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Abstract 

This thesis utilizes a systematic mathematical model, scaling analysis, to 

quantify the effect of production rate on asphaltene deposition, using a set of uniquely 

described mathematical equations modeled for the deposition process. Investigations to 

mitigate the effects of asphaltene deposition in both the well bore and porous media 

have recently focused on the first stage of formation; precipitation. Although the 

precipitation of asphaltene is necessary, it is not sufficient to guarantee its deposition; 

which poses the major problem for oil production. Quantification of these effects 

provides clarity on which individual factors create a significant impact on deposition. 

Results are compared to previously published, experimentally determined, significant 

factors for various asphaltene formation scenarios. 

The study employs the ‘order of one’ scaling analysis method to identify the 

dimensionless groups that are specific to asphaltene deposition near the well bore and in 

production tubing. The describing equation includes the overall mass and momentum 

balance equations, precipitation and deposition equations and the reduction models for 

porosity and permeability. The dimensionless groups obtained are reduced to eradicate 

independence and the magnitudes of the individual variables are utilized to assess 

possible simplifying approximations. Assessment is based on the order of one scaling to 

determine the factors with greater magnitudes and identify their effects on the overall 

model. Governing equations, initial, boundary and auxiliary conditions are provided and 

described in detail to enable effective replication. 

The minimum parametric representation of the describing equations are obtained 

and presented as twenty one dimensionless groups. These dimensionless groups 
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emphasize the importance of the concentration of asphaltene precipitate to the overall 

deposition rate. Results show that the deposition rate decreases significantly with a 

decrease in reservoir pressure, this is an important finding for secondary recovery. 

Optimum conditions, beyond which a significant increase in asphaltene deposition 

occurs, was determined at different production flow rates. Outcomes were correlated to 

experimental work done including the effect of CO2 flooding on asphaltene deposition. 

The main contribution of this work is to identify a set of dimensionless groups 

that aid retardation of the asphaltene deposition. The results obtained provide a template 

for the efficient design of experiments related to Asphaltene. In practice, the knowledge 

from this work will improve the effectiveness of flow assurance designs by ensuring 

that priority is placed on parameters with the most impact on asphaltene deposition in 

producing wells; saving time and costs associated with speculation. 
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Chapter 1: Introduction 

In this chapter, we introduce asphaltenes, discuss the scope of the problem and main 

objectives of this work. We also introduce the structure of the different chapters in the 

following sections.  

 

1.1 Scope of Problem 

Asphaltenes are heavy hydrocarbon molecules that exist naturally in petroleum 

reservoir fluids. They are a solubility class that is usually defined as the fraction of 

crude oil that precipitates in aliphatic solvents, while remaining soluble in toluene 

(Speight, 1994). Asphaltene precipitation may occur during pressure depletion or during 

gas injection processes for Improved Oil Recovery (IOR). They consist of a variety of 

molecular species with molar masses of at least 1000 g/mol (Yaranton, 2000).  

Asphaltene deposition is an important problem during oil production. This is 

because if ignored, it can result in formation damage and plugging of wellbore and 

surface facilities. This in turn leads to the accumulation of extra costs incurred by 

cleaning out and unplugging the wellbore. They can also lead to a significant reduction 

in permeability when formed in porous media, resulting in a decline in the rate of 

surface production. 

 In order to fully understand and find solutions to the problem that is asphaltene 

deposition, it is important to apprehend the process of formation of these deposits 

Figure 1.1 shows the deposition process on the inner wall surface of a pipe. It is 

important to note that the asphaltene flocculates that deposit in the pipes can also be 

removed by erosion caused by fluid flow. The accumulation of deposited asphaltenes 
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minus what is being removed by erosion is what poses the deposition problems 

discussed in this work. A pictorial description is shown in the figure by Soulgani et al, 

(2010).   

 

Figure 1.1 Schematic of the asphaltene deposition process, (Soulgani et al, 

2010) 

 

Asphaltenes are known to self-associate and or precipitate with changes in temperature, 

pressure or composition of the surrounding fluid. These precipitates are small particles 

in the order of a few microns estimated by visual observation.  After precipitation, the 

small particles begin to agglomerate to form macro particles. The agglomeration 

process and size of the agglomerates also depend on the temperature and pressure of the 

solvent.  These agglomerates easily adsorb on hydrophilic surfaces and also adhere to 

equipment surfaces forming deposits that could pose problems (Yaranton, 2000). 

 

1.2 Research Objectives 

In this work, emphasis is placed on the deposition of the aggregates, as the 

process of precipitation has been extensively studied in the past. The deposition process 

is scrutinized and mathematically defined using a set of pre-determined equations 
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describing the process. With the use a systemic mathematical approach called Scaling 

Analysis, important dimensionless groups are obtained that fully describe the asphaltene 

deposition process.  

The aim of this work is to investigate conditions, with the help of the 

dimensionless groups, within which asphaltene deposition can be mitigated or delayed 

during production. Results obtained and discussed would be utilizable in the production 

industry to prevent the costs associated with the removal of asphalt deposition in the 

wells and in porous media. Also, information provided would help improve workplace 

safety, as engineers would be made aware of conditions within which asphaltene 

deposition can be expected, with additional information on how these conditions can be 

mitigated. 

1.3 Chapter Overview  

In Chapter 2, we review the background of asphaltene in oil production as it 

relates to precipitation and deposition. The chemistry behind the precipitation and 

conditions that encourage precipitation are outlined. The differences associated with 

deposition in pipes, that is the wellbore and in porous media are also outlined. In 

Chapter 3, the mathematical models usually used to describe deposition in both pipes 

and porous media are briefly introduced. The models chosen for this work are also 

discussed and shown along with some other models that were considered and are 

closely related to the deposition process modelled. Scaling Analysis is introduced as 

well and explained in ways that would enable the reader reproduce the work done, 

while creating opportunities for the procedure to be further utilized for other purposes.  
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In Chapter 4, the results obtained from this scaling analysis are presented for 

deposition in porous media and also in the pipes. These results are discussed and 

analyzed Emphasis is placed on deposition in pipes. Chapter 5 offers validation on the 

results obtained and trends proposed from experimental data. This validation is based 

on findings from of experimental data previously published. Finally, a conclusion is 

presented as a short summary of the work done throughout this thesis, and an idea of 

paths that could be taken in the future to improve on the findings of this research is also 

given under future work. Nomenclature, References and Appendix follow after 

conclusions and future works have been stated. 
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Chapter 2: Background and Literature Review 

An in depth description of asphaltene deposition is provided in this chapter to give a 

well-rounded background and literature review of the problem. The different stages of 

the deposition process are discussed extensively and the major differences associated 

with deposition in porous media and in pipes are highlighted.  

 

2.1 Asphaltene Precipitation  

Asphaltene deposition can result from the production of heavy oils and crude reserves. 

These deposits reduce reservoir productivity, cause formation damage and expensive 

deterioration to production equipment (Yarranton, 2000). There have been several 

means investigated to possibly control and reduce its effect in both the well bore and 

reservoir. These investigations have recently focused on precipitation which is the first 

stage of formation. Dating back to 1982, different models have been created to develop 

an understanding of the existence of asphaltene.  

The two major physical theories used to develop these models are that 

asphaltene is dissolved in crude oil completely; the real-solution theory , and that 

asphaltene exists in a colloidal suspension in crude oil; colloidal theory (Wang 2000). 

Both theories however agree that the ability to predict the thermodynamic properties of 

these crude oil systems is necessary to understand asphaltene precipitation. To achieve 

this, several thermodynamic models exist including cubic equations of state like the 

Redlich-Kwong and Peng Robinson equation.  

These equations are sufficient for phase equilibrium and density calculations but 

tend to provide extremely low densities for liquids. Since asphaltene precipitation 
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occurs at reservoir conditions, in order to correctly model this process it is important 

that volumetric behavior at high pressure is captured accurately (Perdesen et al, 2007). 

It is also important that the model used can deal with asymmetric mixtures with 

molecules of varying sizes.  

PC-SAFT is a thermodynamic model based on the Perturbed Chain version of 

the Statistical Associated Fluid Theory. It was developed for polymer systems and has 

shown promising results in modelling phase equilibrium of systems with heavy 

hydrocarbons like asphaltene (Panuganti et al, 2013). Some studies have concluded that 

gas injection increases the rate of asphaltene precipitation as it alters the solvent 

composition (Gonzalez, 2012). Other investigations on asphaltene precipitation as it 

relates to deposition have concluded that although asphaltene precipitation cannot be 

entirely prevented, the basic properties of the fluids can be controlled to ensure that 

precipitation is minimal. 

