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Abstract

This work presents two searches for a high-mass Higgs boson in the H →WW → `νqq

decay channel using the ATLAS detector to analyze the high-energy proton-proton

collisions provided by the Large Hadron Collider at two different center-of-mass

energies,
√
s = 8 TeV in 2012 and

√
s = 13 TeV in 2015, corresponding to two

independent datasets with sizes given by their integrated luminosities of 20.3 fb−1

and 3.2 fb−1, respectively.

No significant excess of data above the expected background is observed in either

analysis, so upper limits are set on the production cross-section times branching

ratio, as a function of the hypothesized boson mass, for the various signal models

tested. The derived limits substantially improve upon previous results.
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Chapter 1

Introduction

“There is nothing like looking, if you want to find something. You

certainly usually find something, if you look, but it is not always quite

the something you were after.”

- J.R.R. Tolkien, The Hobbit

It has been a driving question throughout the history of science: What are the

fundamental constituents of matter and how do they interact with one another?

Particle physics addresses this question directly. The contributions of many physicists

over the decades, has culminated in an impressively descriptive and predictive theory

of the fundamental constituents of matter and their interactions, referred to as the

Standard Model.

The recent discovery of the Higgs boson, as predicted by the Standard Model, is

a pinnacle moment in the validation of the particle physics theory. However, there

are still many compelling reasons to search for physics beyond the Standard Model,

particularly for additional higher mass scalar (Higgs-like) bosons.

This dissertation outlines these motivations in Chapter 2, after a description

of the Standard Model. The ATLAS detector and Large Hadron Collider, used to

search for the Higgs bosons, are described in Chapter 3, preceding the description of

two searches at different center-of-mass collision energies
√
s = 8 TeV and 13 TeV in

Chapters 4 and 5, respectively. Both are searches for a high-mass Higgs boson in the
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decay channel H → WW → `νqq′ (qq′ referred to hereafter as simply qq). Finally,

Chapter 6 discusses the conclusions from both analyses, which offer substantial

improvements over the results of previous searches.
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Chapter 2

The Standard Model and the Higgs Sector

The first section of this chapter gives a brief summary of the Standard Model of

particle physics; a more complete and detailed description of the Standard Model

can be found in [13]. This leads directly into the second section that describes the

Higgs boson’s role in electroweak symmetry breaking, as well as its production and

detection at the Large Hadron Collider (LHC). The final section highlights some

of the limitations of the Standard Model and outlines how these motivate searches

for physics beyond the Standard Model, specifically an extended Higgs sector as

presented in this work.

2.1 The Standard Model of Particle Physics

The Standard Model of particle physics (SM) [14, 15, 16] is a mathematical-based

theory that describes the fundamental constituents of matter in the known universe

and their interactions with each other, offering the best description of the subatomic

world to date. It began over half a century ago and has developed through the

collaborative effort of many theorists and experimentalists, making precise descrip-

tions and predictions of particle physics validated and/or motivated by experiments,

currently culminating in the recent discovery of the Higgs boson (discussed further

in the next section).

In the SM, matter is made up of 12 spin-1
2

fermions divided into six quarks (up u,
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down d, charm c, strange s, top t, and bottom b) and six leptons (electron e−, muon

µ−, tau τ−, and neutrinos: νe, νµ, ντ ), each with a corresponding anti-particle of

opposite electric charge (e.g. s and µ+). The theory also includes three fundamental

interactions (i.e. forces) between the fermions that are mediated by 12 spin-1 bosons:

electromagnetic interactions by the massless photon (γ), weak interactions by the

massive W± and Z0 bosons, and strong interactions by eight massless gluons (g).

Gravity is not included in the SM, but its contributions are negligible at the scales

of particle physics. Lastly, the particle content of the SM is complete with the spin-0

Higgs boson, whose field enables particles to acquire masses in the theory.

The SM particles and their interactions are summarized in Figures 2.1a and

2.1b, respectively. Each particle is listed with its mass, electric charge, and spin,

along with its most commonly used symbol and name. The columns of the quarks

and leptons correspond to their generations (or families): 1st, 2nd, and 3rd from

left to right. The possible interactions between the particles are depicted by the

lines connecting them, where each interaction line is attached to its corresponding

mediating boson.

Combining special relativity and quantum mechanics, the SM is a quantum field

theory (QFT) [17] that stems from quantizing the fields in the Dirac equation and

considering elementary particles as the quanta of fields, e.g. fermion (or matter) fields

commonly represented by Ψ with corresponding anti-particle fields Ψ = Ψ†γ◦ (where

† denotes the hermitian adjoint and γ◦ is the zeroth Dirac gamma matrix). The

model culminates in a mathematical structure of these fields based on group theory
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(a)

(b)

Figure 2.1: The particle content (a) and interactions (b) in the Standard Model
(assuming massless neutrinos for the interactions). Taken from [1] and [2], respectively.
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symmetries and local gauge invariance of the gauge group SU(3)C × SU(2)L×U(1)Y .

The mathematical structure takes the form of a Lagrangian, L, that contains the

products and derivatives of the quantized fields, describes the dynamics of the system

through the Euler-Lagrange equations of motion, and is required to be renormalizable

and invariant under the SM gauge group transformations. The invariance requirement

necessitates the introduction of “gauge fields,” whose interaction terms describe the

strong and electroweak forces.

The gauge fields introduced due to invariance under the SU(3)C gauge group (“C”

for color, the charge of the strong force) are the eight gluon fields Gi
µ, i = 1, . . . , 8.

This part of the SM gauge theory is known as quantum chromodynamics (QCD)

and describes the strong interactions between quarks and gluons. The quarks have

color charge and couple to the gluon fields as triplets, while all other particles are

colorless, i.e. SU(3)C singlets, and therefore do not directly couple to gluons (i.e.

experience the strong force). The QCD interactions are described by the Lagrangian

(only including gauge and matter/kinetic terms):

LSU(3)C = −1

4
Gi
µνG

µνi +
∑
α

Ψ
(α)

a i /DabΨ
(α)
b , (2.1)

where Ψ
(α)
a represents a quark field with flavor index α = u, d, s, . . . and color index

a = 1, 2, 3, and where there is an implicit sum over repeated color indices. Also in

Equation 2.1, Gi
µν is the field strength tensor for the ith gluon field

Gi
µν = ∂µG

i
ν − ∂νGi

µ − g3f
ijkGj

µG
k
ν , (2.2)
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and /Dab = γµDµab is the SU(3)C covariant derivative, where

Dµab = ∂µδab + ig3
λiab
2
Gi
µ . (2.3)

In Equations 2.2 and 2.3, g3 is the SU(3) gauge coupling constant and λi are the

eight SU(3) group generators, in the form of triplet representation matrices, whose

commutation relations define the structure constants f ijk: [λi, λj] = 2if ijkλk.

The gauge fields introduced due to invariance under the SU(2)L gauge group

(“L” for left-handed) are the three weak-isospin fields W i
µ, i = 1, 2, 3. Left-handed

components of fermion fields, ΨL ≡ 1
2
(1− γ5)Ψ, couple directly to these weak-isospin

gauge fields as doublets, while right-handed components, ΨR ≡ 1
2
(1 + γ5)Ψ, have

zero weak-isospin as SU(2) singlets. In contrast, all fermions have a non-zero weak

hypercharge, Y , in their coupling to the Bµ gauge field introduced due to invariance

under the U(1)Y gauge group (“Y ” to distinguish it from the U(1)Q gauge of quantum

electrodynamics, QED, where Q is the electric charge operator Q = 1
2
(σ3 + Y ), and

1
2
σ3 is the third weak isospin generator [see below]).

The combined SU(2)L × U(1)Y local gauge group unifies the weak and electro-

magnetic interactions. Similar to QCD, the Lagrangian describing the interactions

in this group contains gauge terms given by

Lgauge = −1

4
W i
µνW

µνi − 1

4
BµνB

µν , (2.4)

where i = 1, 2, 3 and the field strength tensors W i
µν and Bµν are given by

W i
µν = ∂µW

i
ν − ∂νW i

µ − g2ε
ijkW j

µW
k
ν (2.5)
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and

Bµν = ∂µBν − ∂νBµ . (2.6)

Here g2 is the SU(2) gauge coupling constant and εijk is the antisymmetric Levi-

Civita symbol. Also, the Lagrangian includes a kinetic/fermion term in the form of

ΨiγµDµΨ, with the SU(2)L × U(1)Y covariant derivative Dµ given by

Dµ = ∂µ + ig2
σi

2
W i
µ + ig1

Y

2
Bµ , (2.7)

where g1 is the U(1) gauge coupling constant and σi are the three Pauli matrices

that form the SU(2) group generators.

Unlike the gluon fields in QCD, the SU(2)L×U(1)Y gauge fields do not correspond

directly to the physical gauge bosons observed in nature, but rather must be mixed

to form combined fields that do:

Combined Field Quanta Interaction

W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ) W± bosons Weak charged current

Zµ = cos θWW
3
µ − sin θWBµ Z0 boson Weak neutral current

Aµ = sin θWW
3
µ + cos θWBµ γ photon Electromagnetic (QED),

(2.8)

where θW is the weak mixing angle related to the gauge coupling constants by

sin θW =
g1√
g2

1 + g2
2

and cos θW =
g2√
g2

1 + g2
2

. (2.9)

Experimentally, the W± and Z0 bosons are shown to be massive, but adding a

mass term for them in the Lagrangian is forbidden as it would break the local

SU(2)L×U(1)Y gauge symmetry. In fact, the same holds true for introducing explicit

fermion mass terms. This is clearly a problem.
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The SM solution to this problem is the Higgs mechanism [18, 19, 20], which is

responsible for the electroweak gauge field mixing and generates the fermion and

boson masses, all through its spontaneous symmetry breaking of SU(2)L × U(1)Y .

2.2 The Standard Model Higgs boson

2.2.1 Spontaneous Electroweak Symmetry Breaking

The basic idea behind spontaneous symmetry breaking is that the ground (vacuum)

state does not share the gauge symmetry of the underlying theory. In the case

of spontaneous electroweak symmetry breaking (EWSB), the vacuum state should

break the SU(2)L × U(1)Y symmetry in such a way as to provide a massless photon

and massive W± and Z0 bosons. This is possible with the right choice of parameters

in the setup.

Maintaining the SU(2)L × U(1)Y symmetry of the Lagrangian, a scalar field can

be added to the Lagrangian in the form of a complex SU(2)L doublet (adding four

degrees of freedom)

Φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
(2.10)

with weak isospin 1
2

and hypercharge Y = 1. The scalar part of the Lagrangian takes

the form

LΦ = (DµΦ)†(DµΦ)− V (Φ) (2.11)

including a covariant derivative term (with Dµ as defined in Equation 2.7) and,

vital for spontaneous symmetry breaking, a potential term V (Φ). The most general
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renormalizable form of the scalar potential is given by

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2, (2.12)

where µ relates to the Higgs mass and λ is the quartic Higgs coupling. In order to

obtain a stable vacuum λ > 0, and in order for spontaneous symmetry breaking to

occur µ2 < 0. With these two requirements, there are an infinite number of solutions

to the minimum of the potential (vacua) that satisfy

√∑
i

(〈0|φi|0〉)2 =

√
−µ2

λ
≡ v, (2.13)

where 〈0|φi|0〉 represents the vacuum expectation value (VEV) of the ith field in

Φ from Equation 2.10. Choosing a single vacuum from the continuum breaks the

symmetry, and the choice to take 〈0|φ3|0〉 = v as the only non-vanishing VEV leads

to the desired particle content in the theory.

The quantum theory resulting from this choice of vacuum is obtained by consider-

ing perturbations around the minimum by defining a shifted field h (the Higgs field)

with a vanishing VEV: h = φ3 − v. Of course there are also perturbations around

the minimum in the other three dimensions, corresponding to shifted fields φi → ξi

(i = 1, 2, 4). However, these fields can be absorbed through local gauge transforma-

tions of the gauge bosons into the unitary gauge, where the fields’ aggregate three

degrees of freedom are transferred to the vector gauge bosons (W± and Z0), giving

them each an additional degree of freedom, their mass. Note that the last degree

of freedom from the originally introduced complex doublet takes the form of the

new scalar particle, the physical Higgs boson. Thus, in the unitary gauge following
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spontaneous symmetry breaking, Φ is simply given by

Φ =
1√
2

(
0

v + h

)
, (2.14)

which can be shown to break all of the individual SU(2)L × U(1)Y generators (i.e.

σiΦ 6= 0 and Y Φ 6= 0). However, the U(1)Q generator, Q, does not break because Φ

carries no electric charge: QΦ = 1
2
(σ3 + Y )Φ = 0. Thus, the SM gauge symmetry is

spontaneously broken from SU(3)C × SU(2)L × U(1)Y → SU(3)C × U(1)Q.

Plugging Equation 2.14 into the (DµΦ)†(DµΦ) term of the scalar Lagrangian

leads to mass terms for the gauge bosons found in terms ∝ v2. The masses of the

physical gauge bosons are found to be:

mW+ = mW− =
1

2
vg2, mZ0 =

1

2
v
√
g2

1 + g2
2, and mγ = 0. (2.15)

The photon remains massless, which should be expected since the U(1)Q gauge is

unbroken. In similar fashion, the gluons remain massless with their gauge symmetry

also intact. The covariant derivative term of the scalar Lagrangian also contains

interaction terms between the Higgs boson and the gauge bosons found in terms

∝ vh (single Higgs couplings) and ∝ h2 (di-Higgs couplings). As the Higgs is both

electric-charge-neutral and a singlet under SU(3)C , it does not couple at tree level

to the massless photons or gluons. The most relevant of these couplings for this

analysis is the single Higgs coupling to a pair of W bosons:

gHWW =
2m2

W

v
=

1

2
vg2

2. (2.16)

The potential term, V (Φ), of the scalar Lagrangian, following spontaneous

symmetry breaking, contains the Higgs self-interactions and the mass term for the
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Higgs boson, given by mh =
√

2λv2. Although v can be calculated (≈ 246 GeV) from

its relation to the Fermi coupling GF , λ is a free parameter which means that the

mass of the Higgs boson is not explicitly predicted by the SM. Thus, searches for

the Higgs boson covered a large range of masses.

Lastly, the introduced Higgs doublet also comes to the rescue of the fermions,

whose explicit mass terms (∝ ΨLΨR) are not invariant under SU(2)L × U(1)Y , and

are therefore forbidden. The Higgs doublet can be used to create invariant singlet

terms in the form −λfΨLΦΨR, where λf is the Yukawa coupling of the f th fermion.

In the case that Φ has a non-zero VEV (as in spontaneous EWSB), these terms

not only describe the interaction between the Higgs field and the fermions, but also

provide mass terms for the fermions. The Higgs couplings to the fermions are related

to the mass of the fermions by

gHff̄ =
λf√

2
=
mf

v
, (2.17)

which is generally very small, except for the heaviest quarks.

It should be noted that although the Higgs mechanism provides the mass terms

for particles in the SM Lagrangian, it does not predict what the masses are, they

remain free parameters in the model like the Higgs mass itself. Also, with the large

number of Higgs couplings to both fermions and massive bosons, there are many

possible production and decay modes for the SM Higgs boson.
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2.2.2 Production and Detection at the LHC

The production cross-sections (σ) and decay branching ratios (BR) of the SM Higgs

boson are all calculable for a given Higgs mass (mH) and are shown in Figure 2.2 for

the LHC with pp collisions at
√
s = 8 TeV, along with the Higgs decay cross-sections

times BR for several decay channels. At the LHC (in the mass range plotted), the

dominant Higgs production mode is gluon-gluon fusion (ggF: pp→ H in the figure),

followed by vector boson fusion (VBF: pp→ qqH in the figure). Feynman diagrams

for both of these processes are shown in Figure 2.3, where the necessary fermion

loop in ggF production is dominated by contributions from the top quark.

As for the decay modes, since the Higgs couplings are proportional to the mass of

the decay products, the largest branching ratio tends to correspond to the heaviest

kinematically accessible final state for a given Higgs mass. Thus, H → bb dominates

the BR at low mass and H→WW dominates at high mass (with ZZ being suppressed

by the presence of identical particles in its final state). The analyses in this work

are partly motivated by the large H→WW BR, and utilize both the ggF and VBF

Higgs production modes.

Although a large cross-section and BR are helpful to produce more events, they

do not tell the whole story of a decay channel’s potential for discovery. The purity

of the signal, i.e. how well the signal can be distinguished from backgrounds,

also plays an important role. This is clearly evidenced by the fact that H → γγ

and H → ZZ → `+`−`+`− (two very clean signals) were the primary discovery

channels of the new boson, with mass ∼ 125 GeV, observed in 2012 by both the
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ATLAS [21] and CMS [22] collaborations at the LHC. Subsequent measurements of

the new particle’s properties have shown consistency with those predicted for the

SM Higgs boson [23, 24]. The discovery of this keystone particle demonstrates a

great accomplishment of the Standard Model, and led to the awarding of the 2013

Noble prize for its theoretical postulation nearly 50 years prior.

2.3 Beyond the Standard Model: Extended Higgs Sector

Although the SM has withstood an astounding range of precision tests over its

lifetime and demonstrated great predictive power in physics at energies spanning

several orders of magnitude, it is still incomplete. Most obviously, the SM does

not include gravity, as there has yet to be a renormalizable theory of quantum

gravity. Other missing pieces include: neutrino masses, evidenced by the discoveries

of neutrino flavor oscillations; a source or description of dark matter and dark energy,

evidenced by astrophysical measurements as together making up more than 95% of

the energy density in the universe today; and a mechanism to explain the apparent

large level of matter-antimatter asymmetry found in the universe today, assuming

the universe began in a symmetric matter-antimatter state. All of these and more,

including theoretical arguments, serve as strong motivations to search for physics

beyond the Standard Model (BSM).

Specifically in regards to the Higgs mechanism, current measurements (and lack

thereof) leave room for BSM interpretations that the observed Higgs boson is only a

part of an extended Higgs sector. This was especially the case at the time of the
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8 TeV analysis (∼ 2013), where the analysis motivation was partly to continue the

SM-like Higgs boson search over the full explorable mass range at the LHC without

being biased by the nature of the recently discovered 125 GeV resonance, and partly

to include a more model-independent result as a springboard for future BSM searches,

such as the 13 TeV search also presented in this work.

Some of the extended Higgs sectors are partly motivated by the open question

of whether or not the observed Higgs boson at 125 GeV is the only contributor

to the cancellation of the divergent W/Z scattering terms, necessary to preserve

unitarity. Two motivating examples of BSM extensions to the Higgs sector, that

are both compatible with current results and predict the existence of an additional

neutral Higgs-like resonance in the high-mass regime, are electroweak singlet (EWS)

models [25, 26, 27] and Two Higgs Doublet Models (2HDM’s) [28, 3].

2.3.1 Electroweak Singlet Models

One of the simplest extensions of the SM Higgs sector is the addition of a real

electroweak singlet field to the original complex Higgs doublet. The two fields mix

and, following electroweak symmetry breaking, result in two neutral CP -even scalar

bosons, h and H. Their masses are assumed to be non-degenerate, with the less

massive scalar h corresponding to the observed boson at 125 GeV. Also, each scalar’s

couplings to fermions and vector bosons are scaled by a common factor with respect

to the SM: κ for h and κ′ for H, where unitarity requires

κ2 + κ′2 = 1. (2.18)
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The light scalar h retains the branching ratios of the SM Higgs and its cross-

section and width are simply those in the SM scaled by κ2. As for the heavy scalar

H, non-SM decay modes (such as H → hh) are possible if they are kinematically

allowed, which complicates the scaling of the cross-section and width for H. With

respect to the SM Higgs’ production cross-section (σH,SM), decay width (ΓH,SM), and

branching ratios into decay mode i (BRH,SM,i), those for H are scaled as:

σH = κ′2 × σH,SM

ΓH =
κ′2

1− BRH,new

× ΓH,SM

BRH,i = (1− BRH,new)× BRH,SM,i.

(2.19)

where BRH,new is the total branching ratio of H into its non-SM modes.

Since measurements of the observed Higgs boson (h in EWS) show good agreement

with the SM predictions, κ2 must be close to one, which implies a small κ′2. This

indicates that the width of the new resonance H should be quite narrow, unless

BRH,new is close to 1.

2.3.2 Two Higgs Doublet Models

2HDM’s (such as appear in supersymmetry) introduce a second electroweak doublet

(that also receives a VEV from spontaneous electroweak symmetry breaking) that

adds four new degrees of freedom to the system, which translate to a total of five

particles in the Higgs sector: h, H, H±, and A. There are again two neutral CP -even

scalar bosons h and H; where, like before, h is less massive and corresponds to the

observed 125 GeV boson. Of the remaining particles, H± are charged scalars and A
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is a neutral CP -odd pseudo-scalar.

There are two additional parameters in 2HDM’s in the form of rotation angles

α, which diagonalizes the mass-squared matrix of the neutral scalars, and β, which

diagonalizes the mass-squared matrices of both the pseudo-scalar and charged bosons.

The angle β is often expressed in its relation to the ratio of the VEV’s of the two

doublets: tan β = v2/v1. These two angles play a vital role in determining the

interactions of the various Higgs fields with both fermions and vector bosons.

Lastly, unlike the ESW models, h’s (H’s) couplings to the fermions and vector

bosons are scaled by two different factors: κ
(′)
f and κ

(′)
V , respectively. However, as in

the case of EWS, these scaling factors must obey sum rules to maintain unitarity,

which in this more general case take the form

κ2
V + κ′2V = 1 and κV κf + κ′V κ

′
f = 1, (2.20)

and must hold true for each vector boson (W and Z) and each fermion species.

Although the results presented in this work are never directly interpreted in

2HDM, the models still serve as a source of motivation for the searches, and the

narrow width approximation results are meant to be extendible to many models,

including 2HDM.
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Chapter 3

The ATLAS Detector

ATLAS (A Toroidal LHC ApparatuS) is a nearly hermetic general-purpose particle

detector designed to analyze the high-energy particle collisions produced by the Large

Hadron Collider (LHC) at the CERN (Conseil Européen pour la Recherche Nucléaire)

laboratory, located astride the Franco-Swiss border near Geneva, Switzerland. The

first section of this chapter highlights some aspects of the LHC most relevant to the

subsequent chapters and the rest of this chapter gives an overview of the ATLAS

detector. Detailed technical design reports of the LHC and ATLAS can be found in

[29] and [6], respectively.

3.1 LHC Overview

The LHC is an enormous circular particle accelerator with a circumference of nearly

26.7 km, capable of accelerating protons to ultra-relativistic speeds and colliding

them at unprecedented center-of-mass collision energies:
√
s = 8 TeV in 2012 (Run-I)

and
√
s = 13 TeV in 2015-present (Run-II). The LHC does not operate alone in

the acceleration of these protons, but is complimented by a whole complex of other

accelerators, boosters, and storage rings shown in Figure 3.1. The protons originate

from hydrogen atoms stripped of their electrons and are incrementally accelerated up

to around 450 GeV for injection into the LHC. They are injected into the two LHC

beam pipes in opposite directions, circulating around the LHC in bunches consisting
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Figure 3.1: CERN’s accelerator complex in 2013 [CERN]

of around 1011 protons each (at injection). Nominally, each proton beam contains

more than 2,000 bunches spaced about 50 ns apart (25 ns in Run-II).

