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“Machines take me by surprise with great frequency.” 
  

Turing, A. M., 1950. Computing machinery and intelligence. Mind, 49, 433-460.
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Abstract 

 This dissertation contains a literature review and three studies concerned with the 

development, assessment, and use of machine learning (ML) algorithms to explore 

automatically generated predictions of flash floods. The literature review explores several 

relevant issues: how flash floods are defined, the organization and structure of the flash 

flood forecasting and alerting enterprise in the U.S., proposed methods and tools for 

understanding and forecasting flash floods, the statistical underpinnings of ML, and how 

ML techniques can be applied to a wide variety of complex scientific problems, including 

those of a meteorological bent.  

Using an archive of numerical weather predictions (NWP) from the Global 

Forecast System (GFS) model and a historical archive of reports of flash floods across 

the U.S., I develop a set of machine learning models that output forecasts of the 

probability of receiving a Storm Data report of a flash flood given a certain set of 

atmospheric and hydrologic conditions as forecast by the GFS model. I explore the 

statistical characteristics of these predictions, including their skill, across various regions 

and time periods. Then I expound upon how various atmospheric fields affect the 

probability of receiving a report of a flash flood and discuss different methods for 

interpreting the results from the proposed ML models. Finally, I explore how the mooted 

system could be operationalized, by delving into two case studies of past impactful flash 

floods in the U.S., by presenting results of National Weather Service forecasters using 

and interacting with the proposed tools in a research-to-operations testbed environment, 

and by geographically extending the predictions to cover additional parts of the world’s 

landmass via a set of case studies on the European continent.  
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One ML algorithm in particular, the random forest technique, is used throughout 

the vast majority of the dissertation, because it is quite successful at incorporating large 

amounts of information in a computationally-efficient manner and because it results in 

reasonably skillful predictions. The system is largely successful at identifying flash floods 

resulting from synoptically-forced events, but struggles with isolated flash floods that 

arise as a result of weather systems largely unresolvable by the coarse resolution of a 

global NWP system. The results from this collection of studies suggest that automatic 

probabilistic predictions of flash floods are a plausible way forward in operational 

forecasting, but that future research could focus upon applying these methods to finer-

scale NWP guidance, to NWP ensembles, to new regions of the world, and to longer 

forecast lead times. 
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Chapter 1: Introduction 

 The U.S. National Weather Service (NWS) Glossary (2009) defines a “flash 

flood” with the following statement: 

A rapid and extreme flow of high water into a normally dry area, or a rapid 
water level rise in a stream or creek above a predetermined flood level, 
beginning within six hours of the causative event (e.g., intense rainfall, dam 
failure, ice jam). However, the actual time threshold may vary in different parts 
of the country. Ongoing flooding can intensify to flash flooding in cases where 
intense rainfall results in a rapid surge of rising flood waters. 

This definition is not universally accepted in the scientific literature (e.g. Gaume et al. 

2009, Braud et al. 2014), but serves as the starting point for the organization of 

operational flash flood forecasting and monitoring in the U.S. Flash floods are among the 

deadliest storm-related hazards in the United States and around the world from year-to-

year.  Ashley and Ashley (2008), analyzing NWS data, found that floods, regardless their 

cause, were the deadliest storm-related hazard in the U.S. through the decade ending in 

2006. Like other hazardous weather phenomena, the flash flood forecasting enterprise 

requires a team of highly-trained meteorologists and support personnel with disparate 

responsibilities working together in close collaboration. Though flash floods are often 

largely caused by meteorological conditions, they are not solely meteorological. Doswell 

et al. (1996) stated that flash floods arise from a combination of two factors: heavy 

rainfall and hydrologic response. Therefore, success in forecasting flash floods requires 

both meteorological and hydrologic knowledge.  

 In some countries, hydrologic and meteorological services exist in separate silos. 

In the U.S., however, hydrometeorological hazards are intended to be brought to public 

attention by one agency of the federal government – the NWS. Their forecasting and 

alerting enterprise is mostly staffed by meteorologists, with hydrologists making up a 
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smaller percentage of the overall effort. One can view this enterprise as being organized 

along the “forecast funnel” approach (Snellman 1982), where the portion of the funnel 

focused on longer spatial and temporal scales is the purview of the meteorologists at the 

NWS Weather Prediction Center (WPC), part of the National Centers for Environmental 

Prediction (NCEP). WPC conducts long-range diagnosis of automated weather forecast 

guidance, provides 0-72 h (0-3 d) forecasts of heavy or “excessive” rainfall, and 

generates 0-168 h (0-7 d) quantitative precipitation forecasts (QPF). The next, finer 

resolution portion of the forecast funnel is the responsibility of the 13 regional River 

Forecast Centers (RFCs) that combine to cover all 50 states and the U.S. territories. RFCs 

are primarily staffed by hydrologists; they mostly focus on riverine flooding with two 

important exceptions: RFCs are responsible for producing Flash Flood Guidance (FFG, 

Clark et al. 2014) and collecting and editing the data sent to NCEP for use in the Stage 

IV quantitative precipitation estimates (QPEs, Lin and Mitchell 2005). At a local level 

(and at the finest spatial and temporal scales), the flash flood alerting enterprise is 

administered by 122 NWS Weather Forecast Offices (WFOs), staffed mainly by 

meteorologists who issue specific point-based forecasts for their local areas of 

responsibility. These point forecasts include probabilities of precipitation and QPFs. 

WFO meteorologists are also responsible for issuing Flash Flood Watches (FFAs) when 

there is a 50 to 80 percent chance of flooding conditions in the next 48 hours (two days, 

Clark 2011), and more urgently, they issue flash flood warnings (FFWs) when flooding 

is “imminent or likely” over a period generally less than six hours in length but up to 12 

hours in length depending on the circumstance.  
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Clark et al. (2014) outline the history and assess the skill of the primary suite of 

tools used to issue FFWs – FFG. FFG is defined as the amount of precipitation required 

in a given time period to induce bankfull flows on small natural stream networks. When 

QPE from that same time period begins to approach or exceed the FFG value, a flash 

flood may be imminent, though Clark et al. (2014) determined that FFG is a more skillful 

tool when the QPE-to-FFG ratio is 1.25 or 1.5, instead of 1.0, depending on the region 

of the U.S. under consideration. Importantly, FFG is a monitoring tool and does not 

include any hydrologic or meteorological forecast component. Despite this noteworthy 

limitation, the lack of flash flood forecasting tools has resulted in a situation in which the 

original definitions of FFG have been stretched to accommodate new uses, including 

WPC’s products identifying the probability of QPF exceeding FFG (Barthold et al. 2015). 

Due to the advanced age of the FFG concept, its relatively low critical success index 

when used to predict NWS Storm Data flash flood reports (< 0.2, Clark et al. 2014, 

Gourley et al. 2012), recent improvements in radar-derived QPE like the National Severe 

Storms Laboratory’s (NSSL) Multi-Radar Multi-Sensor QPE project (Zhang et al. 2016), 

and advancements in high-resolution distributed hydrologic models (DHMs, Clark et al. 

2016), FFG is slated to be augmented in NWS operations by NSSL’s Flooded Locations 

and Simulated Hydrographs (FLASH) suite of forecasting and monitoring tools in 2016 

(Gourley et al. 2016). Other major research efforts in this area include the development 

and proposed implementation of the NWS’s National Water Model, formerly known as 

the Weather Research and Forecasting Model Hydrological modeling extension package 

(Gochis et al. 2014), which, like FLASH, will be capable of forcing a high-resolution 
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DHM with precipitation forecasts from convection-allowing models (Barthold et al. 

2015).  

Despite these important advancements, there has been a recent lack of research 

into how to automatically forecast combinations of hydrologic and synoptic-scale 

meteorological environments favorable for the outbreak of flash floods. In 1979, Maddox 

et al. categorized flash floods into four different categories, based upon the locations of 

the events and the environments in which they developed. Doswell et al. (1996) 

developed an “ingredients-based methodology”, based on physical understanding, for 

forecasting heavy precipitation. In the 20 years since the publication of their 

methodology, of course, the physical principles underlying the development and 

maintenance of heavy precipitation have not changed, but numerical weather prediction 

(NWP) models and the QPF generated from them has advanced substantially in 

resolution and skill. 

These advanced NWP models have dramatically enlarged the amount of 

information available to weather forecasters. Traditionally, recognizing patterns or 

relationships present in these vast amounts of data was a manual problem. The human 

brain is capable identifying patterns or relationships present in a few dozens to a few 

hundred examples arising from any sort of system. However, as the complexity of the 

system being studied increases, the number of examples any one person can aggregate 

and analyze effectively decreases, so people are trained to reduce the effective 

complexity of the system via rules-of-thumb, heuristics, dimensional reduction, and other 

techniques. Weather forecasting is an example of a highly complex system where experts 

are trained to reduce complex mathematical relationships and physical laws into simpler 
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procedures, like checklists, cookbooks, or indexes. For example, indexes are empirically-

derived mathematical relationships that might relate several meteorological variables to 

the likelihood of a particular weather outcome (Doswell and Schultz 2006). Typically, a 

meteorologist uses some combination of physical understanding, training/experience, 

and empirical relationships (indexes, model output statistics [MOS], and others) to 

forecast the weather.  

Computers have often been used to generate the statistical relationships necessary 

to come up with forecast indexes, MOS, and other tools, by directly programming the 

empirical relationships uncovered via analysis of several dozen or a few hundred cases. 

As weather forecasting matured, computer scientists were independently developing a 

set of techniques known as “machine learning” (ML), which is a subset of the broader 

field of artificial intelligence. Rather that requiring a computer be directly programmed 

with a checklist or a set of rules-of-thumb, ML algorithms “learn” and evolve over time, 

by iterating through vast amounts of data thousands, millions, or hundreds of millions of 

times, often identifying patterns that elude the traditional methods outlined above 

(Kohavi and Provost 1998). In other words, physical understanding guides the collection 

of data used in the ML context, but ML is often capable of identifying patterns and 

relationships that would not have been readibly identifiable solely via physical principles.  

ML tasks can be either “supervised” or “unsupervised”; in the former, the 

dependent attribute, or label, is provided as part of the dataset fed to the algorithm, while 

in the latter, the label is not specified as part of the dataset (Kohavi and Provost 1998). 

When the ML algorithm is explicitly told what it is supposed to predict, the learning is 

supervised. When the ML algorithm is allowed to cluster cases drawn from the data into 
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whatever categories naturally arise from the data, the learning is unsupervised. ML 

algorithms themselves can be categorized into many different types, including support 

vector machines (Cortes and Vapnik 1995), artificial neural networks (Rojas 1996, 

MacKay 2005), and classification and regression trees (CART, Breiman et al. 1984, 

Quinlan 1986).  

Quinlan (1986) noted that “expert systems” are in high demand for completing 

complex tasks in modern society. In what he terms the “interview approach”, which 

humankind has used for nearly all of history, “domain specialists” and “knowledge 

engineers” work together to develop explicit rules outlining and defining the knowledge 

available about the operation of a particular expert system; such a method may result in 

“a few rules per man day”. By contrast, computers, and thus, ML techniques, enable the 

rapid elucidation of the thousands of rules often required to develop new expert systems. 

Weather forecasting certainly qualifies as an expert system and a complex task, one that 

requires thousands of rules (or more) to complete. In fact, one of Quinlan’s (1986) 

examples of a classification task is categorizing the type of weather occurring on a certain 

day of the week. Similarly, Brieman et al. (1984), who first came up with the CART 

acronym for classification and regression trees, used the prediction of ozone risk days in 

the Los Angeles basin as an example system from which CARTs could be useful. 

Although neither of these authors are atmospheric scientists, they recognized early on 

that meteorology is an extremely complex and data-dense field where ML has the 

potential to provide both additional skill in the forecasting process and physical insight 

into the relationships between meteorological data and weather outcomes.  
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More recently, ML techniques have been applied to a broad range of 

meteorological problems, including but not limited to convective initiation (Mecikalski 

et al. 2015), daily solar energy production (Martin et al. 2016), extreme rainfall (Nayak 

and Ghosh 2013), storm-scale ensemble probabilistic QPF (Gagne et al. 2014), mesoscale 

convective system initiation (Ahijevych 2016), aircraft turbulence (Williams 2014), and 

tornado development from mesocyclones (Trafalis et al. 2014).  

The purpose of this study is to apply, for the first time, ML techniques to a large 

archive of NWP model output and produce automatic optimized probabilistic forecasts 

of flash floods at what can broadly be considered the FFA scale. From this application, I 

hypothesize the following: 

1. ML techniques based upon NWP data will result in forecasts of flash floods 

with more skill than methods that rely on a single NWP model field to predict 

flash floods. These ML techniques can be calibrated or otherwise adjusted to 

generate reliable probabilistic forecasts of flash floods. 

2. ML techniques provide physical insight into the atmospheric environments, 

as forecast by operational NWP systems, associated with flash floods across 

regions and over long periods of time. These physical insights build upon 

our current understanding, as expressed in the scientific literature, of flash 

floods.  

3. ML techniques can be applied to the flash flood forecasting problem in a 

quasi-operational context, where the ML forecasts can be used as another 

piece of evidence by human forecasters in the Flash Flood Watch issuance 
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process. They can also be used to introduce additional automation into the 

forecasting and alerting process, particularly in applications outside the U.S.  

Chapter 2 is a survey of different ML algorithms, the use of NWP in weather 

forecasting, and the current state of the flash flood forecasting problem in the U.S. 

Chapter 3 describes a study applying a type of ML – the random forest – to an archive of 

outputs from the Global Forecast System NWP model over the U.S. to probabilistically 

predict reports of flash floods. Chapter 4 presents the results of a series of tests exploring 

how atmospheric variables interact with one another to contribute to the development of 

flash floods, and additionally discusses how ML techniques can improve understanding 

of these interactions. Chapter 5 is concerned with the operationalization (and implications 

thereof) of automated ML predictions of flash floods; it contains two case studies for 

which the system proposed in Chapter 3 is applied – one from May 2013 and one from 

May 2015. Chapter 5 additionally conveys some early results from research-to-

operations activities where operational forecasters used the proposed system in a testbed 

setting and discusses the how the proposed system might be expanded to cover the globe. 

Finally, Chapter 6 is devoted to conclusions and recommendations arising from this work 

as well as a discussion of how the studies presented herein fit within the history and future 

of automation in weather forecasting.  
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Chapter 2: Literature Review 

Machine Learning 

 The phrase “artificial intelligence” (AI) was first used in 1956; the earliest and 

most basic definition of the idea was that machines would be trained to solve problems 

that had, until then, been solved by in the human brain (Standage 2016). Quinlan (1986) 

identifies machine learning (ML) as a “central research area” within artificial 

intelligence, because if one is to achieve true AI, it stands to reason that learning must be 

an integral part of that intelligence, just as learning is an integral part of natural 

intelligence (Weiner 1961). Although authorities disagree exactly on how to define 

“learning,” a concrete way of doing so is to consider learning as a process of acquiring 

knowledge that the learner can use to develop a set of rules (Quinlan 1986). The other 

driving force behind ML’s centrality to the study and development of AI lies in ML’s 

easy applicability to real-world problems. As our world grows ever more populated by 

tremendously complicated systems, vast reams of data pour forth as a result. The result, 

the Information Revolution, is the successor to the earlier Industrial Revolution (Veneris 

1990). These data are generated at rates so rapid and in quantities so large that traditional 

manual interpretations of them by the human brain are precluded. Computers, however, 

are well-suited for this because they are designed to rapidly complete repetitive tasks, 

including learning: developing sets of rules based upon big datasets.  

ML algorithms can process large archives of data, identify useful patterns, and 

develop rules for identifying these patterns in an automatic and optimized way. An 

archive of data is required; these data are split into two parts: training and testing. Figure 

1 is a flowsheet describing the general data flow required to develop a ML model. 



 
 

10 

 
Figure 1. General flowsheet of ML process  
 

The training data consist of vectors that contain some number of candidate 

predictor variables (or independent variables) and a predictand (or the dependent 

variable). The ML algorithm analyzes the training data and develops a mathematical 

model for predicting the dependent variable given a vector of candidate predictor 

variables. Then the ability of the mathematical model developed by the ML algorithm to 

skillfully predict the dependent variable can be assessed using the testing data, by running 

vectors of predictor variables through the model and comparing the ML predictions with 

the actual values of the predictands in the testing data.  

ML methods are typically used to solve problems in one of two ways: 

categorization or regression. Categorization refers to a process in which the output of the 
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ML technique is a label; the algorithm develops rules from the data fed to it and then uses 

these rules to label individual records or instances in the dataset as belonging to a 

particular category. These categories are of a finite number and are separate from one 

another in some way. Regression proceeds similarly, but the output from the ML model 

is instead an estimate of some continuous response variable. One other important 

distinction within ML is that between supervised and unsupervised learning. Supervised 

learning encompasses those tasks in which the classifier (or regressor) is given the output 

categories (or values of the response variable) that correspond with vectors of predictor 

data. In unsupervised learning, the classifier is not given the output categories and instead 

collects the various input vectors into separate categories that arise as the data are 

analyzed by the algorithm (Bishop 2007, Kohavi and Provost 1998).  

Archer and Kimes (2008) outline the characteristics of problems for which ML is 

often employed. When the number of possible predictor variables is large or when 

candidate predictor variables are not independent from one another, ML is superior to 

traditional predictive approaches, like logistic regression (LR) or multiple linear 

regression. A wide variety of algorithms are considered machine learners, but they all 

share two goals: making accurate predictions and providing insight into how a particular 

prediction arises from the classifier. Although most ML algorithms are widely applicable 

across disciplines and problems, any method has to be tested for applicability, by fitting 

a model to a set of data and then evaluating its skill in solving that particular problem 

(McDonald et al. 2014). Selecting the appropriate method therefore requires answering 

two questions: Can the classifier make accurate predictions given the available training 

and testing data? Does the classifier provide new insight into the problem?  
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Random Forests 

 First proposed by Breiman (2001), random forests (RFs) are a ML approach from 

the classification and regression tree family. An RF is a collection of decision tree 

predictors grown via bootstrap samples from a training data set “such that each tree 

depends on the values of a random vector sampled independently and with the same 

distribution for all trees in the forest” (Breiman 2001). RFs have become popular for 

classification and regression tasks and have been used to attempt solutions to a wide 

range of scientific and engineering problems. Ahijevych et al. (2016) explain that each 

tree consists of a series of nodes (or “splits”), each of which is followed by two child 

branches. At the end of each branch is another node with two child branches extending 

from each node, and so on, as shown in Figure 2.  

A randomly sampled set of vectors of predictor data and their corresponding 

predictands (or, a set of “cases”) from the training dataset start at the base of a tree within 

the forest. Other trees begin with other randomly sampled sets of cases from the training 

dataset. Then one predictor variable is selected from a random subsample (with 

replacement, so that the subsample of predictors is available for potential use at any other 

node in the tree) of all the candidate predictor variables. The selected predictor variable 

is the one that results in the purest (or sharpest) split between all the predictands from the 

subsample. For example, in a binary classification problem, where the end goal of the 

forest (and thus, each of the individual trees) is to decide if a case should be labeled “yes” 

or “no”, the RF algorithm will preferentially select that individual predictor variable that 

results in one child branch of a node having as many “yes” votes as possible, leaving as 

many “no” votes as possible at the end of the other child branch. 



 
 

13 

 
Figure 2. Schematic of a decision tree within an RF 
 

When the selected predictor at a node results in a perfect split (i.e., all of the cases 

at that node are labeled “yes” or “no”), the tree stops growing from that node. Each node 

consists of a simple rule of the following form: when the data reach node n, follow branch 

A if the predictor X used at that node is greater than some threshold and follow branch B 

if the predictor X used at that node is less than or equal to the same threshold. At the end 

of the growth process, each tree in the forest will be different, because random sampling 

is involved in determining which cases from the overall training dataset will be used to 

grow each tree and random sampling is used to determining from what subset of 

predictors the splitter variable at each node will be chosen. Although each individual tree 

could be overfit to the particular subsample of cases used to grow that tree, the 
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randomness in the fitting process results in trees that are only weakly correlated with one 

another; thus, RFs are relatively unsusceptible to overfitting (Touw et al. 2012).  

To summarize the fitting process, each tree provides an “expert” opinion about a 

particular case. In a binary classification problem, given a particular case, some trees will 

vote to label the case “yes” and others will vote to label it “no”. This difference of opinion 

arises because of the differences in the growth process of each tree. The point of both 

random subsampling steps in the process is to reduce the “statistical dependence” of each 

tree upon its colleagues in the RF (Williams 2009).  

In the fitting process, the cases not initially used in growing a given tree are 

retained as “out-of-bag” (OOB) examples; these are used to internally determine the 

importance of each predictor variable (Ahijevych et al. 2016). Williams (2009) explains 

that this “importance” can be determined by calculating the “permutation accuracy 

importance” (also called the “mean decrease in accuracy” or MDA). This metric is 

calculated by randomly altering the value of that predictor variable and then measuring 

how the error in the final predictions changes as a result. If altering the value of a 

particular predictor variable results in a large increase in the error of the predictions made 

upon data from the OOB cases, that implies that predictor variable is important.   

In addition to the MDA, other metrics arising from the RF process can be used to 

quantify variable importance. Touw et al. (2012) describe the Gini importance of a 

variable, which is defined as the “sum of the Gini impurity decrease of every node in the 

forest for which” that variable was used as the splitter. The Gini impurity is defined as 

the probability that a randomly selected label from node 1 (in this case, “yes” or “no”) 

would be incorrectly guessed by an outside observer. Therefore, if node 1 starts with an 
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equal mix of “yes” and “no” cases, the Gini impurity is high, because the probability of 

picking a case and guessing the wrong label of that case is high. If predictor X leads to 

nodes 2 and 3, and node 2 is mostly “yes” and node 3 is mostly “no”, the Gini impurity 

is low, because now the probability of picking a random case from either node 2 or 3 and 

guessing its label incorrectly is low. When the Gini importance of a variable is 

normalized across all the nodes of all the trees in the forest, it is known as the mean 

decrease in Gini impurity (MDG). For example, collect all the nodes in the forest for 

which predictor X was the splitter. Now, at each of these nodes, calculate both the Gini 

impurity at the node itself and the Gini impurity after the cases have been split by 

predictor X (i.e., at the end of both of the child branches). If the Gini impurity decrease 

across all the nodes is large, that implies that predictor X does a good job at discriminating 

between “yes” and “no” cases and therefore is an important predictor. If the Gini impurity 

does not substantially decrease as a result of predictor X it implies that X is not an 

important predictor. Tan et al. (2005) identify other metrics, including information gain 

and entropy, that behave similarly to MDG. 

RFs have several other appealing features that recommend their use. They are 

conceptually easier to explain to potential users when compared to competing methods 

like support vector machines (SVMs), as decision trees are a common and easily-

understood human-readable way of organizing rules and criteria into a systematic 

decision-making framework. RFs start from the decision tree concept, fix some of its 

undesirable characteristics (like overfitting), and make it suitable for use with large 

amounts of data that would otherwise preclude the use of manually-generated decision 

trees. Ahijevych et al. (2016) note that RFs result in empirical models that can represent 
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many sorts of mathematical relationships; on the other hand, prediction techniques like 

linear regression require that the predictor and predictand be linearly-related. In an RF, 

the trees can be allowed to grow out to points that result in entirely pure terminal nodes, 

or “leaves” (Touw et al. 2012). Traditional decision trees must be “pruned”, rather than 

allowed to grow to their full extent. Recall from the explanation above that nodes 

continue to spawn new branches until the end of the branch contains cases where all 

predictands are labeled “yes” or “no”. One can use these fully-extended trees to classify 

cases because the final result of the forest is an average from an ensemble of individual 

weakly-correlated trees.  

Another major advantage of RFs is the inherent cross-validation process that 

arises as a result of storing OOB cases during the tree growth process. These OOB cases 

are automatically used to determine the error rate (the OOB error) expected when all 

cases in the training set, and not just those selected for the tree growth process, are 

classified. In other words, as Touw et al. (2012) point out, each tree inherently possesses 

a training data set (the cases selected for growing the tree) and a test data set (the OOB 

cases). Individual decision trees, because of their tendency to overfit data, are very 

susceptible to changes in the training data. If the training data do not adequately 

encompass the entire range of possible outcomes one hopes to predict, an individual 

decision tree will not be capable of making competent predictions (Gagne et al. 2014). 

However, RFs smooth out the large error variance one would observe when using 

individual decision trees; this in turn means the results from the forest are more robust if 

the training set changes. Finally, because randomness is involved in selecting the 

variables to be used at a given node, the RF method is capable of identifying interactions 
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between variables that would elude other methods (Gagne et al. 2014, Ahijevych et al. 

2016). The RF method also automatically removes any bias that might be present in a 

particular predictor X and extracts the information needed from that predictor to produce 

the best possible predictions (Ahijevych et al. 2016).  

RFs are also untroubled by multicollinearity between explanatory variables or by 

the inclusion of unimportant explanatory variables. Because predictor variables are 

selected for use at each node of a tree based upon which of the available variables results 

in the best split between labels at the subsequent nodes, some variables will never (or 

rarely) be used in the process of growing a decision tree (Mecikalski et al. 2015). When 

there are duplicative predictors present in a training set, the RF method of selecting 

splitter variables from a random subset of all the predictors outperforms other ML 

techniques (Archer and Kimes 2008).  

When compared to other ML techniques, RFs have fewer parameters and require 

less “tuning” to achieve results comparable to those achieved with other ML classifiers 

that require more tuning (Touw et al. 2012). The “tunable” parameters in an RF consist 

of mtry, which refers to the number of predictors in the random subsample available for 

splitting at each node of each tree (Touw et al. 2012, Breiman 2001), ntree, the number 

of trees in the forest (Tatsumi et al. 2015), and what this study will refer to as dtree, the 

maximum depth (or height) a tree is allowed to reach. The size of individual trees in the 

forest can also be regulated by limiting the number of total splits in a tree or by setting 

the number of cases a node must exceed in order to be allowed to split (Touw et al. 2012). 

Tatsumi et al. (2015) cite dueling studies on the topic of mtry: one explains that reducing 

mtry simultaneously weakens individual trees and improves the forest by reducing the 
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correlation between trees, while another states that increasing mtry results in better 

predictions and allows developers to reduce the number of predictors fed to the RF 

algorithm. Tatsumi et al. (2015) conclude that, given the disagreement in the literature, 

mtry is a parameter that should be optimized for the particular system to which one is 

applying an RF. Deeper trees result in less biased predictions, as each tree is more closely 

fit to the training dataset. However, because each individual tree is now a much more 

complex model, the variance between trees is increased. Of course, a greater number of 

trees (increased ntree) acts to reduce this variance, because a greater number of “votes” 

(trees) contribute to each prediction and so one or two highly variable votes have 

relatively little impact on the final outcome. Thus a trade-off exists between bias and 

variance, and given a fixed amount of time and computing power, one must balance the 

characteristics of the deep-but-fewer treed forest with those of the shallower-but-many 

treed forest. The type of forest that results in the desired predictive skill is the forest with 

the “correct” values of ntree and dtree for that application. Finally, note that, if 

computing power and time are not major concerns, trees can be grown such that all 

terminal nodes (leaves) are 100% pure, as explained in the text associated with Figure 2. 

In that case, the only RF parameters left to tune are ntree and mtry; however, increasing 

ntree under even those conditions will eventually lead to some point where the variance 

is minimized and the prediction accuracy has been optimized.    