Another method used to investigate the mechanism of asphaltene precipitation is 

with the use of a high-pressure flow experiment. In this experiment, a fluid sample is 

kept in a vessel at a pressure and temperature close to the reservoir conditions. The 

pressure is then dropped gradually until asphaltene precipitation is observed (Thawer et 

al., 1990). This result is checked against the typical APE phase diagram, where the 

upper asphaltene precipitation curve is usually above the bubble point pressure curve 

shown in Figure. 2.1. As soon as the pressure goes into the APE curve, the asphaltenes 

in the crude precipitates out until the pressure reaches below the saturation pressure 

(Leontaritis, 2007).  Figure 2.2 shows a schematic of the Asphaltene precipitation curve 

envelope with pressure against temperature as in Figure 1 and also against composition.  
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 Figure. 2.1 Phase diagram of asphaltene precipitation envelope and bubble point 

pressure curve ( Leontaritis, 2007) 

 

 

 

Figure. 2.2 Schematic of the asphaltene precipitation envelope against 

composition and temperature respectively (coined from Leontaritis, 2007) 
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The schematic shown in Figure 2 suggests that the changes in the pressure composition 

and the temperature affect equilibrium and could cause the precipitation and eventual 

deposition of asphaltene. The Envelope bounds the regions where precipitation occur 

for both the pressure against composition as well as against temperature. Where onset 

conditions occur at the envelope boundary. Within the APE, the amount of precipitated 

asphaltene increases with a decrease in pressure from the upper onset pressure to the oil 

saturation pressure. At the saturation pressure, the maximum value of precipitation is 

reached. Below the saturation pressure, precipitation decreases with a decrease in 

pressure (Leontaritis, 2007). 

 

2.2 Asphaltene Aggregation  

Asphaltenes aggregate where precipitation occur. This can be seen even in very dilute 

solutions of good solvents such as toluene. At the nanoscale, asphaltene aggregation 

begins to occur a precipitation concentration well below 100mg/L (Mullins, 2009). The 

point at which aggregation at the nanoscale begins to form has been studied by various 

researchers and is popularly referred to as the critical nanoaggregate concentration point 

(CNAC) (Painter et al, 2015). At higher precipitation concentrations however, the 

nanoaggregrates cluster about themselves to form micelles. The concentration at which 

the micellar formation begins is also known as the critical micelle concentration. These 

micelles continue to grow in size as collection of nanoaggregates continue. These 

different stages of aggregation mentioned were visually depicted in the work by 

Mullins, 2009 and is shown in Figure 2.3. 
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 Figure. 2.3 Schematic of the asphaltene molecular architecture (left), 

formation of asphaltene nanoaggregates (center) and formation of micelle clusters 

by the nanoaggregrates (right) (Mullins, 2009) 

 

In general, asphaltene aggregates have been studied in sections based on the size of the 

aggregates been considered. However for the purpose of this work, aggregation would 

be discussed as a process regardless of the size; as all sizes of asphaltene aggregates can 

potentially deposit and cause problems in the wellbore and in porous media. 

Aggregation of the asphaltene particles is important for deposition to occur and larger 

aggregates would generally cause more plugging problems than smaller aggregates. 

This is because smaller aggregates in general stand a better chance of being entrained in 

the fluid flow during production. Reducing the amount of asphaltenes being deposited 

in place. 
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2.3 Asphaltene Deposition  

Deposition of asphaltene, which is the third stage of solid asphaltene formation process, 

is a widespread problem because it affects processes in different industrial sectors 

depending on the location of its occurrence. In the reservoir it can lead to formation 

damage and in-situ plugging, also sub-surface and surface equipment plugging may 

occur during production. It remains an issue during refining and transportation where 

equipment and pipeline blockage, catalyst deactivation and capacity loss occur 

(Leontaritis, 1989). Asphaltene deposition near the wellbore and in the wellbore have a 

direct impact on the rate and costs associated with oil production. As a result, impact in 

these locations are further discussed in later sub sections. 

The deposition rate of asphaltene much like precipitation and aggregation is 

strongly controlled by the concentration of precipitant. It has also been suggested that 

there may not be a critical precipitant concentration for asphaltene stability and 

deposition, and as such, it is necessary to investigate whether asphaltenes deposition can 

be seen at increasingly dilute precipitant concentrations (Hoepfner et al, 2013). As 

stated in the previous section, the detection mechanism, pressure drop, does not depend 

on the size of asphaltene aggregates, and sub micrometer asphaltenes can deposit to 

contribute to the instability detection. Although larger aggregate sizes have better 

chances of being deposited. 

Several tests have been conducted to measure the rate of deposition as measured 

in a capillary. Wang and Buckley developed a displacement test technique to determine 

the deposit profile inside a capillary by monitoring the mass that exits the capillary as a 

function of time when a viscous fluid is forced through it; depicting the production 
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process (Wang and Buckley, 2006). There has also been experiments done to prove that 

there are certain critical conditions like shear rate below which asphaltene deposition 

will not occur.  

According to Nabzar and Aguilera, when the shear rates are relatively low, 

asphaltene deposition follows the colloidal deposition scaling of diffusion limited 

deposition. An increase in the shear rate causes the asphaltenes to pass through a shear 

limited deposition process, and at high enough shear rates, no detectable deposition 

occurs. (Nabzar and Aguilera, 2008) This finding highlights the importance of 

hydrodynamics in asphaltene deposition.  

There have been more interesting investigations done to determine regions of 

asphaltene deposition. Some including a critical aggregate size below which no 

deposition occur, effects of precipitant type and concentration and even location of 

deposits on deposition rate. It has also being insinuated tha deposition begins to occur 

before the precipitation of asphaltene can be detected by the use of standard techniques 

(Hoepfner et al, 2013). All the different investigations have been in a quest to determine 

the driving force of asphaltene deposition as a process.  

In summary, asphaltenes are known to exist as particle colloids stabilized in 

suspension by resin molecules in solution (Joshi et al, 2001). Pressure depletion below 

the upper onset pressure and gas injections generally destabilizes the colloidal 

suspension of asphaltenes and resins, causing the asphaltenes to precipitate out of the 

crude oil. Further reduction in the reservoir pressure leads to an increase in the 

asphaltene precipitation which increases its concentration and aggregation into larger 

particles. These precipitates either flow as suspended particles or deposit onto the rock 
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surface near the wellbore. Deposition onto the rock surface could alter wettability, 

reduce the available pore space for fluids and reduce the permeability of the formation 

(Kohse et al, 2004). Deposition can also occur on the inner walls of the wellbore when 

flocculated asphaltene comes in contact with the walls or other deposited asphalts. 

 

2.3.1 Asphaltene deposition in porous media 

Asphaltene deposition in porous media is an issue because it creates blockages in the 

pore throat of the porous continuum in the subsurface. Thus hindering the flow of 

hydrocarbons to the surface for production. Figure 2.4 shows a schematic of the 

asphaltene deposition problem in porous media (Civan, 2005). There are different 

models being utilized to describe the deposition process and effects in porous media but 

for our purposes, a modification of the Civan’s model is utilized. This model divides the 

deposition process into three basic processes and they are also represented in figure 2.4. 

They are Surface deposition, Deposit Entrainment and Pore throat plugging. Together 

these processes combine to give the overall asphaltene deposition effect in porous 

media.  

 

 
Figure 2.4 Schematic of Asphaltene deposition in porous media showing 

pore surface deposition, entrainment of deposits and pore throat plugging (Civan, 

2005). 
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Surface deposition is the most dominant of the three processes describing deposition. It 

is the spontaneous attachment of particles to pore surfaces in the porous medium. It 

could possibly be triggered by favorable hydrodynamic conditions or even interactions 

between the asphaltene particles and the surface of the pore space, as shown in the 

diagram. Entrainment of the deposits and pore throat plugging are less dominant 

processes than the surface deposition and are not always realized.  

Entrainment of the deposit is the continual transportation of the asphaltene 

particles in the fluid. This particles could either be produced with the crude oil or 

ultimately deposited along the porous medium at a farther location and time. As a result, 

continual particle entrainment is needed to prevent asphaltene deposition so that the 

particles are produced with the crude oil as opposed to hindering the production of the 

crude by plugging depositing in the pore space and eventually plugging pore throats.  

According to the oilfield glossary, pore throats are small pore spaces at the point 

here two grains meet which connect two larger pore volumes. They are very important 

during oil production because the presence of a single pore throat can potentially double 

the amount of oil in place to be produced. If these pore throats are clogged, one might 

need to drill another well in order to access oil reservoirs that could have been accessed 

by existing wells. Entrained asphaltene particles could potentially block pore throats as 

shown in the Figure 2.4 and these can be attributed to being a resultant of asphaltene 

deposition in porous media.  
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2.3.2 Asphaltene deposition in pipes 

Asphaltene deposition in pipes and in wellbores is also a serious issue encountered in 

oil production, not only does it pose economic problems like deposition in porous media 

specifically where pore throat plugging is an issue, It also poses safety concerns for 

both the workers and surrounding equipment. The associated problems are dependent 

on the location and extent of the asphaltene deposit in the pipes or wellbore.  

