I use machine learning models from the scikit-learn package version 0.16.1

(Pedregosa et al. 2011). A stacked model approach is used with a classifier model

predicting whether or not hail occurs, and a regression model that predicts

the parameters of the gamma distribution. A random forest (Breiman 2001a)

classifier predicts whether hail will occur. The classifier random forest weights

each training example by the inverse of its class frequency, has 500 trees, 10

minimum samples at the leaf node, and uses a grid search with cross-validation

to determine the maximum number of features sampled from square root of the

number of features, 20, 30, and 50 features.

Multitask learning models (Caruana 1997) predict the shape and scale pa-

rameters of the hail size distribution simultaneously. During training, the mod-

els choose weights and parameters to minimize the total error over all predicted

values instead of fitting separate models for each value. Multitask learning

provides additional information about the fitting process and maintains corre-

lations among the predicted values. The hail size distribution parameters are

log-transformed and normalized before fitting to capture the log-linear relation-

ships and reduce bias in the error metric from fitting variables with differing
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ranges of values. Both the random forest and elastic net regression (Zou and

Hastie 2005) support multitask learning and are used in this experiment. A de-

fault random forest, called “Random Forest,” with 500 trees, minimum samples

at the split node of 10, and sampling square root of the total number of fea-

tures is used. An optimized random forest, called “Random Forest CV,” with

500 trees, and cross validated grid searching of maximum features from square

root, 30, 50, and 100 features, and minimum samples at a splitting node from

5, 10, and 20 samples. The elastic net determines the ratio between the ridge

and lasso terms from a validation set and normalizes the values of the input

features.

After the machine learning models estimate the probability of any hail and

the MESH probability distribution, grid point hail size distribution estimates

are performed through a sampling and sorting procedure (Fig. 4.2). For each

hailstorm object with a probability of hail occurrence at least 50 %, 1000 random

samples are drawn from the predicted gamma distribution for each grid point

(Fig 4.2). The samples are then sorted in the dimension of the area of the object.

The mean and percentiles are then calculated over the samples and are applied

to the prediction grid. Convection-Allowing Model ensemble post-processing

products such as neighborhood probabilities and ensemble maximum fields can

then be derived from these grids and compared with other hail size and storm

surrogate forecasts.

4.1.4 Evaluation

The machine learning models are trained in a way to maximize training

data while preserving the independence of the evaluation data. For the CAPS
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ensemble, each machine learning model is trained on all ensemble members shar-

ing the same microphysics parameterization scheme. The 2014 CAPS ensemble

output were used to train the machine learning models. Because the 2015 en-

semble used the P3 microphysics scheme in place of WDM6, the P3 members

were evaluated using models trained on the Milbrandt and Yau members. The

testing period included all runs from 12 May to 5 June 2015. Runs with missing

MESH data were excluded from the evaluation.

Training and evaluation for the NCAR ensemble is performed cyclically with

a new round of training performed every 2 weeks. Since each member uses the

same parameterizations and is equally likely, all members are pooled into the

training data for the machine learning models. The forecasting period runs from

15 May through 30 July 2015.

Storm-surrogate neighborhood ensemble probabilities (Sobash et al. 2011)

are created from the machine learning models and are compared with storm-

surrogate ensemble probabilities derived from thresholding the storm proxy vari-

ables. The 3 km grid for each ensemble member is subsampled into a 42 km

grid, and each point on the grid is marked with a 1 if at least 1 grid point

within a 42 km radius exceeds a specified intensity threshold. A Gaussian filter

is then applied to the coarse grid and spreads the probability mass to surround-

ing grid points to reflect the estimated spatial uncertainty. Larger standard

deviations for the Gaussian filter result in a greater probability of detection but

also decrease the sharpness and increase the false alarm ratio. Storm-surrogate

neighborhood probabilities are also calculated for HAILCAST and storm sur-

rogate variables, including reflectivity at the -10°C level, updraft helicity and
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column total graupel. Updraft helicity thresholds of 75 and 150 m2 s−2, reflec-

tivity threshold of 60 and 60 dBZ, and column total graupel thresholds of 25 and

50 kg m−2 were used to discriminate 25 and 50 mm diameter hail, respectively.

The statistical significance of the differences in verification scores is assessed

using paired bootstrap confidence intervals and permutation tests. The boot-

strap (Efron and Tibshirani 1994) is a non-parametric method for calculating

the uncertainty of a statistic by repeatedly calculating that statistic on resam-

pled replicates of the original sample. Confidence intervals for the statistic are

calculated by finding the percentiles of the bootstrapped statistic distribution

that correspond to the upper and lower limits of the confidence interval. Be-

cause each model performs forecasts for the same events, the event identities

are resampled the same way for each forecast method. Once the verification

statistics of interest are calculated on each bootstrap sample, the hail forecast-

ing methods are ranked by their score, and the frequency of each rank for each

model is calculated. By counting the frequency of each rank, the consistency

of the model performance relative to another model can be quantified, even if

the differences in scores are small. If there is no overlap in the rankings, then

the difference in rankings can be considered statistically significant. For the

hail forecast statistics, 1000 bootstrap samples are used to capture the required

amount of precision for a 95% confidence interval in a reasonable amount of

computational time.

If there is overlap, then a permutation test needs to be performed between

the two overlapping models to determine if the p-value of the difference between

their scores is statistically significant. In a permutation test, the difference in

a statistic is calculated between two paired samples, such as forecasts from two

models. Based on the exchangeability principle (Wilks 2011), a null hypothesis
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distribution of this difference is then created by randomly switching some of the

forecast values between the two models and then recalculating the difference

in statistics 1000 times. The percentile of the original difference relative to

the null hypothesis distribution is the p-value. If the p-value is less than the

chosen significance threshold of 5 %, then the difference in models is statistically

significant. Because performing multiple comparisons increases the chance that

some of the null hypotheses are falsely rejected, the significance threshold is

adjusted to retain a group false discovery rate of 5 % using the p-value ranking

approach (Benjamini and Hochberg 1995; Wilks 2006).

4.2 Results

4.2.1 Hail Object Forecast Evaluation

Probabilistic forecasts of hail occurrence were evaluated for each member

of the CAPS and NCAR ensembles. This evaluation determines how well the

random forest discriminates between forecast storms matched with MESH tracks

and those that are not. Fig. 4.4 shows the ROC curve and reliability diagram for

the CAPS ensemble members. The ensemble members cluster by microphysics

scheme as Thompson members have lower AUCs than other members, and P3

members have higher probabilities of detection at low probability thresholds.

On the reliability diagram, all members display a consistent under forecasting

bias but produce sharp probability forecasts. At low forecast probabilities,

the Thompson members have a higher observed relative frequency than other

models, resulting in a lower Brier Skill Score. In the NCAR Ensemble (Fig. 4.5),

the random forest shows good discrimination skill with AUCs of 0.70. The
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Figure 4.4: ROC Curve and reliability diagram of random forest hail occurrence
forecasts from each member of the 2015 CAPS Ensemble. Members are colored
by microphysics scheme. The AUC for each member is indicated in the ROC
Curve legend, and the Brier Skill Score for each member is in the reliability
diagram legend.
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Figure 4.5: ROC Curve and reliability diagram of random forest hail occurrence
forecasts from each member of the 2015 NCAR Ensemble. The AUC for each
member is indicated in the ROC Curve legend, and the Brier Skill Score for
each member is in the reliability diagram legend.
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reliability diagram shows that the probability forecasts are reliable but slightly

overconfident.
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Figure 4.6: Joint distribution of the shape and scale parameters for the CAPS
ensemble control member random forest forecast and observations. The other
CAPS ensemble members exhibited similar relationships.
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Figure 4.7: Joint distribution of the shape and scale parameters for the CAPS
ensemble random forest forecast and observations.

The joint distributions of the shape and scale parameters for the CAPS

ensemble control member and the NCAR ensemble are shown in Fig. 4.6 and

Fig. 4.7, respectively. The CAPS and NCAR ensemble joint distributions cap-

ture the roughly log-linear relationship between the observed shape and scale
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parameters. In small hail cases with a small scale parameter, the distribution of

hail sizes will exhibit a distribution closer to Gaussian, but for large hail cases

with a large scale parameter, only a small area will contain large hail, so the

distribution tends to be closer to exponential and have a smaller shape param-

eter. The random forest is able to capture this relationship due to multitask

learning preserving the pairing and the log transform of the labels enabling a

linear combination of trees to maintain the log-linear relationship. Neither ran-

dom forest fully captures the sharpness of the observed distributions, but the

shape is closely replicated.
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Figure 4.8: Reliability diagrams showing the CAPS Ensemble mean random
forest observed hail size distribution parameters for each forecast parameter
value.

Reliability diagrams for the shape and scale parameters in the CAPS and

NCAR ensembles show how closely the forecast values correspond to observed

values on average (Fig. 4.8 and Fig. 4.9). The CAPS ensemble exhibits poor
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Figure 4.9: Reliability diagrams showing the NCAR ensemble mean random
forest observed hail size distribution parameters for each forecast parameter
value.

calibration with an underforecasting bias for small values of the shape and scale

parameter and an overforecasting bias for large values. All of the ensemble

members show similar issues, and there does not appear to be any clustering

by microphysics scheme. The NCAR ensemble reliability curves exhibit better

calibration than the CAPS ensemble but still show biases at extreme parameter

values.

4.2.2 Full Period Forecast Evaluation

Storm surrogate probabilities were calculated over the 24-hour period from

12 UTC to 12 UTC for the machine learning models and raw storm surrogate

variables. These probabilities are analogous to Storm Prediction Center Con-

vective Outlooks and allow for a more direct comparison between the two types
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Figure 4.10: Area Under the ROC Curve (AUC) for storm surrogate proba-
bilities of 25 mm hail for each member of the 2015 CAPS ensemble and the
ensemble mean. The values have been multiplied by 100 to improve readability.
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Figure 4.11: Brier Skill Score for storm surrogate probabilities of 25 mm hail for
each member of the 2015 CAPS ensemble and the ensemble mean. Blank spots
indicate that none of the forecasts from that member exceeded the intensity
threshold. The values have been multiplied by 100 to improve readability.
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of forecast methods. The probabilities are first calculated for each member and

then averaged. The CAPS ensemble members show a lot of variability in both

AUC (Fig. 4.10) and Brier Skill Score (BSS; Fig. 4.11). The machine learning

methods have identical AUCs and all perform worse than the storm-surrogate

methods, but the opposite is true for BSS. The variables with the best discrim-

ination are the least reliable and vice versa. The ensemble mean outperforms

all individual members.
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Figure 4.12: AUC for storm surrogate probabilities of 50 mm hail for each
member of the 2015 CAPS ensemble and the ensemble mean. The values have
been multiplied by 100 to improve readability.

At the 50 mm threshold, the machine learning methods exhibit more variabil-

ity among each other and among members (Fig. 4.12). The machine learning

methods consistently maintain higher AUC values than the storm surrogates

with the exception of Reflectivity at the -10C level. All of the members and

methods except ensemble mean updraft helicity have negative BSS (Fig. 4.13).

The machine learning methods achieve higher BSSs than the other storm sur-

rogate variables. Some of the ensemble members have members whose radar
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Figure 4.13: Brier Skill Score for storm surrogate probabilities of 50 mm hail for
each member of the 2015 CAPS ensemble and the ensemble mean. Blank spots
indicate that none of the forecasts from that member exceeded the intensity
threshold. The values have been multiplied by 100 to improve readability.

reflectivity does not exceed 60 dBZ. Both of these members use the Morrison

microphysics scheme, which tends to produce more widespread, less intense

convection than other microphysics parameterizations. These microphysics dif-

ferences also result in lower BSS for column total graupel.

The ensemble mean ROC curves at the 25 mm (Fig. 4.14) and 50 mm

(Fig. 4.14) show that the biggest differences among approaches come with the

minimum probability threshold and what level of probability of detection it

provides. At 25 mm, the ROC curves all follow the same general trajectory

but have different starting points. Reflectivity, HAILCAST, and column total

graupel all have higher probabilities of detection (POD) but also higher prob-

abilities of false detection (POFD). The machine learning models have nearly

identical values. At 50 mm, radar reflectivity has the largest ROC area but

also has much higher POFD than the other methods (Fig. 4.15). The machine
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learning methods and updraft helicity have lower POFD and higher POD than

HAILCAST and column total graupel.

The performance diagram highlights the impact of false alarms more strongly

than the ROC curve by using False Alarm Ratio (FAR) instead of POFD on

the x-axis. Because the number of true negatives far outweighs the number

of false alarms, the POFD tends to be low and less sensitive to false alarms.

