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ABSTRACT 
 

Nowadays, infrastructure systems such as transportation, telecommunications, 

water supply, and electrical grids, are considerably facing the exposure of disruptive 

events such as natural disasters, manmade accidents, malevolent attacks, and common 

failures due to their size, complexity, and interconnectedness nature. For example 

fragile design of supply chain infrastructure might collapses because the consequences 

of a failure can propagate easily through the layers of supply chains, especially for large 

interconnected networks. Previously, owners and operators of infrastructure systems 

focused to design cost-efficient, competitive and sustainable ones; however the need for 

design of resilient infrastructure systems is inevitable.  

Infrastructure systems must be designed in such a way so that they are resistant 

enough to withstand and recover quickly from disruptions. The consequences of 

disruptive events on infrastructures ranging from energy systems (e.g., electrical power 

network, natural gas pipeline) to transportation systems (e.g., food supply chain, public 

transportation) cannot only impacted on individuals, but also on communities, 

governments and economics.   

The goal of this dissertation is to (i) identify the resilience capacities of 

infrastructure systems; in particular inland waterway ports, and supply chain systems, 

(ii) quantify and analyze the resilience value of critical infrastructure systems (CIs), (iii) 

improve the resilience of CIs by simulating different disruptive scenarios, and (iv) 

recommend managerial implications to help owners and operators of CIs for timely 

response, preparedness, and quick recovery against disruptive events.  
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This research first identifies the resilience capacity of CIs, in particular, inland 

waterway, supply chain and electrical power plant. The resilience capacity of CIs is 

modeled in terms of their absorptive capacity, adaptive capacity and restorative 

capacity. A new resilience metric is developed to quantify the resilience of CIs. The 

metric captures the causal relationship among the characteristics of CIs and 

characteristics of disruptive events including intensity and detection of disruption 

likelihood of disruptive events. The proposed resilience metric is generic, meaning that 

can be applied across variety of CIs. The proposed metric measures the system 

resilience as the sum of degree of achieving successful mitigation and contingency 

strategies. The resilience metric accounts for subjectivity aspect of disruptive events 

(e.g., late disruption detection, very intense disruption, etc.). Additionally, the proposed 

resilience metric is capable of modeling multiple disruptive events occurring 

simultaneously.  

This research study further explores how to model the resilience of CIs using 

graphical probabilistic approach, known as Bayesian Networks (BN). BN model is 

developed to not only quantify the resilience of CIs but also to predict the behavior of 

CIs against different disruptive scenarios using special case of inference analysis called 

forward propagation analysis (FPA), and improvement scenarios on resilience of CIs 

are examined through backward propagation analysis (BPA), a unique features of BN 

that cannot be implemented by any other methods such as classical regression analysis, 

optimization, etc.  

Of interest in this work are inland waterway ports, suppliers and electrical power 

plant. Examples of CIs are inland waterway ports, which are critical elements of global 
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supply chain as well as civil infrastructure. They facilitate a cost-effective flow of 

roughly $150 billion worth of freights annually across different industries and locations. 

Stoppage of inland waterway ports can poses huge disruption costs to the nation’s 

economic. Hence, a series of questions arise in the context of resilience of inland 

waterway ports. 

How the resilience of inland waterway ports can be modeled and quantified? 

How to simulate impact of potential disruptive events on the resilience of inland 

waterway ports? What are the factors contributing to the resilience capacity of inland 

waterway ports? How the resilience of inland waterway can be improved? 
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CHAPTER 

1 
 

 

INTRODUCTION 
 

Critical infrastructures (CIs), such as energy, supply chain, manufacturing, 

communication, public transportation provide necessary commodities and services and 

have been described as the “backbone of a nation’s economy, security, and health” 

(U.S. Department of Homeland Security 2014). Any type of permanent or temporary 

disruption can leads to significant impact and consequences on society, individuals, 

governments, economics. Hence, protecting CIs is a vital component of national 

security activities in countries across the globe (Vugrin et al. 2014).  

Historically, the owners and operators of CIs attempt to prevent and minimize 

the occurrence of disruptive events by reinforcing their infrastructures through physical 

protection activities. However, over the past decade, the owners and operators of CIs 

realized that prevention of all threats, especially innovative ones such as terrorist 

attacks, ecological disasters are impossible. Hence, recently more attention is given to 

the quick responding and recovery to the disruptive events such as hurricane, tornado, 

malevolent attacks, etc. Consequently, the importance of design for resilience 

infrastructures is emerged. 

An important challenge in the context of resilience modeling is that the existing 

metrics for measuring the resilience of CIs are not generic, in the sense that it can be 

only used for a specific system. For example, resilience metrics that have been 
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developed to measure the resiliency of transportation systems cannot be easily used to 

quantify the resilience of an inland waterway port. In addition to this, many of existing 

resilience metrics are deterministic while resilience is a concept with stochastic nature 

due to the random and unpredicted nature of disruptive events. Moreover, in reality, the 

severity of some of the disruptive events such as storm, fire or manmade attacks cannot 

be easily measured but instead can be expressed and analyzed using linguistic variables 

(e.g., huge storm). One of the aims in this dissertation is to propose a new resilience 

metric that has the following features: 

1. Accounting for uncertainty associated with the likelihood and severity of 

disruptive events. 

2. Usability across different infrastructure systems including power grids, inland 

waterway port, manufacturing systems, among others. 

3. Utilizing linguistic variables to express subjectivity aspect of disruption 

characteristics. 

4. Integrating historical data with expert knowledge to estimate disruption 

characteristics. 

This dissertation also aims to quantify, analyze and improve the resilience of CIs 

through a graphical probabilistic method, known as Bayesian network (BN). BNs can 

be used to describe the casual relationship among the characteristics of system. For 

example, the causal relationship between the likelihood of a disruptive event (cause) 

can be captured and modeled. BNs are powerful technology for handling risk 

assessment, decision making under uncertainty. BNs are capable of handling both types 

of qualitative and quantitative variables. Hence, this dissertation seeks to present 



3 

 

mainstream penetration of BN tools in the context of resilience modeling. The rest of 

this dissertation is organized as follows: 

Chapter 2 reviews definitions and measures of system resilience. A 

Classification review of resilience metrics is presented in Chapter 2. A BN model is 

developed in Chapter 3 to model the resilience of inland waterway port as critical 

element of critical infrastructure. The developed BN model describes how the resilience 

of inland waterway can be measured through its absorptive capacity, adaptive capacity 

and restorative capacity. Different disruption scenarios have been implemented to 

simulate the impacts of disruptions on the resilience of inland waterway port using 

forward propagation analysis (FPA). Sensitivity analysis has been also performed to 

determine the importance of factors contributing to the resilience of inland waterway 

port. Chapter 4 presents a novel BN model for resilience-based supplier selection. The 

factors related to the resilience of supplier selection problem are first identified, and 

then a BN is developed to select the best supplier in terms of resilience, green and 

primary criteria. Chapter 5 proposes a mixed integer programming model based on the 

concept of resilience capacity of suppliers. Resilience capacity of supplier is further 

decomposed to the absorptive capacity and adaptive capacity.    
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CHAPTER 

2 
 
 
 
 
 
A REVIEW OF QUANTIFICATION APPROACHES FOR MEASURING SYSTEM 

RESILIENCE† 
 
 
 
 

ABSTRACT 

Modeling and evaluating the resilience of systems, potentially complex and large-scale 

in nature, has recently raised significant interest among both practitioners and 

researchers. This recent interest has resulted in several definitions of the concept of 

resilience and several approaches to measuring this concept, across several application 

domains. As such, this paper presents a comprehensive review of research articles 

related to modeling and quantifying of resilience in various disciplines. To the best of 

our knowledge, this is the first comprehensive review that addresses quantitative 

research related to the subject of resilience. We classify the literature of resilience into 

three categories: qualitative, quantitative, and solution based approaches based on the 

resilience measurement concept. The review is highlighted by three factors: extensive 

coverage of the literature, exploration of current gaps and challenges, and 

recommendation of directions for future research. 
                                                

† This chapter has been published at the journal of Reliability Engineering and System Safety. A review 

of definitions and measures of system resilience. Reliability Engineering & System Safety 2016, 145: 47-

61.  
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Keywords: Resilience, Engineering systems 

2.1 Introduction 

Historically, the primary questions asked during a risk assessment study are: (i) 

what can go wrong?, (ii) what is the likelihood of such a disruptive scenario?, and (iii) 

what are the consequences of such a scenario? (Kaplan 1981). Risk management 

strategies have traditionally focused on reducing the likelihood of disruptive events and 

reducing the potential consequences of the event, as well as some synthesis of both. As 

such, risk management strategies often emphasized mitigation options in the form of 

prevention and protection: designing systems to avoid or absorb undesired events from 

occurring. The main objective of protection strategy is to detect the adversary early and 

defer the adversary long enough for an appropriate respond. While a protection strategy 

is critical to prevent undesired events or consequences, however recent events suggested 

that not all undesired events can be prevent. Hurricane Sandy, which devastated NY/NJ 

in 2012, is among the more recent examples of a disruptive event that adversely 

impacted multiple networked systems (e.g., months after the storm, power had not been 

restored to all communities in the NY/NJ area (Manual 2013), one million cubic yards 

of debris impeded transportation networks (Lipton 2013). Plenty of other disruptions 

have highlighted the resilience, or lack thereof, of networked systems: the August 2003 

US blackout that caused transportation and economic network disruptions (Minkel 

2008), Hurricane Isabel devastated the transportation system of the Hampton Roads, 

VA, region in 2003 and overwhelmed emergency response (Smith and Graffeo 2005), 

the 2011 9.0 magnitude earthquake and tsunami that struck Japan, causing over 15,000 

confirmed deaths and disrupting global supply chain networks (MacKenzie et al. 2012). 
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It is because of these recent large-scale events that the Department of Homeland 

Security, among others, has placed emphasis on resilience through preparedness, 

response, and recovery (Department of Homeland Security 2013, Department of 

Homeland Security 2014). 

The term resilience has increasingly been seen in the research literature (Park et 

al. 2013) and popular science literature (Zoli and Healy 2013) due to its role in reducing 

the risks associated with the inevitable disruption of systems. This paper presents a 

comprehensive review of resilience in various disciplines, published in 2000 to 2014. In 

this paper, we primarily focus on the quantitative perspective of modeling resilience, 

distinguishing our work from existing excellent review papers (Bhamra and Burnard 

2011). Several definitions of resilience have been offered. Many are similar, though 

many overlap with a number of already existing concepts such as robustness, fault-

tolerance, flexibility, survivability, and agility, among others. 

The concept of resilience is a multidisciplinary notion that has been considered 

in different context and domains of applications, including psychology, ecology, 

enterprises and business among others. Variety of definitions for the notion of resilience 

has been proposed by many researchers and organizations. We identify four domains of 

resilience: engineering, organizational, social, and economic. Note that this 

classification may vary depending on researcher’s perspective. We provide a variety of 

definitions of resilience according to four aforementioned groups. 

2.1.1 Engineering domain 

The concept of resilience in engineering domain is relatively new in compared 

to non-engineering domains. Engineering domain includes technical systems designed 
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by engineers that interact with computer systems, and humans such as power gird 

electrical systems. Hollnagel and Prologue (Hollnagel and Prologue 2010) pointed out 

that for resilience engineering, understanding of the normal functioning of a technical 

system is important as well as understanding how it fails. Dinh et al. (Dinh et al. 2012) 

identified six factors that enhance the resilience engineering of industrial processes, 

including minimization of failure, limitation of effects, administrative 

controls/procedures, flexibility, controllability, and early detection. 

2.1.2 Organizational domain 

In organizational science, resilience of an organization is defined by Sheffi 

(2005) as inherent ability to keep or recover a steady state, thereby allowing it to 

continue normal operations after a disruptive event or in presence of continuous stress. 

Vogus and Sutcliffe (2007) defined organizational resilience as “the ability of an 

organization to absorb strain and improve functioning despite the presence of 

adversity”. Sheffi (2006) defined the resilience for companies as “the company’s ability 

to, and speed at which they can, return to their normal performance level (e.g., 

inventory, capacity, service rate) following by disruptive event”. McDonald (2010) 

defined resilience in the context of organizations as “the properties of being able to 

adapt to the requirements of the environment and being able to manage the 

environments variability”. Patterson et al. (2007) highlighted that collaborative cross-

checking can greatly enhance the resilience of organizations. Collaborative cross-

checking is an enhanced resilience strategy in which at least two groups or individuals 

with different viewpoints investigate the others’ activations to evaluate accuracy or 
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validity. By implementing collaborative cross-checking, erroneous actions can be 

detected quickly enough to mitigate adverse consequences. 

2.1.3 Economic domain 

The concept of resilience in the domain of economic has received a fair share of 

consideration by researchers. Rose and Liao (2005) described economic resilience as 

the “inherent ability and adaptive response that enables firms and regions to avoid 

maximum potential losses”. Static economic resilience is referred by Rose (2007) as the 

capability of an entity or system to continue its functionality like producing when faces 

with a sever shock, while dynamic economic is defined by the same author as the speed 

at which a system recovers from a sever shock to achieve a steady state. A more 

specific definition of economic resilience is presented by Martin (2012) as “the capacity 

to reconfigure, that is adapt, its structure (firms, industries, technologies, institutions) so 

as to maintain an acceptable growth path in output, employment and wealth over time”. 

Infrastructure systems such as water distribution systems, nuclear plants, 

transportation systems, water dams among others can be considered as subdomain of 

engineering domain, because these systems are founded based on engineering 

knowledge, and their restoration need technical efforts. Infrastructures are also 

considered as subdomain of social domain in which the lack of its resiliency can lead to 

negative impacts on society and the life of humans. Ouyang and Wang (2015) assessed 

the resilience of interdependent infrastructure systems. Their research focused on 

modeling and resilience analysis of interdependent power and gas system in Houston, 

Texas, USA when multiple hazards are taken into account. Their major finding of their 

research is that the interdependent restoration strategy and the power first and gas 
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second restoration strategy generate the largest resilience value for the power system. 

The unique aspect of their research is that interdependency between two infrastructure 

systems are modeled and analyzed for a real case study. 

Some more general definitions of resilience are also presented by researchers 

and organizations. For example, Allenby and Fink (2000) defined resilience as the 

“capability of system to maintain its function and structure against internal and external 

changes and downgrade the performance of system when it must.” Pregenzer (2011) 

defined resilience as the “measure of a system’s ability to absorb continuous and 

unpredictable change and still maintain its vital functions.” Haimes (2009) defined the 

resilience as the “ability of system to withstand a major disruption within acceptable 

degradation parameters and to recover with a suitable time and reasonable costs and 

risks.” Disaster resilience is characterized by Infrastructure Security Partnership (2006) 

as the capability to prevent or protect against significant multi-hazard threats and 

incidents, including terrorist attacks, and to recover and reconstitute critical services 

with minimum devastation to public safety and health. Vugrin et al. (2010) defined 

system resilience as: “Given the occurrence of a particular disruptive event (or set of 

events), the resilience of a system to that event (or events) is that system’s ability to 

reduce efficiently both the magnitude and duration of deviation from targeted system 

performance levels.” Two elements of this definition are noted: system impact, the 

negative impact that a disruption imposes to a system and measured by the difference 

between targeted and disrupted performance level of system, and total recovery efforts, 

the amount of resources expended to recover the disrupted system. 

2.1.4 Social domain 
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The social domain looks at the resilience capacities of individuals, groups, 

community, environment and country. Community and Regional Resilience Institute 

(2009) defined the resilience as the capability to predict risk, restrict adverse 

consequences, and return rapidly through survival, adaptability, and growth in the face 

of turbulent changes. Keck and Sakdapolrak (2013) defined social resilience as 

comprised of three dimensions: coping capacities, adaptive capacities, and 

transformative capacities.  

2.1.5 Analysis of resilience definition 

The review of resilience definitions indicates that there is no unique insight about how 

to define the resilience, however several similarities can be observed across these 

resilience definitions. The main highlights of resilience definitions reviewed above are 

summarized as follows: 

 Some of reviewed definitions does not specify mechanisms to achieve 

resilience; however many of them focus on the capability of system to “absorb”, 

“adapt” from disruptive events and recovery is considered as the critical part of 

resilience. 

 For engineered systems such as nuclear and power plant systems, reliability is 

extremely important feature. The definition of resilience in engineering systems 

is established based on the reliability of system. 

 Some definitions, such as Sheffi (2005) and ASME (2009) emphasize that 

returning to steady state performance level is needed for resilience, while other 

definitions do not impose the entity (e.g., infrastructure, enterprise, community, 

etc) return to pre-disaster state. 
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 Definition represented by Haimes (2009) highlights that resiliency must be 

achieved by less cost, energy, time and labor efforts. This definition points out 

the two main features of recovery: recovery time and speed of recovery. As a 

result, recovery activities with shorter time and high speed are more desirable. 

 Some definitions such as Allenby and Fink (2000), and Pregenzer (2011) 

defined resilience in terms of preparedness (pre-disaster) activities, while the 

role of recovery (post-disaster) activities are discarded. Definitions presented by 

organizations such as National Infrastructure Advisory Council (NIAC), 2009 

emphasized on the role of both preparedness and recovery activities to achieve 

resilience. 

2.2 Literature Review Methodology 

In this section, we discuss framework we used to identify resilience-related literature. 

We also report, to the extent that we can, the distribution of literature by domains, years 

of publication, and journals.  

To present a breadth coverage of literature review of resilience study, we developed a 

framework of five steps: (i) online database searching and information clustering, (ii) 

citation and sample refinement, (iii) abstract review refinement, (iv) full-text review 

refinement, and (v) final sort. The Web of Science database, one of the most 

comprehensive multidisciplinary content search platforms for academic researchers 

(Web of Science), was searched to identify the papers. 

Using keywords to conduct the search, we selected those papers only relevant to 

modeling and measuring resilience in engineering fields, including engineering design, 

supply chain, infrastructure systems, and physical networks, and non-engineering fields, 
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including enterprises/organizations, social networks, and economics. Journal papers 

were filtered with such keywords as resilience modeling, resilience quantification, 

resilience metrics, design resilience, disaster resilience, and engineering resilience. 

This approach was applied to the papers published from 2000 to 2014, though we focus 

primarily on recent papers. 

2.2.1 Distribution by Domain 

CiteSpace (Chen 2006), a well-known visualization tool, was used to visualize 

and analyze trends in the resilience literature. As shown in Figure 2.1, the application of 

resilience in each discipline is represented by a cluster. The largest cluster is dedicated 

to the Psychology domain, followed by the Environmental, Social, & Ecology domain. 

The size of cluster of a discipline is relates to the number of papers published in that 

discipline. Meanwhile, a lesser proportion of resilience-related research exists in the 

engineering domain, suggesting that greater strides in defining and quantifying 

resilience have historically been made in non-engineering contexts. As such, 

opportunities exist in impacting resilience in the engineering domain (e.g., engineering 

design). 

2.2.2 Distribution by Journal  

A decent number of different journals from different disciplines related to 

resilience quantification approaches were included in this literature review. Table 2.1 

lists the first fourteen journals that contributed more than one article. Among these, 

Reliability Engineering & Systems Safety is the most significant source of articles 

related to the resilience research, with Risk Analysis,  International Journal of 

Production Research, and Procedia Computer Science following. The application of 
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resilience in organizations, enterprises, business management, and logistics engineering 

are mostly published in International Journal of Production Research. Mathematical 

modeling based resilience work is mostly published in Computers & Operations 

Research, Transportation Research-Part B, and Transportation Research-Part E. 