 Common resulting problems that are independent of the deposit location include 

increase in pressure levels in the pipes that could potentially lead to blow outs. These 

cause loss of equipment that is the pipes and other surrounding structures and also in 

extreme cases may cause injury and possibly death to employees in the vicinity. If the  

deposition occurs closer to the surface of the wellbore the risks become higher for 

employees also, surface facilities such as the pumps, valves, tubes, tanks and so on 

could be potentially damaged (Ramirez-Jaramillo et al, 2005).  

Figure 2.5 shows a schematic of asphaltene deposition in a pipe (Mirzayi et al, 

2013). As explained, it is very undesirable as it creates a significant decrease in 

production rate and also, remediation of a plugged wellbore is expensive and time 

consuming (Leontaritis, 1989). Some of the remediation techniques utilized include the 

use of asphaltene inhibiting chemicals or drilling the asphaltene plug.  
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Figure 2.5. Schematic of Asphaltene deposition in pipes (Mirzayi et al, 

2013). 

 

Like with deposition in porous media, there are different models put together to 

describe the deposition process for both laminar and turbulent flows. These models 

would be described in Chapter 3. However the model utilized emphasizes the 

importance of the probability theorem and the probability that the asphaltene particles 

would stick to the pipe surface and also to the other particles already stuck on the pipe. 

Like shown in the figure a deposit layer is formed during deposition and this alters the 

diameter of the pipe, impeding flow and increasing pressure build up in the pipe.  

In this work, existing mathematical models describing asphaltene deposition are utilized 

in a systematic scaling analysis method to assess the relative importance of the 

contributing factors affecting asphaltene deposition in both the wellbore and near 

wellbore regions. The models and results obtained from the analysis are further 

discussed in following chapters 

  

Oil 

Deposit layer Asphaltene particles 
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Chapter 3: Mathematical models and Methods 

In this chapter, three major sections are covered. They are the models utilizable for the 

comprehensive description of asphaltene deposition in porous media, models for the 

description of deposition in pipes and an introduction to the scaling analysis 

methodology used to analyze the models chosen for the deposition in both cases. The 

sections would be reviewed in the order described. 

 

3.1 Asphaltene deposition models in porous media  

Most of the models derived for the simulation of asphaltene deposition in porous media 

have been based solely on experimental data obtained either from laboratory core tests 

or from field simulations. Although, the results from field simulations can be said to 

better depict the actual deposition scenarios, Core testing has provided a means to 

isolate and study the different factors that sum up to create asphaltene deposition 

problems in the porous media near the wellbore. 

 

3.1.1 Laboratory Core test simulation of asphaltene deposition  

There are three major models that stemmed from laboratory core test analysis and they 

are discussed in order of publication time. In 1995, Civan modified a previously 

introduced parallel pathway model that was used to simulate the deposition of fine 

particles. The model classified all pore throats as either a plugging pathway or non-

plugging pathway depending on the fluid flow through them (Wang, 2000). He included 

a source term for precipitation and porosity and permeability variability for the 
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deposition of paraffin and asphaltene. An energy balance was also introduced (Civan, 

1995).  

 In developing a model, Ali and Islam considered the adsorption and mechanical 

entrapment of asphaltene. It was assumed that asphaltene existed in crude oil as 

particles and was readily deposited or adsorbed (Wang, 2000). This model was also a 

modification of the Civan’s model as information from that model was utilized to 

simulate the mechanical entrapment. It was published in 1997. Other assumptions made 

were that the porous media was oil wet and a monolayer adsorption process was 

occurring (Ali and Islam, 1998). Finally in 1999, Wang further modified the model to 

simulate deposition of asphaltene and paraffin simultaneously and results obtained 

matched experimental data where ideal solution was used to simulate precipitation 

(Wang et al, 1999).  

 

3.1.2 Field simulation of asphaltene deposition 

The first model that simulated asphaltene deposition around a well with constant 

production rate and pseudo steady state flow was created by Leonaritis in 1998. It was 

assumed that asphaltene deposition occur only in near wellbore region and the area of 

formation damage caused by asphaltene deposition was constant (Wang, 2000). A 

simulation of asphaltene deposition in the near wellbore region within a radius of 5 feet 

and a production time of 5 hours was performed. The computational results of this 

model was unstable after three hours during experimentation (Leonaritis, 1998). A 

simple rule of thumb method was also used to determine the amount of particles that 

would be entrained in the fluid flow through the pores. 
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 In the model by Ngheim et al. (1998) a liquid solid equilibrium precipitation 

process was adopted for asphaltene. Deposition was also simulated during primary 

recovery and CO2 flooding. And deposition was assumed to be driven solely by 

adsorption only. This assumption reduced the accuracy of results obtained from the 

model as several factors were observed that caused deposition in porous media besides 

adsorption (Leonaritis, 1998). In 2000 Wang and Civan created a model which is 

utilized in this work for the deposition of asphaltene in porous media. The model 

introduced the concepts of surface deposition, entrainment of particles and pore throat 

plugging as components that make up the deposition process. Reduction models were 

also incorporated for permeability and porosity to account for the changes encountered 

as deposition occurs. It was also the first model that could be used to simulate 

production from horizontal wells (Civan and Wang, 2005).  

 

3.1.3 Applied model for deposition in porous media 

The mathematical processes being considered were asphaltene deposition in the 

subsurface near the wellbore in the pipes. As previously mentioned, near the wellbore 

the deposition model by Civan and Wang (2000) was applied. The model is a 

modification of the Civan’s model (1995) and is generally used for the deposition of 

paraffin and asphaltene.  Some of the assumptions made in this model are listed below. 

1.  One dimensional horizontal flow  

2. Negligible capillary pressure 

The mass balance, momentum balance, precipitation model deposition model porosity 

and permeability reduction equations were combined to describe the overall deposition 
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process (Wang. 2000, pp 53-59). Equation 3.1 represents the deposition equation 

utilized in this model. The first term on the right hand side represents the rate of 

asphaltene surface deposition with ∝ as its coefficient, the next represents the 

entrainment of asphaltene deposits in the bulk fluid and the last tern is the pore throat 

plugging rate,  both having 𝛽 𝑎𝑛𝑑 𝛾 coeeficients respectively. The other equations that 

make up this model are represented in Appendix A. 

𝜕𝐸𝐴

𝜕𝑡
=∝ 𝐶𝐴𝜙 − 𝛽𝐸𝐴(𝑣𝐿 − 𝑣𝑐𝑟,𝐿) + 𝛾𝑢𝐿 𝐶𝐴     (3.1) 

 

3.2 Asphaltene deposition models in pipes 

Asphaltene deposition continues to be an issue for remediation even after the crude is 

past the porous media. In the wellbore asphaltene particles continue to aggregate and 

deposit over time on the surface of the inner pipe walls. Since the flow regimes and 

conditions in the wellbore and pipes differ significantly from that in porous media, it is 

necessary to for the deposition process in these regions to be modelled differently after 

particle fouling in chemical processes. Section 3.2.1 summarizes and classifies the 

different models that have been utilized to describe asphaltene deposition in the pipes.  

 

3.2.1 Categories of Asphaltene deposition Models in pipes 

There are different models that have been setup to define the process of asphaltene 

deposition in pipes and they have been widely grouped into two categories based on the 

approaches taken to reach the solution. They are the classical concept of turbulent flow 

and eddy diffusion and the stochastic approach (Shirdel, 2013) 
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 Lin et al (1953) was amongst the first published authors to utilize the classical 

approach in modelling deposition in pipes. The idea was based off of the concept of 

mass transfer between a fluid stream that is turbulent and the surrounding walls. The 

concentration profile was calculated in the wall layer and a comparison of the model to 

experimental work was performed. Results showed a degree of agreement that proved 

that a correlation existed. Other researchers tried to create modifications to the model to 

get better agreement using the same concepts and similar approaches.  

 The stochastic approach is also popularly utilized by different researchers some 

include Cleaver and Yates (1975), Eskin et al, (2011) and Hutchinson et al (1971). In 

this approach a probabilistic theory is utilized to create the deposition model. Eskin et 

al, (2011) went ahead to perform experiments to verify the model using coquette 

devices and a fairly good agreement was realized. The stochastic approach has also 

been utilized to determine the mechanism of particle transport from fluid to the pipe 

surface as well as the size distribution of the asphaltene particles (Shirdel, 2013). 

Generally wax deposition models also follow the stochastic approach used to create 

models for asphaltene deposition in the wellbores and particulate fouling.   