The impressive proton energies reached in the LHC are achieved and maintained

(compensating for energy losses) by superconducting electromagnetic resonator

cavities, delivering radio-frequency (RF) power to the proton beams and keeping

the protons tightly bunched. The maneuvering of these high-energy proton beams
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is accomplished using about 9,600 powerful magnets to guide and focus them in

the LHC. Large superconducting dipole magnets (1,232 of them), each capable of

creating a magnetic field of up to 8.33 T along its entire length, bend the proton

beams into their nearly-circular paths and special quadrupole magnets focus/squeeze

the beams to the smallest size possible at the interaction points (IP), e.g. ATLAS,

in order to maximize the chance of collisions.

The proton-proton collisions actually consist of interactions between the quarks

and gluons inside the colliding protons that are each carrying some fraction of the

protons’ momenta, thus creating a wide variety of high-energy particle interactions.

The rate at which a given physics process is produced at the LHC (Rprocess), in

number of events per second, is related to the production cross-section of that process

(σprocess) by a proportionality factor called the instantaneous luminosity (L):

Rprocess = σprocess · L . (3.1)

The cross-section represents the probability for the process to occur and the luminosity

characterizes the rate of interactions in a given area with units cm−2s−1. The

instantaneous luminosity of the LHC only depends on the beam characteristics and,

assuming Gaussian beam distributions, can be expressed as [29]

L =
N2

pnbfrevγr

4πεnβ∗
F , (3.2)

where Np is the number of protons in each bunch, nb is the number of bunches in

each beam, frev is the beam revolution frequency, γr is the relativistic Lorentz factor,

εn is the normalized transverse beam emittance, β∗ is the beta function evaluated at
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the IP, and F is the geometric luminosity reduction factor coming from the small

crossing angle of the beams at the IP. The denominator in the luminosity expression

is related to the transverse area of a bunch.

This is where the LHC excels yet again! Not only does it create proton beams

at very high energies, but also high intensities and extremely focussed, striving to

maximize the instantaneous luminosity (designed to reach a peak luminosity of 1034

cm−2s−1) in order to maximize the production of rare processes at the interaction

points for the detectors, such as ATLAS, to detect and analyze.

3.2 ATLAS Design

ATLAS has the largest volume of any collider-detector ever constructed with its

roughly cylindrical shape measuring 44 m long and 25 m in diameter. It weighs

in at approximately 7,000 tons and is located nearly 100 m underground where it

concentrically surrounds the LHC beam pipe and is nominally forward-backward

symmetric, centered length-wise at the nominal IP.

The nominal IP defines the origin of the coordinate system used to describe the

detector and the particles traversing it, with the +z-axis aligned with the beam

axis pointing in the direction of the counter-clockwise rotating beam (viewed from

above), the +x-axis pointing from the IP toward the center of the LHC ring, and

the +y-axis pointing upward (slightly off from vertical as the LHC ring has a slight

tilt). Due to the detector’s cylindrical shape, it can be more convenient to use polar

coordinates where the azimuthal angle φ is measured around the beam axis from the
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+x-axis and the polar angle θ is measured from the +z-axis.

Since the collisions in the detector take place between partons (gluons and

quarks) contained within the protons, with unknown fractions of the incoming

protons’ momenta, conservation of momentum can only be applied in the plane

transverse to the beam (the x-y plane). Thus, it is practical to define transverse

variables that refer to projections in the x-y plane, such as the transverse momentum

pT. It is also useful to replace the previously defined polar angle θ by a quantity

called the pseudorapidity (η), which is the ultra-relativistic approximation of the

rapidity (y):

y =
1

2
ln

(
E + pz
E − pz

)
pc�mc2−−−−−→ η = − ln

(
tan

θ

2

)
.

The pseudorapidity ranges from −∞ (at θ = π) to +∞ (at θ = 0), and is 0 at

θ = π/2 (i.e. the transverse plane). Its usefulness stems from the fact that the

center-of-mass frame of the interacting partons in the collision is rarely coincident

with the detector rest frame along the beam axis, and unlike θ, the pseudorapidity

difference (∆η) between two particles is invariant with respect to Lorentz boosts along

the z-axis. Another commonly used parameter with the same invariant property is

the separation between particles in η − φ space, ∆R, defined as

∆R =
√

∆η2 + ∆φ2 .

ATLAS is considered a “general-purpose” detector because of its wide-reaching

physics goals: from the search for the Higgs boson and precision SM measurements,

to searches for physics beyond the SM such as supersymmetry, dark matter, extra
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Figure 3.2: A cut-away graphic of the entire ATLAS detector, highlighting each
major sub-detector system [4].

dimensions, and even simply unexpected new phenomena at these unexplored collision

energies (perhaps the most exiting). In order to meet these ambitious goals and

to handle the high luminosity delivered by the LHC, ATLAS was designed to have

fast radiation-hard sensors and electronics, nearly hermetic coverage (especially in

the direction transverse to the beams), and high detector granularity for excellent

particle identification and reconstruction.

As shown in Figure 3.2, ATLAS is composed of many concentric sub-detectors,

almost all of which are in a barrel+end-caps configuration. The sub-detectors can

be categorized into three main components: an inner detector for distinguishing and

measuring the momentum and position of charged particles by precisely tracking their
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(a) (b)

Figure 3.3: (a) The ATLAS magnet system configuration [5]. (b) A photo of the
barrel toroid magnets [CERN].

trajectories, calorimeters for measuring particle energies, and a muon spectrometer

for identifying and measuring the momentum of muons from their tracks. An overview

of each sub-detector category is given in the dedicated sections below, starting with

the innermost detector layer and moving radially outward (following the trajectory

of a transverse energetic particle created in a collision).

Much of the design of ATLAS was driven by the choice of its magnet system (shown

in Figure 3.3a) consisting of an inner barrel superconducting solenoid surrounding

the inner detector, and three outer superconducting toroids (one barrel and two

end-caps) encasing the calorimeters. Figure 3.3b shows the barrel toroid (likely the

most recognizable attribute of ATLAS) during construction and displays the immense

size of the magnet system that all-together provides a magnetic field, of at least 50

mT, throughout a volume of approximately 12,000 m3. These powerful magnets

are required in order to bend the trajectories of high-momentum charged particles

within the detector to provide for the precise measurement of their momenta and
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the identification of their charge.

The solenoid provides a 2 T axial magnetic field for the inner detector and is thin

(only∼ 10 cm thick and only contributes∼ 0.66 radiation lengths at normal incidence)

in order to minimize the amount of material in front of the barrel calorimeters. The

barrel and end-cap toroids are each made up of eight nearly-rectangular coils aligned

radially and spaced symmetrically in φ about the beam-axis, with both end-cap coil

arrangements offset by 22.5◦ in φ from the barrel coil arrangement. Together they

provide a toroidal magnetic field for the muon spectrometer of ∼ 0.5 T in the barrel

region and ∼ 1 T in the end-cap regions.

With the magnetic system defined, the various sub-detectors fall into place.

3.3 ATLAS Inner Detector

The Inner Detector (ID) fills the solenoid magnet cavity and closely surrounds the

beam pipe. It is made up of three sub-detector systems and is designed to precisely

track charged particles in order to provide primary and secondary vertex measure-

ments and excellent momentum resolution. Other important design considerations

for the ID include the high-radiation environment, due to its close proximity to the

interaction point, as well as the desire to minimize the amount of material in front

of the calorimeters for optimal performance. The ID sub-detectors consist of an

innermost detector utilizing silicon pixel layers (Pixel), surrounded by a detector

of silicon micro-strip layers (or “semiconductor tracker” - SCT), and finally an

outermost detector of straw tubes creating a transition radiation tracker (TRT).
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Figure 3.4: A cut-away view of the ATLAS inner detector with both the barrel
and end-cap components of its three sub-detectors (Pixel, Semiconductor Tracker,
and Transition Radiation Tracker) visible and labelled [6].

These sub-detectors are detailed further in the following sections and are shown in

Figure 3.4, with the radial and longitudinal positioning of their barrel and end-cap

components shown in Figures 3.5 and 3.6, respectively.

3.3.1 Pixel

The Pixel detector [30] is the closest detector system to the interaction point and

therefore subject to a high density of particles coming from the collisions. Thus, to

maintain precise tracking, the Pixel detector requires the highest granularity possible.

There are a total of 1,744 modules arranged in three cylindrical barrel layers and six

end-cap disks (three at each end of the barrel region) with each module containing

roughly 50,000 pixels of nominal size 50 × 400 µm2. With more than 80 million
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Figure 3.5: A partial cross-sectional view of the inner detector, displaying the radial
positioning of each sub-detector in the barrel region [7]. The red line is demonstrative
of the reconstructed track from a charged particle (with pT of 10 GeV) traversing
the ID. Note the inclusion of the IBL (see Section 3.3.1).

Figure 3.6: A partial profile view of the inner detector, highlighting the longitudinal
positioning of each sub-detector [8]. The red lines are demonstrative of reconstructed
tracks from charged particles (with pT of 10 GeV) traversing the sub-detectors. Note
the omission of the TRT barrel region.
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the cluster. After the autumn 2010 alignment of the Pixel Detector
a resolution in local x and y of 9 μm and 84 μm is achieved.

The overall tracking performance can be described by a
transverse impact parameter d0 resolution as shown in Fig. 10,
where the ATLAS Inner Detector achieves a sðd0Þ of the order
of 10 μm over the complete pseudo-rapidity range. This high

precision vertexing is crucial for successful, and highly efficient,
b-tagging. The high purity b-tagging algorithms have achieved an
efficiency of 50%, while only having a fake rate of 0.05% [7].
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Figure 1. Left : Comparison of the resolution of the impact parameter for 2011 data taking and simulations.
Right : Efficiency of tracks having hits associated with the different pixel layers. The B-Layer efficiency is
100% due to the fact that the track requirement demands a hit in the B-Layer to be considered. Lower outer
disk efficiencies arise from a higher percentage of dead pixels [3].
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Figure 1. (Left) Overview of the Run 2 Pixel Detector with the IBL inserted. (Right) Cross section view of
sensor layout of the Run 2 Pixel Detector (seen from �z to +z direction).

Figure 2. (Left) Illustration of the new service quarter panel and the Optobox/Optoboards on the ID End-
plate. (Right) Number of modules of the Pixel Detector to be disabled after refurbishment and re- installation
in the pit in LS1 classified by failure mode (HV / LV / Data In / Data Out) and the time period in which
the problem occurred problems (Run1 / Surface / after re-installation). Modules having issues but being
operable are not included [6].

2. Refurbishment of the Pixel Detector

Motivation to replace the Pixel Detector service During Run 1 operation, some of the laser
signal transmission plugins on the off-detector readout board were observed to be dead and they
were replaced. These transmitters serve the optical communication with the modules for the
clock/command with the modules. The same laser transmitters were mounted on the on-detector
side for the data output at the so-called Optoboard mounted on the service quarter panel (SQP).
As the optoboards are inaccessible unless the Pixel Detector is extracted from the ATLAS detector,
failures of the optoboards are a major concern for the operation of the Pixel Detector throughout
its lifetime. Therefore the decision was made to build new service panels (nSQP) with relocation
of the Optoboards from the service panel to the Optobox at the Inner Detector end-plate1 so that
intervention is possible without extracting the Pixel package (Figure 2 left) [5].

1The Inner Detector end-plate is the gap between the barrel calorimeters and the end-cap calorimeters for leading
Inner Detector’s service lines.
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Figure 1. Schematic view of the ATLAS 4-Layer Pixel Detector for Run-2
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1. Introduction

The ATLAS Pixel Detector [1] is the inner-most part of the ATLAS tracking system [2]. The
ATLAS Pixel Detector for LHC Run-2 consists of 4 layers of barrel pixel detector and two end caps
of three pixel disks each. The outer 3 barrel layers and the disks are the 3-Layer Pixel Detector
system, which was installed originally in 2007 in ATLAS and maintained during 2013/2014. The
innermost pixel layer is a newly constructed high-resolution pixel detector, called Insertable B-
Layer (IBL). Figure 1 shows the 4-Layer ATLAS Pixel Detector for LHC Run-2 (left) and the
radial placement of concentric pixel barrels, beam pipe and support carbon-fibre cylinders (IPT,
IST) (right). The Pixel Detector sits inside the 2T solenoidal magnetic field and contributes to the
charged particle tracking of the ATLAS Inner Detector in the pseudo rapidity range of |h | < 2.5.

Due to its high spatial resolution and 3-dimensional space-point measurement the Pixel Detec-
tor has a key-role in reconstruction of charged particle tracks. The 4-Layer Pixel Detector will be
crucial in the reconstruction of primary and secondary vertices which is essential for the detection
of long-lived particles, e.g. containing b-quarks, and in searches for new physics at LHC.
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Figure 2. Schematic view of the full 4 Layer ATLAS Pixel detector for the Run-II.

fibres. Sensible components, the Optoboards, could be removed from the detector volume to allow24

future maintenance. The number of optical links for the outermost Layers have been increased, to25

avoid saturation, even in case of luminosities up to 3⇥1034 cm�2s�1.26

Thanks to the refurbishing and the installation of the nSQP, the number of disabled modules27

for the original 3 Layer pixel detector was brought down to 2%. Counting IBL, the ATLAS Pixel28

detector is now a full 4 layers, 92M channel pixel vertex detector with 99.0% operational fraction.29

3. Insertable B-Layer30

The IBL [6] designed to withstand high luminosity environment had to overcome technologic chal-31

lenges set by the high granularity and the required bandwidth of the read-out chips.32

The IBL consists of 14 pixel supporting structures, called staves, each one containing 20 mod-33

ules with 32 FE-I4 chips, in the centre 24 planar sensors and at each edge 4 3D sensors with single34

chip modules. Each pixel has a size of 50 µm ⇥250 µm. The staves are all mounted on the IPT35

supporting their extremities and holding services at |z| = 3.5m. The new beam pipe is located in-36

side the IPT and was inserted into the IPT before the IBL integration. The IBL is supported by37
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Figure 3.7: On the left is a cut-away graphic of the Pixel detector including the
IBL, the three barrel Pixel layers (B-Layer [Layer-0], Layer-1, and Layer-2), and the
end-cap Pixel disks along with the support structure and cooling system. On the
right is an illustration of the barrel Pixel and IBL layers in the R-φ plane [9].

pixels (i.e. readout channels) in total, the Pixel detector has a total active area of

about 1.7 m2, a pseudorapidity coverage of |η| < 2.5, and an impressive intrinsic

accuracy of 10 µm in R-φ and 115 µm in z (R) in the barrel (end-cap) region(s).

The radial distance of the innermost Pixel barrel layer (the so called B-layer) from

the beam-line is only 5 cm, but during the “long shutdown” between LHC Run-I

and Run-II, a fourth silicon pixel layer was added even closer to the beam-line in the

form of a new sub-detector named the Insertable B-Layer (IBL). Figure 3.7 shows a

schematic of the Pixel detector with the IBL included.

IBL The IBL [31] [32], as its name suggests, was inserted between the Pixel B-layer

and a new smaller radius beam-pipe with the purpose of improving the tracking and

vertex reconstruction performance (especially that related to the tagging of b-quark

jets [b-tagging]) of the ID. With a radius of only 3.3 cm, the IBL is designed to

handle even greater pixel occupancy and radiation doses through the use of two newly

developed silicon sensor technologies and new faster read-out electronics. The IBL
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is made up of 14 carbon fiber staves arranged cylindrically around the beam-pipe,

providing full φ coverage (each stave is tilted by 14◦ to create some overlap) and

pseudorapidity coverage of |η| ≤ 2.9. Each stave supports and supplies cooling to

20 silicon sensors that each contain nearly 27,000 pixels. The IBL pixels are even

smaller than those in the Pixel detector with a size of 50 × 250 µm2, offering the

desired increased granularity.

Following the brief interlude of turning inward toward the IBL, the next detector

out from the Pixel detector is the SCT.

3.3.2 SCT

The SCT [33] surrounds the Pixel detector and has a similar layout with four

concentric cylindrical layers in the barrel region and a series of nine disks in each of

the end-cap regions. However, instead of silicon pixels the SCT sensors are composed

of silicon micro-strips. There are a total of 8,448 rectangular barrel sensors and 6,944

various wedge-shaped end-cap sensors, each with 768 active single-sided p-in-n silicon

strips of around 6 cm in length and 80 µm in width. The modules on each layer of

the detector actually consist of pairs of sensors mounted flatly back-to-back with one

sensor rotated by 40 mrad with respect to the other that is aligned along the beam-

axis on the barrel layers and radially on the end-cap disks. All in all, the SCT has

approximately 6.3 million readout channels, continuing the high-granularity tracking

of the Pixel detector by providing at least four precise space point measurements

within the fiducial coverage of the ID with an accuracy of 17 µm in R-φ and 580 µm
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in z (R) in the barrel (end-cap) region(s).

The high-precision of the Pixel and SCT silicon trackers is essential to ATLAS,

but comes at a high monetary cost, especially for the relatively low number of space

points measured (only seven [eight including the IBL] for a typical track). Thus, the

remainder of the ID volume contains the complimentary and cost-effective TRT that

offers less granularity but many more space points per track (typically 36).

3.3.3 TRT

The TRT [34] radially surrounds the SCT and is composed of a matrix of gas-filled

thin-walled proportional drift tubes (referred to as straws hereafter), providing

continued tracking up to |η| < 2.0. The barrel region consists of 52,544 144 cm long

straws aligned parallel to the beam axis and arranged in an axial array with an

average spacing of approximately 7 mm, forming roughly 73 layers of straws. The

end-cap regions each consist of 122,880 37 cm long straws aligned radially to the

beam axis and arranged in 160 planes, each containing the same number of straws

with uniform azimuthal spacing. Each successive end-cap straw-plane is positioned 8

- 15 mm apart and is rotated in φ with respect to the previous plane by 3/8 of the

azimuthal straw spacing.

All of the TRT straws are 4 mm in diameter, have a 35 µm wall thickness, and

are made from multi-layer polyimide films coated with aluminum and graphite, and

structurally stabilized by carbon fibers. Each straw contains a 31 µm diameter

gold-plated tungsten anode wire at its center and is filled with a Xe-based gas
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mixture (70% Xe, 27% CO2, and 3% O2) at an over-pressure of 5 -10 mbar. The

anode wires are held at ground potential while the straws are held at a high voltage

(typically around -1530 V) in order to quickly collect the freed electrons coming from

the ionization of the gas by charged particles passing through the straws. The time

it takes the freed electrons to “drift” to the anode wire gives the distance between

the particle track and the wire. Each TRT straw has an intrinsic precision of 130

µm in R-φ.

In addition to extended tracking, the TRT (as its name suggests) creates the

opportunity for particles to emit transition radiation photons through the use of

polypropylene fibers (foils) interspersed with the straw layers in the barrel (end-cap)

region(s). This offers a level of particle identification/discrimination (primarily aimed

at electron identification) as the probability of a particle to emit transition radiation

grows with its Lorentz factor, γ. The electron identification provided by the TRT

compliments that of the calorimeters.

3.4 ATLAS Calorimeters

Moving outward from the ID and the solenoid magnet that encloses it, one finds the

calorimeters. In stark contrast to the ID that prioritized minimizing the amount of

material, the calorimeters are designed to absorb and measure the energy of particles

using passive layers of dense absorbing material, which cause the particles to “shower”

into cascades of lower-energy particles, interspersed with active sampling layers.

Figure 3.8 shows the calorimeter system in ATLAS, which is composed of a set of
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Figure 3.8: A cut-away view of ATLAS, highlighting the calorimeters [10].

electromagnetic (EM) calorimeters surrounded by hadronic calorimeters and has a

layout similar to the ID with barrel and end-cap regions. Altogether, the calorimeter

system provides coverage for nearly the entire 4π solid angle (with pseudorapidity up

to |η| < 4.9) and good containment of both electromagnetic and hadronic showers.

This is critical to ensure a good measurement of the missing transverse energy, which

is essential to many physics analyses, including those presented in this work.

An important unit of measure for the EM calorimeters is the radiation length,

X0, which is defined as the average distance a high-energy electron (E > 100 MeV)

will travel in a given material before bremsstrahlung radiation reduces its energy to

1/e (≈ 36.8%) of its original value. The radiation length is equivalent to 7/9 of the

mean free path for high-energy photons, which lose energy primarily through pair
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production and Compton scattering. As the energy loss of hadrons is dominated by

strong interactions in the calorimeters, a more useful measure of the material is the

interaction length, λint, which is the mean free path of a hadron in the calorimeter.

3.4.1 Electromagnetic Calorimeter

The EM calorimeter surrounds the ID volume and consists of a barrel calorimeter

(> 22 X0) split into two identical halves, end-cap calorimeters (> 24 X0) on each

side split into two coaxial wheels, and forward calorimeters (∼ 27.6 X0) on each side

coaxial with the end-caps but recessed about 1.2 m further away from the interaction

point. All of them use liquid argon (LAr) as the active material to be ionized by

the cascading charged particles. The barrel and end-cap EM calorimeters have the

finest granularity (especially in their first layer) and feature accordion-shaped lead

absorber plates and Kapton electrodes that provide complete azimuthal coverage

with no cracks thanks to the unique geometry. The forward EM calorimeter features

copper as the absorbing metal in the form of stacked copper plates with a matrix of

12,260 holes filled with electrode structures, each made of a coaxial copper rod and

copper tube with LAr in-between.

3.4.2 Hadronic Calorimeter

The hadronic calorimeter surrounds the EM calorimeter and consists of a barrel

calorimeter (∼ 9.7 λint) split into central and extended regions, end-cap calorimeters

(10 λint) on each side split into two stacked wheels, and forward calorimeters (10
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λint) on each side also split into two stacked wheels.

The hadronic end-cap and forward calorimeter wheels are positioned directly

behind their corresponding EM counterparts and actually all share the same end-cap

cryostats (minimizing gaps between the calorimeter systems) as they also use LAr for

their active material. The end-cap wheels are divided azimuthally into 32 identical

wedge-shaped modules. The front (rear) end-cap wheel modules consist of 25 (17)

copper plates, each 25 mm (50 mm) thick except for the first plate of each wheel at

half that thickness. For all of the end-cap wheel modules the LAr and electrodes

are contained in the 8.5 mm gap between successive plates. The hadronic forward

wheels are similar in design to the forward EM calorimeter wheels, but use tungsten

rods instead of copper, have successively fewer electrodes, and only have two copper

end-plates with tungsten slugs filling the volume in between.

The hadronic barrel calorimeter (or tile calorimeter), including the central and two

extended barrels, uses a different technology than the other calorimeters with steel

plates for absorbers and scintillating tiles for the active material. When traversed

by ionizing particles (e.g. hadronic showers), the plastic tiles emit scintillation light

that is then read out by optical fibers and transformed into electrical signals by

photo-multiplier tubes. The entire tile calorimeter has a pseudorapidity coverage of

|η| < 1.7, with its inner (outer) radius of 2.28 m (4.25 m) and central (extended)

barrel measuring 5.8 m (2.6 m) in length. Each barrel section is evenly divided

azimuthally into 64 wedge-shape modules with 11 stacked and staggered layers of

radially oriented scintillating tiles and steel plates.
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Figure 3.9: A cut-away view of the ATLAS muon spectrometer, including the
toroid magnet system [11].

Altogether, the calorimeters will stop nearly all electrons, photons, and hadrons

within |η| < 4.9. However, neutrinos and high-energy muons will continue on through

the entire detector.

3.5 ATLAS Muon Spectrometer

The muon spectrometer, in conjunction with the bending power of the toroid magnet

system, is designed to provide precise standalone measurements of muon momenta

and charge within |η| < 2.7 as well as to trigger on them in the region |η| < 2.4.