FAR, on the other hand, is the ratio of false alarms to total forecasts, so it is

much more sensitive to changes in the number of false alarms. For the 25 mm

threshold, the machine learning methods all have lower FAR than every other

model (Fig. 4.16). The FAR for updraft helicity is nearly as low as the machine

learning models. For 50 mm, all models have a much higher FAR, but their

relative rankings stay the same (Fig. 4.17). At higher probability thresholds,

the machine learning models have much lower FAR compared with the other

methods but are only able to detect a small percentage of events.

The attributes diagrams indicate the reliability and sharpness of each method.

The machine learning methods and updraft helicity are all reliable at the 25 mm

threshold (Fig. 4.18) while the other storm surrogate methods are all overconfi-

dent. The overconfidence improves their AUC because they detect more events

at a given probability threshold but hurts their reliability. All of the methods

are sharp but HAILCAST has the largest number of forecasts at high proba-

bilities. Every method is overconfident and less sharp at the 50 mm threshold

(Fig. 4.19). The machine learning methods have the best combination of reli-

ability and sharpness while reflectivity is extremely overconfident and column
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graupel is not very sharp. HAILCAST is more overconfident than the machine

learning models but still produces sharp forecasts.

The sensitivity of the verification scores to sample variability is assessed by

a bootstrap resampling of the forecast-observation pairs and permutation tests

for models with adjacent ranks. With the lack of overlap in rankings, the storm

surrogate methods have AUC values that are significantly higher at the 5 %

level at 25 mm (Fig. 4.22). The machine learning methods show high overlap

in their rankings and have the same AUC (Fig. 4.22), which is corroborated by

the permutation test p-values (Fig. 4.22). The machine learning methods all

significantly outperform every method at the 50 mm threshold (Fig. 4.22) but

are statistically indistinguishable (Fig. 4.22). The machine learning methods

had the statistically significant highest BSS at 25 mm (Fig. 4.23). The 50 mm

BSS rankings showed small amounts of overlap between adjacent models in the

rankings (Fig. 4.23). Updraft Helicity and Column Total Graupel were more

reliable than any of the machine learning methods.

The spatial distribution of probabilistic hail forecasts from the CAPS en-

semble is shown in Fig. 4.24. The 10 % probability threshold was chosen to

show the maximum spatial extent of the forecasts at a threshold commonly

used by forecasters to assess hail risk. The Random Forest and Updraft He-

licity methods capture the two observed maxima in 25 mm hail frequency in

the Texas Panhandle and northeast Colorado. The Random Forest underes-

timates the eastward extent of hail frequency while Updraft Helicity captures

the full area better but with a slight eastward bias. The frequency maxima for
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HAILCAST and Column Total Graupel are displaced far eastward into western

Missouri and eastern Texas. HAILCAST and Column Total Graupel also have

large numbers of hail forecasts along the Gulf coast whereas the Random Forest

and Updraft Helicity have none in that area. These biases are more apparent

in the maps of false positives (Fig. 4.25) and false negatives (Fig. 4.26). The

Random Forest and Updraft Helicity false positives are concentrated in the ar-

eas near the observed hail maxima, and the misses are primarily found along

the Gulf Coast. The HAILCAST and Column Total Graupel false positives are

found more along the Gulf coast and in Missouri while significant numbers of

false negatives can be found along the eastern edge of the Rocky Mountains.

All of the methods have false negatives in northeast New Mexico and central

Wyoming, which may be a result of underlying model bias for a particular case

or subset of cases. The Random Forest does the best at capturing the extent of

the 50 mm reports (Fig. 4.24) while the other methods exhibit eastward biases

in their maxima.

85



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Probability of False Detection

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

b
a
b
ili

ty
 o

f 
D

e
te

ct
io

n

CAPS Ensemble Probability Hail > 25 mm ROC Curves

Updraft Helicity (0.78)

Column Total Graupel (0.82)

HAILCAST (0.84)

Reflectivity -10 C (0.86)

Random Forest (0.77)

Random Forest CV (0.77)

Elastic Net (0.77)

Figure 4.14: ROC curves for each CAPS ensemble mean storm-surrogate prob-
ability of 25 mm hail. The AUC for each curve is in the legend.
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Figure 4.15: ROC curves for each CAPS ensemble mean storm-surrogate prob-
ability of 50 mm hail. The AUC for each curve is in the legend.
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Figure 4.16: Performance curves for each CAPS ensemble mean storm-surrogate
probability of 25 mm hail. The maximum CSI for each curve is in the legend.
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Figure 4.17: Performance curves for each CAPS ensemble mean storm-surrogate
probability of 50 mm hail. The maximum CSI for each curve is in the legend.
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Figure 4.18: Reliability curves for each CAPS ensemble mean storm-surrogate
probability of 25 mm hail. The BSS for each curve is in the legend.

90



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Forecast Probability

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

O
b
se

rv
e
d
 R

e
la

ti
v
e
 F

re
q
u
e
n
cy

No Skill

CAPS Ensemble Probability Hail > 50 mm Reliability

Updraft Helicity (0.02)

Column Total Graupel (-0.00)

HAILCAST (-0.13)

Reflectivity -10 C (-4.12)

Random Forest (-0.09)

Random Forest CV (-0.07)

Elastic Net (-0.05)

0 20 40 60 80 100

Forecast Probability

100

101

102

103

104

105

Fr
e
q
u
e
n
cy

Figure 4.19: Reliability curves for each CAPS ensemble mean storm-surrogate
probability of 50 mm hail. The BSS for each curve is in the legend.
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Figure 4.20: Frequency of CAPS Ensemble AUC rankings in a paired bootstrap
comparison of the different methods for probability of 25 and 50 mm hail. The
mean AUC for each method is shown in parentheses.
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Figure 4.21: The p-values (multiplied by 100) from permutation tests for the
difference in AUC between hail forecast models at 25 and 50 mm thresholds.
P-values in bold are statistically significant based on the false discovery method
with a rate of 0.05 (α=0.03). Darker reds are associated with larger p-values.
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Figure 4.22: Frequency of CAPS Ensemble AUC rankings in a paired bootstrap
comparison of the different methods for probability of 25 and 50 mm hail. The
mean AUC for each method is shown in parentheses.
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Figure 4.23: Frequency of BSS rankings in a paired bootstrap comparison of
the different methods for probability of 25 and 50 mm hail. The mean BSS for
each method is shown in parentheses. All differences in BSS were statistically
significant at the 5 % threshold based on permutation tests.
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Figure 4.24: CAPS Ensemble spatial distributions of 10% hail forecasts from
select models at the 25 and 50 mm hail thresholds. The blue filled contours
are forecast relative frequencies, and the red contours are observed relative
frequencies.
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Figure 4.25: CAPS Ensemble spatial distributions of 10% hail forecast false
positives from select models at the 25 and 50 mm hail thresholds. The blue filled
contours are forecast relative frequencies, and the red contours are observed
relative frequencies.
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Figure 4.26: CAPS Ensemble spatial distributions of 10% hail forecast false
negatives from select models at the 25 and 50 mm hail thresholds. The blue filled
contours are forecast relative frequencies, and the red contours are observed
relative frequencies.
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Figure 4.27: ROC curves for each NCAR ensemble mean storm-surrogate prob-
ability of 25 mm hail. The AUC for each curve is in the legend.
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Figure 4.28: ROC curves for each NCAR ensemble mean storm-surrogate prob-
ability of 50 mm hail. The AUC for each curve is in the legend.
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The NCAR ensemble verification results show a much clearer separation be-

tween the storm surrogates and machine learning hail forecast methods. The

machine learning models at the 25 mm threshold are able to attain slightly

lower POD than column total graupel while reducing the POFD (Fig. 4.27).

Column total graupel also has a higher probability of detection than updraft

helicity. The different machine learning methods differentiate themselves at the

50 mm threshold with the cross-validated Random Forest having the highest

POD, followed by default random forest, updraft helicity, elastic net, and col-

umn total graupel (Fig. 4.28). All of the methods show discrimination skill at

both thresholds, but the machine learning models are able to provide additional

improvement in the detection of extreme events. Permutation tests applied to

the AUC values indicate that all methods have statistically significantly differ-

ent AUC values at the 5 % level except for 25 mm Random Forest and Random

Forest CV forecasts (Fig. 4.29).

The NCAR ensemble performance diagrams highlight the difference in false

alarms for each method at high probability thresholds. Updraft helicity has a

lower POD than total graupel for 25 mm hail but also has a lower FAR for

most probability thresholds (Fig. 4.30). The machine learning methods are

able to maintain a lower FAR than updraft helicity for all thresholds. The

differences in FAR decreases at the 50 mm threshold but the random forest

models maintain a lower FAR and higher POD consistently (Fig. 4.31). The

elastic net underperforms the random forest models at this threshold.
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In addition to being better discriminators for the NCAR ensemble, the ma-

chine learning methods also produce more reliable probabilities. While an over-

confidence bias is apparent at both hail size thresholds, the machine learning

methods have higher BSSs at 25 (Fig. 4.32) and 50 mm (Fig. 4.33). Both updraft

helicity and the machine learning models are underconfident at low probability

thresholds and then trend toward overconfidence at higher thresholds while still

showing skill. The elastic net produces the most reliable probabilities at 50 mm

at the expense of some sharpness compared with updraft helicity (Fig. 4.33).

The random forest models are overconfident at 50 mm. Permutation tests of

the Brier Score for each method show that all the differences in scores are sta-

tistically significant at the 5 % level.

The spatial distribution of hail forecasts from the NCAR ensemble is shown

in Fig. 4.34. Most of the observed hail reports occur along the High Plains east of

the Rocky Mountains with a smaller secondary maximum in the Southeast. For

25 mm hail, the machine learning methods capture the full extent of the High

Plains hail observations while slightly underforecasting hail in the Southeast.

Updraft helicity captures the northern hail observations well but underforecasts

the frequency of hail in west Texas and eastern New Mexico as well as the

Southeast. Column Total Graupel greatly overforecasts hail frequency in the

Southeast and underforecasts hail in the High Plains with an eastward bias.

The storms that produce hail in the Southeast in May through July tend to be

pulse type thunderstorms, which lack rotating updrafts, so updraft helicity will

not detect them. An eastward bulge in eastern Nebraska from overnight MCSs

is also visible in both the forecast and observed relative frequencies from all

models. The machine learning models overforecast the frequency of hail in the
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High Plains while Column Total Graupel does the same over the eastern half

of the US (Fig. 4.35). The machine learning methods and updraft helicity have

the most misses along the Gulf Coast (Fig. 4.36). For 50 mm hail, the Random

Forest best captures the full extent of the hail events in the High Plains while the

Elastic Net is more concentrated in central Kansas (Fig. 4.34). Updraft helicity

is more concentrated in the northern Plains while Column total Graupel is more

biased toward Iowa. The false positives are in similar locations (Fig. 4.35) while

the misses for all methods are mainly along the eastern edge of the Rockies.
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Figure 4.29: The p-values (multiplied by 100) from permutation tests for the
difference in AUC between NCAR ensemble hail forecast models at the 25 and 50
mm thresholds. Statistically significant p-values are based on the false discovery
method with a rate of 0.05 (α=0.03). Darker reds are associated with larger
p-values.
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Figure 4.30: Performance curves for each NCAR ensemble mean storm-
surrogate probability of 25 mm hail. The maximum CSI for each curve is in the
legend.
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Figure 4.31: Performance curves for each NCAR ensemble mean storm-
surrogate probability of 50 mm hail. The maximum CSI for each curve is in the
legend.
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Figure 4.32: Reliability curves for each NCAR ensemble mean storm-surrogate
probability of 25 mm hail on an attributes diagram. The maximum BSS for
each curve is in the legend.
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Figure 4.33: Reliability curves for each NCAR ensemble mean storm-surrogate
probability of 50 mm hail on an attributes diagram. The maximum BSS for
each curve is in the legend.
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Figure 4.34: Spatial relative frequencies of 25 and 50 mm hail forecasts from
the NCAR ensemble in comparison to the spatial relative frequencies of the
observations.
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Figure 4.35: Spatial relative frequencies of 25 and 50 mm hail false positive fore-
casts from the NCAR ensemble in comparison to the spatial relative frequencies
of the observations.
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Figure 4.36: Spatial relative frequencies of 25 and 50 mm hail false negative fore-
casts from the NCAR ensemble in comparison to the spatial relative frequencies
of the observations.
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4.2.3 Forecast Examples
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Figure 4.37: Surrogate severe probabilities of hail at least 50 mm in diameter
for the period from 12 UTC 27 May 2015 to 12 UTC 28 May 2015. The green
contours indicate the practically perfect probabilities of MESH over 50 mm.

