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Abstract 

 

Dysbiosis of the human microbiome is linked to(Turnbaugh et al. 2006) 

human health problems, and as such, is a main concern of anthropological 

microbiome research. Analysis of how microbiomes change over time and 

under stress may reveal trends that lead to dysbiotic states. For this particular 

study, graduate students are of interest because they often relocate to distant 

places to study in their field of expertise. For any human, we can expect that 

travel and a new regional diet may influence the microbiome. For new 

graduate students, the added stress of school could also have a considerable 

influence. The purpose of this study is to determine if the combined effects of 

diet, travel, and stress are detectable in the oral and gut microbiomes of first 

year graduate students at the University of Oklahoma. Eleven participants, 

males and females, between the ages of 18-25 self-collected fecal and saliva 

samples and were surveyed about life style behaviors. The V4 hypervariable 

region of the bacterial 16S rRNA gene was amplified by polymerase chain 

reaction (PCR) and deep sequenced using Next-Generation sequencing (NGS) 

to characterize the taxonomic profiles of the gut and oral microbiomes. 

Though the results were not statistically significant, the study participants 

show an increase over time in alpha-diversity of the gut microbiome and only 

minimal change in the oral microbiome. The 16S rRNA sequence data show 

that the microbiomes of graduate students did experience change during their 

first semester at school, but the pattern of change is complex and generally not 
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consistent across individuals. Most significantly, Ruminococcaceae is 

enriched in the winter samples. This study continues to characterize the 

adaptive nature of the human microbiome; future work would benefit from a 

larger participant cohort. 



 

1 
 

Background 

 

The term microbiome has been coined to describe the ubiquitous 

nature of microbial communities and their ecological niches (Lederberg and 

Mccray 2001). Human microbiomes have changed over the course of human 

evolution (Warinner et al. 2015; Zilber-Rosenberg and Rosenberg 2008), and 

they are also influenced by everyday behaviors and lifestyle choices (Jeon et 

al. 2013).  Human microbiomes are important because they have been 

associated in a variety of health issues including, obesity (Turnbaugh et al. 

2006), rheumatoid arthritis (Scher and Abramson 2011), asthma (Chen and 

Blaser 2008), irritable bowel syndrome (Tana et al. 2010), and periodontitis 

(Costalonga and Herzberg 2014). Diet plays a key role in shaping the 

microbiome (Moeller et al. 2014); both the microbiome and diet can be 

influenced by travel (Dey et al. 2015) and stress (Dash et al. 2015; Moloney et 

al. 2014).  Travel, stress, and dietary changes are often majors factors of 

change for graduate students; as such, the microbiomes of graduate students 

are of interest in that they may exhibit these stressors as microbial community 

changes. It is common for graduate students to participate in microbiome 

studies, but a study focusing specifically on graduate students has not yet been 

performed, to my knowledge.  

The purpose of this study is to characterize change in community 

structure of the oral and gut microbiomes of first-year graduate students at the 

University of Oklahoma to understand the possible effects of stress, travel, 

and diet in a university setting. Graduate students often relocate to distant 
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places to study in their field. Travel and a new regional diet may influence the 

microbiome. For new graduate students the added stress of school and 

relocation can considerably influence dietary choices, and as a result, may 

impact the microbiome. For these reasons, graduate students are an ideal 

population to analyze the severity of impact of relocation and chronic stress 

on microbiomes. I hypothesize that the stressors associated with the impact of 

graduate student life will be evident as changes in the oral and gut 

microbiomes of the students. 

 

The golden age of microbiome science 

Microbial science has progressed from a time when the goal of the 

researcher was to simply understand the relationship between a single 

pathogenic microbe and the human host. Nineteenth century researchers such 

as Louis Pasteur and Robert Koch, confirmed notions of the time that invisible 

organisms could be harmful to health. This work was paramount to evaluating 

human health in the context of infectious disease and it continues to inform 

health today. Culture dependent methods for identifying microbes were the 

gold standard during this era. Culturing microbes requires that the researcher 

isolate the single microbe of interest in pure culture and conduct an analysis 

based on the physiological or biochemical characteristics of the organism; 

however, this method becomes a limitation when the required conditions for 

growth of a particular microbe is poorly understood (Hiergeist et al. 2015). 

While much has been learned from culturing microorganisms, the extent of 
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non-pathogenic microbial interactions within the human body has often been 

overlooked.  

Microbial research has been rapidly advancing with the introduction of 

culture independent techniques that have led to deeper taxonomic inventories 

for ecological characterization, making human microbiome research possible. 

In contrast to the culture dependent techniques, culture independent 

techniques directly examine molecular sequences. Analyzing DNA sequences 

using this method saves the researcher the effort of culturing each microbe 

contained within the sample and allows for the microbial community to be 

profiled. The 16S ribosomal RNA (rRNA) gene serves as an ideal genetic 

marker for microbial community analysis. This gene is shared by bacteria and 

archaea and has both very conserved regions, for targeting, and hyper-variable 

regions, for species characterization (Scholz et al. 2012; Woese et al. 1990). 

Targeted amplicon sequencing allows researchers to characterize entire 

microbial communities by directly analyzing and characterizing DNA 

extracted from a particular site or sample (Hiergeist et al. 2015). 