2.2.3 Distribution by Year of Publication 

The distribution of resilience-related archival journal articles by year from 2000 

to April 2015 is represented in Figure 2.2, using Web of Science (WoS). The recent 

government and policy emphasis on resilience is also seen in academic research, 

according to the increasing appearance of resilience-related research. 

2.3 Resilience Assessment Methodologies  

In general, the resilience evaluation procedure can be separated into two major 

categories: qualitative and quantitative. Qualitative category includes methods that tend 

to assess the resilience of system qualitatively. The qualitative category itself divides 

into two sub-categories: conceptual framework, and semi-qualitative. The quantitative 

methods including two sub-categories of generic resilience metrics and structural-based 

modeling aim to measure the resilience value of system qualitatively. The classification 

scheme of resilience assessment approaches is visually represented in Figure 2.3. Note 

that the focus of this paper is on qualitative approaches and qualitative assessment 

methodology is not the point of our interest. Interested readers in qualitative 

contributions to resilience research can refer to (Ungar 2015; Sarre et al. 2014).  

Qualitative Assessment Methodology  

2.3.1 Conceptual Framework 
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Conceptual framework is one of the most common qualitative approaches for 

assessing the system resilience. Conceptual framework is usually generic but can be 

extended to different types of systems. For example, Resilience Alliance (2007) 

proposed a generic framework for evaluating the resilience of social-ecological systems, 

composed of seven steps: (i) defining and understanding the system under study, (ii) 

identifying appropriate scale to evaluate resilience, (iii) identifying the system drivers 

and external and internal disturbance, (iv) identifying the key players in the system, 

including people and governance, (v) developing conceptual models for identifying 

necessary recovery activities, (vi) implementing the results of step 5 to inform 

policymaker, and (vii) incorporating the findings of the previous step. Speranza et al. 

(2014) developed a notional framework for analyzing resilience of livelihoods, or the 

“resources that people have and the strategies they adopt to make a living.” The 

framework provides a few attributes of three dimension of resilience: buffer capacity 

(the amount of change a system can undergo), self-organization (the emergence of 

society through inherent social structure), and capacity for learning (an ability to adapt). 

In a homeland security context, Kahan et al. (2009) proposed a broad conceptual 

framework for system resilience using eight guiding principles: (i) threat and hazard 

assessment, (ii) robustness, (iii) consequence mitigation, (iv) adaptability, (v) risk-

informed planning, (vi) risk-informed investment, (vii) harmonization of purposes, and 

(viii) comprehensive of scope.  

Semi-quantitative index approach is usually constructed based on two steps. In 

the first step, a set of questions are designed and then answered by the experts of related 

domain. The answered questions are then scored by a value between 0 to 10 or 0 to 100, 
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and finally these scores can be used in some manner to quantify the resilience value. It 

is noteworthy to mention that indicators of resilience can be identified without 

questionnaire. The commonality across those papers used SQI approach is that they 

found major indicators of resilience and then assign score to them and finally measure 

the resilience by aggregating scored indicators in some manner like weighted sum 

approach. These indicators may vary from one paper to another but are usually general 

like redundancy, robustness, resourcefulness among others. For example, Cutter et al. 

(2008) fist identified 36 resilience variables of communities to natural disasters, 

including redundancy, resourcefulness, and robustness. Each variable was then scored 

between 0 and 100 according to the data observation from a government source. These 

36 variables were grouped into five sub-indices, including economic, infrastructure, 

social, community capital, and institutional. The score for each sub-index was 

calculated using an unweighted average of each variable, and the total score was 

calculated by taking unweighted average of all sub-index scores. Pettit et al. (2010) 

distilled the two key drivers of resilience in an industrial supply chain: (i) level of the 

supply chain’s vulnerability, and (ii) capability of the supply chain to withstand and 

recover from disruption. The authors measured vulnerability and capability of supply 

chains by providing a set of 152 questions divided into six sections of vulnerability and 

15 sections of capability. 

2.3.2 Generic Resilience Metric 

Generic resilience metric is a quantitative way to assess the resilience by measuring 

performance of system, regardless of the structure of system. These metrics are 

comparable across different system contexts with similar underlying logic. The generic 
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resilience metrics determine the resilience by comparing the performance of system 

before and after disruption without concentrate on understanding and developing of 

general structure of system under study. It should be noted that although the generic 

resilience metrics do not concentrate on understanding and developing of the general 

structure of a system, however a quantitative examination compels attentive thinking 

about behavior of system to deal with disruptions. Generic resilience metrics can be 

either deterministic or probabilistic. Deterministic and probabilistic metrics can be 

further divided into either static or dynamic states. Performance-based approaches can 

be classified in the following ways: 

 Dynamic vs. static: A dynamic performance-based approach accounts for time-

dependent behavior, while a static performance-based approach is free of time 

dependent measures of resilience. 

 Deterministic vs. probabilistic: A deterministic performance-approach does not 

incorporate uncertainty (e.g., probability of disruption) into the metric, while 

probabilistic performance-based approach captures the stochasticity associated 

with system behavior.   

Bruneau et al. (2003) defined four dimensions for resilience in the well-known 

resilience triangle model in civil infrastructure:  (i) robustness, the strength of system, 

or its ability to prevent damage propagation through the system in the presence of 

disruptive event, (ii) rapidity, the speed or rate at which a system could return to its 

original state or at least an acceptable level of functionality after the occurrence of 

disruption, (iii) resourcefulness, the level of capability in applying material (i.e., 

information, technological, physical) and human resources (i.e., labor) to respond to a 
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disruptive event, and (iv) redundancy, the extent to which carries by a system to 

minimize the likelihood and impact of disruption. 

Bruneau et al. (2003) then proposed a deterministic static metric for measuring the 

resilience loss of a community to an earthquake with Equation 2.1. The time at which 

the disruption occurs is ݐ଴, and the time at which the community returns to its normal 

pre-disruption state is ݐଵ. The quality of the community infrastructure at time ݐ, which 

could represent several different kinds of performance measures, is denoted with ܳ(ݐ).  

ܮܴ = න [100− ݐ݀[(ݐ)ܳ
௧భ

௧బ
  (2.1) 

In this approach, the quality of degraded infrastructure is compared to the as-planned 

infrastructure quality (100) during the recovery period. RL can be illustrated as the 

shaded area in Figure 2.4. Larger RL values indicate lower resilience while smaller RL 

imply higher resilience. The privilege of this method is its general applicability. 

Although this approach is utilized for the context of earthquake; however it can be 

extended to any systems, because quality is a general concept and can be applied to 

almost any system. Therefore, the general applicability is the most important advantage 

of this metric. 

Henry and Ramirez-Marquez (2012) developed a time-dependent resilience 

metric that quantifies resilience as ratio of recovery to loss. Given that the performance 

of the system at a point in time is measured with performance function	߮(ݐ), three 

system states that are important in quantifying resilience are represented in Figure 2.5: 

(i) the stable original state which represents normal functionally of a system before 

disruption occurs, starts from time ݐ଴ and ends by time ݐ௘, (ii) the disrupted state, which 

is brought about by a disruptive event (݁௝) at time ୣݐ whose effects set in until time ୢݐ, 
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describes the performance of the system from time ୢݐ to ݐୱ, (iii) the stable recovered 

state which refers to the new steady state performance level once the recovery action 

initiated at time ݐୱ is over. Important dimensions of resilience that are depicted in Figure 

2.5. include reliability, or the ability of the system to maintain typical operation prior to 

a disruption, vulnerability, or the ability of the system to stave off initial impacts after 

event ݁௝, and recoverability, or the ability of the system to recover in a timely manner 

from ݁௝. The time-dependent measure of resilience is defined in Equation 2.2, noting 

that resilient behavior is a function of ݁௝. Notation Я൫ݐ|݁௝൯ was adopted by Whitson 

and Ramirez-Marquez (2009), as R is commonly reserved for reliability. 

 

Яఝ൫ݐ|݁௝൯ =
߮൫ݐ|݁௝൯ − ߮൫ݐௗ|݁௝൯
(଴ݐ)߮ − (ௗ|݁௝ݐ)߮ 	 (2.2) 

 

As it explained above, the numerator of this metric implies recovery up to time ݐ, while 

the denominator refers to the total loss due to disruption ݁௝. The authors also calculated 

the total cost of recovered system followed by disruption as sum of implementing cost 

for resilience action and loss cost incurred due to system’s non-operability due to 

disruption. Several subsequent developments in the context of resilience measurement 

and planning (Barker et al. 2013; Pant et al. 2014) are based on the system state 

transition represented in Figure 2.5 and the metric in Equation 2.2 by Henry and 

Ramirez-Marquez (2012). The main advantage of metric proposed by Whitson and 

Ramirez-Marquez (2009) is its simplicity and practicality; however it presents the 

following drawbacks: I) the metric does not include preparedness (pre-disaster) 

activities. II) the system’s resilience is measured based on only single performance 
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function ߮(ݐ), while in real case study, a system may have multiple performance 

functions. III) System’s property did not incorporate into the resilience formulation.  

Chen and Miller-Hooks (2012) introduced an indicator for measuring resilience in 

transportation networks. The resilience indicator, represented in Equation 2.3, quantifies 

the post-disruption expected fraction of demand that, for a given network, can be 

satisfied within pre-determined recovery budgets. Parameter ݀௪ quantifies the 

maximum demand that can be satisfied for origin-destination (O-D) pair w following a 

disruption, and ܦ௪ is demand that can be satisfied for O-D pair w prior to the 

disruption. 

Resilience = ܧ	 ൭෍ ݀௪
௪∈ௐ

෍ ௪ܦ
௪∈ௐ

൘ ൱ =
1

∑ ௪௪∈ௐܦ
ܧ ൭෍ ݀௪

௪∈ௐ

൱ (2.3) 

 

Chang and Shinozuka (2004) introduced a probabilistic approach for assessing 

resilience, measured with two elements: (i) loss of performance and (ii) length of 

recovery. Resilience is defined as the probability of the initial system performance loss 

after a disruption being less than the maximum acceptable performance loss and the 

time to full recovery being less than the maximum acceptable disruption time. This 

measure is represented in Equation 2.4, where ܣ represents the set of performance 

standards for maximum acceptable loss of system performance, ݎ⋆, and maximum 

acceptable recovery time, ݐ⋆, for a disruption of magnitude ݅.  

ܴ = (݅|ܣ)ܲ = ଴ݎ)ܲ < ଵݐ	and	⋆ݎ <  (2.4) (⋆ݐ
 

Hashimoto et al. (1982) defined the resilience of a system as conditional probability of a 

satisfactory (i.e., non-failure) state in time period ݐ + 1 given an unsatisfactory state in 
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time period ݐ, shown in Equation 2.5.	ܵ(ݐ) is the state of the system at time t, and ܰܨ 

and ܨ represent non-failure and failure states, respectively.  

ܴ = ݐ)ܵ}ܲ + 1) ∈ (ݐ)ܵ|ܨܰ ∈  (2.5) {ܨ
 
Franchin and Cavalieri (2015) introduced a probabilistic metric for assessing 

infrastructure resilience in the presence of earthquake. Their definition of resilience is 

based on the efficiency of the spatial distribution of an infrastructure network. The 

efficiency of two nodes in an infrastructure network is defined as being inversely 

proportional to their shortest distance. The resilience metric is provided in Equation 2.6, 

where ஽ܲ is the fraction of displaced population, ܧ଴ is the efficiency of the city network 

before the earthquake, ௥ܲ is the measure of progress of recovery, and ܧ( ௥ܲ) is the 

recovery curve of the fraction of the displaced population. In their study, the efficiency 

of a city road network is measured in terms of population density.    

ܴ =
1
஽ܲܧ଴

න )ܧ ௥ܲ)
௉ವ

଴
݀ ௥ܲ (2.6) 

 
Barker et al. (2013) proposed two stochastic resilience-based component importance 

measures (CIMs) for identifying the primary contributors to network resilience. The 

modeling of these two metrics is devoted to vulnerability and recoverability in a 

network following a disruption. The first CIM metric, analogous to the risk reduction 

worth importance measure in the reliability engineering field, quantifies the proportion 

of restoration time attributed to each network component. The second resilience-based 

CIM, similar to the reliability achievement worth importance measure, quantifies how 

network resilience is improved if a specific network component is invulnerable. The 

authors then concluded that the network resilience can be obtained in the form of two 
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ways: vulnerability reduction strategy or accelerating the speed of recovery activities 

through evaluating CIM metrics. 

2.4 Structural Based Modeling Approach 

The structural based approaches examine how the structure of a system impacts 

on its resilience. To investigate the resilience using structure based approach, the 

general behavior of systems must be observed and characteristics of a system must be 

modeled or simulated. The structural based approach can be thought of as anticipation 

of how a system could represent resilience but generic resilience metrics validate 

resilience value, or how much of resilience is actually presented. Three approaches have 

been used by researchers to model the structure of systems for purpose of resilience 

examination including optimization modeling, simulation modeling and fuzzy 

modeling. 

2.4.1 Optimization-Based Approach 

Faturechi et al. (2014) proposed a mathematical model for evaluating and optimizing 

airport resilience, aiming to maximize the resilience of an airport’s runway and taxiway 

network. The main strategy used in their mathematical model is the quick restoration of 

post-event take-off and landing capacities to the level of capacities before disruption by 

taking into account time, physical, operational, space, resource, and budget restrictions. 

Two types of decision variables, including pre-event and post-event decisions, were 

considered. The main feature of their work is that preparedness and recovery activities 

are taken into account in the stochastic integer model. Besides that, multiple damage 

scenarios are considered. 
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Alderson et al. (2014) proposed a mixed integer non-linear programming (MINLP) to 

quantify the operational resilience of critical infrastructures. Resilience is defined in 

terms of defense strategies with little attention given to the important recovery 

dimension of resilience found in most works. Their proposed model aims to find out the 

best defense strategy in the case of attacks such that the total cost of the defense strategy 

is minimized. The concentration of MINLP model is on preparedness actions but not on 

recovery which necessities further improvement. 

2.4.2 Simulation-Based Approach  

Albores and Shaw (2008) proposed a discrete event simulation model to 

evaluate the preparedness of a fire and rescue service department in the presence of 

terrorist attacks. The authors considered preparedness as key driving factor of pre-event 

disruption resilience. Two simulation models were: (i) the first model mimics the mass 

decontamination of a population following a terrorist attack, while (ii) the second model 

deals with the harmonization of resource allocation across regions. 

Carvalho et al. (2012) applied discrete event simulation to assess the resilience of a 

supply chain. Two strategies of flexibility and redundancy are taken into account as 

elements of resilience in their simulation model. Redundancy is modeled by keeping 

additional inventory to successfully withstand disruptions, and flexibility is modeled by 

restricting the extent of the disrupted transportation system. Six different scenarios are 

investigated with the simulation model. There are several limitations for this research 

study. First, the results found in this research may not be universally applicable across 

different sectors, because redundancy strategy may not be a cost-efficient solution in 

compared to flexibility strategy to some supplier due to high inventory holding costs or 
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vice versa. The simulation model dose not embedded automaker supply chain entirely. 

The results obtained are highly dependent on the supply chain parameters. Finally, the 

behavior of automaker is not simulated. 

2.4.3 Fuzzy-Based Approaches 

Aleksic et al. (2013) proposed a fuzzy model for assessing organizational 

resilience. Fuzzy linguistic variables were used to express the relative importance of the 

organizational resilience factors. Muller (2012) presented a fuzzy architecture (FA) for 

assessing the resilience of critical infrastructure. Redundancy and adaptability were 

considered to be the primary components of infrastructure resilience. The redundancy 

and adaptability inputs of the FA, and the resilience output, are expressed using 

linguistic variables. Tadic et al. (2014) integrated fuzzy forms of the Analytic 

Hierarchical Process (AHP) and the Technique for Order Preference by Similarity to 

Ideal Solution (TOPSIS) for evaluating and ranking organizational resilience based on 

qualitative assessments. The approach was used to rank several resilience factors 

including (i) planning strategies, (ii) capability and capacity of internal resources, (iii) 

internal situation monitoring and reporting, (iv) human factors, (v) quality, (vi) external 

situation monitoring and reporting, (vii) capability and capacity of external resources, 

(viii) design factors, (ix) detection potential, and (x) emergency response. 

2.5 Concluding Remarks 

Over the past decade, the significance of the concept of resilience has been well 

recognized among researchers and practitioners. Many efforts have been devoted to 

measure resilience of systems but this area is still challenging. The objective of this 

research is to provide a vision about quantification approaches of system resilience. In 
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this paper, we first classified four domains for definitions of resilience including 

engineering, organizational, social and economic. A variety of resilience definitions 

presented by researchers and related organizations such as ASME, NIAC and others are 

reviewed. The traditional definitions of resilience concentrates on the inherent ability of 

systems to absorb shocks of disruptions which refers to preparedness activity but more 

recent definitions presented by organizations like ASME and NIAC focus on not only 

preparedness but also recovery aspect of resilience. The main similarity that can be 

observed across the definitions of resilience is the lack of proposing a mechanism for 

preparedness and recovery aspects. Follows by definitions of resilience, the 

quantifications of resilience have been classified and analyzed. We classified the 

resilience quantification approaches into two classes: quantitative and qualitative 

approaches. Qualitative approach includes conceptual framework and semi-quantitative 

methods. Conceptual frameworks provide insights about the notion of resilience but do 

not provide quantitative value of system resilience. Semi-quantitative is usually 

composed of two steps: first is to conduct a survey questions to identify the indicators 

of resilience and second step is to aggregate scored indicators into a single one using 

sum method like sum weighted approach in order to measure of resilience. Quantitative 

assessment category consists of two sub-categories: general resilience metric and 

structural resilience based approach. General resilience metrics itself divided into two 

groups: deterministic and probabilistic. Our findings indicate that the metrics used to 

measure resilience is established based on the definition of resilience. For example, 

Henry and Ramirez-Marques (2012) measured resilience as ratio of recovery to loss of 

system’s performance because they considered recovery as lever of resilience while 
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Francis and Bekera (2014) considered preparedness in addition to recovery. Indeed 

different perspectives on quantifying resilience emanate from inconsistency that exists 

in resilience concepts and definitions. The similarity that can be observed across the 

resilience metrics is that they assess the resilience by comparing the performance of 

system before and after disruption. The generic metrics basically uses only single 

performance for a system while in a real world cases; there might be multiple system 

performances for a system. The future potential studies must consider this issue by 

proposing metrics that has capability of measuring multiple performance functions 

simultaneously. Another major critic on the existing metrics is that they do not 

incorporate the economic impact like recovery costs into their resilience metrics. Hence, 

future researchers can focus on economic feature of resilience. Our findings show that 

the earlier development of resilience metrics were more deterministic while recent trend 

is focused more on stochastic resilience metrics. We predict that the future researches 

would be concentrated more on developing stochastic resilience metrics like the one 

presented by Barker et al. (2013) due to stochastic nature of resilience concept. 

Different consideration can be taken in order to create stochastic resilience metrics such 

as considering stochastic restoration time, probability of disruption occurrence, 

probability of system failing due to disruption, and interdependency probability 

between failures. We finally analyzed the structural based approach for assessing the 

resilience of systems. In this approach, in order to assess the resilience, characteristics 

and general behavior of systems must be modeled or simulated. 
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Figure  2.1 A snapshot of clusters based on category, created by CiteSpace  
 

 

Figure  2.2 Distribution of papers by year of publication, as of April 2015 
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Figure  2.3 Classification scheme of resilience assessment methodologies  

 

Figure  2.4 Resilience loss measurement from the resilience triangle (adapted from 
Bruneau et al. 2003)  
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Figure  2.5 System performance and state transition to describe resilience (adapted 
from Henery and Ramirez-Marquez 2012)  

 

Table  2.1 Top journal sources of resilience research output, as of April 2015. 

