
UNIVERSITY OF OKLAHOMA 

 

GRADUATE COLLEGE 

 

 

 

 

 

 

 

INTERRELATING PRODUCTION ANALYSIS WITH PORE SCALE STRUCTURE 

IN THE BAKKEN RESERVOIR 

 

 

 

 

 

 

A THESIS 

 

SUBMITTED TO THE GRADUATE FACULTY 

 

in partial fulfillment of the requirements for the 

 

Degree of 

 

MASTER OF SCIENCE 

 

 

 

 

 

 

 

 

 

By 

 

MIGUEL ANGEL GRELLA 

 Norman, Oklahoma 

2016 

  



 

 

 

 

 
INTERRELATING PRODUCTION ANALYSIS WITH PORE SCALE STRUCTURE IN 

THE BAKKEN RESERVOIR 

 

 

A THESIS APPROVED FOR THE 

MEWBOURNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING 

 

 

 

 

 

 

 

 

BY 

 

 

 

______________________________ 

Dr. Jeffrey Callard, Chair 

 

 

______________________________ 

Dr. Mashhad Fahs 

 

 

______________________________ 

Dr. Ahmad Sahaee-Pour 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by MIGUEL ANGEL GRELLA 2016 

All Rights Reserved. 



To my wife Carolina who had the patience and dedication to take care of our children 

while completing all my graduate studies. 



iv 

Acknowledgements 

First and foremost I must thank God to provide me with health, skills and drive to finish 

this highly sought goal. 

I also want to express my gratitude to my employer Continental Resources who gave 

me the opportunity to advance my skill set thru several years of service and gave me 

invaluable petroleum engineering experience in the Bakken formation. 

Special thanks to Dr. Jeff Callard for his guidance and unconditional availability thru 

the process of completing this work.  

I would also like to thank Dr. Fahs and Dr. Sakhaee-Pour for being a part of my thesis 

committee and providing generous feedback for the final stage of this work. 

Thanks to Dr. Deepak Devegowda and the staff of the Mewbourne School of Petroleum 

and Geological Engineering who diligently provided their time and guidance for the 

advancement of administrative processes. 



v 

Table of Contents 

Acknowledgements ......................................................................................................... iv 

List of Tables .................................................................................................................. vii 

List of Figures ................................................................................................................ viii 

Abstract ............................................................................................................................ xi 

1 Introduction .......................................................................................................... 1 

1.1. Background ..................................................................................................... 1 

1.1.1 Methods of Relative Permeability Measurements .................................... 1 

1.1.2 Factors Affecting Relative Permeability Measurements .......................... 3 

1.1.3 Objectives ................................................................................................. 5 

1.2 Geological Setting of Williston Basin ............................................................ 5 

1.2.1 Introduction to the Middle Bakken ........................................................... 5 

2 Laboratory Core Analysis ..................................................................................... 9 

2.1 Sample Selection and Core locations ........................................................... 10 

2.2 Pore Structure Characterization using Mercury Injection Capillary Pressure

 ...................................................................................................................... 11 

2.3 Exclusion of Non-Intrusive Data and Hyperbolic Match ............................. 13 

2.4 Conversion to Relative Permeability ............................................................ 18 

2.5 Fit to Model Wetting Phase Saturation Exponent and Irreducible Wetting 

Saturation ...................................................................................................... 20 

3 Reservoir Simulation Model ............................................................................... 27 

3.1 Grid Construction ......................................................................................... 27 

3.1.1 Background on Analytical Solution ....................................................... 27 



vi 

3.2 Reservoir and Fluid Properties ..................................................................... 30 

3.3 Relative Permeability Curves ....................................................................... 32 

3.4 Simulation Output ........................................................................................ 34 

4 Production History Matches ............................................................................... 36 

4.1 Specialized Plots ........................................................................................... 36 

4.2 Type Curves .................................................................................................. 38 

4.3 Matching Field Data to Type Curves ........................................................... 40 

4.3.1 Effects of Pump Installation Time .......................................................... 45 

5 Results and Other Findings ................................................................................ 47 

5.1 Additional Findings ...................................................................................... 49 

5.1.1 Gas Oil Ratio Observations .................................................................... 49 

5.1.2 Application to Field Production ............................................................. 52 

5.1.3 Case Study .............................................................................................. 52 

5.2 Conclusions .................................................................................................. 54 

5.3 Recommendations and Future Work ............................................................ 55 

References ...................................................................................................................... 56 

Appendix A: Nomenclature ............................................................................................ 59 

  



vii 

List of Tables 

 

Table 1. North Dakota Cumulative Oil Production by Formation through December 

2015 (NDIC website) ....................................................................................................... 8 

Table 2. Average TVD and county location of vertical cores used in the study ............ 10 

Table 3. Pore-network parameters determined for Middle Bakken Samples used in the 

study ............................................................................................................................... 17 

Table 4. Equivalent Systems assumed for the conversion of relative permeability ....... 19 

Table 5. Corey oil saturation exponent and residual oil saturation determined through a 

fit of experimental data. .................................................................................................. 26 

Table 6. Specifications used to construct simulation grid .............................................. 28 

Table 7. Middle Bakken Reservoir Properties used for Simulation ............................... 31 

Table 8. PVT fluid properties used for simulation ......................................................... 31 

Table 9. Synthetic Cumulative Hydrocarbon Production for all runs studied. .............. 35 

Table 10. Summary of wetting phase saturation exponents found thru Production 

Analysis. ......................................................................................................................... 48 

Table 11. Elevation ratios calculated from simulation Runs .......................................... 51 



viii 

List of Figures 

Figure 1. Three end-member classification of pore types. Loucks et al., 2010 ................ 4 

Figure 2. Facies of the Bakken Formation ....................................................................... 7 

Figure 3. U.S. Tight Oil Production from Selected Plays ................................................ 8 

Figure 4. Pore size distribution of Middle Bakken samples used for the study ............. 10 

Figure 5. Middle Bakken Isopach of the Williston Basin indicating the location of cores 

used for the study. ........................................................................................................... 11 

Figure 6. Definition of pore-network parameters described by Thomeer (1960) to 

approximate MICP curve to a hyperbola ........................................................................ 12 

Figure 7. Detail of hyperbolic match of MICP data sample 2-13 .................................. 13 

Figure 8. Detail of hyperbolic match of MICP data sample 2-1-1 ................................. 14 

Figure 9. Hyperbolic match of MICP data sample 2-1-1 ............................................... 15 

Figure 10. Hyperbolic match of MICP data sample 2-13 .............................................. 15 

Figure 11. Laboratory data for study samples over family of capillary pressure curves 

computed by Thomeer (1960). ....................................................................................... 16 

Figure 12. Conceptual pore network for a bubble-point oil-wet system in which the 

fluids exhibits different phase behavior in different pore sizes. Alharthy et al., 2013 ... 18 

Figure 13. Oil relative permeability curve generated from pore-network parameter of 

sample 2-1-1. 𝑭𝒈 = 𝟎. 𝟏𝟑, 𝑺𝒃∞ = 𝟕. 𝟓%, 𝑷𝒅 = 𝟕𝟎𝟎𝟎 𝒑𝒔𝒊 ......................................... 20 

Figure 14. Match between Corey-Brooks Model and Pore-Network Parameter Relative 

Permeability function for sample 2-1-1. 𝑺𝒐𝒓 = 𝟏𝟔%, 𝒏𝒐 = 𝟐. 𝟑 ................................ 23 



ix 

Figure 15. Comparison of Corey-Brooks function match to experimentally derived 

relative permeability. Note fit throughout full wetting phase range is not possible when 

residual oil saturation is neglected (orange line) ............................................................ 24 