 Prediction models based upon RFs can be developed relatively quickly compared 

to other ML techniques. Firstly, the requirements imposed upon the developer or 

programmer of the forest are relatively light: as shown, the tunable parameters are few 

in number and governed by simple rules. The computational requirements of developing 
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an RF are also relatively light (Trafalis et al. 2014), which makes RFs a suitable choice 

for problems where the testing dataset is large (Hardman et al. 2013). Touw et al. (2012) 

state that well-tuned SVMs outperform RFs for certain applications, but that RFs 

compare favorably to SVMs because of their ease of use and fundamental simplicity. For 

all these reasons, those fields in which large amounts of data are frequently generated 

tend to be those in which RFs (but also, many other ML techniques) are often employed.  

Example Uses of Machine Learning  

As the rate of growth of computer processing power, memory, and storage has 

accelerated over the last few decades, ML has been applied to many new problems. Large 

numbers of disciplines now use modern laboratory techniques, the logical outcome of 

which is vast amounts of data. The biological and life sciences are perhaps the most 

canonical example of this trend, but in the physical sciences physics and astronomy are 

disciplines where the same is true. In the earth sciences, remote sensing and meteorology 

fall into this category. A review of the extant scientific literature bears this assertion out: 

in particular, bioinformatics researchers and engineers were among the first to adopt RF 

techniques for answering questions in their fields, but more recently earth scientists have 

joined them among the most avid ML and RF users.  

In 2007, Archer and Kimes concluded that RFs are useful in microarray studies 

where researchers attempt to predict the phenotype of an organism based on a large 

number of candidate genes. In a review article from 2012, Touw et al. identified 58 

representative studies from research areas including genomics, metabolomics, 

proteomics, and transcriptomics (often referred to as the “-omics”) where RFs were 

successfully applied. They determined that RFs represent an attractive and versatile 

solution to classification and regression problems in data-intensive sciences like 
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bioinformatics and its various “-omics” sub-fields. Behavioral scientists have also 

applied RFs to their work. Hardman et al. (2013) used RFs to predict the progression of 

college and university students in the U.K., while noting that RFs were originally adopted 

most enthusiastically in the biological sciences. McDonald et al. (2014) used RFs to 

predict how steering wheel angles can be used to predict drowsiness-related lane 

departures, and found comparable or better results, using RFs, to the previous “gold 

standard” prediction model used in that discipline. Electrical grid managers are at once 

engineers and behavioral scientists of a sort, as they must study, understand, and react to 

changing aggregate electrical demand that arises as a result of the individual actions and 

behaviors of millions of customers. In this vein, Lahouar and Slama (2015), used RFs to 

predict peak electrical demand in Tunisia with a day’s worth of lead time. Their method 

is roughly analogous to a persistence forecast in meteorology; the RF is fed information 

about the previous day’s morning and evening peak demands along with total load 

information from 24 and 48 hours prior to the time the next day’s forecast is generated. 

Along with information about the time of year and the minimum and maximum forecast 

temperatures, they were able to generate peak load forecasts with overall mean absolute 

percentage error of 2.24%. What makes Lahouar and Slama’s approach interesting is 

their use of additional decision tree logic outside the RF process to constrain the growth 

and development of the decision trees in the RF. In other words, to improve the prediction 

of rare demand values that arise during holidays, for example, the authors employ a rule 

that forces that particular day’s training data for the RF to come from the previous 

holiday’s load information, instead of the previous day’s load information. This “expert 

input selection” plays to the strength of the RF process by allowing it to take care of 
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routine events represented by vast tranches of data in the training set and simultaneously 

allowing an outside expert (in this case, an engineer) to supplant the forest’s predictions 

with knowledge not adequately represented in the training set. In the U.S. state of 

Oklahoma, gradient boosted decision trees and SVMs have been used to predict daily 

solar energy production (Martin et al. 2016). 

Of course, vast amounts of data are also generated in the earth sciences. Space-

borne remote sensing platforms have contributed heavily to this state of affairs. 

Geographers, agronomists, soil scientists, and other earth scientists have adopted RFs in 

an effort to more effectively predict and map important quantities. In British Columbia, 

Canada, RFs were used to effectively map various classes of soil material with minimal 

expense and in situ effort while maintaining accuracy that compared quite favorably with 

that achieved using traditional in-place soil surveying techniques (Heung et al. 2014). 

Gambill et al. (2016) were able to use RFs to accurately determine Unified Soil 

Classification System (USCS) soil type codes, based upon U.S. Department of 

Agriculture (USDA) soil classifications, at a range of military installations widely 

scattered across the U.S. Specifically, the authors noted that predictions from this RF 

were significantly superior to previous “crosswalk” methods where USDA soil classes 

are directly converted to USCS soil type codes via a look-up table.  

RFs have also proven quite useful in land-use classification. In a region of 

homogenous land use in Peru, Tatsumi et al. (2015) were able to classify Landsat pixels 

into one of eight crop classes using the RF algorithm. Across the forested regions of 

northern Minnesota, Corcoran et al. (2013) used RFs to successfully 1) classify land into 

upland, water, and wetland areas and 2) categorize wetland pixels into different types. 
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The authors were also able to use RF variable importance measures to recommend how 

and when to employ remote sensing platforms across seasons and hydrologic regimes to 

achieve the best classification accuracy for the smallest cost. In southwest Oklahoma, 

Yan and de Beurs (2016) used the RF algorithm to classify areas dominated by sparsely 

vegetated cover, winter wheat cover, C3 carbon fixating grasses, and C4 carbon fixating 

grasses. Ireland et al. (2015) used ML techniques to identify flooded areas in Landsat 

imagery over the Mediterranean.  

Of course, if RFs can be used to classify regions into wetlands, uplands, and 

water, or by the type of crop grown there, or by the type of grass present, it stands to 

reason that RFs could also be used to predict the risk of inundation in an area based on 

remote sensing datasets. Wang et al. (2015) did this for a river basin in the Guangdong 

Province of the People’s Republic of China and showed that RFs were reasonably 

successful at identifying those locations within the river basin most subject to flood 

hazard risk, based on comparisons with reports of flood impacts from historical events. 

In the course of this assessment, they hit upon two critical characteristics of the RF 

method: its utility in solving non-linear problems and the ability of the method to provide 

physical insights about a phenomenon via internal metrics of variable importance. They 

also provide a framework by which RFs can be assessed for use in a particular prediction 

problem. First, the RF must be applied to the problem. Next, one must demonstrate that 

RF is an appropriate way to solve the proposed problem. Finally, one must assess the 

success of the RF output in solving the problem. These three points of the framework can 

easily be extended to any extant ML technique, as long as the second point, that the 

method is appropriate for the problem at hand, is fulfilled.  
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Scientists’ understanding of other remote sensing topics has been improved by 

the use of RFs. Hutengs and Vohland (2016) used RFs to improve the resolution of land 

surface temperature grids from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) from ~1 km to ~250 m. Tested over the eastern Mediterranean region, they 

found that fitting an RF model to data derived from the Shuttle Radar Topography 

Mission’s digital elevation model, MODIS land cover products, and MODIS surface 

reflectance products resulted in accuracy improvements over the typical methods used to 

downscale MODIS land surface temperatures to higher resolutions. Rather than use an 

RF to directly model snow depth, Tinkham et al. (2014) took an interesting approach and 

collected LiDAR (Light Detection and Ranging) surveys of snow depth over 

southwestern Idaho. They then used an RF to model the spatial distribution of the 

LiDAR-introduced snow depth error. The authors discovered that, relative to the LiDAR-

introduced errors, the RF modeling approach introduced little additional error to the snow 

depth estimation process.   

In problems situated more firmly in the realm of atmospheric sciences, ML 

techniques, including RFs, have taken longer to adopt than in other fields but have 

nonetheless been successful in a wide variety of prediction problems, from severe 

weather to solar energy production to initiation and maintenance of mesoscale convective 

systems (MCS). Sun et al. (2016) note that predicting solar radiation across regions is 

critically important to constituencies in the business of generating electricity from solar 

energy. However, extensive air pollution in some regions of the world makes prediction 

of solar radiation (and thus, solar energy potential) a difficult problem. Sun and 

colleagues determined that RF-derived predictions of solar radiation that included an air 
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pollution index as a predictor outperformed all the previously-published empirical solar 

radiation models they tested at all locations. In a similar vein, Yu et al. (2016) used the 

RF algorithm to predict the air quality of urban areas. They found that RFs were more 

successful at classifying air pollution in Shenyang, China, than any of the other ML or 

empirical methods tried. 

One example demonstrates the sorts of advantages ML has over physically-based 

alternative prediction methods. Nayak and Ghosh (2013) used SVMs to predict extreme 

rainfall over Mumbai, India, with lead times between six and 48 hours. They describe the 

“fingerprinting” method for identifying the atmospheric conditions for a location that 

have led to the sort of event one hopes to predict; this is the “fingerprint” of the hazard 

(Root et al. 2007). Then standardized anomalies in atmospheric fields are calculated and 

clustered in an effort to determine how closely a particular set of conditions matches the 

fingerprint that was derived from past events. However, Nayak and Ghosh (2013) note 

that this method suffers from serious limitations in comparison to ML techniques. The 

fingerprint does not consider false alarms, because it is derived only from those archived 

atmospheric conditions from which the hazard developed, and only one fingerprint is 

associated with the hazard, which is less than helpful in situations where the hazard may 

arise under many different combinations of atmospheric conditions. However, although 

SVMs improved upon the fingerprinting method, the authors found that the ML method 

still resulted in too many false alarms. The Root el al. (2007) method also considers only 

the “most important anomaly fields”; ML methods are designed to consider as much data 

as possible in a comprehensive, optimal way. 
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Random Forests in Meteorology   

 The scientific literature now contains a wealth of examples of ML being used to 

enhance our ability to forecast hazardous weather. Nearly all types of hazardous weather 

have been subject to this treatment, but in particular, RFs have been used to forecast 

heavy rainfall, tornadoes, aviation turbulence, convective initiation and more. Trafalis et 

al. (2014) applied RFs and several other ML classifiers to a dataset of mesocyclones in 

an effort to predict which mesocyclones go on to produce tornadoes. Although they found 

an SVM to be the most skillful classifier for their particular problem, the training dataset 

described in Trafalis et al. (2014) consists of 5,409 records, a quantity of data tiny in 

comparison to other ML studies, which may involve millions or tens of millions of 

records. They do note that all the algorithms tested, including RFs, performed similarly, 

and that RFs have “good accuracy and computational efficiency,” which is of course a 

greater concern in studies dealing with orders of magnitude more data. Of particular 

concern to Trafalis et al. (2014) was the unbalanced nature of their dataset: only 6.7% of 

records were labeled in the minority class with 93.3% comprising the majority class; 

despite the rarity of the minority class (i.e., storms that produced tornadoes), ML methods 

resulted in skillful predictions.  

Williams (2014) used RFs to develop an operational convectively-induced 

turbulence prediction system. He noted that operational concerns are critical in 

determining what sorts of predictor variables should or can be considered for use in the 

ML context. Working closely with the U.S. National Weather Service’s (NWS) Aviation 

Weather Center (AWC) dictates that all predictors be available quickly, reliability, and 

freely to AWC personnel. Like Trafalis et al. (2014), Williams is required to handle an 

unbalanced dataset, where reportable aircraft turbulence occurred in either 0.25% or 
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1.33% of all available records, depending on the airline and level of the atmosphere being 

considered. Williams also hypothesized that RFs are able to unlock relationships between 

non-linearly correlated predictor variables that elude more traditional analysis methods. 

Perhaps most importantly, however, Williams notes that techniques like the RF become 

more essential year by year as the data produced in meteorology and other data intensive 

sciences rapidly grow; where these huge quantities of data make, for example, traditional 

manually-created decision trees a hopeless endeavor, ML techniques hold the promise of 

identifying new insights and optimizing forecast skill. 

 Rain and thunderstorms have been the focus of several scientific papers 

combining meteorology and ML. Ahijevych et al. (2016) developed an RF that provides 

two-hour forecasts of the probability of MCS initiation. They identify current 

developments in meteorological applications of ML as the latest iteration of a lengthy 

evolution of statistical models and weather forecasting that started in the early 1970s with 

the first forays in model output statistics (MOS). The authors demonstrate that the RF 

predictions of MCS initiation beat climatology, and conclude that nowcasting impactful 

events may be the area of meteorology best suited for the deployment of RFs and similar 

ML methods at this time. Along those lines, Mecikalski et al. (2015) used RFs and LR to 

produce probabilistic forecasts of 0-1h convective initiation (CI) based on satellite data 

and NWP output. They found that including numerical weather prediction (NWP) data 

in a CI algorithm (using either LR or RFs) resulted in better performance than in the 

operational satellite-only alternative. They also found that the performance difference 

between the two statistical learning methods was small and probably not significant, 

although for the cases tested LR slightly outperformed RFs. However, their results 
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showed that the RF method was able to successfully use more predictors than LR without 

a concomitant decrease in performance. Mecikalski et al. (2015) observe that LR’s slight 

advantage over RF was unexpected, given the number of studies that have shown RF’s 

suitability (and, indeed, superiority to LR) in complex meteorological nowcasting and 

forecasting problems. They suggest that the predictor variables in the study are 

monotonically associated with the probability of the predictand (CI), a situation in which 

LR can excel. They also suggest that the available training dataset for the study cover too 

small of a geographical region, such that the RF was unable to fully exploit the possible 

parameter space governing the true probability of CI in a wide range of conditions.  

 The advent of storm-scale ensemble NWP has resulted in the generation of vast 

amounts of fine-scale quantitative precipitation forecasts (QPFs). Gagne et al. (2014) 

used ML techniques to make sense of this data by improving upon deterministic QPFs 

from individual NWP ensemble members. They found that RFs, using deterministic 

ensemble member QPFs and environmental NWP data, improved the skill of 

precipitation forecasts (forecasters that rain would occur or that heavy rain would occur) 

compared to LR or uncalibrated ensemble probabilistic QPF. They note that reliance on 

just NWP data is a risk, because if all the ensemble members are yielding bad predictions 

there will be no useful information for the ML methods to key in upon. It is also possible 

that the RF will not be able to generalize its predictions to all possible conditions if the 

training dataset that grew the RF was too small or restricted; this is especially concerning 

when rarer heavy precipitation events are anticipated. Because the training period was 

relatively short, there was not enough data to fit locally-specific RF models, so the 

authors employed a regional approach and divided the contiguous U.S. (CONUS) into 
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three parts, fitting a separate RF and separate LR for each region. Despite these 

limitations, Gagne et al. (2014) point out the most important characteristic of any ML 

method: it will optimally use all the information available to it. With traditional 

forecasting methods, this is far from true in the overwhelming majority of cases. 

Numerical Weather Prediction 

 NWP is a two-step mathematical process by which future states of Earth’s 

atmosphere are predicted via complex numerical models (Lynch 2008). The diagnostic 

step involves using available observations to characterize the atmosphere as accurately 

as possible at the current time, and the prognostic step involves determining changes in 

this state over time using the laws of motion and the primitive equations (Bjerknes 1904 

in Lynch 2008). Today, NWP is the foundation of the entire weather forecast and altering 

enterprise. Because NWP models are so complex, especially those that attempt to predict 

the state of the atmosphere across the entire globe, they have been primarily funded, 

developed, and implemented by the governments of (or combinations of the governments 

of) wealthy developed nations, though large private sector entities are beginning to 

develop and operationalize their own global NWP systems. Global NWP models in wide 

operational use include those operated by the United Kingdom Met Office, Environment 

Canada, the Japan Meteorological Agency, the European Centre for Medium-Range 

Weather Forecasts (ECMWF), and the National Centers for Environmental Prediction 

(NCEP), part of the U.S. NWS.  

The Global Forecast System 

 Since 1980, the Global Forecast System (GFS) has, as its name implies, provided 

global forecasts of the state of earth’s atmosphere (NCEP Central Operations 2016a). As 

a product of the U.S. federal government, all GFS outputs are part of the public domain 
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and thus are readily available and redistributable for any purpose. The GFS produces 

forecasts out to 16 days (384 hours) of lead time by assimilating millions of observations 

into the system every six hours; new cycles begin at 0000, 0600, 1200, and 1800 UTC 

each day. From analysis time to forecast hour 240 (day 10), the model runs at a horizontal 

resolution of 13 km at the equator, and from forecast hour 240 to forecast hour 384 the 

model’s horizontal resolution is 55 km at the equator. The GFS has 64 vertical levels, 

which range from the land surface to 0.27 hPa; in addition, a four-layer land surface 

model is part of the system (Global Climate & Weather Modeling Branch 2016). The 

GFS has 1-h temporal resolution from analysis time to forecast hour 120 (day five), 3-h 

from forecast hour 120 to 240, and 12-h from hour 240 to 384 (McClung 2016).  

Data distributed to end users are, as of July 2016, post-processed to a horizontal 

resolution of 0.25 degrees (~25 km at the equator) from analysis time to forecast hour 

120. Before 1 May 2016, GFS data were available at a maximum horizontal resolution 

of 0.5 degrees (~50 km), and before January 2007, the maximum available resolution 

was 1.0 degrees (~100 km). Currently, post-processing reduces the number of vertical 

levels presented to the end user to 46 (NCEP Central Operations 2016a). When all the 

possible vertical levels and model outputs are accounted for, each run of the GFS results 

in 283 output fields at analysis time and 366 output fields at each forecast hour (NCEP 

Central Operations 2016b). Although convective and total QPFs are a part of these output 

fields, the GFS does not produce any direct forecasts of flash floods. 

Because computing power and forecast skill are positively correlated with one 

another (Lynch 2008), upgrades to the GFS are a semi-regular occurrence and occur, on 

average, about once every other year (NCEP Central Operations 2016a). If more minor 
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changes to model components are included in this count, modifications occur once every 

few months, on average (NCEP Central Operations 2016c). GFS code changes and 

upgrades to the model physics, parameterizations, or resolution potentially affect the 

statistical properties of the model output fields, and this, in turn, has implications for ML 

models based upon those model output fields and their respective statistical 

characteristics.  

Understanding Flash Floods 

 The first step in forecasting flash floods is understanding them, and the first step 

in understanding them requires defining them. As stated in the introduction to this work, 

the NWS Glossary (2009) defines a “flash flood” with the following statement: 

A rapid and extreme flow of high water into a normally dry area, or a rapid 
water level rise in a stream or creek above a predetermined flood level, 
beginning within six hours of the causative event (e.g., intense rainfall, dam 
failure, ice jam). However, the actual time threshold may vary in different parts 
of the country. Ongoing flooding can intensify to flash flooding in cases where 
intense rainfall results in a rapid surge of rising flood waters. 

In general, defining flash floods is not a trivial problem; to do so requires setting an 

objective threshold dividing riverine floods from flash floods on the basis of 

concentration time, a term that refers to the amount of time required for water to reach 

the watershed outlet from the point in the watershed most distant from the outlet. In turn, 

concentration time is related to the contributing area of the watershed, but dozens of 

complicating factors prevent hydrologists from reducing concentration time and 

watershed area into a single relationship (Woodward 2010), though some studies have 

attempted this. For example, Gaume et al. (2009), when compiling a database of flash 

floods covering several European regions, defined “flash floods” as “extreme flood 

events induced by severe stationary storms”. Following this definition, they determined 
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that flash floods should be considered to occur in catchments less than 500 km2 in area 

and are the result of storms lasting less than 24 hours. Braud et al. (2014) modified the 

definition of Gaume et al. (2009) to include a sliding scale relating the time it takes the 

hydrograph to reach a peak to the size of the affected watershed. On their sliding scale, 

the rise time for a 1000 km2 catchment should be less than 24 hours, while the rise time 

for catchments less than 100 km2 should be shorter than a few hours. Braud et al. (2014) 

also require the event’s peak unit discharge to exceed 0.5 m3 s-1 km-2 for the event to be 

classified as a flash flood. The NWS’s Flash Flood Guidance (FFG) product defines the 

point at which bankfull conditions are occurring on small natural stream networks as a 

flash flood (Clark et al. 2014). The trouble in settling upon a consistent definition of flash 

floods is one of the factors that conspires to make forecasting them so difficult. However, 

all authorities agree on at least some components necessary for a flash flood. Doswell et 

al. (1996) identified these as heavy rainfall and hydrologic response. Llasat et al. (2010) 

are some of many to note that societal factors must also be considered to fully understand 

flash floods. Schroeder et al. (2016b) propose a “flash flood severity index” which takes 

into account both the physical and societal impacts of a flash flood.  

 Although flash floods can arise as a result of ice jams, dam breaks, and other non-

heavy rainfall causative factors, for the purposes of the studies contained within, only 

flash floods occurring as a result of heavy rainfall are considered. On this basis, a 

workable flash flood definition is as a follows: a flash flood arises from high precipitation 

rates that persist over a location for a long enough period of time to induce a hydrologic 

response that poses a threat to human lives or property. 
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Heavy Rainfall 

While Doswell et al. (1996) explicitly state they are primarily concerned with 

physical explanations of flash floods and not statistical connections between heavy 

rainfall and a set of predictor variables, their insights are still invaluable to the aims of 

this dissertation. They quote C. F. Chappell (1986) as follows: “the heaviest precipitation 

occurs where the rainfall rate is the highest for the longest time.” From this statement, 

one can immediately recognize that flash flood forecasting requires understanding of 

rainfall (or storm) development, maintenance, efficiency, and movement. For rainfall to 

develop, rising atmospheric motion and moist air must be collocated; then rainfall 

efficiency relates the rainfall rate to the rising motion and the water vapor content of the 

air. Although Doswell et al. (1996) note that efficiency, in this context, is a complicated 

quantity to calculate precisely, it can be qualitatively estimated with knowledge of the 

microphysical properties of the storm, the environmental relative humidity, and wind 

shear. The problem of forecasting high rainfall rates can be somewhat simplified by 

primarily focusing upon convective systems, where the rainfall efficiency (and thus, the 

resultant rate) is usually highest (Doswell et al. 1996). The final category of ingredients 

to be considered concern storm size, shape, and motion. The period during which the 

rainfall occurs is a function of the speed and direction of the precipitating system and the 

length of the precipitating system measured parallel to the direction of the system motion. 

As with precipitation efficiency, these orientation and motion properties can be related 

to environmental variables, including the mean wind through the cloud-bearing layer, 

slow moving outflow (or other types of) boundaries in an environment where strong flow 

is present, or when propagation due to the evolution of individual storm cells acts to 

oppose the motion vector of the individual storm cells (Doswell et al. 1996). Most of the 
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environmental factors described in this paragraph are, today, implicitly considered in or 

explicitly output by NWP systems. 

Hydrologic Response 

 Hydrologic response to heavy rainfall is a requirement for a flash flood to 

develop. A given rainfall rate induces different hydrologic responses depending on the 

degree of saturation of the underlying soil, the shape, size, and slope of the watershed 

subjected to the rainfall, and the land use/land cover present in the area. In general, when 

rainfall reaches the land surface, some portion infiltrates into the soil and the remainder 

runs off over the surface. Urbanized regions are more likely to experience strong 

hydrologic response to a given rainfall amount because of the great degree of impervious 

cover, which reduces water infiltration and increases surface runoff.  The type of soil 

present in a region is also an important consideration: soils with large pore spaces in 

between particles have more available infiltration capacity than tightly-packed soils with 

less pore space. For example, sandy soils infiltrate a great deal more water than clay soils; 

thus, sandy soils generate less runoff from a given amount of rain. Runoff generation is 

also affected by the antecedent rainfall in a region, since previously-infiltrated water uses 

up some of the soil’s available water storage space. Once runoff has been generated, the 

speed with which it moves and is focused into a particular area governs the timing and 

peak of the flood wave. These factors are, in turn, controlled by the shape and size of the 

watershed and by the slope of areas in the watershed. Small watersheds focus water more 

quickly than large ones; watersheds with steep slopes focus water more quickly than 

flatter watersheds.  
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Human Impacts 

Flash floods are among the deadliest storm-related hazards in the United States 

(Ashley and Ashley 2008); overall, floods kill more people globally than any other 

natural disaster (Doocy et al. 2013). Accepting a definition of a flash flood that requires 

there to have been a human impact forces us to recognize that flash floods are the 

outcome of constant interactions between society and its physical environment. The 

potential human impact from a flash flood in an urbanized region is generally greater 

than in rural areas, not just because of the increased hydrologic response associated with 

urbanized regions, but also due to the increased population density and the higher 

likelihood that a larger number of people live, work, or recreate in the area. In regions 

where flash floods have struck in the past, actions like moving people and infrastructure 

out of flood-prone areas, increasing the amount of green space, or improving storm water 

management practices have been demonstrated to reduce the potential of a flash flood 

and the associated impacts. Therefore, the probability of a flash flood occurring, and of 

its impact being observed and reported, involves some human influence.  

Flash Flood Forecasting Practices 

Meteorological Methods 

Several studies attempting to forecast the meteorological components 

contributing to flash floods have been undertaken in the last fifty years. One early 

attempt, the “K” index (George 1960), originally focused on forecasting thunderstorms, 

but has since been used operationally as part of various flash flood forecasting 

procedures. The K index is calculated from (1): 

𝐾 =	 𝑇%&' − 𝑇&'' + 𝑇*+,- − 𝑇.'' − 𝑇*/--    (1) 
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In (1), T refers to air temperature and Td to the dew point temperature. The subscripted 

numbers are the constant-pressure (isobaric) levels (in hPa) upon which the air or dew 

point temperature are to be calculated. George (1960) included thresholds for the 

meaning of various K values: K > 35 corresponds to “numerous thunderstorms”, K < 20 

to “no thunderstorms”, and intermediate values to various categories of areal 

thunderstorm coverage.  

Giordano (1994) summarized the state of flash flood forecasting knowledge at 

the time by tabulating a series of atmospheric indexes thought to be important to severe 

weather and flash flood forecasting, together with thresholds of concern for each index. 

Richardson et al. (2011) found that, despite differences in synoptic-scale set-ups, high 

surface dew point temperatures, high precipitable water (PW), moderate convective 

available potential energy (CAPE), slow moving surface boundary features parallel to 

the mean wind through the 850-300-hPa layer, and other factors were common in flash 

flood environments. On the basis of six events, the authors developed a manual decision 

tree for use in flash flood forecasting. Schroeder et al. (2016a) collected 40 urban flash 

floods and found that anomalously high PW values were present in nearly all the events; 

other patterns recurring from event-to-event include relatively saturated low levels, 

moderate or weak wind shear, moderate CAPE, low convective inhibition, and high K 

index. Jessup and DeGaetano (2008) studied a series of flash floods that occurred in the 

Binghamton, NY county warning area (CWA) and found that the events, relative to 

climatology, tended to be associated with heavier precipitation, abnormally high 

atmospheric moisture in the upper levels, and stronger vertical motion, greater (but not 

extremely high) surface-based CAPE, higher K index, and more strongly negative lifted 
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index (LI). However, while wind direction and shear were found to help illuminate the 

physical processes governing the development of flooding rainfall, the precipitation, 

moisture, and convective parameters had to be used in concert with wind information to 

achieve the best predictions. Many of these factors are produced as output from NWP 

models. 

Indeed, predictions of the environmental fields associated with high precipitation 

are often of a better quality than the NWP QPFs themselves. For example, research 

conducted at ECMWF has produced evidence that environmental variables (in this case, 

integrated water vapor transport) contributing to long-lasting heavy rainfall are more 

easily predicted than the resultant rainfall itself (Flamig 2016, personal communication). 

Kursinski et al. (2008) determined that the accuracy of initial PW vapor estimates in 

NWP had a significant impact upon the accuracy of subsequent QPFs. Antolik (2000) 

noted that QPF is actually not the most important predictor of observed precipitation in 

many cases. Perica and Foufoula-Georgiou (1996) successfully downscaled low-

resolution model QPF by introducing an additional model variable: the CAPE. Other 

model variables also hold the promise of improving NWP QPF by including additional, 

less variable NWP output in the precipitation forecast process (Ganguly and Bras 2003).     

  QPF has improved in the twenty years since Doswell et al. (1996) were writing. 