 

 

No. Journal title No. of 
papers 

1 Reliability Engineering & Systems Safety 9 
2 Risk Analysis 5 
3 International Journal of Production Research 4 
4 Procedia Computer Science 3 
5 Computers & Operations Research 3 
6 Safety Science 3 
7 Transportation Research-Part B 2 
8 Transportation Research-Part E 2 
9 Bioscience 2 
10 European Management Journal 2 
11 Earthquake Spectra 2 
12 Computers & Industrial Engineering 2 
13 Process Safety Progress 2 
14 Structural Safety 2 
15 IEEE Systems Journal 2 
16 International Journal of Critical Infrastructures 2 
17 Journal of Loss Prevention in the Process 

Industries 
2 

18 Process Safety and Environmental Protection 2 
19 Transportation Research-Part A 2 
20 Expert Systems with Applications 2 
21 Electrical Power and Energy Systems 2 
22 Global Environmental Change 2 
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MODELING INFRASTRUCTURE RESILIENCE USING BAYESIAN 
NETWORKS‡ 

 

 

ABSTRACT 

Infrastructure systems, including transportation, telecommunications, water 

supply, and electric power networks, are faced with growing number of disruptions such 

as natural disasters, malevolent attacks, human-made accidents, and common failures, 

due to their age, condition, and interdependence with other infrastructures. Risk 

planners, previously concerned with protection and prevention, are now more interested 

in the ability of such infrastructures to withstand and recover from disruptions in the 

form of resilience building strategies. This paper offers a means to quantify resilience as 

a function of absorptive, adaptive, and restorative capacities with Bayesian networks. A 

popular tool to structure relationships among several variables, the Bayesian network 

model allows for the analysis of different resilience building strategies through forward 

and backward propagation. The use of Bayesian networks to quantify resilience is 

                                                

‡ This chapter has been published at the journal of Computers and Industrial Engineering. Modeling 

infrastructure resilience using Bayesian networks: A case study of inland waterway ports. Computers & 

Industrial Engineering 2016, 93: 252-266.  
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demonstrated with the example of an inland waterway port, an important component in 

the intermodal transportation network.  

Keywords: Resilience, Bayesian network, Transportation 

3.1 Introduction 

Infrastructure systems are faced with growing number of disruptions due to their 

age, condition, and interdependence with other infrastructures. These systems are 

subject to common cause failure, but also natural disasters that are becoming more 

frequent and more impactful (e.g., Hurricane Sandy in 2012, the Japanese earthquake 

and tsunami of 2011, the Haiti earthquake in 2010, Hurricane Katrina in 2005).  

The resilience of infrastructure systems in the face of the variety of disruptive 

events and resulting consequence has become an increasingly important topic among 

planners. Infrastructure systems must be designed in a way so that they are resistant 

enough to withstand and recover quickly from disruptions. Previously, the emphasis of 

preparedness planning dealt with protection and prevention of disruptive events. Such 

strategies may not be sufficient to withstand disruptive events, particularly for 

uncharacteristically devastating events, because it is almost impossible in practice to 

harden infrastructure systems against all types of disruptive events. Accordingly, the 

concept of resilience emerged to supplement a mitigation-focused philosophy, 

recognizing the significance and need for timely response and recovery from 

disruptions. Activities that account for response and recovery are commonly referred to 

as post-disruption or contingency strategies. A suitable resilience strategy for a critical 

infrastructure might be different from one to another. For example, rerouting alternative 

is a suitable resilience strategy for transportation and communication networks when 
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the connectivity and redundancy degree of networks are high, however having a high 

degree of connectivity is not suitable for power grid systems where the cascading 

failures are common.   

In this chapter, we propose the novel quantification of resilience with Bayesian 

networks, a technique that has found popularity in such fields as reliability engineering 

but with little application in resilience modeling. Bayesian networks can model the 

causal relationships among various aspects of resilience and are especially useful when 

varying levels of data describing those relationships are known (e.g., data sets 

describing commodity flows through a port, expert elicitation of the effects of a natural 

hazard on the condition of dock-specific equipment). Different disruptive scenarios, as 

well as different resilience building strategies, can be simulated, and a sensitivity 

analysis of parameters can be performed for a robust analysis.  

To illustrate the proposed quantification approach, we use an inland waterway 

port case study. Inland ports play a vital role in intermodal transportation networks by 

maintaining the flow of commodities among industries and regions. The disruption of 

ports can have significant adverse impacts on supply and demand, ultimately affecting 

productivity. U.S. inland waterway infrastructure was recently given the grade of D- 

(American Society of Civil Engineers 2013), with locks and dams increasingly 

vulnerable to common cause failure and natural disasters that could exploit their state of 

repair. Port closures could result in cargo congestion at the gates, vessel queuing, 

backlogs at warehousing transloading facilities, and manufacturing production 

stoppages (National Cooperative Freight Research Program 2014). For example, the 

impact of a 10-day shutdown of West Coast port could be approximately $2.1 billion 
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per day on the overall economy (Reuters Feb 7, 2015). Closures to inland waterway 

ports can have significant regional impacts (Pant et al. 2014; Pant et al. 2015). 

3.2 Literature Review 

This section offers some background on the study of resilience, as well as the 

use of Bayesian networks, which will be used to quantify resilience in this paper. 

3.2.1 Quantifying Resilience 

Despite the extensive research recently on the subject of resilience, most work in 

infrastructure systems deal with system vulnerability (withstanding a disruption) rather 

than system resilience (withstanding then recovering) (Wang et al. 2010; Johansson et 

al. 2013; Johansson et al. 2010; Eusgeld et al. 2009). Various general metrics have been 

defined to measure the resilience that is applicable to the infrastructure systems (Chang 

and Shinozuka 2004; Vugrin et al. 2014; Muller 2012; Carvalho et al. 2012; Jain and 

Bhunya 2010; Hashimoto et al. 1982; Losada and Scaparra 2012). Hosseini et al. (2016) 

classified the literature related to the resilience measurement approaches into two 

groups: qualitative based approach and quantitative based approach. Qualitative 

assessment was further divided into conceptual frameworks and semi-qualitative 

indices, while quantitative assessment was further divided into general measures which 

contain probabilistic and deterministic approaches; and structural-based models which 

contain optimization, simulation and fuzzy logic models.  

Several works have focused on transportation and logistics systems, in particular. Omer 

et al. (2014) introduced a metric for infrastructure system resilience, measuring the 

closeness centrality of network before and after a disruptive event. Soni et al. (2014) 

proposed a deterministic modeling approach based on graph theory to measure supply 
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chain resilience. Their proposed approach is able to capture dynamic nature of 

environment for handling disruptive events in supply chains. Carvalho et al. (2012) 

applied discrete event simulation technique to assess alternative supply chain scenarios 

for improving supply chain resilience. The authors considered two performance 

measures including lead time ration and total cost for comparing the merit of 

alternatives. Rajesh and Ravi (2015) addressed the enablers of supply chain risk 

mitigation and then proposed a Grey theory and DEMATEL approaches to explore 

cause/effect among the enablers of supply chain risk mitigation. Faturechi et al. (2014) 

proposed a mathematical model to evaluate and optimize airport resilience, focusing on 

the quick restoration of post-event take-off and landing capacities to the level of pre-

disruption capacities. Vugrin et al. (2014) proposed a multi-objective optimization 

model for transportation network recovery, designed as a lower-level problem that 

involves solving a regular network flow problem and an upper-level problem that 

explores the optimal recovery sequences and modes. The objective of the optimization 

model presented by Vugrin et al. (2014) is to maximize the resilience of disrupted 

transportation networks. Their proposed model was applied to two networks: a 

maximum flow network and a complex congested traffic flow network for recovery task 

sequencing. Khaled et al. (2015) proposed a mixed integer nonlinear programming 

problem and heuristic solution approach for evaluating critical railroad infrastructures to 

maximize rail network resilience. Reyes Levalle and Nof (2015) proposed an approach 

based on fault tolerance by teaming principle of collaborative control theory for design 

and operation of resilient supply networks. Their proposed approach is capable of 

achieving higher fault tolerance with fewer resources in the case of disruptions. 
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Note that many of the previous approaches to quantifying resilience focus solely on 

modeling system reliability, whereas more recent methods also account for system 

recovery. Such a trend aligns with the comprehensive definition of infrastructure 

resilience is presented by National Infrastructure Advisory Council (NIAC) (2009) 

which defines the resilience as the ability to predict, adapt and/or quickly recover from 

a disruptive event. Given this definition, we are primarily motivated by the time-

dependent resilience measure proposed by Henry and Ramirez-Marquez (2012) which 

represents resilience metric at time t, Я(ܜ), as ratio of recovery to loss at time t. The 

performance of a system over time, (࢚)࣐, is generally represented in Figure 3.1. Three 

transition states have been defined in which a system can operate: (i) ࡿ૙, the baseline or 

steady state when system operates under normal conditions until disruptive event 

 ࢐ࢋ due to disruptive event ࢊ࢚ the disrupted state at time ,ࢊࡿ (ii) ,ࢋ࢚ occurs at time࢐ࢋ

disrupting the performance of system, and (iii) ࢌࡿ, the recovered state at time ࢌ࢚, 

resulting from recovery activities triggered at time ࢙࢚.  

Depicted in Figure 3.1, the system operates normally with service function of ߮(ݐ଴) 

(e.g., inventory rate, capacity level) within time interval [ݐ଴,  With presence of .[ୣݐ

disruption event ݁௝ at time ୣݐ the system service function reduces from ߮(ݐ଴) to ߮(ୢݐ) 

at time ୢݐ. The system service function remains constant from time ݐௗ to time ݐୱ	until 

the resilience action takes place in time ݐୱ, then the system service function gradually 

increases and reaches a new steady state at time ݐ୤. Based on description, system 

resilience given in Equation 3.1 read the resilience of system at a given disruptive event 

݁௝ at time ݐ ,ݐ ∈ ,ୱݐ]   .୤] describes the ratio of recovery to loss at such point in timeݐ
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Я൫tห݁௝൯ =
߮൫ݐห݁௝൯ − (ௗ|݁௝ݐ)߮
(଴ݐ)߮ − (ௗ|݁௝ݐ)߮  (3.1) 

Barker et al. (2013) proposed a resilience-based component importance measures for 

infrastructure networks which quantify the (i) potential adverse impact on system 

resilience from a disruption affecting link i, and (ii) potential positive impact on system 

resilience when link i cannot be disrupted. Pant et al. (Pant et al. 2014) proposed a 

stochastic resilience measure based on proposed metric in Equation 3.1 to evaluate the 

system resilience under uncertainty by including time to total system restoration, time to 

full system service resilience, and time to ߙ%-resilience, applied to quantify resilience 

of inland waterway ports.  

3.3 Bayesian Networks  

Bayesian networks (BNs) are structured based on Bayes’ theorem, capable of 

updating the prior probability of some unknown variable when some evidence 

describing that variable exists. In real world applications of risk analysis, there are 

frequently many unknown variables and many distinct pieces of evidence, some of 

which may be linked. BNs can graphically represent such problems where uncertain 

variables are represented as vertices (nodes), with an edge representing the causal 

relationship between two vertices, forming a directed graph in which cycles are not 

allowed. BNs are an excellent tool for computing the posterior probability distribution 

of unobserved variables conditioned on some variables that have been observed, 

encoding both quantitative and qualitative information in a conditional probability 

format (e.g., variables could be Boolean (yes/no), qualitative (low/medium/high), or 

continuous, among others). The ability to model variables of several types is the main 

property of BN that motivates us to employ it for quantifying of system resilience. 
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Consider a large interconnected network like power grids where the failure of a 

component could possibly trigger the failure of successive components. BNs can be 

used to quantify the resilience of such systems due to their interconnected structure 

among their components. The application of BN in modeling resilience of critical 

infrastructures is underdeveloped. For example, Asriana Sutrisnowati et al. (2014) 

proposed a novel BN model from event log for analyzing the lateness probability in port 

logistics. The proposed BN model is constructed by decomposition of a dependency 

graph that generated from event log in port management systems. The proposed BN 

model can provide valid inference for activity lateness probabilities and also beneficial 

recommendations to port managers for improving existing activities. 

Let ܸ = { ଵܺ,ܺଶ, … ,ܺ௡} be the set of variables in a BN whose structure specifies 

conditional independence. An outgoing edge from ௜ܺ to ௝ܺ indicates a relationship that 

value of variable	 ௝ܺ is dependent of the value of ௜ܺ variable. If there is outgoing edge 

from ௜ܺ to ௝ܺ then ௜ܺ is the parent node of ௝ܺ and ௝ܺ is a child node of	 ௜ܺ.Three classes 

of nodes exist in BN: (i) nodes without a child node are called leaf nodes, (ii) nodes 

without a parent node are called root nodes, and (iii) nodes with parent and child nodes 

are called intermediate nodes. For example, in Figure 3.2, nodes ଵܺ and ܺଶ, called as 

root node, in which are parents of nodes ܺଷ, ܺସ, and ܺହ (intermediate nodes). Finally, 

Nodes ܺ଺ and ܺ଻ are called as leaf nodes. 

The causal relationships among variables of a BN are measured by conditional 

probability distributions. The full joint probability distribution of a BN consisting of n 

variables ଵܺ,ܺଶ, … ,ܺ௡ 	is found in Equation 3.2.  
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ܲ( ଵܺ,ܺଶ, … ,ܺ௡) = ܲ( ଵܺ|ܺଶ,ܺଷ, … ,ܺ௡)ܲ(ܺଶ|ܺଷ, … ,ܺ௡)⋯ܲ(ܺ௡ିଵ|ܺ௡)ܲ(ܺ௡)

= ෑܲ( ௜ܺ| ௜ܺାଵ, … ,ܺ௡)
௡

௜ୀଵ

 

  

(3.2) 

However, Equation 3.2 can be further simplified with knowledge of what the parents of 

each node are. For example, if we know that node Xଵ has exactly two parents, Xଶ and 

Xସ, then the part of joint probability distribution P(Xଵ|Xଶ, … , X୬) can be replaced with 

P(Xଵ|Xଶ, Xସ), as only  Xଶ and Xସ affect the occurrence of Xଵ. As such, the joint 

probability of distribution of a BN can be written using parent nodes of each node. 

Suppose that Parents	(X୧) denote the set of parent nodes of node X୧, then the joint 

probability distribution of the BN can be simplified in Equation 3.3. 

ܲ( ଵܺ,ܺଶ, … ,ܺ௡) = ෑܲ( ௜ܺ|ܲܽݏݐ݊݁ݎ( ௜ܺ))
௡

௜ୀଵ

   (3.3) 

A BN can consist of continuous, discrete, or mixed variables. Conditional distributions 

are commonly referred to as conditional probability tables (CPT). The causal 

relationship between variables and corresponding CPT are determined based on expert 

knowledge.  

An illustrative example of BN with seven variables as depicted in Figure 3.2. The 

corresponding decomposition of the joint distribution of variables is given by Equation 

3.4.  

ܲ( ଵܺ,ܺଶ, … ,ܺ଻)

= ܲ( ଵܺ)ܲ(ܺଶ)ܲ(ܺଷ| ଵܺ)ܲ(ܺସ| ଵܺ,ܺଶ)ܲ(ܺହ|ܺଶ)ܲ(ܺ଺|ܺଷ,ܺସ)ܲ(ܺ଻|ܺଷ,ܺସ,ܺହ) 

     

(3.4) 

It is clear that to calculate the joint distribution, ܲ( ଵܺ,ܺଶ, … ,ܺ଻), the unconditional 

probabilities of ܲ( ଵܺ) and ܲ(ܺଶ), as well as the conditional probabilities of 
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ܲ(ܺଷ| ଵܺ),ܲ(ܺସ| ଵܺ,ܺଶ)	, ܲ(ܺହ|ܺଶ), ܲ(ܺ଺|ܺଷ,ܺସ), and ܲ(ܺ଻|ܺଷ,ܺସ,ܺହ), must be 

determined.     

An important property of BN is the ability to update belief propagation or forward 

propagation, or the ability to update marginal probabilities, ܲ( ௜ܺ), after observing other 

variables. For example, the conditional probability for variable ܺଷ given evidence e, 

(݁ = { ଵܺ,ܺଶ,ܺସ,ܺହ,ܺ଺,ܺ଻}) can be calculated with Equation 3.5.  

ܲ(ܺଷ|݁) =
ܲ( ଵܺ,ܺଶ,ܺଷ,ܺସ,ܺହ,ܺ଺,ܺ଻)
ܲ( ଵܺ,ܺଶ,ܺସ,ܺହ,ܺ଺,ܺ଻) =

ܲ( ଵܺ,ܺଶ,ܺଷ,ܺସ,ܺହ,ܺ଺,ܺ଻)
∑ ܲ( ଵܺ,ܺଶ,ܺସ,ܺହ,ܺ଺,ܺ଻)௑య

 
            (3.5) 

The calculation represented by Equation 3.5 is not computationally efficient and can be 

simplified with Equation 3.6.    

ܲ(ܺଷ|݁)

=
ܲ( ଵܺ)ܲ(ܺଶ)ܲ(ܺଷ| ଵܺ)ܲ(ܺସ| ଵܺ,ܺଶ)ܲ(ܺହ|ܺଶ)ܲ(ܺ଺|ܺଷ,ܺସ)ܲ(ܺ଻|ܺଷ,ܺସ,ܺହ)

∑ ܲ( ଵܺ)ܲ(ܺଶ)ܲ(ܺଷ| ଵܺ)ܲ(ܺସ| ଵܺ,ܺଶ)ܲ(ܺହ|ܺଶ)ܲ(ܺ଺|ܺଷ,ܺସ)ܲ(ܺ଻|ܺଷ,ܺସ,ܺହ)௑య

=
ܲ(ܺଷ| ଵܺ)ܲ(ܺ଺|ܺଷ,ܺସ)ܲ(ܺ଻|ܺଷ,ܺସ,ܺହ)

∑ ܲ(ܺଷ| ଵܺ)ܲ(ܺ଺|ܺଷ,ܺସ)ܲ(ܺ଻|ܺଷ,ܺସ,ܺହ)௑య
 

   

(3.6) 

3.4  Elements of Inland Waterway Resilience 

A case study of the Port of Catoosa, an inland waterway port in the Mississippi River 

Navigation System located near Tulsa, Oklahoma, is used to illustrate the measurement 

of resilience using Bayesian networks. We choose this case study because inland 

waterway ports play a crucial role in the U.S. economy. These ports serve as hubs that 

connect components of intermodal transportation systems, including barge, train, truck 

transportation modes (MacKenzie et al. 2012). According to Waterborne Commerce 

Statistics Center (Waterborne Commerce Statistics Center 2009), approximately one 

billion tons of cargo or 40% of U.S. waterway commerce traverse through inland port 
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(Waterborne Commerce Statistics Center 2009). Ninety percent of this cargo consists of 

coal and petroleum products and crude materials, all of which are important 

commodities for U.S. manufacturing and production (MacKenzie et al. 2012) and are 

primary commodities at the Port of Catoosa. The impact of disruptive events on inland 

ports can be devastating and could barricade production at many industries in the U.S.  

The Port of Catoosa is the largest port in Oklahoma and is the largest inland waterway 

port in the U.S. by land area. Over 2.8 million tons of different types of commodities, 

including fertilizers, chemicals, grains, and metal products were shipped imported and 

exported through the port in 2014. Industries in many states, including Alabama, 

Arkansas, Iowa, Illinois, Kentucky, Louisiana, Mississippi, Oklahoma, Ohio, and 

Texas, are served by the Port of Catoosa.  