Figure 16. Normalized distribution of wetting phase exponent derived from laboratory 

core analysis ................................................................................................................... 25 

Figure 17. Model proposed by Wattenbarger (1998) for a Hydraulically Fractured well 

in a rectangular reservoir ................................................................................................ 27 

Figure 18. 3D Grid display of Reservoir Model used for Simulation. Colors indicate 

pore pressure transient during run time. ......................................................................... 29 

Figure 19. Side view showing a detail of simulation grid. Wellbore and Hydraulic 

Fracture are situated in the middle of the rectangular reservoir. Note logarithmic 

gridding as distance increases away from fracture face. ................................................ 29 

Figure 20. Cumulative Gas Oil Ratio vs.  Producing Gas Oil Ratio during sampling time 

of surface sample for PVT analysis. ............................................................................... 30 

Figure 21. Wetting Phase exponent distribution for values 𝒏𝒐 > 𝟐 .............................. 32 

Figure 22. Gas-Oil Relative Permeability Curves used for Simulation. ........................ 33 

Figure 23. Reservoir simulator output for case 0. Production rates are independent of 

𝒏𝒐 values when  𝑷𝒘𝒇 = 𝟔𝟎𝟎𝟎 𝒑𝒔𝒊 is above bubble point. .......................................... 34 

Figure 24. Reciprocal rate vs Cum Production plot for case 3. ...................................... 37 

Figure 25. Plot of Cumulative Production vs. Square root of time for case 3. ............... 38 

Figure 26. Plot of Cumulative Production ratio vs. Square root of time ratio for case 3. 

(𝒏𝒐 = 𝟑. 𝟐 𝑷𝒘𝒇 = 𝟐𝟎𝟎 𝒑𝒔𝒊) ......................................................................................... 39 

Figure 27. Type curve developed for Bakken study cases. ............................................ 40 



x 

Figure 28. ANSETH 1-29H. Determination of 𝒕𝒆𝒍𝒇 via Cumulative Production vs. 

Square root Time plot ..................................................................................................... 41 

Figure 29. ANSETH 1-29H. Determination of 𝒕𝒆𝒍𝒇 via Reciprocal Rate vs. Cumulative 

Production ....................................................................................................................... 42 

Figure 30. ANSETH 1-29H Oil Production analysis indicating a match with a wetting 

phase exponent of 3.8 ..................................................................................................... 43 

Figure 31. PANASUK 1-23H Oil Production analysis indicating a match with a wetting 

phase exponent of 2.3 ..................................................................................................... 44 

Figure 32. ENTZEL 1-26H. Indicating typical behavior seen after pump installation 

time. ................................................................................................................................ 46 

Figure 33. Location of Middle Bakken wells selected for Production Analysis. ........... 47 

Figure 34. Comparison of the relative permeability distributions derived from 

laboratory and the relative permeability distributions from production analysis. .......... 49 

Figure 35. Reservoir Model GOR theoretical behavior .................................................. 50 

Figure 36. Elevation of Cumulative GOR observed at the onset of boundary dominated 

plot. ................................................................................................................................. 50 

Figure 37. Type curves developed from elevated Cumulative Gas-Oil Ratio ............... 51 

Figure 38. Percent of natural gas flared in North Dakota. .............................................. 52 

Figure 39. ENTZEL 1-26H. Oil Production analysis indicating a match with a wetting 

phase exponent of 2.3 ..................................................................................................... 53 



xi 

Abstract 

Improving well performance and associated project economics in oil resource 

plays rely on developing reservoir characterization capabilities. The need for 

understanding pore-scale geometry in low porosity low permeability reservoirs has only 

recently become of importance owing to the now commerciality of these reservoirs 

through the enabling technology of multi-stage fracture stimulation in horizontal wells. 

 

Conventional laboratory analysis of multi-phase flow in low porosity low 

permeability systems becomes unpractical with reduced permeability. However, from 

conventional reservoir characterization, deriving relative permeability from pore 

structure models utilizing capillary pressure measurements is possible with modern high 

pressure mercury capillary pressure equipment. Applicability of this method was 

successfully evaluated by history matching, using numerical simulation, dependent on 

capillary pressure derived relative permeability and compared to field production in the 

Bakken formation in North Dakota.  

 

Other useful results from the combination numerical simulation and field 

production data study include the prediction and observation of an elevated yet constant 

producing gas oil ratio during the linear flow period (prior to boundary dominated 

flow.) This observation prevents incorrect recombination ratios for fluid 

characterization when flowing pressure is below saturation pressure and also prevents 

faulty calculations of formation volume factor and saturation pressure. Furthermore, the 
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elevated constant production gas oil ratio may be used itself to predict relative 

permeability. 
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1 Introduction 

 

1.1. Background 

Relative permeability is an essential input parameter in many areas of reservoir 

engineering and is particularly fundamental to calibrate numerical reservoir simulation 

models through production history matching techniques in order to strengthen reserve 

forecasting capabilities and improve well performance. However, due to the complexity 

of interactions among the fluid phases and the rock fabric itself, there is not a universal 

formulation able to predict 2 phase relative permeability for a wide range of wettability 

and rock properties.  

 

The techniques to calculate relative permeability from capillary pressure were 

developed in late 1940. However, the application to tight rocks was not fully employed 

until the equipment was able to reach the elevated pressures necessary to drain the tiny 

Nanopores. 

 

1.1.1 Methods of Relative Permeability Measurements 

Relative Permeability versus saturation relationships are obtained by conducting 

multiphase flow experiments in the laboratory. The measurements are typically 

conducted on a plug of defined dimensions that has to be carefully machined from a 

larger core.  
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Delicate economics in unconventional resource plays prevents that costly 

process of core extraction and routine core analysis, therefore when available cores are 

scarce and uncommon.  

 

Core Microcracking has been reported to be a common issue with the core 

retrieval processes in tight rocks, the complexity of the rock fabric and the weak 

interfaces between organic/inorganic facies are often cracked or sheared due to stress 

unloading and hydrocarbons expansion. This microcracking results in fissures of high 

conductivity that provide unrealistic high permeabilities and inconsistent results. 

(Handwenger et al., 2012) 

 

Several researchers have proposed different methods for the determination of 

relative permeability in the laboratory, but in general the experiments can be classified 

in either “Steady State” or “Unsteady State” displacement tests. Due to the inherent 

setup required for testing, a capillary discontinuity or artificial boundary is created 

when fluids pass from the outlet end of the sample core plug to the end piece of the 

testing apparatus. This discontinuity creates a bank of wetting fluid at the end piece of 

the sample which affects the saturation distribution and pressure drop required to obtain 

meaningful relationships. This phenomenon is commonly termed capillary end-effect 

(CEE) and has been studied extensively; some authors have proposed techniques to 

correct for this error in steady states tests (Gupta, R., & Maloney, D. R., 2014) 
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Steady State measurements are typically forbidden in low porosity low 

permeability applications as the methodology requires an accurate determination of in 

situ saturation after each displacement level reaches equilibrium, which can take in the 

order of weeks to months to reach for a single saturation point. 

 

Unsteady test measurements do not require equilibrium to be reached, but 

require accurate monitoring of injection rates and pressure drop across the core, as they 

rely on pressure decay as an input in the mathematical formulation used to derive 

fractional flow. The main disadvantages of this method are rate dependent instability 

effects and potential non-equilibrium between displacing and displaced fluids. (Thomas 

et al., 1991) 

 

1.1.2 Factors Affecting Relative Permeability Measurements 

Relative permeability functions are affected by many factors including but not 

limited to fluid phase saturations, wettability, interfacial tensions, rock fabric, saturation 

history, clays and fines content and temperature (Behrenbruch, P., & Goda., 2006). 