Individual forecasts examples show the highlights and failure modes of the

different hail forecasting methods. On 27 May 2015, significant hail was reported

from isolated supercells in the high Plains from northeast Colorado through west

Texas. The random forest hail model applied to the CAPS ensemble captured
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the extent of this event very well (Fig. 4.37) while HAILCAST (Fig. 4.38) only

captured part of the area affected and placed higher hail probabilities on an

MCS in Louisiana and Mississippi that produced a large number of wind re-

ports but no significant hail. Ensemble member forecasts tended to cluster by

microphysics scheme. The Thompson random forest forecasts tended to have

probabilities extend through eastern Kansas and north Texas while the other

members confined their probabilities to the High Plains. The HAILCAST mem-

bers showed a much higher degree of variance than the random forest members

and tended to place the highest probabilities in Louisiana. The MY members

had much lower probabilities compared to the members from the other schemes.

The CAPS ensemble machine learning model forecasts capture the high end

areas of the event well but do not perform as well at the lower hail thresh-

old while the storm surrogate methods generally have the opposite problem

(Fig. 4.39 and 4.40. The machine learning models capture the severe hail in

Wisconsin and Michigan but miss the event in Alabama while the other meth-

ods capture all of the hail areas but have a major false alarm high confidence

area in Louisiana. The machine learning models capture the 50 mm hail areas

well and the axis along which they occur while HAILCAST and updraft helicity

underestimate the extent.

The NCAR ensemble machine learning models do a much better job of cap-

turing both the 25 and 50 mm hail events. The high probability area in the

High Plains is much more closely aligned with the reports, and all the hail areas

in Alabama are captured (Fig. 4.41). Updraft helicity and column total graupel

also do a good job capturing the High Plains but are under and over confident
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with the eastern threat area. At 50 mm, Random Forest CV has the sharpest

machine learning probabilities and covers all observed 50 mm hail, unlike the

other two machine learning methods (Fig. 4.42). Column total graupel has a

large false alarm area to the east while updraft helicity is less intense there. All

do a good job with the main threat area.

On 4 June 2015, a major severe weather event occurred along the Front

Range in Colorado and in western Kansas. Significant hail was observed in

western Kansas and in northern Colorado. A supercell near Longmont, Colorado

produced a westward-moving EF3 tornado, which was witnessed by the author,

and large amounts of hail and rain. All methods from the CAPS ensemble

captured the extent of the 25 mm hail really well (Fig. 4.43) although they

showed an eastward bias in their maximum probability axes. The machine

learning methods captured the 50 mm hail probabilities better than any of the

storm surrogate methods, which either missed or had low confidence in the

storms along the mountains (Fig. 4.44). The NCAR ensemble also performed

well at 25 mm (Fig. 4.45) but had lower confidence at 50 mm (Fig. 4.46).

The Random Forest CV captured all of the hail areas while the other machine

learning models missed the storms in eastern Kansas. Having a more diverse

set of ensemble members appeared the help the CAPS ensemble perform better

overall on this case.
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Figure 4.38: Surrogate severe probabilities of hail at least 50 mm in diameter
for the period from 12 UTC 27 May 2015 to 12 UTC 28 May 2015. The green
contours indicate the practically perfect probabilities of MESH over 50 mm.

115



Random Forest Random Forest CV

Elastic Net Updraft Helicity

Column Total Graupel HAILCAST

0.01

0.10

0.30

0.50

0.70

0.90

CAPS 24-Hour Neighborhood Probability 25 mm Hail 27 May 2015

Figure 4.39: CAPS ensemble storm surrogate probabilities of 25 mm hail from
each CAPS Ensemble method for 27 May 2015. Observed 25 mm hail is con-
toured in green.
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Figure 4.40: CAPS ensemble storm surrogate probabilities of 50 mm hail from
each CAPS Ensemble method for 27 May 2015. Observed 50 mm hail is con-
toured in green.
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Figure 4.41: NCAR ensemble surrogate probabilities of 25 mm hail from each
CAPS Ensemble method for 27 May 2015. Observed 25 mm hail is contoured
in green.
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Figure 4.42: NCAR ensemble surrogate probabilities of 50 mm hail from each
CAPS Ensemble method for 27 May 2015. Observed 50 mm hail is contoured
in green.
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Figure 4.43: CAPS ensemble storm surrogate probabilities of 25 mm hail from
each CAPS Ensemble method for 4 June 2015. Observed 25 mm hail is con-
toured in green.
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Figure 4.44: CAPS ensemble storm surrogate probabilities of 50 mm hail from
each CAPS Ensemble method for 4 June 2015. Observed 50 mm hail is con-
toured in green.
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Figure 4.45: NCAR ensemble surrogate probabilities of 25 mm hail from each
CAPS Ensemble method for 4 June 2015. Observed 25 mm hail is contoured in
green.
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Figure 4.46: NCAR ensemble surrogate probabilities of 50 mm hail from each
CAPS Ensemble method for 4 June 2015. Observed 50 mm hail is contoured in
green.
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4.2.4 Variable Importances

Variable importance scores describe how much each input variable con-

tributes to the performance of a random forest. The variable importance score

is calculated by summing the decrease in the impurity metric from parent to

child nodes weighted by the number of samples in each node each time a par-

ticular variable is used in a decision tree. Then the total decrease in impurity

is scaled so that all of the importance scores sum to 1. Finally, the individual

tree importance scores are averaged across all trees.

The random forest variable importance procedure was used instead of other

feature selection methods, such as wrapper and filter methods, because it ac-

counts for variables that may be useful for segmenting subsets of the training

data. Most other feature selection methods rank variables based on their global

correlation with the overall output of the training data, which is important for

methods like linear regression that are sensitive to overfitting from including too

many variables. Random forests, however, are less sensitive to large numbers

of input variables, including ones that are highly correlated (Breiman 2001a,b),

and can take advantage of variables that may be important only in certain

subsets of the feature space to generate increases in predictive accuracy.

Variables with high importance scores tend to be selected more often within

each decision tree and impact a larger proportion of the training data cases. If

input variables are highly correlated but also have predictive power, then the

forest will randomly select among them and effectively split up their total im-

portance (Breiman 2001a). Because of this effect and because multiple statistics

were calculated for each input variable, the random forest variable importance

scores have been organized into a matrix where each row is an input variable

type and each column is a statistic calculated on all the values of that variable
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within the boundaries of each hailstorm object. The variables are ranked based

on the total importance scores summed across all statistics. The logarithms

(base 10) of the scores are shown in the matrices to make the differences among

the scores more apparent and easily readable.

The top variables for predicting hail occurrence are very similar for all mi-

crophysics schemes (Fig. 4.47, Fig. 4.49, Fig. 4.51). Downdraft speed is the top

variable for all three schemes. Stronger downdrafts allow hail to fall faster and

for a longer period through rain-cooled air, which reduces melting and increases

the chances of hail reaching the ground. Cooler temperatures at 700 mb and

500 mb also promote hail growth and less melting. Higher 700-500 mb lapse

rates result in stronger instability and stronger updrafts in the hail growth zone.

Stronger 0-6 km bulk wind differences promote a supercellular storm mode. The

Bunkers U and V are tied to mid level winds as well. Finally, strong updrafts

and updraft helicity help support the growth of large hail, but updrafts that

are too strong can send hail embryos into the anvil before they grow very large.

Some additional variables had more importance for size discrimination (Fig. 4.48,

Fig. 4.50, Fig. 4.52). Low-level lapse rates climbed to near the top of the list for

each model for size discrimination since it may help distinguish environments

supportive of big hail versus any hail at all. While updraft helicity is very help-

ful for hail occurrence, it does not have a significant impact on determining hail

size. Graupel mass is also not the strongest indicator of hail size because it

includes hail throughout the atmosphere and not just in the lowest levels.
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Min 10th% Mean 50th% 90th% Max SD Skew Total

MUCIN

Echo Top Height

MUCAPE

MLCIN

MLCAPE

Specific Humidity 500 mb

Specific Humidity 700 mb

Reflectivity -10C

Specific Humidity 850 mb

U 10 m

Graupel Mass

Low-Level Lapse Rate

Storm-Relative Helicity (0-3 km)

Temperature 2 m

V 10 m

U 700 mb

Dewpoint 2 m

Bunkers U

Temperature 500 mb

Precipitation

Updraft Helicity

Updraft Speed

Bulk Wind Difference (0-6 km)

Precipitable Water

V 700 mb

LCL Height

Bunkers V

Temperature 700 mb

Lapse Rate 700-500 mb

Downdraft Speed

-2.80 -2.79 -2.80 -2.79 -3.04 -3.32 -2.82 -2.77 -1.96

-2.94 -2.82 -2.74 -2.73 -2.67 -2.66 -2.62 -2.60 -1.81

-2.83 -2.75 -2.69 -2.71 -2.64 -2.55 -2.68 -2.70 -1.78

-2.68 -2.64 -2.63 -2.59 -2.68 -2.81 -2.70 -2.65 -1.77

-2.97 -2.80 -2.68 -2.68 -2.54 -2.49 -2.65 -2.68 -1.76

-2.56 -2.58 -2.71 -2.68 -2.76 -2.76 -2.60 -2.61 -1.75

-2.60 -2.63 -2.67 -2.68 -2.63 -2.57 -2.64 -2.66 -1.73

-2.67 -2.62 -2.60 -2.60 -2.60 -2.53 -2.71 -2.63 -1.71

-2.68 -2.66 -2.62 -2.65 -2.49 -2.51 -2.67 -2.64 -1.71

-2.55 -2.54 -2.56 -2.54 -2.63 -2.68 -2.69 -2.66 -1.70

-2.60 -2.57 -2.47 -2.47 -2.56 -2.69 -2.70 -2.66 -1.68

-2.44 -2.49 -2.52 -2.58 -2.62 -2.58 -2.72 -2.71 -1.67

-2.60 -2.53 -2.52 -2.48 -2.55 -2.56 -2.68 -2.62 -1.66

-2.55 -2.54 -2.52 -2.53 -2.51 -2.45 -2.73 -2.68 -1.65

-2.54 -2.53 -2.48 -2.50 -2.52 -2.55 -2.71 -2.64 -1.65

-2.58 -2.55 -2.55 -2.53 -2.50 -2.51 -2.55 -2.63 -1.65

-2.48 -2.53 -2.50 -2.53 -2.51 -2.56 -2.66 -2.64 -1.64

-2.69 -2.58 -2.43 -2.42 -2.40 -2.37 -2.72 -2.62 -1.61

-2.33 -2.38 -2.47 -2.46 -2.62 -2.74 -2.58 -2.65 -1.60

-2.61 -2.41 -2.37 -2.34 -2.56 -2.61 -2.61 -2.61 -1.60

-3.04 -2.78 -2.43 -2.54 -2.31 -2.21 -2.12 -2.56 -1.51

-2.66 -2.61 -2.47 -2.55 -2.09 -2.25 -2.35 -2.65 -1.50

-2.68 -2.57 -2.28 -2.30 -2.11 -2.11 -2.56 -2.70 -1.45

-2.11 -2.14 -2.25 -2.26 -2.41 -2.48 -2.65 -2.59 -1.42

-2.02 -2.14 -2.28 -2.33 -2.40 -2.53 -2.60 -2.63 -1.41

-2.21 -2.21 -2.16 -2.20 -2.21 -2.18 -2.68 -2.71 -1.37

-1.91 -1.94 -1.96 -1.96 -2.15 -2.37 -2.66 -2.64 -1.21

-2.36 -1.98 -1.91 -1.85 -1.87 -2.15 -2.67 -2.66 -1.18

-1.78 -1.63 -1.85 -1.70 -2.58 -2.73 -2.65 -2.65 -1.08

-2.16 -1.71 -1.59 -1.60 -2.23 -2.63 -2.23 -2.65 -1.03
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Figure 4.47: Matrix of the hail occurrence random forest variable importance
scores for ensemble members using the Thompson microphysics scheme.
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Min 10th% Mean 50th% 90th% Max SD Skew Total

MUCIN

MUCAPE

Storm-Relative Helicity (0-3 km)

Precipitation

Specific Humidity 700 mb

MLCAPE

Echo Top Height

V 700 mb

Temperature 2 m

Dewpoint 2 m

Updraft Helicity

U 10 m

Specific Humidity 500 mb

LCL Height

V 10 m

MLCIN

Downdraft Speed

Temperature 500 mb

Reflectivity -10C

Graupel Mass

Precipitable Water

Specific Humidity 850 mb

U 700 mb

Bunkers V

Updraft Speed

Lapse Rate 700-500 mb

Bulk Wind Difference (0-6 km)