Advancements in sequencing technology have also contributed to the 

scientific ability to analyze the complexity of biological material. Researchers 

pioneered the field of genetics through the use of the Sanger method of 

sequencing that provided a tool towards visualizing the sequence of 

nucleotides that make up DNA (Sanger and Coulson 1975). The Sanger 

method still provides longer reads at a higher quality than the newer methods 

(DiGuistini et al. 2009). The limitation of Sanger sequencing can be in its 
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low-throughput and limited of ability to provide sequences for samples of 

mixed communities.  

Amassing a larger quantity of sequence data can be achieved through 

NGS techniques that provide researchers the ability to simultaneously 

sequence the DNA of mixed communities in one batch of chemistry. 

Microbiome science today finds itself at the intersection of NGS and 16S 

rRNA gene metataxonomic analysis. Samples of mixed communities can be 

barcoded, combined, and sequenced together as a pool to be later 

demultiplexed using identifying sequence barcodes (Caporaso et al. 2012). 

The combination of the high-throughput of NGS and the targeting and species 

identifying qualities of 16S rRNA gene sequences produce a snapshot of the 

microbial community contained within a sample. These advancements in 

methods and technology have ushered microbiome research to the forefront of 

science. 

According to some estimates, human bodies are composed of only 

10% human nucleated cells and 90% bacterial cells (Bianconi et al. 2013; 

Sender et al. 2016). The human body is, therefore, composed of more than one 

organism. The functions of these microbial organisms are in an early stage of 

scientific understanding, but what is known shows that these microbes are 

influential and essential to the lives of humans at every stage of life (Aagaard 

et al. 2014; Chen and Blaser 2008; Dominguez-Bello et al. 2010; Gilbert 

2014; Gilbert et al. 2012; Park et al. 2015). Consequently, to fully understand 

human evolution, health and disease, the human biological self must be 
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studied as a collection of cells from different, yet often well integrated, 

organisms (Zilber-Rosenberg and Rosenberg 2008).  

 

The gut microbiome 

The human gut microbiome is a site of particular interest for its 

influence on health. Of the human body sites, the gut harbors the majority of 

our microbes (Sekirov et al. 2010). One example of an important role the gut 

microbiome plays is to assist in metabolic functions so that the host can 

process foods that would be otherwise difficult to digest (Karasov et al. 2011). 

In humans, some of our diet is broken down by enzymes and other digestive 

chemicals produced in the stomach and small intestine. Fibrous food can 

escape digestion while in transit to the large intestine; it is here that human gut 

microbes assist in digesting fiber by fermentation that produces short-chain 

fatty acids that the large intestine can absorb as nutrients (Stearns et al. 2011; 

Walter and Ley 2011). Researchers are learning that as diets have changed in 

humans and other animals over evolutionary time scales, so has the bacterial 

composition of their gut microbiome (Ley et al. 2008).  

The human gut microbiome is an ecology that is influenced by many 

factors, and microbiomes adapt to various conditions, both internal and 

external. The majority of the human gut microbiome is made up of microbial 

members from two phyla: Firmicutes and Bacteroidetes (Mariat et al. 2009). 

This ecology is influenced by dietary composition as well as weight loss and 

weight gain (David et al. 2014). Seasonal changes can affect the availability of 
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food and the types of microbes present in the environment (Bowers et al. 

2011; Davenport et al. 2014). The built environment also has an impact on the 

microbial composition, such as where we live and our living arrangements, 

and cohabitating couples, families, and dog owners share a certain number of 

personal microbes (Jeon et al. 2013; Lax et al. 2014; Song et al. 2013). Of 

particular interest to health sciences are factors that cause dysbiosis of the 

microbiome, which is a microbial imbalance that occurs when the symbiotic 

relationship of the host and microbes are disrupted, resulting in a diminished 

health status.  

 

The oral microbiome 

Whereas the gut microbiome contains the highest numerical 

abundance of microbes, the human oral microbiome contains a higher 

richness, or diversity, of microbes (Dewhirst et al. 2010; Stearns et al. 2011). 

Microbes in the oral cavity are plentiful because they are both transient, 

entering our bodies by way of food and the environment, as well as, 

endogenous, or native to the oral cavity. The oral and gut microbiomes are 

inter-related in that the oral cavity is the beginning of the digestive tract and 

gateway into the human gut. The oral cavity houses distinct microbial habitats 

(e.g. saliva, teeth, gingiva, tongue, cheek, lip, tonsil, pharynx, and esophagus) 

that vary in microbial community structure (Dewhirst et al. 2010; Lazarevic et 

al. 2012).  
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Oral microbes have been associated with a variety of health states 

(Dewhirst et al. 2010; He and Shi 2009; Jenkinson and Lamont 2005; 

Lazarevic et al. 2012). Two of the primary oral health issues that have been 

explored are dental caries and periodontal disease. The understanding that 

researchers have is that the cause of oral health disorders, such as these, are 

more complicated than a single pathogenic microbe. Both dental caries and 

periodontal disease have been associated with multiple microbes in the oral 

cavity (Jenkinson and Lamont 2005). More recently, oral bacteria have also 

been associated with heart disease (Joshipura et al. 1996) and even pre-term 

birth (Aagaard et al. 2014). Because of the associations with dental caries, oral 

cancer, and obesity, the oral/salivary microbiome continues to warrant further 

study (Lazarevic et al. 2012). 
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Materials and Methods 

 

Participants, Sample and Data Collection 

This research was conducted at the University of Oklahoma (OU) in 

the Laboratories of Molecular Anthropology and Microbiome Research 

(LMAMR). The Graduate College at OU facilitated this research by allowing 

myself contact with first year graduate students who met the qualifications for 

this study. Additionally, flyers (~20) were posted in public places around 

campus to recruit qualified participants. This research was reviewed and 

approved by the University of Oklahoma Institutional Review Board on May 

14, 2015, and renewed April 8, 2016 (IRB# 5494). 