 

Wettability and phase behavior of low porosity low permeability reservoirs is 

difficult to describe and not well understood mainly due to the spatial confinement in 

which reservoir fluids are subjected within the highly complex pore structure. The 

literature reports changes in phase behavior and fluid properties when fluids are 

subjected to such tiny spaces in which the intermolecular forces cannot simply be 

ignored (Sapmanee, 2011). In addition the presence of both organic and inorganic 
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material within the rock fabric could be conducive to conditions in which wettability 

could be preferential to either the oleic or the aqueous phase depending on whether the 

pore space contains silicate minerals, calcite, clays, organic matter, or a combination of 

all of these (Figure 1). 

 

 

Figure 1. Three end-member classification of pore types. Loucks et al., 2010 

 

 

A detailed discussion about how Nano and Mesopore scales affect phase 

behavior and the outcome of relative permeability values is beyond the scope of this 

work. However geological heterogeneities vary across micro and macro scale, and the 

finding a common ground between production behavior and advanced core analysis can 

certainly augment our predictive capabilities for well performance and reserve 

forecasting. 
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1.1.3 Objectives 

The purpose of this work is to extend the application of relative permeability 

derived from pore throat models and correlate between model predicted and field 

observed point values of hydrocarbon production during the linear flow period. The 

procedure which utilizes laboratory mercury injection capillary pressure from core 

samples from the Bakken reservoir is used to generate a distribution of wetting phase 

saturation exponents and residual wetting phase saturations for simulation model input 

and correlate the saturation exponents with the Cumulative Oil production and time to 

reach linear flow.  

 

Additionally, a comparison of the relative permeability distributions derived from 

laboratory and the relative permeability distributions of well performance are examined 

to determine the extent of the relationship. 

 

 

1.2 Geological Setting of Williston Basin 

1.2.1  Introduction to the Middle Bakken 

The Williston basin was a partial unified intracratonic basin located in the 

northwest of North America, the US portion of the basin primarily underlays significant 

areas of the state of North Dakota and Montana. The depression of roughly elliptical 

shape measures approximately 475 miles north-south and 300 miles east-west, and has a 

maximum depth of nearly 16,000 feet in the center, beneath McKenzie County, ND. 
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 It is generally accepted that oils produced from both the Bakken and the Three 

Forks Formations were originally generated in the Bakken Formation (Petty, 2014; 

Gaswirth et al., 2013; Bottjer et al., 2011).The Bakken Formation consists of three 

members, a middle mixed carbonate-siliciclastic member, confined between  upper and 

lower organic-rich black shales members. It can be further subdivided into 11 facies that 

were deposited during the late Devonian period to early Mississippian, ten of which 

characterize the middle Bakken member and the other forms the lower and upper 

Bakken black shale members. 

 

Figure 2 depicts white light photographs of cored facies:  

A - Organic-rich black shale (facies 1) 

B - Inorganic siliciclastic silt- to mudstone (facies 2) 

C - Nereites siltstone (facies 3) 

D - Intercalated sandstone/siltstones with siliciclastic mudstone (facies 4) 

E - Macaronichnus siltstone (facies 5) 

F - Horizontally-laminated siltstone (facies 6) 

G - Massive, horizontal and cross-bedded sandstone (facies 7) 

H - Quartz sandstone with ooids (facies 8) 

 I - Laminated cyanobacterial bindstone (facies 9) 
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Figure 2. Facies of the Bakken Formation 

 

According to data collected by the U.S. Energy Information Administration 

(EIA) Bakken and Three Forks formations in the Williston Basin are ranked as the 

second most prolific tight oil reservoirs in the United States after the Eagle Ford (Figure 

2). The North Dakota Industrial commission (NDIC) reports that the Middle Bakken 

formation accounts for more than 45% of the state of North Dakota cumulative oil 

production and has already surpassed 1,590,000,000 barrels of oil thru December 2015. 

(Table 1) 
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Figure 3. U.S. Tight Oil Production from Selected Plays 

 

 

 

Table 1. North Dakota Cumulative Oil Production by Formation through 

December 2015 (NDIC website) 

 

FORMATION 
CUMULATIVE OIL 
[stb] 

PERCENT WELLS 

BAKKEN 1,590,525,938 46.9581 10,930 

BAKKEN/THREE FORKS 10,268,622 0.3032 53 

BIRDBEAR 20,708,932 0.6114 174 

CAMBRO/ORDOVICIAN 436,287 0.0129 5 
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2 Laboratory Core Analysis 

 

For shale oil resource systems as the Petroleum Bakken System, the generated 

oil is either stored in the organic-rich mudstone intervals or migrated into juxtaposed, 

continuous organic-lean intervals, Middle Bakken. Due to the nature of the depositional 

processes multiple lithofacies are stacked resulting in a broad classification of facies 

with potentially different rock properties.  

 

Permeability methods previously defined measure bulk permeability which is 

susceptible to the heterogeneity of the system and the presence of microcracks.  Most 

models for prediction of permeability using mercury injection capillary pressure 

(MICP) rely only on porosity and pore size distribution and therefore are inherent to the 

core sample integrity (Li et al., 2015).  

 

Modern MICP equipment is capable of reaching mercury injection pressures of 

up to 60,000 psi. This is roughly equivalent to pore throat sizes of around 2 ηm in radius 

which covers the full range of pore sizes encountered in the Bakken reservoir (Figure 4) 

 

 



10 

 

Figure 4. Pore size distribution of Middle Bakken samples used for the study 

2.1 Sample Selection and Core locations  

Mercury injection capillary pressure tests were conducted on 38 plug samples 

extracted from 10 vertical cores retrieved throughout the basin (Figure 5). All samples 

were extracted from the Middle Bakken member and tested by a commercial laboratory. 

Helium porosity was also recorded on the same sample set. Fractured samples are not 

accounted and were excluded from our findings. Table 2 shows average true vertical 

depth (TVD) of samples and county in which the well was drilled. Well names have 

been omitted due to confidentially reasons. 

 

Table 2. Average TVD and county location of vertical cores used in the study 

 

Core County Average Sample Depth [ft] 

1 Stark , ND 10,766 

2 Williams, ND 10,624 

3 Williams, ND 10,755 

4 Burke, ND 9,215 

5 Dunn, ND 11,106 

6 Williams, ND 9,186 

7 McKenzie, ND 11,305 

8 Richland, MT 10,105 

9 Richland, MT 11,063 

10 Divide, ND 9,283 
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Figure 5. Middle Bakken Isopach of the Williston Basin indicating the location of 

cores used for the study. 

 

2.2 Pore Structure Characterization using Mercury Injection Capillary Pressure 

In 1960 Thomeer observed that capillary pressure curves acquired from rocks 

with similar characteristics form a family. He also noted differences between the shapes 

and location of the capillary pressure curves that provided some indication of pore 

geometry and a degree of interconnection of the pore structure. The proposed method 

indicated that when mercury injection capillary pressure (Pc) was plotted vs. the 
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fractional bulk volume occupied by mercury (Sb) on a log-log scale the resulting curve 

will approximate that of a square hyperbola with the following equation: 

𝑆𝑏

𝑆𝑏∞
= 𝑒

−
𝐹𝑔

(
𝑙𝑜𝑔𝑃𝑐

𝑃𝑑
)
        (1)  

The location of the hyperbola will be determined by its asymptotes which would 

have values defined by the percent bulk volume occupied by mercury at infinite 

capillary pressure, 𝑆𝑏∞  and mercury/air extrapolated displacement pressure, 𝑃𝑑. The 

shape of the curve was defined by a parameter Fg termed “pore geometrical factor.” 