 

3.2.2 Applied model for deposition in pipes 

Cleaver and Yates (1975) deposition model was used to derive the equation for 

asphaltene deposition in a pipe or wellbore in this work. The model uses the probability 

theorem as earlier stated and agrees with experimental data for particle deposition 

(Cleaver et al, 1975). They assumed that the particles are moved initially by turbulent 

diffusion and then entrained in the laminar sub layer as they get closer to the wall for 
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deposition. Asphaltene particles are also exhibited as solid spheres in this model 

(Shirdel, 2013).  

Other equations applied to describe the overall process of deposition in pipes 

include rate of attachment and detachment of the particles. Mass and momentum 

conservation equations as well (Shirdel. 2013, pp. 186-188). The deposition equation 

used in this model is presented as Equation 3.2. All other equations used to describe 

the overall deposition for both processes are listed and described appropriately in 

Appendix A. 

𝑚𝑑𝑎 =
𝜕

𝜕𝑥
𝑆𝑃 (

0.084Δ𝐶𝑉𝑎𝑣𝑔√𝑓/2

𝑆𝑐2/3 )     (3.2) 

From the equation, mda is the rate of solid asphaltene deposition, SP is a constant known 

as the sticking probability obtained from the probability theorem applied and Sc is the 

dimensionless Schmidt number, which is a ratio of the momentum diffusivity and mass 

diffusivity in the characterization of fluid flow.  

 The sticking probability is the probability that the molecules are trapped on the 

surface of the pipe and is attached to it. It can be deduced by a simple equation that 

includes the coverage area, which in this case is the inner walls of the pipe and the 

original probability that the material would stick. The sticking probability can also be 

assumed based of experimentally observations for example, if a material sticks to the 

walls of a pipe 4 out of 10 times its in contact then the sticking probability of the 

material to the pipe is 0.4. There are more complex ways to account for how materials 

stick but for our purposes, based on the equation utilized, the sticking probability 

seemed sufficient.  
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 The procedure used to analyze the models described in this chapter is presented 

in the following section. Results obtained from the scaling analysis procedure was used 

to analyze the deposition equations for different conditions that may occur. Simplified 

versions of the equations are obtained and they highlight the factors that are major 

contributors to asphaltene deposition at different phases of production. Assumptions 

made for these mathematical models utilized for both deposition in porous media and in 

pipes and are listed below. 

1. Flow is 1-Dimensional 2 phase flow 

2. Isothermal flow conditions 

3. Precipitation and aggregation already occurred, only the deposition process is 

considered  

 

3.3 Scaling Analysis  

The systematic methodology used to quantify the different factors affecting asphaltene 

deposition in the pipes and subsurface is called Scaling Analysis. According to William 

B. Krantz, scaling analysis is used to create dimensionless groups for sets of equations 

describing various processes. Most of the processes are chemical engineering reaction 

processes but they can also be used to describe other processes as long as the major 

describing equations are known. 

 This methodology, much like Buckingham pi creates dimensionless relations 

commonly referred to as pi groups.  One advantage it has over the Buckingham pi 

method however, is that the scaling analysis results in the minimum parametric 

representation of the describing equations, which makes it possible to quantify the 
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different parameters and rank them in order of relevance to the entire process described. 

This is not the case with the Buckingham pi method, which only shows a non-

quantifiable relationship like in the case of the Reynolds number (Krantz. 2007, xi-xiii).  

The mathematical foundation of Scaling Analysis is in the Lie Group. This 

theory represent the best-developed theory of continuous symmetry of mathematical 

objects and structures. As a result, it is an indispensable tool for many parts of 

contemporary mathematics and physics. In this method, all variables in equations used 

are bounded of order one (Krantz. 2007, 3-12). This means that the magnitude of the 

dimensionless variables created are between zero and one. Generally an increase in their 

magnitude indicates an increase in their significance.  

Also, one can determine what factors could be altered without a high impact 

change in the entire process. The procedure that involves the scaling of mathematical 

models is explained in the book referenced for both dimensional and dimensionless 

variables, the steps for dimensionless variables used in this work are also listed below 

(Krantz. 2007). 

1. Write the describing equations, initial and boundary conditions for the process 

2. Define unspecified scale factors for all variables in both the equations and 

conditions. 

3. Also define unspecified reference factors for variables not referenced to zero 

4. Form dimensionless variables by rearranging the scale and reference factors 

created  

5. Introduce these dimensionless variables into the describing equations and their 

initial and boundary conditions.  

https://en.wikipedia.org/wiki/Continuous_symmetry
https://en.wikipedia.org/wiki/Mathematical_structure
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6. Divide the equations and conditions through by the coefficient of one term that 

would be retained in every equation 

7. Check that the principal terms in the equations are bounded by the order of one 

and check procedure for errors. 

It is important to note that the group of variables in the equations formed after step six 

are pi groups and provide a lot of information on the relationship between the individual 

variables and the overall process. These pi groups can be verified for independence 

using MATLAB to eliminate repetitions. An extensive example on the utilization of the 

scaling analysis procedure to form dimensionless groups can be seen in Moghanloo 

(2012).  

3.3.1 Formation of pi groups from deposition model 

The idea behind the scaling analysis is the substitution of independent and dependent 

variables with in governing equations with terms that are dimensionless.  The process 

yields insight to the relationships that exist between the parameters and describing 

variables and all these is realized without mathematically solving the equations 

describing the process in question.  

This scaling analysis methodology was utilized for both processes described in this 

work; Asphaltene deposition in porous media and also in the wellbore. The 21 

dimensionless groups discussed in the following chapter were realized from this process 

after the scaling analysis had been conducted.  In this subsection, the mathematical 

formulation of the pi groups is shown in steps to create an understanding of how the pi 

groups were realized starting with deposition in porous media and then in the wellbore.  

The describing equations for asphaltene deposition in porous media are as follows; 
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Mass balance equations   

𝜕

𝜕𝑡
(𝜙𝜌𝑣𝑤𝑂𝐿) +

𝜕

𝜕𝑥
(𝜌𝐿𝑢𝐿𝑤𝑂𝐿) = 0                             (3.3) 

𝜕

𝜕𝑡
(𝜙𝐶𝐴𝜌𝐴 + 𝜙𝜌𝐿𝑤𝐴𝐿) +

𝜕

𝜕𝑥
(𝜌𝐿𝑢𝐿𝑤𝑆𝐴𝐿 + 𝜌𝐿𝑢𝐿𝑤𝐴𝐿) = −𝜌𝐴

𝜕𝐸𝐴

𝜕𝑡
               (3.4) 

Asphaltene Deposition Model 

𝜕𝐸𝐴

𝜕𝑡
=∝ 𝐶𝐴𝜙 − 𝛽𝐸𝐴(𝑣𝐿 − 𝑣𝑐𝑟,𝐿) + 𝛾𝑢𝐿 𝐶𝐴                             (3.5)  

Porosity Reduction Model 

𝜙 = 𝜙0 − 𝐸𝐴                                           (3.6) 

Permeability Reduction Model 

𝑘 = 𝑓𝑝𝑘0 (
𝜙

𝜙0
)

3

                                          (3.7) 

Momentum Balance Equation 

𝑢𝐿 = −
𝑘

𝜇𝐿

𝜕𝑃

𝜕𝑥
                                                                                       (3.8) 

The next step in the scaling analysis process is to define a scale factor for each of the 

variables in the equation, including variables in the boundary and initial conditions. 

This scale factor is described based on a reference factor also described for each 

equation.  After that, the initial variable is then defined by these scale and reference 

factors. The scale factors defined and the new definition of the variables are shown 

below; 

𝑡𝑠 =
𝑡

𝑡𝑟
  ; 𝑡 = 𝑡𝑠𝑡𝑟            (3.9) 

𝜙𝑠 =
𝜙

𝜙𝑟
 ;  𝜙 = 𝜙𝑠𝜙𝑟                    (3.10) 

𝜌𝑣𝑠
=

𝜌𝑣

𝜌𝑣𝑟

 ;  𝜌𝑣 = 𝜌𝑣𝑠
𝜌𝑣𝑟

                                                    (3.11) 

𝑤𝑂𝐿𝑠
=

𝑤𝑂𝐿

𝑤𝑂𝐿𝑟

 ;  𝑤𝑂𝐿 = 𝑤𝑂𝐿𝑠
𝑤𝑂𝐿𝑟

                             (3.12) 
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𝑥𝑠 =
𝑥

𝑥𝑟
  ;  𝑥 = 𝑥𝑠𝑥𝑟                   (3.13) 

𝜌𝐿𝑠
=

𝜌𝐿

𝜌𝐿𝑟

 ;  𝜌𝐿 = 𝜌𝐿𝑠
𝜌𝐿𝑟

                   (3.14) 

𝑢𝐿𝑠
=

𝑢𝐿

𝑢𝐿𝑟

 ;  𝑢𝐿 = 𝑢𝐿𝑠
𝑢𝐿𝑟

                     (3.15) 