QPF skill, as measured by Gilbert skill score (also called the equitable threat score), has 

improved steadily in the warm (JJA) and cold (DJF) seasons as well as year-round 

(Barthold et al. 2015). However, the performance increase in the warm season has been 

slower than that in the cold season, and Barthold et al. (2015) suggest that this is because 

NWP models experience more trouble in accurately generating QPF from the small-scale 
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thunderstorms that often predominate during the warm season. Though producing 

accurate QPF is riddled with difficulties, the advent of convection-allowing models holds 

great promise for doing so at the scale of individual storms (Gagne et al. 2014). Still, 

despite these advances, the inclusion of environmental fields from NWP in a rainfall 

prediction system can add additional information helpful in the quantitative precipitation 

forecasting process.  

Hydrologic Methods 

 From the hydrologic perspective, differences in soil type and texture contribute 

to soil water capacity, which, for example, can be used alongside other factors like 

impervious area ratio and hydraulic conductivity as a priori parameters in hydrologic 

models suitable for flash flood forecasting (Clark et al. 2016). Jessup and DeGaetano 

(2008) found that, for Binghamton, NY CWA, soil moisture was a good discriminator 

between flood and non-flood events. Indeed, the operational tools used in NWS flash 

flood forecasting rely heavily upon antecedent soil moisture and the land’s potential for 

generating surface runoff (Clark et al. 2014). Other NWS entities have developed 

hydrologic indexes that account for the impact of land slope, wildfire scars, and soil 

characteristics upon surface runoff generation (Smith 2003), but these index methods 

have generally been unsuccessful at flash flood forecasting when used in isolation (Clark 

et al. 2014).  

Clark et al. (2014) and Gourley et al. (2012) demonstrated that the tools used in 

NWS operational flash flood forecasting drastically over-forecast flash floods compared 

to the NWS’s Storm Data historical event database (MacAloney 2016). These tools, part 

of the FFG family, consist of gridded values that represent the amount of rain required 

over a given period of time to induce bankfull conditions on small natural stream 
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networks. FFG is produced using one of four methods; the method used for a particular 

location depends upon which NWS River Forecast Center (RFC) has jurisdiction over 

the location. Two broad concepts underlie the production of FFG: a rainfall-runoff model 

and a series of surveyed “threshold runoff” (or ThreshR) values. Carpenter et al. (1999) 

defined ThreshR as the “amount of effective rainfall of a given duration that is necessary 

to cause minor flooding” [emphasis in the original]. After accounting for infiltration into 

the soil, evaporation, and other losses, effective rainfall is the amount that becomes 

surface runoff. The absorption capacity of the soil is related to the soil moisture; wetter 

soil conditions act to decrease the effective rainfall. FFG is determined from a rainfall-

runoff model, where the “runoff” in the model is the effective rainfall (the ThreshR as 

modified by the modeled soil moisture conditions), and the “rainfall” (the rainfall 

necessary to generate the runoff) becomes the FFG value.  

Although FFG contains information related to antecedent rainfall and hydrologic 

response, it does little to address the meteorological side of the equation. A key issue in 

flash flood forecasting is knowing how heavy precipitation behaves over time periods of 

one hour or less (Brooks and Stensrud 2000). However, FFG is updated infrequently; at 

best, this process occurs every six hours but it is highly inconsistent from region to 

region, and even when the products are regularly updated they only address rainfall 

accumulation periods of one, three, and six hours (Clark et al. 2014). 

Additionally, FFG has no provisions for the impact of future rainfall on the threat 

of a flash flood. Consider a situation in which heavy rainfall is forecast to occur on and 

off over the next three days. A forecaster wishes to use FFG to determine the risk of a 

flash flood. Unfortunately, the FFG guidance available to our hypothetical forecaster is 
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valid only from the current time to one, three, or six hours in the future. Forecast rain that 

falls between six and 72 hours from the current time will act to increase the antecedent 

soil moisture and thus decrease the FFG values (on the other hand, if no additional rain 

occurs, the soil will begin to dry out and the FFG values will increase). If our forecaster 

compares the current 66 to 72-h QPF to the current 6-h FFG to produce a 3-d flash flood 

forecast, he runs the risk of underestimating the threat of a flash flood if rain occurs 

between now and 66 hours, or of overestimating the risk of a flash flood if no rain occurs 

over that period. Despite these perils, operational entities have explored the use of FFG 

in this context for the purposes of issuing 24 and 48-h flash flood outlooks, because no 

NWP models or other available systems are able to directly forecast the potential of a 

flash flood any farther than six hours into the future. One promising avenue of research 

(Martinaitis et al. 2016) is to feed a hydrologic model with QPFs from NWP, but the 

location errors present in even 3-h storm scale QPFs have a deleterious effect on the skill 

of the hydrologic predictions. Of course, it is possible that QPF location errors could be 

reduced via the addition of other, more stable NWP outputs to the prediction process, as 

discussed above in “Meteorological Methods”.  

Conclusions 

The NWS is the U.S. government agency responsible for issuing messages to the 

public of flash floods. Via its network of local Weather Forecast Offices (WFOs), 

regional RFCs, and the national Weather Prediction Center (WPC), the NWS monitors 

and forecasts the risk of flash floods across the nation. Local meteorologists (and a 

handful of hydrologists) at WFOs provide the public with life-saving flash flood alerts, 

including Flash Flood Warnings (FFWs), Flash Flood Watches (FFAs), Urban and Small 
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Stream Flood Advisories, Areal Flood Advisories, and more. Hydrologists at regional 

RFCs develop, maintain, and run the hydrologic models and help produce the 

precipitation estimates used to issue these local messages. In a less public role, the WPC 

guides the regional and local forecasters by providing insight into the differences and 

agreements between different NWP solutions and by producing probabilistic forecasts of 

exceeding FFG in the 0-24-, 24-48-, and 48-72-h ranges.  

Clark et al. (2014) and others have suggested that this organizational structure 

introduces a possible responsibility mismatch with troubling implications for the success 

of the NWS flash flood program. While FFG is available for short-fuse FFWs, it is, by 

its very definition, of little or no utility in the FFA development process, a process for 

which there is currently a glaring absence of available tools. In lieu of specific flash flood 

forecasting tools, meteorologists use NWP to predict heavy rainfall and then use their 

knowledge and experience to translate this information into potential flash flood impacts. 

This process, though, requires the meteorologist to possess at least some understanding 

of the hydrologic and societal processes at work in the region of a potential flash flood. 

Meteorologists, inculcated in the atmospheric sciences, are often not trained to use 

hydrologic expertise to predict the risk of a flash flood given a particular set of hydrologic 

conditions. In fact, FFG is designed explicitly to “meteorology-ize” the hydrology 

involved in flash flood forecasting by reducing the hydrologic part of the problem down 

to a specific rainfall accumulation threshold (Clark et al. 2014). This inevitably results in 

a portion of the possible hydrologic knowledge being rendered unavailable for use in 

either the alert decision-making or forecast process. 
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However, ML techniques offer a bright ray of hope. They have now been applied 

to categorization/labeling and regression problems in many fields, and there is a growing 

recognition of the potential utility they hold when applied to meteorological forecast 

problems. Aircraft turbulence, mesoscale convective system initiation, hail size, severe 

thunderstorm maximum wind gust, and other phenomena have been predicted from NWP 

and observational data using these algorithms. In general, ML requires a set of predictors 

(like NWP output) and a predictand (like observations of interesting phenomena); these 

techniques inherently contain elements of automation and objectivity and they are 

particularly well-suited for applications where manual analysis has traditionally been 

used to draw conclusions from huge amounts of data. Additional advantages statistical 

approaches in this domain include the fact that they require far fewer computing 

resources than physical models and require far less time to run. Finally, these techniques 

are capable of sorting through, in an optimal way, all the available and relevant data for 

a particular problem.     

 However, disadvantages to statistical techniques also exist. Because these 

algorithms work by identifying patterns in large archives of data, it can be difficult to 

draw physical interpretations from statistical models, especially if the statistical model is 

applied to NWP output, which is only an imperfect proxy for the real atmosphere. 

Although research is spotty, it is also possible that statistical techniques and increasing 

forecast automation results in forecaster disengagement from the forecast process, which 

is undesirable when extreme cases appear that are not well-sampled or well-represented 

in archives of potential training data. Snellman, writing in 1977, called this inexorable 

increase in forecast automation “meteorological cancer” and warned that, as machines 
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take on more and more of the legwork of forecasting, humans will become less skilled at 

the fundamentals of forecasting. However, given the enterprise’s incredible 

advancements over the last 40 years, the era of “forecaster as communicator”, as 

Snellman (1977) put it, has not led to an apocalypse or, indeed, anything even close to 

that. 

Several properties of flash flood events conspire to make forecasting them 

problematic, including the rapidity with which waters rise, the small spatial scales over 

which their impacts characteristically vary, and the difficulties inherent in objectively 

defining and observing these events. Fundamentally, flash floods exist at the interface 

between society, hydrology, and meteorology; unlike other weather phenomena with 

objective physical definitions, a flash flood only exists once some human impact has been 

observed. As NWP and other modern forecasting tools have woven their ways into the 

very heart of the weather enterprise, a huge archive of useful data has grown – day-by-

day – on computer servers and in cold storage across the world. Over the same time, 

computer scientists have developed ever-more-efficient ways of milling through these 

vast stores of data. These techniques waste nothing, can result in physically-interpretable 

outputs, and hold the promise of improving forecasts and life-saving alerts to mitigate 

the impacts of flash floods and – ultimately – to better protect life and property. 
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Chapter 3: Random Forest Predictions of Flash Floods in the United 
States 

Introduction 

 In this study, machine learning (ML) techniques, primarily random forests (RFs), 

are applied to a lengthy archive of outputs from the Global Forecast System (GFS), a 

numerical weather prediction (NWP) model, to automatically forecast the likelihood of 

a flash flood resulting from a particular set of atmospheric conditions. This prediction 

framework is intended to eventually improve the ability of weather forecasters to identify 

regions susceptible to flash floods with 24 hours or more of lead time. When 6-h NWP 

forecasts are considered, the method outperforms operational equivalents (namely, using 

individual NWP model fields to forecast flash floods) by resulting in fewer false positives 

and better detection of events. Unlike quantitative precipitation estimates (QPE) or 

quantitative precipitation forecasts (QPF), this method also provides probabilistic 

forecasts of flash floods. In general, it is possible to calibrate raw confidence “scores” 

from the RF method to produce more accurate probabilities of an event’s occurring, when 

NWS Storm Data (MacAloney 2016) reports of flash floods are used as verification.  

Data Preparation 

Global Forecast System Data 

 GFS analyses have been archived by the National Oceanic and Atmospheric 

Administration’s (NOAA) National Centers for Environmental Information (NCEI) 

since 2 March 2004. Ideally, new GFS analyses are created every four hours as part of 

the daily 0000, 0600, 1200, and 1800 UTC model initialization cycles. During this period, 

accounting for model outages and archiving failures, NCEI stored 16,678 analyses. As 

of the 1800 UTC 31 December 2015 analysis and modeling cycle, the GFS post-
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processor outputs 315 individual products when accounting for all combinations of field 

type and levels upon which each field is computed. Table 1 contains specifics regarding 

this list of products. In Table 1, CAPE is the convective available potential energy, CIN 

is the convective inhibition, and LI is the lifted index.  

Model code changes and upgrades between 2004 and the end of 2015 result in 

some changes in this list in Table 1 through time. There have been changes in the 

horizontal resolution of the model output: the GFS3, a 1.0-degree x 1.0-degree version 

of GFS output, is available between 2 March 2004 and 31 July 2015. The GFS4, a 0.5-

degree x 0.5-degree version of GFS output, is available from 1 January 2007 to 31 

December 2015. (On 1 May 2016, model upgrades enabled the generation of 0.25-degree 

x 0.25-degree versions of the output fields.) For the present study, 16,066 GFS3 analyses 

from 2 March 2004 to 31 July 2015 have been downloaded and stored. An additional 612 

GFS4 analyses from 1 August to 31 December 2015 have been downloaded, stored, and 

subsequently resampled to match the grid upon which the GFS3 analyses are computed. 

The GFS3 version of the model outputs was selected for this study to enable storage and 

processing of the longest possible archive of model data. For example, while a single 

GFS3 analysis (containing all model fields) requires 30 megabytes of storage, a single 

GFS4 analysis requires 60 megabytes of storage. The entire archive of analyses from 2 

March 2004 to 31 December 2015, including all available model fields, is approximately 

one-half terabyte in size.  
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Table 1. Example GFS analysis field inventory (valid 1800 UTC 31 December 2015)   
Field Name Units # of Levels 

Atmospheric products (28 fields; 302 total products) 
Geopotential height m 34 
Relative humidity % 36 
U-component of wind m s-1 38 
V-component of wind m s-1 38 
Absolute vorticity s-1 26 
Temperature °C 39 
Ozone mixing ratio kg kg-1 12 
Vertical velocity Pa s-1 22 
Cloud water mixing ratio kg kg-1 21 
Pressure Pa 8 
Vertical speed shear s-1 3 
CAPE J kg-1 3 
CIN J kg-1 3 
LI °C 2 
Specific humidity kg kg-1 3 
Standard atmosphere reference height m 2 
Planetary boundary layer height m 1 
Wind speed (gust) m s-1 1 
Pressure of level from which parcel was lifted Pa 1 
Potential temperature °C 1 
PW kg m-2 1 
Cloud water kg m-2 1 
Total ozone Dobson 1 
Percent frozen precipitation % 1 
U-component storm motion m s-1 1 
V-component storm motion m s-1 1 
Dew point temperature °C 1 
Storm relative helicity J kg-1 1 

Field Name Units # of Levels 
Land surface model outputs (7 fields; 13 total products) 

Soil temperature °C 4 
Soil moisture (volumetric) fraction 4 
Land/sea mask dimensionless 1 
Ice cover fraction 1 
Wilting point fraction 1 
Snow depth m 1 
Snowpack water content kg m-2 1 
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An important consideration in ML is balancing the desire to intelligently reduce 

the number of variables used to develop a prediction model with the desire to avoid 

eliminating any potential knowledge no matter how marginal that knowledge might be. 

Unfortunately, the changes in the GFS model core and post-processing routines through 

time force a reduction in the number of candidate predictor variables automatically. If a 

variable is not regularly produced (or cannot be otherwise determined or calculated) 

throughout the entire period over which the ML model is to be developed, it cannot be 

used in the ML fitting process. This eliminates several promising candidate variables in 

Table 1 from consideration, including the storm motion components, specific humidity 

at some levels, and vertical speed shear. Other fields are not used because they are 

believed to be irrelevant to the problem, so computational and storage concerns outweigh 

the need to include them in the process. In this latter category are all products on isobaric 

surfaces where the pressure is less than 150 hPa and the ozone mixing ratio product at all 

levels. The final variable reduction step involves eliminating a few isobaric surfaces from 

the mid- and low-levels, as well as those layers expressed in the sigma and above ground 

level coordinate systems.  

This process results in 95 GFS analysis fields being selected for potential use in 

the ML model fitting process. These are summarized in Table 2. The “Additional Level 

Descriptions” column of Table 2 describes only those levels other than the standard 

isobaric levels chosen for this study, which are defined when the barometric pressure is 

either 150, 200, 250, 300, 400, 500, 700, 850, or 925 hPa. In Table 2, “AGL” and “BGL” 

stand for “above ground level” and “below ground level”.  
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Table 2. List of GFS analysis fields used in the ML fitting process  
Field Name Units # of Levels Additional Level Descriptions 

Geopotential height m 9  
Relative humidity % 11 2-m AGL, entire atmosphere  
U-component of wind m s-1 10 10-m AGL 
V-component of wind m s-1 10 10-m AGL 
Absolute vorticity s-1 9  
Temperature °C 11 2-m AGL, entire atmosphere 
Vertical velocity Pa s-1 9  
Cloud water mixing ratio kg kg-1 9  
Pressure Pa 1 mean sea level 
CAPE J kg-1 1 surface 
CIN J kg-1 1 surface 
LI °C 2 surface, best 4-layer 
Specific humidity kg kg-1 1 2-m AGL 
PW kg m-2 1 entire atmosphere 
Cloud water kg m-2 1 entire atmosphere 
Soil moisture fraction 4 10-, 40-, 100-, and 200-cm BGL 
Snowpack water content kg m-2 1 surface 
Soil temperature °C 4 10-, 40-, 100-, and 200-cm BGL 

  
In addition to the analysis fields described in Tables 1 and 2, two pieces of 

information from the GFS 3-h forecast were downloaded and processed: 0-3 h 

precipitation rate and 0-3 h convective precipitation rate. This results in a total of 97 GFS 

fields available for use in the study.  

For each GFS model cycle, all available fields are initially downloaded in GRIB 

(GRidded Binary, used for GFS3 analyses and forecasts) or GRIB-2 (GRidded Binary-

2, used for GFS4 analyses and forecasts) format. From each GRIB or GRIB-2 file, each 

of the 97 desired model fields is extracted, converted to GeoTIFF (Geographical Tagged 

Image File Format), and stored. To develop training, validation, and testing datasets for 

the ML process, these series of GeoTIFFs are masked such that only grid cells in or near 

the contiguous U.S. (CONUS) are considered, as shown in Figure 3. 
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The series of GeoTIFFs for each model field is converted to a comma-separated 

values (.csv) file, where each line of each file corresponds to a single value of a model 

field at a particular time and location. Then these 97 text files are merged based on time 

and location information to create a .csv predictor matrix, where, for each time and 

location, the corresponding 97 GFS model field values are stored.  

 
Figure 3. Mask used to process CONUS GFS data for ML predictions 
 
Flashiness and Other Static Maps 

 Saharia et al. (2015) developed a metric – “flashiness” – across the U.S. to 

“characterize the ability of a basin to produce flash floods.” Flashiness is defined as “the 

difference between the peak discharge and the action stage discharge normalized by the 

flooding rise time and basin area.” Flashiness can be computed for gauged basins where 

the NWS has identified a stage height and discharge that correspond to a flooding impact 

consistent with the definition of “action stage”. Then, using an empirical cumulative 

distribution function, Saharia et al. (2015) scale the observed flashiness values between 
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zero and one, where values of one represent those basins ablest to produce a flash flood. 

They employ statistical methods to predict flashiness at ungauged locations from a set of 

geomorphologic parameters, the most important of which included basin area, slope, 

annual precipitation, and mean temperature. Saharia et al. (2015) produced these 

predictions of flashiness at a 1-km horizontal resolution. For the purposes of this study, 

their 1-km flashiness grid was resampled to the GFS3 grid by taking the median 1-km 

flashiness value in each large GFS3 pixel. The result, which is Figure 4, is extracted to a 

text file and then merged with the GFS data already described.  

 
Figure 4. Median flashiness resampled to 1.0-degree x 1.0-degree resolution 
 

Although flashiness accounts for variations in the response of the land surface to 

a given amount of rainfall, multiple studies have found that the nature of flash flood 

forecasting and reporting differs from region to region of the U.S. In particular, western 

flash floods have sometimes been treated separately from eastern flash floods for 

meteorological reasons (Maddox et al. 1979), for hydrologic reasons (Smith 2003), and 



 
 

50 

due to societal factors (Schroeder et al. 2016b). The ability of standard operational 

techniques to forecast western flash floods is also less than it is in the eastern CONUS 

(Clark et al. 2014).  

Among the GFS predictors selected for use in this study are several model 

variables generated on the 925- and 850-hPa levels. However, many parts of the western 

U.S. have station surface pressures less than 925 or 850 hPa; in those regions, GFS 

outputs on these isobaric surfaces have been extrapolated from a combination of lower 

isobaric surfaces or adjacent pixels. To avoid the introduction of additional uncertainty 

as a result of this process, it is desirable to exclude 925-hPa or both 925- and 850-hPa 

grids, as appropriate, from regions with moderately high or high elevations. To achieve 

this exclusion and simultaneously better account for regional differences in flash flood 

environments and hydrologic response, three separate regional ML models, based on 

elevation, will be generated using the scheme shown in Figure 5. 

Low elevation regions (green) are denoted with a “1” in the predictor matrix, 

moderate elevations (yellow) with a “2”, and high elevations (blue) with a “3”. This 

procedure is similar to that used in previous studies; for example, due to reduced Doppler 

radar coverage in the western U.S., Gagne et al. (2014) divided the U.S. into different 

regions by longitude and developed separate ML models for each region. Table 3 

contains a few example records from the predictor matrix used in the study, including 

time and location information, values from static fields (elevation and flashiness), and 

values of certain GFS model fields at those times and locations.  
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Figure 5. Elevation regions used for regionalizing flash flood forecasts and excluding 
extrapolated pressure fields 
 
Table 3. Example records from the predictor matrix 

time_y_x flashiness elevation 10m_uwind 10m_vwind 150hgt 
20120905_00_42_55 0.8478 1 4.3 -4.7 14025.6 
20120905_00_43_55 0.8268 1 4.1 -6.9 14039.5 
20120905_00_44_55 0.7398 1 2.6 -9.2 14054.3 
20120905_00_45_55 0.7856 1 1.1 -13.0 14068.9 

 
Derived Quantities 

 Several studies have identified derived quantities thought to be useful in the flash 

flood forecasting process. Focusing mostly on convective initiation, Manacos and 

Schultz (2005) collect 19 studies, dating back to 1953, that use moisture flux convergence 

(MFC) in various sorts of forecast problems; the earliest uses of MFC were to predict the 

location and amounts of heavy rainfall in midlatitude cyclones. Richardson et al. (2011) 

identified 0-2 km AGL MFC as an important quantity in flash flood situational 

awareness. Junker (2008) considered 850-hPa MFC as an important factor to consider 

when forecasting precipitation from mesoscale convective systems. Waldstreicher (1989) 
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explains that stationary circular areas of MFC often lead to “areas of excessive rainfall”. 

MFC is defined by (2); (3) is the same equation with the vector terms expanded. 

MFC = 	−∇ ∙ 𝑞𝐕7 = −𝐕7 ∙ ∇𝑞 − 𝑞∇ ∙ 𝐕7   (2) 

MFC = 	−𝑢 𝜕𝑞
𝜕𝑥 − 𝑣 𝜕𝑞

𝜕𝑦 − 𝑞 𝜕𝑢
𝜕𝑥 +

𝜕𝑣
𝜕𝑦   (3) 

In (3), u represents the zonal (east-west) wind component, v represents the meridional 

(north-south) wind component, q is the specific humidity, and x and y are the zonal and 

meridional grid coordinates, respectively. The first and second terms in (3) together 

represent the horizontal advection of q and the third term represents the horizontal 

convergence of q. The GFS directly provides q at 2-m AGL, but at other levels it must 

be computed using the temperature and relative humidity at the desired level, as partially 

shown by (4) (Murray 1967), which yields the saturation vapor pressure, es, in hPa. 

𝑒> = 6.11 ∗ 10..&D EF..FGD      (4) 

In (4), T is the air temperature in °C. The saturation mixing ratio, ws, in g kg-1, is given 

by (5) (Brice and Hall 2013a). 

𝑤> = 621.97 𝑒>
𝑃>MNMOPQ − 𝑒>

    (5) 

In (5), Pstation is the station pressure in hPa and es, in hPa, is from (4). Then (6) relates the 

relative humidity in %, RH, and ws, to the mixing ratio, w, in g kg-1. 

𝑤 = 𝑅𝐻
100 𝑤>     (6) 

One can assume that w is roughly equivalent to q. This procedure results in grids of q (in 

g kg-1) at 300, 400, 500, 700, 850, 925, and 1013.25 hPa (at 1013.25 hPa, the GFS-

provided 2-m AGL q is used directly, and u and v come from the GFS 10-m AGL wind 

components). MFC and q are not calculated at 150, 200, or 250 hPa because most of the 
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studies referenced in Banacos and Schultz (2005) interested in the relationship between 

MFC and precipitation neglect these low pressure levels due to the presumed lack of 

moisture at these levels. 

 GFS data are provided to end users on unprojected latitude-longitude grids. 

Therefore, calculating vertical and horizontal gradients of q, u, or v on these grids actually 

yields, for example, 𝜕𝑞 𝜕𝜆 and 𝜕𝑞 𝜕𝜙, the rates of change of q with respect to longitude, 

l, and latitude, f, respectively. However, 𝜕𝜙 𝜕𝑦 and 𝜕𝜆 𝜕𝑥, the rates of change of 

latitude with respect to y and of longitude with respect to x can be used to obtain rates of 

change of q, u, and v with respect to x and y, like 𝜕𝑞 𝜕𝑥 and 𝜕𝑞 𝜕𝑦. Horizontal moisture 

convergence, moisture advection, and MFC are each stored in gridded form at the same 

levels upon which q was computed.  

 Another set of derived predictors considered in this study consists of wind speeds 

computed upon the 150-, 200-, 250-, 300-, 400-, 500-, 700-, 850-, and 925-hPa and 10-

m AGL surfaces using the formula for vector length, L, which is given by (7).   

𝐿 = 𝑢E + 𝑣E      (7) 

L is intended to act as a simple proxy for the strength of flow at a particular level of the 

atmosphere. One can sum the u- and v-components of the winds at the 500-, 700-, 850-, 

and 925-hPa levels and then determine the magnitude of the subsequent vector using (7). 

Depending on which of the levels are included in this calculation, the result is either the 

500-700-, 500-850-, or 500-925-hPa layer-mean wind. (For moderate and high elevation 

areas, respectively, the 500-925-hPa layer-mean and the 500-925- and 500-850-hPa 

layer-mean winds are neglected). Speed shear is also computed by subtracting the 700-, 

850-, and or 925-hPa wind speed from the 500-hPa wind speed and normalizing the result 
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by the distance between the geopotential heights of the two layers (Markowski and 

Richardson 2006). Neither the 500-850-hPa nor the 500-925-hPa speed shears are used 

in the high elevation model, and the 500-925-hPa speed shear is not used in the moderate 

elevation model.  

    The K index is computed for the dataset following (1). The 850- and 700-hPa 

dew point temperatures, Td, in °C, are determined from the corresponding saturation 

vapor pressure and relative humidity using (8) (Brice and Hall 2013b).  

𝑇* =
237.3ln 𝑒>𝑅𝐻

611
7.5ln 10 − ln 𝑒>𝑅𝐻

611
   (8) 

In the high elevation region, the K index is neglected because it relies upon GFS RH and 

T at the 850-hPa level. 

Previous studies have suggested that the precipitable water (PW) anomaly is a 

better predictor of flash flood potential than PW itself (Giordano 1994, Schroeder et al. 

2016a). Standardized PW anomalies are calculated for the entire GFS dataset (2 March 

2004 to 31 December 2016) following this procedure: 1) calculate the average GFS PW 

value for each grid cell and each month, 2) calculate the standard deviation of GFS PW 

for each grid cell and each month, and 3) create standardized PW anomaly grids every 

six hours by comparing each GFS PW grid through time to its corresponding monthly 

model average and monthly model standard deviation. Comparing the model PW to the 

model climatology accounts for any bias relative to observations that may be present in 

the GFS PW fields.     
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The 46 derived predictors available for use in this study are summarized in Table 

4. Once produced in gridded form and stored as GeoTIFFs, these gridded derived 

predictors can be converted to text and merged into the predictor matrix from Table 3. 

Table 4. Summary of derived predictors used in the study 
Field Name Units # of Levels 

Wind magnitude m s-1 10 
Specific humidity g kg-1 7 
Horizontal moisture convergence g kg-1 s-1 7 
Horizontal moisture advection g kg-1 s-1 7 
Moisture flux convergence g kg-1 s-1 7 
K index dimensionless 1 
Standardized PW anomaly dimensionless (s) 1 
Speed shear s-1 3 
Layer-mean wind m s-1 3 

 
Flood Events in Storm Data 

Although past efforts have been made to obtain reports of flash floods from 

automated systems including U.S. Geological Survey stream gauges (Gourley et al. 