As the outermost detector system it defines the overall dimensions of the ATLAS

detector, as seen in Figure 3.9. The muon detector system employs four different

detector technologies: two for precision tracking and two primarily for triggering.
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The primary tracking technology used is that of monitored drift tubes (MDTs),

which provide muon position precision of ∼ 80 µm per tube. MDTs are arranged

parallel to the beam axis in three cylindrical shells in the barrel region and arranged

perpendicular to the beam axis in three large wheels in each end-cap region. MDTs

cover the entire tracking pseudorapidity range of |η| < 2.7, except for the innermost

end-cap wheel layer (2 < |η| < 2.7) where cathode-strip chambers (CSC) are used

instead due to their higher rate capability and resolution (∼ 80 µm).

A system of fast trigger chambers compliments the tracking chambers, with

resistive plate chambers (RPC) in the barrel region, |η| < 1.05, and thin gap chambers

(TGC) in the end-cap regions, 1.05 < |η| < 2.4. Both types of trigger chambers

actually measure two coordinates of the muon tracks, one in the φ (non-bending)

plane and one in the η (bending) plane, thus directly complimenting the tracking

chambers’ measurement of the coordinate in the bending plane. The trigger chambers

also provide well-defined pT thresholds and identification of bunch-crossings.

3.6 ATLAS Data Acquisition Process

With bunch crossings occurring every 50 ns in Run-I, the ATLAS Data Acquisition

(DAQ) system requires a trigger system to reduce the 20 MHz event rate down to a

more manageable and recordable rate of a few hundred Hz. This massive reduction

from produced to recorded events is expected, as the physics processes of most

interest are rare. The trigger system is made up of three levels of event selection:

Level-1 (L1), Level-2 (L2), and an event filter; where each level refines the previous
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selection.

The L1 trigger reduces the 20 MHz event rate down to around 75 kHz, making

its decision to keep or toss an event within 2.5 µs of its associated bunch-crossing.

It does this by analyzing reduced-granularity information from the calorimeters

(L1Calo) and muon systems (L1Muon), searching for high pT particles (muons,

electrons/photons, jets, etc.) and/or a large amount of missing transverse energy.

The L2 trigger further reduces the event rate to < 3.5 kHz, taking an average

of 40 ms to process each event. It uses all of the available detector data within

the Regions-of-Interest (RoI’s) defined by the L1 trigger as areas of the detector

containing objects that triggered the event.

Finally, the event filter reduces the event rate to ∼ 200 Hz for recording, taking

an average of four seconds to process each event. It uses offline analysis, with the

entire event information available, to make the final refined selections.

3.6.1 Changes in Run-II

In Run-II the event rate increased to 40 MHz because of the decreased bunch spacing,

and the probability of producing high-energy particles that meet the trigger thresholds

also increased because of the increased collision energy. Together, these changes

increase the trigger rate by a factor of five, which is handled by an upgrade of the

trigger system [35]. The L1 hardware-based trigger system gained topological trigger

processors (L1Topo) that run topological algorithms on data from the calorimeters

and muon detectors, performing geometrical cuts/corrections and calculating complex
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observables like the invariant mass. Also, the L2 and event filter stages were combined

into a single software-based high-level trigger (HLT), which features fast algorithms

that access data from an RoI (or sometimes the full-event information) and run on a

special PC farm with an average processing time of 0.2 s.

In the end, the upgraded L1 trigger reduces the 40 MHz event rate down to 100

kHz, and the HLT further reduces the rate to an average of 1 kHz for recording.

3.7 Other Design Aspects

There are many more services and entire systems used in ATLAS that are not

detailed here including radiation shielding, the LHC interface, and the immense

cooling system to only name a few. There are layers upon layers of services managed

by a multitude of people.
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Chapter 4

8TeV Analysis

4.1 Introduction

This chapter details the search for a high-mass Higgs boson in the H →WW → `νqq

decay channel utilizing 20.3 fb−1 of pp collision data recorded by the ATLAS detector

at a center-of-mass energy of
√
s = 8 TeV. The analysis was combined with a parallel

H → WW → `ν`ν high-mass Higgs search for publication in Ref. [36]. The results

of the search improve upon the 7 TeV results [37], extend the mass range, and expand

the breadth of model interpretations. The search results are interpreted using three

different signal hypotheses (described further in Section 4.2.1):

• A Higgs boson with a SM width and a lineshape modeled by the complex-pole

scheme (CPS) [38] for most mass points.

• A narrow width Higgs boson with a lineshape referred to as the narrow-width

approximation (NWA).

• A Higgs boson with an intermediate-width (IW).

The chapter begins with a description of the Monte Carlo (MC) modeling of

signal and background physics processes in Section 4.2, followed by an overview of

the utilized LHC data in Section 4.3, and a detailing of the pertinent physics object

reconstructions in ATLAS and their preliminary selection criteria in Section 4.5.

Next, Section 4.6 lays out the primary event selection criteria and explains the
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categorization of events into signal and control regions. This is followed by a look at

the WW invariant mass reconstruction, resolution, and related studies in Section 4.7,

with the final mass-dependent event selection criteria outlined in Section 4.8. Prior

to the end results, an explanation of the data-driven background estimations is given

in Section 4.9 along with an overview of the systematic uncertainties in Section 4.10,

culminating in a final check of the MC modeling against data in Section 4.11. Finally,

with satisfactory modeling of the MC in the control regions, Section 4.12 presents

the final results with an outline of the maximum likelihood fit to the data and the

subsequent limit setting infrastructure due to the absence of a discovery.

4.2 Physics Modeling

MC simulations are used to model all signal and background processes in the analysis

except for the multi-jet QCD background where a data-driven method is used (see

Section 4.9.1). The production of MC can be generalized into three stages: generation,

simulation, and digitization [39].

Generation

Various MC programs are used in this generation stage due to the wide range of

physics processes in this analysis. For a single event, the generation begins with

the production of a single parton-parton hard-scatter interaction. The generators

are then responsible for modeling any prompt decays (such as W , Z, and Higgs

bosons) along with any initial- and final-state parton showering, hadronization, and
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underlying events (e.g. multiple parton-parton interactions and beam remnants);

resulting in a set of stable (proper lifetime cτ > 10 mm) final-state particles. Lastly,

at this stage, “truth” information is recorded for each generated event, detailing every

particle’s interaction history from the generator (e.g. parent-daughter information

and four-momenta) including incoming and outgoing particles.

Simulation

Before entering the simulation stage, the vertex of the hard-scatter in each generated

event is smeared (as originally all were unrealistically located exactly at the geometric

center of the detector) to better represent the luminous region within ATLAS.

Each generated event is then fed into the simulation stage, in which every

final-state particle is propagated through the ATLAS detector using the Geant4

simulation framework [40, 41]. This framework is a powerful, versatile, and con-

figurable tool that simulates the passage of particles through matter, including

ionization and energy deposition in materials, as well as intermediate particle decays,

radiation, and scattering. The matter, in this case, is the ATLAS detector with all

of its tracking, calorimetry, magnets, support structures, cooling pipes, cables, etc.

The simulation also takes faulty or unpowered detector components into account.

The energies deposited in the sensitive segments of the ATLAS detector are

recorded as “hits”, along with their corresponding position and time, and written to

a simulation output hit file. Also at this stage, select information is added to the

truth record, such as truth tracks and decays, for certain particles (only those of
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most interest to physics analyses).

The CPU time required to run an event through the full Geant4 simulation

(FullSim) is understandably very large due to its detailed detector geometry and

physics description. This limits the MC statistics achievable in a reasonable amount

of time and is basically a showstopper for analyses requiring samples with either

very large statistics or fast turn-arounds. In order to speed up the processing time,

fast simulations were developed to complement Geant4 and, as almost 80% of

the FullSim CPU time is spent simulating particles traversing the calorimeters,

calorimetry simulation is the primary target for improvement.

Nearly half of the samples in this analysis use the ALTFAST-II (AFII or AF2) [39]

fast simulation that utilizes the Fast Calorimeter Simulation (FastCaloSim) while

retaining the full simulation for the inner detector and muon system. FastCaloSim

takes, as input, the truth information of all the interacting particles at the outer edge

of the inner detector and instead of simulating the interactions between the particles

and the calorimeter material directly (as done in FullSim), it uses parameterizations

of the longitudinal and lateral energy profiles of showers based on substantial FullSim

MC samples of single photons (used to approximate electron and photon showers)

and charged pions (used to approximate all hadronic showers). Compared to FullSim,

AFII reduces the simulation CPU time by a factor of 10!

Whenever possible, the kinematics of the AFII simulated samples in this analysis

have been validated against those of corresponding FullSim samples. A selection of

the object-level kinematic distributions compared for one such validation (for CPS
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Figure 4.1: Object-level kinematic distribution comparisons between AFII and
FullSim simulated CPS VBF 800 GeV signal samples. Each upper sub-plot distribu-
tion is normalized to unity and the lower sub-plots show the bin-by-bin ratio of the
two distributions (FullSim/AFII).

VBF 800 GeV signal) are shown in Figures 4.1 and 4.2. The distributions shown are

nearly inclusive of the entire samples, with only minor requirements on the number

of jets and leptons. The larger statistics of the AFII sample can be seen clearly in

the figures in the form of smoother distributions. No obvious mis-modeling or trend

is observed between the two simulations.
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Figure 4.2: Object-level kinematic distribution comparisons between AFII and
FullSim simulated CPS VBF 800 GeV signal samples. Each upper sub-plot distribu-
tion is normalized to unity and the lower sub-plots show the bin-by-bin ratio of the
two distributions (FullSim/AFII).
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Digitization

The end-goal of the digitization stage is to simulate the detector readout. However,

in the previous two steps, an event only consisted of a single hard-scatter interaction

from a single bunch crossing, which is a very unrealistic environment for simulating

the detector readout. In reality, in addition to the hard-scatter interaction there are

most often multiple other proton-proton interactions in each bunch crossing (referred

to as in-time pile-up), detector noise from beam and cavern related interactions, and

detector response effects due to interactions from nearby bunch crossings (referred

to as out-of-time pile-up).

Thus, to prepare for a realistic detector response simulation, hits from the

hard scattering are overlaid with separately generated and simulated hits from the

additional interactions mentioned above.

The hits are then converted into “digits” by the ATLAS digitization software

for inputs to the read out drivers (RODs) in the detector electronics. A digit is

generally produced when the current or voltage on a given readout channel exceeds

a predefined threshold within a certain time period. Depending on the sub-detector,

the digit’s format can include the shape of the signal over this time or just the

fact that the threshold was exceeded. Finally, the ROD functionality is emulated,

resulting in the output of a Raw Data Object (RDO) file.

Lastly, the digitization process also creates Simulated Data Objects (SDOs),

created from the truth information provided by the previous stages, that map the

hits in the detector to the truth particles that deposited the hits.
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The final output of this process, the RDO file, is in the exact same format as the

raw data (except for the additional truth information stored for MC), allowing for

identical reconstruction of MC and data events.

4.2.1 Signal MC

The processes for the three signal interpretation scenarios are all modeled using the

Powheg [42] generator in combination with Pythia8 [43] (Powheg+Pythia8) and

are produced separately for ggF and VBF Higgs production modes. The cross-section

calculations for the ggF signals include next-to-leading order (NLO) electroweak

(EW) corrections [44], next-to-next-to-leading order (NNLO) QCD corrections [45],

and QCD soft-gluon resummations up to next-to-next-to-leading logarithmic order

(NNLL) [46]. As for the VBF signals, their cross-section calculations include NLO

EW and QCD corrections [47], as well as approximate NNLO QCD corrections [48].

Lastly, the branching ratios of H→WW have been calculated as a function of the

hypothesized Higgs mass using Prophecy4f [49].

The modeling of the various signal interpretation samples diverges from here as

detailed below.

CPS and Breit-Wigner: Samples are generated to model a Higgs boson with a

SM-like width and lineshape. Samples with mH < 400 GeV are generated using

a running-width Breit-Wigner (BW) lineshape [38]. The reason for stopping

at this mass point is that the increasing width has become comparable to the

mass (Γ/m ∼ 7.3% at 400 GeV) which signals the breakdown of the BW model.
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Thus, samples with mH ≥ 400 GeV are generated using the CPS lineshape

instead as it provides a more accurate description. Table 4.1 summarizes both

sets of SM-like samples. Neither set of signal samples includes the effect of

interference between resonant and non-resonant gg → WW production at the

generator level. Therefore, the effect is taken into account through an event

weighting procedure detailed in Ref. [3] and outlined below.

Interference between the signal and non-resonant WW background in-

creases with increasing Higgs width (and therefore mH in this case) and affects

both the production cross-section and kinematic distributions. This interfer-

ence effect was shown to be small enough to neglect for mH < 400 GeV, but

must be taken into account for higher masses [38]. Therefore, since none of the

signal samples include this effect, all of them must have a correction applied

in the form of an interference event weight at particle level. This weight is

calculated differently for ggF and VBF samples.

For ggF signal samples, interference weights are computed at leading order

(LO) accuracy in QCD using the MCFM [50] program. Following the procedure

in Ref. [3], these weights are then rescaled to next-to-next-to-leading order

(NNLO) in order to match the signal cross-section order of calculation. For

VBF signal samples, interference weights are computed using the Repolo

(Reweighting Powheg at Leading Order) tool from the VBFNLO Monte Carlo

generator framework [51, 52, 53]. Both procedures have associated uncertainties

to be included in the total theoretical uncertainty (see Section 4.10.3).
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IW: Samples are not directly generated, but are derived by weighting the CPS

samples to running-width Breit-Wigner line shapes with widths in the range

0.2 ≤ ΓH/ΓH,SM ≤ 0.8, where ΓH is the width of the hypothetical particle and

ΓH,SM is the width of a SM Higgs boson at the same mass. Interference weights

are derived in the same manor as for the CPS samples and are computed as a

function of the modified width.

NWA: Samples are generated using a Breit-Wigner lineshape with a fixed width

of 4.07 MeV and are summarized in Table 4.2. The samples span the mass

range 300 ≤ mH ≤ 1500 GeV in 50 GeV increments. Due to the fact that

this narrow width is much smaller than the experimental mass resolution, the

actual lineshape is hidden in the reconstruction, making this a more model-

independent scenario. The narrow width also creates a situation in which the

effect of the interference is negligible between the signal and the non-resonant

WW background, so no interference weights are applied to these samples.

4.2.2 Background MC

The dominant background contribution to the H → WW → `νqq signal comes

from W+ jets production, followed by the production of tt̄ and minor contributors:

single top, Z+ jets, diboson (WW , WZ, ZZ, Wγ, and Z/γ), and QCD multi-jet.

Simulations of these background processes are described briefly below with summaries

of the samples used in Tables 4.3, 4.4, and 4.5.
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Table 4.1: SM-like signal samples used in the analysis, with corresponding lineshape,
MC generator (and tune), PDF set, and detector simulation information.

mH Lineshape Generator (Tune) PDF Set Simulation

[GeV] ggF VBF

300 Breit-Wigner Powheg + Pythia8 (AU2) CT10 FullSim FullSim

320 Breit-Wigner Powheg + Pythia8 (AU2) CT10 FullSim FullSim

340 Breit-Wigner Powheg + Pythia8 (AU2) CT10 FullSim FullSim

360 Breit-Wigner Powheg + Pythia8 (AU2) CT10 FullSim FullSim

380 Breit-Wigner Powheg + Pythia8 (AU2) CT10 FullSim FullSim

400 CPS Powheg + Pythia8 (AU2) CT10 FullSim AFII

420 CPS Powheg + Pythia8 (AU2) CT10 FullSim AFII

440 CPS Powheg + Pythia8 (AU2) CT10 FullSim AFII

460 CPS Powheg + Pythia8 (AU2) CT10 FullSim AFII

480 CPS Powheg + Pythia8 (AU2) CT10 FullSim AFII

500 CPS Powheg + Pythia8 (AU2) CT10 FullSim AFII

520 CPS Powheg + Pythia8 (AU2) CT10 FullSim AFII

540 CPS Powheg + Pythia8 (AU2) CT10 FullSim AFII

560 CPS Powheg + Pythia8 (AU2) CT10 FullSim AFII

580 CPS Powheg + Pythia8 (AU2) CT10 FullSim AFII

600 CPS Powheg + Pythia8 (AU2) CT10 FullSim AFII

650 CPS Powheg + Pythia8 (AU2) CT10 FullSim AFII

700 CPS Powheg + Pythia8 (AU2) CT10 FullSim AFII

750 CPS Powheg + Pythia8 (AU2) CT10 FullSim AFII

800 CPS Powheg + Pythia8 (AU2) CT10 FullSim AFII

850 CPS Powheg + Pythia8 (AU2) CT10 FullSim AFII

900 CPS Powheg + Pythia8 (AU2) CT10 FullSim AFII

950 CPS Powheg + Pythia8 (AU2) CT10 FullSim AFII

1000 CPS Powheg + Pythia8 (AU2) CT10 FullSim AFII
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Table 4.2: NWA signal samples used in the analysis, with corresponding lineshape,
MC generator (and tune), PDF set, and detector simulation information.

mH Lineshape Generator (Tune) PDF Set Simulation

[GeV] ggF & VBF

300 NWA Powheg + Pythia8 (AU2) CT10 FullSim

350 NWA Powheg + Pythia8 (AU2) CT10 AFII

400 NWA Powheg + Pythia8 (AU2) CT10 FullSim

450 NWA Powheg + Pythia8 (AU2) CT10 AFII

500 NWA Powheg + Pythia8 (AU2) CT10 FullSim

550 NWA Powheg + Pythia8 (AU2) CT10 AFII

600 NWA Powheg + Pythia8 (AU2) CT10 FullSim

650 NWA Powheg + Pythia8 (AU2) CT10 AFII

700 NWA Powheg + Pythia8 (AU2) CT10 FullSim

750 NWA Powheg + Pythia8 (AU2) CT10 AFII

800 NWA Powheg + Pythia8 (AU2) CT10 FullSim

850 NWA Powheg + Pythia8 (AU2) CT10 AFII

900 NWA Powheg + Pythia8 (AU2) CT10 FullSim

950 NWA Powheg + Pythia8 (AU2) CT10 AFII

1000 NWA Powheg + Pythia8 (AU2) CT10 FullSim

1050 NWA Powheg + Pythia8 (AU2) CT10 AFII

1100 NWA Powheg + Pythia8 (AU2) CT10 AFII

1150 NWA Powheg + Pythia8 (AU2) CT10 AFII

1200 NWA Powheg + Pythia8 (AU2) CT10 AFII

1250 NWA Powheg + Pythia8 (AU2) CT10 AFII

1300 NWA Powheg + Pythia8 (AU2) CT10 AFII

1350 NWA Powheg + Pythia8 (AU2) CT10 AFII

1400 NWA Powheg + Pythia8 (AU2) CT10 AFII

1450 NWA Powheg + Pythia8 (AU2) CT10 AFII

1500 NWA Powheg + Pythia8 (AU2) CT10 AFII
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W+ jets: The production of a leptonically decaying W -boson with associated jets

is the dominant background in this analysis and is modeled by version 1.4.1. of

the Sherpa [54] MC generator, with constraints from data taken into account

in a dedicated W+ jets-enriched control region. The final normalization of this

background is determined from the final fit to data in the signal and control

regions.

In order to have sufficient statistics for this dominant background in the

entire mass range considered in this analysis, it isn’t enough to simply add

more events because these would preferentially populate the low-mass region

as the majority of W+ jets events in general have correspondingly low W -

boson pT (pWT ). To circumvent this issue, Sherpa samples are generated in

specific ranges of pWT : 40–70 GeV, 70–140 GeV,140–280 GeV, 280–500 GeV, and

> 500 GeV with an inclusive sample used for pWT < 40 GeV. For the benefit of

other physics groups, the non-inclusive samples are further divided by quark

content using b-, c-, and light-jet filters. Lastly, in continued pursuance of

large statistics for the W+ jets background, AFII simulated samples are used

whenever available.

Top: Single top and tt̄ pair productions introduce backgrounds with their t→ Wb

decays. All of the top samples are modeled by MC and generated with the AFII

simulation in order to have better statistics in the high-mass region. All of the

top backgrounds are generated using Powheg+Pythia6 [55], except for the

single top t-channel process that trades Powheg for AcerMC [56]. Similar

52



to the W+ jets background, a top-enriched control region is defined in order

to constrain the normalization of the top background (in the end determined

by the final fit) and observe its modeling with respect to data. Finally, two

prescribed weights are applied sequentially to events in the tt̄ sample in order

to correct for disagreements between data and the Powheg prediction in the

pT distributions of both the tt̄ system and the individual top quarks [57].

Z+ jets and Diboson: The production of a leptonically decaying Z-boson with as-

sociated jets, along with the production of dibosons (WW , WZ, ZZ, Wγ, and

Z/γ), have much smaller contributions to the background in this analysis. The

normalization and kinematics for all of these samples are modeled solely by MC.

The MC generators for the diboson processes include Alpgen [58]+Jimmy [59],

Herwig [60], and Sherpa. Sherpa is also used to generate the Z+ jets sam-

ples, which are divided by the same pT binning and quark-content filters as

the W+ jets samples for both consistency and welcomed larger statistics.

Mullti-jet: The production of QCD multi-jet events, with a jet that fakes an

electron or muon, contributes to the background in this analysis, but is greatly

suppressed at high mH and only has a minor contribution. However, it is

difficult to model this background well using MC, so a data-driven estimation

is used (see Section 4.9.1).
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Table 4.3: Top and diboson Monte Carlo samples used in the analysis, with
information on the process, MC generator (and tune), cross-section, and detector
simulation.

Process Generator (Tune) PDF Set
σ× BR [pb]

AFII/FullSim
(@
√
s = 8 TeV)

tt̄ Powheg + Pythia6 (P2011C) CTEQ6L1 252.89 AFII

Single top (t-channel) AcerMC + Pythia6 (P2011C) CTEQ6L1 28.44 AFII

Single top (s-channel) Powheg + Pythia6 (P2011C) CTEQ6L1 1.818 AFII

Wt (inclusive) Powheg + Pythia6 (P2011C) CTEQ6L1 22.37 AFII

WW Herwig (AUET2) CTEQ6L1 32.501 FullSim

WZ Herwig (AUET2) CTEQ6L1 12.009 FullSim

ZZ Herwig (AUET2) CTEQ6L1 4.6914 FullSim

Z/γ∗ → ee (pT > 10 GeV) Sherpa CT10 32.26 FullSim

Z/γ∗ → µµ (pT > 10 GeV) Sherpa CT10 32.317 FullSim

Wγ Alpgen + Jimmy (AUET2) CTEQ6L1 229.88 FullSim

Wγ + 1 parton, (Lepton/Photon Filter) Alpgen + Jimmy (AUET2) CTEQ6L1 59.518 FullSim

Wγ + 2 partons, (Lepton/Photon Filter) Alpgen + Jimmy (AUET2) CTEQ6L1 21.39 FullSim

Wγ + 3 partons, (Lepton/Photon Filter) Alpgen + Jimmy (AUET2) CTEQ6L1 7.1203 FullSim

Wγ + 4 partons Alpgen + Jimmy (AUET2) CTEQ6L1 2.1224 FullSim

Wγ + 5 partons Alpgen + Jimmy (AUET2) CTEQ6L1 0.46612 FullSim
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Table 4.4: W+ jets Monte Carlo samples used in the analysis, with information on
the process, MC generator (and tune), cross-section, and detector simulation.