𝐶𝐴𝑠
=

𝐶𝐴

𝐶𝐴𝑟

 ;  𝐶𝐴 = 𝐶𝐴𝑠
𝐶𝐴𝑟

                  (3.16) 

𝜌𝐴𝑠
=

𝜌𝐴

𝜌𝐴𝑟

 ;  𝜌𝐴 =  𝜌𝐴𝑠
𝜌𝐴𝑟

                  (3.17) 

𝑤𝐴𝐿𝑠
=

𝑤𝐴𝐿

𝑤𝐴𝐿𝑟

 ;  𝑤𝐴𝐿 = 𝑤𝐴𝐿𝑠
𝑤𝐴𝐿𝑟

                  (3.18) 

𝐸𝐴𝑠
=

𝐸𝐴

𝐸𝐴𝑟

 ;  𝐸𝐴 = 𝐸𝐴𝑠
𝐸𝐴𝑟

                   (3.19) 

𝑣𝐿𝑠
=

𝑣𝐿

𝑣𝐿𝑟

 ;  𝑣𝐿 = 𝑣𝐿𝑠
𝑣𝐿𝑟

                  (3.20) 

𝑘𝑠 =
𝑘

𝑘𝑟
 ;  𝑘 = 𝑘𝑠𝑘𝑟                   (3.21) 

𝑘0𝑠
=

𝑘0

𝑘0𝑟

 ;  𝑘0 = 𝑘0𝑠
𝑘0𝑟

                  (3.22) 

𝑃𝑠 =
𝑃

𝑃𝑟
 ; 𝑃 = 𝑃𝑠𝑃𝑟                   (3.23) 

After the scale and reference factors have been defined for all equations, the variables 

are then replaced in the original equations by their definition in terms of these factors. 

The definitions are showed above and the new equations for the scale and reference 

factors are shown below. It is important to note that these steps are repeated for the 

initial and boundary conditions specific to the process described.  

Mass balance equations   

𝜕

𝜕𝑡𝑠𝑡𝑟
(𝜙𝑠𝜙𝑟𝜌𝑣𝑠

𝜌𝑣𝑟
𝑤𝑂𝐿𝑠

𝑤𝑂𝐿𝑟
 ) +

𝜕

𝜕𝑥𝑠𝑥𝑟
(𝜌𝐿𝑠

𝜌𝐿𝑟
𝑢𝐿𝑠

𝑢𝐿𝑟
𝑤𝑂𝐿𝑠

𝑤𝑂𝐿𝑟
) = 0    
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𝜕

𝜕𝑡𝑠𝑡𝑟
(𝜙𝑠𝜙𝑟𝐶𝐴𝑠

𝐶𝐴𝑟
𝜌𝐴𝑠

𝜌𝐴𝑟
+ 𝜙𝑠𝜙𝑟𝜌𝐿𝑠

𝜌𝐿𝑟
𝑤𝐴𝐿𝑠

𝑤𝐴𝐿𝑟
 ) +

𝜕

𝜕𝑥𝑠𝑥𝑟
(𝜌𝐿𝑠

𝜌𝐿𝑟
𝑢𝐿𝑠

𝑢𝐿𝑟
𝑤𝑆𝐴𝐿𝑠

𝑤𝑆𝐴𝐿𝑟
 + 𝜌𝐿𝑠

𝜌𝐿𝑟
𝑢𝐿𝑠

𝑢𝐿𝑟
𝑤𝐴𝐿𝑠

𝑤𝐴𝐿𝑟
) = −𝜌𝐴𝑠

𝜌𝐴𝑟

𝜕𝐸𝐴𝑠𝐸𝐴𝑟

𝜕𝑡𝑠𝑡𝑟
 

  

Asphaltene Deposition Model 

𝜕𝐸𝐴𝑠𝐸𝐴𝑟

𝜕𝑡𝑠𝑡𝑟
 =∝ 𝐶𝐴𝑠

𝐶𝐴𝑟
𝜙𝑠𝜙𝑟 − 𝛽𝐸𝐴𝑠

𝐸𝐴𝑟
(𝑣𝐿𝑠

𝑣𝐿𝑟
− 𝑣𝑐𝑟,𝐿) + 𝛾𝑢𝐿𝑠

𝑢𝐿𝑟
 𝐶𝐴𝑠

𝐶𝐴𝑟
     

 

Porosity Reduction Model 

𝜙𝑠𝜙𝑟 = 𝜙0𝑠
𝜙0𝑟

− 𝐸𝐴𝑠
𝐸𝐴𝑟

        

 

Permeability Reduction Model 

𝑘𝑠𝑘𝑟 = 𝑓𝑝𝑘0𝑠
𝑘0𝑟

(
𝜙𝑠𝜙𝑟

𝜙0𝑠𝜙0 𝑟
)

3

   

     

Momentum Balance Equation 

𝑢𝐿𝑠
𝑢𝐿𝑟

= −
𝑘𝑠𝑘𝑟

𝜇𝐿𝑠
𝜇𝐿𝑟

𝜕𝑃𝑠𝑃𝑟

𝜕𝑥𝑠𝑥𝑟
 

 

After introducing the scale and reference factors into the equation, the next step in the 

scaling process is to separate the scale factors from the variables in the equation. In this 

step what is done is a simple rearrangement without making significant changes to the 

definition of the equation. This would enable us to identify a term that would be utilized 

in the steps to follow. Which is the process of making the coefficient of one of the terms 

in each equation have a coefficient equal to one. To do this the equation is divided by 
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the coefficient of the term chosen to have the unity coefficient equivalence. 

Rearrangements of the equations are shown below for all six equations defining 

asphaltene deposition in the porous media. After this, the equations are re-written where 

a term is given the unity coefficient. 

 

Mass balance equations   

𝜙𝑠𝜌𝑣𝑠𝑤𝑂𝐿𝑠

𝑡𝑠

𝜕

𝜕𝑡𝑟
(𝜙𝑟𝜌𝑣𝑟

𝑤𝑂𝐿𝑟
 ) +

𝜌𝐿𝑠𝑢𝐿𝑠𝑤𝑂𝐿𝑠

𝑥𝑠

𝜕

𝜕𝑥𝑟
(𝜌𝐿𝑟

𝑢𝐿𝑟
𝑤𝑂𝐿𝑟

) = 0   

   

𝜙𝑠𝐶𝐴𝑠𝜌𝐴𝑠

𝑡𝑠

𝜕

𝜕𝑡𝑟
𝜙𝑟𝐶𝐴𝑟

𝜌𝐴𝑟
+

𝜙𝑠𝜌𝐿𝑠𝑤𝐴𝐿𝑠

𝑡𝑠

𝜕

𝜕𝑡𝑟
𝜙𝑟𝜌𝐿𝑟

𝑤𝐴𝐿𝑟
+

𝜌𝐿𝑠𝑢𝐿𝑠
𝑤𝑆𝐴𝐿

𝑠

𝑥𝑠

𝜕

𝜕𝑥𝑟
𝜌𝐿𝑟

𝑢𝐿𝑟
𝑤𝑆𝐴𝐿𝑟

 +

𝜌𝐿𝑠𝑢𝐿𝑠
𝑤𝐴𝐿

𝑠

𝑥𝑠

𝜕

𝜕𝑥𝑟
𝜌𝐿𝑟

𝑢𝐿𝑟
𝑤𝐴𝐿𝑟

= −𝜌𝐴𝑠

𝐸𝐴𝑆

𝑡𝑠
𝜌𝐴𝑟

𝜕𝐸𝐴𝑟

𝜕𝑡𝑟
   

 

Asphaltene Deposition Model 

𝐸𝐴𝑆

𝑡𝑠

𝜕𝐸𝐴𝑟

𝜕𝑡𝑟
 =∝ 𝐶𝐴𝑠

𝜙𝑠𝐶𝐴𝑟
𝜙𝑟 − 𝛽𝐸𝐴𝑠

𝑣𝐿𝑠
𝐸𝐴𝑟

(𝑣𝐿𝑟
− 𝑣𝑐𝑟,𝐿) + 𝛾𝑢𝐿𝑠

𝐶𝐴𝑠
𝑢𝐿𝑟

 𝐶𝐴𝑟
   

        

Porosity Reduction Model 

𝜙𝑠𝜙𝑟 = 𝜙0𝑠
𝜙0𝑟

− 𝐸𝐴𝑠
𝐸𝐴𝑟

        

 

Permeability Reduction Model 

𝑘𝑠𝑘𝑟 = 𝑓𝑝𝑘0𝑠
𝑘0𝑟

(
𝜙𝑠𝜙𝑟

𝜙0𝑠𝜙0 𝑟
)

3

   

     

Momentum Balance Equation 
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𝑢𝐿𝑠
𝑢𝐿𝑟

= −
𝑘𝑠𝑘𝑟

𝜇𝐿𝑠
𝜇𝐿𝑟

𝑃𝑠

𝑥𝑠

𝜕𝑃𝑟

𝜕𝑥𝑟
 

 

The equations are then re-written as discussed to account for the change in coefficient to 

represent an analysis bounded by the order of one.  At this point the pi groups are easily 

identifiable and are shown in the final step. 

