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Abstract 

The estimation of recovery factor is important in every stage of hydrocarbon 

development, and multiple traditional techniques are available for engineering 

application for particular fields. However, the estimated recovery factor can be very 

different using these methods. This is particular true for deepwater development as the 

parameters associated with the recovery factor estimation have significant uncertainties. 

The objective of this study is to apply the data mining technologies based on the data 

from the developed fields in Gulf of Mexico.  

Using database of 395 Deepwater Gulf of Mexico (dGOM) oilfields with 84 attributes, 

set of dimensionless variables are calculated; and these dimensionless variables are used 

as the input for data mining with an aim of obtaining the recovery factors. A subset of 59 

oilfields that have water drive mechanism are selected for discovering the generalized 

correlation for recovery factor using data mining techniques. In the study, a variety of 

data mining techniques such as K-means and principal component analysis are used for 

classifying oilfields into four categories. Subsequently, partial least square (PLS) 

regression is used to relate the dimensionless variables to the recovery factor from sparse 

data in dGOM. However, not all clusters show very high coefficient of correlation, hence 

limiting the applicability of this method. This study shows that dimensionless numbers, 

together with data mining techniques, can be very useful to predict field behavior in terms 

of recovery factor for sparse datasets with widely scattered reservoir properties. This 

information can be further used for the preparation of data acquisition and risk assessment 

plans to set up a framework for decision-making on risks and uncertainty for optimizing 

reservoir management and production forecast.  
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Chapter 1: Introduction 

“He who has a why to live, can bear any how”   (Friedrich Nietzsche) 

1.1 Objective  

Problem statement 

Recovery factor is the critical parameter to justify reservoir development and economics. 

At any stage in reservoir development, reservoir management team requires a realistic 

estimate of recovery factor that is controlled by many geological and engineering factors. 

Typically, the recovery factor of a field in exploratory stage is estimated using analogs or 

material balance. While for fields in appraisal or development phase, it is estimated using 

numerical simulation or decline curve analysis. In addition, comprehensive simulations 

can be very costly and time consuming for large databases of reservoirs. All the above 

approaches are deterministic that rely on accuracy of input dataset. In addition, results 

obtained from these models are subjective, demanding good history matching by tuning 

a large number of known and unknown parameters, which leads to non-unique solutions. 

This study uses data analytics for development of easy to implement generalized recovery 

factor correlations for reservoirs in terms of dimensionless numbers, these correlations 

can be quickly used in absence of information and time, required for comprehensive 

simulation. 

The new approach 

A new approach of integrating dimensionless groups with data mining techniques is 

applied in this thesis for the estimation of recovery factor and performance prediction of 

reservoirs. From a database of more than 1300 deepwater reservoirs, models are first 

scaled using dimensionless groups developed for reservoirs with immiscible 
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displacement of oil by water. Subsequently, these dimensionless groups along with data 

mining techniques of K-means, PCA and PLS are used to classify and develop a 

generalized correlation for recovery factor.  

1.2 Organization of Chapters 

This thesis is organized in six chapters. Chapter 2 starts with methods used for pattern 

recognition from big datasets and its applications in petroleum engineering. This chapter 

is divided into two sections. First section describes mathematics and fundamentals behind 

various methodologies for classification. Second section illustrates the use of data mining 

in petroleum engineering viz. prediction of recovery factor, optimization of data 

acquisition and field development plans, improving drilling and well performance and 

production data analysis. 

Chapter 3 contains the summary of various reservoir forces and energy on which 

performance of a typical immiscible displacement is dependent. First section describes 

grouping of factors affecting reservoir performance into inherent reservoir factors and 

external controllable factors. Second section describes details of inherent reservoir factors 

by describing physical laws to capture these factors using fractional theory (Leverett, 

1941). Third section introduces dimensionless numbers and their importance in scaling 

of reservoir models. Last section in this chapter defines theory of Tarner’s method for 

performance prediction of reservoir under depletion drive mechanism. 

Chapter 4 starts with geological description of Gulf of Mexico (GOM) basin along 

with stratigraphy, depositional model and petroleum system formation. It explains basis 

of Bureau of Ocean and Energy Management (BOEM) dataset in terms of different 
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protraction areas and leasing blocks. Second section explains GOM dataset with statistics 

for various quantitative and qualitative attributes used in data mining process. 

Chapter 5 gives detail of the results obtained by applying various data mining 

algorithms to water drive reservoirs in dGOM oilfields. Data mining algorithms 

(Clustering, K means, SOM, PCA and PLS) are applied to original attributes in 395 

dGOM oilfields and subsequently to 59 reservoirs having water drive. Latter case study 

uses dimensionless numbers for development of correlation to predict recovery factor in 

water drive reservoirs of dGOM oilfields. This thesis ends in chapter 6 that describes 

contribution and conclusions of the present work, with future research directions. 
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Chapter 2: Data Mining Methods and Applications to Petroleum 

Engineering 

“All models are Wrong, Some are useful”   (George Box) 

2.1 Methods for Data Mining 

2.1.1 Steps for Data Mining 

Data mining is a soft computing knowledge discovery process which is tolerant of 

uncertainty and imprecise information (Nikravesh 2004) and thus, can be used with noisy 

data collected in reservoir exploration and production. A meaningful data mining 

workflow relies on three qualities (1) Data cleaning (2) Well-defined target to predict (3) 

Good validation to avoid over fitting. The general process of data mining is divided into 

four steps as shown in Figure 1 

 

Figure 1 : Generalized process of data mining 

 

Prior knowledge refers to the information known apriori about the system. This 

aims to define the scope and objective of the problem, understanding the journey of data 

from its acquisition to reporting is a critical part of data mining process. For this thesis, 

the apriori knowledge suggests field performance to be dependent on geology, reservoir 

properties, and well performance. However, it is difficult to delineate specific factors 

under each category that affects the recovery factor and by how much. Based on data 

mining algorithms this thesis gives the quantitative contribution of each of the factors in 

recovery factor estimation for Deepwater Gulf of Mexico oilfields.  
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Second step is data preparation, where data needs is checked for its quality, 

outliers, redundant, un-useful and missing values. Data preparation requires conversion 

of different categorical and character data types to numerical quantities that be can be 

analyzed using required algorithms. All attributes are scaled and normalized before 

application of any model. This insures that any one particular attribute does not dominate 

the results. For Deepwater Gulf of Mexico (dGOM) oilfields a set of 84 attributes is 

divided into 5 categories viz. (1) Identification tags & dates (2) Geological attributes (3) 

Reserves and Production (4) PVT parameters (5) Completions. Table 1 gives a 

classification of each variable into categorical, numerical and string data types. Chapter#4 

describes this data in detail. 

Table 1 : Data types for different attributes 

Categorical Numeric String/Dates 

DRIVE All reserves & production 

category 

SANDNAME 

FTRAP1 All petro-physical properties POOLNAME 

FTRAP2 All PVT parameters FDYEAR 

CHRONOZONE  WELLAPI 

FCLASS  EIAID 

SD_TYPE  SDYEARH 

FSTRU  PLAYNAME 

RES_TYPE  SAND 
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In third step, data is reduced to its essential characteristics or features by removing 

all unnecessary and redundant attributes. More data may increase the confidence in the 

derived model, but it makes it complicated by “curse of dimensionality” thus degrading 

performance (Vazirgiannis, Halkidi, & Gunopulos, 2012). Based on the domain 

knowledge and processed data, parameters needs to be configured to suite appropriate 

data mining algorithms (Holdaway 2014). Partial contributions of attributes affecting the 

outcome needs to be accounted. In this thesis, feature selection is done by use of 

dimensionless numbers. Since dimensionless numbers are based on geometry (aspect 

ratio), dynamic forces (density number) and kinetic forces (fluid flow velocity). The use 

of dimensionless numbers provides a set of physical attributes on which performance of 

any general reservoir model should be dependent. 

Last step is the Modeling, where suitable algorithms are selected for new 

knowledge discovery. A model is an abstract representation of the data and its 

relationships in a given data set (Kikani, 2013). Data mining methods are based on the 

idea of identifying and describing interesting patterns of extracted knowledge. Selection 

of data mining algorithm is dependent on the objective question asked, domain expertise 

and data availability. Table 2 provides details of various data mining methods used in 

this thesis with advantages and disadvantages for each of them. 
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Table 2 : Advantages and Disadvantages of different data mining techniques 
Mining 

Technique 

Pros Cons 

K- Means 

Clustering 

Easy to implement. Saves 

computational time. 

Initialization of cluster centroid can get stuck in 

local optima. Visualization may be difficult for 

high-dimensional dataset 

Principal 

component 

analysis 

Robust tool for dimensionality 

reduction of the multivariate 

dataset. 

No physical meaning can be assigned to 

principal components. Applicable only for 

correlated attributes. Non-parametric method. So 

cannot incorporate prior knowledge. Leads to 

loss of information. 

Identification 

Trees 

Requires minimum effort in data 

preparation step, can handle 

wide data types, not sensitive to 

outliers. 

Over fitting can be a major issue without 

pruning. Sensitive to statistical irregularities of 

the training set. 

Self-

Organizing 

maps 

Unsupervised learning 

algorithm. Non-linear 

generalization of PCA.  

Not suitable for a very large dataset. They are 

just a dimensionality reduction tool. 

Classification must be done using other 

algorithms. Difficult to interpret. 

Partial Least 

regression 

(PLS) 

Best suited for multi collinearity 

correlated datasets. 