Participants were first year graduate students at the University of 

Oklahoma during the Fall semester of 2015. Three males and eight females 

between the ages of 18-25 were enrolled (n=11); three participants (GS09-

GS11) from the eleven subjects enrolled were second year graduate students, 

and were chosen as a comparative cohort (Table 1). Second year students 

were chosen on the assumption that their entry and exit samples are not 

expected to vary as much, as they have adjusted to graduate student life. The 

second year students’ inclusion was a control for if and how the microbiomes 

vary over the course of the semester. Both Oklahoma residents and non-

residents were included in the first year graduate student sample population. 

The second year graduate students had minimal (<1 month) to no travelling 

time in the summer prior to the beginning of the study (Table 1).  
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To analyze the changes in oral and gut microbial diversity over time, 

samples were collected twice. The first collection was conducted in the two 

weeks before the semester began (August 10, 2015 – August 27, 2015). For 

students arriving to Oklahoma from out of state, samples were collected 

within 24 hours of arrival to Norman. The timing of the sample collection was 

designed to capture microbial diversity before it could be overly influenced by 

the local environment. The second sample collection was performed in the 

weeks leading up to and also during final semester exams (December 7, 2015 

– December 17, 2015), a time when stress may be at its highest. 

Anthropometric measurements (height and weight) of the participants were 

collected and recorded by the researcher at both sample collection periods. 

Additional information, including self-reported perceived stress levels, 

exercise habits, typical diet, and sleep behavior, was collected by the 

researcher during an interview. The participants were asked to rate each of 

these four categories on a 1 to 5 scale, 1 being an indication of the 

unhealthiest perceived status and a score of 5 being the healthiest perceived 

status. To simplify the self-reported stress data, a stressor coefficient was 

calculated using the following formula:  

|sum of stress scores – maximum stress score possible|. 

All stressor coefficient calculations ranged from 3 to 14 (Table 1). The 

stressor coefficient was then coded to low stress (3-6), medium stress (7-10), 

or high stress (11-14) stress level (Table 1). Body mass indices where 

calculated (BMI = [weight in pounds / (height in inches * height in inches) x 
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703]) and classified (< 18.5 = underweight, 18.5-24.9 = normal weight, 25-

29.9 = overweight, > 30 = obese) using the height and weight data collected 

(Table 1 and Supplementary Table 1 & 2). All of the participants remained 

within their starting BMI classification for the duration of the study. 

 

Samples 

Once informed consent was obtained from the participant, instructions 

for sample collection were distributed. In the privacy of their home, the 

participants collected 5mL of saliva into a sterile vial. In addition, the 

subjects’ freshly voided fecal samples were deposited in sterile polypropylene 

containers. All samples were kept on ice (<24 hours) until they could be 

stored in a -80°C freezer at the Laboratories of Molecular Anthropology and 

Microbiome Research at the University of Oklahoma. Feces and saliva 

samples were aliquoted to 0.25g. DNA extraction of saliva samples was 

conducted using the MOBIO PowerSoil DNA extraction kit according to 

manufacturer’s instructions. DNA from fecal samples was extracted using the 

MOBIO protocol modified with two initial heating steps similar to those 

described by Obregon-Tito and colleagues (2015): heat lysis for 10 minutes at 

60°C, then 10 minutes vortexing/bead beating, followed by 10 minutes at 

60°C before beginning MOBIO protocol. Quantitative PRC (qPRC) was 

performed to determine the DNA concentration of each sample. The DNA 

extracts were optimized to amplify at 20 cycles. 
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16S rRNA gene sequencing and data processing 

To characterize the taxonomic profile of the gut and oral microbiomes, 

the V4 hypervariable region of the bacterial 16S rRNA gene was amplified 

using polymerase chain reaction (PCR). Universal forward and reverse 

primers (515F-GTGCCAGCMGCCGCGGTAA/806R-

GGACTACHVGGGTWTCTAAT) were used in addition to a unique 12bp 

GOLAY error-correcting barcode to multiplex the samples. PCR reactions 

were conducted (in triplicate with negative controls to ensure that 

contamination was not an issue) using Phusion Hot Start II high-fidelity DNA 

polymerase. PCR cycling conditions were 98°C for 30 seconds followed by 

25 cycles of 98°C for 15 seconds, 52°C for 20 seconds, 72°C for 30 seconds, 

and a final step of 72°C for 5 minutes. Samples were pooled in equimolar 

amounts and sequenced on an Illumina MiSeq platform (2 X 250 bp).  

The 16S rRNA gene sequence data were filtered and trimmed to 

remove low-quality base calls (q < 30), then paired reads were merged using 

PEAR (Zhang et al. 2014). Reads with ambiguous (N) calls were also 

removed prior to analysis. The paired trimmed reads were then demultiplexed, 

chimera filtered, and assigned to reference OTUs using de novo OTU picking 

implemented in QIIME (uclust) (Edgar 2010). Operational taxonomic units 

(OTUs) were clustered at 97% sequence similarity, the standard convention 

for species identification. The resulting OTU table was rarefied to a depth of 

10,000 reads per sample and used for subsequent statistical analyses.  
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Alpha-diversity analyses were performed using observed species and 

Faith’s phylogenetic diversity (PD) indices using QIIME. QIIME was also 

used for beta-diversity analyses which were performed using weighted 

UniFrac distances (Lozupone et al. 2011). The resulting distance matric was 

transformed using principal coordinates analysis (PCoA) and visualized. R 

(version 3.0.2) was used for statistical tests (corrected for multiple 

comparisons, fdr < 10%) and to generate boxplots (R Core Team 2013).  