According to Thomeer, this factor would provide a degree of the distribution of pore 

throats and the associated interconnected pore volume. Furthermore, each capillary 

pressure curve could be uniquely identified by all three parameters as shown in Figure 6  

 

.  

Figure 6. Definition of pore-network parameters described by Thomeer (1960) to 

approximate MICP curve to a hyperbola  
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2.3 Exclusion of Non-Intrusive Data and Hyperbolic Match 

Capillary pressure curves for Middle Bakken samples were studied and a 

numerical determination of all three pore-network parameter was conducted according 

to a graphical method. A synthetic hyperbola was generated using initial values for the 

parameters of equation 1. Final values were found by matching the synthetic hyperbola 

to the lab data. Examples for samples 2-13 and 2-1-1 are given in Figures 7 and 8. 

 

 

Figure 7. Detail of hyperbolic match of MICP data sample 2-13 

 

 

 

Non-Intrusive Data 
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Figure 8. Detail of hyperbolic match of MICP data sample 2-1-1 

 

 

Note that the capillary pressure curves exhibit both a low and a high-pressure 

hyperbola. For tight rocks the low-pressure hyperbola describes effects of closure as 

mercury conforms to the roughness of the sample. Closure or conformance is caused by 

plucked grains, coring induced fractures and saw marks. (Bailey, 2009). The high-

pressure portion of the curve selected for the match represents the volume of mercury 

that has finally been able to drain the interconnected pore structure once that capillary 

pressure reaches a value high enough to intrude the largest pore. 

 

 

Non-Intrusive Data 
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Figure 9. Hyperbolic match of MICP data sample 2-1-1 

 

 

 

Figure 10. Hyperbolic match of MICP data sample 2-13 

Non-Intrusive Data 

Non-Intrusive Data 
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Figure 11 overlays the capillary pressure data of our study samples over the 

family of capillary pressure curves computed by Thomeer (1960). Table 3 summarizes 

pore-network parameters determined for all samples used in the study. 

 

 

Figure 11. Laboratory data for study samples over family of capillary pressure 

curves computed by Thomeer (1960). 
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Table 3. Pore-network parameters determined for Middle Bakken Samples used in 

the study 

 

Sample No. 𝑭𝒈 𝑺𝒃∞ 𝑷𝒅 

1-67 0.19 1.3% 6,500 

1-115 0.13 3.5% 6,500 

1-74 0.06 1.7% 8,500 

1-79-1 0.06 7.7% 5,500 

2-5 0.02 3.0% 22,000 

2-7 0.08 7.8% 7,200 

2-13 0.08 8.1% 7,200 

1-86 0.13 7.5% 7,000 

2-1-1 0.13 7.5% 7,000 

2-1 0.12 7.0% 5,000 

2-9-1 0.14 8.9% 4,500 

2-9 0.06 4.4% 13,000 

2-20 0.07 7.1% 6,000 

2-26 0.11 4.2% 7,000 

2-40 0.09 7.8% 5,500 

2-49-1 0.10 6.8% 6,000 

2-55 0.11 3.8% 8,500 

2-55-1 0.13 5.4% 5,500 

2-60 0.13 5.5% 6,000 

1-75 0.07 7.2% 10,000 

1-83 0.08 5.2% 10,000 

1-93 0.08 6.1% 11,000 

1-64 0.11 8.4% 6,000 

1-68 0.13 7.9% 5,000 

2-5 0.19 10.0% 4,000 

2-9 0.16 10.2% 4,000 

2-19 0.20 12.0% 4,200 

1-88 0.31 6.3% 1,200 

1-100 0.15 6.4% 7,500 

1-55 0.16 4.2% 6,000 

1-56 0.27 2.8% 3,800 

1-58 0.02 4.0% 8,000 

1-71 0.04 2.2% 13,000 

1-77 0.06 3.5% 12,000 

1-54 0.07 7.8% 7,000 

1-67 0.15 4.9% 1,500 

1-71 0.12 10.5% 2,000 
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2.4 Conversion to Relative Permeability 

Wang et al., 2012 performed a wettability study on the Middle Bakken cores and 

determined the initial wettability state of the cores in his study was generally oil - wet. 

In an oil-wet system, the continuous phase can be assumed to be the oleic phase,  as gas 

evolves it will preferentially move to the center of the pore as conceptually represented 

in the Alharthy et al., 2013 for a bubble-point fluid system (Figure 12) 

 

 

Figure 12. Conceptual pore network for a bubble-point oil-wet system in which the 

fluids exhibits different phase behavior in different pore sizes. Alharthy et al., 2013 

 

 In 1949 Purcell proposed the following equation to estimate air permeability 

using mercury injection:  

 

𝐾𝑎 = 10.6566[𝜎𝑐𝑜𝑠𝜃]2𝐹1∫
𝑑𝑆

𝑃𝑐
2

1

0
     (2) 

 

The theory behind its derivation approximated flow in porous media to a bundle 

of capillary tubes and related the capillary pressure to the radius of the tubes using both 
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the air-mercury interfacial tension 𝜎 and the contact angle of the mercury phase. The 

parameter 𝐹1 was introduced to account for the effect of rock tortuosity and the 

deviation between observed and the bundle of capillary tubes model. 

 

In 1951, Fatt and Dykstra, based on Purcell’s work, assumed a value for the 

constant 𝑏 = 1
2⁄  which expressed the tortuosity as a function of the pore radius and 

therefore dependent of saturation. The relative permeability could be expressed as 

follows: 

 

𝐾𝑟 =
∫

𝑑𝑆

𝑃𝑐
3

𝑆
0

∫
𝑑𝑆

𝑃𝑐
3

100
0

        (3)  

 

Equation 3 can be expressed in terms of an equivalent oil-gas system in which oil is the 

wetting phase 𝑆𝑤 and mercury saturation is the non-wetting phase (Table 4). Upon 

integration of the capillary pressure in terms of the three pore-network parameters, the 

resulting relative permeability can be plotted vs. the wetting phase saturation as shown 

in Figure 13. 

 

Table 4. Equivalent Systems assumed for the conversion of relative permeability 

 

System Wetting Phase 𝑆𝑤 Non-wetting Phase 𝑆𝑛𝑤 
Air- Mercury Air Mercury 

Oil- Gas Oil Gas 
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Figure 13. Oil relative permeability curve generated from pore-network parameter 

of sample 2-1-1. 𝑭𝒈 = 𝟎. 𝟏𝟑, 𝑺𝒃∞ = 𝟕. 𝟓%, 𝑷𝒅 = 𝟕𝟎𝟎𝟎 𝒑𝒔𝒊   

 

 

2.5 Fit to Model Wetting Phase Saturation Exponent and Irreducible Wetting 

Saturation 

The Brooks-Corey formulation is perhaps the most widely used relationship 

empirically describing how the relative permeability changes in the presence of partially 

saturated porous media, it is used extensively in the industry and its wide acceptance 

more likely relies on the practicality in which the laboratory derived relationships are 

expressed in terms of simple power functions .  
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Corey’s initial model was based on experimental data and proposed the 

calculation of relative permeability for an oil-gas system using the following set of 

equations: 

𝐾𝑟𝑜 = (𝑆𝑜𝑒)4        (4) 

 

𝐾𝑟𝑔 = (1 − 𝑆𝑜𝑒)2(1 − 𝑆𝑜𝑒
2)      (5) 

 

where  𝑆𝑜𝑒 =
𝑆𝑜−𝑆𝑜𝑟

1−𝑆𝑜𝑟
       (6) 

 

After almost ten years Corey and Brooks
 (5, 6)

 realized that a log-log plot of 

normalized oil saturation 𝑆𝑜𝑒 vs. capillary pressure 𝑃𝑐 yielded a straight line of slope 𝜆. 

