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Abstract

Visualization tools help people gain insights into data. Analysts often want to

revisit and review previously visited visualization states to make sense of their

previous observations. Browsing a history of visualization interactions is often

useful. Traditionally, history mechanisms are based on either undo-redo or re-

play of low-level keyboard and mouse interactions. In this thesis, we examine the

feasibility of translating low-level interactions into high level user intentions for

the purpose of recording user actions at a semantic level. Yi, et al. [22] taxon-

omize low-level interactions into seven higher level user intents: Select, Con-

nect, Encode, Filter, Explore, Reconfigure, and Abstract/Elaborate.

Our hypothesis is that a rule-based system can translate low-level mechanical

interactions into user intentions under the Yi taxonomy.

Many visualizations are designed around the data state model [3], in which

visualizations are composed of parameters, operators, datasets, and views. De-

pendencies between these objects define a coordination query graph. When a user

interacts with a visualization, these objects get modified in particular sequences

to process, render, and display the information. Our core idea is to define rules

that map the activity in sets of connected objects in a visualization coordination

graph into corresponding user intentions. By dissecting existing visualization de-

signs, we identified and characterized distinct mapping functions for each type of

xi



intention. We then collected these functions in a set of rules for deducing user

intentions.

Based on the identified mapping functions, we implemented a rule system as

a new capability in the Improvise visualization environment [20], for discerning

user intentions behind user interactions. User intentions detected by the rule

system are recorded in an automatically generated data set to allow a user to

revisit earlier visualization states. We designed a user interface to let the user

query the intent data set and restore and replay past visualization states. Fi-

nally, we assessed the utility of the system for performing queries and replaying

visualization history at the level of intentions.
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Chapter 1

Introduction

Visualization tools help analysts discern patterns present in data by providing

visual representations of data. During the visual exploration process, an ana-

lyst interacts with a visualization to pose new queries. During this exploration

process, the analyst may often want to revisit and examine earlier visited visu-

alization states. History tools can be helpful to focus on the exploration process

without having to worry about remembering past results.

History tools are used in many applications. MosaicG [12] visualizes a his-

tory of documents visited in a browser in a two dimensional graphical history

view. A graphical history view presents history in the form of a tree diagram.

A node in the tree diagram represents page details such as title, URL address,

and thumbnail image to aid the user in recognizing the documents. Users can

revisit a document by double-clicking on the tree nodes. Heer, et al. [9] have

investigated the design space of history mechanisms for the visualization systems

and developed a branching undo-redo based history mechanism in Tableau. Vis-

trails [2] proposed a provenance mechanism for capturing the parameter and data

flow changes in a scientific visualization to allow an analyst to navigate through

1



different versions of data flows of an exploration task and compare them. The

Revise toolkit [15] captures low-level interactions to allow users to replay, review,

and explore their past interactions. Roth, et al. [6] have implemented a time

travel history mechanism in the Visage visualization system to address the lim-

itations of the ubiquitous linear undo-redo mechanism. Users can also perform

selective undo operations.

The history mechanisms we looked at are based on low-level mechanical inter-

actions, parameters and data flows, or on undo-redo stacks. Though these history

mechanisms are easy to implement, we propose that users can benefit from se-

mantically meaningful history models that aggregate low-level user actions into

higher level operations which are analytically meaningful and are easier to asso-

ciate with analytical tasks. Several taxonomies have been proposed to categorize

low-level interactions into higher level operations, at different granularity. Shnei-

derman [17] proposed a taxonomy of tasks - overview, zoom, filter, details-on-

demand, relate, history, and extract based on the data type of the information.

Chuah, et al. [4] categorized user actions into graphical operations, set opera-

tions, and data operations. These and a few other taxonomies ( [1], [7], [11]) are

organized around low-level interactions and are only distantly related to a user’s

analytical tasks. A captured history is most useful if it is relevant to a user’s own

understanding of the tasks they perform.

According to Norman’s action cycle [13], user goals are translated into a set

of intentions. Intentions are carried out by performing a set of action commands.

In visualization tools, users perform action commands by interacting with input

devices such as mouse and keyboard. Though users are aware of their goals and

intentions, it is not obvious how to identify and record intentions and the user’s

goals motivating their interactions. Previous history mechanisms are based on

2



low-level keyboard, mouse, and other mechanical aspects of user interactions. We

argue that it is desirable to record history in terms of higher level user intentions

and goals, in opposition to the traditional history models.

Yi, et al. [22] categorize low-level user interactions into seven higher level user

intentions: Select, Connect, Encode, Filter, Explore, Reconfigure, and

Abstract/Elaborate. This taxonomy is interesting to us because interactions

are categorized around user intentions, which are closely related to analytical

tasks. Hence we chose this taxonomy of interaction as our base model for de-

veloping a new history mechanism. Our aim is to identify the user intention(s)

behind user interactions under the Yi, et al. taxonomy, and record those inten-

tions for later replay. To realize this aim, we developed a set of rules to translate

low-level interactions into each of the seven user intentions. We present a user

interface to allow users to query the intention log and replay the interactions

involved in selected intentions. The rest of the thesis document is organized as

follows:

• Chapter 2 provides background information on interactive visualization,

interaction parameters, visualization operators, coordinated multiple views,

and coordination graphs.

• Chapter 3 discusses the intentions in the Yi taxonomy, the approach we use

to detect user intentions and the rules we identified to detect user intentions.

• Chapter 4 describes implementation of the coordinated graph structures as

sets of rules to deduce user intentions, logging of the user intentions, and

the user interface for browsing and revisiting histories.

• Chapter 5 provides an analysis of our rule system and user interface. We

3



analyze the user interface in terms of the queries it can and cannot express.

• Finally, Chapter 6 outlines future directions for this work and concludes.
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Chapter 2

Background

2.1 Information Visualization

Information visualization (InfoVis) is the study and practice of using visual rep-

resentations of data to help people gain insights into the data. Histograms, bar

charts, pie charts, line plots, scatter plots, box plots, and tree maps are the most

commonly used visual representations. A visualization can be either static or

interactive. As the name suggests, a static visualization provides an unchanging

image, while an interactive visualization allows the user to control aspects of the

visual representation and the data it visualizes. Though a static visualization

helps user understand the data, often it does not provide enough ground to an-

swer all the questions user may have about the data especially when the data set

is large and highly dimensional. Interactive visualization overcomes the limita-

tions of static visualization by allowing the user interact with the visualization.

By the virtue of interaction users can explore different dimensions and aspects of

data by dynamically altering their queries.

Each visualization is a collection of one or more views. A view represents
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data by encoding it in visual channels such as shape, position, color, size, and

orientation. Different attributes of the data set can be mapped to these visual en-

coding channels. Apart from the views, a visualization often contains additional

components called Controls. Controls allow a user to modify input parameters

that affect one or more views. Range sliders, alpha sliders, checkboxes, combo

boxes, text boxes, and radio buttons are examples of controls. The difference

between controls and views is that views display data where as a control shows a

value of an input parameter and allows the user to modify that parameter value

interactively.

Interactions define the behavior of views. User perform interactions to ma-

nipulate where they are looking and what they are looking at. The process of

interaction happens in an iterative manner, in which the current state of the visu-

alization serves as both motivation and context for the next user interaction. In

other words, user interactions are motivated by the information a user is already

viewing and information he would like to view.

If we consider an example of online shopping, a user interacts with a website

by first picking the main category of a product they are looking for. As a result

of user interaction, the website updates the list of visible items to show only

relevant products. An interaction to change any sub category or price range

further alters the products and updates the display. The user considers the list

of products being displayed and internalizes these findings before performing

another interaction. This process of information exploration repeats until user is

satisfied.