2013), the only comprehensive national collection of reports of flash floods is contained 

within the NWS Storm Data publication (MacAloney 2016). Despite the fact that Storm 

Data reports are collected by professional meteorologists and hydrologists, any human-

augmented reporting system is subject to variations in population density, diurnal cycles 

of human activity, and more mundane transcription or memory errors that affect the 

timing and location of reports (Barthold et al. 2015). Evidence of these issues has been 

found in assessments of FFG skill (Clark et al. 2014); at least one study has found that 

the distribution of Storm Data reports of flash floods is affected by the distribution of the 

human population (Marjerison et al. 2016) and similar issues have been noted for years 

in the reporting of other hazardous weather events (Frisbie 2006). Errors in timing or 

location can be accounted for by subtracting time from the start of the report, adding time 
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to the end of the report, or increasing the effective size of the report (Gourley et al. 2012, 

Clark et al. 2014).  

In the present study, Storm Data reports have been obtained for the period starting 

1 October 2006 and ending 31 December 2015. From 1 October 2006 to 30 September 

2007, the local Weather Forecast Offices (WFOs) that initially collect Storm Data reports 

had the option of delineating the location of the event via either a polygon (with up to 8 

vertices) encompassing the event’s impacts or a single point designed to represent the 

center of the observed impacts. After 1 October 2007, all WFOs were required to adopt 

the polygon-based reporting methodology (Gourley et al. 2013).  

Each flash flood must be associated in space and time with a set of predictor 

variables. This is accomplished by first locating the GFS3 grid cell in which the report 

occurred (for the polygon reports, this is the centroid, and for the point reports, it is the 

report location). Figure 6 is a map of the frequency, over the entire archive of reports, 

with which events occurred in each GFS3 model grid cell.  

Because of the large size of the GFS3 grid cells, any additional expansion in the 

area of individual reports is probably unnecessary, but it is possible to envision remote 

scenarios in which a report is close enough to the edge of a GFS3 grid cell that a location 

error in the Storm Data publication could have an adverse effect upon the ML prediction 

process. A report is considered “active” for a particular GFS time if the start time of the 

report occurs within six hours after that GFS cycle begins. For example, consider a 0000 

UTC GFS run and a Storm Data report that begins at 0300 UTC. The hypothetical report 

is counted as being active at 0000 UTC because 0300 UTC is only three hours after the 

start of this GFS cycle. If more than one report is valid in the same grid cell at the same 
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time, only one of the reports is stored in the predictor matrix; the rest are neglected. If 

the Storm Data report lasts longer than six hours, it is considered “active” only for the 

first GFS cycle that transpires in the six hours prior to the beginning of the report. This 

is to ensure that – to the extent possible – the ML method is only considering pre-flash 

flood environments. 

 
Figure 6. Number of NWS Storm Data reports of flash floods (N = 33,072) per grid 
cell over the entire archive 
 

Finally, these processed Storm Data reports (predictands) are merged in space 

and time with the predictor matrix. This event extraction and storage process is intended 

to focus on the environmental variables associated with the start of each flash flood at 

the expense of those present at the end of each flash flood, in an effort to avoid 

contaminating the dataset with persistent flash flood impacts occurring after the 

environment that originally led to the flash flood has advected away, or been modified or 

displaced in some way.  
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Development of Training and Testing Datasets  

The predictor matrix resulting from the previous section must be checked for 

invalid data prior to its use in an ML model. Each GFS field (i.e., each column of the 

predictor matrix) is checked for the presence of unrealistic values. A few GFS model 

analysis cycles were found to contain corrupt or unphysical data; cases (i.e. rows in the 

predictor matrix) containing these data have been excised from the prediction matrix. A 

more frequent problem is the result of the CONUS mask displayed in Figure 3 

encompassing grid cells outside the domain of the GFS land surface model. Because the 

domain of the GFS land surface model is not consistent through time, this process must 

be undertaken at the beginning of each ML model fitting trial; these cases can then be 

removed from the predictor matrix prior to any of the activities discussed below.   

There are 144 total parameters for the low elevation case: 97 GFS predictors, 46 

derived predictors, and flashiness (but not elevation, since it will be used to partition the 

dataset prior to the testing-training split). In the literature, there is some disagreement 

regarding the appropriate relative sizes of the testing, training, and validation datasets for 

ML. For instance, Guyon (1997) proposed a relationship for the ratio between the size of 

the validation (or testing set) and training sets based on upon the number of predictors. 

In this case, the proposed relationship recommends using approximately 8% of the 

available cases for testing and the remaining 92% for training. When moderate elevations 

are considered, 19 variables defined at the 925- or 1013.25-hPa levels must be neglected, 

and for high elevations, an additional 15 850-hPa variables are also removed from the 

mix. Applying these results to Guyon (1997)’s formula results in a recommendation to 

use 9% and 10%, respectively, of the moderate and high elevation cases for testing. 

However, Williams (2009), Trafalis et al. (2014), and Ahijevych et al. (2016) each used 
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50% of their total data for testing; Guyon (1997)’s formula would have recommended 

using between 17% and 25% of the total data for testing in those studies. In the present 

study, using the Guyon (1997) formula (via, for example, holding out 9% to 10% of all 

data points by, perhaps, selecting those cases occurring on the 10th, 20th, or 30th of each 

month) results in test datasets containing too few flash floods, especially when regional 

or temporal subsets of the data are being considered. Therefore, in the present study, a 

compromise between the approaches outlined in previous applications of RF to 

meteorological problems and the Guyon (1997) formula is employed. Approximately 

20% of the total cases are held out for independent testing purposes; these cases are 

collected by storing all data points from the 5th, 10th, 15th, 20th, 25th, or 30th day of 

each month. Within the remaining 80% of cases, a 75/25 split is executed, this time 

randomly and without replacement, resulting in “training” and “validation” datasets, 

respectively. Figure 7 is a map, prior to processing the Storm Data reports into GFS3 grid 

cells, of all the flash floods in the archive with a start time occurring on the 5th, 10th, 

15th, 20th, 25th, or 30th of any month. Figure 8 is a map of all other Storm Data reports 

in the archive (i.e., those that will make up the validation and training datasets). 

Table 5 summarizes important characteristics of several time periods of interest 

in the present study. Three recent GFS model “epochs”, or time periods in which no 

major upgrades to the GFS model core or postprocessor were implemented, are identified 

to test for changes in the statistical properties of GFS model fields as a result of GFS 

upgrades. When considered together, these three GFS epochs will be referred to as the 

“study period” (5 September 2012 – 31 December 2015), while the 1 October 2006 – 31 

December 2015 period will be referred to as the “entire archive”.  
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Figure 7. Number of NWS Storm Data reports of flash floods occurring on test days (N 
= 6,607) per grid cell over the entire archive 
 

 
Figure 8. Number of NWS Storm Data reports of flash floods occurring on test days (N 
= 26,465) per grid cell over the entire archive 
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Despite the fact that the 15 January – 31 December 2015 (“2015”) epoch has more 

than double the rate of flash floods than either the 21 August 2013 – 14 January 2015 

(“2014”) epoch or the 5 September 2012 – 20 August 2013 (“2013”) epoch, the salient 

characteristic of this predictor matrix is the extreme rarity with which flash floods are 

observed. The ratio of flash flood-containing GFS3 grid cells to GFS3 grid cells without 

flash floods is 1:694 for 2013, 1:702 for 2014, 1:338 for 2015. It is 1:576 for the study 

period and 1:586 for the entire archive of Storm Data reports. Table 5 also contains 

information indicating how many flash flood and non-flood cases are removed from the 

testing, training, validation datasets as a result of unavailable GFS land surface model 

outputs, corrupt GFS model fields, or the process of merging multiple Storm Data reports 

into a single GFS3 grid cell. 

Table 5. Summary of important characteristics of GFS model epochs 
All elevations, both testing and training data 

Epoch Cases 
deleted, % 

Flash floods 
deleted, % 

Usable 
cases 

Usable 
flash floods 

Flash 
floods, % of 

total 
2013 8.2 45 1,199,060 1,729 0.14 
2014 8.2 40 1,733,248 2,469 0.14 
2015 19.0 56 735,482 2,174 0.30 
Study period 11.0 48 3,667,790 6,372 0.17 
Entire archive 8.7 43 11,004,540 18,787 0.17 

 
 Table 6 contains the final size of each testing and training set for each elevation 

region and each epoch. From Table 6, a major pitfall in restricting the ML model fitting 

process to a particular elevation region and GFS model epoch is apparent. The number 

of flash floods available in some of these subsets is relatively small, reaching a low of 18 

cases when the testing data for the middle elevation region of the 2013 GFS model epoch 

is considered. In general, the number of flash flood cases in the testing dataset for the 

study period is still fairly low, but likely adequate for the purposes of the present study. 
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The number of flash flood cases in the entire archive is more than adequate, but requires 

the inclusion of GFS model output from a 9.5-yr period, over which major changes were 

made to the GFS model.  

Table 6. Sample sizes (total cases and flash flood cases) for each combination of GFS 
model epoch and elevation region 

  Training Testing 
Epoch Elevation # cases # flash floods # cases # flash floods 

2013 Low 583,105 1,163 140,541 259 
2013 Middle 176,808 121 42,577 18 
2013 High 206,314 132 49,715 36 
2014 Low 843,170 1,303 201,795 301 
2014 Middle 256,198 281 61,391 58 
2014 High 298,946 184 31,618 46 
2015 Low 344,960 1,360 82,456 362 
2015 Middle 116,101 175 27,705 47 
2015 High 132,642 184 31,618 46 
Study period Low 1,771,235 3,826 424,792 922 
Study period Middle 549,107 577 131,673 123 
Study period High 637,902 728 153,081 196 
Entire archive Low 5,342,292 12,163 1,284,578 3,094 
Entire archive Middle 1,627,455 1,340 391,919 295 
Entire archive High 1,900,545 1,537 457,751 358 

 
The entire dataset and all of its subsets are extremely unbalanced between the 

majority (no flood) and minority (flash flood) classes. In the testing dataset, this 

imbalance comes with the territory; since the imbalance is the result of the true 

prevalence of Storm Data reports of flash floods, no modifications to the test dataset 

should be made. However, in the training dataset, these unbalanced classes are a problem. 

If left unremedied, they result in ML models that could forecast “no flood” every time 

without fear of reprisal, because the flash flood class is so rarely encountered in the fitting 

process.  

Unbalanced datasets are a common issue in ML, particularly as they relate to 

meteorology and forecasting relatively rare weather hazards. Trafalis et al. (2014) dealt 
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with a tornado dataset in which 6.7% of their total records fell in the minority class; they 

set the minority to majority class ratio in the testing as well as the training and validation 

sets at 7:100. On the other hand, Williams (2009) undersampled the majority class in his 

training datasets (while maintaining the true class split in the validation and testing 

datasets), until he achieved a 30:70 minority-majority ratio. In his study, the true 

prevalence of the minority class was 0.25% in one dataset and 1.33% in the other. In the 

present study, the majority class is undersampled to achieve a 50:50 split in the testing 

data, while maintaining the true ratio between classes in the validation and testing sets. 

Therefore, after the 75/25 training/validation split is executed, all flash floods falling into 

the training set are retained, along with an equal number of randomly selected non-events 

from the “75” side of the 75/25 split.  

Results 

Performance Metrics 

The implementation of RF used in the present study is that from the scikit-learn 

Python library (Pedregosa et al. 2011). An RF is grown on the training dataset and then 

the validation dataset is run through the new RF to produce predictions. These RF 

predictions are compared to reality (i.e., Storm Data), and the skill of the forecasts is 

quantified via the Brier score (Brier 1950). Brier called this score “P” and expressed it in 

the form shown here as (9). 

𝑃 = [
Q

𝑓O] − 𝐸O]
EQ

O_[
`
]_[      (9) 

The outcome, Eij, is 1 when the event, i, took place in the class, j (out of a total of r 

classes), and 0 when the event did not. The forecast, fij, is the forecast of the likelihood 

of i occurring in j. The total number of forecasts is represented by n. When the forecast 
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is answering a yes-or-no question (i.e., “Will there be a flash flood?”), j = 2 and the Brier 

score can be simplified into (10).  

𝑃 = [
Q

𝑓O − 𝐸O EQ
O_[       (10) 

From this simplified definition, it is readily apparent that the value of the worst possible 

Brier score is 1, which happens when fi and Ei are always as far apart from one another 

as possible (if the forecast probability is 100% and the event does not occur or if the 

forecast probability is 0% and the event does occur). On the other hand, the best Brier 

score is 0, which happens when the forecast probability is 0% and the event does not 

occur, or when the forecast probability is 100% and the event does occur. 

 Contingency tables are frequently used to assess the quality of deterministic 

predictions. Table 7 is a 2x2 contingency table, used with both the forecast and the 

outcome are binary. Hits, a, occur when an event is forecast and the event is observed. 

False alarms, b, occur when an event is forecast but the event does not occur. When an 

event is not forecast but does occur, the result is a miss, c. When an event does not occur 

and was not forecast to occur, the case is labeled as a correct negative, d.  

Table 7. Example contingency table 
  Was the event observed? 
  Yes No Totals 

Was the event 
forecast? 

Yes Hit (a) False alarm (b) a + b 
No Miss (c) Correct negative (d) c + d 
Totals a + c b + d n = a + b + c + d 

 
The contingency table can be used to derive several metrics, including the 

probability of detection (POD), false alarm rate (FAR), critical success index (CSI or 

Gilbert Skill Score [GSS, Stephenson {2000}]), and more. The POD is given by 

𝑎 𝑎 + 𝑐 , the FAR by 𝑏 𝑎 + 𝑏 , and the CSI by 𝑎 𝑎 + 𝑏 + 𝑐 . CSI, which ranges 

from zero to one, where zero is undesirable and one is desirable, is also called the “threat 
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score”. CSI is non-linearly related to both the POD and the FAR. Although originally 

proposed for the verification of rare events, the CSI is not zero for random forecasts or 

climatological forecasts, so it cannot measure skill relative to either of these conditions 

(Stephenson 2000). POD ranges from zero to one; a score of zero means no events were 

detected and a score of one means all events are detected. The FAR ranges from one to 

zero; a score of one indicates all forecasts were false alarms and a score of zero indicates 

no forecasts were false alarms. Confusingly, G. K. Gilbert’s name is also used in 

connection with a second skill measure sometimes referred to as either the “Gilbert 

score” (Schaefer 1990 in Hogan et al. 2010) or the “equitable threat score” (ETS, Hogan 

et al. 2010). Despite the common name, the ETS is not “equitable”, in the sense that 

different random forecasting systems will return different values of the ETS (Hogan et 

al. 2010). The misnamed ETS is given by 𝑎 − 𝑎` 𝑎 + 𝑏 + 𝑐 − 𝑎`  where ar is 

𝑎 + 𝑏 𝑎 + 𝑐 𝑛, which represents the fraction of hits expected from a random forecast 

(Hamill and Juras 2006). The ETS ranges from -1/3 to zero, where values greater than 

zero indicate a forecast with more skill than a random forecast. Finally, the Peirce skill 

score (PSS) is given by (11). 

𝑃𝑆𝑆 = 𝑃𝑂𝐷 − 𝑃𝑂𝐹𝐷 =	 𝑎𝑑 − 𝑏𝑐 𝑎 + 𝑐 𝑏 + 𝑑    (11) 

In (11), POFD refers to the probability of false detection. The PSS is equitable, unlike 

the ETS or the GSS (Hogan et al. 2010). The PSS ranges from negative one to one, where 

values greater than zero indicate a forecast with skill; scores closer to one have greater 

skill. However, the PSS has one disadvantage, namely that if the correct negatives are 

large, the false alarms are relatively important to the final score (Stephenson 2000).  
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The ROC (receiver operator characteristic) diagram is a plot of the true positive 

rate (TPR) as a function of the corresponding false positive rate (FPR, Trafalis et al. 

2014) for various contingency tables created as a result of applying different thresholds 

to a classifier. The FPR is given by 𝑏 𝑏 + 𝑑  and the TPR is equivalent to the POD; the 

curve formed from this relationship is called the “ROC curve”; Figure 9 is an example.  

 
Figure 9. Example ROC diagram 
 

A random classifier would possess a ROC curve following the dash-dotted 1:1 

line; better-skilled classifiers will possess ROC curves progressively closer to the top-

left of the diagram, where the TPR = 1 (i.e., the classifier detects all the events) and FPR 

= 0 (i.e., the classfier does not result in any false alarms). The PSS for a particular 

threshold is equal to the vertical distance from the no-skill line to the ROC curve 

(Manzato 2007), as in Figure 9, where the vertical arrow stretches from the 1:1 line to 
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the ROC curve of the “fake data”. A ROC curve can be summarized by a single number: 

the AUC (area under the curve). The AUC ranges from zero to one; a perfect AUC would 

be achieved by a ROC curve that hugs the left and top borders of the ROC diagram while 

an AUC of 0.5 is achieved by a ROC curve that follows the 1:1 line.  

Determining Optimal Random Forest Parameters 

An important consideration in fitting an RF model is determining acceptable 

values of a handful of parameters that govern the performance of the RF model. Chief 

among these is ntree, the number of trees in an RF. More trees act to reduce the variance 

and the out-of-bag (OOB) error rate. Typically, the OOB error rate converges to some 

minimum level once a certain value of ntree is reached. A second important RF parameter 

is mtry, the number of predictors from which the RF method can select that predictor 

resulting in the optimal split between labels at a given node. Breiman (2001) showed that 

using the integer value of the square root of the total number of predictors (“sqrt”) worked 

well as mtry for a number of different datasets, but noted that the final choice of mtry is 

problem-dependent. Finally, maximum tree depth is another important characteristic of 

the forest. This tree property is actually a function of several additional RF parameters, 

including the minimum number of samples required to split an internal node (two, in the 

present study) and the minimum number of samples (one) required for a new leaf to be 

generated. Those selected values do not preclude a tree from reaching its maximum 

possible depth (i.e., where the tree grows until each leaf is 100% pure). For that reason, 

the problem of maximum tree depth in this study can be reduced to a single RF parameter 

– dtree. Dtree is the maximum number of levels of nodes each tree is allowed to contain. 

Deeper trees reduce the bias but increase the variance of predictions from the forest. Due 
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to the interactions between these parameters, fixing the values of ntree, dtree, and mtry 

is an optimization problem, where OOB error rate is a function of the three parameters.  

Figure 10 is a plot of the partial solution to this optimization problem for the low 

elevation regime using training data drawn from the entire archive, where the OOB error 

rate is the objective function to be minimized.  

 
Figure 10. OOB error rate as a function of the ntree, mtry, and dtree RF parameters  
 

Independent testing and validation datasets are not required for this trial because 

it is intended only to optimize an internal RF metric and observe the sensitivity of the 

OOB error rate to said parameter optimization process. All flash floods occurring in the 

low elevation areas and during the study period are included (N = 15,257). Following the 

undersampling procedure discussed previously, an equal number of non-flood cases from 
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the low elevation area and the study period are randomly selected; this results in a training 

dataset with N = 30,514, split evenly between flash floods and non-floods.  

In this test, dtree can be either 10, 20, or “None”, where “None” means that the 

depth of a tree is not restricted. When dtree is “None” (blue lines in Figure 10), trees 

range in depth from 18 to 40 layers, as shown in Table 8. The distributions of the 

unrestricted tree depths for the low and middle elevation regimes are nearly identical, but 

for the high elevation cases, the unrestricted trees are deeper, which implies that more 

predictor variables, and therefore, more tree levels, are required to completely split flash 

flood cases from non-flood cases. Note that ntree = 400 in Table 8 because the tree depths 

are recorded at the end of the experiment explained by Figure 10.  

Table 8. Tree depths when dtree = “None”, ntree = 400, and mtry = “sqrt” 

 
Overall, the dtree analysis (comparing between colors in Figure 10) shows that 

“None” (blue) is best, 20 (green) is second, and 10 (red) is generally worst. However, the 

differences are small and lower dtree values do result in a slightly faster RF growth 

process. Given the minor differences in OOB error rate and compute time introduced by 

changes in dtree, dtree will be “None” for the remainder of the study.  

In Figure 10, the mtry parameter can be “sqrt” (solid lines), “log2” (the integer 

value of the base-2 logarithm of the total number of predictors, represented by dashed 

lines), or “None” (the predictors are not randomly subsampled when a new node is 

generated, represented by dotted lines). Comparison of the mtry values for given values 

of ntree and dtree shows that the solid (“sqrt”) or dashed (“log2”) lines are generally 

Elevation Tree depth range Avg. tree depth Med. tree depth Mode tree depth 
Low 18 to 40 25 25 23 
Middle 17 to 39 24 23 23 
High 22 to 49 32 31 29 
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better than “None” (dotted lines), with exception of the dashed red line, which represents 

dtree = 10 and mtry = “log2”. Regardless of the values of mtry or dtree selected, the OOB 

error rate quickly asymptotes to a minimum value around 0.1 once ntree reaches 150.  

Figures 11 and 12 are equivalent to Figure 10, but for moderate (N = 3,270, split 

evenly between flash floods and non-flood cases) and high elevations (N = 3,790, again 

split evenly), respectively.  

 
Figure 11. As in Figure 10, but for moderate elevation data 
 

The patterns in Figure 11 are less clear than those in Figure 10; Figure 11 is also 

generated from a dataset with much smaller N, which results in a “noisier” appearance. 

The evidence from Figure 11 suggests that 100 trees are sufficient to reduce the OOB 

error rate to its maximum achievable level, while changes in dtree and mtry have smaller 

impacts upon the OOB error rate. In any case, the differences in OOB error rates between 
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the parameter combinations are quite small, which tends to verify past studies: the RF 

OOB error rate is sensitive mostly to the number of trees in the forest.  

In Figure 12, 50 trees are enough to minimize the OOB error rate. Like when low 

elevation cases are considered, the combination of mtry = “sqrt” and dtree = “None” (the 

blue line) results in good performance, although setting dtree = 20 (the green line) is also 

competitive. However, the differences between these lines are minor.  

 
Figure 12. As in Figure 10, but for high elevation data 
 

To be safe, ntree will be set to 300, which is safely within the region of lowest 

OOB error rate in all three elevation areas. At a value of 300, for example, any 

combination of the other two predictors in any elevation area is represented by an OOB 

error rate that varies between 0.090 and 0.105, which indicates that the OOB error rate 

for that number of trees is relatively immune to the choice of mtry or dtree. On this basis, 
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Breiman (2001)’s original recommendation is suitable in this case: set mtry to “sqrt” and 

dtree to “None” (solid blue line) for all three elevation conditions.  

Because randomness is inherent in the RF growth process (see Chapter 2) and in 

the division of cases between validation and testing data, multiple iterations of random 

forest training, validation, and testing are advisable. These iterations help to quantify the 

variability introduced into the process as a result of these sampling procedures. Separate 

forests were grown for each of the elevation regions and the three GFS epochs, the study 

period, and the entire archive; this procedure was repeated 50 times for each elevation-

epoch combination, which allows for the distribution of resulting Brier scores to be well-

characterized. Then this procedure was repeated, but with 15 trials instead of 50. The 

results of this are summarized in Table 9. 

Table 9. Examination of sample size and random subsampling process upon RF skill 

Elevation Epoch 
Mean Brier 
score (50 

trials) 

Mean Brier 
score (15 

trials) 

Std. dev of 
Brier score 
(15 trials) 

% of 50-trial 
range shown 
by 15 trials 

Low 2013 0.096 0.094 0.005 64.0x100 
Moderate 2013 0.100 0.097 0.010 63.0x100 
High 2013 0.086 0.084 0.009 60.0x100 
Low 2014 0.098 0.095 0.006 62.0x100 
Moderate 2014 0.097 0.091 0.010 90.0x100 
High 2014 0.095 0.097 0.006 61.0x100 
Low 2015 0.100 0.110 0.006 94.0x100 
Moderate 2015 0.130 0.130 0.020 1.0x102 

High 2015 0.130 0.130 0.010 46.0x100 
Low study 0.096 0.097 0.003 77.0x100 
Moderate study 0.100 0.100 0.007 77.0x100 
High study 0.099 0.100 0.006 49.0x100 
Low entire 0.094 0.093 0.001 46.0x100 
Moderate entire 0.099 0.099 0.004 58.0x100 
High entire 0.088 0.089 0.004 87.0x100 

 
From Table 9 is it readily apparent that 15 trials result in Brier score distributions 

similar to those observed when 50 trials are executed, instead. The mean Brier score 
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calculated from 15 trials is similar to that calculated from 50 trials. The percent of the 

50-trial range in Brier scores shown when only 15 trials are conducted ranges between 

46 and 100 percent, as shown in Table 9. 

The contingency tables for each of the 15 or 50 trials can also be examined to 

observe how the 75/25 training/validation split affects the number of flash floods 

available in the validation set for each trial. The results of this analysis make up Table 

10.  

Table 10. Examination of random sampling process upon the number of flash floods 
available for RF validation 

Elevation Epoch 
Mean # of 

validation flash 
floods (50 trials) 

Mean # of 
validation flash 
floods (15 trials) 

Std. dev. 
(15 

trials) 

% of 50-trial 
range shown 
by 15 trials 

Low 2013 871 872 11.0 70.0x102 
Moderate 2013 91 91 4.0 67.0x100 
High 2013 99 101 6.0 88.0x100 
Low 2014 978 977 16.0 79.0x100 
Moderate 2014 212 210 8.2 97.0x100 
High 2014 308 307 11.0 1.0x102 
Low 2015 1,021 1,015 20.0 1.0x102 
Moderate 2015 132 129 4.9 86.0x100 
High 2015 138 138 4.1 75.0x100 
Low study 2,864 2,865 24.0 92.0x100 
Moderate study 435 438 8.3 74.0x100 
High study 546 542 7.2 63.0x100 
Low entire 9,124 9,116 39.0 78.0x100 
Moderate entire 1,004 1,002 15.0 67.0x100 
High entire 1,154 1,155 11/0 54.0x100 

 
As with the above analysis of the impact of the number of trials upon Brier score, 

15 trials are sufficient to capture much of the variability resulting from the 

training/validation dataset split, between 54 and 100 percent of the 50-trial range in the 

number of flash floods in the validation dataset accounted for with just 15 trials. On the 

basis of this evidence, 15 trials generally represent most of the variability in RF prediction 

skill introduced as a result of the RF bagging process, the random subsampling of 
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predictor variables available at each node of each tree, and the random splitting between 

validation and testing datasets in each trial. 

Comparisons with Other Machine Learning and Statistical Techniques 

 To test the applicability of the RF method to this problem relative to other 

classification and regression techniques, I conducted 15 trials in which I applied the 

training and testing datasets for the entire archive to three other techniques implemented 

in the scikit-learn library. Table 11 contains the results of this set of trials. In Table 11, 

each mean skill score or metric shown is statistically compared to the corresponding “RF 

(tuned parameters)” value via a two-tailed heteroscedastic t-test (Sawilowsky et al. 

2002). Differences significant at the 95% level are shown in color-coded cells in Table 

11, where orange-shaded values represent a statistically-significant degradation in the 

mean value of the metric relative to the tuned RF and green-shaded values represent a 

significant improvement in the mean value of the metric relative to the tuned RF.  In the 

“RF (default parameters)” trials, ntrees is 10, dtrees is “None”, and mtry is “sqrt”; the 

other statistical methods are deployed with their respective default parameters, as well.  