 

Comparative Data 

 Additional comparative sequence data were used from two 

microbiome studies previously conducted in and around Oklahoma by 

LMAMR personnel and collaborators (Obregon-Tito et al. 2015; 

Sankaranarayanan et al. 2015) (Table 2 and Table 3). These data were chosen 

because they are nearly identical in processing protocol and from individuals 

that share a limited geographical range, limiting sources bias. The Norman 

non-native control (NOR) population (n=20) from Obregon-Tito and 

colleagues (2015) was used, as well as the Cheyenne and Arapaho (C&A) 

population (n=37) from Sankaranarayanan and colleagues (2015). NOR 

individuals were recruited from a population of university-associated 

individuals. C&A individuals were recruited from the C&A tribal area. Each 

population provided both saliva and fecal samples. Individuals under the age 

of 18 were excluded. In the population comparisons performed in this study, 
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the graduate student samples from summer and winter have been combined to 

form a single population (n=22). 
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Graduate Student Microbiome (GSG) Participant Data 

ID# Sex 

State 

of 

Origin 

BMI 

Class 

Stressor 

Coefficient Stress Level 

August December August December 

GS01 F OK Normal 4 11 Low High 

GS02 F OK Normal 3 7.5 Low Medium 

GS03 F KY Obese 11.5 11 High High 

GS04 M MI Normal 5 7 Low Medium 

GS05 F OK Under 4 6 Low Low 

GS06 M PA Over 7 9 Medium Medium 

GS07 F OK Normal 7 7 Medium Medium 

GS08 F NM Obese 9.5 12 Medium High 

GS09 F OK Normal 10.5 14 Medium High 

GS10 M OK Normal 6 8 Low Medium 

GS11 F OK Normal 6 8 Low Medium 

 

 

Table 1. Graduate students’ metadata (n=11) 
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Non-Native Norman, OK Population – (Obregon-Tito et al. 2015) 

ID # Sample Type Sex Age 
BMI 

Class 

NO01 Saliva & Feces M 20s Norm 

NO02 Saliva & Feces F 30s Norm 

NO03 Saliva & Feces M 40s Norm 

NO04 Saliva & Feces M 20s Norm 

NO05 Saliva & Feces M 20s Norm 

NO06 Saliva & Feces M 20s Norm 

NO07 Saliva & Feces F 30s Norm 

NO08 Saliva & Feces F 30s Norm 

NO09 Saliva & Feces F 30s Norm 

NO10 Saliva & Feces M 40s Over 

NO11 Saliva & Feces M 20s Norm 

NO12 Saliva & Feces F 20s Over 

NO13 Saliva & Feces M 30s Norm 

NO15 Saliva & Feces F 50s Over 

NO16 Saliva & Feces M 40s Obese 

NO19 Saliva & Feces F 30s Norm 

NO20 Saliva & Feces M 20s Over 

NO21 Saliva & Feces M 20s Norm 

NO22 Saliva & Feces M 20s Obese 

NO23 Saliva & Feces F 20s Over 

 

 

Table 2. Metadata for Norman, Oklahoma samples from Obregon-Tito and 

colleagues (2015). Fecal samples, n=20. Saliva samples, n=20. 
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Cheyenne & Arapaho, OK Population - (Sankaranarayanan et al. 2015) 

 

 

 

 

 

 

Table 3. Metadata for 

Cheyenne and 

Arapaho samples from 

Sankaranarayanan and 

colleagues (2015). 

Fecal samples, n=37. 

Saliva samples, n=37 

  