Low-Level Lapse Rate

Temperature 700 mb

Bunkers U

-2.60 -2.52 -2.63 -2.66 -3.02 -3.51 -2.62 -2.60 -1.79

-2.69 -2.59 -2.51 -2.43 -2.47 -2.43 -2.73 -2.64 -1.64

-2.63 -2.53 -2.50 -2.50 -2.50 -2.48 -2.60 -2.63 -1.64

-2.37 -2.54 -2.54 -2.57 -2.60 -2.73 -2.50 -2.56 -1.64

-2.52 -2.55 -2.55 -2.56 -2.59 -2.41 -2.60 -2.57 -1.64

-2.93 -2.62 -2.39 -2.39 -2.47 -2.43 -2.65 -2.55 -1.62

-2.59 -2.46 -2.48 -2.49 -2.60 -2.61 -2.43 -2.54 -1.62

-2.47 -2.52 -2.48 -2.44 -2.51 -2.58 -2.72 -2.49 -1.62

-2.57 -2.58 -2.50 -2.49 -2.46 -2.40 -2.59 -2.58 -1.61

-2.52 -2.44 -2.41 -2.47 -2.50 -2.49 -2.58 -2.65 -1.60

-2.88 -2.62 -2.37 -2.35 -2.42 -2.45 -2.45 -2.51 -1.58

-2.42 -2.36 -2.36 -2.37 -2.45 -2.58 -2.61 -2.55 -1.55

-2.23 -2.22 -2.45 -2.50 -2.60 -2.69 -2.52 -2.53 -1.54

-2.38 -2.43 -2.43 -2.44 -2.39 -2.34 -2.55 -2.61 -1.53

-2.47 -2.54 -2.47 -2.39 -2.40 -2.32 -2.61 -2.35 -1.53

-2.51 -2.44 -2.30 -2.35 -2.37 -2.37 -2.62 -2.62 -1.53

-2.55 -2.45 -2.43 -2.41 -2.49 -2.36 -2.36 -2.30 -1.51

-2.28 -2.24 -2.33 -2.30 -2.54 -2.63 -2.67 -2.53 -1.51

-2.45 -2.30 -2.25 -2.33 -2.47 -2.58 -2.48 -2.49 -1.50

-2.39 -2.28 -2.33 -2.27 -2.42 -2.54 -2.56 -2.58 -1.50

-2.34 -2.31 -2.34 -2.41 -2.40 -2.50 -2.49 -2.47 -1.50

-2.60 -2.56 -2.34 -2.33 -2.20 -2.17 -2.58 -2.52 -1.48

-2.42 -2.33 -2.30 -2.30 -2.29 -2.39 -2.64 -2.48 -1.48

-2.32 -2.28 -2.34 -2.37 -2.40 -2.49 -2.45 -2.34 -1.47

-2.30 -2.40 -2.43 -2.46 -2.36 -2.39 -2.35 -2.29 -1.47

-2.19 -2.13 -2.20 -2.20 -2.46 -2.50 -2.59 -2.44 -1.41

-2.49 -2.31 -2.05 -2.15 -2.27 -2.29 -2.65 -2.56 -1.40

-2.00 -2.20 -2.17 -2.31 -2.29 -2.46 -2.71 -2.65 -1.39

-2.32 -2.27 -2.15 -2.21 -2.15 -2.13 -2.50 -2.49 -1.35

-2.37 -2.20 -2.08 -2.15 -2.07 -2.26 -2.57 -2.55 -1.34
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Figure 4.48: Matrix of size distribution random forest variable importance scores
for ensemble members using the Thompson microphysics scheme.
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Min 10th% Mean 50th% 90th% Max SD Skew Total

MUCIN

Echo Top Height

MLCAPE

MUCAPE

Reflectivity -10C

Storm-Relative Helicity (0-3 km)

Low-Level Lapse Rate

Specific Humidity 700 mb

Specific Humidity 500 mb

Updraft Helicity

MLCIN

U 10 m

V 10 m

Precipitation

Dewpoint 2 m

U 700 mb

Specific Humidity 850 mb

Temperature 2 m

Bunkers U

Temperature 500 mb

Updraft Speed

Graupel Mass

V 700 mb

LCL Height

Precipitable Water

Bunkers V

Lapse Rate 700-500 mb

Bulk Wind Difference (0-6 km)

Temperature 700 mb

Downdraft Speed

-2.87 -2.80 -2.75 -2.84 -3.11 -3.36 -2.75 -2.76 -1.96

-3.08 -2.91 -2.69 -2.72 -2.64 -2.54 -2.69 -2.66 -1.81

-3.00 -2.86 -2.67 -2.71 -2.63 -2.54 -2.74 -2.72 -1.81

-2.80 -2.76 -2.65 -2.71 -2.61 -2.58 -2.77 -2.74 -1.79

-2.67 -2.66 -2.63 -2.69 -2.69 -2.68 -2.71 -2.69 -1.77

-2.64 -2.61 -2.64 -2.62 -2.64 -2.64 -2.66 -2.72 -1.74

-2.54 -2.58 -2.62 -2.63 -2.60 -2.62 -2.74 -2.71 -1.72

-2.66 -2.66 -2.65 -2.62 -2.56 -2.47 -2.65 -2.69 -1.71

-2.52 -2.59 -2.61 -2.64 -2.59 -2.64 -2.66 -2.66 -1.71

-3.60 -3.13 -2.56 -2.77 -2.46 -2.41 -2.38 -2.54 -1.70

-2.66 -2.57 -2.50 -2.48 -2.51 -2.72 -2.71 -2.71 -1.69

-2.56 -2.55 -2.54 -2.53 -2.59 -2.60 -2.69 -2.69 -1.69

-2.57 -2.53 -2.53 -2.50 -2.54 -2.59 -2.74 -2.70 -1.68

-2.75 -2.68 -2.55 -2.47 -2.57 -2.53 -2.54 -2.53 -1.66

-2.48 -2.50 -2.52 -2.47 -2.51 -2.55 -2.71 -2.69 -1.64

-2.58 -2.55 -2.46 -2.48 -2.44 -2.44 -2.53 -2.66 -1.61

-2.64 -2.57 -2.38 -2.43 -2.34 -2.32 -2.62 -2.64 -1.57

-2.34 -2.35 -2.37 -2.44 -2.41 -2.39 -2.74 -2.73 -1.54

-2.54 -2.46 -2.33 -2.36 -2.26 -2.30 -2.69 -2.66 -1.52

-2.33 -2.29 -2.39 -2.40 -2.41 -2.50 -2.42 -2.69 -1.51

-2.69 -2.70 -2.20 -2.68 -2.12 -2.21 -2.43 -2.70 -1.50

-2.23 -2.15 -2.25 -2.40 -2.52 -2.60 -2.74 -2.67 -1.49

-2.26 -2.26 -2.29 -2.27 -2.40 -2.50 -2.71 -2.71 -1.49

-2.24 -2.27 -2.26 -2.31 -2.29 -2.29 -2.72 -2.68 -1.45

-2.26 -2.17 -2.22 -2.22 -2.35 -2.36 -2.70 -2.66 -1.43

-2.23 -2.21 -2.21 -2.26 -2.27 -2.36 -2.65 -2.65 -1.42

-2.02 -1.88 -2.23 -2.31 -2.61 -2.74 -2.48 -2.71 -1.37

-2.56 -2.45 -2.04 -2.07 -1.95 -1.84 -2.51 -2.72 -1.26

-2.36 -2.20 -1.92 -1.97 -1.81 -1.92 -2.72 -2.70 -1.19

-1.72 -1.55 -1.55 -1.58 -1.71 -2.14 -1.98 -2.68 -0.85
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Figure 4.49: Same as Fig. 4.47 but for the hail occurrence random forest trained
on Morrison microphysics members.

128



Min 10th% Mean 50th% 90th% Max SD Skew Total

MUCIN

MLCAPE

Echo Top Height

Precipitation

Graupel Mass

Reflectivity -10C

Storm-Relative Helicity (0-3 km)

MUCAPE

Updraft Speed

Dewpoint 2 m

V 10 m

Temperature 2 m

Updraft Helicity

Specific Humidity 700 mb

Specific Humidity 850 mb

U 10 m

V 700 mb

LCL Height

U 700 mb

Specific Humidity 500 mb

Downdraft Speed

Lapse Rate 700-500 mb

MLCIN

Precipitable Water

Bulk Wind Difference (0-6 km)

Temperature 500 mb

Bunkers V

Temperature 700 mb

Bunkers U

Low-Level Lapse Rate

-2.76 -2.73 -2.68 -2.69 -3.00 -3.44 -2.66 -2.65 -1.87

-2.98 -2.87 -2.62 -2.69 -2.50 -2.44 -2.62 -2.64 -1.74

-2.87 -2.73 -2.62 -2.62 -2.57 -2.57 -2.46 -2.41 -1.68

-2.58 -2.60 -2.56 -2.62 -2.54 -2.51 -2.49 -2.50 -1.64

-2.50 -2.49 -2.54 -2.55 -2.52 -2.56 -2.53 -2.61 -1.63

-2.56 -2.49 -2.52 -2.55 -2.46 -2.53 -2.60 -2.55 -1.63

-2.61 -2.56 -2.47 -2.47 -2.47 -2.45 -2.63 -2.57 -1.62

-2.70 -2.64 -2.51 -2.44 -2.41 -2.30 -2.69 -2.65 -1.62

-2.40 -2.35 -2.63 -2.55 -2.61 -2.63 -2.51 -2.50 -1.61

-2.45 -2.51 -2.46 -2.46 -2.51 -2.51 -2.57 -2.62 -1.60

-2.55 -2.49 -2.44 -2.49 -2.45 -2.50 -2.56 -2.59 -1.60

-2.49 -2.51 -2.51 -2.51 -2.43 -2.38 -2.63 -2.62 -1.60

-3.10 -2.80 -2.39 -2.48 -2.40 -2.45 -2.42 -2.40 -1.60

-2.43 -2.47 -2.49 -2.47 -2.47 -2.42 -2.57 -2.54 -1.57

-2.60 -2.56 -2.49 -2.51 -2.32 -2.26 -2.58 -2.59 -1.57

-2.41 -2.42 -2.38 -2.46 -2.41 -2.43 -2.56 -2.57 -1.55

-2.42 -2.42 -2.36 -2.37 -2.43 -2.46 -2.65 -2.54 -1.54

-2.41 -2.45 -2.42 -2.41 -2.39 -2.38 -2.50 -2.64 -1.54

-2.47 -2.33 -2.29 -2.37 -2.35 -2.44 -2.63 -2.54 -1.51

-2.21 -2.24 -2.48 -2.48 -2.49 -2.59 -2.44 -2.52 -1.51

-2.47 -2.35 -2.31 -2.38 -2.35 -2.45 -2.51 -2.49 -1.51

-2.25 -2.24 -2.34 -2.31 -2.49 -2.59 -2.63 -2.55 -1.50

-2.46 -2.43 -2.27 -2.26 -2.31 -2.41 -2.62 -2.56 -1.50

-2.25 -2.25 -2.38 -2.36 -2.45 -2.45 -2.51 -2.46 -1.48

-2.53 -2.39 -2.23 -2.26 -2.12 -2.36 -2.46 -2.56 -1.44

-2.23 -2.19 -2.20 -2.23 -2.25 -2.46 -2.60 -2.61 -1.41

-2.25 -2.10 -2.19 -2.16 -2.29 -2.35 -2.59 -2.56 -1.38

-2.35 -2.28 -2.22 -2.12 -2.12 -2.14 -2.48 -2.48 -1.35

-2.33 -2.28 -2.16 -2.12 -2.13 -2.16 -2.52 -2.50 -1.35

-1.95 -2.16 -2.08 -1.99 -2.01 -2.13 -2.62 -2.61 -1.23
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Figure 4.50: Same as Fig. 4.48 but for the size distribution random forest trained
on Morrison microphysics members.
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Min 10th% Mean 50th% 90th% Max SD Skew Total

MUCIN

Low-Level Lapse Rate

Echo Top Height

Precipitation

Graupel Mass

Storm-Relative Helicity (0-3 km)

Dewpoint 2 m

V 10 m

U 700 mb

U 10 m

Temperature 2 m

MLCAPE

MLCIN

Specific Humidity 700 mb

Specific Humidity 850 mb

MUCAPE

Reflectivity -10C

Specific Humidity 500 mb

LCL Height

Bunkers U

Updraft Helicity

Updraft Speed

V 700 mb

Precipitable Water

Temperature 500 mb

Bunkers V

Lapse Rate 700-500 mb

Bulk Wind Difference (0-6 km)