All five methods detect (POD) greater than 80% of Storm Data flash floods in 

each elevation regime. In the low elevation regime, the Naïve Bayes (NB, Hand and Yu 

2001) is statistically similar to the tuned RF for this metric, while logistic regression (LR, 

Cox 1958), the gradient boosting classifier (GBC, Freidman 2001) and the default RF are 

all worse than the tuned RF. The ETS is barely positive for all five methods, which 

indicates that they are all more skillful, though barely, than the chance forecast. GBC has 

the best Brier score of the five methods. The tuned RF is next, followed by LR, the default 

RF, and NB. The PSS indicates that the GBC method is the most skillful, followed by 

the tuned RF, either the LR or the untuned RF, and then the NB method.  
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Table 11. Comparison of ML and statistical methods 
Low elevation 

 
RF (tuned 

parameters) 
RF (default 
parameters) 

Naïve 
Bayes 

Gradient 
boosting 
classifier 

Logistic 
regression 

POD, % 92.70x10-0 87.60x10-0 92.40x10-0 92.40x10-0 91.90x10-0 
FAR, % 98.30x10-0 98.40x10-0 99.00x10-0 98.20x10-0 98.40x10-0 
CSI 1.64x10-2 1.68x10-2 9.97x10-3 1.78x10-2 1.60x10-2 
ETS 1.40x10-2 1.45x10-2 7.58x10-3 1.54x10-2 1.36x10-2 
PSS 7.96x10-1 7.44x10-1 6.99x10-1 8.01x10-1 7.82x10-1 
Brier score 9.28x10-2 1.02x10-1 2.15x10-1 8.70x10-2 9.53x10-2 
Average time 
(s) per trial 253.00x10-0 10.30x10-0 13.40x10-0 47.60x10-0 28.50x10-0 

Moderate elevation 
POD, % 93.60x10-0 88.70x10-0 90.70x10-0 93.10x10-0 90.40x10-0 
FAR, % 99.50x10-0 99.50x10-0 99.70x10-0 99.50x10-0 99.50x10-0 
CSI 5.00x10-2 5.16x10-2 3.43x10-3 5.42x10-3 4.73x10-3 
ETS 4.25x10-3 4.41x10-3 2.68x10-3 4.68x10-3 3.98x10-3 
PSS 7.95x10-1 7.58x10-1 7.08x10-1 8.02x10-1 7.60x10-1 
Brier score 9.61x10-2 1.06x10-1 1.93x10-1 9.67x10-2 1.10x10-1 
Average time 
(s) per trial 35.10x10-0 1.70x10-0 3.40x10-0 11.10x10-0 1.70x10-0 

High elevation 
POD, % 89.30x10-0 86.20x10-0 91.50x10-0 89.10x10-0 86.40x10-0 
FAR, % 99.40x10-0 99.40x10-0 99.60x10-0 99.40x10-0 99.40x10-0 
CSI 5.65x10-3 5.84x10-3 3.65x10-3 6.04x10-3 5.56x10-3 
ETS 4.87x10-3 5.07x10-3 2.87x10-3 5.27x10-3 4.78x10-3 
PSS 7.70x10-1 7.47x10-1 7.19x10-1 7.76x10-1 7.43x10-1 
Brier score 8.69x10-2 9.57x10-2 1.91x10-1 8.73x10-2 9.23x10-2 
Average time 
(s) per trial 38.80x10-0 1.70x10-0 3.50x10-0 12.40x10-0 1.60x10-0 

 
The untuned RF is the fastest of the five methods in the low elevation case, with 

10.3 seconds required to complete an average trial, which includes fitting the model, 

generating deterministic predictions on the test set, and calculating probabilities on the 

test set. The NB method is not much slower on the low elevation cases, with the LR and 

GBC slower still. The tuned RF (with 300 trees) is by far the slowest method on the low 

elevation cases, which shows how dramatically the average time per trial depends on the 
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number of trees in the RF. At moderate elevations, the untuned RF is again the fastest, 

though, on average, it is tied with the LR for these trials. NB is therefore in third place, 

while the GBC and the tuned RF are the two slowest methods. At high elevations, LR is 

the fastest method by a nose, with the untuned RF in second place, NB in third, and GBC 

and tuned RF again bringing up the rear. In general, Table 11 suggests that the NB, LR, 

and untuned RF methods are substantially worse for this problem, while the GBC 

matches or outperforms the tuned RF.  

It is certainly plausible that some degree of tuning applied to either the LR or NB 

could result in comparable performance to that achieved by the tuned RF or the GBC. 

Note that, although there is a drastic increase in compute time occurring as a result of 

increasing the number of trees in the RF, the performance improves concomitantly, 

especially in the skill of the probabilistic predictions as shown by the Brier score. Fitting 

a model in four minutes or so is a fairly minor amount of computer time in the grand 

scheme of the weather forecasting and altering enterprise. Given RF’s past use in solving 

meteorological problems, its desirable statistical properties, and its internal measures of 

importance and physical interpretation, the choice of RF as a ML algorithm is justified 

for this problem. However, this preliminary evidence would indicate that other ML and 

statistical methods are generally applicable to this problem, as well. 

Differences Between Global Forecast System Epochs 

Several 300-tree RF models are fit to data drawn from each combination of five 

separate time periods (identified in Table 5) and three elevation regions (identified in 

Figure 5). Fifteen RF models are generated for each of these 15 combinations of elevation 

region and time period; for each of the 15 elevation-time combinations, the RF that 

produced the best Brier score on its corresponding validation data is stored. The 
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importance of the epoch identification process can now be tested via cross-validation: for 

example, use the low elevation 2015 RF to generate predictions on the 2014, 2013, study 

period, or entire archive test data, and compare the resulting skill values, as shown in 

Table 12.  

Table 12. Results of cross-epoch testing process 

 Brier score rank relative to other trials using the same test 
data but on different GFS epochs  

GFS epoch Low elevation Middle elevation High elevation 
2013 3rd 4th 2nd 
2014 5th 2nd 4th 
2015 1st 1st 1st 
Study period 2nd 3rd 4th 
Entire archive 4th 5th 5th 

 
To explain the results of Table 12, let us delve into an example. Start by noting 

that the middle elevation data from the 2013 epoch is marked “4th”. This ordinal is the 

result of growing an RF upon the 2013 middle elevation training set. Using this RF, I 

then generated predictions on the 2013, 2014, 2015, study period, and entire archive 

middle elevation test sets and then compared the resulting Brier scores from each of the 

five. In this example, the 2013 RF model actually yielded its second-worst predictions 

on the 2013 test set (as marked by the ordinal in Table 12) and its worst on the entire 

archive test set. The third-best results were achieved on the study period test set, the 

second-best on the 2014 test data, and the best on the 2015 test data (not shown). If a 

particular RF fit were valid only for the GFS model epoch from whose training set it was 

generated, one would expect to see all cells in Table 12 marked “1st”. One may infer that 

if there are statistically significant differences in the underlying distributions of the 

individual GFS model fields between GFS model epochs, an RF trained on data from a 

given epoch should produce more skillful predictions on independent test data drawn 
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from that same epoch (and statistical distribution). These results indicate that an RF 

generated from data drawn from one model epoch can be used to generate predictions as 

good or better on predictor data drawn from another model epoch, at least when the GFS 

model upgrades implemented between August 2012 and December 2015 are considered. 

The relatively poorer performance of the RFs fit to training data from the entire archive 

suggests that there are important differences in GFS model fields between the beginning 

of the archive (2006) and the end of the archive (2012-2015). (Note also that the test 

cases from 2015 are easier for the RF method, in general, to classify. It is possible that 

this is an unlucky artifact and that the events from the 5th, 10th, 15th, 20th, 25th, and 

30th of the months in 2015 just happen to be dominated by situations in which the GFS 

produced more skillful forecasts. Another possible explanation is that the 2014-2015 

model epoch transition resulted in a better, more skillful GFS.) On the basis of these 

results, GFS model epochs will generally not be used to divide predictors into testing, 

training, and validation data through the rest of the present study.    

Random Forest Probabilities and Calibration 

 In an RF, each predictor (“tree”) votes for the class into which it will sort each 

set of predictor variables. These vote counts can be construed as a measure of the 

confidence the forest has in a particular prediction. For example, if 250 of 300 trees vote 

to consider a particular set of predictors as belonging to the flash flood category, the 

predictor is more confident in labeling the data as belonging to the minority class than if 

only 150 of the 300 trees vote to do so. In both cases, however, using this classifier in 

deterministic fashion would result in a final label of flash flood being assigned to the 

predictor data; by default, a vote fraction of 0.50 is the threshold used to generate 

contingency table statistics. However, it is possible to convert these raw votes from 
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ensemble members (trees) into a calibrated probability that the set of predictors falls into 

a particular class. Reliability diagrams derived from raw RF votes often take the shape 

of a sigmoid function. In an RF, inter-tree variance tends to pull the final raw RF vote 

totals away from the ends of the [0, 1] probability interval. For example, for an RF to 

predict a probability of zero or one for a given case, all trees in the forest must vote the 

same way. Since the trees are generated via a bagging process, this is relatively unlikely 

(Niculescu-Mizil and Caruana 2005). Although past research has focused upon the use 

of sigmoid or isotonic functions to improve the reliability of probabilities derived from 

ML classifiers, it is possible to fit other types of functional relationships to the raw RF 

scores, as long as the functional relationship chosen is extendable to one or more 

independent testing dataset(s) (Williams 2009).  

I use the RFs generated previously for the inter-epoch comparison test to explore 

the relationships between the RF-generated probabilities and historical observations. 

Each forest is used to generate predictions on its respective independent validation set; 

then these predictions are compared to the actual recorded Storm Data reports. Figure 13 

is a type of reliability diagram that summarizes these results. All the records in the test 

dataset drawn from the entire archive and a particular elevation region are grouped into 

fifty evenly-spaced bins based upon the proportion of RF trees voting in favor of 

classifying that particular record as a flash flood. For example, when between 295 and 

300 RF trees vote to classify a case as a flash flood, that case is included in the 0.98 – 

1.00 “Forecast Probability” bin in Figure 13. Then, within in each of these bins, the 

fraction of cases verified by actual Storm Data reports is calculated and plotted. There 

are three sets of points in Figure 13: one for each of the three elevation regions.  
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Figure 13.The historical probability of a flash flood (in Storm Data) as a function of 
the fraction of RF trees voting for the flash flood label, broken down by the elevation 
region from which the cases were drawn  
 

Several properties of Figure 13 are of interest: when all trees in the RF vote for a 

Storm Data event among the low elevation cases (green dots in Figure 13), a flash flood 

is observed only about 14% of the time; this over-prediction is plausible for a relatively 

rare and transient event like a flash flood (Williams 2009). In other words, when all the 

GFS model parameters are together in such a way that an RF or other ML classifier 

believes a flash flood will occur, the verifying event is recorded in Storm Data only 14% 

of the time. This number drops to 4% for the moderate elevation cases (in orange) and 

rises to 9% for the high elevation cases (in blue). This difference can be explained due to 

the smaller number of flash floods in the moderate and high elevation test datasets, but it 

likely also represents the increased difficultly in accurately forecasting flash flood 
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environments in the High Plains and the West, where a greater proportion of reports of 

flash floods result from individual monsoon thunderstorms in the Southwest and isolated 

heavy rainfall from localized severe summertime convection in the High Plains. Both of 

these meteorological regimes are hard or impossible to resolve in the GFS3, which has 

only 1.0-by-1.0-degree resolution. Additionally, issues related to the underreporting of 

flash floods also help to explain the regional differences. Overall, it is likely no surprise 

that RFs, just like humans, find flash flood forecasting to be fundamentally more difficult 

in the western U.S. than it is in the eastern U.S. 

As the proportion of trees voting to classify a set of predictors as a flash flood 

increases, the observed probability of a Storm Data report having been recorded increases 

monotonically. This suggests that there is useful confidence information contained in the 

percentage of trees voting for a particular label. This useful information can be extracted 

via a curve-fitting procedure; all three sets of points in Figure 13 are best represented by 

power law relationships.  

Figure 14 contains three power law relationships; their associated mathematical 

representations are in the upper-center inset of the figure. In each of these equations, x is 

the fraction of RF trees voting to classify a particular case as a flash flood and y is the 

calibrated probability of that case being verified by a historical Storm Data report of flash 

flooding. Figure 15 is a zoomed-in reliability diagram that consists of three sets of points. 

These points are the calibrated RF probabilities resulting from the application of the 

power law relationships identified in Figure 14. The low maximum probabilities achieved 

by these calibration relationships are the result of using coarse-resolution NWP datasets 
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to forecast flash floods, which are often highly-localized phenomena; this acts to reduce 

the maximum confidence the RF classifier could ever hope to yield. 

 
Figure 14. RF vote-to-probability transformation relationships for each of the three 
elevation regions  
 

The calibrated probabilities in Figure 15 are significantly more reliable than those 

shown in Figure 13. However, the calibration process is replete with pitfalls. In particular, 

the calibrated RF probabilities are too high relative to the probability of Storm Data 

reports of flash floods occurring the independent test dataset. The fit of the moderate 

elevation curve in Figure 14 is less good than that of the cases drawn from the other two 

elevation regions. This is likely due to the smaller number of flash floods in the moderate 

elevation dataset (N = 295). Despite these issues, the fact that a power law represents the 

best fit regardless of elevation region suggests that this probability calibration concept 
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may be generalizable through time, a concept which holds important operational 

implications. If something close to the RF strategies outlined in this study were to be 

operationalized, one would likely fit an RF to the past year or so (or maybe most recent 

NWP epoch’s worth) of available NWP output and then use that RF to generate real-time 

predictions going forward. For this strategy to succeed, one would need to demonstrate 

that the RF and its associated probability calibration continued to output reliable 

probabilities even in the face of NWP model code changes and upgrades. The datasets 

used in the present study provide two opportunities to test this hypothesis. 

 
Figure 15. Zoomed-in view of RF probabilities for each elevation region after the 
application of power law calibration processes 
 

Figures 16 and 17 show the results of these two opportunities. In Figure 16 the 

RF fitting and calibration process for each elevation takes place using the 2013 training 
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data and the final probabilities are generated on the 2014 testing data. In Figure 17 the 

datasets used are drawn from 2014 training and 2015 testing data, respectively. The 

results demonstrate that, although there is a degradation in performance relative to Figure 

15, which arises as a result of epoch-to-epoch differences between the power law fits, 

and the small sample size available in the 2014 and 2015 testing datasets, the calibrated 

probabilities for the low elevation cases (the green dots) are still in the same 

neighborhood as the observed probabilities.  

 
Figure 16. Application of a 2013 probability calibration relationship to 2014 testing 
data 
 
 This process results in overforecasting of moderate elevation events (the orange 

dots) and underforecasting of low elevation events. Unfortunately, there are so few 

elevation events in the 2014 or 2015 test data that the reliability of these (the blue dots) 
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cannot be accurately assessed using the calibration procedure proposed in this section. 

The poor performance on the moderate elevation fit in Figure 15 results in similarly poor 

performance on the 2014 test data. There are not enough moderate elevation flash floods 

in the 2015 test data to accurately plot those reliabilities.  

Components of the Brier Score 

The Brier score can be decomposed into constituent terms that better diagnose 

how a particular forecast system is useful and where it can be improved. Murphy (1973) 

proved that the Brier score can be decomposed into the reliability plus the uncertainty 

minus the resolution. Recall that lower Brier scores represent more skillful forecasts and 

are therefore more desirable. 

 
Figure 17. As in Figure 16, but with a 2014 probability calibration relationship applied 
to 2015 testing data 
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The first constituent of the Brier score is the uncertainty, which is related to how 

frequently a particular event actually occurs. Higher uncertainties occur when the classes 

one is attempting to predict are similar in climatological frequency to one another. So, 

for situations when the climatological probability of the class one is attempting to 

forecast is either very low or very high, the best possible Brier score is lower. For 

example, if an event never occurs, one could always issue 0% forecasts and achieve a 

perfect Brier score. Note, however, that this does not mean rare events are “easy” to 

forecast; just the opposite, in fact!  

The second component of the Brier score is called reliability, and it is a measure 

of how closely the forecast probabilities track the true probabilities and can be visualized 

via reliability diagrams like those shown in Figures 13, 14, 15, and 16. Reliability is 

better when the differences between the forecast and observed probabilities are small.  

Finally, the resolution measures the ability of a forecaster to separate cases (via 

his forecast probabilities) into classes for which there is an actual difference in the 

probability of the event being forecast. In other words, resolution asks: is a forecaster 

actually assigning probabilities that differ from the underlying climatological rate of the 

event? Unlike reliability or uncertainty, high resolution is desirable because it indicates 

the forecaster is picking up on real differences in the underlying observed probabilities 

as her forecast probabilities vary.  

 Let us begin with calculating the uncertainty. The uncertainty is the base rate (or 

the rate at which flash floods are observed) times the 1 minus the base rate. In this case, 

there are 15,257 flash floods in the low elevation region over the entire archive and there 

are 6,626,870 total cases for the same epoch-elevation combination. This results in a base 
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rate of 0.23%. In decimal form, the base rate is 0.0023, and the uncertainty is 0.0023. 

Assuming perfect reliability and resolution, therefore, the best possible Brier score one 

could expect to achieve when forecasting flash floods in the low elevation region is 

0.0023. For both the moderate and high elevation cases, the uncertainty is 0.0008. 

Resolution is calculated by binning the forecast probabilities and calculating the 

observed rates of the event in each bin (“Flash flood obs. rate” in Table 13). Then the 

differences between observed rates in each bin and the base rate (2.3 x 10-3) for the whole 

dataset are taken (note that is slightly different from the result in the previous paragraph, 

as Table 13 is considered only with the training and validation datasets) and squared. The 

squared differences are weighted by the number of forecasts in each bin, and then divided 

by the total number of forecasts. The sum of these is the resolution. Using the data from 

Table 13, the resolution is 7.8 x 10-5. For the moderate and high elevation cases, the 

resolution is 9.2 x 10-6 and 8.5 x 10-6, respectively. 

Table 13. Data required for resolution calculation for low elevation cases across the 
entire archive 

Forecast 
probability 

# of 
forecasts, N 

# of Storm 
Data reports 

Flash flood 
obs. rate 

(1/N) x (Bin obs. rate – 
Total obs. rate)2 

0.000 – 0.099 2,309,518 56 2.4x10-5 3.0x10-6 

0.100 – 0.199 430,646 78 1.8x10-4 4.8x10-7 

0.200 – 0.299 302,693 115 3.8x10-4 2.8x10-7 

0.300 – 0.399 224,132 167 7.5x10-4 1.4x10-7 

0.400 – 0.499 192,893 309 1.6x10-3 2.4x10-8 

0.500 – 0.599 162,927 530 3.3x10-3 3.7x10-8 

0.600 – 0.699 134,894 767 5.7x10-3 3.8x10-7 

0.700 – 0.799 110,607 1,319 1.2x10-2 2.6x10-6 

0.800 – 0.899 87,494 2,334 2.7x10-2 1.3x10-5 

0.900 – 1.000 50,820 3,549 7.0x10-2 5.8x10-5 

Totals: 4,006,624 9,234 2.3x10-3 Resolution: 7.8x10-5 

 
The reliability is determined by binning the forecast probabilities, as in Table 13. 

For each bin, the average forecast probability is compared to the rate of forecasts in that 
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bin that verified. The squared differences between each forecast rate and verification rate 

are calculated and then weighted by the number of forecasts in each bin. The sum of these 

is the reliability; lower numbers arise as a result of small squared differences and thus, 

more reliable probabilities. For the entire archive and the low elevation area of CONUS, 

bin the forecast probabilities into ten groups, where forecasts of greater than 0% but less 

than 10% are in one bin, those greater than or equal to 10% but less than 20% are in 

another, and so on. Table 14 contains the parameters necessary to complete the resolution 

calculation for the low elevation cases drawn from the entire archive, using the same data 

shown in Figure 13.  

Table 14. Data required for reliability calculation for low elevation cases across the 
entire archive 

Forecast 
probability 

# of 
forecasts, N 

Flash flood 
obs. rate 

Avg. forecast 
prob. 

(1/N) x (Avg. forecast 
– Total obs. rate)2 

0.000 – 0.099 2,309,518 2.4x10-5 0.021 2.0x10-4 

0.100 – 0.199 430,646 1.8x10-4 0.140 2.0x10-3 

0.200 – 0.299 302,693 3.8x10-4 0.250 4.6x10-3 

0.300 – 0.399 224,132 7.5x10-4 0.350 6.8x10-3 

0.400 – 0.499 192,893 1.6x10-3 0.450 9.6x10-3 

0.500 – 0.599 162,927 3.3x10-3 0.550 1.2x10-2 

0.600 – 0.699 134,894 5.7x10-3 0.650 1.4x10-2 

0.700 – 0.799 110,607 1.2x10-2 0.740 1.5x10-2 

0.800 – 0.899 87,494 2.7x10-2 0.850 1.6x10-2 

0.900 – 1.000 50,820 7.0x10-2 0.940 1.1x10-2 

Totals: 4,006,624 2.3x10-3 0.180 Reliability: 9.1x10-2 

 
The reliability of the low elevation forecasts for the entire archive is 9.1 x 10-2.  

The equivalent numbers for the moderate and high elevation cases are 9.3 x 10-2 and 7.6 

x 10-2, respectively. Because flash floods are so rare, the uncertainty is very low and 

achieving a good Brier score is not difficult; the Brier scores reported throughout this 

chapter are dominated by the contribution of the reliability term of the score. (The 

resolution, from Table 13, is essentially nil.) However, the results of the decomposition 
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process and the reliability diagrams indicate that the RF is not, for example, achieving a 

good Brier score by always forecasting “no flood” (indeed, the average low elevation 

forecast probability is 18%). The number of Storm Data reports in Table 13 increases 

with the increased forecast probability of a flash flood. Unfortunately, as is often the case 

when dealing with extremely rare events, there is no one single metric that appropriately 

assesses the skill of these forecasts.  

Receiver Operator Characteristic Curves and Comparisons to Other Methods 

The ROC diagram can be used in concert with reliability diagrams and the Brier 

score decomposition to assess the prediction skill of a classifier. Figure 18 contains ROC 

curves (generated upon the study period test set) for each of the three elevation regions. 

The optimal threshold for a binary classifier corresponds to the point on the ROC curve 

closest to the upper-left corner of the ROC diagram. The contingency table resulting from 

that threshold has a PSS equal to the length of a vertical line drawn from the 1:1 line on 

the ROC diagram to the ROC curve.  

Because there is currently no widely-accepted NWP-based flash flood forecasting 

system, comparing the proposed RF to some other baseline is not trivial. However, the 

results from the RF can be compared to individual NWP model fields used in heavy 

rainfall or flash flood forecasting, including convective precipitation rate, precipitation 

rate, ground-to-0.1-m-BGL soil moisture, PW, model PW anomaly, and K index. The 

resultant ROC curves for these model fields are plotted in Figure 19. The AUC for the 

RF method is 0.95 or 0.96, depending on the elevation region being considered; the six 

individual GFS model fields considered in Figure 19 have AUCs ranging from 0.59 for 

the K index to 0.90 for the shallowest soil moisture field. Based on a comparison of the 

AUCs in Figures 18 and 19, it is clear that the RF method, by combining a series of model 
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variables together, adds value compared to the individual model fields frequently used in 

operational flash flood monitoring or forecasting. 

 
Figure 18. ROC diagram based upon data from the entire study period with curves for 
each of the three elevation regions 
 
Concluding Thoughts 

 The results presented in this chapter demonstrate that ML holds promise for 

forecasting rare events like flash floods from NWP, with some major caveats. The RF 

yields probabilistic predictions that can be calibrated to make them more reliable, 

according to the Brier score, ROC diagrams, and reliability diagrams. However, this 

calibration process is specific to the predictions arising from a particular RF model and 

therefore may not be able to be extending to other regions or other time periods. Given 

the extreme rarity of Storm Data flash flood reports and the lack of operational forecast 
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tools, though, all the competitive methods tested in this chapter, whether statistically- or 

physically-based, perform about the same as or worse than the RF method.  

 
Figure 19. ROC diagram comparing the skill of various thresholds applied to a series 
of GFS model fields at forecasting flash floods 
 

These results do not, on their own, provide much insight into how human 

forecasters could use the proposed system as a time-saving device or into the NWP model 

parameters that are most strongly associated with flash flooding. But from Chapter 3 we 

have learned the following: despite their rarity, flash floods can be probabilistically 

forecast in an efficient manner by using the output from a coarse-resolution NWP model 

in an RF. These predictions of flash flooding are more skillful than alternative methods 

currently in use, including model QPF, model PW anomaly, and others. 
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Chapter 4: Variable Selection and Physical Interpretations 

 In general, explaining the results of an ML algorithm or other statistical model 

from a physical perspective is desirable. One of the great advantages of many machine 

learning (ML) algorithms, and the random forest (RF) method in particular, is their ability 

to provide physical insights into the system upon which the ML algorithm is being 

applied. In combination with external expert knowledge and recognition of the physical 

laws governing a system, the insights derived from an ML algorithm are a powerful tool 

for better understanding and thus, just possibly, improved predictions, as well. 

In the case of RFs, the process by which a forest is grown and then used to 

generate predictions results in a series of internal metrics that can used to explain the RF 

outputs. One of these internal metrics is the mean decrease in Gini impurity (often 

abbreviated to MDG); each candidate predictor in the RF has an MDG. Those variables 

with high MDGs are more skillful splitters and thus are more important when generating 

final classifications. The Gini impurity, G, is given by (12) (Tan et al. 2005). 

𝐺 = 1 − 𝑝OE
Ql
O_[       (12) 

In (12), nc is the number of classes being predicted and pi is the proportion of the total 

cases falling into a particular class at that node. For the binary prediction problem, (13) 

simplifies to (13).  

𝐺 = 	1 − 𝑝mn>E − 𝑝QPE       (13) 

From (13), it is readily apparent that, when the samples are split evenly between “yes” 

and “no”, G = 0.5 because pyes is 0.5 (and of course, pno is also 0.5). If pno = 0 or 1, then 

G = 0. The RF algorithm minimizes G at each node of each tree because it searches for 

the predictor variable that results in the purest split between classes of the cases present 
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at the node. To calculate G for a particular node and its two child branches is a simple 

undertaking: 𝐺 = 𝐺QP*n − 𝐺o7Op*,[ − 𝐺o7Op*,E. The MDG for a candidate variable, 

considered across the entire RF, is calculated by averaging MDG over all the splits where 

the variable is used and then weighting this value by the number of splits in which that 

variable is used. Other importance metrics include the entropy and the misclassification 

error. Both of these have similar properties to the MDG, in that they are all minimized 

when pyes = 0 or 1 and maximized when pyes is 0.5 (Tan et al. 2005). 

 The results of an ML classifier can also be explained via more indirect methods 

external to the classifier. This involves using expert opinion, physical understanding, 

empirical studies, and other methods to choose which variables are initially provided to 

the classifier and in what format or context the variables are provided. In meteorology, a 

common example involves the use of derived variables known or suspected to be 

important to a particular forecasting or classification task. Derived variables, especially 

those defined by non-linear combinations of other quantities, cannot be fully accounted 

for using the RF or other ML methods. However, methods like RF are capable of 

identifying some non-linear interactions between predictor variables. Another example 

is the use of normalized values of predictor variables, as opposed to raw values of the 

predictor. This strategy is critically important for some ML classifiers, but is not strictly 

required with RFs. In any event, success in variable selection requires a balance between 

physical or “expert” understanding of the system to which the classifier is being applied 

and statistical metrics internal to the classifier. 
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External Evidence 

Expert Variable Selection 

 Chapter 2 contains a summary and synthesis of several studies from the 

meteorological literature examining flash floods. Some studies (e.g., Doswell et al. 1996) 

consist of a combination of basic principles and case study evidence while others are 

data-driven statistical examinations of collections of flash floods (e.g., Jessup and 

DeGaetano 2008 2008 or Schreoder et al. 2016a). Studies from both categories agree on 

the basic meteorological and hydrologic requirements for the development of a flash 

flood, but there is disagreement among other authors on how to define a flash flood and 

what considerations and rules-of-thumb are most important in the flash flood forecast 

process. One attractive feature of the RF method – and other decision tree algorithms – 

is their ability to deal with collinear, uninformative, or random variables without 

significant degradation in the quality of the final predictions. This encourages an ML 

developer to give an RF extra information on the off chance that the classifier figures out 

how to derive some value from it. On the other hand, there are situations in which the 

bagging process of an RF can result in a generally uninformative predictor being 

“accidentally” selected for use at a particular tree node; this can have a minor impact 

upon the classifier’s ability (Tan et al. 2005). Put another way, ensembles of decision 

trees are quite robust but not completely immune to the effects of overfitting.  