Process Generator (Tune) PDF Set
σ× BR [pb]

AFII/FullSim
(@
√
s = 8 TeV)

W→ eν Sherpa CT10 11866.0 FullSim

W→ eν, 40 < pT < 70, b-jet filter Sherpa CT10 652.82 AFII

W→ eν, 40 < pT < 70,c-jet filter, b-jet veto Sherpa CT10 652.83 AFII

W→ eν, 40 < pT < 70, c-jet veto, b-jet veto Sherpa CT10 653.16 AFII

W→ eν, 70 < pT < 140, b-jet filter Sherpa CT10 250.55 AFII

W→ eν, 70 < pT < 140, c-jet filter, b-jet veto Sherpa CT10 250.71 AFII

W→ eν, 70 < pT < 140, c-jet veto, b-jet veto Sherpa CT10 250.43 AFII

W→ eν, 140 < pT < 280, b-jet filter Sherpa CT10 31.155 AFII

W→ eν, 140 < pT < 280, c-jet filter, b-jet veto Sherpa CT10 31.189 AFII

W→ eν, 140 < pT < 280, c-jet veto, b-jet veto Sherpa CT10 31.112 AFII

W→ eν, 280 < pT < 500, b-jet filter Sherpa CT10 1.8413 FullSim

W→ eν, 280 < pT < 500, c-jet filter, b-jet veto Sherpa CT10 1.8370 FullSim

W→ eν, 280 < pT < 500, c-jet veto, b-jet veto Sherpa CT10 1.8426 FullSim

W→ eν, pT > 500, b-jet filter Sherpa CT10 0.10188 FullSim

W→ eν, pT > 500, c-jet filter, b-jet veto Sherpa CT10 0.10101 FullSim

W→ eν, pT > 500, c-jet veto, b-jet veto Sherpa CT10 0.10093 FullSim

W→ µν Sherpa CT10 11867.0 FullSim

W→ µν, 40 < pT < 70, b-jet filter Sherpa CT10 652.73 AFII

W→ µν, 40 < pT < 70, c-jet filter, b-jet veto Sherpa CT10 653.14 AFII

W→ µν, 40 < pT < 70, c-jet veto, b-jet veto Sherpa CT10 653.06 AFII

W→ µν, 70 < pT < 140, b-jet filter Sherpa CT10 250.55 AFII

W→ µν, 70 < pT < 140, c-jet filter, b-jet veto Sherpa CT10 250.57 AFII

W→ µν, 70 < pT < 140, c-jet veto, b-jet veto Sherpa CT10 250.77 AFII

W→ µν, 140 < pT < 280, b-jet filter Sherpa CT10 31.164 AFII

W→ µν, 140 < pT < 280, c-jet filter, b-jet veto Sherpa CT10 31.165 AFII

W→ µν, 140 < pT < 280, c-jet veto, b-jet veto Sherpa CT10 31.173 AFII

W→ µν, 280 < pT < 500, b-jet filter Sherpa CT10 1.8380 FullSim

W→ µν, 280 < pT < 500, c-jet filter, b-jet veto Sherpa CT10 1.8395 FullSim

W→ µν, 280 < pT < 500, c-jet veto, b-jet veto Sherpa CT10 1.8433 FullSim

W→ µν, pT > 500, b-jet filter Sherpa CT10 0.10163 FullSim

W→ µν, pT > 500, c-jet filter, b-jet veto Sherpa CT10 0.10210 FullSim

W→ µν, pT > 500, c-jet veto, b-jet veto Sherpa CT10 0.10186 FullSim

W→ τν Sherpa CT10 11858.0 FullSim

W→ τν, 40 < pT < 70, b-jet filter Sherpa CT10 652.84 AFII

W→ τν, 40 < pT < 70, c-jet filter, b-jet veto Sherpa CT10 652.58 AFII

W→ τν, 40 < pT < 70, c-jet veto, b-jet veto Sherpa CT10 652.99 AFII

W→ τν, 70 < pT < 140, b-jet filter Sherpa CT10 250.57 FullSim

W→ τν, 70 < pT < 140, c-jet filter, b-jet veto Sherpa CT10 250.61 FullSim

W→ τν, 70 < pT < 140, c-jet veto, b-jet veto Sherpa CT10 250.60 FullSim

W→ τν, 140 < pT < 280, b-jet filter Sherpa CT10 31.162 FullSim

W→ τν, 140 < pT < 280, c-jet filter, b-jet veto Sherpa CT10 31.151 FullSim

W→ τν, 140 < pT < 280, c-jet veto, b-jet veto Sherpa CT10 31.176 FullSim

W→ τν, 280 < pT < 500, b-jet filter Sherpa CT10 1.8362 FullSim

W→ τν, 280 < pT < 500, c-jet filter, b-jet veto Sherpa CT10 1.8395 FullSim

W→ τν, 280 < pT < 500, c-jet veto, b-jet veto Sherpa CT10 1.8368 FullSim

W→ τν, pT > 500, b-jet filter Sherpa CT10 0.10208 FullSim

W→ τν, pT > 500, c-jet filter, b-jet veto Sherpa CT10 0.10139 FullSim

W→ τν, pT > 500, c-jet veto, b-jet veto Sherpa CT10 0.10201 FullSim

VBF W→ eν Sherpa CT10 4.2114 FullSim

VBF W→ µν Sherpa CT10 4.2128 FullSim
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Table 4.5: Z+ jets Monte Carlo samples used in the analysis, with information on
the process, MC generator (and tune), cross-section, and detector simulation.

Process Generator (Tune) PDF Set
σ× BR [pb]

AFII/FullSim
(@
√
s = 8 TeV)

Z→ ee Sherpa CT10 1207.8 FullSim

Z→ ee, 40 < pT < 70, b-jet filter Sherpa CT10 70.48500 AFII

Z→ ee, 40 < pT < 70, c-jet filter, b-jet veto Sherpa CT10 70.53000 AFII

Z→ ee, 40 < pT < 70, c-jet veto, b-jet veto Sherpa CT10 70.43100 AFII

Z→ ee, 70 < pT < 140, b-jet filter Sherpa CT10 29.49400 AFII

Z→ ee, 70 < pT < 140, c-jet filter, b-jet veto Sherpa CT10 29.48700 AFII

Z→ ee, 70 < pT < 140, c-jet veto, b-jet veto Sherpa CT10 29.49100 AFII

Z→ ee, 140 < pT < 280, b-jet filter Sherpa CT10 3.987700 AFII

Z→ ee, 140 < pT < 280, c-jet filter, b-jet veto Sherpa CT10 3.981100 AFII

Z→ ee, 140 < pT < 280, c-jet veto, b-jet veto Sherpa CT10 3.989000 AFII

Z→ ee, 280 < pT < 500, b-jet filter Sherpa CT10 0.241600 FullSim

Z→ ee, 280 < pT < 500, c-jet filter, b-jet veto Sherpa CT10 0.241280 FullSim

Z→ ee, 280 < pT < 500, c-jet veto, b-jet veto Sherpa CT10 0.241580 FullSim

Z→ ee, pT > 500, b-jet filter Sherpa CT10 0.013235 FullSim

Z→ ee, pT > 500,c-jet filter, b-jet veto Sherpa CT10 0.013454 FullSim

Z→ ee, pT > 500, c-jet veto, b-jet veto Sherpa CT10 0.013307 FullSim

Z→ µµ Sherpa CT10 1207.7 FullSim

Z→ µµ, 40 < pT < 70, b-jet filter Sherpa CT10 70.48600 AFII

Z→ µµ, 40 < pT < 70, c-jet filter, b-jet veto Sherpa CT10 70.46900 AFII

Z→ µµ, 40 < pT < 70, c-jet veto, b-jet veto Sherpa CT10 70.53400 AFII

Z→ µµ, 70 < pT < 140, b-jet filter Sherpa CT10 29.49100 AFII

Z→ µµ, 70 < pT < 140, c-jet filter, b-jet veto Sherpa CT10 29.44700 AFII

Z→ µµ, 70 < pT < 140, c-jet veto, b-jet veto Sherpa CT10 29.52100 AFII

Z→ µµ, 140 < pT < 280, b-jet filter Sherpa CT10 3.984200 AFII

Z→ µµ, 140 < pT < 280, c-jet filter, b-jet veto Sherpa CT10 3.991100 AFII

Z→ µµ, 140 < pT < 280, c-jet veto, b-jet veto Sherpa CT10 3.984100 AFII

Z→ µµ, 280 < pT < 500, b-jet filter Sherpa CT10 0.242190 FullSim

Z→ µµ, 280 < pT < 500, c-jet filter,b-jet veto Sherpa CT10 0.241690 FullSim

Z→ µµ, 280 < pT < 500, c-jet veto, b-jet veto Sherpa CT10 0.242720 FullSim

Z→ µµ, pT > 500, b-jet filter Sherpa CT10 0.013161 AFII

Z→ µµ, pT > 500, c-jet filter, b-jet veto Sherpa CT10 0.013480 AFII

Z→ µµ, pT > 500, c-jet veto, b-jet veto Sherpa CT10 0.013264 AFII

Z→ ττ Sherpa CT10 1206.9 FullSim

Z→ ττ , 40 < pT < 70, b-jet filter Sherpa CT10 70.44100 AFII

Z→ ττ , 40 < pT < 70, c-jet filter, b-jet veto Sherpa CT10 70.53800 AFII

Z→ ττ , 40 < pT < 70, c-jet veto, b-jet veto Sherpa CT10 70.52800 AFII

Z→ ττ , 70 < pT < 140, b-jet filter Sherpa CT10 29.48900 FullSim

Z→ ττ , 70 < pT < 140, c-jet filter, b-jet veto Sherpa CT10 29.49900 FullSim

Z→ ττ , 70 < pT < 140, c-jet veto, b-jet veto Sherpa CT10 29.49400 FullSim

Z→ ττ , 140 < pT < 280, b-jet filter Sherpa CT10 3.988700 FullSim

Z→ ττ , 140 < pT < 280, c-jet filter, b-jet veto Sherpa CT10 3.988000 FullSim

Z→ ττ , 140 < pT < 280, c-jet veto, b-jet veto Sherpa CT10 3.987100 FullSim

Z→ ττ , 280 < pT < 500, b-jet filter Sherpa CT10 0.241900 FullSim

Z→ ττ , 280 < pT < 500, c-jet filter, b-jet veto Sherpa CT10 0.241020 FullSim

Z→ ττ , 280 < pT < 500, c-jet veto, b-jet veto Sherpa CT10 0.241470 FullSim

Z→ ττ , pT > 500, b-jet filter Sherpa CT10 0.013285 FullSim

Z→ ττ , pT > 500, c-jet filter, b-jet veto Sherpa CT10 0.013308 FullSim

Z→ ττ , pT > 500, c-jet veto, b-jet veto Sherpa CT10 0.013284 FullSim
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4.3 Dataset

The 20.3 fb−1 of data used in this analysis corresponds to the entire
√
s = 8 TeV

dataset recorded by the ATLAS detector in 2012 and deemed good for physics. As

shown in Figure 4.3, the ATLAS detector did not record all of the luminosity delivered

by the LHC, but had a data-recording efficiency of 93.5% (the fraction of delivered

data effectively recorded by ATLAS) [61]. As a subset of ATLAS detector systems

only start to operate after the LHC has announced stable beams, their turn-on time

contributes to the recording inefficiency. Other factors range from issues with the

trigger or data acquisition systems to large-scale hardware problems.

Following the recording and reconstruction of the data, further data-quality checks

are performed, where any “bad data” is assigned as a defect to an interval of validity

(period of data taking). If the defect is found to be intolerable, the data in that defined

interval of validity are rejected from physics analysis. Possible intolerable defects

include noisy readout cells and portions of detectors being temporarily switched off.

In order to smoothly inform analyses of which data are good for physics, a Good

Run List (GRL) is provided that only contains periods of intolerable-defect-free

data. In the end, an impressive 95.5% of the data recorded by ATLAS in 2012 were

determined to be usable for physics analyses [61].
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Figure 4.3: The cumulative luminosity versus time delivered to ATLAS by the
LHC (green), recorded by ATLAS (yellow), and determined to be good for physics
(blue) in 2012 with pp collisions at

√
s = 8 TeV [12]. The histograms are overlaid, i.e.

not stacked, and the time axis is in units of months with the date format (D/M).
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4.4 Triggers

Out of the entire 2012 ATLAS dataset, this analysis uses events triggered by single

leptons in order to select events with W → `ν decays. The specific triggers are listed

in Table 4.6 along with their pT thresholds and combined efficiencies. The trigger

names contain a good deal of information; following the particle type (e or µ) and

pT threshold the letters v, h, and i along with the suffix (medium or tight) refer to

further features and requirements of the trigger:

v: The trigger technically has an η dependent pT threshold due to compensations

for the varying amount of non-instrumented material (not uniform in η) in

front of the calorimeters.

h: The trigger contains a hadronic leakage cut that vetoes events where the triggering

object deposits ≥ 1 GeV of energy in the hadronic calorimeter within a region

of 0.2× 0.2 in η × φ behind the EM calorimeter energy deposit.

i: The trigger has a track isolation requirement. In order to measure the level of

track isolation, the quantity pisoT is first calculated by taking the scalar pT sum

of all tracks having pT > 1 GeV found in the ID within a cone of ∆R centered

around the triggering object, but excluding the object itself. The relative track

isolation is then measured as the ratio of pisoT to the pT of the triggering object.

• e24vhi: Requires a relative track isolation of pisoT /pT(e) < 0.1 using a cone

size of ∆R = 0.2.
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Table 4.6: Triggers used for 8 TeV analysis.

Triggered Trigger pT Threshold Combined

Object Name [GeV] Efficiency

e24vhi medium 24

e or ≥ 95% for |η| < 2.40

e60 medium 60

mu24i tight 24 ∼ 70% (∼ 90%)

µ or for

mu36 tight 36 |η| < 1.05 (1.05 < |η| < 2.40)

• mu24i: Requires a relative track isolation of pisoT /pT(µ) < 0.12 using a

cone size of ∆R = 0.2.

medium/tight: Refers to a specific level of electron or muon identification criteria

that the trigger utilizes.

Combining the triggers for each lepton flavor, i.e. accepting events that pass either

trigger, helps to maintain a high trigger efficiency across a larger kinematic range.

The triggers with higher pT thresholds and no isolation requirement compensate for

the loss of efficiency at high pT due to the isolation requirements of the lower pT

threshold triggers.

The electron trigger efficiencies are measured using the tag-and-probe technique

in which offline reconstructed Z → e+e− decays are selected by requiring a pair of

oppositely charged electrons with an invariant mass near that of the Z boson. One

of these offline-electrons (the tag) is required to have an associated trigger-electron
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that satisfies the criteria of an unprescaled single electron trigger, while the other

offline-electron serves as the probe. To be considered associated, the separation

between the tag and trigger electrons must satisfy ∆R < 0.15. The efficiency of

the electron triggers is simply the fraction of the selected e+e− events in which the

probe electron also has an associated trigger-electron. A similar method is applied

to measure the muon trigger efficiencies using Z → µ+µ− decays.

Since the MC samples do not flawlessly reproduce the observed trigger efficiencies

in data, scale factors (ratios between measured and simulated efficiencies) are applied

to the MC samples, making small corrections to better model the data. These

efficiency scale factors, as well as those for reconstruction, identification, and isolation

of electrons and muons (mentioned in the following sections), are provided to analysis

groups by the ATLAS Electron and Muon Combined Performance groups through

the use of ATLAS software packages. Public results regarding the various efficiency

measurements can be found in [62] for electrons and in [63, 64] for muons.

4.5 Object Reconstruction and Preliminary Selection

Data events collected with the triggers described above, as well as simulated MC

events, are filtered by requiring a loose event selection which gives high efficiency for

all sub-channels and production modes of H → WW → `νqq. The basic signature of

a H → WW → `νqq candidate event is the presence of a high pT electron or muon,

at least two jets (or at least one merged jet) from the two quarks, and large missing

transverse momentum (Emiss
T ) corresponding to the neutrino pT. This section details
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the reconstruction and preliminary selection of these physics objects for this analysis.

4.5.1 Primary Vertex

The large amount of data delivered to ATLAS is made possible in part by the

high luminosity provided by the LHC through both the very short time elapsed

between proton-bunch crossings (50 ns in 2012) and the large average number of pp

interactions per bunch crossing (〈µ〉 = 20.7 in 2012). The in-time and out-of-time

pile-up created in these bunch crossings require the use of dedicated algorithms

and corrections to mitigate their negative impact on particle identification, event

reconstruction, and energy calibrations. The pp collision vertices in each bunch

crossing are reconstructed by the ID tracking system. In order to remove cosmic-ray

and beam-induced backgrounds, events are required to have at least one vertex with

at least three associated tracks, each with pT > 400 MeV. If more than one qualifying

collision vertex is reconstructed, the one with the largest Σp2
T of its associated tracks

is selected as the primary vertex.

4.5.2 Electrons

Electron candidates are reconstructed from clustered energy deposits in the EM

calorimeter with an associated track in the ID and are required to pass a set of

identification cuts (Tight++ electrons) [62]. While the energy measurement is taken

from the EM calorimeter, the pseudorapidity η and azimuthal angle φ are taken from

the associated track. The cluster is required to be in the range |η| < 2.47, excluding
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the transition region between the barrel and end-cap calorimeters, 1.37 < |η| < 1.52.

The track associated with the electron candidate is required to point back to the

reconstructed primary vertex with a transverse impact parameter significance of

|d0/σd0| < 3 and an impact parameter along the beam direction of |z0 ·sin θ| < 0.4 mm.

Finally, electrons are required to pass both calorimeter and track based isolation cuts;

the variables used for these cuts are topoEtConeCor30 and PtCone30 respectively.

The quantity topoEtConeCor30 is constructed by summing the ET of all the

calorimeter cells within a cone of ∆R ≤ 0.3 around the electron and then subtracting

the ET that comes from the electron itself as well as energy deposits not related to

the underlying event (primarily from pile-up). The ratio of topoEtConeCor30 to

the electron ET provides the needed estimate of the electron calorimeter isolation.

The isolation cut applied is ET dependant, and is summarized in Table 4.7.

PtCone30 is analogously constructed, but instead of summing the ET as measured

by the calorimeters, it takes the scalar sum of the pT from the tracker. The tracks

included in the sum must be within a cone of ∆R ≤ 0.3 around the electron, point

back to the same primary vertex as the electron track, and have pT > 400 MeV.

Contributions from pile-up and the electron itself are subtracted from the sum,

and the ratio of PtCone30 to the electron ET provides the estimate of the electron

track isolation. As with the calorimeter isolation, the cut value is dependent on the

electron ET and is also summarized in Table 4.7.

As with the triggers, the MC does not perfectly model the electron reconstruction,

isolation, or identification efficiencies observed in data. Thus, to correct for this,
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additional scale factors are applied to MC events containing reconstructed electrons

(calculated/applied in bins of electron ET and η) [62].

Table 4.7: Calorimeter and track isolation cuts for electron identification.

Isolation Isolation Isolation Electron ET

Base Variable Cut [GeV]

Calorimeter topoEtConeCor30/ET

< 0.24 15 ≤ ET < 20

< 0.28 ET ≥ 20

Track PtCone30/ET

< 0.08 15 ≤ ET < 20

< 0.10 ET ≥ 20

4.5.3 Muons

Muon candidates are reconstructed by combining tracks in the inner detector and

muon spectrometer using the Staco combined muon algorithm [64]. Muons are

required to pass basic quality cuts on the number and type of hits in the inner

detector. The muons must satisfy |z0 · sin θ| < 1.0 mm and |d0/σd0| < 3. As

with electrons, the muons must also pass track and calorimeter based isolation

requirements summarized in Table 4.8.

Similar to the trigger and electron efficiency scale factors, muon reconstruction,

isolation, and identification efficiency scale factors are applied to MC events containing

reconstructed muons to ensure proper modeling of the data (calculated/applied in

bins of muon φ and η) [64].
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Table 4.8: Calorimeter and track isolation cuts for muon identification.

Isolation Isolation Isolation Electron ET

Base Variable Cut [GeV]

Calorimeter topoEtConeCor30/ET

< 0.12 15 ≤ pT < 20

< 0.18 20 ≤ pT < 25

< 0.30 pT ≥ 25

Track PtCone30/ET

< 0.08 15 ≤ pT < 20

< 0.12 pT ≥ 20

4.5.4 Jets

Jet candidates are also reconstructed from topological clusters of calorimeter cells,

but create a much more diffuse deposit of energy because they are not discrete

objects but rather showers of hadronic and EM particles. The primary role of jets in

this analysis is to reconstruct the hadronic showers of the two quarks coming from

the W → qq decay. Due to the large kinematic range (mH range) studied in this

analysis, two different jet reconstruction algorithms are used, creating two types of

jets: resolved and merged. The resolved (or small-R) jets are reconstructed using

the anti-kt algorithm [65] with radius parameter R = 0.4 and a JVF (jet vertex

fraction) [66] cut of > 0.5. The merged (or large-R) jets are reconstructed using the

Cambridge-Aachen (C/A) algorithm [67] with radius parameter R = 1.2 and are

then groomed using a standard mass-drop filtering algorithm described below.
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The inclusion of large-R jets helps to mitigate the efficiency loss at very heavy

Higgs boson masses near the upper end of our search region. The W bosons decayed

from such a heavy Higgs are highly boosted, i.e. having significantly less mass than

the Higgs they receive a “boost” in their momentum. This in turn leads to a narrower

opening angle between the decay products of the W boson, e.g. the jets, as the

opening angle (∆R) between two-body decay products can be approximated as

∆R ≈ 2m

pT

(4.1)

where m and pT are the mass and transverse momentum of the decaying particle,

respectively. Thus, sometimes in the highly boosted regime the small-R jet algorithm

cannot resolve the pair of jets coming from the hadronic W decay, while the large-R

jet algorithm can reconstruct both jets in a single large-R jet and save the event from

potential rejection/mis-identification. However, expanding the jet size increases the

probability of including unwanted energy deposits in the jet area such as contributions

from pile-up. This is typically where jet substructure techniques come into play to

mitigate these unwanted contributions, as well as to examine the structure of the

subjets and clusters that make up the large-R jet.

Mass-Drop Filter on large-R C/A Jets The mass-drop filter [68] seeks to

isolate two relatively symmetric energy deposits within a large-R jet, that would

arise from a two-body decay, and to remove unrelated and unwanted energy deposits.

Originally developed for H → bb̄ decay searches [69], this mass-drop filter is a two

stage procedure illustrated in Figure 4.4 and described below:
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(a) Mass-drop and symmetry criteria.

(b) Filtering

Figure 4.4: Illustration of the two-stage mass-drop filter on a large-R C/A jet.

1. Mass-drop and symmetry criteria: The last step in the C/A jet recon-

struction algorithm (referenced above) is undone, which results in splitting the

original jet into two mass-ordered subjets j1 and j2, as illustrated in Figure 4.4a.

The mass-drop criteria is then applied, which ensures that there is a large mass

difference between the original C/A jet (mass mJ) and the hardest of the two

subjets (mass mj1):

mj1/mJ < µfrac. (4.2)

Here, µfrac is the mass-drop parameter. The symmetry criteria requires the two
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subjets to satisfy a cut on ycut, which represents the energy sharing between

the two subjets in the original jet, and is given by the following formula:

min[(pj1T )2, (pj2T )2]

(mJ)2
×∆R2

j1,j2
> ycut. (4.3)

This basically requires both subjets to carry some significant fraction of the

original jet’s momentum.

2. Filtering: Jets passing the mass-drop and symmetry criteria in the pre-

vious step are then filtered in order to remove the soft components and

preserve the hardest components. First, the constituents of j1 and j2 are

re-clustered using the C/A algorithm again, but with a new Rfilt given by

Rfilt = min[0.3,∆Rj1,j2/2]. Afterwards, all but the three hardest re-clustered

subjets are discarded. Keeping three subjets for a two-body final state decay

is done to allow for a radiation from the decay to be captured. This stage of

the mass-drop filter is illustrated in Figure 4.4b.