Assumes linearity of correlation. It is not 

necessary that maximum dynamics occur in 

direction of maximum variance.  

 

2.1.2 Classification Algorithms 

Classification techniques predicts target variables based on grouping the selected 

features. A well-defined set of classes and a training set of pre-classified examples 

characterizes the classification (Kotu and Deshpande 2014). Some common techniques 

for classification task are hierarchical clustering, K-means clustering, Linear 

Discriminant, Naïve Bayes and Logistic regression. Clustering is the method to organize 

big dataset into sensible groupings. One of the main limitation of clustering is uncertainty 

in number, shape and size of clusters. In addition, visualization of clusters for a high 

dimensional dataset could be a difficult task depending on the resolution of visualization 

method.  
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Agglomerative Hierarchical Clustering (HC) 

This technique organizes data in pairs and groups based on dissimilarity matrix, which 

are shown in form of dendograms. An advantage of this method is it does not need a-

priori information about number of clusters. It is necessary to scale and center all 

attributes before applying this method to ensure unbiased clustering of original dataset. 

This algorithm is computationally expensive for large datasets (Kantardzic 2011). 

K-Means clustering algorithm  

It is a decision boundaries formation algorithm that obtains decision boundaries between 

the dataset instead of clustering structure. The purpose of K-means clustering is to 

optimize the following objective function  

𝐄 =  ∑ ∑ 𝐝(𝐱,𝐦𝐢)𝐱∈𝐜𝐢

𝐜
𝐢=𝟏          Eqn. 1 

 

mi = cluster centroid for cluster Ci 

d (x, mi) = Euclidean distance between a point x and centroid (mi) 

The optimum number of clusters is reached when there is no relative reduction in ‘SSW’ 

defined as  

𝐒𝐒𝐖 =      ∑∑ (𝐗𝟏𝐣 − 𝛍𝐱)
𝟐𝐧

𝐣=𝟏         Eqn. 2 

 

‘n’ is the number of data points in a cluster. X1j is dissimilarity between cluster centroid 

and each data point and μx mean of all data points in a cluster.  

Limitation of K-means is that it may require multiple random realizations, if 

centroids are stuck in local minima. In addition, all attributes need to be quantitative in 

order to obtain proper decision boundary for partition. Other complex clustering 

algorithms such as PAM (partitioning around meloids), Fuzzy clustering, density based 
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clustering and grid-based clustering are also available in literature but is not used in this 

thesis. 

Self-Organizing Maps (SOM) 

SOM are unsupervised competitive learning algorithm, which is a simpler form of neural 

nets useful in visualization of multidimensional dataset in 2-D space. The main objective 

of SOM is to preserve the topology of multidimensional data; i.e. to get a new set of data 

from the input data such that the new set preserves the structure (clusters, relationships 

etc.) of the input data. Steps for a SOM algorithm is illustrated in Figure 2 

consider a random vector V to be tested in SOM 

[

𝜶𝟏

𝜶𝟐

𝜶𝟑

]   = 𝑽 ⃗⃗  ⃗                         Eqn. 3 

The best matching unit (BMU) is selected by minimization of following function 

𝑩𝑴𝑼 = ∑(𝑹𝒊 − 𝜷𝒊)
𝟐       Eqn. 4 

 

Ri = node weight vector    βi = BMU vector 

Once BMU is matched, modification in weights of neighboring nodes of BMU is done 

based on shrinking radius of the neighborhood. 

[

𝜶𝟏

𝜶𝟐

𝜶𝟑

]

𝑵𝒆𝒘

 =   [

𝜶𝟏

𝜶𝟐

𝜶𝟑

]

𝑶𝒍𝒅

+ 𝝀𝟏  [[

𝜷𝟏

𝜷𝟐

𝜷𝟑

]

𝑩𝑴𝑼

− [

𝜶𝟏

𝜶𝟐

𝜶𝟑

]

𝑶𝒍𝒅

]        Eqn. 5 

Where,  

𝜆1 = 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑜𝑑𝑒 , 𝑡ℎ𝑖𝑠 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑤𝑖𝑡ℎ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘 𝑓𝑟𝑜𝑚 𝐵𝑀𝑈  
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Figure 2 : Workflow for SOM models 

 

The iteration is continued until stabilization of EQE that is defined as 

𝑬𝑸𝑬 = 
𝟏

𝑴
∑ ‖𝑿𝑷 − 𝑴𝑪(𝑷)‖

𝑴
𝑷=𝟏        Eqn. 6 

 

The most popular scheme for visualization of SOM is unified distance matrix (U-

matrix). U-matrix is the difference of similarity between adjacent blocks in latent space 

as the SOM is colored by the values of U-matrix elements. This visualization is used for 

obtaining number of clusters in dataset, as data points with similar adjacent nodes in latent 

space will have same color in U-matrix plot. 

2.1.3 Prediction Algorithms  

Prediction aims at estimating the future values of some interesting variables based on 

other variables correlated to it (Vazirgiannis, Halkidi, and Gunopulos 2012). Predictive 

analytics tries to use different validated models for predicting future probabilities and 

trends. These algorithms rely on the discovery of patterns obtained during classification 

INITIALIZATION : 
Initilaze latent space 
and node's weights

SAMPLING: Choose 
a random vector from 
training data and 
present it to the SOM

MATCHING : Find 
the best matching 
unit (BMU) by 
calculating distance 
between the input 
vector and the 
weights of each node

UPDATING : 
Calculate radius of 
neighbourhood 
around the BMU. 
Size of 
neighbourhood 
decreases with each 
iteration

CONTINUATION : 
wieghts of BMU's 
neighbourhood are 
adjusted. Nodes 
closest to BMU are 
altered more then 
nodes furthest away 
in neighbourhood.

Repeat step 2 for 
enough iterations for 
convergence.
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task. The following algorithms were used in this study to predict the recovery factor in 

dGOM oilfield dataset. 

Principal Component Analysis 

It is a method to reduce the dimensionality of a dataset with a large number of correlated 

attributes. Graphically, PCA rotates original axes to the direction of maximum variability 

in dataset as shown in Figure 3. All the attributes present in dataset are transformed to a 

new set of variables based on scaled covariance matrix. The principal components (PCs) 

are uncorrelated and ordered. So that first few contain most of the variance of the original 

data set. Mathematically, the principal components are the eigenvectors of the covariance 

matrix of the original attributes. 

 

Figure 3 : Graphical representation of PCA operation 

 

Consider a matrix Xmxn, its covariance matrix is represented as: 

𝑪𝒙 = 
𝟏

𝒏
𝑿𝑿𝑻        Eqn. 7 

For a symmetric non-singular matrix, this is written: 
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 𝐶𝑥 = 𝐸𝐷𝐸𝑇 , E being eigenvector for the covariance matrix; and principal component 

can be given by, 

𝑷 = 𝑬𝑻𝑿       Eqn. 8 

 

PCA algorithms results in output of loadings (eigenvalues) for each individual 

attributes. Higher loading implies higher importance of that component. Component 

scores calculation is done by multiplication of scaled value of original component with 

component loading, summed over all variables. Visualization of bi-plots of component 

scores with original variables used in PCA on a 2-D or 3-D graph revels inherent clusters 

present in the dataset. Some of the main limitations of PCA is its assumption of linearity 

in dataset. In addition, PCA will lead to higher loading for components with large 

variance as compare to lower variance components. Also, it is not necessary that direction 

of maximum variance will contain good features for classification. 

Partial Least Square (PLS) 

PLS is a technique that reduces the predictors (X) to a smaller set of uncorrelated 

components and performs least square regression on these components. This algorithm 

tries to identify the latent factors (combination of variables) which account for most of 

the variation in the response. In constructing the principal components of X, the PLS 

algorithm iteratively maximizes the strength of the relation of successive pairs of X and 

Y component scores by maximizing the covariance of each X-score with the Y variables. 

Graphically, PLS algorithm is explained in Figure 4 
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Figure 4 : Graphical schematic for PLS algorithm (Source: camo.com) 

 

Mathematically, consider a model on which PLS is applied: 

𝒀 = 𝑩 ∗ 𝑿 + 𝑬       Eqn. 9 

 

This model is written in form of latent variables (principal components) 

𝑿 = 𝑻 ∗ 𝑷′ + 𝑬𝒐         Eqn. 10   

  𝒀 = 𝑼 ∗ 𝑸′ + 𝑭𝒐       Eqn. 11 

 

‘P’ & ‘Q’ are orthogonal matrices and ‘T’ & ‘U’ are loading matrix. The multivariate 

linear regression is performed on ‘T’ and ‘U’ as follows: 

𝑼 = 𝑻 ∗ 𝑩 + 𝑭𝟏                            Eqn. 12 

𝒀 = 𝑿 ∗ (𝑷 ∗ 𝑩 ∗ 𝑸′) + 𝑭             Eqn. 13 

 

Overall regression coefficient is P*B*Qʹ. 

PLS is a good algorithm to describe multicollinearity in dataset. While, if data is 

very high dimensional (p (no of features)>n (no. of observation))) it suffers from 

overfitting and bias-variance trade-off.  
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2.2 Application of Data Mining to Petroleum Engineering 

2.2.1 Determination of recovery factor 

Classic reservoir engineering assumes that recovery factor is dependent on rock 

properties, fluid properties, geological structures and mode of production (Craft, 1959). 