Correlations Between Variables  

 Uncovering relationships between predictor variables can be useful in the context 

of dimensional reduction. Although RFs are not typically strongly affected by 

meaningless or uninformative variables (i.e., those are that are so strongly correlated with 

another predictor that they provide little additional information), the importance metrics 
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from RFs are affected by these correlations. For example, if precipitable water (PW) and 

700-hPa specific humidity, 700q, are correlated with one another, their correlation acts 

to reduce the individual MDG of both variables. Because they are correlated, they are 

each similarly likely to be selected as the best split at new tree nodes. They are also likely 

to split cases in comparable ways. This reduces the effective splitting power that either 

of these two variables would have had in isolation. If the correlation between the two 

variables is perfect, in situations where either would result in the best split, the bagging 

process ensures that, over many cases, each of the two identical variables would be 

selected 50% of the time. Even in the rare case of a perfectly-correlated pair of variables, 

their individual MDGs cannot be added together to yield an “effective MDG”. Although 

there are more efficient ways to reduce the dimensions of a predictor matrix and, in turn, 

attempt to build a more parsimonious model, collecting and identifying correlations 

between predictor variables and then comparing these to our physical understanding of 

the atmosphere can provide a “sanity check” on the construction of the predictor matrix.  

 In the present study, cross-correlations between predictor variables occur 

frequently, because all but one of the predictor variables (flashiness) are outputs from the 

same physically-based numerical weather prediction (NWP) model. A common way of 

checking correlations between variables, especially when the variables are typically 

distributed over very different numerical ranges is the Spearman rank correlation 

(Spearman 1904). The Spearman rank correlation is the Pearson correlation coefficient 

between the variables when ranked (Pearson 1895). The Pearson coefficient, r, and the 

Spearman rank coefficient, r, range from negative one to one, where a value of negative 

one represents a perfect negative correlation between two variables (or their ranks), a 
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value of zero indicates no correlation between the variables (or their ranks), and a value 

of positive one indicates perfect positive correlation between the variables (or their 

ranks). Although the Pearson coefficient represents the degree of linear correlation 

between the variables, the Spearman coefficient represents how well any monotonic 

function can account for the relationship between the variables.  

 For the low elevation cases, there are 234 variable pairs (out of 20,592 total 

possible variable pairs) with r greater than 0.8 or less than -0.8, and 227 variable pairs 

have r values that meet the same criteria. Most of these occur when the same type of 

Global Forecast System (GFS) field is compared between two different levels (e.g., 150- 

and 200-hPa geopotential height, 150hgt and 200hgt, are highly correlated with one 

another [r = 0.99 and r = 0.99]). Other common correlations occur amongst those 

variable pairs related to one another via well-known meteorological relationships (e.g., 

temperature and geopotential height are frequently highly-correlated, PW and q, or 

various wind components and the wind speed or speed shear).  The geopotential height 

at 150 hPa has Spearman correlations >= 0.8 with 17 other candidate predictors. Let us 

remove each of these 17 other predictors and test the impact of that change upon the skill 

of the RF and upon the MDG value of 150hgt. Table 15 summarizes the results of this 

test. 

With all original predictor variables included, the average Brier score of the 

predictions from the forest was 0.094. In this case, removing correlated predictors does 

not improve the quality of the final predictions. In fact, individual removal of one-half of 

a particular correlated pair resulted in the Brier score of the forest’s predictions remaining 

the same or declining in skill by up to 3%. Of course, there were still many correlated 
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predictor pairs present in the predictor matrix even when all of the 17 of these pairs were 

accounted for, so it is possible that some other correlated pair might be harming the 

quality of the predictions, but in this case, the likely answer, based upon the known 

statistical properties of the RF algorithm, is that highly-correlated predictor pairs and the 

presence of excess or uninformative variables do not result in worse predictions. Indeed, 

this behavior has been observed over and over again in many studies where the RF 

method was applied to predictor matrices with a high degree of collinearity.  

Table 15. Results of a test for the effect of Spearman correlation coefficient upon MDG 
values of 150-hPa and the Brier score of flash flood predictions from the RF  

Variable 
removed 

r relative 
to 150hgt 

Change in 
150hgt MDG 

Relative change in 
150hgt MDG rank  

Resulting 
Brier score 

200hgt 0.99 11.0% +5 0.097 
250hgt 0.98 20.0% +10 0.094 
300hgt 0.98 11.0% +4  0.096 
400hgt 0.97 9.0% -1 0.096 
500hgt 0.95 21.0% +8 0.095 
700hgt 0.88 4.0% -2 0.095 
250temp 0.81 13.0% +3 0.096 
300temp 0.94 17.0% +7 0.095 
400temp 0.96 8.7% +3  0.096 
500temp 0.96 28.0% +18 0.096 
700temp 0.93 14.0% +6 0.096 
850temp 0.89 23.0% +10 0.096 
925temp 0.88 7.7% -4 0.096 
2m_temp 0.85 15.0% +6 0.096 
sfctemp 0.81 12.0% +5 0.096 
2m_q 0.82  1.7% -5 0.097 
1013.25q 0.82 13.0% +2 0.096 
(remove all) N/A 160.0% +31 0.097 

 
However, the evidence is quite strong that correlated predictors do change the 

importance metrics arising from the RF. On average, as each correlated predictor in Table 

15 was removed, the new MDG score of 150hgt was 13% higher than before the variable 

removal process. The new MDG rank of 150hgt after the variable removal process was, 

on average, four spots higher in the list of candidate predictor variables, accounting for 
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the fact that, in each case, after variable removal there was one less candidate predictor 

to rank. When all 17 predictors highly-correlated with 150hgt were removed, the resultant 

MDG score of 150hgt was 160% higher than before, and 150hgt was ranked 31 spots 

higher than before in the list of important variables, even accounting for the fact that 

there were 17 fewer predictors to rank after the removals were completed.  

Historical Distribution of Global Forecast System Model Fields 

One way of determining variable importance, and thus, discrimination power, is 

via visualization of the distribution of the predictor variables across a large number of 

cases, particularly by plotting these predictor variables with the flash flood and non-flash 

flood cases shown separately from one another. However, due to the extremely low 

historical prevalence of Storm Data reports of flash floods, the respective flash flood and 

non-flash flood portions of the distributions must be normalized such that areas of the 

bins of each histogram sum to one. The result of this procedure applied to the GFS PW 

analyses is shown as Figure 20, while Figure 21 is the result of the same procedure for 

the PW anomalies.  

Many past studies have found that flash floods are associated with high PW 

values, but these studies were based on observations, not upon NWP model analyses. The 

distribution of all PWs in this study roughly follows a log-normal distribution, with a 

large degree of skewing to the right (higher PW values), as shown in the blue bars of 

Figure 20. On the other hand, the distribution of the standardized anomalies of the GFS-

analyzed PW values (relative to historical GFS-analyzed PW values at each grid and for 

each month) is much closer to normal, as shown in the blue bars of Figure 21. In Figure 

21, it is quickly apparent that, on a normalized basis, higher values of GFS-analyzed PW 
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(or more positively-anomalous values of GFS-analyzed PW) are indeed associated with 

an increased probability of there being a collocated Storm Data report of a flash flood.  

 
Figure 20. Normalized histogram and best KDE fit of the GFS-analyzed PW of all 
cases from the entire archive, comparing flash floods to non-flash flood cases 
 

These normalized histograms have been created for all of the 146 predictor 

variables and all three of elevation regions in the present study. Although histograms are 

helpful in comparing distributions of variables, they are dependent upon the width of the 

bins used to generate them. They are also not automatically able to be represented by 

simple functional relationships, but a procedure called kernel density estimation (KDE) 

can be used to create a non-parametric estimate of the probability density function (PDF) 

of the variable in a histogram (Scott 1992). The KDE process smooths out a histogram 

by calculating the value of this PDF at each point from the contributions from the 
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neighborhood of values around each point. The size of this neighborhood is called the 

bandwidth, and it has a strong impact upon how smooth the KDE function is and upon 

the quality of the KDE fit. Scott (1992) proposed a rule, given by 𝑛 r[ *Gs , for setting 

the bandwidth used in the KDE process, where n is the number of data points and d is the 

number of dimensions. This rule is implemented in the SciPy Python library (Jones et al. 

2001), which is used to generate all the KDE fits to the histograms shown in this chapter. 

It is critical to remember that Figures 20 and 21 are normalized histograms; this 

normalization is just a way to visually compare the differences between the flash flood 

and non-flood distributions of PW and other GFS model variables.  

 
Figure 21. Normalized histogram and best KDE fit of the GFS-analyzed PW anomaly 
of all cases from the entire archive, comparing flash floods to non-flash flood cases 
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The normalized histogram for a particular variable can provide qualitative 

evidence of the importance of a variable in predicting flash floods. This qualitative 

evidence can be combined with information provided directly from the RF, like the MDG 

values associated with a particular variable. When two completely independent methods 

agree that a certain predictor is important or unimportant in generating skillful 

predictions, the evidence is strong that the RF is using the right predictors in an 

appropriate way and that the MDG is providing physically-grounded interpretations of 

the RF model output. Indeed, examination of the histograms of variables that appear 

frequently atop the MDG league tables bears out the fact that these are the histograms 

with the largest “splits” between their flash flood and non-flood KDEs. Another example 

is Figure 22, a normalized histogram comparing the model K index for flash floods and 

for non-floods. 

Although these normalized histograms provide some physical insight into the 

flash flood forecasting problem, the extreme rarity of flash floods precludes the 

introduction of simple thresholds applied to a specific GFS model field (i.e., PW) or field 

derived from GFS model fields (i.e., K index), as shown in the analysis at the end of 

Chapter 3 (Figure 19). Even when one considers K index, the “best” predictor according 

to the split observed between the KDE fits to its normalized histogram, no one threshold 

applied to K can skillfully divide non-floods from flash floods. For example, implement 

a simple algorithm under which K index > 35 results in a flash flood and K index <= 35 

does not. The resulting contingency table contains 9,074 hits, 10,002 misses, 562,264 

false alarms, and 11,550,752 correct negatives. From this contingency table, the 

probability of detection (POD) is 47.6%, the false alarm rate (FAR) is 98.4%, and the 
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Peirce skill score (PSS) is 0.429. For comparison, a contingency table based upon RF 

forecasts (where the threshold for labeling a case a “flash flood” is reached when 50% or 

more of the trees in the forest vote for that label) produced on low elevation cases from 

the entire archive yielded a contingency table in which there were 8,471 hits, 642 misses, 

550,346 false alarms, and 3,447,260 correct negatives. From this, the POD is 92.9%, the 

FAR is 98.5%, and the PSS is 0.792, a huge improvement in PSS. Over 50 trials, the PSS 

ranged from 0.791 to 0.797, demonstrating that this particular trial was no outlier. 

 
Figure 22. Normalized histogram and best KDE fit of the GFS-analyzed K index of all 
cases from the entire archive, comparing flash floods to non-flood cases 
 

However, not all predictors are as useful as splitters between flash floods and 

non-floods. For example, the GFS 700-hPa v-component of winds, shown in Figure 23, 
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is relatively unable to distinguish between those grid cells and times where a Storm Data 

report was recorded and those where one was not.  

 
Figure 23. Normalized histogram and best KDE fit of the GFS-analyzed 700-hPa v-
component of wind of all cases from the entire archive, comparing flash floods to non-
flood cases 
 

Machine Learning Evidence 

Mean Decrease in Gini Impurity 

One of the most important pieces of evidence for physical interpretation of the 

results of an RF comes from rankings of internal variable importance, namely, the MDG. 

For each elevation region, cases not occurring on the test days (i.e. the 5th, 10th, 15th, 

20th, 25th, and 30th days of each month) were set aside as training and validation data. 

The training data are drawn from these cases as follows: 25% of the cases are randomly-

sampled and held out as validation data, and of the remaining 75%, all flash floods are 
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retained along with a randomly-sampled equal number of non-flood cases. Then, 

following this procedure, 50 trials are completed in which an RF is fit to the training 

cases and the MDG of each predictor variable is recorded. 

Table 16 contains the results of these trials broken apart by the elevation region 

of the cases used to grow the RF. Some of the candidate predictor variables with strong 

splits between flash floods and non-floods in their normalized histograms appear in Table 

16 as having relatively high mean values of MDG. In particular, the K index is the most 

important predictor, on average, in the low and moderate elevation regions (this quantity 

is not defined for the high elevation cases, as it relies upon model fields taken from the 

850-hPa level, which is effectively below ground in the high elevation region). The PW 

is the second-most-important variable for the low and high elevation cases, and ranks 

third for the moderate elevation cases. The best 4-layer lifted index (LI) appears in the 

top ten for all three elevations, as does the specific humidity, q, on multiple isobaric or 

above ground level (AGL) levels. The integrated relative humidity, rh, appears in the low 

and high elevation cases. It barely missed the top ten for moderate elevation cases, 

ranking between 8th- and 19th-most-important there. 

However, there are differences between the elevation regions. Note that the 

precipitation (preciprate) and convective precipitation (cpreciprate) rates contribute 

heavily to the RF predictions for low elevations, but are ranked much lower in the 

moderate (preciprate is between 10th- and 26th-most-important, except for one trial in 

which it ranked 38th, and cpreciprate between 9th- and 22nd-most-important, except for 

two trials in which it ranked 38th and 28th) cases. In the high elevation cases, preciprate 

ranked between 16th- and 52nd-most-important, and cpreciprate ranked between 10th-  



 
 

105 

and 39th-most-important among all predictors. This difference suggests that the 

synoptically-forced precipitation typically resolved by the GFS3 is either less predictable 

in the western U.S. or that the precipitation leading to flash floods in the western U.S. is 

just more isolated and sporadic and thus less resolvable by the GFS3, not less predictable.  

Table 16. Predictor variables with the greatest mean MDG scores across a series of RF 
trials 

Low elevation 
Mean 

MDG rank 
Variable 

name 
Range of 

MDG ranks 
Std. dev. of 

ranks 
Mean MDG 

score 
Std. dev. 
of mean 

1 k 1 to 4 0.7 0.066 0.007 
2 pw 1 to 8 1.0 0.053 0.008 
3 preciprate 1 to 9 2.0 0.046 0.007 
5 cpreciprate 2 to 8 2.0 0.043 0.006 
5 700q 1 to 10 2.0 0.043 0.006 
6 850q 2 to 10 2.0 0.038 0.006 
7 rh 2 to 10 2.0 0.035 0.006 
8 pw_anom 3 to 11 2.0 0.034 0.006 
9 4layer_li 4 to 11 2.0 0.033 0.005 

10 925q 7 to 15 2.0 0.025 0.003 
Moderate elevation 

1 k 1 to 3 0.8 0.078 0.010 
2 4layer_li 1 to 7 1.0 0.061 0.010 
3 pw 1 to 8 2.0 0.059 0.010 
4 700q 1 to 7 2.0 0.057 0.010 
5 850q 1 to 9 2.0 0.050 0.010 
6 sfccape 4 to 10 1.0 0.036 0.007 
7 pw_anom 4 to 14 2.0 0.032 0.007 
8 sfccin 6 to 19 2.0 0.029 0.007 
9 sfctemp 7 to 18 2.0 0.024 0.005 

10 2m_temp 6 to 17 2.0 0.022 0.006 
High elevation 

1 700q 1 to 4 0.8 0.088 0.010 
2 pw 1 to 5 0.9 0.075 0.011 
3 2m_q 1 to 5 0.9 0.073 0.011 
4 4layer_li 1 to 6 0.9 0.059 0.009 
5 sfccape 4 to 11 2.0 0.044 0.009 
6 rh 3 to 14 2.0 0.036 0.008 
7 sfctemp 4 to 15 3.0 0.032 0.009 
8 sfccin 5 to 14 2.0 0.031 0.007 
9 2m_temp 5 to 19 4.0 0.027 0.009 

10 300temp 6 to 16 3.0 0.024 0.006 
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  The surface-based convective available potential energy (CAPE, sfccape) and 

surface-based convective inhibition (CIN, sfccin) are both among the most-important 

predictors in the moderate and high elevation cases. In the low elevation cases, sfccin 

never appears in the top 30 of all predictors, and sfccape ranks between 13th and 24th 

among all variables. It is possible that CAPE and CIN are acting as more skillful 

synoptic-scale proxies for heavy rainfall over the western U.S.; in the eastern U.S., the 

RF more frequently directly uses model quantitative precipitation forecasts (QPFs) as 

alternatives.  

Model PW anomalies, pw_anom, appear in the top ten for both the low and 

moderate elevation cases. For the high elevation cases, pw_anom ranks as the 8th- to 

26th-most-important predictor. Finally, low-level air temperatures (2m_temp, sfctemp) 

appear in the high and moderate elevation cases, along with upper-air temperature 

(300temp) in the high elevation cases. These variables may be associated with the heavy 

seasonal dependence of flash floods in the moderate and high elevation regions, where 

most flash floods occur as the result of the southwest summer monsoon and summertime 

severe convection in the High Plains. In other words, relatively high summertime 

temperatures (when compared with those from the other three seasons) in the West are 

associated with an increased likelihood of a flash flood.  

Another important result of Table 16 involves the stability of the MDG values 

and rankings from trial-to-trial. Although there is some variability in MDG rank, 

variables at the top of the list tend to be consistently highly-ranked from trial to trial. This 

has important implications for our ability to use MDG for physical interpretation of the 

RF results – in other words, because MDG does not drastically change from trial to trial, 
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there is a high degree of likelihood that these results are not simply some sort of statistical 

artifact.  

Cross-Validation of Elevation Regimes 

 Regional differences in the development of environments favorable for flash 

floods are accounted for throughout this study via the division of the contiguous U.S. 

(CONUS) into three regions based upon the average surface station pressure in each 

GFS3 model grid cell. As shown by Table 16 and its associated discussion, there is 

evidence that different variables are important to the success of the RF predictions 

depending on the region over which the RF is being applied. This evidence can be further 

tested in two ways: by splitting histograms like those in Figures 20, 21, 22, and 23 

(though without normalization) by the elevation region associated with each case and by 

testing the RF models generated for a specific region on another region. Figure 24 is a 

histogram of the GFS-analyzed PW for all cases in the entire archive, separated by the 

elevation region of the cases. The low elevation cases (dark blue) tend to have the highest 

PW, followed by the moderate elevation cases (light blue), and then the high elevation 

cases (medium blue). However, the differences in the distribution of PW between 

elevation regions are fairly minor. Note that, although flash flood cases are included in 

Figure 24, they are so rare in absolute terms that they are essentially invisible. 

 We can repeat the procedure that led to Figure 20, but restrict it such that only 

low elevation cases are considered. The result is given in Figure 25, the normalized flash 

flood vs. non-flood histogram for all low elevation cases in the entire archive. The flash 

floods have GFS-analyzed PW values between 20 and 60 mm, while the non-floods have 

PW values between 0 and 50 mm. Non-floods most frequently have a PW less than 10 

mm, while flash floods are most frequently associated with PWs around 40 mm. 
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Figure 24. Histogram of GFS-analyzed PW from all cases in the entire archive, 
separated by elevation region (flash flood reports are so rare that they are essentially 
invisible) 
 
 However, in the moderate elevation cases (Figure 26), flash floods usually have 

PWs between 10 and 50 mm, less than those in the low elevation area. They are most 

commonly associated with PW values of just under 30 mm, also less than that seen for 

the low elevation cases. Non-floods in the moderate elevation region range between 0 

and 40 mm, with a strong peak in frequency detected at between 7 and 10 mm. 

The high elevation non-flood cases (Figure 27) more closely resemble the 

moderate elevation non-flood cases than the low elevation non-flood cases. In high 

elevations, the non-flood PW is most frequently ~8 mm, the same as observed for the 

moderate elevation cases. However, in the high elevation region, non-flood PWs greater 

than 15 mm are less-frequently observed than in the other two elevation regimes, and the 
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range of non-flood PWs for the high elevation cases is fairly narrow, at 0 to 30 mm. 

Reports of flash floods in the high elevation area are generally associated most frequently 

with PWs of 25 mm or so, but they range from 10 to 40 mm, a lower (and narrower) 

range than in either of the other two elevation regions.  

 
Figure 25. Normalized histogram of GFS-analyzed PW from all low elevation cases in 
the archive 
 

When raw distance between the KDE fit peaks (in mm) is considered, PW is most 

effective as a splitter in the low elevation cases; it is slightly less effective for the 

moderate elevation cases and is the least effective for the high elevation cases. However, 

if the split is measured by the shared area under each of the KDE fits (i.e., the dark green 

area in Figures 25, 26, and 27), PW is most effective in the high elevation cases, with 

moderate and low elevation cases bringing up the rear. This same order is observed in 



 
 

110 

Table 16, where PW has the highest mean MDG value for the high elevation cases, 

followed by moderate and low elevation cases.  

 
Figure 26. Normalized histogram of GFS-analyzed PW from all moderate elevation 
cases in the archive 
 
  The differences between regions can also be tested via RF cross-validation. I 

took low elevation test data from the 2013, 2014, and 2015 GFS model epochs and ran 

the data through RFs fit to the high elevation cases from those years; the resultant Brier 

scores were between 27% and 108% worse as a result. The reverse was also tested, where 

the high elevation test data from the same three GFS model epochs were run through RFs 

fit to the low elevation cases from those years. These Brier scores were 34 to 71% better, 

which suggests that additional model variables made available in the low elevation cases 

result in more skillful RFs. In any event, the regionally-specific fitting process proposed 
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in this dissertation has important implications for the skill of the predictions of flash 

floods. 

 
Figure 27. Normalized histogram of GFS-analyzed PW from all high elevation cases in 
the archive 
 
Forward Selection and Backward Elimination 

Table 17 contains the first five predictor variables selected as a result of ten 

forward selection/backward elimination trials conducted for each elevation regime. To 

produce Table 17, a stepwise variable selection process was implemented following the 

procedure in Ahijevych et al. (2016). In this process, each predictor variable was tested 

in an RF and that variable resulting in an RF with the best Brier score was stored. Then, 

all the remaining variables were added, one-by-one, to the original variable and an RF 

generated from each of these predictor pairs; the predictor pair with the best Brier score 

was stored. Then a third variable was added, choosing from all remaining predictors (one-
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by-one) yet to be selected; the triplet of variables producing the best skill in an RF was 

stored. Then each of the three variables in this triplet was removed in a stepwise fashion 

and the Brier score of an RF generated on the remaining two variables was recorded.  

Table 17. First five predictor variables selected in each of ten forward 
selection/backward elimation trials for each elevation region 

Low elevation 
 1st variable 2nd variable 3rd variable 4th variable 5th variable 

1 cpreciprate pw soilm_shallow 300omega 925temp 
2 cpreciprate pw soilm_shallow 400omega 300uwind 
3 cpreciprate 1013.25q soilm_shallow 700q 200hgt 
4 cpreciprate soilm_shallow pw 500omega 925vwind 
5 cpreciprate soilm_shallow 700q 500omega 850temp 
6 cpreciprate 400omega 2m_q soilm_shallow 850temp 
7 cpreciprate 300omega 2m_q soilm_shallow soilt_200cm 
8 cpreciprate 2m_q soilm_shallow 300vwind 500omega 
9 cpreciprate pw soilm_shallow 200vwind 300omega 
10 cpreciprate pw soilm_shallow 500omega soilt_shallow 

Moderate elevation 
1 sfccape sfccin preciprate soilt_100cm 2m_temp 
2 4layer_li flashiness preciprate 2m_temp 250hgt 
3 4layer_li sfctemp 700rh 10m_uwind 850temp 
4 4layer_li 700rh sfctemp 250uwind soilm_200cm 
5 4layer_li 250vwind sfctemp 2m_q preciprate 
6 soilt_100cm 250vwind 200uwind sfccin 4layer_li 
7 4layer_li sfctemp soilm_shallow 400div_q cpreciprate 
8 sfccape 500q flashiness 850uwind cpreciprate 
9 sfccape flashiness 250vwind soilm_shallow pw 
10 sfccape cpreciprate sfctemp 200vwind soilm_200cm 

High elevation 
1 700q preciprate sfctemp 300div_q 500vwind 
2 pw sfccin sfccape 500vwind soilt_100cm 
3 sfctemp 700rh 4layer_li 150hgt soilt_shallow 
4 2m_temp 400vwind 700rh 250uwind 150temp 
5 4layer_li sfctemp rh 700rh soilt_100cm 
6 700q cpreciprate sfctemp 500rh 200magnitude 
7 700q flashiness soilm_shallow 400vwind sfctemp 
8 sfctemp preciprate flashiness 700adv_q 2m_rh 
9 4layer_li pw sfccin 200omega flashiness 
10 rh sfctemp 300rh cpreciprate 150omega 
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The variable whose removal resulted in the best Brier score was removed. Then 

the double forward selection process was repeated, followed by a single backward 

elimination process until each RF was utilizing ten predictor variables. The first five 

selected for each of the ten trials in each elevation region are shown in Table 17. Table 

18 shows how frequently each predictor variable was chosen in the top ten during these 

trials. If a variable was selected ten times in its elevation regime, that means the variable 

was chosen to be used in the top ten in every trial. The results show that convective 

precipitation rate, the PW, and shallow soil moisture are critical to the success of the low 

elevation RFs, while specific humidity, vertical velocity (“omega”), and a combination 

of wind components and air temperatures at various levels are also helpful. In the 

moderate elevation trials, surface-based CAPE and best 4-layer LI are necessary, while 

surface air temperatures, precipitation rates, soil moisture, and flashiness help 

considerably. In the high elevation trials, best 4-layer LI, the surface air temperature, 

relative humidity, and flashiness appear most frequently. Note that, in Tables 17 and 18, 

speed shear, K index, mean-layer wind, and model PW anomaly were not available for 

selection by the RFs. 

There is one primary difference of interest between the results of these forward 

selection-backward elimination trials and the MDG analysis shown in Table 16: land-

surface variables (soil moisture, soil temperature, and flashiness) are much more 

prominent in the forward selection-backward elimination process. In this process, the RF 

is allowed to select the predictor variable that, on its own, produces the best Brier score 

relative to the Storm Data report archive. Then, in the next iteration of the process, a 

second predictor variable is selected that achieves the best Brier score when used in 
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combination with that selected in the first step. This results in the RF preferentially 

selecting as its second predictor something that provides skillful yet distinct information 

from the predictor selected in step one. Therefore, the RF selects variables drawn from 

different areas of the overall NWP parameter space. One example of this is the difference 

between land surface and atmospheric moisture information. For example, PW and 

shallow soil moisture are not highly correlated with one another, but each provides 

valuable information and is correlated with the occurrence of a flash flood. Therefore, 

both appear prominently in Table 18, because when the RF has only ten variables to use 

instead of 146, land surface information is at a relative premium. On the other hand, the 

MDG analysis in Table 16 ends up not containing the land surface variables for at least 

two reasons: 1) soil moisture and temperature are highly-correlated with one another 

throughout the model archive, which acts to artificially suppress their overall MDG 

values, since each land surface quantity is roughly equally as likely as any other land 

surface quantity to be selected as a splitter variable at a tree node and 2) the land surface 

model in the GFS uses a definition of soil moisture that depends heavily upon the texture 

of the soil particles at each grid cell, and so localized thresholds of soil saturation, not 

adequately resolved by this study’s division of the conterminous U.S. into three regions, 

would be needed to optimally use the soil moisture variables from the model.  