If the C/A jet fails either the mass-drop or symmetry criteria, the jet is discarded.

In this analysis the values of the parameters used are µfrac = 0.67 and ycut = 0.09.

These are the default values for this mass-drop filter algorithm on ATLAS and are

recommended by the ATLAS Jet Substructure group.The resulting filtered large-R

jet mass is calculated from the energies and momenta of the final jet constituents as:

mJ =

√√√√(∑
i

Ei

)2

−
(∑

i

~pi

)2

(4.4)

where Ei and ~pi are the energy and three-momentum of the ith constituent.
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b-tagging A very helpful discriminant between our signal and top quark back-

grounds is the identification of small-R jets originating from the hadronization of

b-quarks since the branching ratio for t→ Wb decays is ∼95%. Small-R jets within

|η| < 2.5 are considered b-tagged if they are consistent with having originated from

the decay of a b-quark. This is determined by a b-tagging multivariate neural network

algorithm, MV1 [70, 71], which utilizes a combination of impact parameter signifi-

cance and secondary vertex information to exploit the topology of b- and c-hadron

weak decays. The algorithm is used at a working point that offers an 85% b-jet

identification efficiency and a mis-tag rate for light-flavor jets of 10.3% in simulated

tt̄ events. Lastly, in order to have good agreement with data, b-tag scale factors are

applied to the MC.

4.5.5 Emiss
T

Missing transverse momentum Emiss
T in a given event is reconstructed by taking

the negative vector sum of the energies deposited in the detector by identified

and calibrated jets, leptons and photons, as well as soft clustered energy in the

calorimeters [72, 73]. Energy deposits from isolated muons in the calorimeters

are subtracted in the Emiss
T calculation to avoid double counting, as the muons’

momentum contributions are measured from the muon spectrometers which already

takes into account the energy deposited in the calorimeters. The Emiss
T vector sum is
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separated into x and y components given by:

Emiss
x = −

term∑Nterm
cell∑
i=1

Ei sin θi cosφi



Emiss
y = −

term∑Nterm
cell∑
i=1

Ei sin θi sinφi

 ,

(4.5)

where the first summation is over the various contributing terms from jets, leptons,

etc. and the second summation is over the number of contributing calorimeter

cells associated to a given term. Using these two components, the magnitude and

azimuthal angle of the Emiss
T are given respectively by:

Emiss
T =

√
(Emiss

x )2 + (Emiss
y )2 and φmiss = arctan(Emiss

y /Emiss
x ). (4.6)

Although a minimum amount of Emiss
T is required in the signal regions of this analysis,

the full range of Emiss
T is utilized in the estimation of the multi-jet background, as

described in Section 4.9.1.

4.6 Selection and Categorization of Events

This section describes the categorization, classification, and selection applied to MC

and data events alike.

4.6.1 Signal Event Preselection

This section describes the “preselection” that consists of various object and topology

based selections aimed at distinguishing signal-like events and categorizing them.

The selections will later be tightened to improve their discriminating power, but this
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preselection provides a baseline/springboard for optimization studies, further event

categorizations, and early (higher statistic) checks on MC/data agreement.

Object Selection A signal-like event is required to have exactly one reconstructed

lepton candidate (electron or muon) with pT > 25 GeV. No additional leptons with

pT > 15 GeV are allowed. The selected lepton must match the object that triggered

the event and be fairly central with |η| < 2.4. Events are also required to have

Emiss
T > 60 GeV in order to suppress the multi-jet background. Small-R jets in the

event are only considered with pT > 30 GeV and |η| < 4.5 and large-R jets only with

pT > 100 GeV, mJ > 40 GeV, and |η| < 1.2. Lastly, a jet candidate of either size

must satisfy ∆R > 0.3 with respect to the selected lepton.

Production Categories For the purpose of distinguishing between production

modes, events are classified into two orthogonal categories, ggF and VBF, based on

the jet topology in the event.

VBF Designed to be most sensitive to the VBF production process, events in

this category are required to have at least four small-R jets or at least two

small-R jets and one large-R jet. In other words, events are required to

have at least enough jets to reconstruct the hadronic W and to tag the two

VBF-characteristic forward jets coming from the hadronization of the recoiling

partons.

These tagging jets provide the main discriminating power between pro-

duction modes and are identified as the pair of small-R jets with the largest
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invariant mass in the event that satisfy the following criteria. The pair must

have an invariant mass mjtag1jtag2 > 600 GeV, leading jet pT > 40 GeV, and be

well-separated in rapidity such that |∆yjtag1jtag2| > 3.

If an event contains a pair of VBF tagging jets, along with enough other

jets to reconstruct the hadronic W , it enters the VBF category. This is referred

to as the VBF selection, along with any further selections explicitly specific to

the category.

ggF Events in the ggF category are required to have at least two small-R jets or

at least one large-R jet (again, enough to reconstruct the hadronic W ). For

events with at least four small-R jets or two small-R jets and one large-R jet

(i.e. potential VBF category events), orthogonality between the two production

categories is enforced in the ggF selection by vetoing events containing a pair

of VBF tagging jets.

Together, this veto on VBF tagging jets and the requirement for a minimum

number of jets, is referred to as the ggF selection, along with any further

selections explicitly specific to the category.

All further selections apply to both the ggF and VBF categories, unless explicitly

stated otherwise.

Hadronic W Reconstruction Events either use two small-R jets (classified as

“resolved” events) or one large-R jet (classified as “merged” events) to reconstruct

the hadronic W . The small-R “W -jet” candidates are identified from all small-R
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jets in the event within |η| < 2.4 that are not identified as VBF tagging jets. The

pair with an invariant mass closest to the W boson mass (using the current PDG

value of 80.385 GeV) are considered to be the W -jets unless there are more than one

such pair that fall into the Signal Region mjj window (65 ≤ mjj ≤ 96); in this case

the pair having the largest scalar sum pT is chosen. However, if there is a large-R

jet in the event with a mass closer to the W boson mass than the invariant mass of

the best di-jet pair, the large-R jet replaces the two W -jets as the candidate for the

hadronically decaying W boson. This selection method has a 90-97% efficiency of

picking both reconstructed jets that correspond to the truth jets (closest in ∆R < 0.3)

in resolved signal MC events following the entire signal region selection.

Decay Topology Additionally, events are required to have decay topologies con-

sistent with semi-leptonic WW decays. For resolved events, at least one of the two

W -jets must have pT > 60 GeV and the pair is expected to be close together in φ

(especially at high mH) with the angular-separation requirement of |∆φ(j, j)| < 2.5.

Similarly, for both resolved and merged events, the angular separation between the

lepton and neutrino is required to be small: |∆φ(`, Emiss
T )| < 2.5. Lastly, the angular

separation between the leptonic and hadronic W bosons is expected to be large

because they are decaying from a high-mass Higgs boson that is most often produced

with negligible transverse momentum of its own. This is enforced by requiring both

|∆φ(j, `)| > 1.0 and |∆φ(j, Emiss
T )| > 1.0 for all W -jets, including the selected large-R

W -jet in merged events.
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b-tagging Events are also vetoed from the signal region based on the presence of

small-R b-tagged jets within the b-tagging acceptance of |η| < 2.4. This is done in

order to suppress the tt̄ background contribution in the region. For resolved events,

if both of the W jets are b-tagged the event is vetoed, while if only one of the W jets

is b-tagged the event is kept since a large fraction of jets from W → cs̄ decays are

b-tagged due to the mistag rate of charm quarks. Furthermore, for both resolved and

merged events, if any other small-R jet in the event (with |η| < 2.4 and including the

VBF tagging jets) is b-tagged, the event is vetoed. However, in the case of merged

events, small-R jets within ∆R ≤ 0.4 from the center of the large-R W -jet, are not

considered in the b-tagging. There is no flavor tagging of the large-R jets in this

analysis.

W -mass Window The final requirement of the signal region preselection is that

the invariant mass of the W -jet(s) be within the interval 65 ≤ mJ(jj) ≤ 96 GeV (i.e.

close to the W boson mass).

A summary of the signal region preselection described above is seen in Table 4.9.

Large-R Jet Impact on Preselection

As mentioned before, large-R jets are included in this analysis to make up for the

observation that, with heavier and heavier Higgs mass, the preselection efficiency on

the signal gets smaller and smaller. This is partly a result of more and more events

with resolved di-jet pairs failing to fall within the W -mass window, which in turn is a

result of the highly boosted hadronically decaying W bosons. Including the large-R
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Table 4.9: Summary of the signal region event preselection. The small-R (large-R)
jets passing the object selection are denoted by j (J) and their count by Nj (NJ).
Also, VBF tagging jets are denoted by j1 and j2, with j1 having the higher-pT. The
hadronic W boson candidate can be reconstructed as a pair of small-R jets (jwjw)
or as a single large-R jet (Jw). The leading jw is denoted jwlead

and if only a single
jw is referenced, the requirement is applied to both.

Object selection 1 isolated charged lepton (e or µ): pT > 25 GeV, |η| < 2.4

Emiss
T > 60 GeV

small-R jets: pT > 30 GeV, |η| < 4.5

large-R jets: pT > 100 GeV, |η| < 1.2, mJ > 40 GeV

VBF selection (Nj ≥ 4) or (Nj ≥ 2 and NJ ≥ 1)
mj1j2 > 600 GeV

VBF tag: pj1T > 40 GeV

|∆y(j1, j2)| > 3.0

ggF selection not VBF tagged and (Nj ≥ 2 or NJ ≥ 1)

Further selection, hadronic

W boson reconstructed as: small-R jet pair large-R jet

Decay topology p
jwlead
T > 60 GeV -

∆φ(jw, jw) < 2.5 -

∆φ(jw, `) > 1.0 ∆φ(Jw, `) > 1.0

∆φ(jw, E
miss
T ) > 1.0 ∆φ(Jw, E

miss
T ) > 1.0

∆φ(`, Emiss
T ) < 2.5

b-tagging

veto events with: both jw b-tagged or any b-tagged jet with

any other jet b-tagged ∆R(j, Jw) > 0.4

W -mass window 65 GeV ≤ mjwjw ≤ 96 GeV 65 GeV ≤ mJw ≤ 96 GeV
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Figure 4.5: The preselection efficiency for CPS and NWA signal sample events. The
blue squares show the preselection efficiency using only resolved jets to reconstruct
the hadronic W , while the green circles show the preselection efficiency with the
inclusion of large-R jets.

jets increases the selection efficiency dramatically in the heavy Higgs mass region for

all of the signal samples (ggF/VBF and CPS/NWA ), as shown in Figure 4.5. Also,

as expected, the fraction of events that utilize a large-R jet to reconstruct the W

increases as the hypothesized Higgs mass increases (see Figure 4.6).

4.6.2 Event Categorization and Region Definitions

In addition to the ggF and VBF production-mode categories discussed in the previous

section, events are further divided into exclusive subcategories according to lepton
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Figure 4.6: The percentage of preselected CPS and NWA signal events that use a
large-R jet (as opposed to two small-R jets) to reconstruct the hadronic W .

flavor and charge: e−, e+, µ−, or µ+. The separation by lepton charge is particularly

useful given the charge correlation present for W+jets production in pp collisions. In

general, the categorization of events improves the sensitivity of the final combined

result by exploiting any differences in the background or signal falling into the

particular categories.

The events selected according to the description in Section 4.6.1 are assigned

to the Signal Region (SR) of their respective categories. The SR contains events

that provide optimal discovery potential for the signal. The collision data that falls
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into the SR is initially “blinded” (meaning not analyzed or even looked at) to limit

the experimenter bias in the analysis. The unblinding of the data in the SR takes

place only after all selections are frozen/fixed, along with any corrections applied to

the MC, and the MC demonstrates satisfactory modeling of the data. In order to

test this data modeling in an unbiased way before unblinding, the collision data is

compared to MC predictions in two control regions (CR). Separate CRs are defined

for ggF and VBF categories, but merged for lepton flavor and charge.

W+ jets CR: The first control region is the W+ jets control region (WCR), which

is dominated by W → `ν+jets events. The selection defining this control region is

identical to that of the SR, except for the hadronic W -mass window. The signal

contributions are suppressed in the WCR by selecting an orthogonal set of events

to the SR with a reconstructed hadronic W mass (mjj for resolved events or mJ

for merged events) that falls outside of the W -mass window and into upper and

lower W -mass sidebands, effectively vetoing the most signal-like events and creating

a W+ jets enriched region.

The W -mass sidebands for the ggF category are defined as:

52 GeV ≤ mjj/J < 65 GeV : ggF lower sideband (4.7)

96 GeV < mjj/J ≤ 126 GeV : ggF upper sideband. (4.8)

Due to lower statistics for both data and Monte Carlo in the VBF category, the
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W -mass sidebands are extended:

43 GeV ≤ mjj/J < 65 GeV : VBF lower sideband (4.9)

96 GeV < mjj/J ≤ 200 GeV : VBF upper sideband. (4.10)

Both sets of sideband ranges are chosen such that the signal contribution to the

WCR is sufficiently depleted, while the kinematics of the WCR stay similar to

the SR. The choice of ranges also takes into consideration keeping the number of

background events close to the same in the upper and lower sidebands, so that when

combined into one control region there is no bias in one direction with respect to the

signal region.

Top CR: The second control region is the top control region (TopCR), which is

designed to be as pure as possible for the second largest background, tt̄→ WbWb→

`νjj + bb, while retaining similar kinematics to the SR. This background looks

like the Higgs boson signal, but contains two characteristic b-jets. Therefore, the

selection defining the TopCR is defined to be identical to the SR selection, but with

the b-jet veto basically reversed, requiring at least one b-tagged jet that is not a

small-R W -jet (in the case of a resolved event) and is distinct from the large-R W -jet

with ∆R(j, Jw) > 0.4 (in the case of a merged event). Also, to avoid introducing

mis-modeling that is not present in the SR, resolved events are vetoed from the

TopCR if both W -jets are b-tagged.
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4.7 WW Invariant Mass Reconstruction and Resolution

Following the selection outlined in the previous section, each event contains all

the necessary four-momenta components to fully reconstruct the four-body final

state of a H → WW → `νqq decay, except for one. While the hadronic W boson

is fully reconstructed using the four-momentum(a) of the W -jet(s) selected in the

event, as described in Section 4.6.1, the leptonic W boson cannot be unambiguously

reconstructed because there is no measurement of the neutrino momentum along the

beam axis (pνz).

This section outlines the solution to the missing pνz problem in this analysis and

the resolution of the resulting fully-reconstructed WW invariant mass, along with a

study of the effects of an alternate method for selecting W -jets.

4.7.1 Leptonic W Reconstruction and the Neutrino pνz

To reiterate, knowledge of the neutrino momentum is required to reconstruct the

leptonic W . The transverse momentum of the neutrino pνT is taken to be the

measured Emiss
T in the event, while the neutrino longitudinal momentum pνz is

not even indirectly measurable. However, pνz can be computed (up to a two-fold

ambiguity) by constraining the invariant mass of the `ν system to be equal to the
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W boson mass (80.385 GeV) such that

m2
W = m2

`ν ≡ (p` + pν)
2

= p2
`︸︷︷︸

≡m2
`≈0

+ p2
ν︸︷︷︸

≡m2
ν≈0

+ 2p` · pν

= 2(E`Eν − ~p` · ~pν),

(4.11)

where in this equation p represents a particle’s four-momentum and ~p its three-

momentum. The final expression requires neglecting the small masses of the lepton

and neutrino, which also leads to the relation Eν = |~pν |. Using this relation, along

with the momentum conversions from cartesian coordinates (px, py) to (pT, φ):

px = pT cosφ and py = pT sinφ, Equation 4.11 can be expanded in terms of pνz :

m2
W = 2

(
E`

√
p2
νT

+ p2
νz − p`TpνT cos(φ` − φν)− p`zpνz

)
. (4.12)

Defining

α ≡ m2
W

2
+ p`TpνT cos(φ` − φν) (4.13)

and solving for pνz leads to a quadratic solution with a two-fold ambiguity:

pνz =
αp`z

E2
` − p2

`z

±
[(

αE`
E2
` − p2

`z

)2

− E2
` p

2
νT

E2
` − p2

`z︸ ︷︷ ︸
≡β

]1/2

. (4.14)

In the case of two real solutions (or β > 0) to Equation 4.14, the solution with

the smaller |pνz | is chosen. This choice is based on signal simulation studies that

show it results more often in a better match to the real pνz . In the case of complex

solutions (or β ≤ 0), only the real part of the solution is used.

Post-preselection distributions of the “low” and “high” |pνz | solutions, along

with the real part of the imaginary solutions and the truth pνz , are shown in Figure
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4.7 for several ggF and VBF signal MC samples. Also, the superior accuracy

of the low |pνz | solution is shown in Figure 4.8, which compares the resolutions

(truth pνz − reconstructed pνz) of the various pνz solutions, and in Table 4.10, which

shows the percentage of post-preselection events in which the truth pνz is closer to the

low |pνz | solution than the high solution. As evidenced in both the aforementioned

figure and table, the efficiency of the lower |pνz | solution with respect to the high

solution worsens with increasing Higgs mass, but always stays above 58%.

Table 4.10: Percentage of post-preselection NWA signal events with a truth pνz
closer to the low |pνz | solution than the high solution.

Sample 300 GeV 500 GeV 700 GeV 900 GeV 1100 GeV 1300 GeV 1500 GeV

ggF 71.0 64.9 62.5 60.7 59.3 58.6 58.6

VBF 78.4 66.9 62.8 60.9 60.2 59.0 58.1

Further studies were performed to address expressed concerns that our method

of choosing the pνz solution might depend on the number of primary vertices (NPV)

in the event, or in other words, that it might depend on the pile-up. These studies

show no significant correlation between the NPV and the quality (efficiency and

resolution) of our neutrino pνz choice in our MC signal samples, as can be seen in

Figures 4.9 and 4.10.
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Figure 4.7: pνz distributions comparing the low and high solutions, along with the
real part of the imaginary solutions and the truth value, for events that pass the
ggF or VBF preselection corresponding to the respective sample type.
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Figure 4.8: pνz resolutions (truth - reconstruction) for the low, high, and real
part of the imaginary solutions for events that pass the ggF or VBF preselection
corresponding to the respective sample type.
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Figure 4.9: Profile histograms of the average efficiency of the low |pνz | choice in bins
of the number of primary vertices for events that pass the ggF or VBF preselection
corresponding to the respective sample type.

85



vxpN

0 5 10 15 20 25 30

 (
Tr

ut
h 

- 
R

ec
o.

) 
[G

eV
]

ν z
p∆

-60

-40

-20

0

20

40

60

NWA ggF [300]

vxpN

0 5 10 15 20 25 30

 (
Tr

ut
h 

- 
R

ec
o.

) 
[G

eV
]

ν z
p∆

-60

-40

-20

0

20

40

60

NWA VBF [300]

vxpN

0 5 10 15 20 25 30

 (
Tr

ut
h 

- 
R

ec
o.

) 
[G

eV
]

ν z
p∆

-60

-40

-20

0

20

40

60

NWA ggF [700]

vxpN

0 5 10 15 20 25 30
 (

Tr
ut

h 
- 

R
ec

o.
) 

[G
eV

]
ν z

p∆
-60

-40

-20

0

20

40

60

NWA VBF [700]

vxpN

0 5 10 15 20 25 30

 (
Tr

ut
h 

- 
R

ec
o.

) 
[G

eV
]

ν z
p∆

-60

-40

-20

0

20

40

60

NWA ggF [1100]

vxpN

0 5 10 15 20 25 30

 (
Tr

ut
h 

- 
R

ec
o.

) 
[G

eV
]

ν z
p∆

-60

-40

-20

0

20

40

60

NWA VBF [1100]

vxpN

0 5 10 15 20 25 30

 (
Tr

ut
h 

- 
R

ec
o.

) 
[G

eV
]

ν z
p∆

-60

-40

-20

0

20

40

60

NWA ggF [1500]

vxpN

0 5 10 15 20 25 30

 (
Tr

ut
h 

- 
R

ec
o.

) 
[G

eV
]

ν z
p∆

-60

-40

-20

0

20

40

60

NWA VBF [1500]

Figure 4.10: Profile histograms of the average pνz resolution (for the low |pνz |
choice) in bins of the number of primary vertices for events that pass the ggF or
VBF preselection corresponding to the respective sample type.
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4.7.2 Experimental mass resolution

Now with the pνz chosen, the WW system (i.e. the theorized high-mass Higgs

boson) can be fully reconstructed including most importantly its invariant mass

m`νjj. The experimental resolution of m`νjj depends on the kinematic resolutions of

the constituent objects and is thereby limited by the resolutions of the jet momentum,

Emiss
T , and lepton momentum. In addition, if a jet not originating from W → qq̄ is

used to reconstruct the hadronic W Lorentz vector, large tails in the reconstructed

Higgs mass can be introduced.

The Narrow Width Approximation (NWA) signal samples are used to study

the experimental mass resolution. Since these samples are generated with a mass

distribution width of 4 MeV, the observed mass resolution following reconstruction

can almost entirely be attributed to the experimental resolution.

Figure 4.11 shows the experimental mass resolution as a function of the boson

mass (mH) of the signal samples, where the resolution is taken to be the σ of a

Gaussian fit to the peak region of the reconstructed m`νjj distribution following the

signal preselection. The VBF resolution is slightly better than the ggF resolution,

and both resolutions worsen slowly with increasing mass.

Also in Figure 4.11, the natural width of a SM-like Higgs boson is shown. The

search for a light (mH ≤ 400 GeV) SM-like Higgs boson is limited by the experimental

resolution, but since the SM natural width increases faster than the experimental

resolution the search for a heavier SM-like Higgs boson is completely dominated by

the natural width of the boson. At mH = 1 TeV the experimental resolution is similar

87



 [GeV]Hm

300 400 500 600 700 800 9001000

E
xp

er
im

en
ta

l m
as

s 
re

so
lu

tio
n 

[G
eV

]

30

40

50

60

70

80

90

ggF

VBF

SMΓ

Figure 4.11: The experimental mass resolution as a function of mH . The dashed
line indicates the natural width of a SM-like Higgs boson.

to 0.1 ΓSM, which is thus the smallest fraction of ΓSM that is directly accessible in

this analysis.

Further studies analyze the experimental mass resolution’s dependence on the

type of jet(s) used to reconstruct the Higgs and on the quality of the pνz choice.

Figure 4.12a shows the experimental mass resolution similarly to the previous figure,

but this time with the merged and resolved event categories separated. The large

uncertainties for some mass points come from Gaussian fits to low statistic categories.

For both the ggF and VBF samples the resolved events have a poorer mass resolution

than the merged events and the separation grows with increasing mH . However, this

is not a direct comparison of the two hadronic W reconstruction methods, but rather

a comparison between the final categories.

For a more direct comparison of the two hadronic W reconstruction methods’
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mass resolutions, the two methods are compared using the same events. In order

to do this comparison after the entire event preselection, events for the comparison

are required to pass both the merged and resolved category requirements. This

comparison is shown in Figure 4.12b where the resolutions of the two methods are

consistent with each other within uncertainties for the ggF and VBF cases. The

large uncertainties in this figure at high mH come from the small number of events

passing both the resolved and boosted selections in the primarily boosted region.

Lastly, Figure 4.13 shows the contributions to the reconstructed NWA Higgs mass

for several ggF and VBF sample mass points from the various pνz cases: keeping

the real part of the imaginary solutions, taking the lower |pνz | solution and being

closer than the higher |pνz | solution to the truth value (labelled as “Correct”), and

taking the lower |pνz | solution and being further than the higher solution from the

truth value (labelled as “Incorrect”). The incorrect pνz solution events contribute

significantly to the low-mass tails of the distributions, show a general shift toward

lower masses, and have worse resolutions than the other two components.