Temperature 700 mb

Downdraft Speed

-2.80 -2.78 -2.77 -2.72 -3.02 -3.42 -2.80 -2.74 -1.94

-2.59 -2.63 -2.67 -2.67 -2.71 -2.69 -2.72 -2.73 -1.77

-3.20 -3.06 -2.74 -2.71 -2.37 -2.44 -2.70 -2.70 -1.77

-2.72 -2.72 -2.63 -2.65 -2.63 -2.58 -2.59 -2.59 -1.73

-2.55 -2.50 -2.53 -2.57 -2.71 -2.71 -2.62 -2.69 -1.70

-2.58 -2.54 -2.58 -2.58 -2.58 -2.57 -2.62 -2.69 -1.69

-2.53 -2.54 -2.59 -2.56 -2.57 -2.62 -2.60 -2.72 -1.68

-2.56 -2.52 -2.54 -2.51 -2.58 -2.61 -2.69 -2.67 -1.68

-2.64 -2.62 -2.57 -2.55 -2.52 -2.51 -2.57 -2.67 -1.68

-2.59 -2.53 -2.51 -2.50 -2.57 -2.59 -2.71 -2.64 -1.67

-2.56 -2.56 -2.53 -2.56 -2.52 -2.52 -2.65 -2.73 -1.67

-2.85 -2.68 -2.47 -2.51 -2.43 -2.44 -2.71 -2.68 -1.67

-2.66 -2.57 -2.50 -2.34 -2.47 -2.80 -2.70 -2.73 -1.67

-2.55 -2.58 -2.67 -2.67 -2.57 -2.50 -2.39 -2.70 -1.66

-2.69 -2.65 -2.52 -2.54 -2.44 -2.41 -2.66 -2.65 -1.65

-2.71 -2.67 -2.56 -2.59 -2.46 -2.28 -2.64 -2.70 -1.65

-2.68 -2.64 -2.43 -2.68 -2.45 -2.32 -2.71 -2.67 -1.64

-2.37 -2.44 -2.50 -2.59 -2.51 -2.60 -2.51 -2.63 -1.61

-2.43 -2.44 -2.45 -2.43 -2.44 -2.44 -2.71 -2.71 -1.59

-2.53 -2.44 -2.35 -2.32 -2.37 -2.35 -2.68 -2.64 -1.54

-3.56 -3.02 -2.56 -2.68 -2.29 -2.15 -2.21 -2.23 -1.52

-2.69 -2.66 -2.52 -2.65 -2.25 -2.08 -2.23 -2.68 -1.50

-2.26 -2.26 -2.35 -2.31 -2.42 -2.49 -2.64 -2.64 -1.50

-2.26 -2.22 -2.24 -2.23 -2.36 -2.40 -2.67 -2.63 -1.44

-2.21 -2.24 -2.32 -2.24 -2.35 -2.41 -2.34 -2.70 -1.43

-2.28 -2.24 -2.22 -2.15 -2.24 -2.33 -2.56 -2.64 -1.40

-2.08 -2.03 -2.23 -2.21 -2.52 -2.66 -2.34 -2.70 -1.38

-2.66 -2.41 -2.09 -2.11 -1.85 -1.85 -2.22 -2.70 -1.24

-2.14 -1.95 -1.72 -1.84 -1.64 -1.84 -2.53 -2.70 -1.03

-1.76 -1.71 -1.65 -1.79 -2.04 -2.38 -1.84 -2.68 -0.98

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

lo
g

10
(V

a
ri

a
b
le

 I
m

p
o
rt

a
n
ce

 S
co

re
)

MY Random Forest Variable Importance Scores

Figure 4.51: Same as Fig. 4.47 but for the hail occurrence random forest trained
on Milbrandt and Yau (MY) microphysics members.
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Min 10th% Mean 50th% 90th% Max SD Skew Total

MUCIN

MLCAPE

MUCAPE

Updraft Helicity

Precipitation

Updraft Speed

Echo Top Height

Temperature 2 m

Dewpoint 2 m

Storm-Relative Helicity (0-3 km)

Graupel Mass

Reflectivity -10C

LCL Height

Temperature 500 mb

MLCIN

Precipitable Water

U 700 mb

V 700 mb

Specific Humidity 700 mb

U 10 m

Specific Humidity 500 mb

Bunkers U

V 10 m

Downdraft Speed

Specific Humidity 850 mb

Bunkers V

Bulk Wind Difference (0-6 km)

Lapse Rate 700-500 mb

Temperature 700 mb

Low-Level Lapse Rate

-2.82 -2.62 -2.75 -2.52 -2.73 -3.21 -2.86 -2.69 -1.83

-2.76 -2.80 -2.79 -2.82 -2.71 -2.66 -2.64 -2.60 -1.81

-2.74 -2.81 -2.86 -2.88 -2.81 -2.59 -2.56 -2.61 -1.81

-3.33 -2.83 -2.56 -2.46 -2.65 -2.67 -2.76 -2.56 -1.77

-2.57 -2.68 -2.74 -2.79 -2.50 -2.76 -2.66 -2.52 -1.74

-2.58 -2.33 -2.78 -2.62 -2.82 -2.75 -2.76 -2.63 -1.73

-2.83 -2.77 -2.71 -2.77 -2.67 -2.64 -2.49 -2.31 -1.71

-2.53 -2.59 -2.72 -2.69 -2.58 -2.46 -2.62 -2.63 -1.69

-2.53 -2.68 -2.59 -2.63 -2.56 -2.50 -2.58 -2.57 -1.67

-2.54 -2.50 -2.59 -2.60 -2.58 -2.65 -2.69 -2.49 -1.67

-2.60 -2.68 -2.71 -2.70 -2.35 -2.56 -2.57 -2.45 -1.66

-2.59 -2.61 -2.78 -2.47 -2.66 -2.54 -2.39 -2.49 -1.65

-2.42 -2.57 -2.62 -2.63 -2.56 -2.43 -2.56 -2.48 -1.62
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Figure 4.52: Same as Fig. 4.48 but for the size distribution random forest trained
on Milbrandt and Yau (MY) microphysics members.
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4.3 Discussion

Machine learning object-based hail forecasts were evaluated and compared

with other diagnostic hail forecasting methods to determine what value may

be added to raw CAM ensemble output by these approaches. The different

forecasting methods were evaluated using spring and summer 2015 runs of the

CAPS and NCAR convection-allowing model ensembles and validated against

gridded radar-estimated hail sizes. The machine learning models showed skill

in discriminating between forecast storms that produced hail and those that

did not but were underdispersive with the hail size forecasts. Additional cal-

ibration of the raw machine learning forecasts improved the sharpness of the

size forecasts for the NCAR ensemble. For 24-hour hail outlooks, the machine

learning methods were better able to identify hail threat areas while minimizing

false alarms compared with HAILCAST and the Thompson hail size estimation

method. Of the existing storm-surrogates, updraft helicity provided the best

indicator of large hail. Based on analysis of variable importance rankings from

the machine learning models, the hail forecasts were closely tied to lapse rates

near the freezing level, wind shear, and the saturation of the air near the sur-

face. While storm object identification helped constrain where conditions were

favorable for hail, the actual storm surrogate values appeared to have little util-

ity in discriminating hail occurrence and hail size. Environmental parameters

were more important for that task.

The skill of machine learning hail forecasts generated from CAM ensembles

is more sensitive to the choices made during pre-processing than to the choice

of machine learning model. Having a training set that is as close in configura-

tion as possible to what is being used operationally is also very important for
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skillful forecasts. While the 2014 CAPS ensemble dataset provided somewhat

skillful forecasts of hail occurrence in 2015, the size forecasts had less ability to

discriminate between large and small hail events. The NCAR ensemble config-

uration, which used the same configuration for all ensemble members and runs,

could distinguish a wide range of hail sizes and probabilities. The NCAR en-

semble algorithms benefited from having a larger amount of training data due

to the longer training period and the ability to aggregate across 10 diverse but

similarly configured ensemble members. As the 27 May 2015 example shows,

even with only 2 weeks of training data, the machine learning models could still

discriminate hail size and location really well. Constraining the hail forecasts to

areas where the model produces graupel and to within the US borders results

in a less noisy relationship between forecast parameters and observed hail.

The verification statistics, spatial maps, and case studies showed that the

hail forecasting methods exhibit more pronounced forecasting biases in particu-

lar areas. The machine learning models and updraft helicity work very well for

discriminating hail in Plains supercells, particularly storms in the High Plains

and just east of the Rockies. Both of these methods take shear and updraft

intensity into account. Column Total Graupel and HAILCAST are more influ-

enced by CAPE and less by shear, so they produce hail in any storm that has

a strong updraft. Column Total Graupel does not account for melting at all,

and HAILCAST uses a bulk melting parameter, so they do not fully account for

the melting that occurs with storms in the Southeast and tend to overpredict

hail in that area. The machine learning model uses the LCL height to account

for relative humidity effects on melting and gives lower probabilities to areas

with low LCL heights, but it is too aggressive with lowering probabilities in

the Southeast and misses too many storms. Using a lower decision threshold
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may help capture some of these cases that are currently missed with the 50%

decision threshold. Alternatively, regionally calibrated decision thresholds may

be useful to capture different storm environments more accurately.

While constraining machine learning hail forecasts to areas where the NWP

model produces storms does generally produce better forecasts, there are sit-

uations in which this approach will struggle compared with ingredients- or

parameter-based methods. If the CAM struggles with the placement, timing,

and evolution of storms, then the hail forecasts dependent on those storms will

also struggle. These struggles tend to occur in scenarios where large scale forc-

ing is weaker, leading to convection initiation and evolution being governed by

poorly observed mesoscale effects. When an area receives multiple days of con-

vection, errors in forecasting the diurnal cycle of convection lead to additional

spatial and temporal biases. Hail forecasts based solely on environmental pa-

rameters will tend to have better coverage in these situations and will detect

hail threat areas that storm-based methods may miss at the expense of more

false alarms.
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Chapter 5

An Evaluation of Statistical Learning Configurations for

Gridded Solar Irradiance Forecasting

Solar-based electricity generation and its share of the power supply has been

growing rapidly over the past decade (Shaker et al. 2016). As solar power

achieves higher penetration and becomes more critical to the electric infrastruc-

ture, the need for accurate forecasts of solar irradiance and solar power increases

greatly in order to maintain a steady electricity supply under varying weather

conditions (Renné 2014). Current state-of-the-art solar and wind energy fore-

cast systems combine Numerical Weather Prediction (NWP) model output with

statistical learning models trained on a historical archive of observed solar irra-

diance or power output to produce a forecast with minimal bias. This approach

is very effective for sites that have been operating for a long period of time, but

with new large solar plants coming online more frequently and more people in-

vesting in residential rooftop solar panels, accurate solar predictions are needed

for larger areas where observing sites either have very short records or are not

available at all.

Generating the most accurate predictions at sites without observations re-

quires fusing many static and dynamic data sources together within a statistical

learning framework. The amount of solar irradiance at the surface is primarily

driven by the position of the sun in the sky as well as the amount and type of

aerosols and clouds scattering the sunlight. Obstructions by terrain, buildings,
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and trees can also impact solar irradiance at lower sun angles. Solar position can

be directly calculated given a location and time, and information about terrain

and land cover type is available from high resolution gridded datasets. Cloud

cover and aerosol information can be extracted from NWP model output, but

operational NWP models generally do not represent either very well and may

be subject to other systematic biases (Diagne et al. 2013). Statistical learning

models can determine cloudiness from other NWP model conditions associated

with observed cloudiness and can make corrections based on data sources un-

available to a NWP model, including climatological information and statistics

concerning spatial and temporal variability.

Current operational statistical gridded forecasting systems use linear bias

correction methods to calibrate raw model output to either observations or anal-

yses and then interpolate those corrections to a fine grid. The National Weather

Service Gridded Model Output Statistics (MOS) system (Glahn et al. 2009) per-

forms linear regression corrections at each observation site and then uses the

Cressman (1959) successive correction method and an elevation correction to

interpolate the site-based MOS forecasts to a grid. The Australian Bureau of

Meteorology, which has to account for a sparse observation network across most

of the country, performs a bias correction of model output on a coarse grid and

then builds a weighted consensus that is statistically downscaled to a fine grid

(Engel and Ebert 2012).

The purpose of this chapter is to evaluate different statistical learning models

and configurations for gridded solar irradiance forecasting. The primary hypoth-

esis is that ensemble decision tree methods produce more accurate gridded solar

irradiance forecasts than linear regression and raw NWP model output. In the

pre-processing stage, the set of input variables, NWP model configuration, and
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division of training data are investigated. Multiple types of machine learning

models, as well as different configurations of those models, are all evaluated

to see which parameter choices impact performance. Finally, different meth-

ods for applying the calibrated machine learning models to unknown sites are

compared.

5.1 Methods

5.1.1 Data and Pre-Processing

Observed solar irradiance data come from the Oklahoma Mesonet (McPher-

son et al. 2007). The Mesonet reports the 5-minute-averaged global horizontal

irradiance (GHI) every 5 minutes using Li-Cor LI-200 silicon photodiode-type

pyranometers. The instruments are regularly calibrated and are monitored by

both humans and automated algorithms for quality assurance. Extraterrestrial

solar radiation and solar position angles are calculated using the PVLIB Python

library (Holmgren et al. 2015). The solar position calculations are performed

using a Python implementation of the National Renewable Energy Laboratory

(NREL) Solar Position Algorithm (SPA) (Reda and Andreas 2003). Solar zenith

(θs), elevation, and azimuth angles are calculated every 5 minutes and are used

to estimate the idealized clear-sky irradiance at the top of the atmosphere Itoa.