The Port of Catoosa consists of four major docks, each of which deals with a specific 

commodity type (Pant et al. 2015). The Liquid Bulk dock is used for moving different 

types of liquids, including asphalt, chemicals, and refined petroleum products. The 

Grains dock handles agricultural products such as corn, wheat, and soybeans. The Dry 

Bulk dock moves a variety of loose commodities such as sands, gravel, and fertilizer 

that can be handled by conveyer. The Dry Cargo dock loads and unloads large items, 

primarily iron, steel, and machinery. This study concentrates on the Dry Cargo dock, 

whose products are categorized by the North American Industry Classification System 

(NAICS) economic sectors: Fabricated metals, Machinery, Primary metals, and 

Miscellaneous manufacturing. 

3.4.1 Port Disruptions 
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Natural disasters (e.g., floods, tornados) and hazardous material threats (e.g., 

fires, explosions, liquid spills) are the primary disruption concerns of decision makers at 

the Port of Catoosa. As such, natural disasters and hazardous material threats are 

considered in the BN model as major sources of vulnerability at the port. Hazardous 

material threats are considered short-term in their disruptive consequences, where 

natural disasters may have more extended consequences.  

3.4.2 Resilience Capacity 

Resilience capacity is the resilience enhancement features that could increase the 

ability of system to absorb, adapt, and restore from disruptions. Biringer et al. (2013) 

proposed the concept of resilience capacity with three categories that each represents 

temporal attributes before, during, and after a disruptive event: absorptive capacity, 

adaptive capacity, and restorative capacity. These categories are discussed below in the 

context of the inland waterway port, and they appear in Figure 3.3. 

Absorptive capacity is the capability of the system to absorb or withstand the 

impact of disruptive events and minimize the consequences, akin to robustness in the 

resilience triangle literature (Vugrin et al. 2011; Bruneau et al. 2003). Absorptive 

capacity refers to all activities that need to be taken to absorb shocks of disruptions in 

advance. We identified five features of absorptive capacity that are effective for our 

case study (National Cooperative Freight Research Program 2014; Sturgis et al. 2014). 

 Backup utility systems. Having backup power generators can be viewed as an 

absorptive feature of resilience capacity to maintain continuity of port 

operations. Power system failure is a common failure in the observation of port 

disruptions, as a number of the 17 ports interviewed by the U.S. Government 
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Accounting Office (Government Accountability Office 2007) reported that the 

purchase of redundant back-up power generation is critical in the case of 

emergencies.  

 Extra cargo handling equipment. Redundant cargo handling facilities, including 

cranes and reach stackers, can reduce the impact of disruptions to the Dry Cargo 

dock. Further, extra fuel availability is a related option to improve absorptive 

capacity.  

 Storm surge protection. Physical protection, called as storm surge protection 

(e.g., barge channel protection) can improve the port’s robustness to flood 

damage.  

 Skilled labor and management. Training operators and managers to react to and 

control a disruption to maintain continuity is an absorptive measure. In addition, 

the use of skilled labor reduces the time of loading and unloading tasks by fully 

utilizing equipment such as cranes and reach stackers.  

 Communication and coordination. An effective flow of information and 

coordination before disruption triggers between National Weather Service, port 

staff, dock operators, utility operators, vessel operators, shipping agents, 

regulatory agencies, and emergency agencies can reduce the impact of 

disruptions. A report related to the port resilience released by Center for a New 

American Security (Sturgis et al. 2014) highlighted that communication and 

coordination between the members of the port community of New York and 

New Jersey during Hurricane Sandy was one the most influential recovery 

efforts that has been made. Hence, through the lessons learned from the Port of 
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New York and New Jersey, it is not hard to look at communication and 

coordination between the members of port community as the backbone of port 

resilience planning. 

 Space utilization. For example, for a port terminal with two berths and four 

cranes receiving an oversized vessel, the terminal has no alternative but to allow 

the unused capacity to remain idle. Therefore, a balance for the usage of berth 

and cranes can be made by larger facility in contiguous dock space by 

minimizing capacity waste. 

 Maintenance and reliability. Port maintenance activities, including on-time 

repair scheduling of cargo handling equipment and availability of spare 

equipment, strengthen a port’s ability to withstand disruptions. The reliability of 

a port, defined as the probability that port continues its normal operations for a 

given time interval under normal operating conditions, is a measure of the 

effectiveness of port maintenance. 

Adaptive capacity is the capability of system to adapt itself and attempt to 

overcome a disruption without any recovery activity (Vugrin et al. 2011). It refers to the 

ability of a system to be reorganized and perform efficiently with some extra effort and 

cost in response to a disruption. Design for adaptive capacity can enhance the resilience 

of infrastructure systems. Three features of adaptive capacity are identified as 

contributors to the resilience of inland waterway ports (National Cooperative Freight 

Research Program 2014; Sturgis et al. 2014). 

 Repositioning. It is common for containers to be stacked at dock locations, 

however repositioning containers and large items on the ground in the case of 
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natural disasters can be useful. The impact of repositioning has been recognized 

in the aftermath of Hurricane Sandy at Port of New York and New Jersey, where 

a large number of containerized cargo could have been saved if they had been 

repositioned at the yard. 

 Mode flexibility. In the case of a port disruption, shipping at ports for a specific 

transportation mode (e.g., waterway) can be congested and delayed. 

 Quick evacuation. Time response evacuation of cargo and facilities in the case 

of disruption can enhance the resilience of port operations. For example, 

thousands of new vehicles stored at the port of New Jersey and New York were 

flooded and ruined following Hurricane Sandy because their engines burned due 

to exposure to salt water.  In contrast, other East Coast ports responded to 

Hurricane Sandy with evacuation very quickly and sustained minimal damage 

(National Cooperative Freight Research Program 2014).  

Restorative capacity refers to the ability of a system to repair or restore damages 

from a disruption (Vugrin et al. 2011). Restorative capacity is different from adaptive 

capacity in the sense that it is considered to be a permanent feature of system resilience, 

while adaptive capacity is a temporary feature (i.e., repairing equipment permanently in 

place versus ensuring continuity through a nonstandard manner that results in an 

increase in service cost or time). Note that the repair of port facilities during the 

recovery period may not necessarily restore performance to its pre-damaged state and 

may exceed prior performance capabilities. 
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Two components of budget restoration and resource restoration, including technical and 

equipment restoration have been found as major contribution into the restorative 

capacity of our case study. 

 Budget restoration: In the context of port recovery, the damaged equipment 

(e.g., crane, power generator) can be repaired or restored depending on the 

severity of disruption but also on budget availability. Budget limitations are the 

primary driver of resilience enhancing investments (Haimes 2009). 

 Resource restoration: Resource restoration includes the availability of human-

based resources (e.g., skilled labors, technical engineers), and non-human-based 

resources (e.g., repair equipment). 

3.5 Quantifying Resilience Capacity with Bayesian Networks 

In this section, we employ a Bayesian network to quantify system resilience as a 

function of the various elements of resilience capacity shown in Figure 3.3. We 

illustrate with the inland waterway port example. The graphical model of proposed BN 

is depicted in Figure 3.4. 

3.5.1 Type of Variables 

Three types of variables were used to model the various elements of resilience 

capacity, depending on how each are measured: (i) Boolean variables that measure a 

dichotomous response (true/false, yes/no, on/fail), (ii) qualitative variables that measure 

ordinal categories used for weights of factors contributed to the absorptive, adaptive, 

and restorative capacities, and (iii) continuous variables that measure random variables 

with a known probability distribution. Much of the works in applying BNs use only 

Boolean variables (Trucco et al. 2008), though many characteristics of a system require 
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a more sophisticated representation. Also many analyses are hindered by the types of 

variables allowed by particular BN software called AgenaRisk (Fenton and Neil 2013). 

The majority of discrete variables or Boolean variables are defined in the form of two 

states: the True state represents the success state (or positive outcome), and the False 

state represents the fail state (or negative outcome). Similarly, Boolean states (Yes and 

No) of the Resilience improvement variable and states (On and Fail) of the Reliability 

variable are the counterparts of True and False states. For example, the probability table 

for Maintenance and inspection variable includes True = 0.7982 and False = 0.2017, 

suggesting that the maintenance and inspection of the port’s facilities are successful 

79.82% of the time, while such activities fail 20.17% of the time. Another example is 

the prior distribution of the storm surge protection variable with two states of True = 

0.84 and False = 0.16, which refers to a 84% chance that storm surge protection 

implemented by port authorities may successfully succeed to hinder the negative 

impacts of disruptive events according to historical data, while there’s a 16% chance 

that it may fail. 

An example of a continuous variable is the one that describes Availability of spare 

equipment, which is modeled using a truncated normal distribution denoted by TNORM 

with a mean of 87%, and variance of 3%, lower and upper bounds of 50% and 100% 

respectively as represented in Equation 3.7. Note that that the lower bound and upper 

bound show that the availability of spare equipment in the worst and best possible 

scenario may not be below 50% and beyond 100%, respectively. All prior probability 

distributions of continuous variables in this work are generated using TNORM. 
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Availability	of	spare	equipment	~	TNORM(μ = 2^ߪ,0.87 = 0.03, LB

= 0.5, UB = 1.0) 

 

(3.7) 

Note that the parameters of the variables with continuous distributions can be generally 

obtained through collecting and evaluating historical data. Generally, the truncated 

normal distribution is an appropriate distribution as it is confined to lie between two 

determined lower and upper bound values, especially for modeling the amount of cargo 

handling or similar variables. 

3.5.2 Modeling Vulnerability through Absorptive Capacity 

Discussed previously, eight important factors were identified as contributors to 

the port’s absorptive capacity. The prior probability distribution for six of variables, 

including space utilization, storm surge protection, communication and coordination, 

backup utility system, skilled labor and management and extra cargo handling, are 

represented by two states of either False or True as can be seen on the left side of Figure 

3.6. The posterior probability distribution for the Reliability and Maintenance variables 

are obtained by Boolean logic rules. 

To calculate port reliability, we considered the time to failure or closure/stoppage of the 

port in terms of operation hours, denoted by time to failure (TTF). TTF can be simply 

obtained by historical data. If the TTF is greater than or equal to the expected TTF of 

port, then the port is reliable (On state) and fails (Fail state) otherwise. Similar logic has 

been used to determine the posterior probability distribution for the on-time repair 

scheduling variable. The Boolean expressions for these two variables are presented in 

Table 3.1. The procedure for calculating reliability is depicted in Figure 3.4. 
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The posterior probability distribution of absorptive capacity node is determined by the 

weighted sum of probabilities of its parent nodes. The weight of each factor represents 

the importance of that factor in achieving the port’s absorptive capacity. To calculate 

the probability of absorptive capacity, a labelled type node called Weights of factors 

contributed to absorptive capacity is defined to incorporate the weight of each factor. 

Such weights can be obtained from decision makers using any of a number of decision 

analysis techniques (e.g., Analytic Hierarchy Process, swing weights). The weighted 

mean (WMEAN) function is shown in Eq. (8), where i is the number of variables 

connected (eight in this case) to the weighted average node (Absorptive capacity in 

Figure 6 in this case), and ࢏࢝ is the weight associated with ith variable. This same 

weighted average method has been used for adaptive capacity and restorative capacity 

variables.  

WMEAN = ෍ݓ௜ ௜ܺ
௜

, ∀݅ = 1, …݊, 0 < ௜ݓ < 1, ෍ݓ௜
௜

= 1 (3.8) 

The logic used to determine the posterior probability distribution of absorptive capacity 

is based on Boolean logic discussed earlier. For example, the expression used to tie the 

relationship between the Absorptive capacity node and Maintenance node is IF 

(maintenance =“True”, “True”, “False”), which denotes that absorptive capacity can be 

achieved when maintenance is successfully achieved. The similar interpretation can be 

used for other contributors of absorptive capacity since their achievement will 

eventually contributed positively to the achievement of absorptive capacity. 

Discussed previously, the adaptive capacity and restorative capacity of a system reflect 

the capability of system to recover its lost capacity after experiencing a disruptive event. 

Adaptive capacity refers to the temporary solutions to recover the lost capacity (lost 
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cargo handling) of the system, like repositioning of containers and equipment. 

Restorative capacity refers to the permanent activities to fully restore damaged 

infrastructure impacted by disruption, such as dock berth and equipment restoration. 

Adaptive and restorative capacities are modeled similarly to absorptive capacity, as 

shown in Figure 3.6. 

3.5.3 Modeling Recoverability through Adaptive and Restorative Capacities 

Adaptive capacity and restorative capacity both contribute to the system’s 

recoverability; however their impacts may be different. Adaptive capacity, or temporary 

solutions to recover lost capacity, can be viewed as a second line of defense if 

absorptive capacity is not strong enough to withstand a disruption. Restorative capacity, 

or permanent activities to fully restore damaged infrastructure impacted by disruption, 

can be thought of third line of defense. The practical experience of planning for 

disruptions, specifically natural disasters (Lucena-Moya et al. 2013), indicate that ports 

with higher restorative capacity (relative to adaptive capacity) are more resilient, 

suggesting the need to model the link between a post-disaster strategy and its causal 

factors. The key assumption throughout the Bayesian network model is the conditional 

independence between the causal factors, but this assumption can be relaxed by 

introducing links between them. Although the Boolean expression can be used to 

express the causal relationship between post-disaster strategy and its contributing 

factors, (adaptive capacity and restorative capacity), there may be a more effective 

means to account for the uncertainty associated with a successful post-disaster strategy 

even if adaptive and restorative capacities are both at their True settings. As such, we 
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address this uncertainty with the NoisyOR function, which allows for a probability of 

resilient strategy failure even when the contributing conditions are met. 

To model the causal influences on post-disaster strategy, we use the NoisyOR 

function. Suppose that there are n causal factors, ଵܺ, … ,ܺ௡ of a condition, ܻ, with a 

probability value for ܻ being true when one and only one ଵܺ is true, and all causes other 

than ଵܺ are false. The NoisyOR function is defined Equation 3.9, where for each i, 

௜ݒ = ܲ(ܻ = true| ௜ܺ = true, ௝ܺ = false, for	each	݆ ≠ ݅) is the probability of the 

conditional being true if and only if that causal factor is true (Fenton and Neil 2013). 

NoisyOR( ଵܺ, ,ଵ,ܺଶݒ ,ଶݒ … ,ܺ௡ ௡ݒ, , ݈) (3.9) 

Term ݈ is the leak factor representing the probability that ܻ will be true when all of its 

causal factors are false, as shown in Equation 3.10.  

݈ = ܲ(ܻ = true| ଵܺ = false,ܺଶ = false, … ,ܺ௡ = false) (3.10) 

In general the conditional probability of Y obtained with the NoisyOR function can be 

represented with Equation 3.11.  

ܲ(ܻ = True| ଵܺ, … ,ܺ௡) = 1 −ෑ[(1− ܲ(ܻ = True| ௜ܺ = True)(1− ܲ(݈))]
௡

௜ୀଵ

 (3.11) 

The NoisyOR function used in this paper to calculate the conditional probability of 

post-disaster strategy is defined in Equation 3.12, which suggests that the chance of 

successful achievement of a post-disaster strategy is 70% if only adaptive capacity is 

met, while this value increases to 95% when only restorative capacity is met, where the 

leak probability is only 0.02. Equation 3.12 follows the approach by Vugrin et al. 

(2011), who suggest that adaptive capacity (e.g., repositioning, rerouting) can achieve 
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some level of recoverability, while restorative capacity (e.g., repair) is required to 

achieve more. 

NoisyOR(Adaptive	capacity, 0.7, Restorative	capacity, 0.95, 0.02) (3.12) 

3.5.4 Modeling Resilience Capacity 

Inspired by Equation 3.1, resilience is modeled as the ratio of recoverability to 

vulnerability, or the ratio of recovered cargo handling capacity to the lost cargo 

handling capacity resulting from a disruptive event. Vulnerability is achieved through 

absorptive capacity, and recoverability is achieved with a combination of adaptive and 

restorative capacity. The resilience node is represented by in Figure 3.7. The lost 

capacity of the Cargo handling variable is conditioned on expected inbound and 

outbound cargo handling under normal operating conditions (NOC), and inbound and 

outbound cargo handling under disrupted operating conditions (DOC). The partitioned 

expression in Table 3.2 was used to define the probability of inbound and outbound 

cargo facility under DOC. 

It is assumed that the port’s absorptive capacity can fully absorb the shocks from a 

disruptive event if it is in its True state, and as a result, its inbound and outbound cargo 

handling capacity under DOC would be the same under NOC. That is, when absorptive 

capacity is in its True state, inbound and outbound cargo handling is assumed to follow 

a truncated normal distribution, TNORM (69000, 150, 62000, 72000), which suggests 

that monthly tonnage has an average of 69000 with standard deviation of 150, with 

minimum and maximum tonnage of 62000 and 75000 tons, respectively, due to 

restrictions on yard space and cargo handling equipment. When the absorptive capacity 

is in its False state, the amount of inbound and outbound cargo handling in terms of 
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monthly tonnage follows TNORM (45000, 200, 0, 75000). The lost capacity of cargo 

handling in terms of tonnage can be obtained by calculating the difference between the 

inbound and outbound cargo handling under DOC and NOC as represented in Equation 

3.13. 

max	{0,	 
difference	between	inbound	and	outbound	cargo	handling	under	DOC	and	NOC} (3.13) 

 

Note that the estimated resilience distribution is bimodal because resilience is calculated 

as a function of lost and recovered cargo handling capacity. Lost capacity of cargo 

handling is conditioned on inbound and outbound cargo handling. Inbound and 

outbound cargo handling itself determined depending whether absorptive capacity is on 

either False state or True state which results in two different modes. 

3.5.5 Improving Resilience Capacity 

The ultimate usefulness of the Bayesian network approach to modeling 

resilience capacity is to determine the efficacy of different strategies to strengthen 

absorptive, adaptive, and restorative capacities. This is addressed through a set of 

hypotheses that determine how similar desired resilience, 0 < Яୢୣୱ୧୰ୣୢ ≤ 1, is to the 

actual resilience, Яୟୡ୲୳ୟ୪, calculated from the Bayesian network. The null hypothesis is 

that desired and actual resilience are similar to each other, that is the difference between 

Яୢୣୱ୧୰ୣୢ  and Яୟୡ୲୳ୟ୪ (as the ratio of recovered to lost cargo handling capacity follows a 

probability distribution) is within ߝ, a small acceptable threshold. Alternatively, the 

difference between Яୢୣୱ୧୰ୣୢ and Яୟୡ୲୳ୟ୪ would be sufficiently large to conclude that the 

simulated strategy does not meet the desired resilience level. These hypotheses are 

found in Equation 3.14, the notation used by (Fenton and Neil 2013).    
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൜ܪ଴:			Яୢୣୱ୧୰ୣୢ − Яୟୡ୲୳ୟ୪ ≤ 	ߝ
Яୢୣୱ୧୰ୣୢ			ଵ:ܪ − Яୟୡ୲୳ୟ୪ >  	ߝ

 

(3.14) 

In this study, Яୢୣୱ୧୰ୣୢ is generated by TNORM (ߤ ଶߪ ,0.85= =0.01, LB=0, UB=1), and 

 .is set to 0.05, as represented in Figure 3.8 ߝ

For the example in Figure 3.8, it is found that with probability of 73.7%, the current 

port resilience strategy being analyzed may not necessarily need any urgent 

improvement actions to enhance resilience. However, with probability of 26.3% the 

port’s resilience strategy should be improved.  