Derived Variables 

 Several candidate predictor variables were derived from base GFS fields for this 

study. Although these fields are relatively easy to compute and do not require any data 

outside that already available from the GFS, it is reasonable to ask whether these derived 

predictors improve the quality of the RF predictions. Based on other pieces of evidence, 

including the normalized histograms discussed in the previous section and the MDG 
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importance rankings, some of the derived variables, including K index, PW anomaly, and 

specific humidity at certain levels, are probably important and others like speed shear 

and wind speed (not shown) seem relatively unimportant. For the entire study period and 

each individual elevation region, an RF was generated without any derived predictor 

variable that appears in Table 4.  

Table 18. Frequency with which predictor variables were selected in the forward 
selection/backward elimination process 

Low elevation Moderate elevation High elevation 

Variable # 
selections Variable # 

selections Variable # 
selections 

cpreciprate 10 sfctemp 8 sfctemp 7 
soilm_shallow 10 4layer_li 6 4layer_li 6 
pw 5 cpreciprate 6 rh 5 
400omega 4 sfccape 5 sfccin 4 
500omega 4 soilm_shallow 5 flashiness 4 
300omega 3 flashiness 5 300uwind 4 
850temp 3 preciprate 4 700temp 3 
250vwind 3 250vwind 4 700q 3 
400uwind 3 sfccin 3 700rh 3 
2m_q 3 700rh 3 500vwind 3 
soilt_40cm 3 500rh 3 2m_rh 2 
200vwind 2 soilm_200cm 2 400omega 2 
mslpres 2 250uwind 2 soilt_200cm 2 
150uwind 2 200uwind 2 pw 2 
925hgt 2 250hgt 2 cpreciprate 2 
700q 2 10m_uwind 2 preciprate 2 
200hgt 2 pw 2 sfccape 2 
700hgt 2 rh 2 300div_q 2 
850vort 2 150cloud 2 soilt_100cm 2 
925uwind 2 300omega 2 400vwind 2 
300vwind 2 2m_temp 2 500rh 2 
(30 others) 1 soilt_100cm 2 soilm_shallow 2 
  soilt_40cm 2 700uwind 2 
  (24 others) 1 250uwind 2 
    (30 others) 1 

 
This RF was used to produce predictions on its independent validation dataset. 

The Brier score of these predictions was compared to the Brier score of predictions 

generated on the independent validation dataset of an RF trained using all the candidate 
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predictors. Over 15 trials on the low elevation dataset, the RF without any of the derived 

predictors resulted an average Brier score of 0.095, while the RF that included all of the 

derived predictors resulted in an average Brier score of 0.096. In the moderate elevation 

cases, the average Brier score with all variables was 0.102, and 0.103 when the derived 

variables were excluded. For the high elevation cases, the mean Brier score was 0.094 

when derived variables were excluded and 0.099 when they were included. These 

differences are statistically-insignificant at a 95% confidence level, which indicates that 

derived predictors are not required for the RF to generate skillful forecasts of flash floods. 

With the exception of the model PW anomaly, K index and specific humidity at various 

levels, none of these derived predictors are observed to have high MDG values or 

rankings, so it is possible that future manifestations of this method should include those 

three types of derived predictor while excluding all the others.  

Optimal Number of Predictors 

 The optimal number of predictor variables to be fed to an RF model is the smallest 

number that results in the best prediction quality, the least amount of computer time to 

generate and utilize the forest, and the easiest physical interpretation of the internal RF 

importance metrics. In the present study, a simple experiment is conducted to determine 

an optimal number of predictor variables. The experiment proceeds thusly: for each 

elevation region, generate a 300-tree RF using all available predictor variables and test 

on the RF’s independent validation dataset. Rank all the predictor variables using the 

MDG metric and record the Brier score of the RF’s predictions on the validation set. Now 

fit a new RF to the original training set, this time excluding the predictor variable with 

the lowest-ranked MDG value and record the new Brier score. Proceed, excluding the 

predictor with the new lowest-ranked MDG value each time, until only one variable is 
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left. Figure 28 is a plot the Brier score of the predictions from the validation set as a 

function of the number of available predictor variables.  

 
Figure 28. Plot of Brier score of RF predictions as a function of the number of 
predictor variables used to generate the RF 
 

The error bars in Figure 28 encompass the distribution of Brier scores expected 

when 15 independent fitting and validation trials are run at each step of the test. The Brier 

scores range from 0.092 (when 32 variables are used) to 0.185 (when one variable is 

used) for the low elevation cases, from 0.113 (when 79 variables are used) to 0.174 (when 

one variable is used) for the middle elevation cases, and from 0.092 (when 36 variables 

are used) to 0.158 (when one variable is used) for the high elevation cases. Figure 28 

shows a pattern similar to that observed from the RF meta-parameter (ntree, dtree, and 

mtry) analysis. The Brier score quickly improves as the first ten to 20 predictors are added 
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to the RF, with diminishing returns kicking in quickly after about the 20th predictor 

variable is added. There is a slight, though statistically-insignificant, decrease in 

performance once the optimum number of predictors is exceeded. This observation 

matches up with previously-reported statistical properties of the RF method regarding 

overfitting, collinear candidate predictors, and large numbers of candidate predictors.  

Table 19 contains the 20 predictors used in a parsimonious RF model resulting 

from this predictor optimization test. Most of these predictors have been associated with 

flash flooding and/or heavy rainfall in the literature. K index is the most important 

predictor for the low elevation cases and the second-most-important for the middle 

elevation cases (the K index is not defined for the high elevation cases and thus is not 

available for use there). The specific humidity at a particular level appears five times in 

the low elevation list, four times in the middle elevation list, and four times in the high 

elevation list. PW appears in the top five for all three sets of cases, and the model PW 

anomaly, though slightly less important than the raw PWs, appears in the top ten of all 

three lists. PW, specific humidity, and PW anomaly all speak to the amount of moisture 

available for precipitation in the atmosphere.  

Other commonalities between regions include surface-based CAPE, the best 4-

layer LI, omega at multiple levels, and the integrated relative humidity. CAPE and LI are 

measures of buoyancy and are predictors of moist convection, which is required for most 

flash floods (Doswell et al. 1996). There are also intriguing differences between the three 

lists. For the low elevation cases, soil moisture from 0 – 10 cm and from 10 – 40 cm BGL 

appears in the list, but no soil moisture quantity appears in the middle or high elevation 

cases. The middle and high elevation regions are mostly in the western third to half of 
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CONUS; previous studies have suggested that soil moisture is less important to flash 

flood forecasting in the western U.S. (Smith 2003). 

Table 19. Most important predictors (MDG) as determined by the variable elimination 
process 

Low elevation Middle elevation High elevation 
MDG 
rank Variable MDG rank Variable MDG rank Variable 

1 k 1 4layer_li 1 700q 
2 700q 2 k 2 4layer_li 
3 pw 3 pw 3 2m_q 
4 cpreciprate 4 700q 4 sfccape 
5 pw_anom 5 850q 5 pw 
6 preciprate 6 250vwind 6 sfccin 
7 850q 7 2m_q 7 sfctemp 
8 400omega 8 pw_anom 8 500uwind 
9 4layer_li 9 sfccape 9 pw_anom 

10 500omega 10 500q 10 2m_temp 
11 soilm_shallow 11 200vwind 11 500vwind 
12 300omega 12 300vwind 12 500q 
13 rh 13 sfctemp 13 rh 
14 925q 14 sfccin 14 400omega 
15 250omega 15 400vwind 15 400q 
16 sfccape 16 2m_temp 16 250temp 
17 500q 17 500omega 17 150hgt 
18 250vwind 18 150vwind 18 300uwind 
19 2m_q 19 500vwind 19 10m_vwind 
20 soilm_40cm 20 rh 20 500omega 

 
The v-components of the winds at various levels are in all three lists, but the 

properties of the wind fields certainly appear more frequently in the middle and high 

elevation cases. The majority of the flash floods in the middle elevation dataset occurred 

in the High Plains and the southwest monsoon regions. Heavy rainfall and flash floods 

in both these regions are associated with southerly winds and associated northbound 

moisture transport (i.e. positive v-components) from the Gulf of Mexico and the Gulf of 

California, respectively. The cases from the high elevation dataset also frequently arise 

from the southwest monsoon pattern. Low-level air temperatures appear in the middle 
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and high elevation lists, which is likely also associated with the seasonal cycle of flash 

floods observed in the southwest monsoon region and with the spring and summer severe 

weather season in the High Plains. The appearance of the 250-hPa meridional wind in 

the low elevation list is likely associated with jet streaks and large-scale forcing for ascent 

(which is why direct forecasts of ascent in the omega fields also appear in the list). Note 

that the GFS QPF appears only in the low elevation list. Both are absent from the other 

two lists (each quantity is ranked between 20th- and 40th-most-important by MDG in 

each list); there are several possible explanations for this. One is that the GFS QPF is 

those regions of the U.S. is less skillful than it is the lower elevation area. Another likely 

component is that western flash floods occur as a result of small-scale individual storm 

cells, while eastern flash floods are associated with large-scale mesoscale convective 

complexes and other weather systems that occur with characteristic length scales that can 

be adequately resolved by 1-degree GFS data. Strong synoptic-scale forcing for ascent is 

clearly critical to the overall success of this method as applied to GFS data.   

No derived variables appear in the top 20 of any of the three lists with the 

exception of the K index and the model PW anomaly. Many past studies have found that 

moisture flux convergence (MFC) is an important predictor in flash flood forecasting, 

both at individual atmospheric levels and in a vertically-integrated form. The vertically-

integrated form was not tested in the present study, but the MFC calculated on any 

individual level appears far down the list of variable importances in all three regions. 

Other derived variables, including wind speed and speed shear, also appear far down the 

three lists. While many of these quantities have been associated with flash floods, they 

have not been used to distinguish between flash floods and non-floods. Therefore, it is 
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likely that low to moderate speed shear or weak layer-mean winds are necessary but not 

sufficient conditions for the development of a flash flood. It is also possible that 

directional wind shear, not considered in the present study, may be more applicable to 

this problem than speed shear or the mean wind through an atmospheric layer. 

Based upon the results of this trial, the RF should continue to be used with all 

available predictor variables as long as they are available from the GFS post-processor. 

The process of calculating wind speeds, speed shears, PW anomaly, K index, and the 

other derived variables is extremely fast and adds little to no overhead to the process of 

generating predictions from GFS data in real-time. Less important raw GFS model fields 

should continue to be included in any RF, as well, because the GFS model data are 

distributed in a single bundle, so inclusion of relatively unimportant GFS model fields 

requires only a trivial additional amount of required processing and storage.  

However, there is one major advantage to variable reduction: interpretability. 

When used in a context in which diagnosis of the pattern and magnitude of probabilistic 

predictions is critical, a 20-variable RF will be easier to understand and explain. Because 

MDG is calculated on the basis of the change in Gini impurity at each node, MDG 

variable importances can be automatically provided to end-users of the RF predictions 

associated with each run of the GFS.  

Summary 

The experiments outlined in this chapter demonstrate that the RF algorithm can 

successfully be applied to GFS output to skillfully forecast flash floods and 

simultaneously improve our understanding of the atmospheric and hydrologic factors that 

contribute to them. Expert variable selection was used initially to restrict the number of 
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GFS model fields provided to the RF algorithm. Then, by aggregating the results of past 

case studies and larger-scale analyses of flash flood events across the U.S., a series of 

additional candidate predictors were derived and also used in the RF algorithm, although 

most of these additional predictors do not result in statistically-significant improvements 

in the skill of the RF-generated predictions. 

Several tests outlined in this chapter resulted in RFs that use various combinations 

of candidate predictors and cases from different regions of the U.S. Results from these 

show that plausible physical interpretations of the RF output can be made. However, 

additional research, including generating a larger number of regional forests instead of 

just three, could yield even better physical understanding of how environments favorable 

for flash floods should be characterized. 
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Chapter 5: Case Studies and Research-to-Operations Activities 

 This chapter consists of four short examples for which the proposed machine 

learning (ML) flash flood prediction system was put to use. Two of these examples are 

from archived case studies (May 31, 2013 in Oklahoma City, Oklahoma [OKC, OK] and 

May 2015 across the U.S. Southern Plains) and are designed to serve as examples for 

how ML predictions of flash floods would look in real-time use. The third example 

describes the set-up, use, and evaluation of ML flash flood predictions based upon Global 

Forecast System (GFS) model data during the 2016 Multi-Radar/Multi-Sensor (MRMS) 

Hydrometeorological Testbed Experiment (HMT-Hydro) conducted as part of the 2016 

Experimental Warning Program (EWP) at the Hazardous Weather Testbed (HWT) at the 

National Weather Center (NWC) in Norman, OK. Finally, the fourth example consists of 

geographical cross-validation of the proposed ML model, via application of the proposed 

model to an archive of reports of flash floods from the European continent, collected by 

the European Severe Storms Laboratory (ESSL). The fourth example demonstrates that 

ML predictions of flash floods can be generated globally and in real time using the same 

strategies outlined in Chapters 3 and 4.  

31 May 2013: Oklahoma City, Oklahoma 

 From the evening of Friday, May 31, 2013 into the morning of Saturday, June 1, 

2013, an area of extremely heavy rainfall developed over central OK and the OKC, OK 

metropolitan area. Earlier on that Friday afternoon, a tornadic supercell developed just 

west of the built-up area of OKC; the tornado and its associated impacts received 

continuous coverage from all major broadcast television outlets in OKC between 2200 

UTC (5 pm Central Daylight Time [CDT]) 31 May 2013 and 0500 UTC (midnight CDT) 
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1 June 2013. Just 11 days before, a devastating tornado had torn through the heart of 

Moore, OK, a suburban community abutting the southern edge of OKC. The combination 

of public fear of tornado impacts and wall-to-wall television coverage of severe weather 

throughout the second half of May 2013 resulted in tragedy on the evening of May 31 

and the morning of June 1, when 14 people lost their lives due to flash flooding (Suffern 

et al. 2014).  

 As the event unfolded, I closely monitored broadcast television and social media 

outlets, and in the immediate aftermath of the event monitored print media, as well. As a 

result of this monitoring process, I collected several dozen highly-specific locations of 

reported impacts of the flash flood. I subsequently geocoded these to latitude-longitude 

pairs collocated with susceptible infrastructure using aerial imagery to identify relevant 

bridges, culverts, and other structures. Later, I interviewed a representative of the City of 

Oklahoma City Police Department about the evolution of the flash flood and the 

municipal government’s response to it. As a result of this interview, I was provided with 

detailed information about the flash flood’s impact to neighborhoods across OKC and 

the surrounding communities of central OK (F. Barnes, personal communication, 

November 6, 2013). Because there is evidence that the impacts of the flash flood were 

made worse by abnormally large numbers of vehicles on the highways and roads of 

central Oklahoma during the event, I obtained and analyzed vehicle counts from several 

dozen points across the OKC metropolitan area from the Oklahoma Department of 

Transportation (ODOT) for May 31, 2013 (M. Folsom, personal communication, April 

25, 2014). These processes, though labor-intensive, resulted in significantly more 
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information about the impacts of the flash flood than appear in official National Weather 

Service (NWS) sources like Storm Data or Suffern et al. (2014).   

Meteorological Synopsis 

 According to the National Severe Storms Laboratory’s (NSSL) MRMS radar 

quantitative precipitation estimate (QPE) product, a series of supercell thunderstorms 

produced widespread rainfall amounts between 150 and 300 mm over central OK 

between 1200 UTC 31 May 2013 and 1200 UTC 1 June 2013, as shown in Figure 29. 

 
Figure 29. 24-h NSSL MRMS Q2 (radar only) QPE valid 1200 UTC 1 June 2013, with 
the municipal boundaries of the City of OKC marked with the black line at the center of 
the state of Oklahoma 
 
 As evidenced by Figure 29, the greatest QPE was extremely focused in a zonally-

oriented two-county wide band directly centered over the OKC metropolitan area. 

Comparison of the QPE product in Figure 29 with corresponding rain gauge data from 
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the Oklahoma Mesonet indicates generally fair agreement between the radar-based 

estimates and “ground-truth” data, but there is some slight overestimation (as shown in 

Figure 30) of rainfall by the radar-only QPE product. 

 
Figure 30. 24-h rainfall totals from Oklahoma Mesonet rain gauges (in inches) overlaid 
on corresponding NSSL MRMS Q2 QPE, valid 1200 UTC 1 June 2013  
 
 Data from the Oklahoma Mesonet’s “Oklahoma City North” station, (shown with 

a “7.23"” in Figure 30), shows that rainfall began at 2330 UTC on May 31 and ended at 

0940 UTC on June 1. Of the 184 mm recorded in ten hours and ten minutes at this gauge 

(18 mm h-1), 80 mm fell during the first 90 minutes of the event (53 mm h-1) and another 

100 mm fell during a 5-h period near the end of the event (20 mm h-1). The remaining 4 

mm of rainfall occurred sporadically over the last three hours and forty minutes of the 

event. Therefore, the rainfall forcing to this flash flood was characterized by two distinct 
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periods: one short period with very heavy rainfall rates and a second, longer period, with 

just heavy rainfall rates.  

 The environment in which these rain totals occurred was characterized by high 

moisture and instability. The closest upper-air sounding site to the flash flood is located 

in Norman, OK (OUN), near the dot labeled “3.09"” in Figure 30. In the 1200 UTC 31 

May 2013 sounding from OUN, mean specific humidity, q, was observed to be 16.6 g/kg, 

precipitable water (PW) was 37.1 mm, and the K index was 29. A special sounding was 

conducted six hours later, at 1800 UTC 31 May 2013, and at this time, the PW had 

increased to 38.1 mm, but q was still 16.6 g/kg and the K index decreased to 26. These 

three parameters, according to sounding data, were each maximized in the 0000 UTC 

sounding from 1 June 2013, where PW increased to 42.2 mm, q was 18.2 g/kg, and the 

K index was 33. Relative to the historical climatology of observed PW at OUN, the 1200 

and 1800 UTC values were greater than the 30-d moving average of 90th percentile PWs 

and the 0000 UTC PW was the highest ever recorded for that date and time.  

 Forecast tools were in general agreement in the days before the event that a flash 

flood was possible. However, these tools often disagreed upon on the location of potential 

flash flood impacts. The NWS Weather Prediction Center (WPC) issued a quantitative 

precipitation forecast (QPF) at 0949 UTC on May 31, valid for the 24 hours ending 1200 

UTC on June 1, which showed 101 mm of rain falling in far northeastern OK, with 

amounts ranging from 19 to 38 mm over the area in which the flash flood was later 

observed. The Norman, OK Weather Forecast Office (OUN WFO) noted the potential 

for heavy rainfall and an associated flash flood beginning on the afternoon of Tuesday 

May 28; this concerned continued in the area forecast discussions issued on Wednesday, 
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Thursday, and Friday afternoons. A Flash Flood Watch (FFA) for central and north-

central OK was issued on May 30 at 1730 UTC, as shown in Figure 31. 

 
Figure 31. FFA issued 1730 UTC 30 May 2013 for potential flash flood between the 
evening of 31 May 2013 and the morning of 1 June 2013 
 
 As the event approached, convection-allowing numerical weather prediction 

(NWP) models (CAMs) highlighted northern OK for heavy rainfall potential. QPF from 

the High Resolution Rapid Refresh (HRRR) model in particular matched the shape and 

time of the resultant QPE (Figures 20 and 30), but with large location errors, shown in 

Figure 32. The HRRR QPF is centered approximately 150 km northeast of where the 

greatest observed rainfall fell.  

 At 2221 UTC 31 May 2013, prior to the development of the flash flood, the WPC 

issued a Mesoscale Precipitation Discussion (MPD) highlighting several ingredients 

favorable for a flash flood over parts of the southern plains, including moist southerly 

inflow, surface dew point temperatures in the low 70s °F (low 20s °C), PW just under 40 

mm, 8 °C km-1 lapse rates from 700 to 500 hPa, and 3,000 to 5,000 J kg-1 of convective 
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available potential energy (CAPE). Four-and-a-half hours later, at 0257 UTC 1 June 

2013, a second MPD suggested that “1-2 inches of rain per hour [25-50 mm h-1] is 

expected with flooding possible where local training allows activity to last a couple of 

hours.” This second MPD referenced 850-hPa flow running largely parallel to a 

stationary boundary draped across northwestern OK; this boundary had helped to initiate 

the tornadic convection that later evolved into the heavy rainfall producer. What was not 

forecast by this second MPD was the redevelopment of convection and associated heavy 

rain rates that dropped 100 mm of rain over 5 hours in areas that had just received 80 mm 

of rain in 90 minutes.  

 
Figure 32. HRRR 15-h QPF initialized 1800 UTC 31 May 2013 and valid 0900 UTC 1 
June 2013 (K. Mahoney, personal communication, January 9, 2014) 
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Hydrological Synopsis 

 Throughout 2012, Will Rogers World Airport in OKC (KOKC) received 81% of 

its 1980-2010 normal annual precipitation. In January 2013, KOKC received 82% of its 

1980-2010 normal January precipitation. Lake Hefner, one of OKC’s primary reservoirs, 

reached its lowest level since the 1970s; boats at a popular marina were entirely cut off 

from water that January as the water level dropped that winter (Crum 2013). On January 

30 and continuing through February 22, the City of OKC exercised their rights to water 

from Lake Canton, located on the North Canadian River 100 km upstream of OKC, due 

to worries about the City’s water supply for the upcoming spring and summer seasons. 

Over half the water volume stored in Canton was released into the North Canadian River 

during this time. That amount of water (equivalent approximately 33% of Lake Hefner’s 

normal capacity) caused Hefner’s level to jump by 3.5 m in February 2013; Lake Canton 

did not return to normal levels until over three years later, on April 22, 2016. After above-

normal rains at KOKC in February 2013, and below normal rains in March, all of 

Oklahoma was experiencing severe (or worse) drought at the end of March. In particular, 

the area eventually affected by the flash flood at the end of May was in severe drought at 

the end of March. 

 In April, KOKC recorded 192 mm of precipitation – 247% of its 1980-2010 

normal April precipitation, and more precipitation in a single month than had fallen in 

the entire period from October 15, 2012 to March 31, 2013. As a result of this rain, and 

that which fell in May 2013 prior to the 31st, most of central OK had exited drought by 

May 28, and only the far western and northern parts of the OKC metropolitan area were 

considered “abnormally dry”. Additionally, most of the Oklahoma Mesonet stations in 

the OKC metropolitan area recorded greater than 90% soil saturation at 5 and 25 cm 
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below ground level in the weeks prior to the flash flood. May 2013 ended up being the 

wettest May, and the second-wettest month ever, in OKC history, as 312% of the city’s 

normal May precipitation was recorded. (Since that time, May 2015 has obliterated both 

marks; OKC received nearly 450% of its normal May rainfall in May 2015, a full 33% 

more than that observed in May 2013).  

 OKC is drained by the North Canadian River and the Deep Fork Creek. The North 

Canadian (officially named the Oklahoma River within the boundaries of Oklahoma 

County, for which OKC is the county seat) flows through the heart of the city and drains 

much of the city’s southern side, as well as its near northern side. The Deep Fork Creek 

drains the vast majority of northern OKC, including some areas quite close to the 

northern bank of the North Canadian. Brock Creek and Lightning Creek, tributaries of 

the North Canadian, drain two small, heavily-urbanized catchments on the city’s near 

south side. Although both creeks are surrounded by a fair amount of parkland, many low-

income homes lie in the watersheds of these two creeks. Through central OKC, the North 

Canadian has been controlled by three low-water dams since the early 2000s. An 

additional upstream dam at Lake Overholser, approximately 10 km upstream of 

downtown OKC, serves recreational, water storage, and flood control purposes.   

 On the night of May 31, 2013, heavy rains overwhelmed the Lightning Creek 

watershed; hundreds of homes were affected by the waters. On the north side of town, 

waters from the Deep Fork Creek flooded low-lying spots on Interstate Highway 44 (I-

44) and Interstate Highway 235 (I-235). Areas in the North Canadian flood plain, 

including downtown OKC, had not been seriously affected by floodwaters in decades, 
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but basements and ground floors alike throughout the central business district were 

subject to flooding during the event. 

Impacts 

The impacts from the flash flood in OKC were significant. Traffic was snarled, 

homes and businesses were flooded, and 14 people lost their lives (F. Barnes, personal 

communication, November 6, 2013). Figure 33 shows areas where roads were closed or 

damaged due to the flash flood; it also contains the locations of the reported fatalities 

resulting from the event. 

 
Figure 33. Fatalities and major infrastructure impacts observed as a result of the May 
31, 2013 flash flood in central OK 
 
 Of the 14 fatalities, seven occurred when a family took shelter from what they 

believed to be a violent tornado in a culvert near NW 30th St. and N. Meridian Ave.; this 
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culvert, though often dry, contains the headwaters of the Deep Fork Creek. Days after 

the event, one body from this group was recovered in the Deep Fork Creek at NW 36th 

St. and N. May Ave., just over 3 km downstream, and another body was recovered from 

the Deep Fork Creek just south of the junction between I-35 and I-44, 13.5 km 

downstream of the culvert. This family primarily spoke Spanish at home; in central OK, 

Spanish-language severe weather and flash flood television and radio coverage is harder 

to obtain than English-language coverage (Suffern et al. 2014).   

 Another five fatalities were reported when a group of 11 people took shelter from 

the tornado in a culvert just south of the N. Canadian River at I-44. Four bodies were 

recovered near the culvert, while another was recovered in the days after the event atop 

the low-water dam between S. Walker Ave. and S. Western Ave. Another two fatalities 

were reported the morning after the event; one victim drove his vehicle into the swollen 

N. Canadian River in rural NE Oklahoma County and the second victim was reported to 

have died from driving into floodwaters near the town of Clearview, OK, in Okfuskee 

County in east-central OK.  

Figure 34 is a map of structures damaged in central OK as a result of the flash 

flood. The City of OKC estimated that the flash flood caused $17 million in infrastructure 

damage across central OK, primarily in OKC proper, although damage to schools, parks, 

and other structures was reported in Edmond, Luther, Jones, Choctaw, Midwest City, and 

Del City, as well. Roads were the most-frequently impacted type of structure in the event, 

with over 40 washouts and closures reported. Between 0014 and 1400 UTC 1 June 2013, 

the City of OKC dispatched first responders to 114 separate calls for flood rescue or flood 

assistance, mainly involving motorists.  



 
 

134 

 
Figure 34. Map of structures damaged as a result of the May 31, 2013 flash flood in 
central OK, with dark shading corresponding to increasing monetary impacts by 
municipality 
 

Traffic was abnormally high during the event, according to ODOT data shown in 

Figure 35 (M. Folsom, personal communication, April 25, 2014). An EF-3 tornado, at 

2.6 km, the widest ever recorded in official NWS statistics, affected central Canadian 

County, just to the west of OKC, prior to the flash flood. In response, many people to the 

east of this, in the OKC metropolitan area, fled their homes via automobile. In Union 

City, OK, traffic on May 31, 2013 was 88% higher than average just to the south of the 

tornado, as residents (and likely, storm chasers, too) filled U.S. Highway 81 (US-81). In 

between El Reno and Yukon, OK, traffic on I-40, which was closed for hours after the 

tornado, was 13% lower than average. Many residents of central OKC drove south or 

east, away from the tornado and the flooding rainfall. Traffic on US-77, I-35, and State 
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Highway 9 (SH-9), all in Norman, OK just to the south of OKC, was 46%, 25%, and 

17% higher than average, respectively. In Mustang, OK, on OKC’s southwest side, traffic 

on SH-152 was 25% higher than normal, while I-35 in Moore, OK, between OKC and 

Norman, was 16% busier than the 2012 average.   