ID # Sample Type Sex Age Origin 

BMI 

Class 

CA01 Saliva & Feces M 50s Clinton Obese 

CA02 Saliva & Feces F 50s Clinton Obese 

CA03 Saliva & Feces F 20s Clinton Obese 

CA04 Saliva & Feces M 30s Clinton Obese 

CA05 Saliva & Feces F 80s Clinton Over 

CA06 Saliva & Feces F 50s Clinton Obese 

CA08 Saliva & Feces F 30s Clinton Obese 

CA09 Saliva & Feces F 20s Clinton Obese 

CA12 Saliva & Feces F 40s Concho Obese 

CA13 Saliva & Feces F 20s Concho Over 

CA14 Saliva & Feces M 20s Concho Over 

CA15 Saliva & Feces F 30s Geary Over 

CA16 Saliva & Feces M 40s Geary Obese 

CA17 Saliva & Feces M 30s Geary Obese 

CA18 Saliva & Feces M 60s Geary Obese 

CA19 Saliva & Feces F 60s Geary Obese 

CA20 Saliva & Feces F 50s Geary Over 

CA21 Saliva & Feces F 60s Geary Obese 

CA22 Saliva & Feces F 40s Geary Over 

CA23 Saliva & Feces F 60s Hammon Norm 

CA24 Saliva & Feces M 50s Hammon Obese 

CA25 Saliva & Feces M 60s Hammon Obese 

CA26 Saliva & Feces M 50s Hammon Obese 

CA27 Saliva & Feces M 50s Hammon Obese 

CA28 Saliva & Feces F 50s Hammon Obese 

CA29 Saliva & Feces F 40s Hammon Norm 

CA30 Saliva & Feces M 50s Hammon Obese 

CA31 Saliva & Feces M 60s Hammon Obese 

CA32 Saliva & Feces F 40s Hammon Obese 

CA33 Saliva & Feces F 60s Kingfisher Obese 

CA34 Saliva & Feces F 40s Kingfisher Obese 

CA35 Saliva & Feces F 40s Kingfisher Over 

CA36 Saliva & Feces M 60s Kingfisher Over 

CA37 Saliva & Feces F 50s Kingfisher Obese 

CA38 Saliva & Feces F 20s Kingfisher Obese 

CA39 Saliva & Feces F 20s Kingfisher Obese 

CA40 Saliva & Feces M 50s Kingfisher Obese 

CA41 Saliva & Feces F 50s Kingfisher Obese 
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Results 

 

Graduate Students’ Microbiome analysis 

 The human microbiome is a dynamic and complex system of 

organisms that is under the constant influence and stress of our daily lives and 

environment. The oral and gut microbiomes of first-year graduate students 

sampled in this study did display changes in community structure, as might be 

expected. However, the changes between the sampling periods were largely 

not statistically significant due largely in part to the low sample size. To 

increase the power of the statistical tests similar data were added for 

comparison (Obregon-Tito et al. 2015; Sankaranarayanan et al. 2015). 

 The graduate students’ oral microbiomes were dominated by the phyla 

Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Fusobacteria, 

Verrucomicrobia, and Tenericutes (Figure 1a), which have been previously 

described in oral microbial studies (Costalonga and Herzberg 2014; Dewhirst 

et al. 2010; He and Shi 2009). The level of Proteobacteria increases in all 

participants, with the exception of GS01. 

 Similarly, the graduate students’ gut microbiomes were also 

dominated by the phyla Firmicutes, Bacteroidetes, Proteobacteria, 

Actinobacteria, Fusobacteria, Verrucomicrobia, and Tenericutes (Figure 1b), 

though in expectedly different frequencies. The changes in the graduate 

students’ gut microbiomes are primarily noticeable in the abundance of 

Firmicutes and Bacteroidetes, both of which dominate the samples (Figure 
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1b). The first-year graduate students (GS01-GS08) all display changes in gut 

microbiome community structure without any evident trends. The gut 

microbiome of GS06 is dominated by Firmicutes (>91%) and changed least 

among first-year participants between sampling periods. 

 This analysis finds that a family within the Firmicutes phylum known 

as Ruminococcaceae exhibits a statistically significant (p < 0.05, fdr < 0.1) 

increase in abundance in participants with BMI < 25 (under weight and 

normal weight classifications) between the sampling periods. The average 

abundance of Ruminococcaceae more than doubled (~135%) in the graduate 

students’ gut microbiomes from summer to winter (Figure 2). 

 Biodiversity is measured and reported in microbiome studies through 

two metrics, alpha- and beta-diversities, both of which will be discussed 

below following a brief description of their scope. Alpha-diversity is a 

measurement that can be estimated by either species richness or Faith’s 

Phylogenetic Diversity. In microbiome studies, such as this, species richness, 

or the number of species in a sample, are described in operational taxonomic 

units (OTUs). Operation taxonomic units are the preferred measurement over 

“species” because 16S rRNA sequences do not perfectly correspond to what 

might be thought of as a species. OTUs are defined by 97% sequence 

similarity, and as such, are more objective than alternate species definitions. 

Alpha-diversity is reported here by both observed operational taxonomic units 

and Faith’s Phylogenetic Diversity (PD) for both the oral and fecal samples 

(Figure 3). Beta-diversity compares the individuals’ microbiome communities 
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to each other to understand the similarity or dissimilarity of the communities’ 

structure (Figures 4, 5, & 6).  

Our alpha-diversity analysis exhibits no statistically significant 

changes in the graduate students’ gut or oral microbiomes between the 

summer and winter sampling periods (Figure 3). When beta-diversity of the 

graduate students’ gut microbiomes is graphically depicted, personal variation 

can be seen (Figure 4). The amount of personal variation seen between 

sampling points is generally consistent across the majority of both the in- and 

out of state students’. A single out of state student (GS06) displays minimal 

change between the sampling points, similar to that of two of the second year 

comparative graduate students. One in-state student (GS09) exhibits a large 

range of variation between summer and winter.  

 When analyzing beta-diversity by season, no consistent patterns were 

evident (Figure 5a). Stress level classification also seems to not correlate to 

the graduate students’ changes in microbial community structure (Figure 5c). 

However, these factors of influence cannot be ruled out. 

 

Population comparison analysis 

 The NOR population has been previously reported to have increased 

oral microbial richness when compared to the C&A population (Ozga et al. 

2016) and I find this result to remain true (Figure 3a, b). The range of 

diversity in the C&A individuals is wider than that of the NOR individuals, 
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but the average alpha-diversity of the C&A individuals is lower. Intriguingly, 

I find that the C&A oral microbiome is more similar to that of the graduate 

students’ microbiome of this study at either sampling point (Figure 3a, b) than 

it is to the NOR population.  

 The graduate student gut data at both sampling points show a slight 

increased richness when compared to the other studies’ populations, though 

not significantly (Figure 3c, d). When compared to South American traditional 

and rural societies, it was reported that the gut microbiomes of the NOR and 

C&A participants also display a significant decreased microbial richness 

(Obregon-Tito et al. 2015; Sankaranarayanan et al. 2015).  