 

𝑆𝑜𝑒 = (𝑃𝑑 𝑃𝑐⁄ )𝜆       (7) 

 

This finding allowed Corey to rewrite his original formulation to express 

relative permeability of the non-wetting phase 𝐾𝑟𝑛𝑤 if both the wetting phase saturation 

and the term 𝜆 were known. 

 

𝐾𝑟𝑤 = (𝑆𝑜𝑒)
2+3𝜆

𝜆        (8) 

 

𝐾𝑟𝑛𝑤 = (1 − 𝑆𝑜𝑒)2(1 − 𝑆𝑜𝑒

2+𝜆

𝜆 )     (9) 
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As proposed by Lake (1989) equations 8 and 9 can be further simplified if we allow 

exponents to define the curvature of the relative permeability functions. In this case the 

Corey exponent for the wetting phase is defined by: 

 

𝑛𝑤 =
2+3𝜆

𝜆
        (10) 

 

and the Corey exponent for non-wetting phase can be defined in a similar fashion as: 

 

𝑛𝑛𝑤 =
2+𝜆

𝜆
        (11) 

 

Algebraic manipulation of equations 10 and 11 allow us to establish the following 

relationship between  𝑛𝑤 and  𝑛𝑛𝑤 for all values of 𝜆: 

 

𝑛𝑛𝑤 = 𝑛𝑤 − 2        (12) 

 

Finally, for an oil-gas system, equations 8 and 9 can be expressed in terms of the 

wetting phase saturation exponent only: 

 

𝐾𝑟𝑜 = (𝑆𝑜𝑒)𝑛𝑜        (13) 

 

𝐾𝑟𝑔 = (1 − 𝑆𝑜𝑒)2(1 − 𝑆𝑜𝑒
(𝑛𝑜−2))     (14) 
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In our study, we investigated how the Corey-Brooks model approximated to the 

relative permeability function described by the pore-network parameters. The procedure 

involved plotting both curves over the same wetting phase saturation range and using 

numerical regression to find values of 𝑆𝑜𝑟 and 𝑛𝑜 that simultaneously provided the best 

fit to the data. Figure 14 exemplifies the curve match achieved for sample 2-1-1. 

 

 

Figure 14. Match between Corey-Brooks Model and Pore-Network Parameter 

Relative Permeability function for sample 2-1-1. 𝑺𝒐𝒓 = 𝟏𝟔%, 𝒏𝒐 = 𝟐. 𝟑 

 

It is noteworthy to indicate that using both 𝑆𝑜𝑟 and 𝑛𝑜 to achieve a fit, resulted 

in a more robust match to the experimental data. Neglecting a value of residual oil 

saturation resulted in a different value of 𝑛𝑜to be found and only allowed a partial 

match thru the high oil saturation range. Figure 15. 
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Figure 15. Comparison of Corey-Brooks function match to experimentally derived 

relative permeability. Note fit throughout full wetting phase range is not possible 

when residual oil saturation is neglected (orange line) 

 

 

All core samples were analyzed using the methodology discussed above. Table 5 

summarizes all values of 𝑆𝑜𝑟 and 𝑛𝑜. Further insight in the values of wetting phase 

saturation exponent reveal a distribution of 𝑛𝑜 exponents ranging approximately 

between values of 1 to 4. Figure 16. 
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Figure 16. Normalized distribution of wetting phase exponent derived from 

laboratory core analysis 
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Table 5. Corey oil saturation exponent and residual oil saturation determined 

through a fit of experimental data. 

 

Sample No.  𝒏𝒐 𝑺𝒐𝒓 
1-67 2.90 15.0% 

1-115 2.30 15.0% 

1-74 1.60 14.0% 

1-79-1 1.70 11.0% 

2-5 1.20 10.0% 

2-7 1.90 10.0% 

2-13 1.80 14.0% 

1-86 2.30 16.0% 

2-1-1 2.30 16.0% 

2-1 2.20 15.0% 

2-9-1 2.50 14.0% 

2-9 1.70 12.0% 

2-20 1.80 12.0% 

2-26 2.20 13.0% 

2-40 2.00 13.0% 

2-49-1 2.10 14.0% 

2-55 2.10 15.0% 

2-55-1 2.30 15.0% 

2-60 2.30 15.0% 

1-75 1.80 12.0% 

1-83 1.90 12.0% 

1-93 1.90 11.0% 

1-64 2.10 15.0% 

1-68 2.30 15.0% 

2-5 2.80 16.0% 

2-9 2.55 16.0% 

2-19 2.80 18.0% 

1-88 3.80 18.0% 

1-100 2.40 17.0% 

1-55 2.60 15.0% 

1-56 3.20 21.0% 

1-58 1.30 7.0% 

1-71 1.50 10.0% 

1-77 1.70 11.0% 

1-54  1.90 10.0% 

1-67 2.50 15.0% 

1-71 2.20 15.0% 
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3 Reservoir Simulation Model 

 

Numerical Reservoir simulation was conducted with a commercial software 

package developed by ROXAR, an Emerson Process Management brand. The use of 

Tempest MORE in black oil mode allowed to generate synthetic hydrocarbon 

production for several scenarios in which relative permeability and producing bottom 

hole flowing pressure were evaluated above and below the bubble point 

 

3.1 Grid Construction 

3.1.1 Background on Analytical Solution 

Many hydraulically fractured Bakken wells observe formation linear flow for a 

number of years. In 1998, Wattenbarger et al., proposed analytical solutions to 

determine reservoir parameters and drainage area of hydraulically fractured horizontal 

wells, the model, shown in Figure 17, consisted of well with a fully penetrating 

hydraulic fracture of infinite conductivity (FCD > 50) located in the center of a 

rectangular reservoir.  

 

Figure 17. Model proposed by Wattenbarger (1998) for a Hydraulically Fractured 

well in a rectangular reservoir 
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Figure 18 shows a 3D view of the reservoir simulation grid based on the model 

proposed by Wattenbarger et al., 1998. Reservoir grid dimensions 𝑦𝑒,, 𝑥𝑒were evaluated 

in relation to hydraulic fracture half length 𝑥𝑓 to allow full observation of GOR during 

the duration of both transient and boundary dominated flow regimes. Grid dimensions 

are provided on Table 6. 

 

Relationships between initial solution gas 𝑅𝑠𝑖 and producing GOR will be 

presented in the results section. In order to accurately capture relative permeability 

changes during production, it was necessary to use local grid refinements around the 

hydraulic fracture. Logarithmic gridding was also used away from the fracture face to 

maintain run times to a minimum. Figure 19. 

 

Table 6. Specifications used to construct simulation grid 

 

Centre 133.0, 1329.0, 9822.5 ft 

Coarse grid dimensions 38x51x1 

Fine grid dimensions 38x1329x1 

Num active cells 1,938 

Size 266.0, 2658.0, 45.0 ft 

Structure Corner point 
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Figure 18. 3D Grid display of Reservoir Model used for Simulation. Colors 

indicate pore pressure transient during run time. 

 

 

 

Figure 19. Side view showing a detail of simulation grid. Wellbore and Hydraulic 

Fracture are situated in the middle of the rectangular reservoir. Note logarithmic 

gridding as distance increases away from fracture face. 
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3.2 Reservoir and Fluid Properties 

Reservoir properties used to populate the model were extracted from study wells 

located in McKenzie County, ND. Table 7.  Full PVT analysis was available for 2 offset 

wells using recombined surface samples.  The validity of recombination conditions was 

checked to ensure producing GOR was stable and flowing bottom hole pressure 

remained above the saturation conditions (Figure 20). Table 8 summarizes fluid 

properties determined experimentally that were used for the simulation model. 