 

Mass balance equations   

𝜕

𝜕𝑡𝑟
(𝜙𝑟𝜌𝑣𝑟

𝑤𝑂𝐿𝑟
 ) +

𝑡𝑠𝑢𝐿𝑠

𝜙𝑠𝑥𝑠

𝜕

𝜕𝑥𝑟
(𝜌𝐿𝑟

𝑢𝐿𝑟
𝑤𝑂𝐿𝑟

) = 0      

𝜕

𝜕𝑡𝑟
𝜙𝑟𝐶𝐴𝑟

𝜌𝐴𝑟
+

𝑤𝐴𝐿𝑠

𝐶𝐴𝑠

𝜕

𝜕𝑡𝑟
𝜙𝑟𝜌𝐿𝑟

𝑤𝐴𝐿𝑟
+

𝑡𝑠𝑢𝐿𝑠𝑤𝑆𝐴𝐿𝑠

𝜙𝑠𝐶𝐴𝑠𝑥𝑠

𝜕

𝜕𝑥𝑟
𝜌𝐿𝑟

𝑢𝐿𝑟
𝑤𝑆𝐴𝐿𝑟

 +

𝑡𝑠𝑢𝐿𝑠𝑤𝐴𝐿𝑠

𝜙𝑠𝐶𝐴𝑠𝑥𝑠

𝜕

𝜕𝑥𝑟
𝜌𝐿𝑟

𝑢𝐿𝑟
𝑤𝐴𝐿𝑟

= −
𝐸𝐴𝑆

𝜙𝑠𝐶𝐴𝑠

𝜌𝐴𝑟

𝜕𝐸𝐴𝑟

𝜕𝑡𝑟
   

 

Asphaltene Deposition Model 

1

𝛽𝑣𝐿𝑠𝑡𝑠

𝜕𝐸𝐴𝑟

𝜕𝑡𝑟
 =

∝𝐶𝐴𝑠𝜙𝑠

𝛽𝐸𝐴𝑠𝑣𝐿𝑠

𝐶𝐴𝑟
𝜙𝑟 − 𝐸𝐴𝑟

(𝑣𝐿𝑟
− 𝑣𝑐𝑟,𝐿) +

𝛾𝑢𝐿𝑠𝐶𝐴𝑠

𝛽𝐸𝐴𝑠𝑣𝐿𝑠

𝑢𝐿𝑟
 𝐶𝐴𝑟

           

 

Porosity Reduction Model 

𝜙𝑟 =
𝜙0𝑠

𝜙𝑠
𝜙0𝑟

−
𝐸𝐴𝑠

𝜙𝑠
𝐸𝐴𝑟

        

 

Permeability Reduction Model 

𝑘𝑟 =
𝑓𝑝𝑘0𝑠

𝑘𝑠
𝑘0𝑟

1

𝑘𝑠
3 (

𝜙𝑠𝜙𝑟

𝜙0𝑠𝜙0 𝑟
)

3
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Momentum Balance Equation 

𝑢𝐿𝑟
= −

𝑘𝑠𝑘𝑟

𝜇𝐿𝑠
𝜇𝐿𝑟

𝑢𝐿𝑠

𝑃𝑠

𝑥𝑠𝑢𝐿𝑠

𝜕𝑃𝑟

𝜕𝑥𝑟
 

 

The pi groups realized are then placed in brackets these are the pi groups shown for 

porous media in chapter 4. Some of them may be rearranged for easy interpretation 

however what they represent remain unchanged.  

 

Mass balance equations   

𝜕

𝜕𝑡𝑟
(𝜙𝑟𝜌𝑣𝑟

𝑤𝑂𝐿𝑟
 ) + [

𝑡𝑠𝑢𝐿𝑠

𝜙𝑠𝑥𝑠
]

𝜕

𝜕𝑥𝑟
(𝜌𝐿𝑟

𝑢𝐿𝑟
𝑤𝑂𝐿𝑟

) = 0      

𝜕

𝜕𝑡𝑟
𝜙𝑟𝐶𝐴𝑟

𝜌𝐴𝑟
+ [

𝑤𝐴𝐿𝑠

𝐶𝐴𝑠

]
𝜕

𝜕𝑡𝑟
𝜙𝑟𝜌𝐿𝑟

𝑤𝐴𝐿𝑟
+ [

𝑡𝑠𝑢𝐿𝑠𝑤𝑆𝐴𝐿𝑠

𝜙𝑠𝐶𝐴𝑠𝑥𝑠
]

𝜕

𝜕𝑥𝑟
𝜌𝐿𝑟

𝑢𝐿𝑟
𝑤𝑆𝐴𝐿𝑟

 +

[
𝑡𝑠𝑢𝐿𝑠𝑤𝐴𝐿𝑠

𝜙𝑠𝐶𝐴𝑠𝑥𝑠
]

𝜕

𝜕𝑥𝑟
𝜌𝐿𝑟

𝑢𝐿𝑟
𝑤𝐴𝐿𝑟

= − [
𝐸𝐴𝑆

𝜙𝑠𝐶𝐴𝑠

] 𝜌𝐴𝑟

𝜕𝐸𝐴𝑟

𝜕𝑡𝑟
   

 

Asphaltene Deposition Model 

[
1

𝛽𝑣𝐿𝑠𝑡𝑠
]

𝜕𝐸𝐴𝑟

𝜕𝑡𝑟
 = [

∝𝐶𝐴𝑠𝜙𝑠

𝛽𝐸𝐴𝑠𝑣𝐿𝑠

] 𝐶𝐴𝑟
𝜙𝑟 − 𝐸𝐴𝑟

(𝑣𝐿𝑟
− 𝑣𝑐𝑟,𝐿) + [

𝛾𝑢𝐿𝑠𝐶𝐴𝑠

𝛽𝐸𝐴𝑠𝑣𝐿𝑠

] 𝑢𝐿𝑟
 𝐶𝐴𝑟

   

        

Porosity Reduction Model 

𝜙𝑟 = [
𝜙0𝑠

𝜙𝑠
] 𝜙0𝑟

− [
𝐸𝐴𝑠

𝜙𝑠
] 𝐸𝐴𝑟

        

 

Permeability Reduction Model 

𝑘𝑟 = [
𝑓𝑝𝑘0𝑠

𝑘𝑠
] 𝑘0𝑟

[
1

𝑘𝑠
3] (

𝜙𝑠𝜙𝑟

𝜙0𝑠𝜙0 𝑟
)

3
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Momentum Balance Equation 

𝑢𝐿𝑟
= − [

𝑘𝑠

𝜇𝐿𝑠
𝑢𝐿𝑠

𝑃𝑠

𝑥𝑠
]

𝑘𝑟

𝜇𝐿𝑟

𝜕𝑃𝑟

𝜕𝑥𝑟
 

 

Now that the pi groups have been realized for asphaltene deposition in porous media, 

the scaling analysis methodology will also be utilized to find the pi groups related to 

asphaltene deposition in pipes and wellbores. Starting with the describing equations. 

The describing equations for asphaltene deposition in porous media are as follows; 

 

Mass Balance Equations 

Solid Asphaltene in stream: 

 
𝜕

𝜕𝑡
(𝐴𝜌𝑜 ∝𝑜+ 𝐴𝑐𝑎 ∝𝑜) +

𝜕

𝜕𝑥
(𝐴𝜌𝑜 ∝𝑜 𝑢𝑜 + 𝐴𝑢𝑜𝑐𝑎) = 𝐴(𝜑𝑜 + 𝛾𝑎 − 𝑚𝑑𝑎)   (3.24) 

Oil in liquid phase: 

 
𝜕

𝜕𝑡
(𝜌𝑜 ∝𝑜) +

1

𝐴

𝜕

𝜕𝑥
(𝐴𝜌𝑜 ∝𝑜 𝑢𝑜) = 𝜑𝑜                (3.25) 

Cleaver and Yates deposition model definition 

𝑁 =
0.084Δ𝐶𝑉𝑎𝑣𝑔√𝑓/2

𝑆𝑐2/3                      (3.26) 

𝑤ℎ𝑒𝑟𝑒 Δ𝐶 = 𝐶𝑏 − 𝐶𝑠 

Rate of Asphaltene attachment  

𝑚𝑑𝑎 =
𝜕

𝜕𝑥
𝑆𝑃(𝑁) (3.27) 