The latter two points are highlighted even more clearly in Figure 4.14 where the

three components are put on equal footing via normalization to better compare their

shapes. In this second figure it is also shown that the correct pνz solution events and

the complex solution events have very similar resolutions and shapes for all sample

mass points. Note that the length of the x-axis range of all plots in both figures is

the same in order to visually display the changing mass resolution with mH .
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Figure 4.12: The experimental mass resolution as a function of mH split into
ggF and VBF signal events. The uncertainties of the Gaussian fits to the mass
distributions are shown as shaded/hatched bands. (a) Comparison between the
orthogonal merged (large-R) and resolved (small-R) event categories. (b) Comparison
between the use of small-R jets and a single large-R jet in reconstructing the Higgs
within events that would have passed both the merged and resolved preselections.
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Figure 4.13: m`νjj distribution split into components based on the pνz solution
used: “Correct” meaning the low |pνz | is closer to the truth, “Incorrect” meaning
the unused high |pνz | is closer to the truth, and the real component of complex pνz
solutions. Events are shown that pass the ggF or VBF SR preselection corresponding
to the respective sample type.
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Figure 4.14: Components of the m`νjj distribution normalized by their respective
integrals and split based on the pνz solution used: “Correct” meaning the low |pνz | is
closer to the truth, “Incorrect” meaning the unused high |pνz | is closer to the truth,
and the real component of complex pνz solutions. Events are shown that pass the
ggF or VBF SR preselection corresponding to the respective sample type.
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4.7.3 Alternate W -Jet Selection Method

An alternate method for selecting the pair of small-R jets from the hadronic W

decay is studied, but was ultimately not used in the final analysis for reasons stated

at the end of this section. As a reminder, the nominal selection method for the pair

of small-R W -jets consists of finding the pair of small-R jets (from a subset of jets

passing some minimum kinematic/overlap requirements) with an invariant mass in

closest proximity to the W pole mass, except when multiple pairs fall within a small

window around the W mass in which case the pair with the highest pT sum is chosen.

The alternate selection method, referred to hereafter as the “kinematic fitter,” is

quite similar to the nominal method in that it searches for a pair of jets from the

same subset of jets and favorably biases pairs with invariant masses close to the W

mass.

The kinematic fitter is based on a χ2 minimization using the known W boson

mass as a constraint and allowing the jet pT’s to vary within their uncertainties

(given by their jet energy resolutions provided by the Jets and Etmiss Combined

Performance Group). The χ2 to be minimized for each possible jet pair in an event

is given by

χ2 =

(
mW −mfit

jj

ΓW

)2

+
∑
i=1,2

(
pTi − pfit

Ti

σi

)2

, (4.15)

where mW and ΓW are the known mass and width of a W boson; mfit
jj is the iteratively

calculated invariant mass of the jet pair using the iteratively varied pfit
Ti

of each jet

along with each jet’s original η, φ, and mass; and σi is the jet energy resolution of

the ith jet. After the minimized χ2 of each jet pair has been calculated, the pair with
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the smallest minimized χ2 is selected to be the W -jet pair. The selected jets are

then used, with their altered pT’s, throughout the rest of the analysis including the

reconstruction of the m`νjj.

The primary potential benefits of using the kinematic fitter are an improved

m`νjj resolution and an increased signal significance due to the much narrower signal

mjj distribution coming from the mass constraint in the χ2 minimization. Using

s/
√
s+ b as a measure of the signal significance, where s is the number of signal

events selected in the SR and b is the number of background events, it is seen that

the kinematic fitter does provide improvement for some mass points, but only about

a 3% improvement at best. The improvement in the m`νjj resolution is equally

marginal.

The absence of significant improvement in the signal significance seems to mostly

stem from the fact that the background mjj distributions also peak at the W

pole mass when the kinematic fitter is used. The best improvement is found with

the 400 GeV ggF CPS signal and the kinematic fitter actually gives worse signal

significance for signals above 600 GeV. The decline of performance with increasing

mH is likely due to the merging of the jets coming from the highly boosted hadronic

W which should be picked up as a single large-R jet by the merged selection, but

rather the kinematic fitter grabs at least one incorrect small-R jet and manages to

form a pair of jets with an invariant mass close to the W mass, resulting in a skewed

result.

An approach to deal with the declining performance with increasing signal mH is
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to make a “sliding” cut on the χ2 such that if the χ2 is greater than the cut value

the kinematic fitter jets are not used for that event and the nominal jet selection

(including large-R jets) is used instead. The cut value gets smaller and smaller until

above 600 GeV it goes to 0, thus eliminating the use of the kinematic fitter at higher

masses.

However, due to the limited level of improvements shown, the complications to

the analysis of a sliding χ2 cut and altered jet pT’s, and finally due to time constraints

limiting further studies, it was decided to not include the kinematic fitter in the

nominal analysis.

4.8 Final (Mass-Dependent) Selection

The sensitivity to a heavy Higgs boson is improved by applying tighter and additional

cuts beyond the event preselection (described in Section 4.6.1) that depend on the

hypothesized mass of the Higgs boson. The primary reason for the sensitivity

improvement comes from the fact that the average kinematics of the final state

objects change quite drastically with increasing mH , especially their pT and angular

separation. This section describes the mass-dependent selection along with its

optimization.

4.8.1 Procedure

The variables chosen for the mass-dependent selection are those that exhibit increas-

ingly good separation of the signal and background distributions with increasing
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mH . They are listed below and their distributions following the event preselection

are shown in Figures 4.15 – 4.17, highlighting the shapes of various SM-like signal

mass hypotheses overlaying the background. The variables used depend on the

production-mode category determined in the preselection. Those used for the ggF

category are

• pleading
T,j : The leading small-R W -jet pT (resolved events only).

• psubleading
T,j : The sub-leading small-R W -jet pT (resolved events only).

• plarge-R
T,J : The large-R W -jet pT (merged events only).

• pT,lep : The lepton pT.

• ∆φjj : The azimuthal angle between the two small-R W -jets (resolved events

only).

• ∆φ`ν : The azimuthal angle between the lepton and neutrino.

• Emiss
T : The magnitude of the missing transverse momentum.

Those used for the VBF category are

• ∆φjj : The same as for ggF.

• ∆φ`ν : The same as for ggF.

• pT-balance : The balance in pT of the final state particles.

There are fewer mass-dependent cuts for VBF events than for ggF events because

of the lower statistics in the VBF category, which is partly due to the more stringent
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VBF preselection. The pT-balance cut is only used for VBF events (as it only shows

significant improvement there) and is defined by

pT-balance =
| (~p` + ~pν + ~pj1 + ~pj2)T |
pT,` + pT,ν + pT,j1 + pT,j2

(4.16)

where j1 and j2 are the leading and sub-leading small-R W -jets in the case of resolved

events. In the case of merged events, the terms representing j1 and j2 are replaced

with a single term pT,J representing the single large-R W -jet.

The optimal mass-dependent cut values for the selected variables are determined

based on maximizing an estimator of the signal significance s/
√
s+ b, where s is the

number of signal events and b is the number of background events. Other estimators

for the significance, namely s/
√
b and s/

√
b+ ∆b (where ∆b = 0.1b or 0.3b), provide

the same optimal cut values. Since the majority of signal events are localized to

a small, defined region in m`νjj, the significance calculation does not include all

signal and background events that pass the preselection, but rather includes only

those which fall into this signal-rich optimization m`νjj region. The range of the

optimization region is mH dependent as it is defined as including 90% of the signal

events (post-preselection) centered about the mean of the reconstructed Higgs mass

distribution.

The mass-dependent cut values are optimized for the mass range 300 GeV ≤

mH ≤ 1000 GeV in 100 GeV steps. The optimal cut value for each selected variable

and mass point is determined by a scan over a range of cut values at each of which the

significance is calculated. The cut value that corresponds to the largest significance is

selected as the optimal cut for that variable and mass point. Optimization cut-scans
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Figure 4.15: Post-preselection distributions of the discriminating variables used in
the mass-dependent selections in the ggF category. Three ggF SM-like signals are
shown along with the total background. All distributions are normalized to unity.
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Figure 4.16: Post-preselection distributions of the discriminating variables used in
the mass-dependent selections in the ggF category. Three ggF SM-like signals are
shown along with the total background. All distributions are normalized to unity.
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Figure 4.17: Post-preselection distributions of the discriminating variables used in
the mass-dependent selections of the VBF category. Three VBF SM-like signals are
shown along with the total background. All distributions are normalized to unity.
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are shown in Figures 4.18 and 4.19 for the variables |∆φ`ν | and pleading
T,j , respectively

(the rest are cataloged in the ATLAS internal note for this analysis). These figures

give yet another feel for how much the kinematics shift with mH . Note that this

procedure neglects correlations between the variables being optimized, because each

cut-scan is done on a single variable with all other cuts fixed at their preselection

values.

4.8.2 Final Cuts

Although this cut optimization procedure provides cut values for the best significance,

it does not take into account the negative effects of too-low statistics due to the

harshness of the cuts. Since this is not simply a cut-and-count analysis, but an

analysis in which the shape of the m`νjj invariant mass is used in the fit, low statistics

can diminish the shape information and therefore degrade the sensitivity in the final

fit. In this analysis for the ggF category, when the optimized cuts are used, the

statistics for both signal and background events are too low, especially at high mass,

to even get a stable shape fit in the limit setting code. This is not the case for the

VBF category as it is already protected by having fewer optimized cuts.

Thus, in order to regain statistics in the ggF category, the optimized Emiss
T and pT

cuts found in the cut-scans are loosened at each mass point from their optimal value

to the next-lower (mH − 100 GeV) mass point’s optimal value. The corresponding

loss in significance is generally moderate, on the order of a few percent. Also, since

the 300 GeV mass point cannot be loosened in this way, the Emiss
T and pT cuts for this
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Figure 4.18: Significance as a function of cut value for |∆φ`ν | in the full mH range
of SM-like ggF samples.
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Figure 4.19: Significance as a function of cut value for the leading small-R W -jet
pT in the full mH range of SM-like ggF samples.
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mass point are kept at the preselection values. The last tweak to the optimized results

is that the pT-balance cut is not applied (i.e. pT-balance ≤ 1) for mH < 500 GeV

because the benefits in terms of significance gain are very small, with the optimal

cut value determined by small statistical fluctuations.

The final mass-dependent cut values used in the analysis at each mass point are

shown in Figures 4.20 and 4.21 for the ggF and VBF category variables, respectively.

For comparison, the optimized cut values are also shown in both figures.

For both the ggF and VBF categories, the mass-dependent cut values for interme-

diate mass points are determined using a linear interpolation between the cut values

of adjacent mass points. Also, for both production mode categories, the extended

NWA signal search selections for mass hypotheses with mH > 1000 GeV use the

mH = 1000 GeV optimized cut values.

4.9 Background Estimation

Recall that the background contributions in this analysis are estimated using a variety

of methods as outlined in Section 4.2.2. The normalizations of the minor backgrounds,

including diboson and Z+ jets, are taken directly from the theory/MC, while the

multi-jet, W+ jets, and top backgrounds utilize the data in their estimations. This

section outlines these data driven estimates.
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Figure 4.20: Cut values used in the analysis and optimal cut values (determined
by maximum significance), as a function of mH for each of the mass-dependent
discriminating variables used in the ggF category.
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Figure 4.21: Cut values used in the analysis and optimal cut values (determined
by maximum significance), as a function of mH for each of the mass-dependent
discriminating variables used in the VBF category.

4.9.1 Multi-Jet Background

The multi-jet (MJ) background contaminates the region of low m`νjj with multi-jet

QCD events containing fake leptons. The contributions of the MJ background

are difficult to model with MC, so a data-driven technique is employed, in which

additional control regions and template fits to Emiss
T spectra are used to estimate the

MJ contributions in the various event regions. The primary items needed for this

technique are MJ kinematic distribution templates from the data, rich with (ideally

pure with) MJ events that are still kinematically close to the event regions they are

106



estimating contributions to.

For this purpose, every event region described in Section 4.6.2 (the SR, WCR, and

TopCR) has an associated multi-jet control region (MJCR) with the same selection

except for no Emiss
T cut and an orthogonal loosened lepton definition. The loosened

selection for electrons requires them to fail the tight identification requirements but

still pass the medium identification requirements. For muons, the loosened selection

requires the reversal of the impact parameter significance cut.

The amount of signal MC that enters these MJCRs is negligible, but there is a

non-negligible contamination in each MJCR from the background MC. An example of

this contamination can be seen in Figure 4.22, which shows the m`νjj distribution of

the MJCR corresponding to the WCR mH = 300 GeV selection. These contributions

are subtracted from the data in the kinematic distributions of the MJCRs in order

to form the MJ distribution shape templates in each region.

Each control-region’s MJ Emiss
T template, together with all of the MC background

Emiss
T distributions (at their SM cross-sections and normalized to the data luminosity),

is then fit to the data Emiss
T spectrum in its corresponding control region (WCR or

TopCR), with all cuts applied except for the Emiss
T cut. The fits are template fits,

in which the shapes of the Emiss
T spectra are fixed and only their normalizations are

free parameters. Thus, a fit results in a MJ scale factor to be used to normalize the

MJ background in a given control region. Examples of the Emiss
T template fits are

shown in Figure 4.23 for the WCR mH = 300 GeV selection.

The SR cannot use such a fitting procedure because the data in the region could
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contain significant amounts of signal. So although the shape of the MJ background

in the SR is taken from the MJCR with the SR selection applied, its normalization

uses the MJ scale factor derived in the WCR.

Lastly, to be clear, both the derivation and fitting of the MJ templates is done

separately not only for the SR, WCR, and TopCR but also for ggF and VBF

categories, for each signal mass point (because of the mass-dependent selections), for

each lepton flavor, and for each lepton charge.

4.9.2 W+ jets and Top Backgrounds

The W+ jets and top-quark backgrounds are the most important in this analysis.

The shapes of their m`νjj distributions and their overall normalizations are corrected

using the data observed in their corresponding control regions (WCR and TopCR

respectively). Their normalizations are determined from the final simultaneous fit

(described in Section 4.12.1) to the signal and control regions. The modeling of their

m`νjj distribution shapes is best observed by isolating their contributions to the data

in their respective control regions.

This isolation is done by subtracting all of the non-W+ jets (non-top) background

contributions from the data in the ggF and VBF WCRs (TopCRs). The W+ jets

(top) MC is then normalized to the remaining data in the WCRs (TopCRs) for a

shape comparison. The observed distributions (data - other backgrounds) differ

significantly from the predicted distributions in all control regions as shown in

Figure 4.24. The mismodeling is present in all lepton flavor and charge categories as
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Figure 4.22: m`νjj distributions in the MJCR with WCR, mH = 300 GeV selections.
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Figure 4.23: Multi-jet Emiss
T template fits in the WCR with 300 GeV selections.
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well as in both merged and resolved W -jet categories.

W+ jets shape correction The upper two plots in Figure 4.24 show the W+ jets

modeling in the ggF and VBF WCRs (with the mH = 300 GeV selections applied)

following the subtraction of all non-W+ jets SM contributions and normalization to

the remaining data. The W+ jets mismodeling observed (most evident in the lower

panels of the plots that show the data/MC ratio) is most likely due to mismodeling

in the Sherpa MC samples because the mismodeling mostly goes away with the

use of alternate W+ jets samples, generated using Alpgen+Pythia6. However,

these alternate samples cannot be used in the analysis because they lack sufficient

statistics in the SR, especially for large values of mH .

Thus, the option chosen to deal with the mismodeling is to reweight the Sherpa

W+ jets MC events according to their invariant mass (m`νjj) using the lowest-order

polynomial function that reasonably fits the data/MC ratio. The mismodeling is

corrected separately for ggF and VBF categories. The ggF reweighting function,

shown in Figure 4.24a, is a second-order polynomial fit up to m`νjj = 1.7 TeV. The

VBF reweighting function, shown in Figure 4.24b, is a third-order polynomial fit up

to m`νjj = 0.9 TeV. Any event with m`νjj above the range of its category’s fitted

polynomial is reweighted using the same weight as that at the upper boundary of

the fit.

Top shape correction The upper two plots in Figure 4.24 show the top modeling

in the ggF and VBF TopCRs (with the mH = 300 GeV selections applied) following
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the subtraction of all non-top SM contributions and normalization to the remaining

data. Due to the high purity of the TopCR, the subtracted W+ jets contribution does

not have the previously described m`νjj reweighting applied. As with the W+ jets

in the WCRs, differences in the m`νjj shapes are observed. The mismodeling is

corrected by using first-order polynomial fits to the data/MC ratios in both the ggF

and VBF TopCRs, as shown in Figures 4.24c and 4.24d.

As with the W+ jets MC event reweighting, each top MC event passing the

mH = 300 GeV selection of any region (SR, WCR, or TopCR) is reweighted according

to its invariant mass m`νjj using the fitted function of the category (ggF or VBF) it

falls into. This actually encompasses all the W+ jets and top MC events present in

the final analysis, as all of the higher-mass cuts select subsets of the most inclusive

set of events from the mH = 300 GeV selection.

Result of corrections The effect of both reweightings on the predicted m`νjj

distributions is shown in Figure 4.25 for the ggF and VBF WCRs and in Figure 4.26

for the ggF and VBF TopCRs. The plots on the left (right) of both figures show

the predicted m`νjj distributions, and associated data/MC ratios, before (after) the

reweightings are applied.

Although the W+ jets and top MC mismodeling is also evident in several other

kinematic variables, reweighting the m`νjj distributions proved to do the best job of

simultaneously providing corrections to all of them. The systematic uncertainties as-

signed to the W+ jets and top reweighting procedures are discussed in Section 4.10.4.
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Figure 4.24: Data and MC shape comparison of the reconstructed Higgs mass in
the (a) ggF WCR, (b) VBF WCR, (c) ggF TopCR, and (d) VBF TopCR after the
mH = 300 GeV selection. All the lepton flavor and charge categories are summed
together. To isolate the effects of the W+ jets [top-quark] background modeling,
other contributions (top [W+ jets], diboson, Z+ jets, multi-jet) are subtracted from
the data and the W+ jets [top-quark] distribution is normalized to the remaining
data in the WCR [TopCR]. The ratio of the data to the MC is shown in the bottom
panel, along with a red line showing the fitted reweighting function.
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Figure 4.25: Comparison between data and MC of the reconstructed Higgs mass
distributions before (left) and after (right) reweighting in the ggF (upper) and VBF
(lower) WCRs. The ratio of the data to the MC is shown in the bottom panels along
with the yellow band representing an early estimation of the combined statistical
and systematic uncertainties on the background.
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Figure 4.26: Comparison between data and MC of the reconstructed Higgs mass
distributions before (left) and after (right) reweighting in the ggF (upper) and VBF
(lower) TopCRs. The ratio of the data to the MC is shown in the bottom panels along
with the yellow band representing an early estimation of the combined statistical
and systematic uncertainties on the background.
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4.10 Uncertainties

There are numerous sources of uncertainty in this complex analysis, especially due to

the use of a broad range of reconstructed physics objects and background estimation

techniques. The uncertainties roughly fall into three main categories:

Statistical: Uncertainties on the event yields simply determined by the number of

observed data events in a given region: Nobs ±
√
Nobs.

Theoretical: Systematic uncertainties primarily on aspects of the MC generation.

Experimental: Systematic uncertainties primarily on the reconstruction/modeling

of objects and their properties in the detector, leading to uncertainties in the

signal and background MC event yields.

Most experimental systematic uncertainties are implemented by varying the

corresponding object property by one standard deviation (±1σ) from its nominal

value and re-running the full event selection (called a systematic variation). These

consist of the uncertainties on the various reconstructed objects’ energy scales and

resolutions, and are listed in Table 4.11. Uncertainties that do not require a dedicated

systematic variation include those that simply alter the scaling applied to an event, as

is the case with uncertainties on the integrated data luminosity, as well as b-tagging

and lepton scale factors.

Regardless of the need for a dedicated run variation, nearly all of the object un-

certainties are calculated and provided by dedicated ATLAS Combined Performance

groups in order to keep consistency between the many analyses using the same objects.

116



These are outlined below. The large-R jet resolution systematics are an exception to

this and will be described, along with uncertainties on the interference reweighting

and multi-jet background normalization, in proceeding dedicated subsections.

The lepton systematic uncertainties include those on the energy scale and reso-

lution, as well as identification, isolation, reconstruction, and trigger efficiency of

muons and electrons, all of which are estimated using Z → ee, µµ; J/ψ → ee, µµ;

and W → eν, µν decays [64, 62, 74]. The uncertainty on the electron energy reso-

lution is less than 10% for ET < 50 GeV and asymptotically increases to ≈40% at

higher energies, while the uncertainty on the electron energy scale is |η| and ET

dependent, but the approximate range is 0.03-0.22% for ET = 40 GeV and 0.27-

2.25% for ET = 200 GeV [74]. The uncertainty on the muon energy scale is 0.05%

for |η| < 1 and increases to ≈0.2%, while the uncertainty on the combined muon

momentum resolution ranges from 3-10% depending on |η| and pT [64]. The quoted

muon resolution uncertainty actually contains two components coming from the

independent resolutions of the inner detector and muon spectrometer. Finally, the

uncertainties on the various lepton efficiency scale factors are nearly all smaller than

1%. The exceptions are the uncertainties on the electron identification and lepton

(both electron and muon) isolation efficiency scale factors, which are still all smaller

than 2.7%.

The Emiss
T systematic variations only include variations on the soft terms (unassoci-

ated deposits of energy) because the systematic variations on the other reconstructed

objects already alter the associated terms in the Emiss
T calculation. The soft term
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Table 4.11: Experimental systematic variations.

Category Description

Leptons Muon energy scale

Electron energy scale

Muon spectrometer track resolution

Inner detector muon track resolution

Electron energy resolution

MET Soft term scale

Soft term resolution

Small-R jets Jet energy scale:
• high-pT jets
• in-time pile-up
• out-of-time pile-up
• residual pT dependence from pile-up
• residual dependence on unrelated energy

due to jet-area based pile-up correction
• flavor composition
• flavor response
• b-jet response
• in-situ modeling
• in-situ detector related
• statistical systematic
• modeling systematic
• closure systematic for AFII samples

Jet energy resolution

Large-R jets Jet energy scale

Jet energy resolution

Jet mass scale

Jet mass resolution
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variations consist of uncertainties on the energy scale and energy resolution. Com-

paring data and MC Z → `` events using methods developed in Ref. [72], these

uncertainties are found to be on the order of a few percent [73].

The small-R jets have systematic uncertainties corresponding to the jet energy

scale (JES), the jet energy resolution (JER), and the b-tagging algorithm. The JES

uncertainty is broken into thirteen components (listed in Table 4.11) corresponding

to different aspects of the jet calibration procedure, which utilizes a combination of

simulation, test-beam data, and in situ measurements [75]. For the small-R anti-kt

jets used in this analysis, the combined uncertainty on the JES ranges from 1-7%,

depending on |η| and pT. The relative uncertainty on the JER ranges from 2-40%,

while the resolution itself varies from 5-20%, where the jets with pT just above

the selection cut have the largest uncertainty and worst resolution. Finally, the

b-tagging uncertainty is broken into eight components by a method that utilizes a

data sample dominated by di-leptonic decays of top-quark pairs [70, 71]. There are

six uncorrelated components corresponding to the b-jet identification uncertainty

(ranging from <1-7.8%), along with components corresponding to the uncertainties

on the misidentification rates of light-quark jets (9-19% depending on pT and |η|)

and c-jets (6-14% depending on pT).