 The analysis of gut microbial beta-diversity by geography shows 

minimal variation between populations (Figure 5b). The graduate students 

display only a small visual indication of an association attributable to their 

out-of-state status (Figure 4 & 5b), though the variation of the graduate 

student population as a whole is higher than either the NOR or C&A 

individuals. Overall, each population’s beta-diversity is nested within one 

another, with the graduate students’ beta-diversities showing the widest range 

of variation along PC1 (Figure 5d). 

 The analysis by age shows an underlying influence on the beta-

diversity between the samples; the oldest participants’ samples converge 

toward each other and those younger participants’ samples displaying more 

variation (Figure 6).  
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 In the oral microbiomes, the genera Actinomyces, Haemophilus, and 

Prevotella are noticeably enriched in these populations. The graduate student 

population mean abundance of Actinomyces decreases (phylum: 

Actinobacteria [Figure 1a]) to resemble that of the C&A (Figure 7a). 

Interestingly, the NOR are significantly (p = 3.20 E -09, fdr = 1.13 E -05) 

enriched in this same genus (Figure 7a). Haemophilus levels of abundance in 

the graduate students is high and increases slightly between sampling periods 

(Phylum: Proteobacteria [Figure 1a]). As a population, the graduate students’ 

samples are significantly (p = 3.56 e -06, fdr = 0.002) enriched in 

Haemophilus compared to the C&A and NOR (Figure 7b). Prevotella is 

enriched in the C&A (Figure 7c), though not significantly (p = 0.06, fdr = 1). 

The mean abundance of Prevotella decrease in the graduate student 

population (-66%) between sampling periods (Phylum: Bacteroidetes [Figure 

1a]).  

 The gut microbiomes also exhibit interesting comparative results at the 

genus level among the taxa Bacteroides and Blautia. The graduate student 

population has a significantly (p = 1.14 E -06, fdr = 0.0013) higher abundance 

of Bacteroides than the C&A or NOR populations (Figure 8a). The 

differences in abundance of Blautia is significantly (p = 6.63 E -05, fdr = 

0.025) enriched in the C&A samples with the graduate students’ low level of 

abundance of the genus resembling that of the NOR (Figure 8b). The graduate 

students mean abundance did increase between the two sampling periods, but 

the increase was not enough to be seen in the population comparison.  
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 The population comparison also yields interesting results at the family 

level, that show significant differences between the graduate students and the 

other two populations. Differences in Ruminococcaceae, discussed above 

(Figure 2), narrowly missed the significance threshold during the population 

level comparison (p = 0.00075, fdr = 0.143), but remain interesting for the 

high frequency of the taxa (Figure 9a) in comparison to the other Oklahoma 

populations. The differences in frequency of Erysipelotrichaceae and 

Lachnospiraceae between the populations are also significant (Figure 9b, c), 

though minimal (p = 4.29 E -07, fdr = 0.00075; p = 0.00028, fdr = 0.072, 

respectively). 
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Figure 1. Phylum level changes in graduate students’ microbiomes.  

a) Oral microbiome phylum level changes. b) Gut microbiome phylum level 

changes. The students’ paired samples are shown with colored lines 

representing each phyla, the slope of the line indicates increase or decrease of 

that particular phyla.  
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Figure 2. Changes in graduate students’ gut microbe Ruminococcaceae 

between summer and winter. This result becomes significant when the 

population is compared based on BMI (p = 0.003, fdr = 0.08). 

Ruminococcaceae is enriched in individuals with lower BMI.  
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a.     b. 

c.     d.  

 

 

Figure 3. Alpha-diversity comparisons. a) Oral microbial richness measured 

by observed OTUs. b) Oral microbial richness measured by phylogenetic 

diversity. c) Gut microbial richness measured by observed OTUs. d) Gut 

microbial richness measured by phylogenetic diversity. Comparative data 

from Oklahoma studies added; C&A – Cheyenne and Arapaho individuals of 

Oklahoma (Sankaranarayanan et al. 2015), NOR – Non-native Norman, 

Oklahoma individuals (Obregon-Tito et al. 2015). Saliva data show little 

change from sample time points. Fecal data show a slight increase in alpha 

diversity.  
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Figure 4. Graduate student beta-diversity by geography. The graduate 

students’ beta-diversity is depicted. Lines connect the paired samples of each 

individual’s summer and winter data. The change seen, represented by the 

length of the lines, is shorter than what would be expected if the samples were 

distributed randomly in the plot. 
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Figure 5. Beta-diversity comparisons of gut microbiomes. a) Graduate 

student population by sampling period. b) Multiple study population by 

geography. c) Graduate student population by stressor coefficient level.  d) 

Multiple study comparison. Proportion of variance explained by each 

principal component axis is denoted in the corresponding axis label. 
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Figure 6. Beta-diversity comparison across populations (C&A, GSG, and 

NOR) by age. Older study participants appear to converge toward the left of 

the plot. Younger participants show a wide range of variation in their beta-

diversity. Age can be seen to be an influential factor, though not the key factor 

driving diversity.  
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Figure 7. Boxplots of relative 

abundance of oral taxa (genus level). 

a) Actinomyces is enriched in NOR. b) 

Haemophilus is enriched in the graduate 

students combined season samples 

(n=24). c) Prevotella is enriched in the C&A. 
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Figure 8. Boxplots of relative abundance of gut taxa (genus level). a) 