3.5.6 Sensitivity Analysis 

A useful means to examine the validity of an expert-built model is to perform 

sensitivity analysis, whereby it is possible to graphically analyze the greatest impact of 

a set of variables on a selected (target) node. To analyze the impact of causal factors of 

Absorptive capacity, we set the Absorptive capacity to be the target node, and the 

impacts of its factors are measured in term of conditional probability. The sensitivity 

analysis of Absorptive capacity’s factors is represented in Figures 3.9 and 3.10. From a 

purely visual inspection, we can think of the length of the bars in the tornado graphs as 

being the measure of the impact of that variable on absorptive capacity. Figure 3.9 

illustrates the impacts of a set of selected nodes including reliability, maintenance, 

communication and coordination, skilled labor and management, extra cargo handling, 

and space utilization on the absorptive capacity when absorptive capacity is being 

“False”. Figure 3.10 shows the impacts of those variables when the absorptive capacity 

is being “True.” From these figures, it is obvious that reliability and space utilization 

have the greatest and lowest impact on the absorptive capacity, respectively. The formal 
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interpretation is that the probability of adaptive capacity given the result of reliability 

goes from 0.649 (when reliability is “Fail”) to 0.899 (when reliability is “On”), shown 

in Figure 3.10. Despite the wide impactful range of reliability, the impact of space 

utilization is limited to narrow range, from 0.846 to 0.876. This implies that 

improvement in port reliability will have an impact on improving the absorptive 

capacity of port, while this impact would be negligible for utilizing the space of ports. 

The sensitivity analysis of the lost capacity of cargo handling in respect to six 

contributors of port’s absorptive capacity is illustrated in Figure 3.11. Note that the lost 

capacity of cargo handling drastically drops when the state of reliability variable 

changes from Fail to On, which points out the high impacts of reliability on reduction of 

lost cargo facility, while the range of changes on lost capacity of cargo handling slightly 

varies for the space utilization variable which indicates the low impact of this variable 

on the loss of capacity of cargo handling. 

Forward Propagation Analysis 

A useful feature of Bayesian networks is the ability to propagate the effect of 

evidence through the network, referred to as “propagation analysis” (Fenton and Neil 

2013). Forward propagation implies the propagation of an observed variable and 

measures its impact on the target variable. If there exists enough evidence that an 

observation occurs, then the observation can be entered into the model, and the 

probabilities of all unobserved variables can be updated. The junction tree algorithm 

(Jensen 1996) is used for propagation analysis, where the joint probability for the model 

from the Bayesian network’s conditional probability structure is calculated in a 

computationally efficient manner. 
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Four different forward propagation scenarios were designed, with results 

reported in Table 3.3. Four decision variables were chosen such that contributions were 

believed to be significant to the port resilience: Maintenance, Backup utility system, 

Quick evacuation, and Restoration resource. Variables were chosen to fall into each of 

absorptive (Maintenance, Backup utility system), adaptive (Quick evacuation), and 

restorative (Restoration resource) capacities. 

The first scenario refers to the case when there observation is made that 

Maintenance is not successful (its “False” state), which eventually increased the lost 

capacity of cargo handling. In scenario 2, two failure events of Maintenance and 

Restoration resource are assumed, leading to a reduction recovered capacity due to the 

reduction in restorative capacity which eventually results in reduction of expected port’s 

resilience. Scenario 3 simulates the impacts of failures of Backup utility system and 

Quick evacuation, and results indicate that the reduction in restorative capacity has a 

larger adverse impact on resilience compared to adaptive capacity as the resilience 

value of Scenario 2 drops to 67% when the restoration resource fails, while in Scenario 

3 this value reduces to 76% when quick evacuation is not successful. Scenario 4 

accounts for failure of all four variables, dropping the expected resilience of the port to 

55%. The results of observations generated by those aforementioned scenarios on 

absorptive capacity, adaptive capacity, restorative capacity and finally expected 

resilience of port are determined and summarized in Table 3.3. 

A comparison of the forward propagation analysis scenarios 1, 3, and 4 is 

illustrated in Figure 3.12. The absorptive, adaptive, and restorative capacities of those 

four scenarios are visually illustrated in Figure 3.14. Figure 3.15 shows the comparison 
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of the probability distributions of port resilience among scenarios 1, 3, and 4. We can 

conclude that the distribution of resilience is skewed to the left when adaptive and 

restorative capacities are reduced, suggesting that adaptive and restorative strategies are 

important to building resilience. 

Two key results are gathered from the propagation analysis discussed above: 

 Setting any contributor to the absorptive capacity to be “False” or “Fail” will 

reduce the “True” probability of absorptive capacity. 

 Setting any contributor to the adaptive and restorative capacities to be “False” 

will reduce the “True” probability of absorptive and restorative capacity, 

respectively. 

Backward Propagation Analysis 

Backward propagation is another useful feature of Bayesian networks. In 

backward propagation, observation is made for a specific variable, usually a target 

variable (e.g., the resilience node in this study) and then the Bayesian network 

calculates the marginal probabilities of unobserved variables by propagating the impact 

of the observed variable through the network in a backward fashion. For example, if the 

resilience value is set to 90%, as shown in Figure 3.13, that the adaptive capacity should 

enhance from 82.75% to 85.47%% and the restorative capacity from 82.5% to 88.29% 

under such a scenario. Several analyses could be performed for different desired 

outcomes. 

3.5.7 Concluding Remarks 

The importance of resilience in the context of planning for infrastructure systems is 

inescapable. Infrastructure systems such as electric power, communication, and supply 



56 

 

chains, among others, are dealing with different types of threats ranging from natural 

disasters to malevolent human-made events to accidents, and hence are required to be 

rigorously designed to withstand and recover from disruptions rapidly and efficiently. 

This is especially true of the components of an intermodal transportation network, 

including inland waterway ports. 

In this paper, we relate the resilience capacity of an inland port to the three components 

of absorptive capacity (a means to withstand a disruptive event, or a reduction in 

vulnerability), adaptive capacity (a means to temporarily adapt to maintain 

performance), and restorative capacity (a means to restore performance in a long term 

manner, which with adaptive capacity constitutes recoverability). Various pre-disaster 

and post-disaster strategies can improve the three capacities to varying extents, all 

combining to improve the resilience capacity of the port. 

We employ Bayesian networks to quantify the resilience capacity of an inland waterway 

network. Bayesian networks have the ability to combine historical data and expert 

knowledge, using calculation of prior and posterior conditional probability. Bayesian 

networks provide a rigorous tool for handling risks and decision making under 

uncertainty environments based on configuration of graphical framework. Although the 

Bayesian networks have been applied in a number of fields, their application to 

quantifying resilience is sparse. Our motivating example is the Port of Catoosa, among 

the ports along the Mississippi River Navigation System and located in Tulsa, 

Oklahoma. 

The objective of this work is to provide an initial framework for studying resilience 

with a Bayesian network, highlighting areas for data or expert elicitation and 
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demonstrating how sensitivity analyses can help guide and compare pre-disaster and 

post-disaster strategies for building resilience. Reports released by the National 

Cooperative Freight Research Program (NCFRP) (2014) highlight that many 

contributors to resilience are qualitative in nature (e.g.,  maintaining frequent 

communication and information flow, skilled level of port’s labor and management, 

physical protection), rather than quantitative. Quantifying and assessing resilience from 

such qualitative variables are difficult when relying on the result of a mathematical 

optimization model, though such a task is relatively straightforward in a Bayesian 

network (when underlying variables are effectively assessed). 

Bayesian network are also powerful tools for generating risk scenarios. Backward 

propagation scenario analysis is especially beneficial for the port authority in the sense 

that it gives insights to them which factors must be fortified significantly to achieve a 

specific level of resilience. 
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Table  3.1 Boolean expressions used to define posterior probability distribution of 
the Reliability and Maintenance variables 

 

 

 

Table  3.2 The conditional probability table for inbound and outbound cargo 
handling under DOC 

 

 

 

 
 

Variable name Boolean expression Meaning 

Reliability   IF (TTF ≥ 7500, “On”, “Fail”) 
 

If time to failure (closure/stoppage) 
of port is greater than or equal to 
7500 hrs (expected time to failure), 
then port is reliable (On state), 
otherwise not (Fail state) 

Maintenance 
IF (on time repair scheduling ≥ 85% || 
Availability of spare equipment ≥ 
85%, “True”, “False”) 

If the probability of on time repair 
scheduling is greater than or equal 
to 85% AND the probability of 
availability of spare equipment is 
greater than 85%, then maintenance 
mission is successes (True state), 
otherwise not (False state)  

 

 False True 
Absorptive capacity TNORM (45000, 200, 0, 75000) TNORM (69000, 150, 62000, 75000) 
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Table  3.3 Forward propagation analysis  
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Figure  3.1 System performance and state transition to describe resilience (adapted 
from Henry and Ramirez-Marquez 2012)  
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Figure  3.2 An example of BN with seven variables 
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Inland waterway port resilience capacity

Absorptive capacity Restorative capacityAdaptive capacity

Backup utility systems

Extra handling equip.

Repositioning

Skilled labor, mgmt.

Budget restoration

Storm surge protection

Communication, cord.

Space utilization

Maintenance and 
reliability

Mode flexibility

Quick evacuation

Resource restoration

  
Figure  3.3 Resilience capacity characteristics of an inland waterway port 

                                                                                

 

Figure  3.4 Calculating the value of Reliability at the port 
 

IF	(TTF	 ≥ 7500, "On", "Fail") 

TTF~TNORM (ߤ ଶߪ ,7510= =70, LB=0, UB=8200) 
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Figure  3.5 The graphical depiction of the proposed Bayesian network model 
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Figure  3.6 Baseline Bayesian network for measuring resilience  
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Figure  3.7 The resilience value measured for the baseline model 

 

 

 

 

Figure  3.8 Hypothesis modeling through Bayesian networks to determine the 
efficacy of port resilience strategies 

 

 

 

 

Expected resilience Expected resilience 

If (desired resilience – actual resilience ≤ 0.05, “No”, 

TNORM (ߤ ଶߪ ,0.85= =0.01, LB=0, 
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Figure  3.9 Tornado graph depicting the impact on several variables when 
Absorptive capacity is set to “False” 

 

 
 

Figure  3.10 Tornado graph depicting the impact on several variables when 
Absorptive capacity is set to “True” 
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Figure  3.11 Sensitivity analysis of lost capacity of cargo handling with respect to 
six contributors to the port’s absorptive capacity 
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Figure  3.12 Forward propagation analysis for scenarios 1, 3, and 4 
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Figure  3.13 Backward scenario when the expected resilience is set to 90% 
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Figure  3.14 Radar chart for comparison absorptive, adaptive, and restorative 
capacities of four scenarios 

 
 
 

 
 

Figure  3.15 The comparison of resilience among scenarios 1, 3, and 4 
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CHAPTER 

43 
 

 

A BAYESIAN NETWORK MODEL FOR RESILIENCE-BASED SUPPLIER 
SELECTION§ 

 

 

ABSTRACT 

Supplier selection is an important strategic decision in the context of supply 

chain management. Existing literature on the subject of supplier selection is focused on 

evaluating primary (e.g., cost, quality, lead time) and green (e.g., CO2 emission, 

environmental practices) criteria. However, the concept of supplier resilience has 

recently emerged due to advent of competitive and global supply chains (and the 

operational and disruptive risks to which they are exposed).  Several resilience-based 

supplier selection criteria are developed with respect to absorptive, adaptive, and 

restorative capacities. This paper further proposes a Bayesian network (BN), a paradigm 

that effectively models the causal relationships among variables but that has not been 

used in the context of supplier evaluation and selection, to quantify the appropriateness 

of suppliers across primary, green, and resilience criteria. Some benefits of the BN 

paradigm, including an ability to handle expert evidence and to perform sensitivity and 

                                                

§ This chapter has been published at International Journal of Production Economics. Hosseini, S., Barker, 

K. A Bayesian network model for resilience-based supplier selection, International Journal of Production 

Economics 2016, 180: 68-87.  
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propagation analyses, are demonstrated with an initial illustrative example of three 

suppliers.  

Keywords: Resilience, Supplier selection, Bayesian Network 

4.1 Introduction and Motivations 

According to recent estimates (Beli 2010), the average U.S. manufacturer 

spends roughly half its revenue to purchase goods and services. As such, the choice of 

suppliers poses an important consideration for manufacturers as they have a large 

financial stake in how suppliers perform. And such a decision is made all along the 

supply chain, with ramifications to all members of the supply chain.  

The supplier selection problem is a challenging multi-criteria decision problem 

that involves tangible and intangible factors (Ho et al. 2010). Gonzalez and Quesada 

(2004) highlighted the important role of suppliers in meeting the goals of a larger 

supply chain, particularly in achieving high quality products and customer satisfaction. 

The supplier selection problem aims to select the best supplier among a set of potential 

suppliers to satisfy certain requirements while subject to their limitations. Traditionally, 

supplier selection problems account for primary criteria including quality, cost, service 

level, and lead time, among others (Dickson 1966).  

Given the recent (and perhaps more frequent) occurrence of large-scale 

disruptions in the form of natural disasters (e.g., earthquakes, tsunamis, floods) and 

man-made events (e.g., labor strikes, human errors, transportation mishaps), supplier 

selection criteria should also include the concept of supplier resilience. Resilience is 

often thought of as the ability of a system or organization to withstand the effects of a 

disruption and to recover to a desired level of performance in a timely manner. 
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The earthquake and tsunami that struck in Japan in March 2011 caused 

significant disruptions throughout the supply chains of many industries, leading to 

massive economic losses (MacKenzie et al. 2012). One significantly impacted industry 

was automobile manufacturing. Many of Toyota’s part suppliers were unable to deliver 

parts at their expected volume and suffered from significant delays. General Motors was 

forced to halt the production of its vehicles due to the shortage of raw materials from 

Japanese suppliers (Huffington Post 2015). Nissan suffered greatly because of its high 

level of dependency on raw material suppliers in the earthquake zone that supplied 

about 12% of its engines (BBC News 2011), forcing Nissan to shut down production at 

its Sunderland, UK plant for several days (Massey 2011). 

The adverse impacts of natural disasters on the suppliers of automotive parts are 

significant due to the size and complex nature of the automotive supply chain. A car 

consists of 20,000 parts on average, and if any one of those parts is unavailable, the 

finished product cannot be shipped. Many of the car’s components, such as engines and 

transmissions, are supplied by Japanese companies located in regions affected by 

natural disasters (Business Theory 2011). Hence, segregation of suppliers 

geographically from disaster-prone areas could help suppliers to efficiently mitigate the 

effects of disruptions. For example, Toyota asked their suppliers to either spread 

production to multiple locations or hold extra inventory buffers as a mitigation strategy 

to withstand disruptions (Supply Chain Digest 2012). Nissan also asked the same of its 

suppliers, suggesting the importance of supplier segregation and extra buffer inventory 

to enhance the resilience of auto manufacturing suppliers. Electronics supply chains are 

also very similar to the automotive part supply chains where products such as desktop 
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PC, laptops, smart phones consist of hundreds of components that are commonly 

supplied by Japan (Monczka et al. 2014).  

More recently, Hurricane Sandy struck New York and New Jersey, among other 

east coast U.S. states, in October 2012, causing the stoppage of normal daily operations 

of ports and resulting in massive economic losses. For example, the commercial 

trucking industry was halted due to the effects of the hurricane with losses of 

approximately $140 million per day (U.S. Department of Commerce 2013). This 

highlights the idea that designing robust protection strategies is not sufficient to 

withstand against disruptive events, especially large-scale natural disasters. 

These recent events suggest that supply chain disruptions are inevitable and their 

adverse impacts to revenue and productivity can be significant. In general, risks 

associated with supply chains can be classified into two categories: operational and 

disruption (Tang 2006a). Operational risks refer to the inherent “every day” events that 

occur within a supply chain, including uncertainty in customer demand, transportation 

cost, and supply uncertainty due to operational problems such as power outages and 

technical equipment failures. Disruption risks refer to the major event-driven 

disruptions, including natural disasters, human-made accidents, or malevolent attacks. 

Disruption risks tend to be lower in likelihood but higher in adverse consequences 

compared to operational risks. Resilient suppliers are those that can withstand and 

recover from multiple sources of risk. 

This work aims to develop a new decision approach for supplier selection based 

on Bayesian network theory, a power tool for handling risk and uncertainty in decision 

making with the capability of modeling both qualitative and quantitative variables 
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(Fenton and Neil 2013). Bayesian networks have been used for decision making in a 

variety of applications such as software development projects (Perkusich et al. 2015), 

data classification (Arizmendi et al. 2014), safety management (Hanninen et al. 2014), 

customer service management (Song et al. 2013), and traffic accidents (Hanninen 

2014), among others. However, there appears to be no use of Bayesian networks for 

aiding the supplier selection process. We propose a Bayesian network formulation for 

supplier selection, accounting for operational (e.g., customer demand) and disruption 

(e.g., natural disaster) risks and their effect on resilient suppliers.  

4.2 Literature Review  

This work accounts for supplier selection criteria from three perspectives, 

defined here as primary criteria, green criteria, and resilience criteria. This section 

highlights literature dealing with primary and green criteria, as well as respective 

supplier selection problem formulations. A summary of recent literature on supplier 

selection and related methodologies is represented in Table 4.1.  

4.2.1 Primary Criteria for Supplier Selection 

Primary criteria are comprised of the common criteria used for decades in 

supplier selection, including cost, quality, lead time, and service level, among others. 

For example, Dickson (1966) introduced 23 supplier selection criteria still found in 

literature today. Kotula et al. (2015) investigated the supplier assessment criteria from 

multiple stakeholder perspectives specific to industry and country. They found that for 

the construction industry, quality, supplier relationship management, and profit were the 

important factors for evaluating suppliers, while for the electronics industry, quality, a 
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sourcing strategy aligned with corporate goals, and supply flexibility were the most 

important ones.   

Many supplier selection problems have been addressed with multi-criteria 

decision analysis tools that compare discrete supplier alternatives, including TOPSIS 

(Wang et al. 2009), VIKOR (You et al. 2015), ELECTRE (Sevkli 2010), and data 

envelopment analysis (DEA) (Toloo and Nalchigar 2011). Generally, these approaches 

provide a ranked order of alternatives (i.e., suppliers) given a set of weighted criteria, 

where weights are elicited through the analytic hierarchy process (AHP) or a similar 

approach. Fazlollahtabar et al. (2011) integrated AHP and TOPSIS for evaluate 

suppliers based on cost, quality, service, delivery, and innovation. You et al. (2015) 

applied the VIKOR method with interval 2-tuple linguistic information considering four 

criteria: technical capability, delivery performance, quality, and price. Liu and Zhang 

(2011) applied the ELECTRE III method for supplier selection considering technology 

available, service, management capability, and enterprise environment. Viswanadham 

and Samvedi (2013) considered lead time, cost, and quality performance with a fuzzy 

version of AHP and fuzzy TOPSIS. Hague et al. (2015) apply an interval-value TOPSIS 

approach with importance measure-driven weights to select suppliers based primarily 

on part reliability and maintainability. Memon et al. (2015) applied a combination of 

grey system theory and uncertainty theory for evaluating supplier criteria of quality, 

delivery capability, logistics service, and risk factors. Pitchipoo et al. (2015) also 

applied a grey decision model for supplier assessment and selection in the process 

industry where cost, delivery, capacity and warranty of potential suppliers were 

evaluated. Yucenur et al. (2011) considered quality, cost, and risk with AHP and 
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analytical network process (ANP) approaches under a fuzzy environment. Saghiri and 

Barnes (2016) addressed the relationship between supplier flexibility and postponement 

as a strategy for managing demand under uncertainty through an empirical analysis. 