Interactions transform a visualization from one state to another. Each inter-

action can be thought of as a function that maps a visualization from an input

state to an output state. The resulting visualization state depends upon the in-

6



Figure 2.1: Example of an interactive visualization designed for exploring Earth-
quakes that occurred in Oklahoma between 2011 and 2014. The earthquake view
(A) is a scatterplot in which earthquakes are represented as circles at locations
identified by longitude and latitude attributes in the data set. A table view (B)
lists the earthquakes in the data set used in the visualization. Views A and B
display only the records which satisfies user-controlled filter critieria (Year =
2014 and Magnitude >= 2). C and D are slider controls which allow the user
to modify the filter criteria. Color control E, and Value control F allow the user
to pick the color and the radius of earthquake glyphs respectively, to suit their
preferences.

put state and the user interaction. An input visualization state, given different

user interactions, usually leads to distinct visualization states. Common inter-

actions that users perform in a visualization include panning and zooming in a

scatter plot, changing a slider value, checking a check box, picking an item from

a drop-down list, rotating the coordinate system of a view, marking data items,

and many more.
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2.2 Visualization Parameters

State of a visualization depends upon values of its parameters. Parameters are

user inputs to the visualization, which can be modified by interacting. Every pa-

rameter has a data type and a value associated with it. Parameters are connected

to the views. Often a parameter is connected to more than one view. Parameter

values can also be referred to by data transformation operators in the data flow

pipeline. A view redraws when any value of one or more parameters connected

to it changes. Jankun Kelly, et al. model the visualization process, including

data processing and interaction in the data flow pipeline, in terms of sets of vi-

sualization parameters (P-Set) [10]. User interaction with a view can modify one

or more parameters connected to the view. When a parameter is modified, it

broadcasts a change notification to all views and operators that are connected to

it. Views redraw themselves upon receiving a parameter change notification.

Parameter changing allows user to dynamically choose visual queries. For

example, in figure 2.1, controls C, D, E, and F allow the user to modify input

parameters Earthquake Year, Magnitude, color, and radius, respectively. The

Earthquake Year and Magnitude parameters currently have values 2014 and 2,

respectively. The views only display records that satisfy the filter condition (Year

=2014 and Magnitude >= 2). If the user chooses to view only the earth-

quakes that have magnitude 3 and above, they can do so by moving the position

of slider D from 2 to 3.

The number and types of parameters that a view accepts depends on the

type of the view itself. For example a scatterplot has two (min, max) range

parameters to determine the cartesian coordinate region. A timeline plot has

only one navigation parameter, time range.
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Parameter

Y-Axis	
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Dataset	

Parameter

X	
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Parameter

Y	
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Figure 2.2: Necessary parameters of scatterplot view: X-axis and Y-axis range
parameters are (min, max) range parameters to determine the cartesian region.
X and Y coordinate parameters are real valued parameters for determining coor-
dinate point inside a view. Selection parameter to capture the data items that the
user has selected in scatterplot view. Glyph dataset parameter contains glyphs
of all records drawable in the view.

Certain parameters are common to all views. All views have at least one

glyph data set parameter which will be used to draw the information. A glyph is

a graphical mark such as circle, rectangle, or text. Most views have a selection

parameter to capture the data items that the user has selected in the view.

Figure 2.2 shows the necessary parameters of a scatterplot view.

2.3 Operators

In visualization tools, source data often undergoes a sequence of transformations

leading up to display. Common operations include filtering a data set, concatenat-

ing datasets row-wise, merging datasets column-wise, sorting a data set, removing

unwanted columns, and transforming records into drawable glyphs. Entities that

perform these operations are called Operators. Operators abstract transforma-

tions by taking inputs and generate output that can be expected by performing
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the operation. Commonly used operators in visualization tools include filter, sort,

projection, union, join, and visual mapping(record ->glyph).

Filtering is performed to create a subset of the original data set, such that

every record in the subset satisfies the filter condition. The inputs to a filter

operator are a data set and a filter condition. As explained in the previous section,

a filter condition may depend on multiple input parameters. A sorting operator

takes a data set and a binary comparison criteria as inputs and orders the data set

accordingly. A projection operator maps each record in one data set into a record

in a new data set and is often employed to generate derived attributes and delete

unnecessary columns prior to other transformations including glyph generation.

A union operator takes two or more column-compatible data sets as input and

generates a data set comprising non-redundant records from either dataset. The

union operator concatenates data sets row wise. The merge operator merges two

input datasets column wise and generates a data set that contains columns from

both data sets.

Visual mapping operator converts each record in the input data set into a

glyph to be drawn in a view. This operator has a template that defines the visual

encoding channels such as shape, location, size, color, and orientation of each

glyphs. Attributes of the record and parameters can both be used to define these

visual encoding channels.

Our research focuses on filter, sort, projection, and visual mapping data set

operators, because these are essential to define intention rules.
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2.4 Coordinated Multiple Views (CMV)

Analyzing datasets is challenging. Difficulty in analyzing these datasets arises

from both a large number of attributes and the complex relationships between

them. Another problem is that attributes can be individually complex and may

each require special attention. Some attributes, such as geographical information

and time series are better suited to special types of views. To address these

problems, researchers have proposed techniques to create coordinated multiple

views (CMV). Using CMV, users can explore relationships between attributes

by interacting with records displayed in multiple views. Each view may display

attributes different from those displayed in other views. View can be coordinated

so that interactions performed in a view affects other views.

The visualization in figure 2.1 is an example of CMV. When the user manip-

ulates Earthquake Year value in slider control C, the earthquakes map view and

the table view both filter the data to show only the records corresponding to that

year. In other words, the slider control and the two views coordinated through

the Earthquake Year parameter. Dependencies between parameters, operators,

and views in a visualization form the coordination graph of the visualization. For

multiple views to coordinate, views should either directly share the parameters

or indirectly, the data transformations of one view depend on the parameters of

another view. To create CMV, vis designers need to compose the coordination

graph with the parameters, operators, data sets and views in a meaningful man-

ner(without creating cyclic dependencies). There can be multiple data sources,

interaction sources, and display sinks in a coordination graph.

Figure 2.3 shows coordination graph for the example visualization. Arrow

direction represents the direction of parameter change propagation. The filter

11



criteria of the filter operator is a function of input parameters Magnitude and

Year. Similarly, the visual mapping operator of the Earthquake View depends

on the oval color and oval radius parameters. The coordination graph specifies

which parameters, operators, data sets, and views should update whenever user

interactively modifies a parameter. For example, if the user alters the Magnitude

slider’s position, the Magnitude parameter changes as a result. The filter operator

then updates due to the dependency on the Magnitude parameter in it’s filter

condition, by generating a new data set. The visual mapping operator takes the

new data set as input and calculates a new glyph data set which will be delivered

to the views for display. The region outlined by the dotted red line in figure 2.3

is the subgraph of the coordination graph that recalculates when user interacts

with the Magnitude slider.

Magnitude
Parameter

2

Year
Parameter

2014

Color
Parameter
0b,43,cf,90

Radius
Parameter

6.0

Filter	
Operator

Visual	
Mapping	
Operator

B

Dataset(Filtered)

Dataset(Source)

Dataset
(Oval	Glyphs)

Oval	Glyph	1

Oval	Glyph	2

Oval	Glyph	3

Visual	
Mapping	
Operator

A

Dataset
(Text	Glyphs)

Text	Glyph	1

Text	Glyph	2

Text	Glyph	3

Figure 2.3: Coordination Graph for the visualization in figure 2.1. The dotted red
line region contains the interaction subgraph that is dependent upon Magnitude
parameter
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Magnitude Slider Magnitude Parameter  Filter Operator         Dataset(filtered)          Visual Mapping Operator A         Dataset(Text Glyphs)          Table View 

Magnitude Slider Magnitude Parameter  Filter Operator         Dataset(filtered)          Visual Mapping Operator B Dataset(Oval Glyphs)          Earthquake View

Figure 2.4: Coordinated query paths resulting from user interaction in magnitude
slider

Figure 2.4 further dissects the subgraph into two individual paths that define

the individual effects of interaction on the earthquake and table views. The view

in which the user interacted, and the view in which interaction effects are seen,

are referred as the source view and the target view, respectively. In the example,

the Magnitude slider is the source view. The table and earthquake views are the

target views.
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Chapter 3

User Intentions

Our goal is to log user actions and allow users to revisit the history by searching

the action log. To achieve our goal, we can track mouse and keyboard changes

that happen in the system whenever the user interacts. However, these interac-

tions are too mechanical and low-level to track. Interactions can also be tracked

at the parameter level by logging parameter changes. Though this approach is

feasible, it requires a lot of effort and memory to use the log. Hence we aim

to log user interactions at a level higher than raw interaction events. Yi, et al.

categorized low-level user interactions into seven higher level interactions based

on user intentions. The seven higher level intentions are:

• Select: Mark something as important.