Bacteroides is at higher levels in the graduate student population’s combined 

season samples b) Blautia frequency is highest in the C&A. The GSG 

combined season samples resemble the level of abundance in the NOR 

population. 
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Figure 9. Boxplots of 

relative abundance of taxa 

(family level). GSG samples 

from summer and winter 

combined to form a single 

comparative population.  

a) Ruminococcaceae is 

enriched in the graduate 

student population.  

b) Erysipelotrichaceae is 

enriched in the graduate 

student population.  

c) Lachnospiraceae is 

enriched in the graduate 

student population. 
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Discussion 

 

 The goal of this study was to characterize the change in the 

microbiomes of graduate students in order to understand if stress and the 

impact of relocation is evident in the microbial community structure of the 

study participants. The results confirm that change is inherent to the 

microbiome and that the microbiome’s ability to adapt can be recorded. 

However, no significant findings could be made to directly implicate any one 

factor as a key cause of the microbiome changes. Stress or the impact of 

relocation cannot, at this time, be ruled out. Rather than finding stress or 

relocation to be directly associated with change in microbial community 

structure, there is an observed influence based on age. Additionally, at this 

time the possibility of seasonality also playing an influential role in 

microbiome structure cannot be ruled out. 

The slight increase in gut microbial diversity (Figure 3c, d) could be 

attributable to changes in the participants’ diets. If dietary changes are the 

cause of the changes seen in the microbiome data, they would need to be 

disentangled from other factors, for example, the consumption of different 

regionally available foods, or the possibility of unhealthy stress eating. 

Natural seasonal climate change can also impact the environmental 

microorganisms the body comes into contact with (Bowers et al. 2011) and 

ultimately consumes, this can have an impact on our microbiomes structure. 

This same seasonal shift may also play a role in the availability of a variety of 
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fresh food sources and could result in changes in microbial diversity 

(Davenport et al. 2014). In this case, a detailed dietary log would be beneficial 

for this analysis, but was not performed for this study.  

The slight increase shown in alpha-diversity in the graduate students is 

similar to that reported by Davenport and colleagues (2014) in their Hutterite 

population and under similar seasonal conditions (summer vs. winter). Unlike 

the Davenport et al. (2014) study, the participants in this study did not provide 

detailed food logs. Additionally, the graduate population was not as uniform 

as the Hutterite population. This begs the question of whether we should 

expect to see even more increased diversity from summer to winter, had the 

population been more uniformly controlled.  

The oral microbiome results of this study necessitate further 

investigation. The increase in alpha-diversity of the graduate students’ oral 

microbiome was only slight (Figure 3a, b). Additionally, the level of alpha-

diversity resembled that of the C&A population and not the NOR samples. I 

would have expected the graduate students’ oral microbial structure to come 

to reflect that of the NOR individuals because they are geographically similar. 

Both the graduate students and the NOR population are primarily located in 

Norman, Oklahoma; whereas, the C&A are more isolated in rural Oklahoma. I 

suspect that the increased frequency that I see in Actinomyces in the NOR 

population is driving this difference. Actinomyces is a primary colonizer of the 

oral cavity and is part of the foundation of forming biofilm in the mouth. 



34 
 

Further analysis will need to be conducted in order to rule out other possible 

microbial associations. 

This project attempted to characterize factors of stress, such as diet, 

geography, or behavioral changes that might be evident in the microbiome. 

These multiple factors become confounding factors in the small sample size 

provided here. It is this fact which led these researchers to calculate the 

stressor coefficient. However, as can be seen here and in other studies 

(Marzorati et al. 2016), stress to the microbiome comes in many forms and is 

experienced by the individual on a personal level.  

This project has provided several considerations for future research. 

This same study would benefit and would yield more precise results by 

controlling for a single stress factor to investigate. I found the self-reporting of 

stress to be too interpersonal and indefinable. This population of graduate 

students came from several fields of expertise and it became apparent that the 

expectations of each academic department are tailored to that field. For 

example, a Health and Exercise Science student is likely experiencing 

different demands on his/her body’s biology than a student studying Chinese 

Art History. Using an assay designed for stress may allow for results that 

could be more directly associated to types and levels of stress. One possible 

option may be to test levels of cortisol contained in the saliva samples as an 

indication of stress level.  

A standardized food log or food recall survey, in addition to multiple 

sampling points would be most ideal for associating changes in microbial 
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structure to diet rather than to season. Multiple sampling points throughout the 

study may highlight patterns of seasonality. Seasonality as a factor in 

microbiome influence is discussed in microbiome studies (Bowers et al. 2011; 

Davenport et al. 2014), but it is possible that its effects are not always taken 

into consideration when designing studies or making population comparisons. 

This begs the question of whether seasonality is biasing microbiome study 

results. The above study design modifications and consideration will lead 

future research to more relevant indications of change in microbial community 

structure. 