Currently recovery factor is estimated by following five techniques (1) Using analogous 

reservoir (2) Using Volumetric calculations (3) Material balance calculations (4) Decline 

curve analysis (5) Numerical reservoir simulation. Approaches like analogy and reserve 

volumetric are highly susceptible to errors. Decline curve analysis is a mathematical 

technique that does not take physics of flow into account. Sophisticated computer models 

requires accurate descriptions of subsurface for recovery factor estimation. However, all 

of these are deterministic approaches where accurate information is needed for building 

a geological model. This dilemma calls for an alternative approach in handling the 

inaccurate data.  

In 1936, Schilthuis was able to calculate recovery factor based on tank model 

material balance equations. Buckley & Leverett (1942), Tarner (1944) and Muskat 

(1945), who calculated oil recovery to be expected for a particular rock and fluid 

characteristic at any stage of depletion under different drive mechanisms, improvised the 

method. These methods along with estimating recoveries, provided causes of low 

recovery in terms of forces operating inside the reservoir. It became possible to develop 

correlations to recovery factor for many fields based on data specific models. Using 

datasets and multivariate statistics, many researchers (Craze & Buckley (1945), Vietti et. 

al (1945), Muskat & Taylor (1946), Guthrie & Greenberger (1955)) have developed 



15 

 

 

different linear correlations to estimate recovery factor as a function of rock and fluid 

properties.  

Data analytics describe the physical system from set of observations. Since use of 

data analytics does not require apriori knowledge of reservoir models, correlations of field 

performance is developed with aids of trends and patterns revealed by data. Data mining 

integrates and visualizes all the available structured and unstructured data from a static 

geological description to dynamic fluid flow behavior.  

2.2.2 Optimization of data acquisition/field development plans 

Another vital information for field development planning is, correlating use of data with 

its necessity in decision-making process. Information is only valuable if it allows us to 

improve decision-making (Kikani, 2013). Kikani (2013) describes Value of Information 

(VOI) as a way to quantify the use and subsequent benefit of data collected tasks. Often 

the decision to develop newly discovered hydrocarbon resources must be made with 

insufficient or analogous information. This uncertainty can be reduced by using data 

analytics to minimize collection of irrelevant data while obtaining maximum information 

about the reservoir. Since data acquisition in upstream industry is a very expensive 

process, especially in deepwater environment, one of the most important uses of data 

science is optimization of data acquisition plans and removal of redundant acquisition 

techniques used in past ventures.  

Data mining methods provides a novel way to use all the data that geoscientists 

and engineers generate for finding and producing hydrocarbons efficiently. This helps to 

automate simple decisions & guide harder ones, ultimately reducing the risk and resulting 

in finding and producing more oil & gas. This thesis demonstrates application of data 
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mining techniques to reservoir engineering for prediction of field performance especially 

recovery factor based on sparse dataset recorded by various operators in Deepwater Gulf 

of Mexico (dGOM) over number of years. 

2.2.3 Well and Field Key Performance Drivers 

Reservoir characterization is defined as a use and integration of huge amount of data 

obtained in exploratory and appraisal phase of reservoir development in order to delineate 

and obtain realistic production forecast from reservoir models (Teh, 2012). Industry 

standard approach is assimilation and interpretation of representative knowledge from 

reservoir rock and fluid data acquisition programs into a reservoir simulation model.  

Modern technologies and high resolution sensors has made it possible to monitor wells 

in real time. With advent of newer computationally intensive technologies like 

Distributed Acoustic Sensing (DAS), Distributed Temperature System (DTS); the use of 

analytics for proper utilization of all the collected information has become imperative 

(Holdaway 2014).  These high resolution sensors collect data of order of terabytes every 

day for example: permanent downhole gauges can monitor pressure, temperature or flow 

rate changes with sampling rate as low as 2 seconds leading to more than 16 million 

discrete time and pressure values per year (Chorneyko 2006). These huge datasets when 

integrated across the field have power to generate hidden trends and patterns based on 

proper data mining model. The transformed model is subsequently used for classifying 

conditions in individual wells or exploratory fields where sufficient information is not 

available.  

Bob Shelley (2007) applied data mining technologies like artificial neural 

networks (ANN) and self-organizing maps to identify production drivers for 32 high 
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temperature wells. They were able to observed significant previously unknown patterns 

for generation of reasonable prediction model while using ANN models, thus was able to 

identify key parameters on production performance. Data mining use this integrated 

dataset to generate new knowledge of unknown drivers for well and field performance, 

develop new methodology for prediction of well productivity and recovery factor, defines 

best practices in completion and reservoir management. Thus, enabling development of 

performance metrics for field to be a successful producer (Abou-Sayed 2012).  

2.2.4 Improving drilling and hole conditions 

Drilling usually involve collection of huge amount of surface data (stand pipe pressure, 

mud static and circulating density etc.) and downhole data from measuring while drilling 

(MWD) and logging while drilling (LWD) units. The acquired data can be used in real-

time to seek trends and correlations between various parameters to obtain and improve 

signs of hole conditions and drilling efficiency.  Johnston and Guichard (2015) used data 

analytics approach to link drilling parameters (weight of bit, Rate of penetration, torque 

and caliper) as an indicator of hole condition and flagging of bad holes.  

With availability of suffient wells both spatially across field and vertically through 

formations, predictive data mining models provide drilling engineers with apriori 

indications of difficult areas to improve drilling efficiency thus reducing nonproductive 

time. Other application of data analytics in drilling engineering include Smart kick 

detection (Brakel et al. 2015). 

2.2.5 Production data analysis 

Similarly, data analytics can help us to determine cause of pump failure in artificial lift 

and can also help in predicting when the next pump failure will occur (Liu et al. 2010). 
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Other data analytics techniques like artificial neural networks are being used for training 

production data and using the trained model to predict production rates for newer wells 

(Elmabrouk, Shirif, and Mayorga 2014). 
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Chapter 3: Reservoir Forces and Dimensionless Numbers 

“Where oil is first found, is in the minds of men”     (Wallace Pratt) 

3.1 Factors affecting reservoir performance 

There are many factors influencing the hydrocarbon production and reservoir 

performance. Wyckoff (1940) divided factors affecting reservoir performance into 

following two parts: 

• Inherent reservoir factors (over which humans have no control) 

• Controlled factors (under partial or complete human control) 

While, the controlled factors are always dependent on Inherent reservoir factors. Table 3 

lists the factors that can affect reservoir performance (Wyckoff 1940). 

Table 3 : Classification of factors affecting reservoir performance 
Inherent Reservoir factors Controlled factors 

Structural characteristics: Type of trap (Dual, Faulted, 

lenticular or stratigraphic) 

Well BHP: Controlled by chokes, tubing size 

etc. 

Amount of Closure or Steepness of the Dip within the 

reservoir 

Location of well and perforation. 

 

Pay zone characteristics: sand type ; porosity ; pay 

thickness ; no. of pay zones 

The diameter of well or quality of 

completion. 

fluid PVT behavior ; fluid content (size of gas cap) ; 

boundaries of gas oil contact 

Use of newer technologies like frac. pack 

completions , multilateral etc. 

 

3.2 Forces operating inside reservoir 

Pirson (1977) gave a comprehensive review of types of forces and energies acting inside 

the reservoir that drives hydrocarbons to producing wells or retain it within reservoir. 

These forces and energies are a function of reservoir rock/fluid properties, reservoir 

structure, producing histories and processes. He described four fundamental forces that 
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control fluid flow in the reservoir as body (gravity) forces, static pore pressure forces, 

viscous forces and static interfacial tension due to fluid-fluid and fluid-rock interactions.  

Gravity is the macroscopic body force that occurs and dictates the movement of 

reservoir fluid inside the reservoir on the large scale. Differential gravitational forces 

generally have a negligible effect on the performance of high-pressure fields or fields 

with high vertical permeability (Pirson 1977, Calhoun Jr 1976). However, gravity plays 

a critical role in recovery from depleted fields and fields with sufficient relief in 

geological structures (Pirson 1977). Gravity number is the dimensionless quantity that 

quantifies ratio of gravity to inertial (viscous) forces. 

Viscous forces is a friction forces that acts within the moving fluid or provide 

resistance to movement of static fluid. In liquids, viscous force is due to attraction 

between molecules while in gases, viscosity is a result of collisions between the 

molecules. They are retarding force and work is needed against them to produce fluid 

from the reservoir. Viscous forces become more dominant when the rate of fluid flow is 

high.  

Capillary forces arise due to rock and fluid interactions and are a function of 

interfacial liquid tensions, pore size/shape, and wetting properties of the rock. The 

capillary pressure difference existing in a porous medium between two immiscible phases 

is a function of interfacial tension, the average size of capillaries (pore size distribution) 

and saturation distribution which controls the curvature of the interface (Pirson 1977). 

Capillary forces manifest themselves in the subsurface as the capillary pressure that 

affects saturation distributions. Capillary pressure is magnitude of pressure that is applied 

on a non-wetting fluid in order to reach a certain saturation in that fluid.  
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During the performance of most of the reservoir combination of above forces are 

active but at times one group of force may dominate others. The forces and other 

lithological and petrophysical properties dictate the distribution, simultaneous movement, 

and displacement of fluids within the reservoir. Driving mechanisms can be captured by 

use of fractional flow equation described (Leverett 1941) by:  

𝒇𝒅 = 
𝟏− 

𝑲𝒐
𝝁𝒐∗𝒒𝒕

〈
𝒅𝑷𝒄
𝒅𝒖

+𝒈∗∆𝝆𝐬𝐢𝐧𝜶〉

𝟏+ 
𝒌𝒐
𝒌𝑫

𝝁𝑫
𝝁𝒐

        Eqn. 14 

Here, subscript ‘D’ is used for displacing fluid. While more than one mechanism is 

simultaneously active in the reservoir, it is desirable to know if any particular mechanism 

is more dominant in a reservoir. Table 4 lists the modification of above equation to 

describe contribution from each mechanism. 