Mathematical programming formulations have also been developed for the 

supplier selection problem. Jadidi et al. (2014) proposed a goal programing approach 

for multiobjective joint supplier selection and order allocation. Ustun and Demitras 

(2008) integrated ANP and multi-objective mixed integer linear programming for 

selection of suppliers with consideration of finance, quality, delivery, customer 

relationships, service, and risk. Sawik (2010) introduced a mixed integer programming 

formulation to consider supplier finance, quality, delivery, management, and 

organization. Karimi and Rezaeinia (2014) introduced a multi-segment goal 

programming approach accounting for four primary criteria including warranty, price, 

delivery, and service satisfaction. Mohammaditabar et al. (2016) developed a game 

theoretic analysis for capacity-constrained supplier selection to analyze selected 

suppliers and agreed-upon prices in decentralized supply chains. Other recent work 

related to primary criteria for supplier selection includes those by Rezaei and Davoodi 

(2011), Zhang and Zhang (2011), and Zhang et al. (2016). 

4.2.2 Green Criteria for Supplier Selection 

The threat of increased greenhouse gas emissions has led some governments to 

impose stricter regulations and standards. These requirements, as well as environmental 

consciousness on the part of industry decision makers, have led to green considerations 

in doing business, including supplier selection. There has been a recent increase in 

supplier selection work that addresses both primary and green criteria. 
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Lee et al. (2009) extended a fuzzy AHP approach for green supplier selection 

with five primary criteria (quality, finance, organization, technology capability, and 

service) and four green criteria (total product life cycle cost, green image, pollution 

control, and environmental management). Hashemi et al. (2015) proposed an a grey 

relation analysis and ANP for green supplier selection, accounting for primary criteria 

of cost, quality, and technology and green criteria of pollution production, resource 

consumption, and management commitments. Huang and Keskar (2007) applied AHP 

with carbon footprint considerations, along with finance, delivery, service, and 

organizational performance. Zhang et al. (2013) developed a nonlinear multi-objective 

optimization model for green supplier selection that accounted for prolusion emitted by 

gasoline consumption during transportation, cost, delivery rate, transportation time, and 

service level, solved with a Pareto genetic algorithm. Akman (2015) integrated fuzzy c-

means and VIKOR methods to evaluate green suppliers based on green design, 

pollution prevention, green image, green capability, and environmental management. 

Kumar and Jain (2010) developed a DEA model considering carbon footprint 

monitoring. Mahdiloo et al. (2015) also applied DEA considering technical and 

environmental criteria, referred to as an eco-efficiency measurement. Theiben and 

Spinler (2014) evaluated the efficiency of green suppliers based on their CO2 emission 

level using ANP. Tsui and Wen (2014) proposed a hybrid multi-criteria decision 

making approach by integrating AHP, ELECTRE III, and the linear assignment method 

to prioritize suppliers considering safety and health, air pollution, recovery, and 

strategic fit. Kuo et al. (2014) developed a carbon footprint inventory route model based 

on the vehicle routing problem. More literature related to green criteria in supplier 
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selection can be found in Nielsen et al. (2014), Palak et al. (2014), and Banaeian et al. 

(2015). 

4.3 Development of Resilience Supplier Selection Criteria 

The ability to withstand, adapt to, and recover from a disruption is generally 

referred to as resilience, a definition with which many would largely agree (Haimes 

2009, Aven 2011, Barker et al. 2016). Resilience is a concept that is increasingly 

gaining traction in government, industry, academia, and popular science (Park et al. 

2013, Zolli and Healy 2013, Hosseini et al. 2016). 

Resilient supply chain practices have been a well-studied topic for the last 

decade or so. Particularly in a supply chain context, Sheffi (2005) defined the resilience 

of a firm within a supply chain as its inherent ability to maintain or recover its steady 

state behavior, thereby allowing it to continue normal operations after a disruptive 

event. Rice and Caniatio (2003) highlighted that supply chain resilience in the upstream 

level could be enhanced with the multiple-sourcing of suppliers, sourcing strategies to 

allow switching of suppliers, and commitment to contracts for material supply. 

Christopher and Peck (2004) emphasized that developing visibility to a better view of 

upstream inventories and supply conditions would positively contributes to the 

resilience of supply chain context, while Tang (2006b) pointed out the importance of 

flexible supply base (sourcing). 

However, in contrast to the extensive work to explore the role of primary and 

green criteria in the supplier selection problem, accounting for the concept of resilience 

in supplier selection is relatively new and with no consensus on factors contributing to 

the resilient characteristics of suppliers. Rajesh and Ravi (2015) proposed a grey 
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relational analysis method for selecting suppliers considering vulnerability, 

collaboration, risk awareness, supply chain continuity management for selection of 

resilience suppliers. Torabi et al. (2015) developed a two-stage stochastic programming 

model to solve a resilient supplier selection and allocation problem under operational 

and disruption risks. They account for four resilience-building strategies including 

supplier’s business continuity plans, extra inventory maintained by the supplier, 

fortification of suppliers, and contracting with backup suppliers. Sawik (2013) 

investigated the problem of resilient supply portfolio, including the pre-positioning of 

emergency inventory as a primary strategy to mitigate the effects of a disruption, using 

a mixed integer programming model using concepts from value-at-risk and conditional 

value-at-risk. Sawik (2016) proposed a risk-averse optimization model in the presence 

of a supply chain disruption with two different service levels measures: the expected 

worst-case demand fulfilment rate and the expected worst-case order fulfillment rate 

with consideration that suppliers are geographically dispersed. The findings suggest that 

the worst-case order fulfillment results in a higher service performance than the worst-

case demand fulfilment. Haldar et al. (2014) proposed a fuzzy group decision making 

approach for resilient supplier selection where the importance degrees of supplier 

attributes are expressed in terms of linguistic variables. 

Vugrin et al. (2011) defined the resilience capacity of a system as a function of 

the absorptive, adaptive, and restorative capacities of the system, clearly identifying 

pre-disruption and post-disruption planning. We make use of this concept of resilience 

capacity and its three dimensions to explore the factors contributing to a resilient 

supplier in the supplier selection problem. 
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Absorptive capacity is the extent to which a system (or a supplier in the context 

of this study) is able to absorb shocks from disruptive events, implying proactive 

planning for resilience or the development of pre-disaster strategies that can be 

considered as a first line of defense. Absorptive capacity can be viewed as being 

endogenous to the system (Vugrin et al. 2011). It is similar to the concept of inherent 

resilience described by Rose (2009) as the “ordinary ability to deal with crises.” 

Features of absorptive capacity in the context of supplier selection are proposed here.  

Geographical segregation: Segregation or separation of a supplier 

geographically from natural disasters can reduce the likelihood of adverse impacts on 

the supplier if the disaster occurs. Alluded to previously in the discussion of automakers 

after the Japanese earthquake and tsunami, Nissan and Toyota requested that their part 

suppliers establish facilities that are geographically separated from disaster prone areas. 

Note that not only should the location of suppliers be segregated from natural disasters 

but also the location of suppliers in a multi-sourcing supply chain network (Vugrin et al. 

2011).   

Surplus inventory: Although maintaining more on-hand inventory may increase 

holding costs, it can also enhance the ability of the supplier to absorb a disruptive event. 

Note that pre-positioned inventory levels are restricted by space availability. Torabi et 

al. [2015] discussed that pre-positioning extra inventory can enhance the resilience of a 

supplier. Turnquist and Vugrin (2013) developed a stochastic model for design of 

resilience in infrastructure distribution networks, and they treat extra inventory as a 

feature of absorptive capacity in a distribution center. Little (2005) suggests that New 

York City’s recovery following the terrorist attacks of September 11, 2001, would have 
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been hampered had more organizations taken an inventory reduction (e.g., just-in-time) 

philosophy.  

Backup supplier contracting: A disrupted supplier may contract with a backup 

supplier to fulfill manufacturer orders. Such a contract is assumed to be in place prior to 

a disruption. Contracting with a backup supplier can be viewed as a form of 

redundancy, a common absorptive capacity enhancement philosophy in my 

infrastructure systems (Vugrin et al. 2011).         

Physical protection: Physical protection and facility safety can reduce the initial 

impact of disruptive consequences. Physical protection refers to the security of 

supplier’s facility from disruptive events that could cause serious losses or damage to a 

supplier’s facility. To protect from attacks, this could include security cameras, or for 

natural disasters, a form of physical protection is system hardening. Hosseini and 

Barker (2016) define physical protection strategies for inland waterway port 

infrastructure as a form of absorptive capacity. 

Adaptive capacity is the extent to which a supplier can adapt itself after a 

disruption to minimize adverse consequences on the performance of system. Adaptive 

capacity is considered to be a second line of defense against disruption as a part of a 

temporary post-disaster strategy. 

Rerouting: Redundant transportation usually allows supplier to use nonstandard, 

but more expensive, rerouting options if the original transportation mode is disrupted. A 

recent example of rerouting through a different transportation mode occurred when a 

drought on the Mississippi River caused a considerable portion of the waterway to be 

unusable by barges (National Geographic News 2013). Shipping companies were forced 
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to lighten their load or switch to railway or highway modes suitable for long distance 

bulk transportation.     

Restorative capacity is the extent to which a supplier is able to recover 

permanently from disruption. Restorative capacity differs from adaptive capacity in that 

restorative strategies are longer term in nature. Restorative capacity can be thought of 

the last line of defense against disruption. In cases where the impact of extreme event is 

significant, the supplier’s facility site may be disrupted partially or entirely. The 

supplier’s facility site or equipment needs to be repaired to fully recover to its normal 

operating conditions in a permanent way. Hosseini and Barker (2016) highlighted the 

restoration budget and technical resource restoration as the main factors of restorative 

capacity of long-term recovery for inland waterway port infrastructure. 

Restoration budget: Monetary capital is typically required for a supplier to 

restore its productivity. Therefore, restoration could be hampered by a lack of budget 

resources.  

Technical resource restoration: The capability of a supplier to restore its 

damaged equipment and facilities is dependent on the availability of equipment 

resources (e.g., repair vehicles) and human resources (e.g., repair crews). 

4.4 Background of Bayesian Networks 

Bayesian networks (BNs), structured based on Bayes’ theorem for calculating 

conditional probabilities, are power tools for handling risk assessment and decision 

making under uncertainty (Fenton and Neil 2013). BNs have been widely used as a 

decision support tool in a diverse set of application domains such as risk analysis (Song 

et al. 2013, Khanzad 2015), safety management (Hanninen et al. 2014, Wu et al. 2015), 
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and reliability engineering (Cai et al. 2012, Liu et al. 2015), among others, including 

some initial work in modeling infrastructure resilience (Hosseini and Barker 2016). BNs 

are popular method of modeling uncertain and complex domains (Uusitalo 2007) and 

are capable of integrating different sources of information such as observed data and 

expert judgment. As BN models focus on the relationship between information and 

uncertainty with action, the consequences of various management decisions can be 

studied through BNs (Uusitalo 2007). Unlike black-box models (e.g., neural networks 

and certain other statistical learning approaches), there are no hidden variables in the 

BN model. Further, BNs can handle both types of qualitative and qualitative variables. 

More details about advantages of BNs can be found in Uusitalo (2007) and especially 

(Fenton and Neil 2013) for risk applications. 

BNs graphically describe networks of causes and effects using a set of variables 

(nodes) and a set of causal relationships (edges) that exist among the variables. The 

causal relationship between variables can be expressed in terms of conditional 

probabilities. BNs are capable of encoding both qualitative (low/medium/high), 

Boolean (yes/no, true/false), or continuous variables. Data describing these variables 

can come from historical data, expert knowledge, or a combination of the two. 

From a mathematical standpoint, BNs are acyclic graphs with a set of variables 

(nodes), represented by ܸ = { ଵܺ,ܺଶ, … ,ܺ௡}, and a set of edges whose structure 

determines interdependencies among variables. An outgoing edge from ௜ܺ to ௝ܺ 

indicates a relationship that value of variable	 ௝ܺ is dependent of the value of ௜ܺ. Further, 

if there is an outgoing edge from ௜ܺ to ௝ܺ, then ௜ܺ is the parent node of ௝ܺ, and ௝ܺ is a 

child node of	 ௜ܺ.Three classes of nodes exist in BN: (i) nodes without a child node are 
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called leaf nodes, (ii) nodes without a parent node are called root nodes, and (iii) nodes 

with parent and child nodes are called intermediate nodes. For example, in Figure 4.1, 

nodes ଵܺ and ܺଶ are root nodes, ܺଷ and ܺସ are intermediate nodes, and ܺହ is a leaf 

node.  

The causal relationship among variables of a BN can be measured through 

conditional probability distributions. The full joint probability distributions of the BN 

given in Figure 4.1 can be expressed in Equation 4.1, which can be thought of as a 

representation of the topology of the BN and dependencies among variables. In the 

example above, two priori probabilities, ܲ( ଵܺ) and ܲ(ܺଶ), and three conditional 

probabilities,ܲ(ܺଷ| ଵܺ), ܲ(ܺସ|ܺଶ,ܺଷ), and ܲ(ܺହ|ܺସ), must be defined. Each variable 

(node) is associated with a node probability table, or NPT, which lists the probability of 

the occurrence of a realization of a variable given the values of other variables. NPTs 

contain probability information that underpins the structural relationship in a model. 

ܲ( ଵܺ,ܺଶ,ܺଷ,ܺସ,ܺହ) = ܲ( ଵܺ)ܲ(ܺଶ)ܲ(ܺଷ| ଵܺ)ܲ(ܺସ|ܺଶ,ܺଷ)ܲ(ܺହ|ܺସ) (4.1) 

The joint probability distribution can be used for calculating the probability of an 

individual variable in a BN. Suppose that we are interested in calculating ܺଷ, then 

ܲ(ܺଷ) can be written with Equation 4.2 using marginalization.  

ܲ(ܺଷ) = ෍ ܲ(ܺଵ)ܲ(ܺଶ)ܲ(ܺଷ|ܺଵ)ܲ(ܺସ|ܺଶ,ܺଷ)ܲ(ܺହ|ܺସ)
௑భ,௑మ,௑ర,௑ఱ

 

(4.2) 

Marginalization is a distributive operation over combinations of local joint probabilities, 

meaning that we can marginalize the global joint probability by marginalizing local 

NPTs (Fenton 2013). In the example given in Figure 4.1, the marginalization of ܲ(ܺଷ) 

consists of factors in Equation 4.3. More details about the technical aspects of 
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marginalization, among other topics related to Bayesian networks, can be found 

in Fenton (2013). 

ܲ(ܺଷ) =

⎝

⎜
⎛
෍ܲ(ܺଵ)ܲ(ܺଷ| ଵܺ)
௑భ

൮෍൮෍ܲ(ܺସ|ܺଶ,ܺଷ)ܲ(ܺଶ)
௑మ

ቌ෍ܲ(ܺହ|ܺସ)
௑ఱ

ቍ൲
௑ర

൲

⎠

⎟
⎞

 
(4.3) 

Note that Equation 4.1 to 4.3 hold true when all the variables in the BN are binary (e.g., 

True/False). In fact, the theory of BN discussed above can be expressed in terms of 

binary variables, but in many real case studies such as the one studied in this paper, 

different type of variables, including continuous and fixed variables, must be taken into 

account.   

4.5 Proposed BN for Supplier Evaluation and Selection 

BNs provide flexibility to construct the causal structure based on expert 

judgment, an important trait when evaluating the performance of suppliers as a function 

of some available data but also expert knowledge about supplier behavior and the 

conditional dependencies among variables related to supplier performance. The 

proposed BN in this study is used for evaluating the performance of candidate suppliers 

in terms of primary, green, and resilience criteria to eventually guide the selection of the 

best supplier. The primary steps of model development include: (i) identification of 

model variables that contribute to the supplier selection problem, and then (ii) building 

the causal model structure based of conditional dependencies among those variables. 

The proposed general framework for supplier selection is illustrated in Figure 4.2. As 

shown, the target variable is Supplier evaluation, which is conditioned on primary, 

green, and resilience criteria variables (derived from Sections 2 and 3), as well as a 

Weighting factor that captures the importance of each criterion.  
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The supplier selection model, the complete BN for which is depicted in Figure 

4.8, was built using the AgenaRisk BN tool (AgenaRisk 2005). AgenaRisk supports 

standard discrete, labelled, and continuous state variables approximated using dynamic 

discretization (Fenton et al. 2010). There are four types of variables used in the 

proposed BN model:  

1. Boolean variables (BVs) have a binary response whose two states of True and False 

are used to represent positive and negative outcomes, respectively.     

2. Continuous variables (CVs) capture uncertainty associated with a variable that can 

take on continuous realizations via a probability distribution.    

3. Fixed variables (FVs) represent a variable whose value is constant.   

4. Labelled variables (LVs) can have a number of discrete states.    

These variables are explained subsequently in the context of a particular supplier, 

referred to as Supplier 1. The parameters of the variables will change from supplier to 

supplier for the ultimate purpose of assessing each supplier to allow for their 

comparison. 

4.5.1 Modeling Primary Criteria 

The primary criterion, defined by a Boolean variable for which a probability 

measures whether criterion is met (True) or not (False), is measured as a collection of 

Delivery robustness, Quality of products, Service, and Total costs variables. The 

relationships among these variables and depicted in Figure 4.5. 

4.5.1.1 Delivery Robustness 

The ability of the supplier to meet the predefined delivery schedule is an often-

used criterion for supplier selection (Mwikali and Kavale 2012). The supplier must be 
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able to respond to the customer order with short lead time. Lead time is defined with a 

truncated normal distribution (TNORM) as shown by Equation 4.4 and depicted in 

Figure 4.3. Assume Supplier 1 has an expected lead time for delivery of raw materials 

of sixteen days with a variance of 1.5 day. The shortest and longest lead time are 1 day, 

denoted by LB (lower bound) and 12 days, denoted by UB (upper bound), respectively. 

These data can be obtained through empirical observation over a specified time period. 

The Delivery robustness variable is conditioned on response rate and lead time as 

represented in Figure 4.3.       

Lead time ~	TNORM	(μ=16	day,	1.5=2ߪ	day,	LB=1,	UB=12) (4.4) 

Note that TNORM is an extension of the normal distribution in which occurrences are 

bounded to values that lie within a specified range (Burkardt 2014). TNORM is an 

appropriate distribution to use when the data are normally distributed on a finite range. 

TNORM can be presented by four parameters: mean, average, lower bound, and upper 

bound respectively.  

The response rate, or the ratio of satisfied ordered items of product to ordered items of 

product (Rezaei and Davoodi 2011), is also modeled with a truncated normal 

distribution shown in Equation 4.5. For Supplier 1, the mean response is 94%.   

Response rate ~	TNORM	(μ=0.94,	σ2=0.01,	LB=0.87,	UB=1) (4.5) 

A Boolean expression is used to calculate the probability of successful Delivery 

robustness, as represented in Table 4.2. The Boolean expression defines the probability 

of Delivery robustness being True when the lead time is less than 10 days and response 

rate is at least 90%. Maximum allowable and minimum acceptable response rates (10% 

and 90%, respectively) are values determined by the manufacturer who receives the raw 
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materials. Note that the probability of Delivery robustness being true reduces if the lead 

time threshold is shorter and the response rate threshold approaches 1. A schematic 

representation for modeling of delivery robustness variable is illustrated in Figure 4.4. 

Note that the prior probability of response rate and lead time can be obtained by fitting 

appropriate distribution to the historical data, or in the cases which a little data are 

available, expert judgements can be incorporated (Constantinou et al. 2016).    

4.5.1.2 Quality of products  

The quality of delivered raw materials or products has been an important factor 

in the selection of suppliers in many studies (Fazlollahtabar et al. 2011, Chai and Ngai 

2015, Chan and Chan 2010). The likelihood that items from a supplier are of sufficient 

quality, as measured by True or False states, is conditioned on the probability of the 

product being faulty during inspection by the manufacturer. The NPTs of these two 

variables are described in Table 4.3 for the illustrative Supplier 1.     