• Connect: Show me related items.

• Encode: Show me a different representation.

• Filter: Show me something conditionally.

• Abstract/Elaborate: Show me more or less details.
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• Explore: Show me something else.

• Reconfigure: Show me a different arrangement.

To log user interactions at the user intention level, we need to deduce the

analytic connotation of user interactions. When a user interacts with the sys-

tem, data available for probing user intention come from keyboard, mouse, and

parameter change events. It is hard to deduce user intention from keyboard and

mouse events directly, as these events are mechanical. However, keyboard and

mouse interactions modify parameters. Parameter changes reflect user intention

more meaningfully. However, looking at modified parameter value changes alone

is still not sufficient to identify user intention.

Many coordinated multiple view visualizations are built around the data state

model [3], in which data undergoes analytical, visualization, and visual mapping

transformations before being displayed in views. According to this model, when a

parameter value changes, it affects other entities such as operators, datasets, and

finally views themselves. Changes in parameters, operators, datasets, and views

taken together, and the sequence in which these entities have changed, define

the effects that user interaction has on the visualization overall. We use the

coordination subgraph involved in any given parameter change to determine user

intentions. (We use the terms interaction subgraph, coordination query subgraph,

and subgraph interchangeably to refer to the interconnected components of a

visualization that change as a result of user interaction.)

Our hypothesis is that the coordination query sub graph involved in a given

user interaction provides a sufficient fingerprint to identify and characterize user

intention. To develop this hypothesis, we looked at the coordination graphs of

existing visualizations to dissect the various ways that visualization designers
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compose coordination graphs to allow user to express the seven intentions. We

identified patterns of subgraph structure for all seven higher level intentions. Each

of these seven higher level intentions have one or more coordination subgraphs, all

distinguishable from each other. Having distinguishable coordination structures

allow us to map interactions to intentions with sufficiently low ambiguity. In the

following sections we briefly explain each of the seven user intentions and the

coordination subgraphs that we identified for each one.

3.1 Select

Users perform selection to highlight data records of interest. Selection helps user

keep track of particular items during ongoing navigation and other kinds of visual

querying, such as rotating or filtering views. Typically, visualization designers

chose a distinct fill or edge color to differentiate the glyphs of selected records

from unselected ones. Designers can use other visual encoding channels, such as

shape, size, or orientation, to distinguish selected from non-selected data items.

For instance, selected records can be encoded as a rectangular shape, different

from the circular shape of a non-selected record, or the size of the selected records

could be much larger than the non-selected records.

Users can perform selection intention in variety of ways, such as clicking,

making a lasso or a rubber band selection, or by hovering over data items. In

visualization systems, selections made using such methods are represented inter-

nally as a special parameter value that parallels records in the visualized dataset.

The selection parameter could be represented either as an array of booleans or

an array of bits (in Improvise, selection parameters are based on the Java BitSet

class). An on at index position i in the selection array means that the record
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Figure 3.1: Example of the Select interaction. All the earthquake glyphs lying
within the lasso region are selected. Selected earthquakes are highlighted in
yellow. Non-selected ones are represented in blue.

with record ID i in the data set is currently selected.

When a user performs selection in a view, the selection parameter bound

to the view (if any) gets updated. Figure 3.1 shows an example of a select

interaction. After selection is performed, to differentiate the selected from non-

selected records, the visual mapping operator checks if the record is set to on

in the selection parameter. It uses this information to determine the shape,

color, and size of the record’s glyph. Because the visual mapping operator is

dependent on the selection parameter, whenever the selection parameter changes,

the visual mapping operator is notified and recalculates it’s glyph data set. The

updated glyph data set will be given as input to the view for rendering. Figure 3.2
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Glyph	1

Glyph	2

Glyph	3
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(Source)

Record	1

Record	2

Record	3

Uses

Figure 3.2: Subgraph for common Select intentions

shows the generic structure of coordination query subgraph that is impacted when

selection is performed in a typical Improvise visualization.

Brushing is another form of selection interaction. In a CMV visualization,

when two or more views visually represent the same records, brushing is often

used to visually highlight the selected records in some or all of those views at

the same time. Figure 3.3 shows an example of visually linking multiple views

through selection. Selection performed in one view highlights the records in all

other views that share same data set and selection parameter. As shown in figure

3.2, the target view can be the locus of interaction (view A) or a different view

(view B). If the target view is A, highlighting is observed directly as selection is

performed. If the target view is B, records are highlighted indirectly as selection

is performed elsewhere.

Yi, et al. categorize brushing as a connect intention. A connect intention

explicitly reveals relationships between different records. However, in the case of

brushing, the same records are implicitly connected by virtue of being highlighted

in different views. Hence we treat brushing as a selection intention.

The selection methods discussed up to now directly affect the selection pa-
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Figure 3.3: Brushing Interaction: Selection is performed in top left scatterplot
of the visualization to highlight the records. Selected records are highlighted in
blue in remaining scatterplots and table view.

A B

Figure 3.4: (A) Selection defined by mouse hover coordinates (x, y). (B) Selection
defined by a movable rectangular region. Selected records are highlighted in red
color.
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rameter in the visualization system. Visualization designers provide alternative

ways to define selection without depending on the selection parameter. For in-

stance visualization designers may allow users to drag and stretch a persistent

rectangular region (a Lens) in a view, to highlight the records present within the

region (see figure 3.4). Similarly, users can hover over a point in the view to

highlight the data item(s) beneath it. In these situations users are not manipu-

lating a selection parameter, but rather non-selection parameters that determine

record highlighting. Figure 3.5 shows the interaction subgraphs involved in select

interaction performed using a rectangular region and a point.

Coordinate	
Point

Visual	
Mapping	
Operator

View	A

Dataset
(Glyphs)

Glyph	1

Glyph	2

Glyph	3

View	A/B

Dataset
(Source)

Record	1

Record	2

Record	3

Uses

Coordinate
Region

Visual	
Mapping	
Operator

Plane	Lens

Dataset
(Glyphs)

Glyph	1

Glyph	2

Glyph	3

View

Dataset
(Source)

Record	1

Record	2

Record	3

Uses

A

B

Figure 3.5: (A) Coordination subgraph of selection performed by dragging and
stretching a persistent rectangular ”lens”. (B) Coordination subgraph of selection
performed by hovering over coordinate point (x, y).
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3.2 Connect

A connect intention reveals relationships between data entities through interac-

tive selection. When user performs selection, the entities related to the selected

ones get highlighted through some common characteristic. This is in contrast to

selection intentions, in which identity determines highlighting. Figure 3.6 shows

an example of connect activity involving two distinct datasets. A map view vi-

sualizes commercial flights data by drawing a line for each flight from origin to

destination. A table view shows aggregate flights by carrier. When a user selects

a carrier in the table view, the flights associated with the selected carrier are

highlighted in red color on the map. Flight records and carrier summary records

are connected visually through carrier name attribute using color. By selecting a

carrier, the user is able to see airports between which the carrier operates flights.

In this example, the user can perform connect interactions to explore carrier-flight

relationships.