Fractional flow formula provides a description of fundamental production 

processes occurring during immiscible displacement. The main factors which influence 

recovery according to fractional flow equation can be summed up as (1) Relative 

permeability ratio (2) Fluid viscosity ratio (3) Presence of connate water phase (4) 

Presence of gas phase (5) Presence of formation dip (6) Effect of capillary-pressure 

gradient in the direction of flow.  

Table 4 : Fractional flow equation for different drive mechanism 

Mechanism Type Contribution factor 

Frontal water or gas 

drive 

𝑓𝑤 =
1

1 + 
𝐾𝑜
𝐾𝑤

𝜇𝑤
𝜇𝑜

  

Gravity drive 

𝑓𝑔 = 
1 − 

𝐾𝑜
𝜇𝑜 ∗ 𝑞𝑡

〈𝑔∆𝜌 𝑠𝑖𝑛𝛼〉

1 + 
𝑘𝑜
𝑘𝐷

𝜇𝑔

𝜇𝑜
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Capillary drive 

𝑓𝑑 = 
1 − 

𝐾𝑜
𝜇𝑜 ∗ 𝑞𝑡

〈
𝑑 𝑃𝑐
𝑑𝑢

〉

1 + 
𝑘𝑜
𝑘𝐷

𝜇𝐷
𝜇𝑜

 

Combination drive 

𝑓𝑑 = 
1 − 

𝐾𝑜
𝜇𝑜 ∗ 𝑞𝑡

〈
𝑑 𝑃𝑐
𝑑𝑢

+ 𝑔 ∗ ∆𝜌 sin 𝛼〉

1 + 
𝑘𝑜
𝑘𝐷

𝜇𝐷
𝜇𝑜

 

 

3.3 Dimensionally Scaled Reservoir Models 

The performance of a reservoir is a interplay of various variables, and comparison 

between performance of different reservoirs can be done if the variables are “properly 

scaled” (Geertsma, Croes, and Schwarz 1956). Different variables affecting reservoir 

performance are combined as similarity groups using dimensional analysis. If the values 

of similarity groups is same for a model and a prototype, then the model is properly scaled 

and can be used for comparison in terms of field performance (Geertsma, Croes, and 

Schwarz 1956). Dimensionless analysis of the governing equations for fluid flow in a 

reservoir provides insight into the relative importance of driving forces such as viscous, 

gravity, and capillary forces on the displacement mechanisms (Wu et al. 2008). 

Dimensional analysis uses primary variables affecting the physical system to determine 

minimum number and form of similarity groups (Fox, McDonald, and Pritchard 1985).  

The use of dimensionless numbers makes it possible to report the results in a 

manner that makes them applicable to systems other than the one used to acquire the data 

(Peters, Afzal, and Gharbi 1993). For example, pressure transient testing uses 

dimensionless pressure and rate terms for universal application of diffusivity equation. 

The geometrically similar system will result in same dimensionless variables irrespective 
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of the scale of measurement. For petroleum engineering applications, dimensionless 

numbers relate the effects of various forces involved in the system under consideration. 

Other advantages of using scaled models are, it leads to a reduced number of dimensions 

required to describe the system and eliminates the need for unit conversion (Shook, Li, 

and Lake 1992).  

There are many different definitions of dimensionless variables reported in the 

literature (Shook et al., 1992; Rapoport, 1955). Dimensionless numbers generated by 

Shook, Li et al. (1992) are based on forces (gravity, viscous, capillary & dispersion) 

controlling the displacement process are described in Table 5. This dimensionless group, 

combines the variables that govern the immiscible displacement of oil by liquid 

(Geertsma, Croes, and Schwarz 1956). The flow process considered for generation of 

these numbers is two-phase immiscible displacement with constant viscosity and residual 

saturation of each phase.   

Table 5 : list of Dimensionless Numbers 

Dimensionless number Formula 

Capillary Number (Npc) 
𝑁𝑃𝑐 = 

𝜆𝑟2
𝑜 𝜎

𝐿𝑈𝑡
√𝜙𝐾𝑥 

Gravity Number (Ng) 
𝑁𝑔 = 

𝐾𝑧𝜆𝑟2𝛥𝜌𝑔𝑐𝑜𝑠𝛼

𝑢𝑡

𝐻

𝐿
 

Aspect Ratio (Rl) 

𝑅𝑙 = 
𝐿

𝐻
√

𝐾𝑧

𝐾𝑥
 

Density Number (Dn) 
𝑁𝜌 =

𝜌𝑜

𝛥𝜌
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This similarity group assume system geometrically analogous with similar petro-

physical properties. Novakovic (2002) articulated that gravity number scales viscous and 

capillary forces while aspect ratio scales spatial interplay. Therefore, these numbers if 

used jointly with mobility ratio will result in the system’s behavior that is properly scaled. 

For dGOM oilfield dataset. These numbers are calculated by use of assumptions given 

below. Proper scaling of models may require additional numbers if any of these 

assumptions is broken (Rapoport, 1954). 

1.) Homogenous reservoirs having immiscible displacement of oil by water.  

2.) Relative permeability function and contact angle for all the reservoirs are considered 

same. 

3.) Viscosity of water is taken constant as 0.5 cp; Constant Permeability anisotropy of 

0.1 is assumed for all fields. 

4.) Relative permeability is obtained from Corey’s relationship (BrooksRH 1964) 

𝑲𝒓𝒘 = (
𝟏−𝑺𝒐

𝟏−𝑺𝒘
)
𝟐
∗ (

𝟏−𝑺𝒐−𝑺𝒘

𝟏−𝑺𝒘
)
𝟐
       Eqn. 15 

5.) Interfacial tension between hydrocarbon and water system is calculated using 

(Firoozabadi and Ramey Jr 1988) : 

𝝈𝒉𝒘 = (
𝟏.𝟓𝟖∗(𝟏−𝝆𝒐)+𝟏.𝟕𝟔

𝒕𝒓
𝟎.𝟎𝟑𝟏𝟐𝟓 )

𝟒

          Eqn. 16 

 

𝒕𝒓 =
𝒓𝒆𝒔𝒆𝒓𝒗𝒐𝒊𝒓 𝒕𝒆𝒎𝒑𝒆𝒓𝒂𝒕𝒖𝒓𝒆

𝑻𝒄𝒐
  ;  𝑻𝒄𝒐 = 𝟐𝟒. 𝟐𝟖 ∗ 𝑲𝒘

𝟏.𝟕𝟕 ∗ 𝝆𝒐
𝟐.𝟏𝟐𝟓𝟎𝟒             Eqn. 17 

 

𝐾𝑤 =   11.7 (𝑤𝑎𝑡𝑠𝑜𝑛 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟) 

Reservoir temperature is calculated using the static temperature gradient reported   

         in the database. 
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6.) ‘L’ is calculated by assuming well is centered in a cylindrical reservoir of given area. 

Sand is assumed to be homogenous with only one well per sand. 

7.) Average daily production rate is defined as the ratio of total cumulative production 

to number of days field has produced. Fluid flow velocity is estimated by dividing 

the average daily production rate reported for the well block by reported surface area 

of that sand. 

8.) Dip angles are calculated by assuming structure of field to be related to dip angle as 

per Table-6 

Table 6 : Relation of dip angle with Field structure 
FSTRU Dip Angle 

A / Anticline 10 

B / Fault 11 

C / Sallow Salt diapir 12 

D / Intermediate Salt diapir 13 

E / Deep Salt dome 14 

F / Salt Ridge 15 

G/ Shale diapir 16 

H/ Unconformity 17 

I/ Stratigraphic 18 

J/ Reef 19 

K/ Rollover growth fault 20 

L/ Rotational Slump block 21 

M/ Non-piercement Louann Salt 22 

N/ Thrust Fault 23 

U / Unknown 0 
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3.3.1 Global Capillary Number (NPc) 

This dimensionless number is defined by the ratio of capillary to inertial forces. Several 

authors have provided many empirical models to determine capillary number from small-

scale laboratory measurement to large-scale field measurements (Moore and Slobod 

1956, Melrose , Slattery, Sagis, and Oh 2007, Chatzis, Morrow, and Lim 1983, Rapoport 

and Leas , Geertsma, Croes, and Schwarz 1956, Craig et al. 1957). Capillary forces are 

important in pore scale modeling stage where fundamental issue is to determine residual 

saturations and scaling groups that control them (Novakovic 2002). High capillary 

number is a result of either high capillary forces (small pore throat, high interfacial 

tension) or reduced flow velocity (low inertial forces). Capillary forces results in 

dispersion of the immiscible displacement. 

3.3.2 Gravity Number (Ng) 

Gravity number is ratio of gravity forces to inertial forces, while this number can also be 

defined by using ratio of time required for a fluid to be moved across reservoir as a result 

of gravity (density difference) to time required to move the fluid across reservoir due to 

viscous forces (Novakovic 2002). This number is sensitive to relief in geological 

structure. Hence, requires dip angle measurement for it’s calculation. 