The clearness index Kt is calculated from the Mesonet solar irradiance Is using

Eq. 5.1.

Kt =
Is

Itoa cos θs
(5.1)

The 5-minute irradiance and clearness index values are then averaged over the

previous hour to determine the hourly-averaged values. The hourly-averaged
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Kt is then used as truth for the statistical learning model experiments. Times

without sun or with data outages are dropped from the dataset.

The first set of statistical learning model experiments is performed with the

NOAA National Centers for Environmental Prediction (NCEP) Global Forecast

System (GFS) model. The GFS is a global spectral model run operationally

by NCEP four times a day out to 16 days. The raw GFS model output is

interpolated onto an approximately 4 km grid that uses uniform latitude and

longitude values over the contiguous United States. Temporal linear interpo-

lation from the 3-hourly data to hourly values was also performed. Incoming

hourly averaged downward short wave radiation at the surface, total cloud cover

percentage, and surface temperature are extracted from the 00 UTC runs for

the period from 5 June through 30 August 2015. Forecast hours 14 through

24 were used for the analysis. All of the input variables to the GFS machine

learning models are listed in the first column of Table 5.1.

A second set of experiments was performed with the Center for Analysis and

Prediction of Storms (CAPS) 2016 3DVAR-based Storm-Scale Ensemble Fore-

cast system, referred to as the 2016 CAPS Ensemble from here. The CAPS En-

semble consists of 18 Weather Research and Forecasting (WRF) model members

running the Advanced Research WRF (ARW) dynamical core with perturbed

initial conditions, lateral boundary conditions, microphysics schemes, and plan-

etary boundary layer (PBL) schemes. The ensemble was run every weekday

at 00 UTC from 2 May through 3 June 2016 as part of the NOAA Hazardous

Weather Testbed Spring Experiment. Downward shortwave and total irradiance

at the surface; relative humidity at 850, 700, and 500 mb; precipitable water;

total precipitation; composite reflectivity; and surface height were extracted at
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Table 5.1: Input variables for the GFS and 2016 CAPS Ensemble control mem-
ber machine learning models. Spatial statistics were calculated over a 3 grid
point radius for the GFS and a 10 grid point neighborhood radius for the CAPS
Ensemble.

GFS CAPS Ensemble

Valid Hour CST Forecast Hour
Forecast Hour GHI at nearest grid cell
Day of Year GHI Spatial Mean
Sine (Day of Year) GHI Spatial Max
GHI at nearest grid cell GHI Spatial Min
GHI Spatial Mean GHI Spatial SD
GHI Spatial Max GHI Spatial Skewness
GHI Spatial Min GHI Spatial Kurtosis
GHI Spatial Correlation Total Downward Irradiance
Temperature at nearest grid cell Precipitable Water
Temperature Spatial Mean Composite Reflectivity
Temperature Spatial Max Terrain Height
Temperature Spatial Min 850 mb Relative Humidity
Temperature Spatial Correlation 700 mb Relative Humidity
Cloud Cover at nearest grid cell 500 mb Relative Humidity
Cloud Cover Spatial Mean Precipitation
Cloud Cover Spatial Max Clear Sky Irradiance
Cloud Cover Spatial Min Solar Zenith Angle
Cloud Cover Correlation Solar Azimuth Angle
Solar Zenith Angle
Solar Azimuth Angle
Solar Elevation Angle
Forecast Clearness Index
Forecast Clear Sky Irradiance
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each Mesonet site. The mean, minimum, maximum, standard deviation, skew-

ness, and kurtosis of the downward shortwave irradiance at grid points within

an 30 km box around each site were also extracted for forecast hours 11 through

26. The full list of CAPS ensemble input variables is in the second column of

Table 5.1. Hours where the sun was below the horizon were excluded. This anal-

ysis focuses on the control member of the ensemble, which uses the Thompson

microphysics scheme (Thompson et al. 2008) and Mellor-Yamada-Janjic (MYJ)

PBL scheme (Mellor and Yamada 1982).

5.1.2 Statistical Learning Models

Both the statistical learning model type and parameter settings are evaluated

to determine their relative impact on forecast performance. Different statistical

learning models from the scikit-learn (Pedregosa et al. 2011) Python library

and some of their configurations are evaluated. Lasso (Tibshirani 1996), a

regularized linear regression model with sparse coefficients, is used as a baseline

method. Random forests (Breiman 2001a), an ensemble of randomized decision

trees, and Gradient Boosted Regression Trees (Friedman 2001), a stagewise,

additive weighted ensemble of decision trees, are also used. The data processing

and machine learning modeling procedure is summarized in Fig. 5.1.

In the GFS experiment, the default random forest has 500 trees, a minimum

number of samples at a split node of 10, and the square root of the total number

of variables sampled at each split node. The “Random Forest Short Trees”

model uses a maximum depth of 3 for any branch. The depth of the trees

affects how closely each tree fits to individual training cases. A shorter depth

should result in smoother predictions throughout the feature space, but the
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Figure 5.1: Summary of the procedure for data pre-processing, machine learning
model training, and machine learning model application for solar irradiance
forecasts.
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predictions will also be less sharp. The “Random Forest All Features” model

evaluates all input features at each split node instead of a random subset. This

change should result in less variability and independence among the individual

trees compared with sampling a small number of features.

The default Gradient Boosting model uses 500 trees, a learning rate of 0.1,

a least absolute deviance loss function, a max depth of 5, and samples the

square root of the number of input variables. The “Gradient Boosting Least

Squares” model uses the least squares loss function instead of least absolute

deviance and will weigh large errors more heavily. The “Gradient Boosting

Big Trees” model uses trees that are grown to split nodes with a minimum

number of training samples of 10 instead of a max depth of 5. The “Gradient

Boosting “All Features” model samples all features at each node. The “Gradient

Boosting Slow Learning Rate” model reduces the learning rate to 0.01. A slower

learning rate reduces the contribution of each tree to the ensemble, so more

trees are required to reach the same training set error, but the model may be

able to optimize predictions more than with a higher learning rate. The Linear

Regression model uses a Lasso regression that fits to the 16 top features selected

with the highest F-scores and an alpha of 0.5.

The CAPS ensemble experiment tests two ways of aggregating the predic-

tions from the individual trees in the random forest. The default Random Forest

for the CAPS ensemble experiment uses 500 trees, minimum samples at the leaf

nodes of 1, and samples the square root of the total number of input variables.

For regression models, the mean of the tree prediction distribution is used based

on the central limit theorem assumption that a large enough set of independent

samples will form a Gaussian distribution no matter the identity of the original

distribution. In practice, the distribution of individual tree predictions may be
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multimodal, particularly if there is high uncertainty and the predicted quantity

does not have a Gaussian distribution. In some circumstances, such as when

there is a larger number of outlier predictions, the median may be a better

choice for the consensus than the mean. For bimodal distributions, the mean

and median will tend to occur between the two peaks. Because the random

forest is composed of a set of randomized, or weaker decision trees, the ensem-

ble spread tends to be very high, so a direct estimation of quantiles may not

perform well. The default Gradient Boosting model uses 200 trees, the least

absolute deviance loss function, a maximum of 100 leaf nodes, subsamples the

80% of the training data randomly for each tree, and has a learning rate of

0.05. Another Gradient Boosting model uses the Huber loss function (Fried-

man 2001), a piecewise combination of mean squared error and mean absolute

error connected at a split point δ as shown in Eq. 5.2,

L(y, F ) =


1
2
(y − F )2 |y − F | ≤ δ

δ(|y − F | − δ
2
) |y − F | > δ

(5.2)

to determine if that produces a more physically realistic forecast distribution

by altering the evaluation of the feature splits.

5.1.3 Gridded Forecast Evaluation Procedure

Generating calibrated gridded solar irradiance forecasts requires determining

the best estimate of irradiance at a location where irradiance is not observed.

In order to simulate this condition and still score the different procedures, half

of the 120 Oklahoma Mesonet sites are selected at random as training sites, and

the other half are used as testing sites. In addition, testing days are withheld
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during the period of the experiment to prevent temporal contamination of the

training data. Every third day during the training period is used as a testing

day to reduce the impact of seasonality bias on the evaluation.

Two procedures are tested for generalized gridded forecasting. In the “Single

Site” approach, separate statistical learning models are trained at each training

site, predictions are made at each of these sites, and then the predictions are

interpolated to the testing site using the Cressman (1959) successive correc-

tion interpolation method. For each interpolation point fi, a distance-weighted

average of the predictions at the stations with distances dj within a radius of

influence R is computed such that

fi =

∑J
j wjfsj∑J
j=1wj

;
wj =

R2−d2j
R2+d2j

R < d

wj = 0 R ≥ d
(5.3)

. The test sites were initialized with the mean of the predictions at the train-

ing sites, and then four passes were performed with the Cressman filter with a

decrease in radius for each pass to capture local effects. The Cressman interpo-

lation method was chosen because the NWS gridded MOS system (Glahn et al.

2009) also uses it for interpolation from training sites to grid points.

In the “Multi Site” approach, the data from all training sites are aggregated

together and are used to train one statistical learning model. This model is then

applied at the testing sites using the NWP model and clear sky model output

at that location. This approach requires training a single statistical model and

can thus utilize a larger training set than the Single Site method. Applying

a single model at each grid point also eliminates discontinuities that may be

found in approaches that use separate statistical models for different regions.

This approach is less able to correct for local biases and conditions.
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Forecasts from each machine learning model are evaluated based on their

accuracy, systemic bias, reliability, discrimination, and sharpness. Forecast ac-

curacy is assessed using the mean absolute error, which is less sensitive to outlier

errors. Systemic bias is evaluated through the mean error and determines if the

models tend to over or underforecast clearness index. The reliability, or con-

dition bias, of the forecasts is assessed through a reliability diagram in which

the forecasts are binned, and the mean observed value is calculated for each

bin. Reliable forecasts should have similar average observed values for a given

forecast value. Discrimination is assessed by binning observations and calculat-

ing the average forecast value for a given observation. If the models show good

discrimination, then observations of higher clearness index should have a higher

forecast clearness index on average versus observations of lower clearness index.

Sharpness is assessed by examining the distribution of forecasts and comparing

them with the distribution of observations.

The statistical significance of the verification scores is assessed with boot-

strap confidence intervals and permutation tests. A bootstrap replicate size

of 10000 is used. Independent bootstrap confidence intervals are used to as-

sess the uncertainty of the verification scores. Ranking the models by score in

each bootstrap replicate and counting the frequency of each ranking for each

model is used to assess whether certain models consistency outperform others

and how much that ranking varies. Permutation tests are finally used to assess

whether the difference in scores between two models is statistically significant

and what the p-value of that difference is. A global p-value of 0.05 is used to

determine statistical significance and is adjusted based on the false discovery

rate correction to account for multiple comparisons (Benjamini and Hochberg

1995).
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5.2 Results
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Figure 5.2: Bootstrap confidence intervals for the mean absolute errors and
mean errors for each statistical learning model configuration.
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5.2.1 Experiment 1: GFS

Fig. 5.2 shows the bootstrap confidence intervals of the mean absolute er-

ror and mean error for each machine learning model. The Single Site models

perform slightly better than the Multi Site models with the exception of the

top-performing gradient boosting models. The Multi Site Gradient Boosting

models with a mean absolute error loss function generally have the lowest mean

absolute error but have higher mean error than the other Multi Site models. Of

the experimental variations made to the gradient boosting model for this ex-

periment, changing the loss function from mean absolute error to mean squared

error had the largest impact on performance. For random forest, changing the

depth of the trees had a bigger impact than expanding the number of features

evaluated. The linear regression model does exhibit similar errors to some of

the configurations of random forest and gradient boosting, suggesting that poor

configuration choices can lead to worse performance than simpler models.
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Figure 5.3: Bootstrap rankings for the mean absolute errors for each statisti-
cal learning model configuration. The mean absolute error for each machine
learning model is listed in parentheses.
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Figure 5.4: Permutation test p-values (multiplied by 1000 for the comparison
of the differences in mean absolute error between each machine learning model
trained on GFS output. P-values in bold are statistically significant based on
the false discovery method with a rate of 0.05 (α=0.0325). Darker reds are
associated with larger p-values.