4.5.1.3 Service 

A supplier’s service level is defined as all those activities provided by the 

supplier to enhance or augment the product and have value for the buyer, thus 

increasing customer satisfaction and better relationship between supplier and 

manufacturer (Donaldson 1994) and is a commonly used criterion in supplier selection 

(Mwikali and Kavale 2012). Fazlollahtabar et al. (2011) considered after-sales service 

and technical support as attributes of service level for the selection of best supplier, and 

these characteristics are also used in this study. The NPTs for the Service variable and 

its prior nodes (technical service and after-sale service) are represented in Tables 4.4 

through 6 for Supplier 1. 
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4.5.1.4 Total Costs 

Supplier costs are perhaps the most common criterion in the supplier selection 

problem (Ho et al. 2010, Lee et al. 2009, Fazlollahtabar et al. 2011). The total costs of a 

supplier are represented here as the sum of order cost, total transportation cost, purchase 

cost, and tardiness penalty cost. The NPT for total cost variable is represented in Table 

4.7. The NPT suggests that the Boolean variable for cost is acceptable below some 

budget value, which is $127,000 for this illustrative example.   

From Figure 4.5, the probability of total costs of the first supplier being True 

(satisfactory) is about 56% while the probability of about 44% is False (unsatisfactory). 

The components of total cost of the supplier are: (i) Order cost, a constant in Figure 4.5, 

set at $45 for Supplier 1 in this example, (ii) Purchase cost, the multiplication of the 

purchase cost per item and the number of purchased items, where the purchased cost per 

item is a constant set to $125 in this example and the number of items purchased from 

the supplier is dependent on customer demand and capacity of supplier whose NPTs are 

shown in Table 4.8, (iii) Tardiness penalty cost, a penalty for delayed delivery that is 

assigned if the actual order completion time is beyond its expected due time as 

calculated in the NPT is found in Table 4.9, and (iv) Total transportation cost, 

calculated as the sum of fixed and variable transportation costs.  

4.5.1.5 Primary Criteria for variable  

The posterior probability of the primary criteria variable being either True or 

False depends on the probability of its prior variables: delivery robustness, quality of 

products, service, and total cost. One way to model the NPT for the primary criteria 

node is similar to that of the service variable, represented in Table 4.6. However, the 
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NPT for the service variable requires only eight entries since it is conditioned on only 

two variables, but as the primary criteria variable has five Boolean variables (and thus 

2ହ = 32 entries), its calculation can be tedious and error prone. Moreover, many of 

those 32 entries may be unnecessary as the effects of the parent nodes on the child node 

may be essentially independent. The NPT for technical support variables is represented 

in Table 4.5.   

An alternative, perhaps more effective approach, is called the NoisyOR function. 

NoisyOR has been well established as a standard means of encoding expertise in large 

NPTs (Huang and Henrion 1996). Suppose there are n causal factors, ଵܺ, … ,ܺ௡ of a 

condition, Y, with a probability value for Y being true when one and only one ௜ܺ is true, 

and all causes other than ௜ܺ are false. The NoisyOR function is defined in Equation 4.6, 

where for each i, ݒ௜ = ܲ(ܻ = true| ௜ܺ = true,	 ௝ܺ = false,	for	each	݆ ≠ ݅) is the 

probability of the conditional being true if and only if that causal factor is true (Fenton 

and Neil 2013).   

NoisyOR( ଵܺ, ,ଵ,ܺଶݒ ,ଶݒ … ,ܺ௡ ௡ݒ, , ݈) (4.6) 

Term l is referred to as the leak probability representing the probability that Y will be 

true when all of its causal factors are false, as shown in Equation 4.7.  

݈ = ܲ(ܻ = true| ଵܺ = false,ܺଶ = false, … ,ܺ௡ = false) (4.7) 

In general, the conditional probability of Y obtained with NoisyOR function can be 

represented with Equation 4.8.  

ܲ(ܻ = true| ଵܺ,ܺଶ, … ,ܺ௡) = 1 −ෑ[(1− ܲ(ܻ = true| ௜ܺ = true)(1− ܲ(݈))]
௡

௜ୀଵ

 (4.8) 
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The NoisyOR function is used here to calculate the conditional probability of the 

primary criteria as defined in Equation 4.9, which suggests that the likelihood of 

Supplier 1 successfully achieving the primary criteria is 0.15 if only the desired service 

level of the supplier is met, while this probability changes to 0.30, 0.40, and 0.25 when 

total cost, quality of products, and delivery and response, are individually not met, 

respectively. Finally, the values associated with the leak will be 0.05. In general leak 

probability is a non-zero probability for the effect to be triggered even if all the causes 

are false (Antonucci 2011), generally used to reflect when another factor not considered 

causes the trigger. In this case, there is a 5% likelihood that primary criteria being met 

while delivery robustness, quality, service, and total costs are all false. There might be 

other factors that contribute to the primary criteria (e.g., ease of communication with 

supplier, supplier’s profile, performance history of supplier) that are not included 

among the four defined primary criteria. Note that when more primary criteria factors 

are considered, the leak probability reduces. These parameters could realistically be 

obtained through decision maker experience, perhaps combined with historical data.   

NoisyOR (total cost, 0.3, quality of products, 0.4, service, 0.15, 

delivery and response, 0.25, 0.05)  

 

(4.9) 

4.5.2 Modeling Green Criteria 

The use of green supplier selection criteria has grown in the recent literature 

(e.g., Hashemi et al. 2015, Dobos and Vorosmarty 2014, You et al. 2015, Scott et al. 

2015, Lee et al. 2009, Akman, 2015, Tsui and Wen 2014). As environmental awareness 

increases, manufacturers today are more interested in purchasing goods and services 

from suppliers with environmental responsibility (Lee et al. 2009). Different green 
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factors including product life cycle, green image, CO2 emission and environment 

management, reusability among others have been used to evaluate green suppliers. 

Among aforementioned factors, CO2 emission is among the more common factors (Lee 

et al. 2009, Dobos and Vorosmarty 2014). In this study, the green performance of 

supplier is assessed based on the amount of CO2 emitted by that supplier. The NPTs of 

green criteria are found in Table 4.10, and a depiction of the portion of the BN is 

represented in Figure 4.6. The total amount of CO2 emitted by the supplier depends on 

the distance between customer and supplier (km), as well as CO2 emission (g/km). Note 

that the level of CO2 emission depends on the type of transportation mode used for the 

shipment of commodities. Note that in this paper, the focus of the green criteria is given 

to CO2 emission only, as it contributes to over 95% of greenhouse gas emissions 

(Marufuzzaman et al. 2014). Carbon capacity is one of the carbon regulatory 

mechanisms that limit carbon emissions produced by transportation activities in the 

supply chain, and the aim of the carbon capacity constraint is to diminish carbon 

emission produced by supplier companies.  

4.5.3 Modeling Resilience Criteria 

Discussed previously, the idea of resilience in the supplier selection problem is 

relatively new and becoming more important due to the vulnerabilities of an 

increasingly global supply chain. The contributors to the supplier resilience, identified 

in Section 3, are modeled using the Bayesian network illustrated in Figure 4.7. The 

NPTs of the resilience criteria and its contributors are listed in Table 4.11.  

4.5.4 Modeling the Supplier Evaluation Variable 
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The ultimate target node is the Supplier evaluation variable provides a 

probability statement about whether the supplier should be selected, conditioned on the 

primary, green, and resilience criteria nodes, as well as the weighting factor. The 

weighting factor is a labelled variable with three states that captures weights of three 

criteria. Initially, it is assumed that the weight of each factor is equally distributed, 

33.33%. As illustrated in Figure 4.8, the probability of selecting Supplier 1 (the 

Supplier evaluation variable being True) is 66.8%, with the probability that Supplier 1 

not being selected of 33.2% (the False state). BN models were similarly developed for 

Suppliers 2 and 3, whose BNs were developed similarly to that of Supplier 1 and are 

provided in the Appendix. The resulting probability of selection of Suppliers 2 and 3 are 

59.6% and 53.5% as depicted in Figures 4.17 and 4.18 respectively.  

4.6 Results and Analysis  

The results of the illustrative example built around Supplier 1, as discussed in 

the previous sections, are provided here. 

4.6.1 Sensitivity Analysis 

A useful method to investigate the validity of an expert-built model is to 

perform sensitivity analysis to get a sense of how the model’s output is affected by 

uncertainty in input parameters. Resilience criteria is set as the target node, and the 

impacts of its causal factors are measured in terms of conditional probability. The 

sensitivity analysis of resilience factors is represented in Figures 4.9 and 4.10, which 

represent the probability of resilience of Supplier 1 being “True” and “False” 

respectively given a set of its contributors respectively.   
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From a purely visual inspection, the length of the bars in the tornado graphs can be 

thought of as the measure of the impact of that variable on the resilience criteria. Figure 

4.9 illustrates the impacts of six Boolean variables including Technical resources, 

Budget resources, Segregation, Backup supplier, Surplus inventory, and Physical 

protection when the resilience criteria is True. Figure 4.10 shows the impacts of the six 

variables when the resilience criteria is False. It is clear that technical resources and 

physical protection have the greatest and lowest impact on the resilience of supplier, 

respectively. The formal interpretation is that the probability of resilience of Supplier 1 

given the results of technical resources goes from 69.6% (when technical resource is 

Fail) to 87.6% (when technical resource is True), as shown in Figure 4.9. The impact of 

physical protection on the resilience of Supplier 1 is limited to narrow range, from 

83.1% to 84.2%. This suggests enhancing the availability of technical resources is more 

impactful than any other factor in improving the resilience of Supplier 1. A sensitivity 

analysis was also performed for the Supplier evaluation node with respect to some key 

factors including Restorative capacity, Quality of products, Cost, Delivery robustness, 

Absorptive capacity, Service, and Adaptive capacity. The probability of supplier 

selection being True and False is 66.8% and 33.2%, respectively, as illustrated in the 

tornado graphs in Figures 4.11 and 4.12. From these figures, it can be concluded that 

the probability selecting Supplier 1 is more sensitive to the changes in the states of 

restorative capacity and least sensitive to changes in adaptive capacity. 

4.6.2 Weighting Factor Analysis 

Discussed previously, the weights of each of the three supplier selection criteria 

(primary, green, and resilience) are assumed to be equally distributed of 33% in the 
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baseline BN. Figure 4.13 shows that P(selection of the Supplier 1 | resilience, green, 

primary, weight of each criteria = 33%) = 66.8%, while this probability for Suppliers 2 

and 3 are 59.6% and 53.5%, respectively. Hence, the first supplier is selected as the 

most appropriate when primary, green, and resilience criteria are aggregated and 

considered to be equally important. In the second scenario illustrated in Figure 4.14, 

emphasis is placed on the supplier’s resilience, which receives a 50% weight relative to 

primary and green criteria, both equally set to 25%. The results of this scenario shows 

that the probability of selection of Supplier 1 increases from 66.8% to 71.1% and still 

remains as the highest ranked supplier, while the probability of selection for Suppliers 2 

and 3 increase from 59.6% to 64.7% and 53.5% to 59.4%, respectively. The BN models 

for Suppliers 2 and 3 are illustrated in Figures 4.17 and 4.18.  

4.6.3 Inference Process Analysis 

The inference process in Bayesian networks generally requires obtaining the 

posterior probabilities for a set of variables ூܺ ⊂  given evidence e. This probability is ݒ

shown in Equation 4.10. This is typically referred to as propagation analysis. Forward 

propagation analysis aims to propagate the impact of observing one or set of variables 

and measure its impact on the target node. Such “what-if” analyses can be performed in 

a backward fashion, where a value can be entered in a target node, and information is 

propagated to update the distributions of all remaining unknown variables. Note that 

forward propagation is a type of reasoning from cause to effect, while backward 

propagation describes effect-to-cause. 

ܲ( ௜ܺ|݁)			∀ ௜ܺ ∈ ூܺ (4.10) 

4.6.3.1 Forward Propagation Analysis 
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A number of observations can be entered in the BN, and forward propagation 

can be used to update the marginal probabilities of any unobserved variables, primarily 

a target node. If, for example, sufficient evidence suggests that surplus inventory is 

unavailable (in its False state), forward propagation can be used to determine the impact 

on the supplier’s resilience and ultimately its overall evaluation. To perform a forward 

propagation analysis, four factors including Surplus inventory, Rerouting, Quality, and 

Technical resources were chosen, and four scenarios were defined for the supplier with 

the highest overall evaluation (Supplier 1). Scenario 1 contains False states for 

Rerouting and Technical resources, Scenario 2 contains False states for Surplus 

inventory and Quality, Scenario 3 contains False states for Quality and Technical 

resources, and Scenario 4 includes False states in all four variables,  as shown in Table 

4.12. The change in the probability selecting Supplier 1 for each of the scenarios, 

including the baseline, is desired. For example, in the probability of interest in Scenario 

1 is P(selection of supplier 1 | Rerouting = False, Technical resources = False). The 

junction tree algorithm [Jensen 1996] is used for the purpose of propagation analysis, 

where the joint probability for the model from the BN’s conditional probability 

structure is calculated in a computationally efficient manner. As illustrated in Figure 

4.15, the probability of selecting Supplier 1 under scenarios 1, 2, 3, and 4 is reduced to 

62.1%, 61.3%, 56.9%, and 56.4% respectively, relative to the baseline of 66.8%.  

Different suppliers could also be compared under these four scenarios.  

4.6.3.2 Backward Propagation Analysis 

Backward propagation analysis is a unique capability of Bayesian networks, 

increasing the scope of what-if scenarios especially giving insight to less competitive 
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suppliers on how the components of their performance criteria (primary, green, 

resilience) can be improved to reach an overall evaluation level. 

To demonstrate back propagation analysis, the overall supplier evaluation for Supplier 1 

was increased from 66.8% to 100% (that is, the probability of Supplier evaluation 

equating to True being 100%), and the distributions of the remaining variables were 

updated using the junction tree algorithm [Jensen 1996]. As a result, the probability of 

primary, green, and resilience criteria must be improved to 68.09%, 72.32%, and 

90.72% respectively as highlighted in green in Figure 4.16. 

4.7 Concluding Remarks 

This work proposes a novel Bayesian network model for evaluating and 

selecting the best supplier across criteria falling into primary (or traditional), green, and 

resilience categories. The concept of resilience in the supplier evaluation and selection 

process has become more important due to the emergence of global supply chains and 

the (seemingly more frequent) events that can disrupt them. The BN model quantifies 

resilience in terms of absorptive, adaptive, and restorative capacities. This initial 

implementation was illustrated with a simple example of the comparison of three 

suppliers with realistic parameters, and the sensitivity analysis capabilities of the BN 

paradigm were explored. The capability of BN approach was compared with other 

existing approaches and presented in Table 4.13.   

4.7.1 Benefits of BN Formulation 

The major methodological benefits of the BN model proposed here include the 

following. 
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 Flexibility of variable types: In contrast to mathematical modeling 

approaches such as a mixed integer programming based approach, the 

proposed BN captures both tangible and intangible factors that contribute to 

the selection of a resilient supplier. Different types of variables including 

Boolean, continuous, constant, and labeled extend the flexibility of this 

modeling approach. Further, different sources of data ranging from historical 

observations to expert evidence can be incorporated in the BN framework. 

 Inference analysis: Different what-if scenarios can be analyzed, providing 

insights to the decision maker as to how the probability of the selection of a 

supplier varies under different scenarios. By performing inference analysis, a 

decision maker can evaluate the performance of a supplier, or compare 

multiple suppliers, under extreme conditions. Inference analysis can be 

performed on both subjective beliefs and objective data. Bayesian networks 

are capable of performing both cause-to-effect analysis, or forward 

propagation analysis, and effect-to-cause analysis, or backward propagation 

analysis. Such backward propagation analysis is not proposed by other 

approaches.    

 Accounting for uncertainty: The uncertainty associated with the modeling of 

system variables can be captured using BNs models. In this paper, two types 

of uncertainty have been captured: operational uncertainty (e.g., demand 

uncertainty) and disruption uncertainty (e.g., natural disasters).    

 Accounting for multiple sources of risk: Two types of risks are often 

associated with the supplier selection problem: operational risks (e.g., 
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demand uncertainty and variation on the variable transportation costs) and 

disruption risks (e.g., the occurrence of disruptive events). The BN model 

developed in this study addresses these two types of risks. 

4.7.2 Limitations of the BN Formulation 

The methodological limitations can be summarized as follows. 

 Necessary use of subjectivity: Relying on expert judgment in cases where 

data are sparse or not available implies inevitable subjectivity and possible 

bias (Constantinou et al. 2015). This can be partially addressed by using 

multiple experts.   

 Complexity: Developing causal expert-driven Bayesian networks requires 

significant development, as they are usually complex due to a large number 

of variables that capture causality. Although Bayesian networks are 

conceptually easier than regression and rule-based predictors, they are 

generally not very simple to build. 

4.7.3 Future Work 

The future research directions of this study are as follows. 

 Further green criteria beyond CO2 emission could be accounted for, 

including environmentally friendly product design, packing, and 

warehousing, among others.   

 More detail could be given to the important decision of how suppliers 

choose transportation modes. Qualitative and quantitative factors involved in 

the selection of the best transportation mode include total cost of 
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transportation (fixed cost + variable cost), reliability of transportation mode, 

transport time, and air emission, among others. 

 Bayesian networks can be used to study the resilience of various 

infrastructure sectors, from physical infrastructure networks (e.g., energy, 

telecommunications) to service networks (e.g., emergency services, 

humanitarian relief). The interaction among physical and service networks, 

as well as community networks that require the services of both, is a 

growing concern in the face of more frequent large-scale disruptions (Barker 

et al. 2016).  

 

 

 

 

 

  



102 

 

Table  4.1 Recent literature on supplier selection and analysis methodologies  
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Table  4.2 Boolean expression used to calculate the NPT of delivery robustness 

 
 
Table  4.3 NPTs of the variables describing the quality of products and probability 

of the product being faulty 

 
 

Table  4.4 NPT of the variable describing after-sale service 

 

Table  4.5 NPT of the variable describing technical service 

                          

Table  4.6 NPT of the variable describing after-sale service 

 
 
 
 

Variable name NPT Meaning 

Delivery and response 
  

IF (Lead time <17 && response 
rate >0.9, “True”, “False”) 

If lead time is less than 10 days and 
response rate is greater than 90%, then 
delivery and response is being met 
(True), otherwise not being met (False)  

 

Variable names NPT Meaning 

Probability of product 
being faulty  Beta(α=0.8,	β=30,	UB=0, LB=1) 

The probability of a product 
being shipped by the supplier to 
the manufacturer follows a beta 
distribution.  

Quality of products IF (prob. of product being faulty <7%, 
“True”, “False”) 

If the probability of a product 
being faulty is less than 7%, 
then the quality of the product 
is acceptable (True state), 
otherwise not (False state)  

False 0.1 
True 0.9 

False 0.15 
True 0.85 

After sale service False True 
Technical service False True False True 

False 1.0 0.4 0.45 0.0 
True 0.0 0.6 0.55 1.0 
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Table  4.7 NPT of the variable describing total cost 

 

 

Table  4.8 NPTs of the variables describing customer demand, capacity of supplier, 
and purchased items  

 

 

 

  

 

 

 

 

Variable name NPT Meaning 

Total cost 
  

IF (order cost + total transportation 
cost + purchased cost + tardiness 
cost < 127,000, “True”, “False”) 

If the sum of supplier costs is less than the 
budget limitation of the buyer (manufacturer), 
then the cost of the supplier is in a True state 
(satisfactory), otherwise is in a False state 
(unsatisfactory).  