3.3.3 Density Number (DN) 

This number relates contrast of densities in displacing to displaced fluid in the immiscible 

displacement process. For dGOM oilfields dataset this number is calculated by assuming 

constant in-situ water density of 62.4 lb/ft3 while density of oil is deduced from its API 

gravity.  
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3.3.4 Effective aspect ratio (Rl) 

This dimensionless number combines the anisotropy ratio (Kz/Kx) and the aspect ratio 

(L/H). It is a measure of relative flow capacity of a medium in vertical and horizontal 

direction or it is a viscous force ratio in horizontal and vertical direction when flow area 

and the rate is same. Physically the effective aspect ratio, Rl is a ratio of characteristic 

time require fluid to travel in a horizontal direction to that of in vertical direction. Thus, 

if Rl is large this implies pressure and saturation variations in the vertical direction are 

much less than those in horizontal direction hence flow in the vertical direction can be 

ignored (Novakovic 2002). Rl plays a critical role in determining capillary-gravity 

vertical equilibrium condition. For calculating this number in dGOM dataset constant 

permeability anisotropy ratio of 0.1 is assumed. 

3.4 Tarner’s Method for Performance Prediction 

Tarner (1944) proposed a solution to forecast reservoir performance for depletion drive 

by means of material balance and instantaneous gas-oil ratio equations. Tarner’s method 

work by applying these two equations to find field pressure attained for each assumed 

increment of stock-tank oil production. 

𝑵 =
𝒏[𝑩𝒐+𝑩𝒈(𝑮𝑶𝑹−𝑹𝒔)−(𝑾−𝒘)]

𝒎𝑩𝒈𝒊(
𝑩𝒈

𝑩𝒈𝒊
−𝟏)+𝑩𝒈(𝑹𝒔𝒊−𝑹𝑺)−(𝑩𝒐𝒊−𝑩𝒐)

        Eqn. 18 

𝑹 = 𝑹𝒔 +
  𝑩𝒐𝑲𝒈𝑼𝒐𝟏

       𝑲𝒐𝑼𝒈 𝑩𝒈
                                   Eqn. 19 

Assuming,  

No water drive (W =0) and no produced water (w =0) and no original gas cap (m =0). 

The gas production increment (G2 – G1) between two cumulative oil productions, n2 and 

n1 can be written as 

𝑮𝟐 − 𝑮𝟏 = 𝑵 [𝑹𝟏 − 𝑹𝟐 −
(𝑩𝒐𝒊− 𝑩𝟐) 

𝑩𝒈𝟐
− 

(𝑩𝒐𝒊− 𝑩𝟏) 

𝑩𝒈𝟏
 ] − 𝒏𝟐 (

𝑩𝟐

𝑩𝒈𝟐
− 𝑹𝟐) + 𝒏𝟏 (

𝑩𝟐

𝑩𝒈𝟐
− 𝑹𝟏)        Eqn. 20 
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𝑮𝟐 − 𝑮𝟏 =
(𝑹𝟏+𝑹𝟐) 

𝟐
 (𝒏𝟐 − 𝒏𝟏)                                                                         Eqn. 21 

 

The calculation of instantaneous GOR requires knowledge of fluid saturation that can be 

obtained by: 

𝑺𝟎 = (𝟏 − 𝑺𝒘)
(𝑵−𝒏)𝑩𝒐

𝑵𝑩𝒐𝒊
       Eqn. 22 

 

Once fluid saturation is known relative permeability can be calculated using relative 

permeability curves. Figure 5 shows the workflow to be used for calculation of field 

performance using Tarner’s method. 

 

Figure 5 : Workflow for application of Tarner's method of performance prediction 

  

Assume any depleted field pressure

make three juducious guesses for production 
of oil as n2' ,n2'' , n2'''

calculate total gas produced for three 
assumed stock tank oil production using 
instantenous gas-oil ratio equation and 

material balance equation

The intersection of curves obtained by two 
euqations when plotted on assumed guess of 
stock tank oil production vs incremental gas 
production will give the true gas increment 
corresponding to assumed pressure drop P2
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Chapter 4: Deepwater Gulf of Mexico Exploratory Data Analysis  

“We usually find gas in new places with old ideas. Sometimes, also, we find gas in an 

old place with a new idea, but we seldom find much gas in an old place with an old 

idea”  (Parke Dickey) 

4.1 Geological Background for Gulf of Mexico (GOM) 

4.1.1 Introduction 

Offshore oil & gas exploration in GOM began in 1940s, which was gradually extended 

to deepwater and ultra-deepwater continental shelf and slopes. The first discovery in 

deepwater GOM (dGOM) was made in 1975 by shell in Mississippi canyon. Since 1975 

there have been over 300 deepwater discoveries in the GOM (Post et al. 2012). Figure 6 

describes the bathymetric map of GOM basin. The abyssal plain (Sigsbee) is separated 

from continental shelf by broad slope region which contains numerous salt structures and 

is affected by downslope salt movement like prominent submarine cliff called Sigsbee 

escarpment. The slope regions is fed by several canyons from east to west. These canyons 

provided great supply of reservoir quality sand for storage of hydrocarbons produced 

from organic rich marine sediments. While the salt structures provides efficient seals for 

trapping the hydrocarbons.  
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Figure 6 : USGS Map of Gulf of Mexico. It contains three continental selves, West Florida Shelf, Texas-Louisiana Shelf and 

the Campeche Platform. The continental slope bathymetry contains numerous salt mini-basins, salt canopies and salt diapers. 

Sigsbee escarp is a prominent cliff that trends East-West on southern Texas-Louisiana slope and turns northeast towards 

Mississippi delta. Canyons cutting shelf from east to west are Desoto canyon, Mississippi canyon, Keathley Canyon and 

Alaminos Canyon. 

 

4.1.2 Stratigraphy for GOM 

Figure 7 represents the generalized stratigraphic section of GOM shelf region along with 

generalized north-south cross sectional depositional system as described by Galloway 

(2008). Stratigraphy of deepwater GOM is divided into three main groups: Neogene 

(Pliocene & Miocene), Paleogene (Oligocene, Eocene, and Paleocene) and Mesozoic 

(Cretaceous, Jurassic and Triassic). Paleogene includes Frio sandstone (Alaminos 

canyon), Upper & Lower Wilcox (Alaminos canyon, Keathley Canyon, Walker ridge 

blocks).  
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Lach (2010) divided major resource potential for GOM into Neogene and Paleogene 

reservoirs. While Neogene reservoirs are mature in deep water production experience. 

The Paleogene age reservoirs are in exploration and appraisal stage. GOM deposits are 

Figure 7 : Local Stratigraphic and N-S Deposition X-section for GOM sands (Slatt 

and Zou (2014), Galloway (2008)) 
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characterized by Louann salt, which is sandwiched between organic rich Miocene sands 

and Plio- Pleistocene deposits. Table 7 gives hydrocarbon accumulation and production 

from each plays as given by D. Nixon (1999).  

Table 7 : Total reserves form sands of different geological ages (D. Nixon 1999) 

Chronostratigraphic 

unit 

Original proved 

reserve  

Cumulative Produced  

Miocene 41.9% 43.5% 

Pleistocene 36.2% 36.5% 

Pliocene 18.6% 19.1% 

Mesozoic 2.9% 0.4% 

Oligocene 0.4% 0.5% 

 

Most of the discovered original oil in-place (OOIP) in Paleogene age reservoirs is in 

Keathley canyon and Walker ridge. Figure 8 illustrates location of various geological 

features along with prevalent drive mechanisms in GOM basin. Many reservoirs with 

depletion drive are located on eastern part of GOM. The Paleogene play has the highest 

risk in reservoir quality, water depth, drilling costs, reservoir complexity and 

infrastructure (Lach 2010). The Mesozoic section comprises of main source rocks 

(Jurassic & mid-cretaceous) as well as salt (Jurassic) that dictates the trapping mechanism 

for the GOM fields. 
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Figure 8 : Three-Dimensional description of Gulf of Mexico geology and drive 

mechanisms using GOM3 (Courtesy: Earth Science Associates) 
 

4.1.3 Petroleum System & Depositional Model for Deepwater GOM 

Conventional hydrocarbon production is becoming increasingly focused on deep and 

ultra-deep water GOM (Disenhof, Mark-Moser, and Rose 2014). Optimum conditions of 

rate of sedimentation and presence of abundant organic matter supported formation of 

GOM hydrocarbons during Mesozoic era, while impermeable salt and shale deposited 

during Jurassic period provides the seal and complex topographical features. Majority of 

depositional history of the basin is concentrated to period after middle Jurassic (Galloway 

(2008), Woods, Salvador, and Miles (1991)). The complex interaction of GOM’s 

depositional history with its structure and salt tectonics has resulted in a heterogeneous 

system that requires varied techniques to evaluate the risks of hydrocarbon extraction 

(Disenhof, Mark-Moser, and Rose 2014).  
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According to Galloway (2008), GOM basin reached present structural 

configuration in the early cretaceous period. Early cretaceous deposition was dominated 

by carbonates and evaporites on the shelves and shallow marine clastics on northern basin 

rims (McFarlan Jr and Menes 1991). While large volume of clastics were deposited in 

northern GOM during Cenozoic period (Salvador 1991). Major architectural elements 

and their characteristics are given in Table 8 . 