The bootstrap rankings of each machine learning model by mean absolute

error are shown in Fig. 5.3. Most of the variations on Gradient Boosting Multi

Site have overlapping rankings among the top models. Both the Single and

Multi Site Gradient Boosting Big Trees models show more variance in their

rankings than other models, which may be a product of the increased variance

in predictions produced by using larger trees. The Gradient Boosting models

using the least absolute deviance loss function do not overlap any of the other

models in their rank intervals. The Single Site Random Forests rank better
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than the Multi Site Random Forests and show no overlap with them. Single Site

Linear Regression overlaps in rankings with Multi Site Random Forest and Least

Squares Gradient Boosting. The permutation test p-values for the differences in

mean absolute error are shown in Fig. 5.4. Using Gradient Boosting models with

all input features, a slower learning rate, and larger trees results in statistically

significant improvements over the default approach. Single Site and Multi Site

Gradient Boosting with default parameters do not have significantly different

forecast errors. For random forest, the difference between the Single Site and

Multi Site model is statistically significant.
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Figure 5.5: Binned mean forecast and observed clearness index values from each
model.

The ability of each model to produce reliable clearness index values and

discriminate between high and low clearness index cases is shown in Fig. 5.5.

All of the models show good reliability although the Gradient Boosting models

exhibit a consistent small overforecasting bias. The random forest models are
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closer to the perfect reliability line. In terms of discrimination, all of the models

in general forecast lower values for cloudier hours and higher values for clearer

hours, but the models tend to overforecast the clearness index when it is less

than 0.5. The machine learning models marginally improve on the GFS but

still follow its trends closely.
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Figure 5.6: Point and cumulative distributions of Multi Site GFS clearness index
forecasts and observations.

The biases in the forecast distributions are shown in Fig. 5.6. Compared

with the distribution of observations, all models underforecast the occurrence

of cloudy days and overforecast clear days, but they do generally capture the

correct shape of the distribution. The binned forecast errors in Fig. 5.7 and

5.8 indicate that the largest errors occur under partly cloudy conditions. For

all models, mean absolute error peaks between 0.3 and 0.6. For Multi Site

models, the peak errors for Gradient Boosting are slightly higher than for the

other models (Fig. 5.7). The biggest gains in performance from the raw GFS

forecasts occur at small values of clearness index. High errors from the GFS and
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Figure 5.7: Mean absolute error by forecast bin for the Multi Site models.

Gradient Boosting Least Squares models at high forecast clearness index values

are due to the models producing irradiances higher than observed near sunrise

and sunset where sensitivity to solar angle is greater. The Single Site models

show less of a error decrease at small clearness index values, but otherwise all

the models show a similar error trajectory (Fig. 5.8).

The mean absolute errors by test site (Fig. 5.9) show some geographic trends

in the errors that are fairly consistent across model choice. The highest errors

are for the Northeast Oklahoma and the far western Panhandle sites. South

central Oklahoma sites generally have the lowest error. Gradient boosting pro-

vides the biggest improvements in error in the areas where most of the training

sites are located, and the decreases in error are less pronounced elsewhere. The

biggest differences in mean error at each site (Fig. 5.10) can be found between
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Figure 5.8: Mean absolute error by forecast bin for the Single Site models.

the Multi-Site Gradient Boosting model and everything else. That model fea-

tures a large positive bias everywhere except the Oklahoma Panhandle, which

has a near zero bias while the other models have negative biases. The biggest

contributor to the amount of error at a particular site appears to be the amount

of cloudiness that occurs at each site (Fig. 5.11). There is a fairly strong corre-

lation between station mean absolute error and the percentage of observations

with a clearness index above 0.6. The high outlier points are likely sites in the

Oklahoma panhandle that have higher error due to their distance from most of

the training sites. Those sites have lower error with the Single Site approach,

so forecasts at sites that are poorly represented in the Multi Site training data

would benefit more from the Single Site approach. An optimized hybrid of the

Multi Site and Single Site approaches could try to take this effect into account
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Figure 5.9: Mean absolute error by station. Stations used for training are
indicated with blue stars.

based on information about station spacing and average distance from other

sites in the dataset.

153



Random Forest Multi Site Random Forest Single Site

Gradient Boosting Multi Site Gradient Boosting Single Site

Linear Regression Multi Site Linear Regression Single Site

0.10

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10

Oklahoma Mesonet Station Clearness Index Mean Error

Figure 5.10: Mean error by station. Stations used for training are indicated
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Figure 5.11: Percentage of clearness index observations greater than 0.6 by site,
and the relationship between that percentage and mean absolute error.
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Figure 5.12: Bootstrap confidence intervals of mean absolute error and mean
error for models trained on the CAPS control member.

5.2.2 Experiment 2: CAPS Ensemble Control Member

The CAPS Ensemble Control Member experiment tested different aspects

of the statistical learning methods as well as the impact of utilizing higher res-

olution model output and variables describing upper air humidity. The CAPS

Ensemble control member error chart (Fig. 5.12) shows that the control member

has both a higher error and a strong positive bias. A potential major source of
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Figure 5.13: Bootstrap rankings of mean absolute error for models trained on
the CAPS control member. The mean absolute error for each model is shown
in parentheses.

the bias is that the WRF model outputs instantaneous solar irradiance at the

top of the hour while the observations are for hourly averaged irradiance. Even

with that source of bias, the machine learning models are all able to improve

performance significantly. The Multi Site models tend to perform slightly bet-

ter than the Single Site models, but there are small differences among the type

of model or choice of model configuration. While there is some overlap in the

bootstrap distributions of mean absolute error for each model, the ranking boot-

strap distributions of the models group them into similar cohorts (Fig. 5.13).

The Multi Site models outperform all of the Single Site models at statistically

significant level (Fig. 5.14). The Random Forest Mean model has the top rank-

ing over 91% of the time, which is statistically significant at the 5 % confidence

level (Fig. 5.14), while the next three models tend to trade places in the rank-

ings more often. Gradient Boosting models with the Huber loss function have

higher error than those with Least Absolute Deviance.
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Figure 5.14: Permutation test p-values (multiplied by 100) for the comparison
of the differences in mean absolute error between each machine learning model
trained on CAPS Ensemble control member output. P-values in bold are sta-
tistically significant based on the false discovery method with a rate of 0.05
(α=0.03). Darker reds are associated with larger p-values.

The binned and averaged errors displayed in Fig. 5.15 show similar trends to

those in Fig. 5.5 with little variation among the statistical learning models. The

statistical learning model forecast values contain a more reliable distribution of

observed values and improved on the sharpness of the raw model output, even

if the average forecast value for a given observation value is still biased.
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Figure 5.15: Forecast and observed marginal distributions for models trained
on the CAPS control member.

The binned mean absolute error chart (Fig. 5.16) shows that the largest

improvement over the raw model output occurs at higher and low values of

clearness index. The magnitude of the mean and mean absolute errors were

successfully reduced by the statistical learning models. The differences in the

models were all fairly small except at low levels of clearness index where the

linear regression models were either not as sharp or were more biased than the

other approaches. The highest errors and smallest reduction in error from the

raw ensemble occurred in the partly cloudy regime of clearness index.

The biggest differences in statistical learning model performance appeared

when comparing the distributions of the forecast values from each model (Fig. 5.17).

The observed clearness index has a bimodal distribution with peaks at 0.75 and

0.2 and a dip in the middle. The raw control member output also roughly

captures this pattern but vastly underestimates the number of partly cloudy
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Figure 5.16: Mean absolute error binned by forecast value for models trained
on the CAPS control member.

events and overestimates the number of clear sky events. The statistical learn-

ing models to varying degrees regress toward the mean of the clearness index

distribution depending on their level of complexity and smoothness. The linear

regression models display peak forecasts at a clearness index of 0.5 and decrease

from there. The random forest using mean aggregation has a similar pattern

but starts to capture the main peak at 0.75. The Multi Site gradient boosting

models are better able to reduce the proportion of predictions in the middle

of the distribution than the Single Site models although they also overestimate

clear sky events more. The median random forest model comes the closest to

capturing the variability at the low and middle sections of the clearness index

spectrum, but it also has a larger positive bias at the high end.

The same evaluation was also performed on two other members of the CAPS

ensemble with different microphysics schemes. The member with the Milbrandt

and Yau microphysics scheme displayed slightly lower errors (approximately 0.14
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Figure 5.17: Forecast frequency for each clearness index bin for models trained
on the CAPS control member.

vs. 0.15) for the statistical learning models and produced the Single Site models

that outperform the Multi Site models. Other trends remained the same. The

Morrison microphysics member performed slightly worse than the control mem-

ber but was otherwise fairly similar in terms of performance trends. Decreasing

the depth of the trees in the random forest led to forecast distributions closer

to that of linear regression.

5.3 Discussion

The results from this experiment show that the statistical learning model

configuration can have just as big an impact on performance as the choice of

statistical learning model. The parameters with the biggest impact on perfor-

mance are those that control the sharpness versus smoothness of the model fit.

The tree depth parameters have a big impact on the spread of the forecast.

Decreasing the tree depth may improve some error statistics, but it comes at
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the cost of capturing rarer events well. Some of these issues can be addressed by

having a larger and more diverse training set, which helped the models in the

GFS experiment. Regression models will generally not achieve perfect sharp-

ness and will tend to be underdispersive, but a larger dataset and a model that

can scale with the additional data can bring further improvements without a

significant investment in model tuning.

Statistical models can generalize well to other sites as long as they are close

enough in characteristics to sites in the training data. The Oklahoma Mesonet

sites share fairly similar climate and terrain, which allowed the statistical learn-

ing model corrections to perform well using both Multi Site and Single Site

methods. The type of interpolation used for the Single Site model does make

a difference as using nearest neighbor interpolation resulted in a noticeable de-

crease in performance. The Cressman interpolation approach does appear to be

fairly robust even if it is not as optimized or data-driven as the other methods.

Aggregating data from multiple sites did not appear to have an overly positive

or negative effect on performance for the most part. The conditions across sites

in Oklahoma may have been similar enough that aggregating more sites did not

add much additional information or cover the parameter space better.

The spatial and temporal window of each input variable into the solar irra-

diance machine learning model can have a large impact on performance. The

observation used for this experiment was hourly averaged clearness index, so

any cloud cover occurring over the previous hour has an impact on the clearness

index value. The CAPS Ensemble output uses instantaneous solar irradiance

while the GFS output is interpolated from 3-hourly output based on instan-

taneous cloud cover and solar position. The offset in representation leads to

biases in the input variables that the machine learning model may not have
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the information to correct except on a systemic level. Some of the information

about potential cloudiness can be inferred by examining the spatial neighbor-

hood of a grid point and its variability in cases where the larger scale cloud

cover pattern is similar. Some cloud cover, such as shallow cumulus, may not

be resolved by the NWP model or properly parameterized, and so the model will

not account for its impact in the irradiance at all. If the model has significant

temporal biases in developing convective clouds during the day or in capturing

the larger scale synoptic setup, then the irradiance forecasts are also going to

be biased. Incorporating information from more times and over a larger spatial

area can help account for these issues, but that solution requires more time for

data processing and may not be feasible in an operational gridded forecasting

system.

Because clearness index does not follow a Gaussian distribution, traditional

regression models will not be able to capture the full uncertainty properly. Since

clearness index values tend to cluster into clear and cloudy regimes, one alterna-

tive method to a single regression model is to create a stacked model to predict

the cloudiness regime first and then the clearness index value given the regime.

Cloudiness regimes could be identified in the training data with Gaussian Mix-

ture Models applied to the full distribution of clearness index values. Then the

machine learning classifier would predict the probability of a given forecast to

fall within each mixture distribution. Conditional regression models could then

predict the clearness index value within each regime. Finally the regression pre-

dictions would be multiplied by the probabilities for each regime to create an

optimal deterministic forecast. If the regression models also produced variance

estimates, then a full probability density function of clearness index could be

created.
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There are caveats to generalizing these results to gridded solar forecasting

performance in general. The presence of more complex terrain will likely lead

to a decreased effectiveness in naive spatial interpolation and will require a

more complex method to produce physically consistent forecasts. The CAPS

ensemble was only run over a month, resulting in only 8 testing days. The CAPS

ensemble was also run during the month of May, which is during a seasonal

transition and increased amounts of storms and rain. The GFS experiment was

run for the summer, which tends to be clearer and less volatile in Oklahoma.

Ideally, an experiment would use multiple years of observations and forecast

output from the same NWP model with a static configuration, but that is only

available with coarse models like the GEFS Reforecast dataset (Hamill et al.

2013). Large archives of convection-allowing model runs would be beneficial for

improving solar irradiance and a host of other high-impact weather predictions,

such as the NCAR Ensemble (Schwartz et al. 2015).

Further experiments should be performed over a wider geographic area or

one with more complex terrain, but there is a major shortage of well-maintained

pyranometers that are both closely spaced and cover a large geographic area.