Figure 3.7 shows the subgraph that is involved in the connect interaction. To

Figure 3.6: Example of a connect interaction between different Datasets/Entities.
Map view highlights the flights that belong to the selected carrier(s) in red color
to reveal carrier-flight relationships.
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connect the selected entities of data set A with the non-selected related entities

of data set B, a new data set that contains only the selected items of data set A

needs to be generated by applying a filter operation. The filter condition tests if

the record is selected. Once the data set of selected records is generated, a lookup

operator uses this data set to generate an internal index table on the characteristic

on which the connect needs to be performed. The visual mapping operator uses

the index to look up whether the record in data set B has a relationship to the

selected records. The visual mapping operator highlights the corresponding glyph

if it’s record in data set B is related to any of the selected records.

Connect reveals relationships between different types of objects present in

two datasets. The datasets are typically distinct but may well be the same.

For instance, a view shows employee records of an organization and the user

interaction is to highlight all employees who belong to the same department as

a selected employee. In this case, the user is trying to explore a relationship

between objects (employees in the same department) within a single data set

using a connect interaction.

Selection
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Filter	
Operator

View

Dataset
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Selected	Rec1

Selected	Rec2

Selected	Rec3

View

Dataset
(Dataset A)

Record	1

Record	2

Record	3
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Index	
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Visual	
Mapping	
Operator

Dataset
(Dataset B)

Record	1

Record	2

Record	3
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Dataset
(Glyphs)

Glyph	1

Glyph	2

Glyph	3

Figure 3.7: Coordination query subgraph for the Connect interaction
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3.3 Encode

According to Yi, et al., any interaction that modifies the visual representation of

the data is categorized as encode intention. An encode intention allows users to

choose the visual representation that works best for them. As explained in the

previous sections, visual mapping operator determines shape, color, size, position,

and orientation of the glyphs using data attributes, parameters, and constant

values. Altering any parameter which in result changes visual encoding of the

data items in one or more views is treated as encode intention. Users can change

visual encoding of data in two ways: Firstly, updating the parameters that are

used to determine the encoding channels, and secondly, by updating the attributes

that are used to determine encoding channels.

Figure 3.8 shows the coordination query subgraph that involves in the encode

intention of first type. Example interactions that have this type of sub graph

are: changing the color scheme used for representing the glyphs, modifying the

width and hight of the glyphs as shown in figure 2.1. By interacting, users modify

parameters which are used by visual mapping operator. Visual mapping operator

creates new glyph data set because the input parameters have changed. However,

selection parameter is an exception to the encode intention. As explained in

the previous section, when user performs selection, visual mapping parameter

changes as a result of change in selection. Selection can be thought of as a

special attribute of data set that contains value as either true/false or 0/1. So

any changes to visual mapping parameter as a result of change in selection, can

be considered as a change in data rather than change in the encoding of the data.

Second type of Encode interaction involves changing the attributes assigned

to encoding channels color, width, and hight. Visualization in figure 3.9 provides

23



Parameter
(Non-Selection)

Visual	
Mapping	
Operator

Control

Dataset
(Glyphs)

Glyph	1

Glyph	2

Glyph	3

View

Dataset
(Source)

Record	1

Record	2

Record	3

Uses

Figure 3.8: Coordination query subgraph for the Encode interaction

a way for user to choose the attributes used for determining color and size (width

and hight) of the oval glyphs. According to the current encoding scheme, depth

and magnitude attributes of earthquake data set are determining size and color

of the oval glyphs respectively. Earthquakes having more depth are represented

with bigger ovals compared to the ones having lesser depth. Similarly, color of

the earthquakes having more magnitude are drawn in darker red color compared

to earthquakes having smaller magnitude. Using this encoding, users can easily

see that the earthquakes having higher magnitude have less amount of depth

to them and vice versa. With the current encoding scheme, users can explore

Magnitude, Depth attributes, and relationships between them. With the help

of encode interaction, users can explore different attributes and relationships

between them by interactively changing the encoding scheme.

Figure 3.10 shows the coordination query subgraph that involves in dynam-

ically changing encoding scheme. User updates encoding scheme by changing

attribute selection. As attribute selection has changed, selection index operator

identifies the index number (attribute ID) of the selected attribute and inputs

the same to visual mapping operator. The visual mapping operator encodes at-
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Figure 3.9: Encode intention: Changing data attributes used to calculate size
and color of the earthquake glyphs.

tribute value present at the position given by index number to either size, color,

or shape of the glyphs.
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Figure 3.10: Coordination query subgraph for encode intention.
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3.4 Filter

Filter interactions allow users to visualize subset of data items which are satisfying

certain criteria specified by filter condition. If a record satisfies condition specified

by the filter operator, then the record will qualify to be presented in the view,

otherwise it will be ignored. Users can change the filter conditions dynamically

by manipulating the parameters on which filter operator is depending on. Filter

is applied on the input data set to create a new data set that contains all the

records satisfying the filter criteria. Once the new data set is generated, visual

mapping operator transforms the data set into glyphs to be visualized in views.

Figure 3.11 shows the rule for detecting the filtering interaction. Users interact

with controls such as range sliders, check boxes, and dropdown menus to filter

the records. Direct manipulation of these controls modify parameters connected

to them. Parameter change propagates to filter operator as the filter condition

depends on the value of the parameter. Change of the filter condition forces the

filter operator to generate new data set. ’*’ on the edge suggests that the new

data set may undergo optional operations such as sorting and projection before

being visualized.
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Figure 3.11: Coordination query subgraph for the Filter interaction
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Figure 3.12: Example for filter interaction using masking approach

Masking is another filtering mechanism vis designers employ when layered

approach is used to construct a view. As shown in figure 3.12, multiple layers of

a view can be used to show different information. In the example, ‘Show Routes’

check box allows user to make layer showing information about boat routes either

visible or invisible. This filtering allows user to make unwanted information on a

layer invisible to reduce cluttering in a view. Figure 3.13 shows the interaction

subgraph that involves in masking filter interaction. When user interacts with

control, the boolean parameter connected to the view gets updated. Modified

boolean parameter then notifies view that it has changed. View then makes the

corresponding layer either visible or invisible based on the value of the boolean

parameter.

Boolean	
Parameter

Control View

Figure 3.13: Coordination query graph for filter interaction using layer masking

27



Figure 3.14: Perceptual filter: Selected records are shown in bright colors. Non-
selected records are shown in translucent colors.

Perceptual Filter is another filtering mechanism which makes non-selected en-

tities almost transparent and selected entities brighter as shown in figure 3.14.

Since visual mapping operator calculates translucency based on selection param-

eter of the view, interaction subgraph of perceptual filter matches with that of

Select interaction. In scenarios like these, it is not possible to distinguish select

from perceptual filter without analyzing the color values visual mapping oper-

ator uses to represent both selected and non selected. However, analyzing the

individual parameter and operator values is beyond the scope of this research.

To address collision between the two graph structures of these two interactions,

we chose to log only select interaction because of two reason, firstly user has per-

formed selection to pick objects he is interested in and secondly, the non-selected
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items are not completely removed from the view, instead these are made more

transparent than the selected ones.

3.5 Abstract/Elaborate

Abstract/Elaborate interaction enables user to view data at different levels of

abstraction. Elaborate is to view information at detail level while Abstract is to

visualize data at a overview or summary level. Because of the limited screen size

and perceptual and cognitive limitations of human, all the information cannot

be visualized at once. It makes sense to first get a overview of the data before

delving into the details. overview - select - filter - details, Semantic Zooming,

and Tooltip interactions are the examples of Abstract/Elaborate.

In case of overview-select-filter-details, overview often presents aggregated

information in the forms of categories that best represents the information. De-

tail View presents elaborate information of the selected category in the overview.

Upon selecting one or more categories in overview, detail view visualizes informa-

tion specific only to the selected ones. Figure 3.15 shows the interaction subgraph

of overview - select - filter - details interaction. Filter operator A takes selection

parameter and data set of Overview and generates a new data set which contains

list of selected overview categories. Filter operator B takes detail data set and

data set of selected overview records as input and generates a new data set which

contains records of detail data set which belongs to selected overview categories

only. Filter criteria is to check whether or not record from detail view belongs to

any one of the selected categories.