 

Variable names NPT Meaning 

Customer demand  TNORM (μ=1000,	σ2=20, LB=980, UB=1020)

The customer demand 
follows a truncated normal 
distribution with an average 
of 1000, variance of 20, and 
lower minimum and 
maximum of 980 and 1020 
respectively.   

Capacity of 
supplier Constant value (1000) The capacity of Supplier 1 is 

1000.  

Purchased items Min (customer demand, capacity of supplier) 

The number of purchased 
items is determined by taking 
the minimum values between 
customer demand and 
supplier’s capacity. 
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Table  4.9 NPTs of the variable describing tardiness penalty cost and its parents   

 
 

Table  4.10 NPTs of the variable describing CO2 emission   

 

 

Variable names NPT Meaning 

Tardiness 
penalty cost  Tardy penalty ×Tardiness 

Tardiness penalty cost is 
calculated as product of tardy 
penalty by tardiness. 

Tardiness Max (0, completion time – due date) 
Tardiness occurs when the order 
competition time is greater than 
order due date.   

Completion time TNORM (μ=18,	σ2=1.5, LB=15, UB=24) 

The average order completion 
time on average is the 18th day of 
the month with variance of 1.5 
days. The earliest completion 
time is not earlier than the 15th, 
and the latest not beyond the 24th.   

Due date Constant value (20) The order due date is the 20th day 
of the month. 

 

Variable names NPT Meaning 

CO2 emission 
(g/km) 

Triangular distribution (25, 120, 
150) 

Amount of emitted CO2 depends on 
many factors such as mode of 
transportation. The first supplier uses 
roadways for the shipping of products. 
The CO2 emitted by truck may varies 
depending on the age of truck, slope of 
roads, among others. It is assumed that 
the emitted CO2 by truck follows a 
triangular distribution [Kahn Ribeiro et 
al. 2007] with minimum, most likely, and 
maximum estimates of 25, 120, and 150 
g/km, respectively.   

Distance between 
supplier and 
customer 
(manufacturer) 

Constant (1450) 
The distance between the supplier’s 
location and manufacturer’s location is a 
constant 1450 kilometers.  

Total emitted CO2 Distance × CO2 emission 

Total emitted CO2 is calculated as the 
product of distance between supplier and 
manufacturer and the amount of CO2 
(gram) per kilometer.  

Green criteria If (total emitted CO2 <170000, 
“True”, “False”) 

If the total emitted CO2 is less than some 
carbon capacity limitation (170,000), 
then green criteria is met (True state), 
otherwise not (False state).   
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Table  4.11 NPTs of resilience criteria and its contributors 
 

 

 
 

 

 

 

 

 

 

 

Variable names NPT Meaning 

Prob. of tornado TNORM (0.025, 0.001, 0, 0.04) Assume that a tornado is a common 
natural disaster in the area of Supplier 1.  

Prob. of flood TNORM (0.02, 0.002, 0, 0.025) Assume that flooding is a common 
natural disaster in the area of Supplier 1. 

Segregation If (pro. of tornado && prob. of 
flood <0.03, “True”, “False”) 

Conditional logic is used to determine the 
probability that the supplier is 
geographically separated from disaster 
prone areas.   

Surplus inventory True =90%, False=10% 
90% of the time the first supplier keeps 
surplus inventory, while 10% of times 
the supplier fails to do that.     

Backup supplier 
availability  TNORM (0.96, 0.005, 0.75, 1) 

The backup supplier contract with the 
first supplier is available 96% of the time 
with standard deviation of 0.5%.  

Backup supplier If (backup supplier >0.95, “True”, 
“False”) 

Conditional logic is used to determine the 
probability that backup supplier is being 
True of False.   

Physical protection True=85%, False=15% 
The chance of physical protection of 
building and equipment against 
disruption is 85%.    

Rerouting True=90%, False=10% 

The probability of rerouting and using 
alternative transportation mode in the 
presence of disruption being True is 
90%.    

Adaptive capacity 
Rerouting False True 
False 1.0 0.02 
True 0.0 0.98 

 

The posterior probability of adaptive 
capacity is conditioned on rerouting 
variable.    

Technical resources True=80%, False=20% The chance of availability of technical 
resource in the presence of disruptive 
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Table  4.12 Forward propagation scenarios 
 

 

Table  4.13 Factors impacting on primary supplier selection  
 

  

 Surplus inventory Rerouting Quality Technical resources 

Scenario 1 None False None False 
Scenario 2 False None False None 
Scenario 3 None None False False 
Scenario 4 False False False False 

a cost 
b quality 
c service 
d delivery 
e innovation 
f finance 
g organization 
h technology capability 
i environmental management  
j Warranty 
k managing ability 
l Enterprise environment 
m lead time 
n risk factor 
o relationship 
p capacity 
q product life cycle cost 
r green image 
s pollution control 
t resource consumption 
u green capability 
v green design 
w recovery and strategy fit 
x safety 
y vulnerability 
z collaboration 
ra risk awareness 
scc supply chain continuity 
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Figure  4.1 An example BN with five variables (nodes)  

Supplier 
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Figure  4.2 General BN framework evaluating the selection of a supplier   
 

 
 

Figure  4.3 Lead time of supplier 1    
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Figure  4.4 The modeling procedure for the variable describing delivery robustness  
 

 

 
Figure  4.5 Graphical representation of the BN model for primary criteria   

 

 

Lead time ~ TNORM	(μ=16	day,	σ2=1.5	day,	LB=1,	UB=12) 

IF (Lead time <17 && response rate > 0.9, “True”, “False”) 

Response rate ~ TNORM	(μ=0.94,	σ2=0.01,	LB=0.87,	UB=1) 
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Figure  4.6 Graphical depiction of the BN model for green criteria   
 

 

Figure  4.7 Graphical depiction of the BN model for resilience criteria    
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Figure  4.8 The BN model to evaluate Supplier 1     
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Figure  4.9 Tornado graph to analyze the sensitivity analysis of Supplier 1’s 
resilience: P(Resilience criteria = True)=84% 

 

 

 
Figure  4.10 Tornado graph to analyze the sensitivity of Supplier 1’s resilience:    

P(Resilience criteria = False) = 16% 
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Figure  4.11 Tornado graph to analyze the sensitivity of Supplier 1’s evaluation 
across primary, green, and resilience criteria: P(supplier evaluation = True) = 

66.8% 
 

 

Figure  4.12 Tornado graph to analyze the sensitivity of Supplier 1’s evaluation 
across primary, green, and resilience criteria: P(supplier evaluation = False) = 

33.2% 
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Figure  4.13 The impact of the weights of the three criteria when all are equally 
distributed 

 

 

Figure  4.14 The impact of the weights of the three criteria when resilience is 
weighted twice as much as primary and green criteria 
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Figure  4.15 Four scenarios of forward propagation analysis 
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Figure  4.16 Backward propagation analysis 
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Figure  4.17 BN model for Supplier 2  
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Figure  4.18 BN model for Supplier 3  
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CHAPTER4: MECHANISTIC EVALUATION OF EFFECT OF WMA-ADDITIVES ON WETTABILITY AND MOISTURE SUSCEPTIBILITY PROPERTIES OF ASPHALT MIXES 

54 
 

 

RESILIENCE ASSESSMENT OF SUPPLIER ALTERNATIVE IN SUPPLY CHAIN  
 

 

ABSTRACT 

This chapter presents a stochastic optimization model for evaluating and selecting the 

best resilience supplier for a supply chain system. The supplier selection is a key 

problem in the context of supply chain system which has significant impact on the 

quality and reliability of supply chain. Supplier selection is a multi-criteria decision 

making problem that includes tangible and intangible factors. The primary and green 

supplier selection has been studied extensively by researchers; however the resilient 

supplier selection has not been explored well yet in compared with primary and green 

supplier selection. This study presents a stochastic optimization model for resilient 

supplier selection problem.        

Keywords: resilience, supply chain, resilience capacity 

5.1 Introduction 

With the advent of competitive supply chains, the role of supply chain 

management is becoming increasingly important. Due to this reason, the competition 

between individuals firms has been shifted to the competition between supply chain 

systems (Fazlollahtabar et al. 2011). The relationship between supplier and 
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manufacturing has significant impact on the success of supply chain system. The quality 

of finished product is highly depends on the quality of raw material supplied by the 

supplier. The shortage on supplying raw materials can downgrade the performance of 

entire supply chain. Manufacturing companies must work with different suppliers to 

ensure the continuity of their activities. In the manufacturing industries, the raw 

materials can amount up to 70% of the product cost (Fazlollahtabar et al. 2011). Under 

this circumstance, procuring department can play a crucial role in cost reduction, and 

supplier selection is one of the most functions of procuring department (Ghodsypour 

and O’Brien 1998).  

The aim of supplier selection problem is to evaluate and select the best supplier 

among a set of supplier alternatives. Different tangible and intangible factors involve 

with supplier selection problem such as primary factors (e.g., quality, cost, lead time, 

response rate, etc.). More recent type of supplier selection is called green supplier 

selection that focuses on green related criteria of supplier such as CO2 emission, green 

packing, green transportation mode, etc. Recently, resilient supplier selection has 

received a great deal of attentions by researchers. Supplier’s resilience refers to the 

ability of supplier to withstand against variety of disruptions and also must quickly 

recover in the cases that perturbations of disruption cannot be absorbed.     

The resilience of supplier can be viewed as ability of supplier to absorb shocks 

from disruption and recover from disruption if the severity of disruption cannot be 

absorbed. One of the factors that contribute to the supplier resilience is reliability. Of 

course, manufacturers would like to collaborate with reliable suppliers. Reliable 
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suppliers are those with less failure rate. Hence, supplier’s reliability is an important 

factor for evaluating suppliers.  

5.2 Mathematical modeling 

This subsection presents an optimization model for resilient supplier selection. 

As discussed earlier, supplier reliability is an important issue in the context of supplier 

selection and has a probabilistic nature. Hence, it is necessary to incorporate the 

supplier reliability in the mathematical mode. There are two important assumptions for 

modeling supplier reliability. 

 The breakdown time for each supplier follows an exponential distribution with a 

known failure rate. 

 The breakdown cost for each supplier is known and constant.  

5.2.1 Reliability modeling 

Considering ݖ௜ is a binary decision variable indicating that whether a supplier is 

selected or not and ݔ௜ is a decision variable indicating that the number of products that 

can be assigned to the supplier i, and ݕ௜ as the number of breakdowns occurring for ith 

supplier in a specified time period T, then the total breakdown cost of not supplying raw 

material can be calculated as follows: 

෍ݖ௜

௡

௜ୀଵ

 (5.1) ܤ௜ݕ

where B is breakdown unit cost. The difficulty with the above formula is that ݕ௜ has 

stochastic nature. One way to deal with this stochastic nature of formulation is to use of 

chance constraint programming approach. As discussed earlier, it is known that the time 

between suppliers failures are following exponential distribution. Hence, the number of 
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breakdowns for each supplier can follow a Poisson distribution. Considering the 

proposed notation, the probability of ௜ܰ failures in the ith supplier can be calculated as 

follows: 

 Pr(ݕ௜ = ௜ܰ) = (ఒ೔்)ಿ೔ୣ୶୮	(ିఒ೔்೔)
ே!

 (5.2) 

 According to the chance constraint programming approach, the stochastic variable ݕ௜ in 

equation above is replaced by ௜ܰ as a new deterministic variable, and the following 

CCP is added to the model to ensure that the number of supplier breakdown in a given 

time period T does not exceeds ௜ܰ in at least ߙ of time.  

Pr(ݕ௜ ≤ ௜ܰ) ≥  (5.3) ߙ

Considering the Equation 5.2, then the Equation 5.3 can be rewritten as follows: 

෍
(௜ܶߣ−)	௦exp(௜ܶߣ)

!ݏ ≥ ߙ
ே೔

௦ୀ଴

 (5.4) 

The supplier reliability formulation can be then summarized as follows: 

		Total	breakdown	cost	of	suppliers = ෍ݖ௜

௡

௜ୀଵ
௜ܰܤ 

෍
(௜ܶߣ−)	௦exp(௜ܶߣ)

!ݏ ≥ ߙ
ே೔

௦ୀ଴

							∀݅ 

                    			 ௜ܰ			is	integer		∀݅ 

(5.5) 

 Note that ݖ௜ ௜ܰ is nonlinear term which makes the problem difficult. To handle this 

difficulty, the following variable is introduced: 

௜ݓ = ௜ݖ ௜ܰ (5.6) 
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In the equation above ݖ௜ is binary indicating whether supplier i is assigned to the 

customer or not and ௜ܰ is the number of times that supplier i fails to supply raw 

materials and is an integer variable. Therefore, a new constraint is introduced.  

௜ݓ ≥ ௜ܰ − (1−  (5.7) ܯ(௜ݖ

5.2.2 Disruption risk modeling 

Different approaches can be used to model the disruption cost poses to the 

supplier for not supplying the raw materials. Here, a conditional value at risk (CVaR) is 

used to model the disruption costs of supplier’s failure. CVaR has been extensively used 

to calculate the disruption loss in the context of financial management. The concept of 

CVaR is originated from value at risk (VaR). VaR is calculated based on probability 

distribution of loss for a given system and focuses on high frequency and low-

consequence conventional risk incidents for a specified time horizon. CVaR is sued to 

quantify the expected loss exceeding VaR limit. Accoring to (Deborah Kidd 2012) 

“CVaR is superior to VaR because CVaR quantifies tail risk and has been shown to be 

sub additive”. To represent how CVaR mathematically can be modeled, consider 

 ݔ where ,ݕ and ,ݔ as the losses of a portfolio depending on decision vector (ݕ,ݔ)݂

represents a set of decision units to be selected and ݕ represents stochastic variable that 

indicates uncertainty. According to (Rockafellar and Uryasev 2002), the definition of 

CVaR can be represented as follows: 

 
CVaRఋ(ݔ) = ,ݔ)݂]ܧ (ݕ,ݔ)݂|(ݕ ≥ ܸܴܽఋ]

=
1

1 − ߜ
න ,ݔ)݂ (ݕ × ݕ݀(ݕ)݌

௙(௫,௬)ஹ௏௔ோഃ

 

(5.8) 
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Due to exist of ߜ-function distribution, the CVaR model represented above cannot be 

easily solved. Instead, Rockafeller (2000) defined an alternative way with use of 

auxiliary function as follows: 

(߶,ݔ)ఋܨ = ߶ +
1

1 − ߜ
න[݂(ݔ, (ݕ − ߶]ା(5.9) ݕ݀(ݕ)݌ 

Rockafellar (2000) demonstrated that the minimizing CVaRఋ(ݔ) is equivalent to 

minimizing ܨఋ(ݔ,߶) 

(ݔ)CVaRఋ	݊݅ܯ =  (5.10) 	(߶,ݔ)ఋܨ	݊݅ܯ

Rockafellar (2000) introduced a dummy variable T that can be replaced with the 

minimum of ܨఋ(ݔ,߶) as follows: 

Min	ܨఋ(ݔ,߶) = ߶ +
1

1 − ߜ
නܶ ×  ݕ݀(ݕ)݌

ܶ ≥ (ݕ,ݔ)݂ − ߶; 					ܶ ≥ 0 

(5.11) 

The disruption risks poses to the supplier can be modeled using definition of CVaR. 

The basic elements for modeling the disruption risk of supplier are to measure the 

probability of disruption and also amount of disruption poses to the supplier. Let ߩ to be 

the shortage loss that customer experience due to the supplier disruption and ݌௜ is the 

probability of disruption associated with supplier i, then the total expected disruption of 

suppliers loss under scenario s is  

௦ܮ = ෍ݖ௜ݔߩ௜ − ߶
௡

௜ୀଵ

 (5.12) 

where ݔ௜ is the number of items (products) allocated to supplier i. So the disruption 

risks of supplier selection problem can be then modeled as follows: 
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Min	ܨఋ(ݔ,߶) = ߶ +
1

(1 − ௦ߨ෍(ߜ ܶ 

ܶ ≥෍ݖ௜ݔߩ௜ − ߶
௡

௜ୀଵ

; 					ܶ ≥ 0 

(5.13) 

where ߨ௦ is the probability of disruption scenario s. There are two other important 

constraints that are taken into account; demand constraint and supplier’s capacity 

constraint. The demand constraint is modeled as follows: 

௜ݔ൭෍݌

௡

௜ୀଵ

≥ ൱ܦ ≥  (5.14) 	ߙ

The chance constraint above ensures that the customer’s demands is met with 

confidence level of ߙ%. The chance constraint above can be rewritten as follows with 

the assumption that customer’s demand follows normal distribution: 

෍ݔ௜ ≥
௡

௜ୀଵ

ߤ + Φିଵ(ߙ)(5.15) ߜ 

where    

Φ(ݔ) =
1

ߨ2√ߜ
න݁ିቀ

௫ିఓ
ଶఋ ቁ

మ
௫

ିஶ

=  (5.16) ߙ

The capacity constraint of each supplier is modeled as follows: 

௜ݔ ≤ ௜ܳ௜ݖ 													∀݅ ∈  (5.17) ܫ

where ܳ௜ is the capacity of supplier i. A weighted goal programming approach is used 

to model the objective functions. 

ݖ = ଵݓ ൭෍ݖ௜݋௜ + ܿ௜ݔ௜

௡

௜ୀଵ

൱ + ଶݓ ൬߶ +
1

(1 − ௦ߨ෍(ߜ ܶ൰ (5.18) 
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where the first term in objective function is sum of order cost and purchase cost and 

second terms is the disruption cost of suppliers. ݓଵ and ݓଶare weights of these two 

objective functions respectively.   

5.3 Experimental results 

As discussed earlier, the main decisions for solving supplier selection is to find 

optimal suppliers and optimal size of order to each one. The data required to solve this 

problem is summarized below: 

n, number of supplier is 15 (i=1,…,15), each supplier can be either fail of operating. 

Hence, there are 2ଵହ disruption scenarios.  

௜݌ ,௜, probability of disruption associated with supplier i݌ ∈ Uniform[0.002, 0.03] 

௜݋ ,௜, Order cost of supplier i݋ ∈ Unifrom	[300, 800]      

௝ܿ, purchase cost from supplier i, ܿ௜ ∈ Uniform	[40,100]  

D, demand is assumed to be normally distributed with an average of 1500 and variance 

of 25 

ܳ௜, Capacity of supplier i, ܳ௜ ∈ Uniform	[50, 150] 

Note that confidence level is assumed to be 95% and ݓଵ and ݓଶ are set to be 0.6 and 0.4 

respectively in the test problems. The results of selecting supplier for different demands 

are graphically represented in Table 5.1.       

5.4 Final remarks 

The resilience supplier selection has become an important problem in the 

context of supply chain systems due to the global and competitive features of supply 

chain systems. This chapter introduced a weighted goal programming model for 

resilient supplier selection problem. The reliability of supplier and supplier disruption 
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risk due to disruptive events are taken into the model. The supplier disruption risk is 

modeled using conditional value at risk (CVaR) technique. To handle the stochastic 

nature of demand, a chance constraint model is represented. The future work can be 

extended by introducing different transportation modes by suppliers. Extra inventory 

capacity can be also modeled as pre-disaster strategy to enhance the resilience of 

supplier.      

 

Table  5.1 Supplier selection and allocated order quantity  

 

 

 

 

 

 

 

 

Demand
D1 S4 (600) S11 (1400)
D2 S1(1300) S9(800)
D3 S6(2000) S15(1600)
D4 S6(2200) S12(1700)
D5 S8(1800) S12(1850)
D6 S9(2200) S15(1750)
D7 S10(3070) S15(1700)
D8 S14(2550) S10(3050)
D9 S14(2685) S10(3155)
D10 S14(2970) S10(3260)

Supplier (order quantity)
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