Table 8 : Description of architectural elements found in GOM 

Architectural 

Element 

Fields Characteristics 

Confined channels 

& mini-basins 

Eastern Mississippi canyon ; 

Northern green canyon ; 

Garden banks (Mars-Ursa) 

Mid Slope; Debris flow; Low length 

to thickness ratio; Discontinuous & 

high heterogeneity.  

Distributary 

channel fills 

Central green canyon ; 

Mississippi canyon (Thunder 

horse & Tahiti) 

Continuous geometry; lateral 

continuity; ratio of length to thickness 

>100. 

Distributary lobes -- Sheet sandstone good lateral 

connectivity; 4-way turtle structure 

Mini-basins Green canyon (Condor and 

Droshky); Garden banks 

Shallow amplitude plays in upper 

Miocene, Pliocene & Pleistocene 

Conventional 

Miocene subsalt 

deposits 

-- Channelized sheet sandstones 

Neogene Depositional Model 

Neogene deposition in deepwater GOM is connected with salt tectonics. The field is 

classified into following categories based on structural style: (1) Structural traps 

(faults/turtle structure/anticline) (2) Stratigraphic traps (Pinch outs/unconformity) (3) 

Combinational traps (salt flanks/diapers). Purely stratigraphic traps are common for 

deepwater sands older than cretaceous in northeastern margin. But discovery of purely 

stratigraphic trap is difficult and there occurrence is very rare (Lach 2010). Neogene 
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deposition are characterized by rapid sedimentation in mini-basins resulting in high 

porosity over-pressured reservoirs. 

Paleogene (Wilcox sands) deposition model 

Three main reservoir target for Paleogene sands are (1) Frio (Oligocene) (2) Upper 

Wilcox (Eocene) (3) Lower Wilcox (Eocene to Paleocene). While lower Wilcox is 

dominant in western and central GOM. Upper Wilcox and Frio occurs only in western 

GOM. Wilcox sands is correlated from Alaminos canyon in west to walker ridge in east 

that is approximately 400 miles (Figure 9). This lateral continuity is evidence of good 

quality reservoirs occurring in these areas resulting in discovery of Jack and St. Malo 

fields (Meyer et al. 2005). Paleogene reservoirs have a complex digenetic history and 

several factors control the quality of reservoir in Paleogene sands. 
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Figure 9 : X-section for Lower Tertiary Wilcox Trend in Deepwater Gulf of 

Mexico (Rains, Zarra, and Meyer 2006) 

 

4.1.4 Protraction area and Leasing 

Gulf of Mexico Outer continental shelf (OCS) planning area is divided into three planning 

area viz. western, central & eastern. Each zone is subdivided into number of protraction 

area containing different sands and blocks. While extensive exploration is done in western 

and central part. Eastern part remains a very good exploration prospect for future 

development (Lach 2010). Fields in GOM are identified by protraction area and block 

number. For example, MC 807 stands for field in Mississippi canyon in block 807. Each 

block may contain many lease areas and different fields. BOEM has published reservoir 

data for 1300 fields based on initial geological and engineering analyses. Of these 1300 

fields, 633 are expired (depleted) fields. After converting gas volumes (bcf) and oil 
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volumes (bbl) to Barrels oil equivalent (BOE), there are 395 oil fields and 905 gas fields 

(fields with GOR < 9,700 SCF/STB are classified as oil producers). As of 2013, BOEM 

reports estimated original reserves of 22.19 billion bbl. Oil and 193 trillion SCF gas from 

1300 fields. All the reserves estimates reported by BOEM are based on volumetric and 

performance methods. Quick look Analysis of the 1,300 oil and gas fields indicates that 

the GOM is a gas-prone basin.  

 

4.2 Deepwater GOM Oilfield Dataset Description 

4.2.1 Description of Key Attributes 

In order to understand the GOM dataset. Deep-water oilfields (Water depth >1000 ft., 

SAND_TYPE = “O”) is selected. This gave 395 wells that are used for applying data 

mining algorithms. In order to use this dataset for analysis it is necessary to understand 

the sources from which data was procured. Figure 10 gives the list of attributes is used 

for analysis. For geological attributes, most of the data comes from seismic & geologist’s 

interpretation. Production data form individual well is a result of flow rate allocation 

based on number of wells flowing to particular platform/gathering stations. GOR is 

derived from cumulative production of oil and gas. Petro-physical and PVT parameters 

are as reported by various operators to BOEM. Therefore, most of the data is result of 

individual interpretation of engineers that can vary significantly from operator to 

operator. The goal of data mining is to use this uncertain dataset to figure out unknown 

correlation and patterns present in data. 
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Figure 10 : Filtered list of attributes used for data mining operation in dGOM. Refer 

to Nomenclature for definitions for used keywords. 

 

4.2.2 Statistics for Qualitative Attributes 

Based on the sequence biostratigraphy discovery, wells in deepwater oilfields is classified 

in following chornozone units (Table 9). As observed in Table 7 most of deep-water oil 

production has come from Miocene, Pliocene and Pleistocene reservoirs while some gas 

fields are present in Paleocene period is not discussed in this thesis. Table 9-Table 13 

gives distribution of various qualitative attributes in dGOM oilfields. “QQ code” signifies 
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the numerical values used in data mining algorithms when qualitative variable is 

converted to quantitative. 

Table 9 : Biochoronostratigraphy for dGOM oilfields dataset sorted 

chronologically. Absence of paleogene period indicates no oilfields were present in 

dataset for this period. 

Period CHRONOZONE 

NAME 

CODE QQ 

code 

Wells 

Quaternary  Pleistocene-Upper PLU-LL 19 42 

Quaternary  Pleistocene-Middle PLM 10 6 

Quaternary  Pleistocene-Lower PLL 16 29 

Neogene Pliocene-Upper PU 20 64 

Neogene Pliocene-Lower PL 15 111 

Neogene Miocene-Upper MUU (Younger than MLU) 12 72 

Neogene Miocene-Upper MLU 6 15 

Neogene Miocene-Middle  MUM (Younger than MMM) 17 6 

Neogene Miocene-Middle MMM 8 24 

Neogene Miocene-Lower MLM 5 10 

Neogene Miocene-Lower MUL 9 2 

Neogene Miocene-Lower MML 7 4 
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Table 10 : Classification of field class based on BOEM data. When the leases make 

formal commitment to develop and produce it is classified as RJD. During the period 

of infrastructure set-up, the accumulation is classed as PDN. After production of 

accumulation began it is assigned as PDP. 

 

Field Class Code Wells 

Proved Undeveloped Reserves PDN 7 

Proved Developed Producing Reserves PDP 365 

Reserves Justified for Development RJD 20 

 

Table 11 : Classification of Field Structure (FSTRUC) 

 

Field Structure FSTRU code QQ code Wells 

Anticline A 1 102 

Fault B 2 28 

Shallow Salt Diapers C 3 24 

Intermediate Salt Diapers D 4 65 

Deep Salt Dome E 5 62 

Salt Ridge F 6 76 

Unconformity H 8 2 

Stratigraphic I 9 19 

Thrust Fault N 14 7 
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Table 12 : Classification of Primary and secondary trap type for dGOM oilfields. 

It is interesting to note that 197 fields have missing FTRAP2. While majority of 

fields is dominated by salt type primary traps. 

Field Trap Type Trap 

Code 

QQ 

code 

Wells  with 

Primary 

trap type 

(FTRAP1) 

Wells with 

Secondary trap 

type 

(FTRAP2) 

Missing ? -- 6 197 

Anticlines A 1 23 16 

Faulted Anticlines B 2 56 11 

Rollover anticlines into growth fault C 3 1 6 

Normal Fault D 4 38 34 

Reverse Fault E 5 5 12 

Turtle Structure F 6 20 10 

Flank traps (salt or shale diapirs) G 7 181 6 

Sediments overlying domes H 8 5 15 

Up dip facies change J 9 13 9 

Up dip pinch out K 10 18 14 

On lap sands M 12 6 9 

Subsalt trap Q 15 19 23 
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Table 13 : Classification for drive mechanism reported to BOEM by operators. 

Most of the dGOM oilfields are operating under varying water drive mechanism. 

Drive Mechanism Code QQ code No. of fields 

Missing ? -- 4 

Combination COM 1 29 

Depletion DEP 2 45 

Partial PAR 4 196 

Solution Gas Drive SLG 5 31 

Unknown UNK 6 8 

Water Drive WTR 7 76 

 

4.2.3 Statistics for Quantitative Attributes 

Figure 11-Figure 15 illustrates histograms and box plots for various quantitative 

reservoir and production attributes. It can be observed that Oil thickness (OTHK), oil area 

(OAREA), Solution GOR (RSI), Water saturation (SW) and Permeability have log 

normal distribution leading to similar distribution for oil reserves (OIP) and cumulative 

production (P_CUMCOIL).  
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Figure 11 : Distribution of Recovery Factor and Permeability 
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Figure 12 : Distribution of Porosity and Water Saturation 
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Figure 13 : Distribution of Pressure gradient (SDPG) and Solution GOR (RSI) 
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Figure 14 : Distribution of Oil Thickness and Oil Area. 
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Figure 15 : Distribution of Oil in-place and Cumulative produced oil. It can be 

deduced that most of the reservoir are small in size. 

 

Figure 16 displays the position of various reservoirs as compare to 100 % recovery line. 

Points lying furthermost relative to this line have lower values of recovery factors. 
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Figure 16 : Over-estimated OIP as compare to physical production. Unit slope line 

represents 100% recovery. 