When user performs selection in overview, the selection parameter of the view

gets updated. As the selection parameter of overview is changed, filter operator

29



Selection	
Parameter

Visual	
Mapping	
Operator

Overview

Dataset
(Glyphs)

Glyph	1

Glyph	2

Glyph	4

Detail	View

Dataset
(Selected)

Record	1

Record	2

Record	4

Filter	
Operator

Dataset
(Overview)

Record	1

Record	2

Record	3

Record	4

Uses
Dataset
(Selected)

Record	1

Record	2

Record	3

Any	
Dataset
Operator

*
Dataset
(Selected	
Details)

Record	1

Record	2

Record	4

Filter	
Operator

Dataset
(Detail)

Record	1

Record	2

Record	3

Record	4

Uses

Figure 3.15: Interaction subgraph for the Overview - Select - Filter - Details
interaction

A generates a new data set of selected categories. Since the selected categories

data set has changed, filter operator generates a new detail data set to reflect

the newly selected overview categories. As explained in previous section, the

subsequent optional operations such as sorting and projection can be applied on

new detail data set before visually transforming the data set into glyphs.

Tooltip details is another widely used Abstract/Elaborate interaction. Using

Tooltips, a user can mouse hover on a data item to view additional details of the

item as shown in figure. Figure 3.16 shows interaction subgraph for the tool tip

interaction. Hovering can be captured in different ways. Two most commonly

observed mechanisms to capture hovering are through coordinate point (x, y)

and selection parameter. Coordinate point (x, y) parameter which is location of

mouse in a scatterplot view, can be used to determine whether or not a data item

is close to point (x, y). A record can be treated as hovered item if it is beneath

mouse position. Capturing mouse hover through selection parameter is explained

in previous section. Filter operator generates a new data set that contains only

hovered item. The hovered record then visually transformed into a glyph to be

visualized in tooltip view.
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Figure 3.16: Coordinate query subgraph for the Tooltip(Elaborate) interaction

Semantic Zooming is another commonly used technique which can be classified

under Abstract/Elaborate interaction. Semantic zooming technique is applied to

views where range is one of the fundamental parameter. Scatterplots visualize

information present with in coordinate region defined by X and Y-axis extent.

Similarly timeline plots presents information within a time range. In these kind

of views, Semantic zoom-in on horizontal and/or vertical axis will provide more

details, while zooming out would provide less details. The idea is to decide on

what level of details need to be presented based on the extent of the axis or

zoom level. So the extent of the axis decides the records to be visualized in

the view. Google maps zoom-in and zoom-out is an example for semantic zoom

interaction. Depending on the amount of zoom, level of information varies from

countries, states, cities, and streets.

When user zooms in or zooms out, the extent of the axis is modified. Change

in the extent of the axis results in recalculation of the data set that needs to be

visualized. Hence parameter change graph looks as shown in figure 3.17. The

filter operator calculates extent/zoom level using input range parameters and

calculates new data set to be visualized at that zoom level. The new data set

may undergo optional data transformations such as sorting and projection before

getting visualized.
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Figure 3.17: Parameter change graph for the Semantic
Zoom(Abstract/Elaborate) interaction

3.6 Reconfigure

According to Yi, et al., reconfigure intention allows users to alter data arrange-

ment in a view. This interaction is useful because at times single arrangement of

the data might be not be sufficient for the data exploration and require different

arrangements of the records. Ordering a data set is an example of reconfigure in-

teraction. Records can be ordered based on particular characteristics of the data

set either in increasing or decreasing order. Figure 3.18 provides an example of

reconfigure interaction. Records are currently ordered on horsepower attribute

of the vehicles. Users can change the attribute to be used for sorting by altering

selection in the ‘Order By’ control. Users can also choose the order by checking

or unchecking the ‘Order’ checkbox. When user checks the checkbox, records are

sorted in ascending order, otherwise ordered in descending order.

Figure 3.19 shows the rule for detecting sort reconfigure intention. When

user changes attribute selection, selection index operator identifies the index of
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Figure 3.18: Example for reconfigure intention.

selected column. Since index of the selected column changes, sort operator orders

the data set with respect to the attribute present at the index given by selection

index parameter.

User reconfigures data set by changing attribute selection. As attribute selec-

tion has changed, selection index operator identifies the index number (attribute

ID) of the selected attribute and inputs the same to sort operator. Sort operator

generates a new data set by ordering the input data set based on the attribute

present at location given by index number. The new data set may undergo

optional data set operations such as projection and filtering before getting visu-

alized. Similarly, user can alter a parameter to decide the order in which data

set should be sorted.

Changing the data attributes assigned to position (x, y) of glyph is another

interaction Yi, et al. classified as reconfigure. However we already categorized

this interaction under encode intention because, assigning attributes to position

of glyph is encoding of data attributes into position.
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Figure 3.19: Interaction subgraphs for reconfigure intention. A: Changing at-
tributes used for ordering. B: Changing the order(Increasing or Decreasing).

3.7 Explore

Due to the limitations of screen size, large datasets and human perceptual and

cognitive limitations, often views display only part of the data set. Explore

interaction lets users analyze a section of data set before move onto the another

section of data set. Most common explore intention technique is panning and

zooming interaction. Panning is performed by grabbing the scene and moving

it while camera stays still. Panning alters the X-Range and/or Y-Range of the

view, i.e. changes region of the view to be shown. Hence panning is most suited

to the views which display information within a range such as scatter plots and

timeline plots. Users perform panning in google maps to view the geographic

region of their interest. In timeline plots users alter time range by panning to

visualize records within the modified time range. Figure 3.20 shows the subgraph
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Axis	Range
Parameter

View	A View	A/B

Figure 3.20: Interaction subgraph for explore intention.

involved in panning explore interaction. When user is panning, view assigns new

value to the axis range parameter. Since the range parameter is modified, it

sends parameter change notification to all the views it is connected to including

the view in which panning is performed.

Yi, et al. have categorized syntactic zooming as Abstract/Elaborate inten-

tion. However, we consider zooming as explore interaction because when user is

zooming, he is navigating in the information space.
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Chapter 4

System Implementation

This chapter describes design and implementation details of our system. We

implemented our history mechanism as part of Improvise [20] visualization envi-

ronment. Implementation task of system is divided into subtasks as follows:

1. Identification of coordination query path for user interaction

2. Implementation of rule system

3. Detecting user intentions by matching coordination of query paths with the

rules

4. Recording user intention details

5. Querying and Revisiting earlier visualization states

In the following sections, we will explain design and implementation choices

we made to achieve the above tasks.
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4.1 Coordination Query Path

As explained in section 2.4, when user interacts with the visualization, only sub-

graph of the coordination query graph involves in user interaction. However it

is difficult to construct the entire interaction subgraph by using the parameter

notification mechanism since parameter notifications moves forward and never

retreats like functional calls does. It is possible to construct the coordination

query path from source view to target view using the notification mechanism. In

the following section, we will explain Improvise coordination architecture used to

extract the coordination query paths involved in user interaction.

Improvise

Improvise is a coordinated multiple view visualization system. Improvise archi-

tecture facilitates seamless coordination between multiple views through shared

parameters. Figure 4.1 shows the coordination architecture of improvise. Ter-

minology of improvise architecture is different from data set model. Parameters

in Improvise are referred as variables. Similarly filter, sort, projection operators

are referred as Lexical Filter, Lexical Sort, and Lexical Projection respectively.

Datasets are referred as Lexical Info.

Improvise system brings parameters, operators and datasets under same um-

brella by assigning lexical as value to the variable. By assigning lexicals to vari-

ables, Improvise treats operators and datasets as special parameters. As shown

in figure, parameter change notification goes through all the variables of parame-

ters, operators and datasets before it reaches view. With the help of notification

protocol, we can easily identify the objects of the coordination graph that involve

in user interaction.
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Figure 4.1: Used with permission from Chris Weaver [21]. Improvise notification
mechanism. 1: User interaction within a control modifies active properties of
control. 2: Changed properties assign new value to variable. 3: Variable sends a
value change notification to all properties connected to it. 4: Properties assigns
variable value to itself. 5: Variable also sends value change notification to all
lexicals that refer to the variable in their expressions. 6: Lexical sends change
notification to variable it is assigned as value. 7, 8: View updates itself to reflect
the change in value of live property.