 

 

Figure 20. Cumulative Gas Oil Ratio vs.  Producing Gas Oil Ratio during sampling 

time of surface sample for PVT analysis. 
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Table 7. Middle Bakken Reservoir Properties used for Simulation 

 

Pi [psi] 8,000 

Pwf [psi] 6000, 200 

BHST [oF] 264 

So [%] 65 

𝒌 [md] 0.01 

 [%] 6.5 

𝒙𝒇 [ft] 133 

𝒌. 𝒙𝒇 [md.ft] 500 

 

 

 

 

Table 8. PVT fluid properties used for simulation 

 

Boi [res bbl/stb] 1.898 

Coi [(V/V/psi) x 10-6] 14.40 

µo[cP] 0.175 

API  43.60 

Pb [psi] 3,130 

Rsi [scf/bbl] 1,638 

g (76 psi, 124 oF) 0.9772 
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3.3 Relative Permeability Curves  

Figure 16 provided a distribution of wetting phase exponents 𝑛𝑜 found thru 

matching of experimental data. However we note that in equation 14 when 𝑛𝑜 < 2,

𝑆𝑜𝑒 is raised to a negative exponent and the term (1 − 𝑆𝑜𝑒
(𝑛𝑜−2)) becomes negative, 

additionally if  𝑛𝑜 = 2 equation 14 becomes equal to zero or  𝐾𝑟𝑔will incorrectly be 

assumed to take a null value. 

Given this constraint, when using the Corey-Brooks model,  𝑛𝑜 values are limited 

to 2 < 𝑛𝑜 < 3.8. Figure 21 displays the new constrained distribution and Figure 22 

presents the relative permeability curves used for simulation derived from using values 

of   𝑛𝑜 =  2.3, 2.7,3.2, 3.8. 

 

 

Figure 21. Wetting Phase exponent distribution for values 𝒏𝒐 > 𝟐 
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Figure 22. Gas-Oil Relative Permeability Curves used for Simulation. 
 

𝑛𝑜 =  2.3 

𝑛𝑜 =  3.2 

𝑛𝑜 = 3.8 

𝑛𝑜 =  2.7 
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3.4 Simulation Output 

Synthetic production data was generated using the reservoir simulator. Two runs 

were conducted for each one of the wetting phase saturation exponents.  An initial run 

was conducted above the saturation pressure 𝑃𝑏 using a bottom hole flowing pressure 

𝑃𝑤𝑓 of 6,000 psi. As gas never evolves from the system this run is unique an 

independent of any wetting phase exponent value. This is shown on Figure 23 when 

comparing outputs from 𝑛𝑜 =  2.3 and  𝑛𝑜 =  2.7. 

 

 

Figure 23. Reservoir simulator output for case 0. Production rates are independent 

of 𝒏𝒐 values when  𝑷𝒘𝒇 = 𝟔𝟎𝟎𝟎 𝒑𝒔𝒊 is above bubble point.  
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Table 9 provides cumulative hydrocarbon production for each one of the runs after a 

simulation time of 30 years. 

 

Table 9. Synthetic Cumulative Hydrocarbon Production for all runs studied. 

 

 

𝒏𝒐 𝑷𝒘𝒇  [psi] 𝑮𝒑   [MMscf] 𝑵𝒑   [Mstb] 

case 0 all 6,000 12.41 7.611 

case 1 2.3 200 70.79 35.03 

case 2 2.7 200 75.59 32.24 

case 3 3.2 200 77.65 29.69 

case 4 3.8 200 78.30 27.41 
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4 Production History Matches 

 

4.1 Specialized Plots 

Linear flow can be diagnosed by plotting reciprocal rate 1 𝑞⁄  vs. square root of 

time √𝑡 plot. The solution, originally proposed in 1998 by Wattenbarger was applied to 

gas reservoirs, however it has been expanded later to oil reservoirs and it has been used 

successfully diagnosing linear flow in the Bakken (Gonzales, 2011) and the Eagle ford 

(Rodrigues, 2012). 

 

The solution, based on a constant pressure case allowed determination of linear 

flow and the calculation of reservoir properties from the observed slope 

 

𝑚𝑟𝑟𝑐
0.5 =

31.28𝐵𝑜µ

ℎ√(µ𝑐𝑡)𝑃𝑓𝑝

1

𝛥𝑃√𝑘𝑥𝑓
      (15) 

 

Figure 24 presents a reciprocal rate vs. square root of time plot of synthetic production 

generated by the simulation of case 3.  Similar plots were also constructed for all other 

cases indicated in Table 9 but those are not presented here.   
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Figure 24. Reciprocal rate vs Cum Production plot for case 3.  

(𝒏𝒐 = 𝟑. 𝟐 𝑷𝒘𝒇 = 𝟐𝟎𝟎 𝒑𝒔𝒊) 

 

 

Rodriquez and Callard, 2012, also proposed the use of a cumulative production – 

square root time plot in cases where the reciprocal rate data was noisy or production did 

not fully meet the constant pressure requirement. Figure 25 displays an example of such 

plot for case 3. The time to end of linear flow 𝑡𝑒𝑙𝑓  could be estimated from the 

deviation of the straight line and calculated as: 

 

𝑡𝑒𝑙𝑓 =
𝑚𝑟𝑟𝑐

2
 𝑁𝑝𝑒𝑙𝑓

2 +
1

𝑞𝑖
 𝑁𝑝𝑒𝑙𝑓      (16) 
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where 𝑚𝑟𝑟𝑐 is the slope during the linear flow regime in a reciprocal rate and 

cumulative production.  

 

Figure 25. Plot of Cumulative Production vs. Square root of time for case 3. 

 (𝒏𝒐 = 𝟑. 𝟐 𝑷𝒘𝒇 = 𝟐𝟎𝟎 𝒑𝒔𝒊) 

  

 

4.2 Type Curves 

The reciprocal rate and cumulative production variables are related by the 

hyperbolic form of Arp’s equation for a b exponent of 2 (Arps, 1956), this allows 

cumulative production time relationships to be used for linear flow determination, on 

this basis, Khan and Callard, 2010 developed a rate-cumulative relation which was 

employed in conjunction with a value of  𝑚𝑐𝑝  to generate the following expression: 
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𝑁𝑝 =
2

𝑚𝑐𝑝
√𝑡        (17) 

 

With a determination of the time to end of linear flow 𝑡𝑒𝑙𝑓 and the corresponding 

cumulative production 𝑁𝑝𝑒𝑙𝑓, we can normalize equation 17 for differences in the 

fracture geometry and the reservoir properties defined in the analytical solutions. 

Figure 26 presents the cumulative production ratio – square root time ratio plot 

developed to conduct the production matching with field data. 

 

 

Figure 26. Plot of Cumulative Production ratio vs. Square root of time ratio for 

case 3. (𝒏𝒐 = 𝟑. 𝟐 𝑷𝒘𝒇 = 𝟐𝟎𝟎 𝒑𝒔𝒊) 
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4.3 Matching Field Data to Type Curves 

In order to relate simulation output with field production, a family of type curves 

was created using the cumulative production ratio – square root time ratio plot for the 

study of all wetting phase saturation exponent cases. Figure 27. 