 

As of December 31, 2013, Minerals Management Services (MMS) estimated oil reserves 

in deep-water GOM is 3.67 bbl of oil and 9 trillion scf of gas from 667 active fields, but 

many of these fields have recovery factors ranging 6%-25% (Beshears 2013). The 

remaining oil is significant and provides the incentive to develop the methodology for 

prediction of recovery factor to guide for full field development of these fields. Since 

lower tertiary trend is still in exploration and appraisal stage, the reported volumes by 

MMS excludes most paleogene discoveries. The average recovery factor determined for 

Neogene/Pleistocene reservoir using a volume-weighted average is 28.9%. This average 

is based on statistical data for 392 oilfields in deepwater GOM. 
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4.2.4 Statistics for Dimensionless numbers 

The set of dimensionless numbers is calculated for fifty-nine oil reservoirs under water 

drive mechanism. The statistical distribution for these numbers is given in Figure 17-

Figure 18 . 

 
Figure 17 : Log- normal Distribution of Capillary Number (Npc) and Gravity 

Number (Ng) 
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Figure 18 : Distribution of Density number (Dn) and Aspect ratio (Rl) 
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Chapter 5: Results and Conclusions 

"Reservoirs pay little heed to either wishful thinking or libelous misinterpretation. They 

continually unfold a past which inevitably defies all “man-made” laws. To predict this 

past while it is still the futures is the business of the reservoir engineers. But whether 

the engineer is clever or stupid, honest or dishonest, right or wrong, the reservoir is 

always “right”” (Muskat 1947) 

 

Figure 19 describes the Workflow used in the integration of all the measured and 

calculated data for prediction of recovery factor on dimensionally scaled reservoir 

models. Feature selection of important parameters is done based on domain knowledge 

attributing to recovery factor prediction. Following features are selected for application 

of data mining algorithms: FSTRUC, FTRAP1, CHRONOZONE, OTHK, OAREA, 

POROSITY, PERMEABILITY, SW, SDPG, SDTG, RSI, BOI, WDEP, ORF, 

P_CUMCOIL, P_RECOIL (refer to nomenclature section for definition of each feature). 

Figure 19 : Workflow for Prediction of Recovery Factor in dGOM oilfield 

dataset 
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5.1 Classification of oilfields Using Original Attributes 

General workflow adopted for clustering is shown in Figure 20. Initially, classification 

algorithms are run on 282 deepwater oilfields obtained after removing outliers and fields 

with no data. In addition, since drive mechanisms are chief factor in final recovery factor 

calculation (Arps and Roberts 1955). Hence, fifty-nine reservoirs having water drive 

mechanism are scaled using dimensionless numbers. They are subsequently used in 

clustering and regression algorithms. 

 

Figure 20 : Workflow for Classification of Recovery factor 

 

5.1.1 Hierarchical Clustering (HC) 

First forty fields from set of fifty-nine fields having water drive are selected to train the 

hierarchical clustering model. Applying a distance based clustering techniques with 

‘complete’ linkage algorithm results in Figure 21. Three sets of clusters are obtained as 

Select fields & Attributes with water depth>1000 ft., 
Sand_Type='O', Additional filter of Drive='Water' for using 

dimensionless numbers

Data Cleaning : Remove outliers based on dendogram 
output

Scaling of all attributes by 'Z' transform

Divide Data into Training and Testing set

Apply Various Clustering Algorithms
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illustrated by horizontal dotted line. This algorithm gave accuracy of 32% based on 

application of trained model to testing dataset. 

 

Figure 21 : Dendograms of testing dataset 

 

5.1.2 K-means Clustering 

After removing outliers, Two eighty-two oilfields are used for classification based on 

original attributes. This centroid based clustering scheme leads to three clusters as 

determined from elbow plot Figure 22 . Cluster ‘1’ have 118 members. Cluster ‘2’ have 

144 members and cluster ‘3’ have 20 members. Figure 23 illustrates behavior of different 

clusters as a function of original attributes used in K-means clustering. Due to wide 

scattering of data, clusters overlie each other and interpretation is difficult using this 

figure. Figure 24 reveals distribution of original attributes among different clusters. 

Clearly, higher recovery factor is associated with lower water depth, higher solution 

GOR, higher-pressure gradient. However, lower field area and pay thickness contribute 



54 

 

 

towards cluster with higher recovery factor. The reason for this anomaly is not completely 

known.  

 

Figure 22 : Elbow Plot for determination of number of optimum clusters. 
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Figure 23 : K-means clustering on all 395 oilfields in dGOM 
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Figure 24 : Distribution of original attributes in individual clusters 

 

5.1.3 K-Means after transformation of Non-normal distributed attributes to Gaussian 

distribution. 

Based on the initial distribution of attributes. Attributes which are log-normally 

distributed (OTHK, OAREA, PERMEABILITY, RSI, BOI, P_CUMCOIL, P_RECOIL) 

are converted to Gaussian distribution using log transformation. Subsequently, K-means 

is run on this transformed set of variables. The results obtained are described in 

Appendix-B. 

5.1.4 Self-Organizing Maps (SOM) 

These algorithms provides a robust technique for visualization of inherent clusters in the 

dataset. Figure 25 shows SOM training iterations progress, y-axis represents distance 
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from each node. The attainment of plateau at approximately 80th iteration is the criterion 

for convergence.  

 

Figure 25 : Validation of convergence in iterations 

 

Figure 26 shows a U-matrix neighbor distance plot. This plot is used to define number 

of clusters in a dataset. Areas of low neighboring distances indicates groups of nodes that 

are similar. Thus, areas with large distances is visualized as natural boundaries between 

clusters. 
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Figure 26 : The U-matrix plot to identify clusters within the SOM group 

 

Figure 27 is the heat map plot for different attributes used in SOM. It can be inferred that 

top left nodes with higher recovery factor are associated with high permeability, low 

water saturation, intermediate GOR, lower water depth, higher choronozone and 

FSTRUC values. However, interpretation of these maps are highly subjective therefore, 

caution and validation is require before using them as a classifying tool. 
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Figure 27 : Distribution of each attribute across the latent space. 

 

5.1.5 Principal Component Analysis (PCA) 

First two principal components (PC’s) were able to explain approximately 50% of 

variance in the training dataset. Interestingly, clusters obtained by K-means were 

distinctly seen in PC space but first two PC’s that limits its application capture only 30% 

of variability. These cluster points when overlain on bi-plot of original attributes used in 

analysis are shown in Figure 28. Three distinct clusters is easily inferred from this figure, 
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it also gives importance of original attributes in the given clusters. Cluster ‘3’ (blue 

points) is influenced by P_RECOIL, P_CUMCOIL. Cluster ‘2’ (green points) are inclined 

towards WDEP, SW, OTHK. Cluster ‘3’ (pink points) are dominated by DRIVE, 

Permeability, Porosity and reservoir fluid properties. 

 

Figure 28 : Bi-plot for K-means clusters in a principal component (PC) space. 

Arrows show correlation between the used attributes. See nomenclature for 

definition of each attribute. 
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5.1.6 Partial Least Square Regression (PLS) 

Using training dataset for PLS regression of recovery factor results in very low R2 as 

given in Figure 29 below. Circle of correlation depicts how the target variable ‘Y’ 

(recovery factor) is related to various original attributes used in calculations. Due to high 

scattering of dataset, univariate PLS have a very low R2 for all the three clusters. Highest 

R2 is 0.2 for cluster 3. Thus, in conclusion PLS is not the appropriate technique for 

regression in this dataset. 
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5.2 Classification of Water Drive Oilfields Using Dimensionless Numbers 

Using same dataset as in section 5.1.1, Dimensionless numbers are calculated for each 

field. Dip angles are assumed as per Table-6 

Table 6. Due to lognormal distribution of dimensionless numbers, they are converted to 

their corresponding logarithmic values before application of any classification 

technique. In addition, five fields in block ‘1582_MC’ and ‘0582_GB/GC’ have to be 

removed as outliers based on dendogram output. 

5.2.1 Clustering 

Figure 30 illustrate dendogram for oilfields under water drive based on euclidean 

distance between dimensionless numbers. Figure 31 displays elbow plot to optimize 

number of clusters in k-means clustering. ‘4’ clusters are chosen based on this sum of 

square within clusters (SSW) method. The use of K-means and hierarchical clustering 

Figure 29 : PLS match and circle of correlation for Cluster 1, 2 and 3 
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leads to four clusters. Cluster ‘1’ have eight members, cluster ‘2’ have seven members, 

cluster ‘3’ has nine members and cluster ‘4’ have sixteen members. 

 

Figure 30 : Distance based dendogram on normalized dimensionless numbers. X-

axis is defined by sand names. 
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Figure 31 : Optimum number of clusters for K-means clustering 

 

Figure 32 describes the scatter plot for various clusters in dimensionless variable. This 

figure shows cluster ‘2’ (Red triangles) as having low recovery, this corresponds to lower 

aspect ratio (Rl) and high capillary (Npc) and gravity (Ng) numbers. Cluster ‘1’ (Black 

circles) have intermediate recovery factor. While cluster ‘3’ (Green plus) and cluster ‘4’ 

(Blue crosses) have high to intermediate recovery factor range. These clusters 

correspondingly relates with dimensionless numbers. Cluster ‘4’ with smaller Ng values 

displays higher magnitude of density number and aspect ratio implying these reservoirs 

to be dominated by magnitude of residual oil saturations and relative permeability. 