Coordination Query Paths

Improvise change notification protocol facilitates identification of coordination

paths involved in user interaction. When a variable changes, it sends a change

event notification to all the interested listeners. We enhanced notification mech-

anism to capture list of types of all the variables which change along the path,

from view in which user interacted to the view in which interaction has effects.

When a variable receives change notification, it adds its type to the list and pass

the list to the next variable. This process continues until the notification reaches

property of the view. When property receives the notification, list has types of

all the parameters and operators in the occurrence order along the coordination

query path.
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Magnitude Slider Magnitude Parameter  Filter Operator         Dataset(filtered)          Visual Mapping Operator A         Dataset(Text Glyphs)          Table View 

Magnitude Slider Magnitude Parameter  Filter Operator         Dataset(filtered)          Visual Mapping Operator B Dataset(Oval Glyphs)          Earthquake View 

Lexical	
ProjectionLexical	InfoLexical	

FilterSlider Integer Lexical	Info TableView

Lexical	
ProjectionLexical	InfoLexical	

FilterSlider Integer Lexical	Info Scatterplot
View

Figure 4.2: Coordination query paths: Two coordination query paths are ob-
served one for each target view when user interacts with the magnitude slider of
the visualization shown in figure 2.3.

As shown in figure 4.2, each node in the path contains a type of the variable

and reference to the succeeding node.

4.2 Rule System

Rule system holds the repository of the rules and matches those rules with coordi-

nation query paths of the interaction. This section first outlines implementation

of the rules and then explains rule matching algorithm.

4.2.1 Rule Implementation

Our rule system implements the mapping functions we identified in chapter 3 as

set of rules. Idea is that when user interacts with the visualization, the coordi-

nation query paths corresponding to the interaction can be matched with these

rules to identify the user intention. The natural choice for implementing the rules

is graph data structures as the functions are themselves graphs.

A rule system often enforces conditions such as an object can only be of

certain types and/or not allowed to be of certain types to match a rule. In our
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Attribute Type Description

Allowed Types List
List of allowed types (parameters, operators,
datasets or views)

Non-Allowed Types List List of non-allowed types

Optional Boolean Indicates whether a node is optional or not

Forward Edge Node Reference to the succeeding node

Back Edge Node Reference to the back edge

Table 4.1: Attributes of the nodes in a rule graph

rules we have cases where an operator can be any one out of filter, sort, union,

and join operators. Similarly we also have cases where a parameter can not be of

certain types. Allowed Types contains list of all acceptable types for that node,

where as Non-Allowed Types contains list of types that node cannot be. A type is

considered to be a match for a node in rule graph only if the type is compatible

with one of the Allowed Types and not compatible with Not Allowed types of the

list. Figure 4.3 shows conversion of conceptual filter interaction graph into rule.

As shown in figure, Backward Edge allows the rule to match multiple instances

of the nodes present in between the nodes connected by it. Subsequence Lexical

Projection –>Lexical Info –>Lexical Sort –>Lexical Info can be matched twice

with back edge ’D’ shown in figure.

If there is a mismatch between the type and the node, Optional attribute

identifies whether or not rule matching procedure should continue. If the attribute

value is true, rule matching procedure continues to match the type with Forward

and Backward Edges of the node. Rule matching fails if a node is not optional.

Value of Any in Allowed Types indicates that any type is compatible with

that node. However, if the Non-Allowed Types list is not empty for such a node,

node matches with all the types except the non-allowed types.
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Rule Repository

System maintains rule repository as a list of Intent Name and Rule reference

pairs. When user interacts with visualization, system can match coordination

query paths of user interaction with the rules present in the repository. When

ever system identifies a match, intent corresponding to the rule can be recorded.

In the following subsection, we will present the graph matching algorithm.

4.2.2 Rule Matching

For coordination query path to match rule’s graph, there should be a valid path

from source node to target node in the rule’s graph resembling the coordination

query path. Resemblance of the two paths is decided based on the types of the

nodes. While validating a Type Node with a Rule Node, it is considered to be

a match only if the type is present in the allowed list and not present in the

non-allowed list.

Approach of the rule match algorithm is that all possible paths from source

node to target node in the rules graph are traversed and matched against coor-

dination query path. If at least one path of the rule graph matches with coordi-

nation query path, intent corresponding to the rule graph is detected. Following

is the approach of our rule matching algorithm:
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• If RuleNode and TypeNode are Empty

– return True

• If RuleNode is Empty and TypeNode is Not Empty or vice versa

– return False

• If the RuleNode is optional

– If RuleNode and TypeNode are mismatched

∗ Match RuleNode.next and TypeNode

∗ Match RuleNode.back and TypeNode

– If RuleNode and TypeNode are matched

∗ Match RuleNode.next and TypeNode.next

∗ Match RuleNode.back and TypeNode.next

∗ Match RuleNode.next and TypeNode

∗ Match RuleNode.back and TypeNode

• else (Rule node is mandatory)

– If RuleNode and TypeNode are mismatched

∗ Return False

– If RuleNode and TypeNode are matched

∗ Match RuleNode.next and TypeNode.next

∗ Match RuleNode.back and TypeNode.next
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Rule matching procedure terminates in 2 scenarios:

1. After all possible paths in the rule graph are explored

2. If a mandatory node(Optional attribute value is False) is mismatched

Once the system identifies a match, an intent is detected and the details of the

that intent need to stored. Next sections describes design and implementation

details of logging mechanism.

4.3 Intent Logging

Our rule system generates intents by matching the subgraph affected by the user

interaction with the graphs of the rules. The identified user intention needs to

be recorded in a log to access it at a later point in time. Capturing these details

efficiently and cleanly decides the ability to query and revisit history. Intent

name, parameter user interacted with, value of the parameter, view in which user

interacted, view in which intent is observed, and time at which intent is performed

are details that can be captured when an intent is identified. Parameter user

interacted with, view in which user interacted, and view in which user intention

is observed are referred as Source View, Source Parameter, and Target View

respectively.

Logging intent details alone will not be sufficient to replay the intents. State

of visualizations need to be saved in parallel to the intents recorded. According to

the P-Set model [10], state of a visualization can be captured by storing parameter

values of that visualization. As user interaction modifies state of the visualization,

we capture the changing states by recording parameter changes. Parameters can

be stored along with the identified user intentions in a single data set, but to
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separate the concerns related to state of the visualization and intent recording,

we log the parameter value changes and intent details as separate datasets.

4.3.1 Logging State Changes

Objective of our system is to allow users revisit earlier visualization states by

playing user intentions. To revisit a visualization state, system needs to restore

the values of the parameters corresponding to that state. Our system facili-

tates this by capturing all the visualization states in a parameter log data set.

Parameter log stores all the parameter changes in a visualization as shown in

figire 4.4. When user interaction modifies a parameter, the value of that param-

eter is captured in parameter log. Along with value of the parameter, parameter

log captures other details described in table 4.3.1.

Attribute Description
ID Unique identifier of parameter change
Parameter Name Name of the parameter modified
Parameter Value Value of the parameter after user interaction
Time Time at which parameter is modified
Previous ID ID of the record holding previous value of that parameter

Table 4.2: Data set schema of Parameter Log

Figure 4.4 shows parameter log of a visualization. ID uniquely identifies an

entry in parameter change log. As ID is sequential and non-decreasing, it provides

random access to entries in parameter log. Time attributes provides reference to

the time at which the parameter is modified. Previous ID attribute identifies the

log record that has previous value for that parameter.
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Figure 4.4: Parameter change log.

4.3.2 Logging User Intentions

Every time intent is detected, details of it can be added to user intention data

set but, this approach creates an intent record for every parameter value change.