Initial experiments were performed using pyranometer data from Remote Au-

tomatic Weather Stations (RAWS) sites in California but were discontinued

due to data quality issues. Slater (2016) recently compiled an inventory of all

available sources of solar irradiance data in the United States and evaluated the

quality of the different sources. Future experiments in gridded solar irradiance

forecasting should pull from this wider array of observations and consider using

data assimilation techniques to construct the best gridded analysis.
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5.4 Conclusions

Different statistical learning techniques and configurations for making grid-

ded solar irradiance forecasts were evaluated to determine their impact on per-

formance and physical realism. All statistical learning models tested were able

to improve on raw NWP model output and reduce forecast biases. The models

were able to generalize well to sites not included in the training data. Both

interpolation of predictions as done in the operational gridded MOS system

(Glahn et al. 2009) and direct application of a model trained across multiple

sites performed well with little difference in the resulting forecasts. One of the

key parameter choices was finding a good balance between the smoothness and

sharpness of the forecasts. Biasing toward smoothness resulted in predictions

clustering near the average solar irradiance value, which led to underestimation

of both clear and cloudy days. All statistical models struggled at capturing the

right number of cloudy and partly cloudy events, which is due to errors in the un-

derlying NWP forecasts and the assumptions underlying the statistical learning

models. Further explorations of data transformations, sample weighting, and

loss functions are needed to capture the crucial extreme events better. Given

the bounded nature of solar irradiance and clearness index, more performance

improvements should be possible.
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Chapter 6

Discussion and Future Work

The primary hypothesis of this dissertation was that properly configured

decision tree ensemble machine learning models will produce day-ahead predic-

tions of hail size and solar irradiance that show significantly more skill than raw

NWP model output, physics-based diagnostic models, and linear regression.

The secondary hypothesis was that properly configured decision tree ensem-

ble machine learning models will produce distributions of forecasts that are

physically consistent with distributions of observations. For hail prediction, I

developed a probabilistic storm-based machine learning modeling system to pre-

dict if a modeled storm would produce hail and what the hail size distribution

would be. The machine learning hail modeling system was evaluated on two

convection-allowing model ensembles against other hail size and storm surrogate

methods. The machine learning hail forecasts either had similar or significantly

better performance than the other methods in statistics measuring accuracy,

discrimination, and reliability at both the severe and significant severe hail size

thresholds. The rankings of the different hail methods varied by metric and

ensemble system. The machine learning models consistently produced a smaller

proportion of false alarms compared with other methods. The reliability of all

the methods varied but could be calibrated further by adjusting the size of the

neighborhood and the width of the Gaussian smoother. The linear regression

hail size model was a poorer discriminator for significant severe hail but was
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more reliable than the random forest methods. With these results in mind, I am

not able to accept the dissertation hypothesis fully for hail forecasts. The cur-

rent hail forecasts are competitive with the other methods and exceed them in

some areas but do not consistently outperform them in all cases. In the case of

the secondary hypothesis, I constrained the predictions of the machine learning

models using the storm-based framework, multitask learning, and parametric

hail size distributions. The resulting forecasts from the machine learning models

maintained the relationship between the shape and scale parameters of the hail

size distributions and forecasted higher hail probabilities in areas where large

hail is more likely to occur. Because of this, I accept the secondary hypothesis

for the machine learning hail forecasts.

For solar irradiance forecasting, I developed a set of gridded machine learn-

ing models and evaluated different configurations to determine which setup

produces the lowest forecast error. Gradient boosted regression and random

forest consistently produced lower errors than linear regression and raw output

from the GFS and WRF models. Aggregating data from multiple sites into

one machine learning model tended to outperform training separate machine

learning models at each site. The machine learning models produced reliable

predictions of clearness index and were able to discriminate between sunnier

and cloudier days. However, the forecast distribution of clearness index tended

to underforecast the frequency of cloudy days and had a slight overforecasting

bias for clearer days. Because of the significant improvements in performance

and the issues with the forecast distribution matching the observed distribution

of clearness index, I accept the primary hypothesis and reject the secondary hy-

pothesis. While some machine learning model configurations produced forecast

distributions closer to the observed distributions, they still contained notable
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biases that could not be addressed with adjustments to the model parameters

or model type.

Through my dissertation research, I also contributed to broader impacts

by developing Hagelslag, an open source Python library for storm tracking,

forecasting, and verification (Gagne II et al. 2016). The machine learning hail

forecasts were run in real-time on the CAPS and NCAR ensembles as part of the

2016 Hazardous Weather Testbed Spring Experiment using this software. The

storm tracking modules were used to perform an analysis of mid-level versus

low-level updraft helicity tracks in the NCAR ensemble. Other academic and

government researchers have also expressed interest in using the software as part

of their research projects, and further development is planned so that the hail

forecasts can be run on operational convection-allowing models.

The dissertation research areas revealed a few overarching insights about ma-

chine learning model development for high-impact weather applications. First,

the choice of machine learning model had less impact on performance than

choices made during pre-processing. The composition of the training data and

the amount of stationarity between the training and testing data has a notice-

able impact on the structure of the machine learning model and its performance.

Between 2014 and 2015, the CAPS ensemble underwent changes in resolution

and updates to the model and associated parameterization schemes. The ma-

chine learning models were still able to produce predictions with some skill, but

the lack of stationarity added some biases to the forecasts and weakened the

ability of the model to discriminate accurately among different hail sizes. The

NCAR ensemble training setup, on the other hand, kept the model configura-

tion fixed, resulting in less differences between the training and testing data
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and thus higher performance with less bias. For the solar data, the largest er-

rors tended to come at the sites that were further away from other sites and in

more variable terrain. Choosing poor model parameters, particularly for more

complex models, led to overfitting.

Second, statistical and machine learning models need to be constrained in

many ways to produce physically realistic forecasts. The initial hail forecast

system described in Chapter 3 was set up to directly predict the maximum hail

size with a regression model, but due to the high uncertainty of the data and

the exponential distribution of hail sizes, the models would tend to forecast

closer to the mean hail size in the dataset and would show a high variance in

hail sizes across storms in similar environments. The second generation of hail

forecasts in Chapter 4 adopted a set of choices that constrained the models

while making them more robust and realistic. The hail size models predicted

parameters of a gamma distribution fitted to a set of MESH values instead of the

maximum MESH value within an object. Candidate hailstorms were matched

to tracks instead of individual timesteps. Most importantly, the same model

predicted the shape and scale parameters together, instead of optimizing them

independently, which resulted in more realistic depictions of hail sizes within

the objects. Finally, instead of applying a single hail size value to all points

within an object, the spatial distribution of column-integrated graupel values

was used in order to preserve the spatial structure of the storms. These choices

not only led to forecasts that looked more physically realistic, but they also

performed better and captured extreme events better. With the solar data,

growing deeper trees, using loss functions that weighed large errors linearly

instead of quadratically, and using the random forest ensemble median instead

of the mean led to sharper forecasts even with smaller datasets.
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Even with these adjustments, predicting extreme, rare events well with de-

cision tree ensemble models is still challenging. While the individual trees in

the random forest tend to produce sharp, if not highly accurate forecasts, the

averaging process brings the consensus result closer to climatology and tends

to produce forecast distributions that are Gaussian even when the observed

distribution is not. Weighted averages of the tree predictions based on out-of-

bag error estimates and fuzzy combinations of tree predictions have only led

to marginal improvements in accuracy (Kuncheva 2003; Bonissone et al. 2010;

Shahzad et al. 2015), and these methods were not evaluated on sharpness nor

reliability. A regularized linear model fit to the individual tree predictions based

on validation set performance may add more sharpness and predictive skill, par-

ticularly if the optimization function contained a term minimizing the difference

in forecast and observation standard deviations. There may also be benefits to

applying kernel dressing approaches, such as Bayesian model averaging, to the

individual trees to estimate the prediction uncertainty better.

While this dissertation showed that machine learning could be very bene-

ficial for improving prediction of high impact weather, it did not definitively

show how machine learning could also improve physical understanding of the

phenomena being predicted. While variable importance rankings from random

forests do provide some insight into how the the models are structured, the

importance scores themselves are subject to many sources of variability, includ-

ing collinearity with other input variables. Some variables with low importance

scores still showed some predictive skill when used in isolation. Using multiple

variable importance metrics, especially ones that account for co-linearity, could

help provide stronger evidence for physical connections. Combining raw variable

importance scores with analysis of the discrimination skill of each variable may
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also be useful. There is value in discovering which cases are not predicted well

by machine learning models and discovering why by analyzing the underlying

data.

Given the large stakes associated with high impact weather, humans still

have a key role in the forecasting process. In order to stay engaged in the

forecast process, the forecaster workflow needs to be designed so that they con-

tribute their time to areas where automation struggles (Pagano et al. 2016).

Automation should be integrated in such a way to be complementary to fore-

caster skills and not be antagonistic. In this framework, forecasters would in-

teract with different sources of guidance as needed to evaluate the quality of

their representation of the atmosphere (Doswell III 1992). Forecasters would be

able to identify which scenarios presented by the automated system are more

realistic and deemphasize those that are not in the final product. More time

would be spent on constructing narratives and recommendations for end users

instead of on forecast entry, although being more removed from the forecast

generation process may make in-depth communication more difficult (Pagano

et al. 2016). Visual analytics systems that enable realtime interactive with fore-

cast data could help with this. Forecaster evaluation would focus less on skill

against the automated guidance but on how effectively they communicate their

forecasts to the public.

6.1 Future Work

Statistical models tend to perform better when the relationship between the

inputs and the prediction is less noisy. The input variables and datasets for

this dissertation were limited to what was already available. In the future, the
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data scientist developing the machine learning framework for a NWP modeling

system should work closely with the NWP modelers to extract variables that

are as closely tied to the physical processes driving a weather phenomenon as

possible. For hail prediction, this would involve extracting more information

about conditions within the hail growth zone and within the melting layer in-

stead of relying on bulk severe weather statistics, such as CAPE and shear.

Solar irradiance models could benefit greatly from having more variables that

capture the evolution of clouds over the timeframe when model output is not

stored, similar to the hourly-maximum fields used for severe weather forecast-

ing. Cumulative measures of the cloud cover variability over an hour at different

heights would be very useful for capturing the partly cloudy events that tend

to have the highest forecast errors.

Probabilistic forecasts of rare events would likely benefit from using more

flexible probability distribution representations. A single parametric distribu-

tion will struggle with capturing the behavior of both the common events in

the distribution and the tails. Mixture distributions and splines offer more de-

grees of freedom to represent heavy-tailed and multi-modal distributions that

may occur in some circumstances. One potential approach for predicting mix-

ture distributions is first training a classifier to predict the probability of the

event falling within a particular quantile of the overall distribution. Then,

separate regression models are trained to predict the parameters of the distri-

bution describing that quantile. The classifier probabilities would then be used

to create a blended distribution from the quantile distributions. The weighted

combination of distributions hedges against the risk of picking the wrong quan-

tile. This method could be particularly useful for representing the probability

of cloud cover for solar irradiance forecasting and the variability during time
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scales smaller than that output by the NWP models. This additional uncer-

tainty information could be very useful for electric utilities at both hourly and

day-ahead time scales.

While the predictive accuracy of machine learning models has been exten-

sively studied, there has been little work done to determine how forecasters

interpret the products and to determine what products are most valuable for

them. Machine learning predictions, particularly ones that produce probability

distributions, can be displayed with varying degrees of complexity. This disser-

tation focused on producing forecasts from the machine learning models that

conformed to existing products, but that left a lot of information hidden. An in-

teractive visualization system, similar to the Probabilistic Hazards Information

tool (Karstens et al. 2015), could allow forecasters to query hazard probabili-

ties from a set of storms and compare them with storm climatologies and other

weather variables. This system could generate trust in the machine learning

methods at the expense of requiring more analysis time and a higher cogni-

tive load. Additional studies of forecaster interaction with machine learning

products are needed to assess these issues.

While the machine learning models in this dissertation did incorporate some

spatial and temporal data into their predictions, they were not able to interpret

more complex spatial structures and patterns. Traditional machine learning

models assume each input variable is independent of the others, which is gener-

ally not the case for variables that are spatially and temporally related. Spatial

statistics summarize the local variability but hide structure and texture that

may have predictive usefulness. Human forecasters can identify spatial struc-

tures in weather phenomena, such as hook echoes on supercells, that provide
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predictive information that would be missed if only the mean and standard devi-

ation of radar reflectivity were available. The spatiotemporal relational random

forest (McGovern et al. 2013) can utilize the predictive power of some of these

spatial structures but requires a human expert to identify and extract these

structures in advance. Convolutional neural networks (Dieleman et al. 2015)

can learn multiple sets of spatial filters that identify features and textures at

small and large scales in gridded data. While pre-processing is still required to

isolate the area being studied, the model is able to learn features on its own

from the raw pixel values while being constrained by the neural network struc-

ture, max pooling to reduce the impact of minor translation errors, and dropout

regularization to strengthen signals that are found in the data. Convolutional

neural networks and other forms of deep learning have already made impressive

gains in predictive performance in many challenging domains but have yet to

receive wide use in meteorology. The challenge with implementing deep learning

on meteorological data will be posing the problems in ways that add predictive

skill while being computationally efficient.
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