 

 

Figure 27. Type curve developed for Bakken study cases. 
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Using specialized plots 𝑡𝑒𝑙𝑓 and the corresponding cumulative production 𝑁𝑝𝑒𝑙𝑓 

was determined for the study wells. As previously explained, end of linear flow will be 

detected by a departure of the straight line behavior. A verification of the value of 𝑡𝑒𝑙𝑓 

selected for the analysis can be achieved by the simultaneous departure from linear flow 

observed on both specialized plots. 

An example of the production analysis conducted on the well ANSETH 1-29H is shown 

in Figures 28 and 29. 

 

 

Figure 28. ANSETH 1-29H. Determination of 𝒕𝒆𝒍𝒇 via Cumulative Production vs. 

Square root Time plot 
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Figure 29. ANSETH 1-29H. Determination of 𝒕𝒆𝒍𝒇 via Reciprocal Rate vs. 

Cumulative Production 

 

 

With the determination of both 𝑡𝑒𝑙𝑓 and  𝑁𝑝𝑒𝑙𝑓 from the specialized plots, field 

production can be normalized and plotted over the type curve. A match of filed 

observed values with the simulated generated type curve implies that the particular 

wetting phase exponent value for that curve can be used to describe the relative 

permeability behavior of such well. Figure 30 and 31 provides examples for the matches 

achieved on wells ANSETH 1-29H and PANASUK 1-23H , with  values of  𝑛𝑜 = 3.8 

and 𝑛𝑜 = 2.3 respectively. 
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Figure 30. ANSETH 1-29H Oil Production analysis indicating a match with a 

wetting phase exponent of 3.8 
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Figure 31. PANASUK 1-23H Oil Production analysis indicating a match with a 

wetting phase exponent of 2.3 
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4.3.1 Effects of Pump Installation Time 

Middle Bakken wells typically require artificial lift within the early years of 

production. The most common method of artificial lift is the use of a downhole rod 

operated pump. Identifying the time in which the well goes on pump (pump installation 

time) greatly improves the accuracy of determination of time to end of linear flow 𝑡𝑒𝑙𝑓. 

It has been observed a difference in the behavior of field production before and after the 

pump installation time. This behavior is more easily detected when data is evaluated 

over the cumulative time- square root of time plot.  

 

Figure 32 below provides an example of what is often seen during the analysis of field 

data. Four distinct periods can be readily identifiable: 

 

Variable Pressure: Early time flowing data is typically associated with constant 

changes in choke size typically due to operators attempting to increase hydrocarbon 

production rates at the expense of higher drawdowns. During this period of time bottom 

hole pressure falls rapidly from its initial values. The opinion of the author is that the 

noise in the data is due to the lack of accuracy analytical solution to capture variable 

pressure. 

 

Stabilization Period: After the well quits flowing and a rod pump is installed, fluid 

level is typically high and the drawdown is now controlled by the pump capacity to 

pump the fluid level down “pump-off condition”. 
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Pseudo constant Pressure: System behaves as if the bottom hole pressure was 

constant. This is again controlled by pump efficiency and size. During this period of 

time, the analytical solution for the constant pressure case is able to model the good 

behavior with little deviation. Infinite acting linear flow is easily detected and a values 

for the slope 𝑚𝑐𝑝can be calculated. 

 

Boundary Dominated Flow: The onset of boundary dominated flow is detected and 

𝑡𝑒𝑙𝑓 value can be found. 

 

 

Figure 32. ENTZEL 1-26H. Indicating typical behavior seen after pump 

installation time. 
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5 Results and Other Findings  

Figure 33 indicates the surface location of Middle Bakken wells used for 

production matching. Monthly production data available from the North Dakota 

Industrial Commission (NDIC) was required to populate the specialized plots. Table 10, 

summarizes 𝑛𝑜 derived from the application of type curves to field production. 

 

 

Figure 33. Location of Middle Bakken wells selected for Production Analysis. 
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Table 10. Summary of wetting phase saturation exponents found thru Production 

Analysis. 

 

Well Name  𝒏𝒐 

 
Field County State 

1st 
Production 

Date 

𝑵𝒑 at 

pump time 
 𝑵𝒑𝒆𝒍𝒇 

ANSETH 1-29H 3.8  SQUIRES WILLIAMS ND 05/2010           19,524       86,000  

BENNER 1-6H 2.3  JIM CREEK DUNN ND 01/2012           60,993     123,000  

BERLAIN 1-30H 2.3  PATENT GATE MCKENZIE ND 12/2011           72,056     117,000  

CLOVER 2-10H 2.6  MURPHY CREEK DUNN ND 07/2012           90,500     200,000  

ENTZEL 1-26H 2.3  CABERNET DUNN ND 12/2011           75,000     279,000  

FELLER 1-22H 2.3  LONE TREE LAKE WILLIAMS ND 05/2012           23,148       60,000  

HOROB 1-14H 2.7  HEBRON WILLIAMS ND 01/2011           20,073       95,000  

INGA 2-12H 3.8  HAYSTACK BUTTE MCKENZIE ND 08/2011         131,802     170,000  

MARSHALL 1-13H 2.3  LITTLE KNIFE DUNN ND 07/2011           48,700       85,000  

MATHEWSON 1-30H 2.3  OLIVER WILLIAMS ND 04/2012           42,430     110,000  

MONROE 1-2H 2.7  BANKS MCKENZIE ND 08/2012         157,859     180,000  

MORRIS 3-26H 2.7  OAKDALE DUNN ND 05/2011         241,250     252,000  

PANASUK 1-23H 2.3  HEBRON WILLIAMS ND 09/2010           13,047       60,000  

PLANO 1-28H 2.3  TODD WILLIAMS ND 03/2012           57,632     137,000  

RICKY 1-18H 2.4  SQUIRES WILLIAMS ND 07/2010           16,596       63,000  

RIXEY 1-28H 3.2  LONE TREE LAKE WILLIAMS ND 03/2012           89,982     122,000  

SEAVER 1-5H 2.5  EAST FORK WILLIAMS ND 06/2012           34,063       87,000  

SYRACUSE 1-23H 3.2  BANKS MCKENZIE ND 06/2011         220,969     229,000  

 

 

Figure 34 presents a comparison of the relative permeability distributions 

derived from laboratory and the relative permeability distributions from production 

analysis.  Examination of both distributions reveals that both the ranges of values and a 

median of the distributions seem to agree even when the methodology used to generate 

the values greatly differs. 
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Figure 34. Comparison of the relative permeability distributions derived from 

laboratory and the relative permeability distributions from production analysis. 

 

5.1 Additional Findings 

5.1.1 Gas Oil Ratio Observations 

Previous authors have indicated that an examination of GOR behavior aids in the 

interpretation of both infinite acting and boundary dominated flow (Gonzales, 2011).  

The theoretical behavior of GOR in our model is indicated in Figure 35. During initial 

production, GOR is equal to the initial gas solubility 𝑅𝑠𝑖, after reaching the bubble point 

pressure and exceeding the critical gas saturation an elevated but yet constant new value 

of GOR is observed during the linear flow period GORLF. 
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Figure 35. Reservoir Model GOR theoretical behavior 

 

This GOR behavior can be also observed when plotting the cumulative GOR (𝑅𝑝) vs. 

the cumulative oil production 𝑁𝑝. The onset of boundary dominated flow is indicated by 

the inflection in both 𝑅𝑝  and the reciprocal rate curve as shown in Figure 36. 

 

 

Figure 36. Elevation of Cumulative GOR observed at the onset of boundary 

dominated plot. 
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Output values of GOR for simulation runs were analyzed and normalized by the original 

gas solubility 𝑅𝑠𝑖. Elevation ratios  
𝐺𝑂𝑅𝐿𝐹

𝑅𝑠𝑖
 were calculated for each one of the cases as 

indicated on Table 11. These ratios were used to create a second type curve in which 

field data could be evaluated and matched.  