User interaction often modifies same parameter in a sequence and adding an

intent record for every parameter value change can be avoided by coalescing

the user intentions resulted from continuous interaction. For example, as shown

in figure 4.5, when user is selecting in a view, the selection parameter of the view

changes multiple times in the course of interaction. In this scenario, instead of

logging Select intent for every change in selection parameter, identified intents can

be compressed to a single Select intent to significantly reduce the log size while

capturing the information completely. The term ’continuous’ doesn’t represent

time or any other dimension instead, it refers to the continuous behavior of user

interaction. Selection parameter is modified 5 times in succession with ID’s from
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82 to 86 in parameter change log. Since our system identifies user intention every

time parameter get modified, 5 select intents will be detected. As shown in figure,

5 intents can be coalesced to a single intent with the help of Start ID, and End

ID attributes. These attributes are foreign keys to the parameter log and identify

the parameter change log interval of the interaction.

In the above example, parameter is the criteria used for coalescing intents.

Intentions identified in a sequence get coalesced if those intentions are performed

by modifying same parameter. User selection events from 82 to 86 correspond to

same parameter Point Selection. However, it is possible that certain parameters

in a visualization may get modified in a interleaved fashion. For example, while

panning in map view, user interaction may modify X-Axis and Y-Axis range pa-

rameters in a interleaved fashion. Similarly, while moving mouse in a scatterplot,

X and Y coordinate parameters change alternatively. In these scenarios, continu-

ity of intentions cannot be determined based on the parameter criteria. This can

be addressed by coalescing intentions detected for interleaved parameters at dif-

ferent levels as shown in figure 4.6. At intermediate level, intentions interleaved

for both X-axis and Y-axis range parameters can be coalesced into intentions

of coordinate region and interleaved intentions of X and Y coordinates can be

coalesced into intentions of coordinate point. At the view level, interleaved inten-

tions of all parameters can be coalesced. Though coalescing of intentions above

parameter level solves the interleaved parameter problem, it reduces the speci-

ficity of intention querying. Users cannot query the intention log to view only

intentions corresponding to specific parameters as intentions of multiple param-

eters are coalesced at higher levels of coalescing. Hence we chose to coalesce and

log the detected user intentions at two different levels, parameter and view level.
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Figure 4.5: Coalescing of Select interaction: User interaction updated Point Se-
lection parameter five times. 5 select intents are coalesced to a single Select
intent
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Scatterplot View

Parameter Level
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Coordinate Region Coordinate PointIntermediate 
Level

Figure 4.6:

Parameter Level Coalescing

At parameter level, criteria for coalescing two sequential intents are source pa-

rameter, and source view. Intents of same type get coalesced when two successive

intents in a target view have same source parameter and same source view. Ta-

ble 4.3.2 describes the intent information captured in parameter intent log record

at parameter level.

Attribute Description
Intent Name of the deduced user intention
Source View View in which user interacted
Source Param Parameter modified in user interaction
Target View View in which user intention is detected
Start Time Time at which user intention has stated
End Time Time at which user intention has completed
Start ID Starting ID of the user intention
End ID Ending ID of the user intention

Table 4.3: Data set schema of Intent Log captured at parameter level
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View Level Coalescing

Similarly at view level, intents of same type in a target view get coalesced if they

are successive. Advantage of view level coalescing is that, Intents of same type

but are performed by interacting with different source parameters get coalesced.

Table 4.3.2 describes the information captured at view level intent logging.

Attribute Description
Intent Name of the deduced user intention
Target View View in which user intention is detected
Start Time Time at which user intention has stated
End Time Time at which user intention has completed
Start ID Starting ID of the user intention
End ID Ending ID of the user intention

Table 4.4: Data set schema of Intent Log captured at view level

4.4 Intent Browser

Our main objective is to allow user query captured history and replay it. To

facilitate this, we developed an user interface called Intent Browser to query the

intention logs and revisit earlier visualization states. User interface design is

strongly motivated by the information being captured. Figure 4.7 shows the user

interface. Since the intentions are captured at two different levels, our interface

allows user decide which log to query. Choice selected in Intent Detail radio

button decides intention log to be queried.

Figure 4.8 shows the data flow pipeline of our user interface. Either parameter

or view level intention data set is chosen based on the choice selected in Intent

Detail control in user interface. Filter operation is applied on the chosen data

set. Intent, Target View, Parameter, and Source View controls in user interface
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Figure 4.7: User interface for browsing and replaying the user intentions. ’Intent’
control lets user view only Intents of selected types. Selection in ’Target View’
control shows intents correspond to those views. Selection in ’Parameter’ control
shows only intents detected when the selected parameters are modified. ’Source
View’ allows the user to view intents performed by interacting with those views
only. ’Intent Detail’ radio button allows user to query either parameter intent log
or view intent log. Buttons ’Play Intent’, ’Pause Intent’, and ’Play Back’ allow
user to play, pause, and play back the intents respectively.
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allow user to modify filter criteria. Filtering criteria is different at parameter and

view level querying. At view level querying, an intention record is shown only if

it’s Type and Target View attribute values are present in set of intent types and

target views selected in Intent Browser respectively. At parameter level querying,

an intention record is shown only if it’s Type, Target View, Source View, and

Source Param attribute values are present in set of intent types, target views,

source views, and parameters selected in Intent Browser respectively. Parameter

and Source View controls in the user interface are not functional when user is

querying at view level as source view and parameter details are captured only at

parameter level intent log.

As shown in figure 4.5, user selection in one view might brush items in multiple

views. Since our approach is based on coordination query paths, our rule system

detects select intention for every view in which brushing is observed. All these

intention records captured for different target views are part of single selection

intention performed by user. Similarly, in CMVs, often interaction has effects

in multiple views. In this scenario, information in intention records is duplicate

except for the Target View attribute. It will confuse the user if multiple intention

records of same type are shown in the search results. Hence we chose to aggregate

similar intention records belonging to one single user interaction. Records are

aggregated based on Intent Name, Source Parameter, Source Target, Start ID,

and End ID. This means, if two or more intention records are captured of same

user interaction, they will be aggregated.

Name of the Intent, Source view from which intent is performed, Parameter,

and timing information are the details shown in the displayed log at parameter

level querying. As shown in figure 4.9, view level querying displays only Intent,

and timing information of the log. Difference in the displayed logs is due to
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Figure 4.8: Intent Browser query data flow pipeline

the different coalescing criteria. Also interesting readers might have noticed that

Target View attribute is not shown in displayed results at both parameter and

view level querying even though this attribute is recorded in both the intention

logs. This is because of the aggregation operation performed in the query pipeline.

User can select one of the displayed intent records and chose to play it by

clicking either Play Intent or Play Back button. Play intent button plays

the user intention in forward direction where as Play Back button plays user

intention from end to the starting of the user intent. Pause Intent button

allows user to pause while revisiting history.

When user choses to play selected intent, Start ID, and End ID can be ob-

tained. History browsing should show all the visualization states between Start

ID and End ID. To show the states within the interval, system first needs to

be brought to a state same as the one just before interval. To achieve this, our

system uses parameter log and key frame log. Keyframe stores state of all the

parameters at the time of capturing it. As shown in figure 4.10, a keyframe
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Figure 4.9: User interface for browsing and replaying the view level user inten-
tions.

is captured after every 100 parameter value changes. Also an initial keyframe

is captured the moment visualization is loaded to preserve the initial state of

visualization before user starts to interact.

To play an intent with parameter log interval between 144 and 226, visual-

ization needs to be brought to a state same as the one after parameter change id

143. To do so, system takes copy of nearest keyframe i.e. kf1 and modifies it to
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Figure 4.10: Keyframe capturing mechanism

reflect parameter value changes from 101 to 143. Once the keyframe represents

state corresponding to event id 143, parameters of visualization will be assigned

with values present in the keyframe. After bringing visualization to state after

parameter change id 143, parameter changes from 144 to 226 will be replayed one

by one.