Cluster ‘1’ have high recovery factor owning to lower magnitude of capillary number, 

density number and aspect ratio. The figure also shows that at intermediate values of Npc 
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clusters overlap each other in recovery factor. The reason for this behavior is not 

completely known, but it can be reasoned out due to different petro-physical 

characteristics of reservoirs, which present dimensionless groups does not capture.      

 

Figure 32 : Scatter Plot for Dimensionless numbers  

 

5.2.2 Self Organizing Maps 

Figure 33 is a neighbor distance plot. The nodes with low distance indicate groups of 

nodes similar to each other while areas with high distance indicate dissimilar nodes. 

Figure 34 shows successful convergence of SOM algorithm iterations for finding BMU. 

Figure 35 displays relationship between normalized values of dimensionless numbers 
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and recovery factor. So, based on this figure higher recovery factor (top right nodes in 

ORF) is related to higher capillary no. (Npc), intermediate gravity number (Ng), lower 

density no. (Dn) and higher aspect ratio (Rl). 

 

Figure 33 : U-Matrix plot for clusters obtained using SOM 

 

 

Figure 34 : SOM iterations reaches convergence at after 70 cycles 
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Figure 35 : Heat map for dimensionless numbers in SOM latent space 

 

5.2.3 PCA and PLS 

Figure 36 illustrates behavior of clusters using K-means in PCA space. Two PC’s are 

able to capture 63% of variation in data. The figure also illustrates how dimensionless 

numbers affect grouping of clusters. For example, capillary number (Npc) dominates 

cluster 2. While cluster ‘4’ is affecting by density number and aspect ratio. Although, 

there is no clear distinction between cluster ‘4’ and cluster ‘3’ in this plot. 
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Figure 36 : Clusters of dGOM oilfields having water drive in PC space. Arrows 

represents correlation between different dimensionless numbers and recovery 

factor (ORF). 

 

Figure 37 to Figure 40 shows PLS match for different clusters. Clusters ‘1’ and ‘2’ shows 

good match due to linearity of data points. Circle of correlation shows how target variable 

‘Y’ (recovery factor) is related with individual dimensionless numbers.  
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Figure 37 : PLS result for Cluster-1. R2 0.92 

 

 

Figure 38 : PLS result for Cluster-2. R2 0.61 
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Figure 39 : PLS result for Cluster-3. R2  0.1 

 

 

Figure 40: PLS result for Cluster-4. R2 0.4 

 

Very low R2 for cluster ‘3’ makes it interesting to see why we are having the anomaly for 

this cluster. Visualizing distribution of dimensionless numbers in individual clusters 

using box plots Figure 41 cluster ‘3’ have lowest capillary number while its recovery 

factor cover ranges for cluster ‘1’ and cluster ‘4’ (Figure 42) 
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Figure 41 : Distribution of Normalized dimensionless numbers in individual 

clusters. 
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Figure 42: Distribution of Normalized recovery factor values for different clusters 

 

Cluster ‘1’ PLS equation  

       𝑅𝐹 =  −0.63 − 0.29𝑁𝑝𝑐 + 0.48𝑁𝑔 − 0.175𝐷𝑛 + 0.813𝑅𝑙 

Cluster ‘2’ PLS equation  

𝑅𝐹 = −1.87 − 0.67𝑁𝑝𝑐 + 0.69𝑁𝑔 + 0.5𝐷𝑛 − 0.37𝑅𝑙 

Cluster ‘3’ PLS equation  

  𝑅𝐹 =  −0.23 − 0.01𝑁𝑝𝑐 + 0.24𝑁𝑔 − 0.35𝐷𝑛 − 0.11𝑅𝑙 

Cluster ‘4’ PLS equation  

    𝑅𝐹 =  0.131 + 0.33𝑁𝑝𝑐 + 0.11𝑁𝑔 + 0.13𝐷𝑛 + 0.043𝑅𝑙  
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Chapter 6: Conclusions and Future work 

“Information is Powerful, but it is how we use it that will define us”    (Larry Page) 

6.1 Summary of work 

In this study, classification and regression algorithms are applied to deepwater oilfields 

dataset from Gulf of Mexico. Even though it is possible to classify fields in three 

categories using original attributes. It becomes necessary to scale reservoir models before 

using regression algorithms. This thesis successfully applies dimensionless variables for 

immiscible displacement of oil by water to dGOM oilfields under water drive mechanism. 

The result after application of PCA, K-means and PLS algorithm is a set of generalized 

correlation for prediction of recovery factor. However, only some of the clusters shows 

good regression coefficient limiting the applicability of PLS technique to particular class 

of reservoir under water drive. 

6.2 Conclusions 

From this work, the following conclusions can be drawn: 

1. K-means was able to classify fields according to recovery factor by using original 

attributes; three clusters are distinctly visualized in PCA space. However, since 

cluster analysis is an exploratory tool; the outputs of clustering algorithms only 

suggests some truth in hypotheses; they cannot be used to prove any hypothesis 

about natural organization of data.  

2. Regression is the self-assured technique in mathematics that can be utilized for 

prediction. PLS is used in this thesis for prediction of recovery factor, the 

maximum coefficient of correlation by using PLS on original attributes is 0.2 for 

cluster 3. Whereas, by using k-means on dimensionally scaled reservoir models 
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i.e. the set of dimensionless numbers, the maximum coefficient of correlation is 

0.92 in cluster 1.  

3. On the contrary, some clusters show no correlation with very low R2. This can be 

partially attributed to limitations of PLS methodology which works best on 

multicolliear correlated dataset. Other reasons may include inability of present 

dimensionless groups to scale the reservoir properly as these groups assumes all 

fields to have similar geometrical and petro-physical systems.  

4. This work successfully uses dimensionless numbers derived by previous 

researchers along with data mining technology to generate generalized 

correlations for oil reservoirs. Use of K-means, PCA and PLS provided  

techniques that can quickly estimate the recovery factor from limited data, when 

comprehensive simulations on large number of reservoirs is too costly and time 

consuming. 

5. The findings from data mining should be supported by a plausible theory. 

Beguiling story can disguise weaknesses in the data. In words of Patrick Whitson 

MIT professor on artificial intelligence “Given enough time, enough attempts, and 

enough imagination, almost any set of data can be teased out of any conclusion”. 

Just having a large amount of data is no guarantee of the success of a data-mining 

project. 

6.3 Suggested future work 

This work is a starting point for generating estimates of recovery factor at any location in 

Gulf of Mexico using historical data of fields based on data mining approach. This 

information can be further used for the preparation of data acquisition and risk assessment 



75 

 

 

plans to set up a framework for decision-making on risks and uncertainty for optimizing 

reservoir management and production forecast. However, further investigations are 

needed to describe reasons for low regression coefficients in some of the clusters. Similar 

workflow with other set of dimensionless groups is used in reservoir having solution gas 

drive or depletion drive mechanism. In addition, research is needed for studying 

interaction between coefficients for dimensionless numbers in developed correlations. 

Present work may be extended to predict reservoir performance as a function time using 

Tarner’s and Muskat’s theories of material balance.   
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Appendix A: Nomenclature 

API Oil API degree 

BHCOMP Total number of bottom-hole completions in well 

BOI Initial formation volume factor  

dGOM Deepwater gulf of mexico 

DISCOIL/BOE Discovered oil/ bbl. oil equivalent (bbls.) 

FCLASS Field class  

FSTRU Field structure code 

FTRAP1 Field primary trap type 

FTRAP2 Field secondary trap type 

GOR Gas-Oil ratio (scf/bbl) 

H Net pay thickness 

OAREA Oil zone area (acre-ft.) 

OIP Oil initially in-place (bbls.) 

ORECG Oil recoverable from gas reservoir 

ORECO Oil recoverable from oil reservoir 

ORECO_AF Recoverable oil/acre. ft 

ORF Oil recovery factor 

ORP Produced GOR from oil reservoir (Mcf/stb) 

OTHK Oil zone thickness (ft.) 

P_CUMOIL/BOE Proved cumulative oil/ bbl. oil equivalent (bbls.) 

P_RECOIL/BOE Proved recoverable oil/ bbl. oil equivalent 

PC1 First Principal component 
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PI Initial Pressure (Psi) 

Rl Dimensionless aspect ratio 

RSI Solution Gas-Oil ratio 

SDPG Static Pressure Gradient 

SDTG Static Temperature Gradient 

SS Subsea depth (ft) 

SW Water Saturation 

TCNT Total number of sand intersected by well 

TI Initial Temperature (Deg F) 

UCNT Number of under-saturated sand encountered in the well 

WDEP Water depth (ft.) 

 

Symbol Description 

𝐾𝑥 Average horizontal permeability of reservoir , md 

𝐾𝑍 Vertical permeability of reservoir , md 

𝑈𝑡 Total fluid velocity (oil+water) , ft./day 

𝜆𝑟2
𝜊  Relative mobility of residual phase-2 

𝜌𝑙  Density of non-wetting liquid phase 

Dn Dimensionless density number 

Krw Relative permeability to water 

l Length of reservoir 

Ng Dimensionless gravity number 

Npc Dimensionless capillary number 
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Rl Dimensionless aspect ratio 

σhw Interfacial tension of hydrocarbon-water system 

H Net pay thickness 

Δ𝜌 Density difference between oil-water densities 

𝛼 Dip angle 

𝜙 Porosity 

 

Appendix-B: K-Means on log-transformed attributes 

Histogram of transformed attributes 
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Scatterplot after K-means Clustering 
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Distribution of recovery factor for K-means clusters 
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