 

Table 11. Elevation ratios calculated from simulation Runs 

 

 

𝒏𝒐 𝑷𝒘𝒇 GORLF GORLF/Rsi 

case 1 all 6,000 1,631 1.00 

case 2 2.3 200 1,822 1.12 

case 3 2.7 200 2,014 1.23 

case 4 3.2 200 2,145 1.32 

case 5 3.8 200 2,243 1.38 

 

 

Figure 37. Type curves developed from elevated Cumulative Gas-Oil Ratio 

 

 



52 

5.1.2 Application to Field Production 

Our research has revealed that the application of this technique in the Bakken is 

limited to wells in which there is high confidence in the gas measurement. It is the 

opinion of the author that noise observed in the field data is due to incorrect reporting of 

natural gas production mainly due to flaring or not calibrated gas meters. The EIA 

reports that the percentage of gas not marketed in North Dakota increased an additional 

15% between 2010 and 2012. Figure 38. Unfortunately, as shown in Table 10 our study 

cases had first production dates that felt within this range.  

 

 

Figure 38. Percent of natural gas flared in North Dakota. 

 

 

5.1.3 Case Study 

An example of the application of this technique is presented for well ENTZEL 

1-26H. Determination of time and cumulative oil production to end of linear flow is 

performed with the specialized plots as explained in section 4.1. Figure 31 provides a 
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cumulative production – square root time plot. An additional solution was proposed in 

order to normalize the cumulative gas oil ratio after the onset of boundary dominated 

flow. The following relationship allowed matching the type curve stem after 𝑁𝑝𝑒𝑙𝑓 is 

reached. 

𝑅𝑝 =
(𝐺𝑝−𝐺𝑝𝑒𝑙𝑓)

(𝑁𝑝−𝑁𝑝𝑒𝑙𝑓)
. 1000       (18) 

 

where 𝐺𝑝𝑒𝑙𝑓 =  𝑁𝑝𝑒𝑙𝑓. 𝐺𝑂𝑅𝐿𝐹. 1000 

 

Using the above solution we can lay field production values over the type curve and 

obtain a match. Figure 39. 

 

 

Figure 39. ENTZEL 1-26H. Oil Production analysis indicating a match with a 

wetting phase exponent of 2.3 
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5.2 Conclusions 

 

 The median of wetting phase saturation exponents for the Middle Bakken 

formation ranges between values of 2.3-2.6. 

 Corey exponents derived from the application of type curve to field production 

have a narrower distribution due to limitations of the model. 

 A new type curve has been developed in which oil production and transition 

from linear to boundary dominated flow are the two requirements needed to 

derive oil-gas relative permeability. 

 Observation of elevated Gas Oil Ratio can aid in the interpretation of well 

performance and improve predictive models for reserve projections using 

normalized GOR type curves. 
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5.3 Recommendations and Future Work 

This research provides an opportunity to obtain robust relationships between production 

and relative permeability by simultaneously matching field production with the 

determination of normalized cumulative oil production during linear flow and 

corresponding elevated GOR ratios at the onset of boundary dominated flow.  

The recommendation is to apply the production analysis techniques to an additional set 

of wells in which both gas and oil rates have been carefully monitored. 

 

A similar workflow can be applied to laboratory core analysis of Three Forks samples 

to test the validity of the relationships to additional reservoirs within the Bakken 

Petroleum system.  

 

The generation of maps of wetting saturation exponents could potentially reveal 

relationships with other petrophysical parameter and aid in understanding regional or 

spatial trends for future development. 
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Appendix A: Nomenclature 

 

API  Stock Tank Oil Gravity 

Boi  Oi Formation Volume Factor at Initial Pressure, rb/stb 

𝐶𝑓𝐷  Dimensionless Fracture Conductivity 

𝑐𝑡  Total Compressibility, 10
-6

 psi
-1

 

𝑐𝑓 Rock /Formation Compressibility, 10
-6

 psi
-1

 

𝐹𝑔  Thomeer’s Pore Geometrical Factor 

GOR Gas Oil Ratio, scf/stb 

GORLF Linear Flow Gas Oil Ratio, scf/stb 

𝐺𝑝   Cumulative Gas Production, Mscf 

𝐺𝑝𝑒𝑙𝑓   Cumulative Gas Production at End of Linear Flow Time, Mscf 

ℎ  Reservoir Thickness, ft 

𝑘  Permeability, mD 

𝑘𝑎  Air Permeability, mD 

𝑘𝑒 Effective Permeability, mD 

𝑘𝑟 Relative Permeability 

𝑘𝑟𝑔 Relative Permeability of Gas 

𝑘𝑟𝑛𝑤  Non-wetting Phase Relative Permeability 

𝑘𝑟𝑜  Relative Permeability of Oil 

𝑘𝑟𝑤 Wetting Phase Relative Permeability 

LGR  Local Grid Refinement 

mrcc  Slope of 1/q versus Cumulative Production, D/stb 

𝑛𝑜  Oil Saturation Exponent 

𝑛𝑤  Wetting phase Saturation Exponent 

𝑁𝑝   Cumulative Oil Production, stb 

𝑁𝑝𝑒𝑙𝑓  Cumulative Oil Production at End of Linear Flow Time, stb 

𝑃𝑏 Bubble Point Pressure, psi 

𝑃𝑐 Capillary Pressure, psi 

𝑃𝑑  Mercury Displacement Pressure, psi 

𝑃𝑓𝑝  Pressure at which fluid properties are measured, psi 

𝑃𝑖 Initial Reservoir Pressure, psi 

PVT  Pressure Volume Temperature 

𝑃𝑤𝑓  Flowing Bottom Hole Pressure (BHFP), psi 

1/𝑞  Reciprocal Oil Rate, stbd-1 

1/𝑞𝑖   Reciprocal Rate Intercept on 1/q versus Cumulative Production, stbd-1 

𝑅𝑠𝑖 Initial gas solubility, scf/stb 

𝑆𝑏  Mercury Saturation at Pressure Pc, percent bulk volume  

𝑆𝑏∞ Mercury Saturation at Infinite Pressure percent bulk volume 

𝑆𝑔 Gas Saturation, fractional 

𝑆𝑛𝑤 Non wetting Phase Saturation, percent pore volume 

𝑆𝑜 Oil Saturation, fractional 

𝑆𝑜𝑒 Normalized oil saturation, fractional 
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𝑆𝑜𝑟 Residual Oil Saturation, fractional 

𝑆𝑤 Wetting Phase Residual Saturation, percent pore volume 

T  Temperature, oF 

telf Time to End of Linear Flow, Days 

𝑥𝑓 Fracture Half-length, ft 

𝑦𝑒 Distance from Fracture to Outer (No-Flow) Boundary, ft 

𝑦𝑒𝐷 Dimensionless Distance 

𝛥𝑃 Pi P wf 
 

 

Greek Symbols 

ws  Well Stream Gravity 

g  Specific Gravity of Primary Separator Gas (Air=1). 

o  Specific Gravity of Oil (Water=1). 

 Porosity, fractional 

𝜎  Interfacial tension, dynes/cm 

µ  Liquid Viscosity, cP 

 Slope of Log-Log Plot of Sw* versus the Capillary Pressure 𝑃𝑐 

 

Subscripts 

𝑐  Critical 

CP  Constant Pressure 

𝑒𝑙𝑓  End of Linear Flow 

𝑓  Fracture 

g  Gas 

𝑖  Intercept and Initial 

o  Oil 

Pfp  Fluid Property Pressure 

w  Wetting 

 

 