Momentum Balance Equation  

𝜕

𝜕𝑡
(𝜌𝑜𝑢𝑜) +

𝜕

𝜕𝑥
(𝜌𝑜𝑢𝑜

2) + (144.0𝑔𝑐)
𝜕𝑃

𝜕𝑥
+ 𝜌0𝑔𝑠𝑖𝑛𝜃 +

𝜏𝑜𝜋𝐷

𝐴
= 0 (3.28) 
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As with the deposition equations for porous media, the next step in the scaling analysis 

process is to define a scale factor for each of the variables in the equation, including 

variables in the boundary and initial conditions. The scale factors defined and the new 

definition of the variables are shown below; 

𝑡𝑠 =
𝑡

𝑡𝑟
  ; 𝑡 = 𝑡𝑠𝑡𝑟                   (3.29) 

𝐴𝑆 =
𝐴

𝐴𝑟
 ; 𝐴 = 𝐴𝑠𝐴𝑟                   (3.30) 

𝜌𝑜𝑠
=

𝜌𝑜

𝜌𝑜𝑟

 ;  𝜌𝑜 = 𝜌𝑜𝑠
𝜌𝑜𝑟

                  (3.31) 

∝𝑜𝑠
=

∝𝑜

∝𝑜𝑟

 ;  ∝𝑜=∝𝑜𝑠
∝𝑜𝑟

                              (3.32) 

𝑐𝑎𝑠
=

𝑐𝑎

𝑐𝑎𝑟

  ;  𝑐𝑎 = 𝑐𝑎𝑠
𝑐𝑎𝑟

                                (3.33) 

𝑥𝑠 =
𝑥

𝑥𝑟
  ;  𝑥 = 𝑥𝑠𝑥𝑟                             (3.34) 

𝑢𝑜𝑆
=

𝑢𝑜

𝑢𝑜𝑟

 ;  𝑢𝑜 = 𝑢𝑜𝑠
𝑢𝑜𝑟

                             (3.35) 

𝜑𝑜𝑠
=

𝜑𝑜

𝜑𝑜𝑟

 ;  𝜑𝑜 = 𝜑𝑜𝑠
𝜑𝑜𝑟

                             (3.36) 

𝛾𝑎𝑠
=

𝛾𝑎

𝛾𝑎𝑟

 ;  𝛾𝑎 = 𝛾𝑎𝑠
𝛾𝑎𝑟

                             (3.37) 

𝑚𝑑𝑎𝑠
=

𝑚𝑑𝑎

𝑚𝑑𝑎𝑟

 ;  𝑚𝑑𝑎 = 𝑚𝑑𝑎𝑠
𝑚𝑑𝑎𝑟

                 (3.38) 

𝑃𝑠 =
𝑃

𝑃𝑟
 ; 𝑃 = 𝑃𝑠𝑃𝑟                              (3.39) 

𝜏𝑜𝑠
=

𝜏𝑜

𝜏𝑜𝑟

 ;  𝜏𝑜 = 𝜏𝑜𝑠
𝜏𝑜𝑟

                      (3.40) 

After the scale and reference factors have been defined for all equations, the variables 

are then replaced in the original equations by their definition in terns of these factors. 

The new equations for the scale and reference factors are shown below.  
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Mass Balance Equations 

Solid Asphaltene in stream: 

 
𝜕

𝜕𝑡𝑠𝑡𝑟
(𝐴𝑠𝐴𝑟𝜌𝑜𝑠

𝜌𝑜𝑟
∝𝑜𝑠

∝𝑜𝑟
+ 𝐴𝑠𝐴𝑟𝑐𝑎𝑠

𝑐𝑎𝑟
∝𝑜𝑠

∝𝑜𝑟
) +

𝜕

𝜕𝑥𝑠𝑥𝑟
(𝐴𝑠𝐴𝑟𝜌𝑜𝑠

𝜌𝑜𝑟
∝𝑜𝑠

∝𝑜𝑟
𝑢𝑜𝑠

𝑢𝑜𝑟
+ 𝐴𝑠𝐴𝑟𝑢𝑜𝑠

𝑢𝑜𝑟
𝑐𝑎𝑠

𝑐𝑎𝑟
) = 𝐴𝑠𝐴𝑟(𝜑𝑜𝑠

𝜑𝑜𝑟
+ 𝛾𝑎𝑠

𝛾𝑎𝑟
−

𝑚𝑑𝑎𝑠
𝑚𝑑𝑎𝑟

) 

Oil in liquid phase: 

 
𝜕

𝜕𝑡𝑠𝑡𝑟
(𝜌𝑜𝑠

𝜌𝑜𝑟
∝𝑜𝑠

∝𝑜𝑟
) +

1

𝐴𝑠𝐴𝑟

𝜕

𝜕𝑥𝑠𝑥𝑟
(𝐴𝑠𝐴𝑟𝜌𝑜𝑠

𝜌𝑜𝑟
∝𝑜𝑠

∝𝑜𝑟
𝑢𝑜𝑠

𝑢𝑜𝑟
) = 𝜑𝑜𝑠

𝜑𝑜𝑟
  

Cleaver and Yates deposition model definition 

𝑁 =
0.084Δ𝐶𝑉𝑎𝑣𝑔√𝑓/2

𝑆𝑐2/3   

𝑤ℎ𝑒𝑟𝑒 Δ𝐶 = 𝐶𝑏 − 𝐶𝑠 

Rate of Asphaltene attachment  

𝑚𝑑𝑎𝑠
𝑚𝑑𝑎𝑟

=
𝜕

𝜕𝑥𝑠𝑥𝑟
𝑆𝑃(𝑁)  

Momentum Balance Equation  

𝜕

𝜕𝑡𝑠𝑡𝑟
(𝜌𝑜𝑠

𝜌𝑜𝑟
𝑢𝑜𝑠

𝑢𝑜𝑟
) +

𝜕

𝜕𝑥𝑠𝑥𝑟
(𝜌𝑜𝑠

𝜌𝑜𝑟
𝑢𝑜𝑠

2𝑢𝑜𝑟
2) + (144.0𝑔𝑐)

𝜕𝑃𝑠𝑃𝑟

𝜕𝑥𝑠𝑥𝑟
+

𝜌𝑜𝑠
𝜌𝑜𝑟

𝑔𝑠𝑖𝑛𝜃 +
𝜏𝑜𝑠𝜏𝑜𝑟𝜋𝐷

𝐴𝑠𝐴𝑟
= 0  

 

The scale factors are then separated from the reference factors as was done with the 

deposition equations for porous media, to enable one come up with the pi groups 

associated with the process.  
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Mass Balance Equations 

Solid Asphaltene in stream: 

 
𝐴𝑠𝜌𝑜𝑠∝𝑜𝑠

𝑡𝑠
  

𝜕

𝜕𝑡𝑟
𝐴𝑟𝜌𝑜𝑟

∝𝑜𝑟
+

𝐴𝑠𝑐𝑎𝑠∝𝑜𝑠

𝑡𝑠
  

𝜕

𝜕𝑡𝑟
𝐴𝑟𝑐𝑎𝑟

∝𝑜𝑟
+

𝐴𝑠𝜌𝑜𝑠∝𝑜𝑠𝑢𝑜𝑠

𝑥𝑠

𝜕

𝜕𝑥𝑟
𝐴𝑟𝜌𝑜𝑟

∝𝑜𝑟
𝑢𝑜𝑟

+
𝐴𝑠𝑐𝑎𝑠𝑢𝑜𝑠

𝑥𝑠

𝜕

𝜕𝑥𝑟
𝐴𝑟𝑢𝑜𝑟

𝑐𝑎𝑟
= 𝐴𝑠𝜑𝑜𝑠

𝐴𝑟𝜑𝑜𝑟
+ 𝐴𝑠𝛾𝑎𝑠

𝐴𝑟𝛾𝑎𝑟
−

𝐴𝑠𝑚𝑑𝑎𝑠
𝐴𝑟𝑚𝑑𝑎𝑟

 

Oil in liquid phase: 

 
𝜌𝑜𝑠∝𝑜𝑠

𝑡𝑠
  

𝜕

𝜕𝑡𝑟
(𝜌𝑜𝑟

∝𝑜𝑟
) +

𝜌𝑜𝑠∝𝑜𝑠𝑢𝑜𝑠

𝑥𝑠

1

𝐴𝑟

𝜕

𝜕𝑥𝑟
(𝐴𝑟𝜌𝑜𝑟

∝𝑜𝑟
𝑢𝑜𝑟

) = 𝜑𝑜𝑠
𝜑𝑜𝑟

  

Cleaver and Yates deposition model definition 

𝑁 =
0.084Δ𝐶𝑉𝑎𝑣𝑔√𝑓/2

𝑆𝑐2/3   

𝑤ℎ𝑒𝑟𝑒 Δ𝐶 = 𝐶𝑏 − 𝐶𝑠 

Rate of Asphaltene attachment  

𝑚𝑑𝑎𝑠
𝑚𝑑𝑎𝑟

=
1

𝑥𝑠

𝜕

𝜕𝑥𝑟
𝑆𝑃(𝑁)  

Momentum Balance Equation  

𝜌𝑜𝑠𝑢𝑜𝑠

𝑡𝑠

𝜕

𝜕𝑡𝑟
(𝜌𝑜𝑟

𝑢𝑜𝑟
) +

𝜌𝑜𝑠𝑢𝑜𝑠
2

𝑥𝑠

𝜕

𝜕𝑥𝑟
(𝜌𝑜𝑟

𝑢𝑜𝑟
2) +

𝑃𝑠

𝑥𝑠
(144.0𝑔𝑐)

𝜕𝑃𝑟

𝜕𝑥𝑟
+ 𝜌𝑜𝑠

𝜌𝑜𝑟
𝑔𝑠𝑖𝑛𝜃 +

𝜏𝑜𝑠

𝐴𝑠

𝜏𝑜𝑟𝜋𝐷

𝐴𝑟
= 0  

 

To ensure that the pi groups are bounded by the order of one, the scalar groups are then 

divided by the coefficient of one of the terms in each equation. Finally the pi groups are 

then identified.  