The systematic uncertainty on the integrated luminosity is 2.8% for the 8 TeV

dataset used in this analysis. The uncertainty is calculated using the same method as

Ref. [76] for the 7 TeV dataset, in which beam-separation scans are used to calibrate

the luminosity scale.
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Similar to the small-R jets, the large-R jets have their own systematic uncertainties

on JES and JER, but, unlike small-R jets, they also have uncertainties on the jet

mass scale (JMS) and jet mass resolution (JMR). The two scale uncertainties, JES

and JMS, are evaluated and provided by the ATLAS JetEtMiss group and are on

the order of a few percent. However, the resolution systematic uncertainties have to

be calculated by the individual analyses, as described below.

4.10.1 Large-R Jet Mass and Energy Resolutions

A previous ATLAS study indicated that large-R jet energy and mass resolutions

could vary by up to 20% [77]. Therefore the recommendation from the JetEtMiss

group is to estimate systematic uncertainties by smearing the jet energies and masses

by Gaussian distributions, such that the energy and mass resolutions are increased

by 20%. This requires knowing what the resolutions are in the first place.

The resolutions are evaluated by matching large-R jets to their associated truth

jets in our signal samples, taking the ratio of their corresponding masses and energies

(reconstructed/truth), and fitting a Gaussian to the central portion of each resulting

distribution. Prior to the fitting, the jets are actually separated into three bins in pT

and two bins in |η| based on the observation that the mass and energy resolutions

vary as a function of the jet pT and |η|. The widths (square root of the variances) of

the fitted Gaussians, σires, are taken to be the energy and mass resolutions, and are

shown in Table 4.12 separated into their pT and |η| bins.

In order to smear (i.e. increase) the observed resolutions by the recommended 20%,

120



Table 4.12: Extracted mass and energy resolutions (before smearing) for the large-R
jets used in this analysis

Mass Resolution 100 < pT < 200 200 < pT < 500 pT > 500

0 < |η| < 0.6 9.75% 7.26% 6.36%

0.6 < |η| < 1.2 9.81% 7.56% 6.92%

Energy Resolution 100 < pT < 200 200 < pT < 500 pT > 500

0 < |η| < 0.6 7.58% 5.05% 3.76%

0.6 < |η| < 1.2 7.91% 5.51% 4.27%

they are convoluted by Gaussians of widths σismear = 0.6633×σires (where i represents

JER and JMR), determined by the variance relation (1.2σres)
2 = σ2

res + σ2
smear. To

create the systematic variations on the large-R JER and JMR, the nominal jet energy

and mass are smeared by their corresponding unit Gaussians of width σismear and run

back through the analysis just like the other systematic variations.

4.10.2 Multi-jet Background Estimate Uncertainty

The systematic uncertainty on the normalization of the MJ background is determined

by comparing the default MJ estimate (described in Section 4.9.1) to an alternate

estimate in which the electron isolation requirements are reversed and the muon

impact parameter significance requirement is dropped. The relative difference between

the two estimates is evaluated for each production mode (ggF and VBF), lepton

channel (flavor and charge), and mass hypothesis (because of the mass-dependent
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selection). However, only the average systematic value is taken for each lepton

channel to avoid unphysical fluctuations between mass hypotheses.

The systematics uncertainties evaluated for the ggF signal regions vary between 10-

100% depending on the lepton channel, with the muon channels having substantially

lower uncertainty (10-30%) due to better compatibility of the two MJ estimates.

Although these uncertainties are large, they only have a small impact on the final

sensitivity of the analysis due to the small size of the multi-jet background, especially

for higher mass hypotheses with the increasing Emiss
T cut. In the case of VBF

signal regions, the statistical uncertainty on the default template fit is taken as the

systematic uncertainty because it dominates with respect to the uncertainty coming

from the alternate estimate.

4.10.3 WW Interference Uncertainty

The systematic uncertainty on the interference weights applied to ggF signal samples

comes from the theoretical uncertainty associated with the LO to NNLO scaling [3, 78].

However, in the case of VBF interference, the difference between LO and NNLO is

expected to be small [47, 48, 79]. Therefore, a closure test systematic uncertainty

is determined by comparing the nominal signal-plus-interference (SI) mWW (truth

level mass) spectrum, determined by reweighting the S-only Powheg samples using

Repolo, to the spectrum evaluated as the difference between the VBFNLO generated

background (B) and complete SBI spectrums. The reason for the subtraction is

that VBFNLO cannot generate interference by itself without including the signal
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and background that cause the interference.

A visual comparison between the alternate background subtracted SBI − B

spectrum and the nominal SI spectrum is shown in the right frame of Figure 4.27

for the 800 GeV mass point. The frame on the left includes all of the components

involved in the estimation: the original Powheg S, the Repolo reweighted SI,

the VBFNLO generated B and SBI, to be compared with the distribution obtained

adding B + SI.

The ratio of the two spectrums, SI and SBI − B, is shown in Figure 4.28 as a

function of mWW/mH for several mass points. The Figure is split into two frames in

order to highlight the two assigned systematic uncertainty bands (shaded regions)

based on symmetrically enveloping the ratios from the different mass hypothesis.

The parametrization of the uncertainties is laid out in Table 4.13.

Table 4.13: Interference closure systematic as a function of mWW/mH

Signal Mass Parametrization Assigned Systematic [%]
mWW/mH < 0.6 2

mH < 500 GeV 0.6 ≤ mWW/mH < 0.9 8

0.9 ≤ mWW/mH 4
mWW/mH < 0.9 (1−mWW/mH)× 20

mH ≥ 500 GeV 0.9 ≤ mWW/mH < 1.1 1.5

1.1 ≤ mWW/mH (mWW/mH − 1)× 15
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in black, and the sum of B + SI in blue. The right figure shows the comparison
between SI and the background subtracted SBI − B, the ratio of which is used to
assign the systematic uncertainty on the VBF interference reweighting.
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Figure 4.28: The ratio between the mWW spectrums of the Repolo reweighted SI
and VBFNLO generated SBI−B as a function of mWW/mH , for several mass points.
The plots are split by low and high mH for assigning the systematic uncertainties on
the VBF interference reweighting (shown by the colored bands) based on the ratios.
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4.10.4 W+ jets and Top m`νjj Shape Reweighting Uncertainties

Finally, the dominant uncertainties on the background modeling are those on the

reweighting of the W+ jets and top MC events to correct their m`νjj shape mis-

modeling (described in Section 4.9.2). A symmetric 50% uncertainty on the scaling

coming from the reweighting functions of each background, is applied. The inclusion

of these uncertainties, as Gaussian constraints in the final fit, allows the fit to adjust

the m`νjj shapes of the W+ jets and top backgrounds in the signal regions using the

shape of the data.

4.11 Pre-fit MC Predictions Compared to Data

The background MC model the data in the control regions quite well (within

uncertainties) following the event preselection, the reweighting of both W+ jets and

top MC m`νjj shapes, and the inclusion of all uncertainties. Figure 4.29 shows

the m`νjj distributions and the ratio of data to background expectation for the

WCR, TopCR, and SR after the ggF or VBF preselection. A slight deficit of data is

observed in the VBF SR and TopCR as seen in the middle- and lower-right panels

of Figure 4.29, but it is mitigated by the application of the mass-dependent selection

(see Figure 4.30). Note that the distributions shown in Figure 4.29 do not include

the final background normalizations applied by the fit to the control regions, but the

W+ jets and top m`νjj shape reweightings described in Section 4.9.2 are applied and

the distributions are summed over lepton flavor and charge categories.

The corresponding m`νjj distributions separated by lepton flavor and charge can
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be found in Appendix A.1. In order to get a more complete picture of the pre-fit

MC modeling of the data following the preselection, distributions of many other

kinematic variables used in the analysis can be found in Appendix A.2.

For a more quantitative view of the comparison between pre-fit MC predictions

and data, Tables 4.14 and 4.15 show the pre-fit event yields (summed over lepton

flavor and charge) for the ggF and VBF categories, respectively. The event yields

are determined for every 100 GeV step in the mass hypothesis mH (in the range

300 ≤ mH ≤ 1200 GeV) with the corresponding mass-dependent selection applied.

Finally, the yields include the m`νjj shape reweighting of the W+ jets and top MC

events.

4.12 Results

With all of the systematics defined, the final signal and background yields in each

final state and mass hypothesis are determined by a binned maximum likelihood fit

to the observed data m`νjj distribution, as described in Section 4.12.1. Figure 4.30

shows the result of fitting for the mH = 500 GeV hypothesis with the corresponding

mH = 500 GeV selection applied, where the CR and SR distributions are shown with

their background normalizations corrected using the results of the fit.

Following the fits, no significant excess of data above the SM background expec-

tation is observed for any mass hypothesis or production mode. Therefore, upper

limits are set on the σH × BR(H→WW ) for each mass hypothesis in each of the

three signal scenarios. These are shown and discussed in Section 4.12.2.
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Figure 4.29: Reconstructed Higgs mass m`νjj/m`νJ in the WCR (top), TopCR
(middle), and SR (bottom) after the ggF preselection (left) or the VBF preselection
(right). All flavor and charge categories are summed in each plot. The upper panel
of each plot shows the background processes (normalized by their theoretical cross-
sections) stacked, with the data and a hypothetical CPS signal (mH = 500 GeV)
overlaid. The lower panels show the ratio of data to background. The hatched gray
band in the upper panel and the shaded yellow band in the lower panel show the
combined statistical and systematic uncertainties on the background.
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Table 4.14: Pre-fit event yields for the ggF category in the signal (SR) and control
regions (WCR and TopCR) with the mass-dependent selection applied at the signal
mass points (mH). All lepton flavor and charge channels are combined. Signal yields
assume SM Higgs production cross-sections and branching ratios. All uncertainties
shown are statistical except for the multi-jet with systematic uncertainties.

Selection Region ggF Signal VBF Signal W+ jets Top Z+ jets/ Multi-jet Data

[mH] CPS NWA CPS NWA Diboson

SR 1344 ± 17 1309 ± 21 103 ± 2 100 ± 4 97010 ± 227 27043 ± 33 9617 ± 63 4457 ± 1752 136310 ± 369

300 GeV WCR 294 ± 8 282 ± 10 26.1 ± 0.8 26 ± 2 95447 ± 244 12216 ± 22 6140 ± 54 4769 ± 1871 118414 ± 344

TopCR 154 ± 6 145 ± 7 16.0 ± 0.7 19 ± 2 11613 ± 69 54657 ± 47 1240 ± 26 895 ± 344 67854 ± 260

SR 1815 ± 17 1879 ± 21 93 ± 2 100 ± 3 70902 ± 180 19217 ± 28 7103 ± 54 3189 ± 1245 99176 ± 315

400 GeV WCR 263 ± 6 279 ± 8 13.2 ± 0.5 16 ± 1 69255 ± 197 7565 ± 17 4532 ± 48 3808 ± 1470 84809 ± 291

TopCR 251 ± 6 258 ± 8 15.2 ± 0.6 17 ± 1 9061 ± 56 40617 ± 41 1043 ± 25 700 ± 272 51181 ± 226

SR 987 ± 8 997 ± 10 65.9 ± 0.9 71 ± 2 41943 ± 122 11140 ± 21 4359 ± 43 1622 ± 624 58265 ± 241

500 GeV WCR 109 ± 3 105 ± 3 7.9 ± 0.3 8 ± 1 37506 ± 127 3910 ± 12 2522 ± 35 1868 ± 700 45845 ± 214

TopCR 134 ± 3 133 ± 4 10.4 ± 0.4 11 ± 1 5693 ± 38 24184 ± 31 690 ± 20 402 ± 156 30829 ± 176

SR 453 ± 4 453 ± 4 45.1 ± 0.7 50 ± 1 23059 ± 79 6143 ± 15 2419 ± 31 780 ± 287 32022 ± 179

600 GeV WCR 43 ± 1 42 ± 1 4.6 ± 0.2 3.9 ± 0.3 18715 ± 76 1990 ± 9 1248 ± 24 716 ± 264 22907 ± 151

TopCR 59 ± 1 61 ± 2 6.6 ± 0.3 7.1 ± 0.4 3194 ± 25 13247 ± 23 384 ± 14 206 ± 76 17049 ± 131

SR 219 ± 2 212 ± 2 31.2 ± 0.5 34.5 ± 0.8 14315 ± 56 3774 ± 12 1559 ± 24 522 ± 190 19971 ± 141

700 GeV WCR 21.4 ± 0.7 20 ± 1 3.2 ± 0.2 2.8 ± 0.2 10893 ± 51 1201 ± 7 737 ± 17 434 ± 167 13388 ± 116

TopCR 30.2 ± 0.9 27 ± 1 4.2 ± 0.2 4.3 ± 0.3 2021 ± 19 8147 ± 17 231 ± 12 105 ± 41 10597 ± 103

SR 110.4 ± 1 99.2 ± 0.9 22.7 ± 0.4 23.6 ± 0.5 8340 ± 39 2126 ± 9 912 ± 18 144 ± 54 11418 ± 107

800 GeV WCR 11.6 ± 0.4 10.9 ± 0.3 2.2 ± 0.1 2.9 ± 0.2 6019 ± 35 656 ± 5 406 ± 13 162 ± 66 7218 ± 85

TopCR 14.6 ± 0.5 13.2 ± 0.4 2.7 ± 0.1 2.8 ± 0.3 1206 ± 13 4553 ± 13 131 ± 9 53 ± 25 6014 ± 78

SR 55.7 ± 0.6 47.4 ± 0.5 16.3 ± 0.3 15.7 ± 0.4 4942 ± 28 1220 ± 7 557 ± 14 68 ± 28 6635 ± 81

900 GeV WCR 6.1 ± 0.2 6.0 ± 0.2 1.8 ± 0.1 2.1 ± 0.1 3262 ± 23 368 ± 4 223 ± 9 44 ± 17 3943 ± 63

TopCR 7.9 ± 0.3 6.5 ± 0.2 1.8 ± 0.1 1.5 ± 0.1 736 ± 9 2566 ± 10 76 ± 7 25 ± 10 3420 ± 58

SR 23.7 ± 0.3 22.3 ± 0.2 10.2 ± 0.2 9.9 ± 0.3 1742 ± 14 376 ± 4 207 ± 8 25 ± 11 2243 ± 47

1000 GeV WCR 3.3 ± 0.1 3.20 ± 0.09 1.24 ± 0.06 1.4 ± 0.1 1108 ± 11 117 ± 2 83 ± 5 15 ± 7 1317 ± 36

TopCR 3.5 ± 0.1 2.84 ± 0.09 1.10 ± 0.08 1.01 ± 0.08 287 ± 5 830 ± 5 26 ± 4 16 ± 7 1165 ± 34

SR - 23.2 ± 0.21 - 10.0 ± 0.1 1742 ± 14 376 ± 4 207 ± 8 25 ± 11 2243 ± 47

1100 GeV WCR - 3.53 ± 0.08 - 1.54 ± 0.05 1108 ± 11 117 ± 2 83 ± 5 15 ± 7 1317 ± 36

TopCR - 3.23 ± 0.08 - 0.82 ± 0.03 287 ± 5 830 ± 5 26 ± 4 16 ± 7 1165 ± 34

SR - 23.8 ± 0.2 - 10.3 ± 0.1 1742 ± 14 376 ± 4 207 ± 8 25 ± 11 2243 ± 47

1200 GeV WCR - 4.12 ± 0.09 - 1.72 ± 0.05 1108 ± 11 117 ± 2 83 ± 5 15 ± 7 1317 ± 36

TopCR - 3.31 ± 0.08 - 0.91 ± 0.04 287 ± 5 830 ± 5 26 ± 4 16 ± 7 1165 ± 34
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Table 4.15: Pre-fit event yields for the VBF category in the signal (SR) and control
regions (WCR and TopCR) with the mass-dependent selection applied at the signal
mass points (mH). All lepton flavor and charge channels are combined. Signal yields
assume SM Higgs production cross-sections and branching ratios. All uncertainties
shown are statistical except for the multi-jet with systematic uncertainties.

Selection Region ggF Signal VBF Signal W+ jets Top Z+ jets/ Multi-jet Data

[mH] CPS NWA CPS NWA Diboson

SR 25 ± 2 25 ± 3 41 ± 1 41 ± 2 2011 ± 31 969 ± 6 155 ± 8 131 ± 48 3020 ± 55

300 GeV WCR 10 ± 2 6 ± 1 11.5 ± 0.6 13 ± 1 3220 ± 39 771 ± 5 224 ± 10 226 ± 81 4215 ± 65

TopCR 8 ± 1 8 ± 2 6.9 ± 0.4 8 ± 1 618 ± 17 2881 ± 10 61 ± 6 61 ± 23 3401 ± 58

SR 53 ± 3 53 ± 3 52 ± 1 59 ± 2 1645 ± 26 765 ± 5 132 ± 7 88 ± 35 2480 ± 50

400 GeV WCR 16 ± 2 15 ± 2 10.7 ± 0.5 11.6 ± 0.9 2546 ± 33 541 ± 4 177 ± 9 195 ± 70 3258 ± 57

TopCR 17 ± 2 18 ± 2 9.7 ± 0.5 10.2 ± 0.8 491 ± 13 2297 ± 9 49 ± 5 51 ± 20 2742 ± 52

SR 39 ± 2 40 ± 2 43.9 ± 0.7 48.2 ± 1 1103 ± 21 500 ± 4 88 ± 6 59 ± 25 1693 ± 41

500 GeV WCR 9.2 ± 0.8 8.0 ± 0.9 6.7 ± 0.3 7.8 ± 0.5 1739 ± 27 346 ± 4 120 ± 7 127 ± 48 2241 ± 47

TopCR 11.3 ± 0.9 10 ± 1 6.8 ± 0.3 7.8 ± 0.6 306 ± 10 1464 ± 7 31 ± 4 8 ± 4 1794 ± 42

SR 24.8 ± 0.9 24 ± 1 36.6 ± 0.6 40 ± 1 775 ± 15 346 ± 4 67 ± 5 44 ± 20 1196 ± 35

600 GeV WCR 5.3 ± 0.4 5.5 ± 0.5 5.0 ± 0.2 5.1 ± 0.4 1175 ± 20 235 ± 3 84 ± 6 72 ± 27 1548 ± 39

TopCR 5.3 ± 0.4 5.5 ± 0.5 5.1 ± 0.2 5.4 ± 0.4 210 ± 7 981 ± 6 22 ± 3 8 ± 4 1200 ± 35

SR 12.8 ± 0.5 12.7 ± 0.5 25.8 ± 0.4 26.6 ± 0.7 421 ± 11 179 ± 3 41 ± 4 24 ± 10 672 ± 26

700 GeV WCR 2.7 ± 0.4 2.4 ± 0.2 3.6 ± 0.2 4.3 ± 0.3 610 ± 13 121 ± 2 50 ± 5 36 ± 13 806 ± 28

TopCR 2.3 ± 0.2 2.5 ± 0.2 3.2 ± 0.2 3.4 ± 0.2 113 ± 5 466 ± 4 13 ± 3 7 ± 4 550 ± 23

SR 7.7 ± 0.3 7.5 ± 0.3 19.6 ± 0.3 20.5 ± 0.5 260 ± 8 101 ± 2 27 ± 3 9 ± 4 394 ± 20

800 GeV WCR 1.3 ± 0.1 1.5 ± 0.1 2.7 ± 0.1 2.7 ± 0.2 371 ± 10 73 ± 2 34 ± 4 11 ± 4 477 ± 22

TopCR 1.3 ± 0.2 1.2 ± 0.1 1.9 ± 0.1 2.0 ± 0.2 58 ± 3 234 ± 3 5 ± 1 5 ± 3 292 ± 17

SR 4.1 ± 0.2 4.4 ± 0.1 14.4 ± 0.3 15.6 ± 0.4 141 ± 5 55 ± 1 16 ± 2 7 ± 3 223 ± 15

900 GeV WCR 0.81 ± 0.07 0.7 ± 0.1 2.33 ± 0.09 2.7 ± 0.2 208 ± 6 42 ± 1 25 ± 4 12 ± 5 279 ± 17

TopCR 0.62 ± 0.06 0.7 ± 0.1 1.34 ± 0.09 1.3 ± 0.1 30 ± 2 119 ± 2 2.5 ± 0.9 0.5 ± 0.3 145 ± 12

SR 2.8 ± 0.1 2.92 ± 0.09 12.6 ± 0.2 13.6 ± 0.3 100 ± 4 38 ± 1 12 ± 2 4 ± 2 159 ± 13

1000 GeV WCR 0.60 ± 0.05 0.61 ± 0.04 2.44 ± 0.09 2.1 ± 0.1 154 ± 4 33 ± 1 20 ± 3 7 ± 3 215 ± 15

TopCR 0.40 ± 0.04 0.34 ± 0.03 0.82 ± 0.05 1.0 ± 0.1 21 ± 2 76 ± 2 2.1 ± 0.8 0.3 ± 0.2 98 ± 10

SR - 3.33 ± 0.08 - 14.2 ± 0.1 100 ± 4 38 ± 1 12 ± 2 4 ± 2 159 ± 13

1100 GeV WCR - 0.73 ± 0.04 - 2.72 ± 0.06 154 ± 4 33 ± 1 20 ± 3 7 ± 3 215 ± 15

TopCR - 0.42 ± 0.03 - 0.92 ± 0.04 21 ± 2 76 ± 2 2.1 ± 0.8 0.3 ± 0.2 98 ± 10

SR - 3.60 ± 0.08 - 15.5 ± 0.2 100 ± 4 38 ± 1 12 ± 2 4 ± 2 159 ± 13

1200 GeV WCR - 0.94 ± 0.04 - 3.30 ± 0.07 154 ± 4 33 ± 1 20 ± 3 7 ± 3 215 ± 15

TopCR - 0.52 ± 0.03 - 1.03 ± 0.04 21 ± 2 76 ± 2 2.1 ± 0.8 0.3 ± 0.2 98 ± 10
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Figure 4.30: Post-fit reconstructed Higgs mass m`νjj/m`νJ in the WCR (top),
TopCR (middle), and SR (bottom) after the ggF (left) or VBF (right) 500 GeV
selection. The binning corresponds to the binning used in the fit. All flavor and
charge categories are summed in each plot. The upper panel of each plot shows
the background processes stacked, with the data and a hypothetical CPS signal
(mH = 500 GeV) overlaid. The lower panels show the ratio of data to background.
The hatched gray band in the upper panel and the shaded yellow band in the lower
panel show the combined statistical and systematic uncertainties on the background.
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4.12.1 Statistical Methods

The statistical method used for fitting and setting limits is detailed in Ref. [80] and

outlined here. A likelihood function L is defined as the product of Poisson probability

functions corresponding to each bin of the SR m`νjj distribution and total yields in

the CRs (as they simply help constrain the normalization of the background, not

the shape), multiplied by unit Gaussian functions that constrain each systematic

uncertainty (parameterized by a nuisance parameter θi in the statistical treatment)

about its nominal value. These nuisance parameters are also used to parameterize

log-normal distributions used to implement modifications to the nominal signal and

background yields in the Poisson functions.

The 95% CL (confidence level) upper limits are calculated using a combination

of the CLs modified frequentist method [81] and the asymptotic approximation [82],

which define a test statistic q(µ) based on a ratio of likelihood functions:

q(µ) = −2 ln

L
(
µ;

ˆ̂
θ(µ)

)
L
(
µ̂; θ̂
)
 , (4.17)

where µ is the signal strength defined in this analysis as the ratio of the measured

to SM-predicted σH × BR(H→WW ) and
ˆ̂
θ(µ) represents the values of all of the

nuisance parameters θi that maximize L for a given value of µ. The other two

quantities in the definition, µ̂ and θ̂, are defined as the values of µ and all the θi that

unconditionally maximize L.