 
Figure 35. Percent change in daily traffic (compared to the previous year’s average 
annual daily traffic) on May 31, 2013 at selected ODOT traffic monitoring stations in 
central OK  
 
Results of Random Forest Predictions 

 The random forest (RF) model proposed in Chapter 3 was applied to GFS 

forecasts valid between 0000 UTC 24 May 2013 to 1800 UTC 1 June 2013. In this case, 

the RF model generally performed well, correctly identifying that there was a threat of 

receiving Storm Data reports of flash floods from OK to Missouri (MO), Illinois (IL), 

and Indiana (IN) on the night of May 31 and the morning of June 1. Figure 36 contains 
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the result of applying the RF model, fit to data drawn from the entire archive, to a 120-h 

(5-d) GFS forecast from 0600 UTC 27 May 2013, valid at 0600 UTC on 1 June 2013. In 

Figure 36, the RF probabilities have been calibrated using the power-law relationship 

derived from the entire archive of cases. Figure 36 (and 37, 38, 39, 40, 41, and 42) 

displays probabilities from 0-7% to improve the visualization of individual pixel 

probabilities. From the model calibrations discussed in Chapter 3, the maximum 

confidence the low-elevation RF can have in a flash flood occurring at a specific grid cell 

is 14%. Verifying Storm Data reports of flash floods are shown with gray dots. 

 
Figure 36. RF 120-h forecast probability of a report of a flash flood, valid 0600 UTC 1 
June 2013 
 
 Although the forecast in Figure 36 missed the Storm Data report in northern Iowa 

(IA), it did correctly identify a line of potential flash floods extending from central OK 

to northern Ohio (OH) and southeastern Michigan. The 120-h forecast was slightly offset 
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to the south and east of the eventual confirmatory reports. The greatest probability of a 

Storm Data report was forecast in northern Arkansas (AR) and east central OK.  

 Figure 37 is a 48-h (2-d) GFS forecast from the same model initialization in 

Figure 36.  

 
Figure 37. RF 48-h forecast probability of a report of a flash flood, valid 0600 UTC 1 
June 2013  
 
 The 48-h forecast is generally better-aligned with the swathe of Storm Data 

reports across the Midwest and mid-Mississippi River valley. However, it does not 

identify central OK as a potential hotspot and also incorrectly predicts a moderately-high 

probability of a Storm Data report in southwestern Pennsylvania. The 12-h (0.5-d) 

forecast, shown in Figure 38, correctly keys in on central OK, and better-forecasts the 

reports in MO, IL, and IN. In general, the 12-h forecast is shifted slightly too far to the 

south and east, but performed fairly well overall. Although the probabilities resulting 

from the calibration process seem low, it is important to remember that the base rate of a 
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flash flood for the entire archive is 0.17%, so a probability of even 5% means a flash 

flood is nearly 30 times more likely than it would be on a “typical day”.  

May 2015: U.S. Southern Plains 

 In May 2015, heavy rain affected the Southern Plains, especially OK and Texas 

(TX). In OKC, as stated in the previous section, the all-time record for the wettest month 

was shattered by May 2015, as the city received 450% of its 1980-2010 normal May 

rainfall. Wichita Falls, TX received 543% of its normal May rainfall during May 2015. 

Major flood and flash flood impacts were felt in the states of Kansas (KS), AR, and 

Louisiana (LA) (Breslin 2015).  

 
Figure 38. RF 12-h forecast probability of a report of a flash flood, valid 0600 UTC 1 
June 2013 
 
 On May 18, 2015, highways in northeast LA were flooded, along with nearly a 

dozen homes. In northwest LA, roads were closed in several parishes, many homes were 

flooded, a child was killed, and another child and an adult were both injured when a car 
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was washed away by swift water. In TX, San Angelo Regional Airport was closed and 

cars were washed away by floodwaters. Major highways and city streets were closed in 

dozens of communities across eastern, southeastern, and south central TX. Multiple 

rescues and one automobile-related fatality were also reported in TX during the event 

(NCEI 2015). 

Results of Random Forest Predictions 

 The proposed RF model was applied to GFS forecasts from 2300 UTC 11 May 

2015 to 1200 UTC 18 May 2015. The 156-h (6.5-d) forecast, valid 1200 UTC 18 May 

2015, is shown in Figure 39.  

 
Figure 39. RF 156-h forecast probability of a report of a flash flood, valid 1200 UTC 
18 May 2015 
 
 Although the RF product shows some false alarming in MO, southern AR, and 

northern Mississippi (MS) and Alabama, it correctly identifies the majority of the impacts 

of the eventual flash floods across northern LA and eastern and southern TX. Figure 40 
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shows the 60-h (2.5-d) forecast valid at the same time, while Figure 41 contains the 

corresponding 12-h forecast. In the 60-h forecast there are significant false alarms from 

AR all the way northeast to OH. (There were Storm Data reports of flash floods in AR, 

but they occurred three hours prior to the valid time of these forecasts.) In the 12-h 

forecast, these false alarms have been reduced in area and magnitude, but are still present 

in MS, Tennessee (TN), and Kentucky (KY).  

 
Figure 40. RF 60-h forecast probability of a report of a flash flood, valid 1200 UTC 18 
May 2015 
 

Hydrometeorological Testbed – Hydrology 2016 Experiment 

 The 2016 HMT-Hydro experiment ran from June 20, 2016 to July 15, 2016, and 

involved 16 NWS forecasters from WFOs and River Forecast Centers (RFCs) across the 

U.S. Forecasters were asked to use a series of experimental flash flood monitoring and 

forecasting tools to issue experimental FFAs and flash flood warnings (FFWs). For 

details on the monitoring tools available to the forecasters, see Gourley et al. (2016). 
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Martinaitis et al. (2016) explain the experimental setup used in the 2015 iteration of the 

HMT-Hydro Experiment, while Clark and Gourley (2015) explain and describe the 2014 

iteration of what was, at that point, called the HWT-Hydro Experiment. HMT-Hydro 

2016 was conducted in cooperation with the Flash Flood and Intense Rainfall Experiment 

(FFaIR) at WPC. Information about FFaIR’s experimental setup was given in Barthold 

et al. (2015).  

 
Figure 41. RF 12-h forecast probability of a report of a flash flood, valid 1200 UTC 18 
May 2015 
 

During HMT-Hydro 2016, forecasters had access to a real-time, quasi-operational 

version of the RF model described in and proposed by Chapters 3 and 4 of this 

dissertation. This RF was fit to the study period and each elevation region identified in 

Chapter 3. It included all candidate predictor variables from Chapter 3 except for those 

related to speed shear, mean layer wind, the K index, and model PW anomaly. 

Additionally, the training, testing, and validation datasets used to create this RF included 
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hourly linearly-interpolated grids of all GFS model fields and derived predictors; in the 

rest of this dissertation, RFs were grown from original GFS model data and derived 

predictors arising from original GFS model data, with no hourly linear interpolation. The 

HMT-Hydro 2016 RF was fit to GFS3 model data, at a 1.0-degree x 1.0-degree 

resolution, as in the rest of the dissertation, but the RF was applied to the newly-available 

0.25-degree x 0.25-degree resolution GFS to generate probabilistic predictions of 

receiving a report of a flash flood in a given grid cell. Each day, the RF was applied to 

6-, 12-, 18-, and 24-h forecasts from each 1200 UTC cycle of the GFS, which yielded 

probabilities valid at 1800 UTC on day 1, and 0000, 0600, and 1200 UTC on day 2. 

Results of National Weather Service Forecaster Surveys 

 The experimental FFAs and FFWs resulting from each forecasting shift during 

the experiment were evaluated via a series of survey questions. Two questions asked in 

each forecast evaluation session concerned the performance of the RF predictions 

available to the forecasters. Figure 42 summarizes the results of these two questions. In 

the first question, each forecaster was asked, for each experimental forecast shift, to rate 

his or her agreement with the statement “The spatial accuracy of the GFS prediction 

probability forecast for the previous day was skillful,” via a five-segment Likert scale 

(Likert 1932). If we assign a value of “1” to “Strongly Disagree” and “5” to “Strongly 

Agree”, as shown in Figure 42, the average score on this question over the 12 

experimental forecast shifts was 2.6, between “Neutral” and “Disagree”. When asked to 

rate their degree of agreement with “The probability values of the GFS prediction 

probability forecast for the previous day were accurate,” the average score was 2.8, also 

between “Neutral” and “Disagree”. 
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Figure 42. Results of 2016 HMT-Hydro survey questions on the use of GFS RF 
predictions of flash floods in a testbed environment 
 
 In association with each question, forecasters were allowed to provide comments 

recorded by the personnel facilitating each evaluation session. These comments are 

reproduced verbatim in Table 20. In general, the comments are focused on the limitations 

imposed upon the RF method by the use of GFS NWP output, which is generally better 

at forecast synoptic-scale conditions due to its relatively coarse resolution. Of particular 

interest are the comments of June 29, 2016 and June 30, 2016. On June 29, 2016, a 

forecaster noted that the RF tool would likely be of less utility in western U.S. flash flood 

forecasting, an assertion borne out by the results presented in Chapters 3 and 4 of this 

dissertation. On June 30, 2016 widespread flash floods were reported in the Las Vegas, 

Nevada area. All available operational NWP guidance was largely unsuccessful at 

forecasting environments and QPF supportive of an outbreak of flash floods, and the GFS 

was no exception to this rule.  
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Table 20. Comments made by forecasters regarding GFS RF flash flood predictions 
during the 2016 HMT-Hydro Experiment 

Date Spatial coverage Magnitude 
20-Jun-16 No data available No data available 
21-Jun-16 No comments No comments 
22-Jun-16 No comments Would be better if values were 

higher 
23-Jun-16 No comments No comments 
27-Jun-16 Difficult event to pinpoint.  The 

line was pushing thin and fast…do 
not expect GFS to pick up on that. 

Just seemed to be of no value here. 

28-Jun-16 As a whole, it did fairly well.  
They were not high probability 
values, but it basically got the 
areas correct.  One said he would 
look at it as an area of 
interest…situational awareness 
tool.  It is a good way to highlight 
areas of interest a couple days out, 
but maybe not so great for 0-6 hr. 

No comments 

29-Jun-16 This product will not likely work 
out west because it is the GFS. 
One forecaster said neutral 
because there were low values and 
not much happened…so perhaps it 
gave some decent info. 

Probabilities 0 to near 0 and not 
much happened. 

30-Jun-16 This was a big event, and GFS 
totally missed it. 

Ditto. 

11-July-16 It was off spatially but in terms of 
the general region of the country it 
was okay.   

The model is useful as a potential 
red flag even if its spatial accuracy 
is off. Can be good to use along 
with the GFS. 

12-July-16  By product of the resolution that 
the model missed a storm event 
over a town. Race won't be held 
accountable for that :-) 

13-July-16 It had an idea that this area would 
have something, it’s just displaced. 
Majority says it missed a little bit. 

There should have been something 
there bc it’s saying zero and yet 
roads were washed away. 
Limitations of the GFS are well 
understood. 

14-July-16 It hinted at something. It was a lot 
better than previous days. 

General consensus is meh 
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However, on other days, the RF tool provided some value to the forecast process, 

including on June 28, 2016 and July 11, 2016. At the end of the experiment’s first week, 

the group of forecasters chose to highlight the RF tool during a webinar designed to 

transmit their findings from the testbed experiment to an operational NWS audience. 

They felt that the RF tool was reasonably useful in synoptically-forced situations, but 

was unable to adequately resolve mesoscale and storm-scale features associated with 

more isolated flash floods.  

Case Study: Fatal Flash Flood in West Virginia 

 On June 23, 2016, heavy rainfall and the consequent flash flood resulted in a 

tragic loss of life in West Virginia (WV). Twenty-four people lost their lives during the 

event, the deadliest flash flood in the U.S. since flash floods claimed 27 lives in TN, MS, 

and KY (Sterling et al. 2016). As a part of the FFaIR Experiment at WPC, HMT-Hydro 

2016 forecasters were provided each day with national 1500 UTC Day 1 to 1200 UTC 

Day 2 outlooks identifying the probability of excessive rainfall in an area (defined as the 

probability of QPE exceeding flash flood guidance). Figure 43 contains this WPC 

outlook (valid from 1500 UTC 22 June 2016 to 1200 UTC 23 June 2016, shown as 

colored contours), the 24-h RF forecast probability of a Storm Data report of a flash flood 

(valid 1200 UTC 23 June 2016, shown as gridded data), and the associated confirmatory 

NWS local storm reports (LSRs) of flash floods (valid from 1200 UTC 22 June 2016 to 

1200 UTC 23 June 2016).  

 In this example, the GFS RF probabilities correctly ignored the contoured areas 

over southern Colorado and northern IL and IN. However, both the human forecasters 

and the ML tool missed the LSR in northern IA.  The ML correctly identified low 

probabilities associated with the LSR in northern KY, but overforecast probabilities in 
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Pennsylvania and North Carolina. Both methods correctly zeroed in on the greatest 

impacts, which occurred in OH and WV. Note that the WPC forecasters participating in 

the FFaIR Experiment did not have access to the GFS-derived RF probability product 

when drawing their forecast contours. 

 
Figure 43. RF 24-h forecast probability of a report of a flash flood and experimental 
WPC probability of excessive rainfall, valid 1200 UTC 23 June 2016 
 

Global Flash Flood Prediction 

European Severe Storms Laboratory Report Archive 

A database of flash floods across Europe is available from the European Severe 

Storms Laboratory, or ESSL. This European Severe Weather Database (ESWD) contains 

important weather hazards occurring across the European continent and in regions 

adjacent to the European continent (Dotzek et al. 2009). All ESWD reports tagged as 

flash floods were downloaded for the same period as the entire archive used in the rest 

of this dissertation. Figure 44 is a map of these reports (N = 14,013), restricted to those 
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that passed ESSL’s “QC1” or “QC2” quality checks, which mean that the report was 

“confirmed by a reliable source” or that “extraordinary work has been performed to 

verify the validity of the all pieces of information given in a certain report”, respectively. 

Using the procedures outlined in Chapter 3, these reports have been collocated with GFS 

model fields and predictors derived therefrom in space and time. Then, this European 

predictor-and-predictand matrix was used to grow an RF, but in this test, elevation was 

not accounted for in any way; in other words, only one forest is grown for all of Europe 

and its surrounding regions. 

 
Figure 44. Number of ESSL reports of flash floods (N = 14,013) per grid cell over the 
entire archive 
 

When applied to its independent validation datasets over 50 different sampling, 

fitting, and validation trials, this European RF had a Brier score between 0.104 and 0.088, 

comparable to that achieved with the U.S. low-elevation RF, which ranged from 0.090 

to 0.099. The mean Brier score of the European RF was 0.093, while the mean Brier 
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score of the U.S. RF (over low elevation cases) was 0.094. Table 21 summarizes the most 

important variables in the European RF by their mean decrease in Gini impurity (MDG) 

scores over 50 trials. The most important variable, on average, is the K index, just as it 

is in the U.S. Specific humidity at low levels is quite important, as well, as is the 

precipitation rate, convective precipitation rate, best 4-layer LI, surface-based CAPE, and 

PW.  

Table 21. Most important prediction variables by MDG for the European flash flood 
RF fitting process 

Mean 
MDG rank 

Variable 
name 

Range of 
MDG ranks Std. dev. Mean MDG 

score Std. dev. 

1 k 1 to 6 0.9 0.062 0.008 
2 4layer_li 1 to 7 1.0 0.053 0.010 
3 925q 2 to 10 2.0 0.041 0.008 
4 850q 2 to 12 2.0 0.040 0.008 
5 2m_q 3 to 10 2.9 0.037 0.006 
6 700q 2 to 11 3.0 0.037 0.007 
7 sfccape 2 to 11 2.3 0.032 0.007 
8 1013.25q 2 to 13 2.2 0.031 0.005 
9 pw 4 to 13 2.3 0.028 0.005 

10 cpreciprate 7 to 15 2.0 0.021 0.004 
 
 The consistency in these results across continents is promising for the 

development of additional RF models and the application of them to areas of the world 

presently underserved by the flash flood forecasting enterprise. Unfortunately, because 

flashiness is not defined over Europe, the U.S. and European RFs cannot be directly 

cross-validated against one another without modifications. Still, the commonalities in 

skill and MDG suggest an RF fit to one mid-latitude continent might be applicable to 

another mid-latitude continent. 

Summary 

 This chapter presented a collection of small studies demonstrating that the RF 

technique can be applied to the flash flood forecasting problem in a quasi-operational 
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way. In a testbed context, NWS forecasters found output from the method useful in a 

handful of cases over a 3-week period during the summer of 2016. Additionally, in one 

highly impactful case from the testbed experiment, the RF predictions yielded a 24-h 

forecast that fairly closely tracked the equivalent excessive rainfall forecast issued by 

human forecasters. In one case from May 2013 and another from May 2015, the RF 

method was able to skillfully forecast the probability of a Storm Data report starting 

between five and seven days prior to the event. Finally, the method was successfully 

applied to the European continent, where it performed similarly to its U.S. application. 
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Chapter 6: Conclusions and Implications 

A score or more of studies, especially over the last two years, have explored 

applications of machine learning (ML) methods and techniques to forecast problems in 

meteorology. Despite the recent wave of ML studies propagating throughout the 

literature, ML is not just a fad. Rather, it is the latest incarnation of a strain of thought 

that has long been fundamental to weather forecasting, the idea that the enterprise exists 

only because man and machine work in concert with one another.  

Vilhelm Bjerknes warrants a significant share of the credit for expanding our 

understanding of atmospheric physics and laying down the foundational theories of how 

this understanding could apply to scientific weather forecasting. After Lewis Fry 

Richardson’s first attempts to apply Bjerknes’ ideas operationally were unsuccessful, it 

became clear that any weather forecasting beyond simple advection of observed 

conditions was going to require a massive paradigm shift of some sort (Lynch 2008). The 

invention of the electronic computer, it turns out, was that paradigm shift. The earliest of 

these massive machines, the most complex objects ever conceived of by the human race, 

were used for two primary purposes: to protect the interests of the West in the nascent 

Cold War and to achieve numerical weather prediction (NWP). John von Neumann, Jule 

Charney, and others began the long process of realizing Bjerknes’ and Richardson’s ideas 

in 1950 (Charney et al. 1950).   

As computers quickly grew in power, weather forecasting grew up. But there was 

a backlash in the 1970s. NWP got better and scientists worried: were meteorologists 

forgetting how to be meteorologists? This “meteorological cancer” took hold quickly 

(Snellman 1979) as NWP continued to advance. Since that time, weather forecasts have 
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gotten better, and NWP has overwhelmingly been the driving force underlying that 

improvement. As a result, NWP has become a bigger and bigger part of the forecasting 

process. Of course, any operational forecaster would lament that NWP is not perfect – 

the meteorologist remains, and will continue to remain, a critical part of the forecasting 

process. The meteorologist uses her expertise and her experience to correct (or ignore) 

the NWP model output when appropriate. This correction process is complex; personal 

rules-of-thumb, on-the-job training, mentorship from experienced forecasters, and other 

factors are important in explaining how or why a weather forecaster adds significant 

value to NWP.  

Early users of NWP quickly realized that this correction process could be 

augmented by statistical techniques. The first of these still makes up a core part of the 

National Weather Service’s (NWS) operational capability: model output statistics, or 

MOS. MOS combines NWP output and outside pieces of information to correct known 

deficiencies in NWP that arise as a result of the numerical techniques used to solve the 

primitive equations (Glahn and Lowry 1972). ML algorithms can be used to do this same 

thing, but with vastly greater numbers of predictor variables and cases. MOS uses 

multiple linear regression to relate a set of predictor variables to a predictand. ML 

algorithms additionally account for non-linear relationships between predictor and 

predictand and for complex interactions between candidate predictor variables. In the 

1990’s, ML methods, particularly artificial neural networks, were used in an array of 

studies that essentially sought to improve upon or supplant MOS (e.g., Hall et al. 1999). 

Like MOS, these studies often focused upon a small area or a particular station and were 

based upon a generally small number of cases. 
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The current wave of ML-in-meteorology studies are novel in three important 

ways: 1) they often seek to address forecasting problems in more comprehensive and 

generalizable ways, 2) they use larger numbers of candidate predictors and a greater 

number of cases due to technological improvements over the intervening years, and 3) 

they frequently pursue predictions of ever rarer events. As yet, however, ML has not been 

applied to the flash flood forecast problem. The studies that make up this dissertation 

have laid out the theoretical foundations for this application, have presented some of the 

statistical properties of the forecasts generated from such application, have used this 

application to provide physical insights into how flash flood forecasts can be made and 

optimized, and finally, have given examples of ML methods in use in case study and 

research-to-operations contexts.  

Caveats of Machine Learning and Automation 

 Despite their promise, ML methods are not a panacea, and there is a conceivable 

danger that too much in the way of statistical postprocessing will lead to overconfidence 

in automated methods and, thus, forecaster disengagement. Like any other statistical 

technique, ML methods work better when they are not asked to extrapolate over, for 

example, previously-unseen conditions. This concern can be somewhat mitigated via the 

use of very large datasets for training, validation, and testing, but even senior weather 

forecasters can be heard to admit that the atmosphere is an oft-surprising beast.  

 Specifically, ML classifiers like the random forest (RF) method used so 

prominently in these studies are generally quite robust – but not entirely immune – to 

common statistical complications like overfitting, collinearity, and random noise. 

Additionally, the RF probably cannot identify every possible nonlinear interaction 
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between candidate predictors. There is still a larger wealth of research in the literature 

(and a wealth of understanding in operational forecasting) than that which has been 

exploited in the present studies. This body of knowledge includes various plausible 

predictors that could be derived from base NWP model fields (or, in turn, from other 

derived predictors) but have not been adopted in this dissertation, including, for example, 

vertical integrations of some of my candidate predictors. 

 Using primarily NWP data to forecast flash floods is advantageous in many ways 

– it means the RF model is robust, from an operational point-of-view. In other words, the 

RF forecasting process does not depend on a range of disparate datasets, and thus, this 

process would not fail to run unless the Global Forecast System (GFS) itself were to fail. 

However, this brings to mind a major pitfall of using these data: if a particular GFS 

forecast is inadequate or unreliable, the RF probabilities derived therefrom will suffer the 

same fate. Another major related caveat involves resolution. The present study is 

designed to answer the question: “Is there enough available information in coarse-

resolution NWP to statistically forecast flash floods?” However, because coarse-

resolution NWP is unable to resolve many of the salient characteristics of flash flood 

environments, and because flash floods are generally rare events, the RF method is only 

able to reliability provide flash flood forecast probabilities between 0 and 14%.  

 Therefore, we must dispose of the hypotheses outlined in Chapter 1 as follows: 

1. As shown at the end of Chapter 3, it is clear that the RF technique provides 

additional forecast skill over the imposition of simple thresholds upon single 

NWP model outputs associated with flash floods in the literature. It is also true 
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that ML techniques can be calibrated to yield reliable probabilistic forecasts of 

flash floods.  

2. Secondly, Chapter 4 demonstrated that the RF technique provided insight into the 

atmospheric environments associated with flash floods. These insights match up 

with past studies in this area, though it is interesting to note that the RF method 

suggests a greater importance for PW over model PW anomaly, for instance, and 

that quantities like mean layer wind and speed shear were not frequently used by 

the RF in the production of flash flood forecasts. The RF’s preference for raw 

model PW suggests that the division of the conterminous U.S. into three separate 

model regions was sufficient to account for regional differences in the PW 

required to induce a flash flood. The absence of speed shear and mean-layer winds 

from the RF importance analysis suggests that winds favorable for flash floods 

occur quite frequently when a flash flood is not observed. In other worse, they 

are useful parameters for characterizing flash flood environments but not for 

distinguishing between flash flood and non-flash flood environments. These new 

findings should be reassessed using observational data, not just NWP data, and if 

reconfirmed, made a part of the training and education of operational forecasters. 

3. Finally, the RF technique was successfully applied to the flash flood forecasting 

problem in the Hazardous Weather Testbed during the summer of 2016. Although 

the aggregate impression of the NWS forecasters using the tool was slightly more 

negative than neutral, there were events in which the forecasters found the RF 

probabilities useful. Additionally, Chapter 5 showed the RF method to be 
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applicable outside the U.S. Finally, the method was shown to be useful in longer-

range forecast contexts, of up to six days, in two historical events over the U.S. 

Future Work 

 The present studies have demonstrated that NWP can be automatically used to 

forecast flash floods, and can do so more skillfully than via the use of just quantitative 

precipitation forecasts. However, there is a large amount of work to be done, and many 

questions raised by this dissertation to be answered. Most obviously, perhaps, is the 

question of how additional NWP models besides the GFS fit into this process. A multi-

model ensemble of RF flash flood forecasts would help to capture the range of possible 

uncertainties inherent in a particular forecast. Along these same lines, this method could 

be applied to internal model ensembles, like the Global Ensemble Forecast System 

(GEFS), which is part of the GFS family of models. Other possible studies involve the 

inclusion of additional derived variables, particularly those vertically-integrated through 

different atmospheric layers.  

 Ideally, separate RFs should be fit to GFS model output by forecast hour, even 

though reasonably-good results can be achieved by applying a forest fit to GFS analyses 

directly to GFS forecasts, as shown for three cases in Chapter 5. Longer-range GFS 

forecasts are archived by the National Centers for Environmental Information but only 

in “cold storage”, which makes obtaining long enough archives of them for research 

purposes a difficult, though not impossible, endeavor. More simply, other flavors of GFS 

output could also be tested more rigorously. The studies in this dissertation have 

primarily drawn upon GFS3 data, which are stored at 1.0-degree x 1.0-degree resolution. 

However, the results from the subjective evaluation of RF predictions available during 
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the 2016 Hydrometeorological Testbed are based upon 0.25-degree x 0.25-degree 

resolution GFS data, which have only been available since May 2016. These higher-

resolution data likely allow the NWP to better (though not completely) resolve mesoscale 

atmospheric features favorable for the development of flash floods.  

 The main advantage of the GFS and GEFS family of NWP models is their global 

coverage and free availability. The results from the European continent presented in this 

dissertation are evidence that global flash flood prediction is feasible with the RF method. 

However, lack of observations of flash floods (and thus, training datasets) in most of the 

world outside Europe and the U.S. is a serious impediment to these efforts. Global 

versions of flash flood guidance (FFG) have been proposed and implemented 

(Georgakakos et al. 2013), but these suffer from the same limitations as the FFG system 

used operationally in the U.S. Direct statistical simulation of the flash flood threat from 

global NWP, as proposed in these studies, could serve as an important complement to or 

replacement for these FFG systems, if local or regional records of past flash floods can 

be obtained.  

 Most critically, though, this method must be applied to higher-resolution NWP 

guidance, including convection-allowing models, and high-resolution hydrologic model 

output if it is to be adopted for wider use in the U.S. NWS flash flood forecasting and 

alerting enterprise.  

Final Thought 

  Based upon the results presented from the studies in this dissertation, ML 

forecasts of flash floods are plausible. Rare events are difficult to forecast whether 

statistical methods or human forecasters are doing the majority of the heavy lifting, and 
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the fact that we have come this far is promising. Whether used as a time-saver and 

situational awareness tool by human forecasters or as part of a quasi-global automated 

flash flood alert dashboard, the RF algorithm holds great potential to improve our ability 

to monitor, forecast, assess, and understand flash floods and the dangerous impacts they 

all-too-frequently bring to bear upon vulnerable communities around the world, year after 

year after year.   
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