Similarly, in case of replaying back, visualization first needs to be brought

to a state from which user wish to replay back. After the visualization state is

established, Previous ID attribute of parameter change log can be used to replay

intent backwards.
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Chapter 5

System Analysis

In this chapter, we present an analysis of our history system. First, we present the

effectiveness of the rule system. Then, we describe the effectiveness of coalescing

intentions at two different levels. Finally, we demonstrate the expressiveness of

user interface in terms of questions it can and cannot express.

5.1 Rules Analysis

We loaded existing visualizations and performed various interactions to see if

the rule system works as expected. We observed that the rule system correctly

translates low-level interactions into user intentions, except for a few instances of

false positives. These false positives result from the rudimentary way in which

we match transformation functions. Our rule system translates interactions into

intentions only based on the types of coordination graph components that change

as a result of user interaction, rather than the internal characteristics of those

components.

As shown in figure 5.1, a user can select data items in a view by hovering the
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A B

Figure 5.1: Selecting Items by mouse hovering. (A) A select intention is correctly
detected. (B) A select intention is incorrectly detected, since none of the items
are selected.

mouse over them. Our rule system matches the selection rule with the coordina-

tion query path of user interaction when the user moves mouse inside the view.

Mouse hovering highlights items if the position of the mouse is inside the corre-

sponding glyphs. Items are not highlighted when the mouse position is not inside

any of the data items in the view. Since our approach of deducing user intention

is based on types of components present in coordination query path, but not on

the internal characteristics of those components, the rule system detects a select

intention irrespective of whether any items are highlighted or not.

Similarly, we observed a false positive user intention when selective filtering

is employed, as shown in figure 5.2. Users can optionally filter the information

present in the view by checking the Horse Power and Weight checkboxes. The

filter intentions identified by the rule system for any changes in horse power and

weight ranges are true positives when these options are selected. When these

options are disabled, any user interaction to modify horse power and weight
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A B

Figure 5.2: A: User Interaction to modify the range of Horse Power and Weight
parameters, filters the data shown in view(True Positive). B: Modifying pa-
rameters does not filter data, but rule system identifies Filter intention(False
Positive).

ranges, does not filter the data in the view, but the rule system detects a filter

interaction nevertheless. These false positives might be avoided by incorporating

some additional rules that more deeply examine individual parameters, operators,

and datasets to make sure that a detected intention is not only syntactically valid

but also semantically correct.

5.2 Coalescing Analysis

Capturing an intention log at multiple levels provides flexibility in querying.

At the view level, performed intentions are highly summarized in the log. In

parameter level coalescing, captured information is at a finer grain of detail.

Figure 5.3 shows the difference between parameter level and view level coalescing.
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Event identifiers from 41 to 70, and from 123 to 166, represent user interaction

with the X-axis range parameter. Similarly, event identifiers from 71 to 122, and

from 167 to 184, correspond to user interaction with the Y-axis range parameter.

As a result of panning along the axis, the system detects explore intentions. At

the view level, all explore intentions are coalesced into a single explore intent. At

the parameter level, four distinct explore interactions are recorded as parameters

and source view from which user interacted has changed. At the parameter level,

users can query the intent log to see only the intents performed in the selected

source view and involving selected parameters. At view level, users can get a

high level summary of all the intents performed in a view over time.

5.3 User Interface Analysis

Queries Intent Browser Can Express

By varying the search criteria, users can effectively search the intention logs from

several perspectives. Some of the queries users can express are:

1. Display all intentions performed in the visualization (Figure 5.4, 5.5).

2. Display all selections performed in particular views (Figure 5.6, 5.7).

3. Display selected intentions that were performed in particular target views

by modifying a parameter from any source view (Figure 5.8).

4. Display selected intentions performed in particular target views by modifying

a parameter from particular source views (Figure 5.9).

5. Display all intentions performed by modifying particular parameter from

selected source views (Figure 5.10).
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Figure 5.3: Difference between view level and parameter level coalescing. At the
view level, the explore intentions of interleaved X(Detail) and Y(Detail) param-
eters are coalesced. At the parameter level, intentions are coalesced only if they
are successive and involve the same parameter.
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Figure 5.4: At the view level, selecting all values present in both the intent and
the target view lists displays a summary of all intentions performed in all views.
Parameter and source view list selections are ignored at the view level.

Figure 5.5: At the parameter level, selecting all values in all lists displays fine-
grain details of all user intentions.
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Figure 5.6: By selecting ‘Select’ intention in the intent list and the ‘XY View
(Detail)’ view in the target view list, users can see all the selections performed
in the selected target view.

Figure 5.7: At the parameter level, users can see fine-grain details of all selections
performed only in ‘XY View (Detail)’.
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Figure 5.8: Querying all ‘Explore’ intentions that were performed in ‘XY View
(Detail)’ by modifying the parameter ‘X (Detail)’ in any source view.

Figure 5.9: Querying all ‘Explore’ intentions that were performed in ‘XY View
(Detail)’ by modifying the parameter ‘X (Detail)’ in selected source views only.
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Figure 5.10: Displaying all intentions that were performed in all views by modi-
fying the parameter ‘Trajectory Selection’ in ‘Trajectory List’ view only.

The above queries are a subset of queries user can pose using the intent

browser user interface. Queries 1 and 2 allow the user to get a sense of the

intention log overall. These two queries can be expressed on both the view level

and the parameter level intention data sets. A summary of intentions is provided

at the view level. At the parameter level, fine-grain details of intentions are

revealed. Queries 3 through 5 reduce search hits a great deal by allowing the user

to filter the intentions data set in terms of details such as the parameter and/or

source view invloved. These queries can only be expressed on the parameter

level intention data set. Queries 1 and 2 can be used to get an overview of all

intentions when the user does not know or remember the big picture of intentions

performed. Queries 3 through 5 can be used to drill down into intentions having

particular characteristics.

64



Queries that the Intent Browser Cannot Express

Like with every user interface, there are certain queries our user interface cannot

express. For instance, our rule system cannot express compound logic queries.

At times, the rule system may identify more than one user intention for a given

interaction. In an overview+detail situation [17], when the user selects records

in the overview, details are updated in the detail view. The rule system identifies

a Select intention with the overview as source view and an Abstract/Elaborate

intention with the detail view as target view. The user interface does not currently

allow the user to search these types of intentions using conjunctive queries like

‘Display all the states of visualization in which selection is detected in Overview

AND Abstract/Elaborate is detected in Detail View.’ Similarly, users cannot

express disjunctive queries such as ‘Display all the states of visualization in which

selection is detected in the ABC view OR Connect is detected in the XYZ view.’
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Chapter 6

Conclusion

There are several clear future directions for this work.

• Our current implementation of the system does not record low-level interac-

tions. We can extend the system to record the low-level interactions, along

with state changes and user intentions, to provide direct visual cues to the

user when replaying interactions as described in the revise technique [15].

Visual cues will help the user in effectively reviewing search hits of the

query.

• As explained in the previous chapter, the intent browser does not allow the

user to perform conjunctive queries. We can extend the querying mecha-

nism to allow the user express such queries.

• Another future direction would be to visualize and analyze the intention

logs to study patterns in the way intentions are performed. Intention logs

of different users can also be visualized and compared to discern similar-

ities and dissimilarities in their interaction sequences and styles of visual

exploration.
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In this thesis, we have presented a novel history mechanism for supporting

users in the sense-making activities of visual data analysis. Our history mecha-

nism combines the Yi, et al. interaction taxonomy with the data state model to

capture interaction histories at a semantic level. We believe that recording visu-

alization activities in this way can help users recall and incorporate knowledge of

the tasks performed into their broader data analysis processes.

The major contributions of this thesis are:

• a set of rules to convert low-level interactions into user intentions under the

Yi, et al. taxonomy;

• an implementation of a rule system for detecting user intentions;

• the design and implementation of a coalescing mechanism for aggregating

continuous user interactions;

• a system to record user intentions and corresponding state changes, inte-

grated into the Improvise visualization environment; and,

• a user interface for querying and replaying recorded user intentions.
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