The fit range of the m`νjj distributions varies with each mH hypothesis, but is

always 700 GeV wide: starting with 200-900 GeV for mH = 300 GeV and increasing
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to 500-1200 GeV for mH = 1000 GeV. The number of bins within each fit range also

varies with mH , but unlike the fit ranges, is not the same between ggF and VBF

production modes because of the lower statistics in the VBF regions. In fact, for

each mass hypothesis, the number of bins for VBF is half that for ggF (rounding

down to the nearest whole number): starting with 17 (35) bins at mH = 300 GeV

and decreasing to 6 (12) bins at mH = 1000 GeV for the VBF (ggF) production

mode. Also, the last bin in the fit range contains the overflow and the bins within

a given fit range and production mode all have the same width. Note that in the

case of the NWA scenario, the mass hypotheses tested with mH > 1000 GeV use the

mH = 1000 GeV fit range and binning, due to the lack of data and background MC

statistics at higher m`νjj.

Although the analysis defines orthogonal ggF- and VBF-optimized SRs, they are

not exclusive (as can readily be seen back in Tables 4.14 and 4.15. Therefore, the

presence of both processes is accounted for when setting limits on one or the other.

To accomplish this, the ggF (VBF) production cross-section is treated as a nuisance

parameter in the fit when deriving the observed limits on the VBF (ggF) production.

However, in order for the expected limits to correspond to the background-only

hypothesis, the ggF (VBF) production cross-section is set to zero to derive the

expected limits on the VBF (ggF) production.
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4.12.2 Upper Limits

The 95% CL upper limits on σH × BR(H→WW ) as a function of mH are shown,

separated by production mode, in Figures 4.31 and 4.32 for the CPS and NWA

scenarios, respectively. The mass range of the CPS limits is 300 GeV ≤ mH ≤

1000 GeV, while that of the NWA limits is 300 GeV ≤ mH ≤ 1500 GeV.

The corresponding upper limits for the IW scenario are shown in Figure 4.33 for

three values of κ′2, and are plotted in terms of σH
κ′2
× BR(H→WW ) for better visual

separation. In contrast to the limits set in the CPS and NWA scenarios, the ggF

and VBF limits in the IW scenario can be combined, because EWS models (which

this scenario is based on) assume the ratio between the production modes to be

the same as that for the SM Higgs, whereas the other two scenarios have no such

relation. In this analysis, the possible non-SM decay modes of the EWS scalar are

not considered (i.e. BRH,new = 0).

As expected, the limits improve as mH increases for a given lineshape, and worsen

over the full mass range as the width of the signal lineshape ΓH increases. The

dips seen in the observed limits, further than −2σ below the expected limits, were

investigated and no underlying systematic effect was identified. A coincidence of

deficits in the data is attributed to the simultaneous dip at mH ≈ 750 GeV in both

the ggF and VBF limits on the NWA scenario.
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Figure 4.31: 95% CL upper limits on the σ × BR in the CPS (SM-like) scenario
for ggF production (a) and VBF production (b). The green and yellow bands display
the ±1σ and ±2σ uncertainties on the expected limits, respectively.
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Figure 4.32: 95% CL upper limits on the σ × BR in the NWA scenario for ggF
production (a) and VBF production (b). The green and yellow bands display the
±1σ and ±2σ uncertainties on the expected limits, respectively.
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Chapter 5

13 TeV Analysis: The Search Continues

In contrast to the previous chapter, this chapter is brief, with a focus on highlighting

the important differences between the analyses in the two chapters, as well as the

new results.

5.1 Introduction

After the two-year long shutdown of the LHC, between 2013 and 2015, the collision

energy increased from 8 to 13 TeV and the bunch spacing decreased from 50 to 25

ns, resulting in greater instantaneous luminosity and even more opportunities to

explore the world of particle physics. There were also many upgrades to the ATLAS

detector, a few of which are discussed in Section 3.6.1, including the installation of

an additional Pixel detector layer (the IBL) closer to the interaction point.

The analysis described in this chapter is a continued search for a high-mass neutral

scalar (still referred to simply as H) with the same final state: H → WW → `νqq.

The search uses the 2015 ATLAS dataset, consisting of 3.2 fb−1 of pp collision data at

√
s = 13 TeV. Although the dataset is much smaller than that for the 8 TeV analysis,

the nearly doubled center-of-mass collision energy makes the search competitive for

high masses due to the associated mass-dependent increase in gg-produced processes,

shown in Figure 5.1, along with the scaling of the cross-sections of multiple physics

processes. Taking into account the scaling of the signal and major background
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Figure 5.1: Comparisons of the expected luminosity (left) and cross-sections for
several processes (right) provided by the LHC at 8 and 13 TeV [W.J. Stirling,
private communication]. The calculations are done using MSTW2008 (NLO) parton
distributions and the discontinuity in some of the cross-sections at 4 TeV is due to
switching from proton-antiproton to proton-proton collisions.

production cross-sections, the analysis (using the NWA) was projected to regain

similar sensitivity to the 8 TeV analysis at high mH with only the first few fb−1 of

13 TeV data.

In order to analyze the new data quickly, it was made a priority to simplify the

analysis and to join other analysis groups searching for the same final state. Thus,

the heavy scalar search presented in this chapter was first made public in Ref. [83],

where it was combined with a search for a spin-2 Kaluza-Klein graviton based on

an extended Randall-Sundrum model of a warped extra dimension [84], as well as

a search for a new heavy vector boson based on a Heavy Vector Triplet (HVT)
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model [85]. No significant excess above the SM predictions was observed for any of

the interpretations with this early analysis, but the search range was significantly

extended up to 800 GeV ≤ mH ≤ 3000 GeV.

The scalar interpretation results were later updated with a few additional mass

hypotheses, filling in gaps and extending the lower mass range (800 GeV→ 600 GeV),

and were combined with the H → WW → `ν`ν decay channel in Ref. [86]. Other

than the additional mass points and updating to the Combined Performance (CP)

groups’ latest recommendations (for object selections and uncertainties), the scalar

analysis remained the same.

These updated results are shown following a summary of the general analysis

strategy.

5.2 Analysis Summary

This section summarizes the most significant aspects of the analysis needed to

understand the results shown in the next section. More details can be found in the

two public conference notes referenced earlier, namely Refs. [83] and [86].

5.2.1 Simplifications from the 8 TeV Analysis

Considering the small amount of data and the pressure for an early analysis, the

focus is on the high-mass/boosted regime and analysis simplicity.

One of the most significant analysis simplifications, in reference to the 8 TeV

analysis, is that there is only one signal region (when lepton channels are combined);
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there are no selections that depend on the mass hypothesis, and only the ggF

production mode is considered (although there is no explicit VBF veto).

With the focus solely on the boosted regime, the qq final state is exclusively

reconstructed as a single large-R jet. Also, such a focus allows for a harsh cut on

Emiss
T (> 100 GeV in this case), which is shown to effectively eliminate the multi-jet

background in the analysis.

5.2.2 MC and Data

With the aim of producing results as model-independent as possible, the signal

hypotheses tested in this analysis include the NWA heavy Higgs (from the 8 TeV

analysis) in addition to a large width approximation (LWA) heavy Higgs (generated

using MadGraph5 aMC@NLO), where the widths are equal to 5%, 10%, and

15% of mH . Interference effects for NWA are again negligible and those for LWA

are mitigated by only analyzing events with a truth mass within ±2ΓH of mH . The

mass hypotheses span the range from 0.6 TeV to 3 TeV in steps of 100 GeV up to

1 TeV and in steps of 200 GeV afterward. An additional mass point at 750 GeV was

also added, motivated by a small excess of events observed near that invariant mass

in the scalar resonance search for a diphoton final state [87].

The background processes are the same as for the 8 TeV analysis, with the excep-

tion of the now neglected multi-jet background, and the dataset used corresponds

to all of the 13 TeV data recorded by ATLAS and deemed good for physics in 2015.

Single lepton triggers are used again, along with a Emiss
T trigger that regains the
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inefficiency in the muon trigger.

5.2.3 Kinematic Selection and Event Region Definitions

The object selections are very similar to the previous analysis. One notable difference

is the use of a different large-R jet collection, reconstructed with a distance parameter

of R = 1.0 using the anti-kt algorithm that was and is used for the small-R jets. These

jets are analyzed in a dedicated boson tagger [88] that distinguishes jets originating

from W boson decays from those originating from single gluons or quarks. It is

configured to have 90% background rejection and 50% signal efficiency. The tagging

can be broken into two requirements: one on W jet substructure and the other on

the mass. This makes it possible to reverse only part of the tagging requirement to

define a CR, as is done for the W+ jets CR.

The event selection is shown in Table 5.1 for the various regions of the analysis

starting with the preselection of exactly one lepton and at least one large-R jet

passing the requirements. The new selections, compared to the previous analysis, are

those on the pT to m`νJ ratios. They are shown to give good separation between the

signal and background, as resonant signals should peak around a value of 0.5. The

definitions of the CRs are also shown and are very similar to those in the previous

analysis: a mass window side-band for the W+ jets CR and a reversal of the b-tag

veto for the Top CR.
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Table 5.1: Event selections for the SR, W+jets CR and Top CR. Small-R jets that
are b-tagged are denoted as jb in the table below.

Region Selection

Preselection one lepton: pT > 25 GeV

≥ one large-R jet: pT > 200 GeV, |η| < 2.0

Emiss
T > 100 GeV

pT(`ν) > 200 GeV

pT(J)/m`νJ > 0.4

pT(`ν)/m`νJ > 0.4

SR W jet substructure

W (J) mass cut: 70.2 ≤ mJ ≤ 96.2 GeV

no b-tagged jets with ∆R(J, jb) > 1.0

W+jets CR SR except W mass sidebands:

50 < mJ < 70.2 GeV and 96.2 < mJ GeV

Top CR SR except reverse b-tag veto:

≥ 1 b-tagged jet with ∆R(J, jb) > 1.0
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Figure 5.2: The post-fit m`νJ distributions for the W+ jets control region (a) and
the Top control region (b), with the 700 GeV NWA signal overlaid and the ratio of
data/SM-background in the lower panel. The shaded and hatched bands in the lower
and upper panels, respectively, show the total uncertainty after a background-only
fit to the data. The last bin in each histogram contains the overflow.

5.3 Background Estimation

The main backgrounds are the same as the previous analysis, tt̄ and W+ jets, and

again have their dedicated CRs (defined in Table 5.1) to constrain their normalizations

in the simultaneous fit to the signal and control regions. Figure 5.2 shows the

reconstructed m`νJ distribution and data/MC agreement in the W+ jets and Top

CRs following the fit. Fairly good agreement is seen in each region.

Also shown in the figure is an overlay of the 700 GeV NWA signal distribution

normalized to σH ×BR(H→WW ) = 1 pb. The 1 pb normalization is arbitrary since

there is no physical prediction of the signal cross-section, but is an easy number to

rescale to any theoretical prediction.
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5.4 Systematic Uncertainties

The sources of systematic uncertainties are very much the same as the previous

analysis and are again dominated by the large-R JER and JES. One difference comes

from the uncertainty on the modeling of the W+ jets background. As in the previous

analysis, the modeling of the W+ jets background is observed in the W+ jets CR

by subtracting the other background contributions from the data and taking the

ratio. This time, however, the slope of the ratio is consistent with unity so there is

no re-weighting applied like there was for the 8 TeV analysis. The uncertainty on

the W+ jets modeling is then taken as the uncertainty on the ratio slope (15%).

5.5 Results

The same statistical methodology applied in the 8 TeV analysis, including the likeli-

hood fit and upper limits procedure, is used here. As before, the W+ jets and Top

normalizations are left free to float in the simultaneous fit of the signal and control

regions. One difference is in the binning of the discriminant, m`νJ , which this time

takes on variable bin sizes chosen in order to provide adequate statistics within each

bin, while maintaining the signal peak resolution.

The m`νJ distribution in the signal region is shown in Figure 5.3a following

the background-only fit. Again, the 700 GeV NWA signal is overlaid with its 1

pb normalization. The event yields are shown in Figure 5.3b for data and each

background after the simultaneous background-only fit as well.
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WW SR W+jets CR Top CR
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Z/γ*+jets 7 ± 3 26 ± 7 1 ± 1
VV 68 ± 15 63 ± 14 9 ± 3
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Figure 5.3: (a) The post-fit m`νJ distribution for the signal region, with the 700 GeV
NWA signal overlaid and the ratio of data/SM-background in the lower panel. The
shaded and hatched bands in the lower and upper panels, respectively, show the total
uncertainty after a background-only fit to the data. The last bin in the histogram
contains the overflow. (b) Event yields in the signal and control regions following the
background-only simultaneous fit. The uncertainties shown contain both statistic
and systematic uncertainties.

There is good agreement seen between the expected background and the data.

Therefore, as in the 8 TeV analysis, 95% CL upper limits are set on the σH ×

BR(H→WW ) as a function of mH for both NWA and LWA hypotheses, which are

shown in Figures 5.4a and 5.4b, respectively. The limits generally improve with

increasing mH and get progressively worse as a whole with increasing width, ΓH .

In general, the observed limits are consistent with a null (no-signal) hypothesis. In

the region between 1200 GeV and 1800 GeV there is a broad excess that extends

into the +2σ band. A similar excess is not found in the control regions and, upon

investigation, the excess is not attributable to any known systematic effects.
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Figure 5.4: Observed and expected 95% CL upper limits on σH × BR(H→WW )
as a function of mH , for the NWA (a) and LWA (b) heavy Higgs hypotheses, where
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146



Chapter 6

Conclusion

“We must not forget that when radium was discovered no one knew that

it would prove useful in hospitals. The work was one of pure science.

And this is a proof that scientific work must not be considered from the

point of view of the direct usefulness of it. It must be done for itself, for

the beauty of science, and then there is always the chance that a

scientific discovery may become like the radium a benefit for humanity.”

- Marie Curie (1867 - 1934)

First, a search for a high-mass Higgs boson in the H → WW → `νqq decay channel

was performed using 20.3 fb−1 of LHC pp collision data recorded by the ATLAS

detector at a center-of-mass energy of
√
s = 8 TeV. No significant deviation from the

SM background-only prediction is observed. Thus, for both ggF and VBF production

modes, upper limits on σH × BR(H→WW ) are set, as a function the Higgs mass

mH , in three different signal width scenarios of a high-mass Higgs boson with a

narrow width, an intermediate width, and a SM width. The mass range of the

derived limits is 300 GeV ≤ mH ≤ 1000 GeV, with an extension up to 1500 GeV for

the narrow-width scenario.

A second, more model-independent search was performed in the same decay

channel using 3.2 fb−1 of ATLAS recorded data from the upgraded LHC with pp

collisions at a center-of-mass energy of
√
s = 13 TeV. The signal widths tested in this
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search include the previous narrow-width as well as three new intermediate widths

at 5, 10, and 15% of mH . Again, no significant deviations from the background-only

hypothesis are observed, leading to upper limits on the σH × BR(H→WW ) for

the different signal width scenarios. The mass range of the limits is substantially

improved, in regards to the previous search, and extends up to 3000 GeV.

The results from both searches are substantial improvements over the previous

results from the ATLAS experiment in terms of both the cross-section times branching

ratio values excluded and the mass range explored.

Searches in this decay channel, WW → `νqq, are still alive and active! The scalar

results presented in Chapter 5 are included in the recently submitted paper [89],

which combines searches for heavy narrow-width resonances decaying to WW , WZ,

and ZZ with final states ννqq, `νqq, ``qq, and qqqq. Also, in the course of writing this

dissertation, ATLAS has already recorded another 15 fb−1 of data at
√
s = 13 TeV!

Analysis of the new data is already underway in this channel, adding more data to

the previous results and looking into VBF production and the resolved regime.
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Appendix A

8 TeV Analysis Auxiliary Material

A.1 Reconstructed Higgs Mass Separated by Lepton Flavor

and Charge

In this section, Figures A.1 - A.4 show the reconstructed Higgs mass m`νjj distri-

butions separated by lepton flavor and charge in the WCR, TopCR, and SR after

the ggF preselection or the VBF preselection. The upper panel of each plot shows

the background processes (normalized by their theoretical cross-sections) stacked,

with the data and a hypothetical CPS signal (mH = 500 GeV) overlaid. The lower

panels show the ratio of data to background. The hatched gray band in the upper

panel and the shaded yellow band in the lower panel show the combined statisti-

cal and systematic uncertainties on the background. Lastly, the W+ jets and top

backgrounds in all of the plots include their m`νjj shape reweighting, but not their

normalization from the final fit.
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Figure A.1: e− category reconstructed Higgs mass
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Figure A.2: e+ category reconstructed Higgs mass
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Figure A.3: µ− category reconstructed Higgs mass
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Figure A.4: µ+ category reconstructed Higgs mass
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A.2 Kinematic Variable Modeling after Event Preselection

In this section, distributions of the kinematic variables used in the analysis selections

are shown in the WCR, TopCR, and SR after the ggF preselection or the VBF

preselection. All lepton flavor and charge categories are summed in each plot. A

few variables only pertain to certain categories of events like the merged (resolved)

category’s large-R (small-R) W jet(s) and the VBF category’s tagging jets.

The upper panel of each plot shows the background processes (normalized by

their theoretical cross-sections) stacked, with the data and a hypothetical CPS signal

(mH = 500 GeV) overlaid. The lower panels show the ratio of data to background.

The hatched gray band in the upper panel and the shaded yellow band in the lower

panel show the combined statistical and systematic uncertainties on the background.

Lastly, the W+ jets and top backgrounds in all of the plots include their m`νjj shape

reweighting, but not their normalization from the final fit.
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Figure A.5: Large-R W -jet η [merged only]
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Figure A.6: Large-R W -jet (merged hadronic W ) mass
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Figure A.7: Large-R W -jet (merged hadronic W ) pT
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Figure A.8: Reconstructed Higgs pT
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Figure A.9: Number of small-R jets
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Figure A.10: Leading small-R W -jet η [resolved only]
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Figure A.11: Leading small-R W -jet pT [resolved only]
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Figure A.12: Sub-leading small-R W -jet η [resolved only]
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Figure A.13: Sub-leading small-R W -jet pT [resolved only]
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Figure A.14: |∆η| between small-R W -jets [resolved only]
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Figure A.15: |∆φ| between small-R W -jets [resolved only]
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Figure A.16: Small-R di-jet (resolved hadronic W ) invariant mass

174



En
tri

es
 / 

20
 G

eV

5000
10000
15000
20000
25000
30000
35000
40000
45000 Data Diboson/Zjets

Top QCD

W+jets H SM-like [500]

 stat)⊕SM (sys 

ATLAS Internal
-1 Ldt = 20.3 fb∫=8 TeV s

 [GeV]Whad
T

p
50 100 150 200 250 300 350 400

D
at

a 
/ B

kg

0.6
0.8

1
1.2
1.4

(a) ggF WCR

En
tri

es
 / 

20
 G

eV

200

400

600

800

1000
Data Diboson/Zjets

Top QCD

W+jets H SM-like [500]

 stat)⊕SM (sys 

ATLAS Internal
-1 Ldt = 20.3 fb∫=8 TeV s

 [GeV]Whad
T

p
50 100 150 200 250 300 350 400

D
at

a 
/ B

kg

0.6
0.8

1
1.2
1.4

(b) VBF WCR

En
tri

es
 / 

20
 G

eV

2000
4000
6000
8000

10000
12000
14000
16000
18000 Data Diboson/Zjets

Top QCD

W+jets H SM-like [500]

 stat)⊕SM (sys 

ATLAS Internal
-1 Ldt = 20.3 fb∫=8 TeV s

 [GeV]Whad
T

p
50 100 150 200 250 300 350 400

D
at

a 
/ B

kg

0.6
0.8

1
1.2
1.4

(c) ggF TopCR

En
tri

es
 / 

20
 G

eV

100

200

300

400

500

600

700 Data Diboson/Zjets

Top QCD

W+jets H SM-like [500]

 stat)⊕SM (sys 

ATLAS Internal
-1 Ldt = 20.3 fb∫=8 TeV s

 [GeV]Whad
T

p
50 100 150 200 250 300 350 400

D
at

a 
/ B

kg

0.6
0.8

1
1.2
1.4

(d) VBF TopCR

En
tri

es
 / 

20
 G

eV

5000

10000

15000

20000

25000

30000

35000

40000
Data Diboson/Zjets

Top QCD

W+jets H SM-like [500]x20

 stat)⊕SM (sys 

ATLAS Internal
-1 Ldt = 20.3 fb∫=8 TeV s

 [GeV]Whad
T

p
50 100 150 200 250 300 350 400

D
at

a 
/ B

kg

0.6
0.8

1
1.2
1.4

(e) ggF SR

En
tri

es
 / 

20
 G

eV

100

200

300

400

500

600 Data Diboson/Zjets

Top QCD

W+jets H SM-like [500]x10

 stat)⊕SM (sys 

ATLAS Internal
-1 Ldt = 20.3 fb∫=8 TeV s

 [GeV]Whad
T

p
50 100 150 200 250 300 350 400

D
at

a 
/ B

kg

0.6
0.8

1
1.2
1.4

(f) VBF SR

Figure A.17: Small-R di-jet (resolved hadronic W ) pT
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Figure A.18: Lepton η
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Figure A.19: Lepton φ
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Figure A.20: Lepton pT
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Figure A.21: |∆φ| between the lepton and leading small-R W -jet [resolved only]
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Figure A.22: |∆η| between the lepton and neutrino
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Figure A.23: |∆φ| between the lepton and neutrino
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Figure A.24: Leptonic W pT
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Figure A.25: Neutrino η
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Figure A.26: Missing Transverse Momentum Emiss
T (i.e. neutrino pT)
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Figure A.27: |∆φ| between the neutrino and leading small-R W -jet [resolved only]
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Figure A.28: Leading VBF tagging jet η
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Figure A.29: Leading VBF tagging jet pT
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Figure A.30: Sub-leading VBF tagging jet η

188



En
tri

es
 / 

8 
G

eV

200

400

600

800

1000

1200

1400

1600 Data Diboson/Zjets

Top QCD

W+jets H SM-like [500]

 stat)⊕SM (sys 

ATLAS Internal
-1 Ldt = 20.3 fb∫=8 TeV s

 [GeV]tag j2
T

p
20 40 60 80 100 120 140 160

D
at

a 
/ B

kg

0.6
0.8

1
1.2
1.4

(a) VBF WCR

En
tri

es
 / 

8 
G

eV

200

400

600

800

1000
Data Diboson/Zjets

Top QCD

W+jets H SM-like [500]

 stat)⊕SM (sys 

ATLAS Internal
-1 Ldt = 20.3 fb∫=8 TeV s

 [GeV]tag j2
T

p
20 40 60 80 100 120 140 160

D
at

a 
/ B

kg

0.6
0.8

1
1.2
1.4

(b) VBF TopCR

En
tri

es
 / 

8 
G

eV

200

400

600

800

1000

1200 Data Diboson/Zjets

Top QCD

W+jets H SM-like [500]x10

 stat)⊕SM (sys 

ATLAS Internal
-1 Ldt = 20.3 fb∫=8 TeV s

 [GeV]tag j2
T

p
20 40 60 80 100 120 140 160

D
at

a 
/ B

kg

0.6
0.8

1
1.2
1.4

(c) VBF SR

Figure A.31: Sub-leading VBF tagging jet pT
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Figure A.32: |∆η| between the VBF tagging jets
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Figure A.33: |∆φ| between the VBF tagging jets
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Figure A.34: Invariant mass of the VBF tagging jets
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