I find that the microbiomes of this study population changed between 

the two sampling periods. However, the directionality of these changes is not 

consistent across individuals, and at present, it is not possible to disentangle 

which factors may be influencing these changes. I show that seasonality and 

age are additional candidates of influence to these human gut and oral 

microbial ecologies. However, the factors that carry the most influence are 

difficult to pinpoint. In all likelihood it is several factors causing this change 

and future work will address these factors of influence more precisely. I 

continue to believe that graduate students are ideal participants for a study like 

this. These results shed light on further research designs and raise questions 

about the timing of study implementation and sampling. It is studies such as 

this one that help establish associations to the changes recorded in human 

microbiomes. Through these associations, hypotheses can be made with the 

hopes of arriving to an understanding, intervention, or possible treatment. 
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Though this study did not result in conclusive findings, I have presented work 

that profiles human microbiome structure and change. Science must continue 

to investigate the combined abilities encoded within our genes and the genes 

of our microbial commensals in order to provide humankind with information 

on possible treatments when we encounter maladaptive microorganisms 

and/or situations.  
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Appendix I: Supplementary Tables 

Graduate Student Microbiome (GSG) participant survey data 

ID# 
Sleep Exercise Diet Stress 

Aug Dec Aug Dec Aug Dec Aug Dec 

GS01 4 3 4 2 3 2 5 2 

GS02 3 2 5 4 4 4.5 5 2 

GS03 3 3 1 1 2.5 3 2 2 

GS04 3 3 4 4 4 4 4 2 

GS05 4 3 3 3 4 5 5 3 

GS06 3 2 4 4 4 3 2 2 

GS07 2 1 3.5 4 1 3 4.5 5 

GS08 3 2 1 1 2.5 3 4 2 

GS09 4 2 1 1 2.5 2 2 1 

GS10 3 3 5 3 4 4 2 2 

GS11 4 3 3 1 4 4 3 4 

 

Table S1. Self-reported perceived stress levels, exercise habits, typical diet, 

and sleep behavior. The participants were asked to rate each of the above 

categories on a 1 to 5 scale, 1 being an indication of the unhealthiest 

perceived status and a score of 5 being the healthiest perceived status. 

  



43 
 

Graduate Student Microbiome (GSG) biometric data 

ID# Height 
Weight (lbs.) BMI 

Aug Dec Aug Dec 

GS01 5' 10.5" 167.5 164.4 23.7 23.3 

GS02 5' 6" 140.6 147.4 22.7 23.8 

GS03 5' 3" 173.4 173.4 30.7 30.7 

GS04 5' 7" 146.2 147 22.9 23 

GS05 5' 3" 99 97.2 17.5 17.2 

GS06 5' 8.5" 187.5 185.8 28.1 27.8 

GS07 5' 7" 149 154 23.3 24.1 

GS08 5' 7.5" 204 202 31.5 31.2 

GS09 5' 11" 159.6 155.8 22.3 21.7 

GS10 6' 0" 167 166.2 22.6 22.5 

GS11 5' 6" 147.8 148 23.9 23.9 

 

Table S2. Body mass indices where calculated (BMI = [weight in pounds / 

(height in inches * height in inches) x 703]) and classified (< 18.5 = 

underweight, 18.5-24.9 = normal weight, 25-29.9 = overweight, > 30 = obese) 

using the height and weight data collected and reported above. All of the 

participants remained within their starting BMI classification for the duration 

of the study. 
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Norman, OK (NOR) control population metadata - Obregon-Tito et al. 

(2015) 

ID# 
Age Sex BMI 

BMI 

Class 

NO01 23 M 21.69 Norm 

NO02 37 F 20.52 Norm 

NO03 40 M 23.37 Norm 

NO04 26 M 24.16 Norm 

NO05 28 M 22.19 Norm 

NO06 28 M 23.49 Norm 

NO07 32 F 21.92 Norm 

NO08 32 F 20.01 Norm 

NO09 34 F 23.77 Norm 

NO10 41 M 26.58 Over 

NO11 26 M 23.93 Norm 

NO12 27 F 28.62 Over 

NO13 35 M 20.34 Norm 

N015 50 F 25.92 Over 

NO16 47 M 30.86 Obese 

NO19 32 F 19.3 Norm 

NO20 26 M 27.86 Over 

NO21 23 M 24.78 Norm 

NO22 26 M 30.22 Obese 

NO23 26 F 26.53 Over 

 

Table S3. Data incorporated for comparison. Data reported on the control 

participants of Obregon-Tito et al. (2015).  
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Cheyenne & Arapaho, OK (C&A) population metadata –  

Sankaranarayanan et al. (2015) 

 

 

 

 

Table S4. Data incorporated for 

comparison. Data reported on the 

C&A participants of 

Sankaranarayanan et al. (2015). 

 

 

 

 

ID# Sex Age BMI 

CA01 M 55 31 

CA02 F 55 40.8 

CA03 F 27 35 

CA04 M 30 33.1 

CA05 F 84 27.3 

CA06 F 51 44.2 

CA08 F 33 38 

CA09 F 29 48.3 

CA12 F 43 32.3 

CA13 F 20 27.3 

CA14 M 21 25.2 

CA15 F 34 28.2 

CA16 M 45 39.1 

CA17 M 39 40.3 

CA18 M 69 36.3 

CA19 F 68 40.3 

CA20 F 54 26.1 

CA21 F 65 40.7 

CA22 F 41 26.2 

CA23 F 65 24.7 

CA24 M 55 31.8 

CA25 M 65 30 

CA26 M 56 42.1 

CA27 M 55 44 

CA28 F 55 36.3 

CA29 F 45 24.9 

CA30 M 55 37.4 

CA31 M 62 30 

CA32 F 44 43.7 

CA33 F 69 35 

CA34 F 44 33.4 

CA35 F 49 28 

CA36 M 66 29.6 

CA37 F 50 32.6 

CA38 F 29 47.4 

CA39 F 29 31.9 

CA40 M 55 35.1 

CA41 F 55 36.1 
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Appendix II: Supporting Documents 
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