 

Mass Balance Equations 



35 

Solid Asphaltene in stream: 

  
𝜕

𝜕𝑡𝑟
𝐴𝑟𝜌𝑜𝑟

∝𝑜𝑟
+

𝑐𝑎𝑠

𝜌𝑜𝑠

  
𝜕

𝜕𝑡𝑟
𝐴𝑟𝑐𝑎𝑟

∝𝑜𝑟
+

𝑡𝑠𝑢𝑜𝑠

𝑥𝑠

𝜕

𝜕𝑥𝑟
𝐴𝑟𝜌𝑜𝑟

∝𝑜𝑟
𝑢𝑜𝑟

+

𝑡𝑠𝑐𝑎𝑠𝑢𝑜𝑠

𝜌𝑜𝑠∝𝑜𝑠𝑥𝑠

𝜕

𝜕𝑥𝑟
𝐴𝑟𝑢𝑜𝑟

𝑐𝑎𝑟
=

𝑡𝑠𝜑𝑜𝑠

𝜌𝑜𝑠∝𝑜𝑠

𝐴𝑟𝜑𝑜𝑟
+

𝑡𝑠

𝜌𝑜𝑠∝𝑜𝑠

𝛾𝑎
𝑠

𝐴𝑟𝛾𝑎𝑟
−

𝑡𝑠𝑚𝑑𝑎𝑠

𝜌𝑜𝑠∝𝑜𝑠

𝐴𝑟

𝑠

𝑚𝑑𝑎𝑟
 

Oil in liquid phase: 

   
𝜕

𝜕𝑡𝑟
(𝜌𝑜𝑟

∝𝑜𝑟
) +

𝑡𝑠𝑢𝑜𝑠

𝑥𝑠

1

𝐴𝑟

𝜕

𝜕𝑥𝑟
(𝐴𝑟𝜌𝑜𝑟

∝𝑜𝑟
𝑢𝑜𝑟

) =
𝑡𝑠𝜑𝑜𝑠

𝜌𝑜𝑠∝𝑜𝑠

𝜑𝑜𝑟
  

Cleaver and Yates deposition model definition 

𝑁 =
0.084Δ𝐶𝑉𝑎𝑣𝑔√𝑓/2

𝑆𝑐2/3   

𝑤ℎ𝑒𝑟𝑒 Δ𝐶 = 𝐶𝑏 − 𝐶𝑠 

Rate of Asphaltene attachment  

𝑚𝑑𝑎𝑟
=

1

𝑚𝑑𝑎𝑠𝑥𝑠

𝜕

𝜕𝑥𝑟
𝑆𝑃(𝑁)  

Momentum Balance Equation  

𝜌𝑜𝑠𝑢𝑜𝑠

𝑡𝑠

𝜕

𝜕𝑡𝑟
(𝜌𝑜𝑟

𝑢𝑜𝑟
) +

𝑡𝑠𝑢𝑜𝑠

𝑥𝑠

𝜕

𝜕𝑥𝑟
(𝜌𝑜𝑟

𝑢𝑜𝑟
2) +

𝑡𝑠𝑃𝑠

𝜌𝑜𝑠𝑢𝑜𝑠𝑥𝑠
(144.0𝑔𝑐)

𝜕𝑃𝑟

𝜕𝑥𝑟
+

𝑡𝑠

𝑢𝑜𝑠

𝜌𝑜𝑟
𝑔𝑠𝑖𝑛𝜃 +

𝜌𝑜𝑠𝑢𝑜𝑠
𝑡𝑠

𝜏𝑜𝑠

𝐴𝑠

𝜏𝑜𝑟𝜋𝐷

𝐴𝑟
= 0  

The pi groups are then identified in brackets. 
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𝐴𝑠𝜌𝑜𝑠∝𝑜𝑠

𝑡𝑠
  

𝜕

𝜕𝑡𝑟
𝐴𝑟𝜌𝑜𝑟

∝𝑜𝑟
+

𝐴𝑠𝑐𝑎𝑠∝𝑜𝑠

𝑡𝑠
  

𝜕

𝜕𝑡𝑟
𝐴𝑟𝑐𝑎𝑟

∝𝑜𝑟
+

𝐴𝑠𝜌𝑜𝑠∝𝑜𝑠𝑢𝑜𝑠

𝑥𝑠

𝜕

𝜕𝑥𝑟
𝐴𝑟𝜌𝑜𝑟

∝𝑜𝑟
𝑢𝑜𝑟

+
𝐴𝑠𝑐𝑎𝑠𝑢𝑜𝑠

𝑥𝑠

𝜕

𝜕𝑥𝑟
𝐴𝑟𝑢𝑜𝑟

𝑐𝑎𝑟
= 𝐴𝑠𝜑𝑜𝑠

𝐴𝑟𝜑𝑜𝑟
+ 𝐴𝑠𝛾𝑎𝑠

𝐴𝑟𝛾𝑎𝑟
−

𝐴𝑠𝑚𝑑𝑎𝑠
𝐴𝑟𝑚𝑑𝑎𝑟

 

Oil in liquid phase: 

 
𝜌𝑜𝑠∝𝑜𝑠

𝑡𝑠
  

𝜕

𝜕𝑡𝑟
(𝜌𝑜𝑟

∝𝑜𝑟
) +

𝜌𝑜𝑠∝𝑜𝑠𝑢𝑜𝑠

𝑥𝑠

1

𝐴𝑟

𝜕

𝜕𝑥𝑟
(𝐴𝑟𝜌𝑜𝑟

∝𝑜𝑟
𝑢𝑜𝑟

) = 𝜑𝑜𝑠
𝜑𝑜𝑟

  

Cleaver and Yates deposition model definition 

𝑁 =
0.084Δ𝐶𝑉𝑎𝑣𝑔√𝑓/2

𝑆𝑐2/3   

𝑤ℎ𝑒𝑟𝑒 Δ𝐶 = 𝐶𝑏 − 𝐶𝑠 

Rate of Asphaltene attachment  

𝑚𝑑𝑎𝑠
𝑚𝑑𝑎𝑟

=
1

𝑥𝑠

𝜕

𝜕𝑥𝑟
𝑆𝑃(𝑁)  

Momentum Balance Equation  

𝜌𝑜𝑠𝑢𝑜𝑠

𝑡𝑠

𝜕

𝜕𝑡𝑟
(𝜌𝑜𝑟

𝑢𝑜𝑟
) +

𝜌𝑜𝑠𝑢𝑜𝑠
2

𝑥𝑠

𝜕

𝜕𝑥𝑟
(𝜌𝑜𝑟

𝑢𝑜𝑟
2) +

𝑃𝑠

𝑥𝑠
(144.0𝑔𝑐)

𝜕𝑃𝑟

𝜕𝑥𝑟
+ 𝜌𝑜𝑠

𝜌𝑜𝑟
𝑔𝑠𝑖𝑛𝜃 +

𝜏𝑜𝑠

𝐴𝑠

𝜏𝑜𝑟𝜋𝐷

𝐴𝑟
= 0  

 

To ensure that the pi groups are bounded by the order of one, the scalar groups are then 

divided by the coefficient of one of the terms in each equation. Finally the pi groups are 

then identified.  
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𝜕

𝜕𝑡𝑟
𝐴𝑟𝜌𝑜𝑟

∝𝑜𝑟
+ [

𝑐𝑎𝑠

𝜌𝑜𝑠

  
𝜕

𝜕𝑡𝑟
] 𝐴𝑟𝑐𝑎𝑟

∝𝑜𝑟
+ [

𝑡𝑠𝑢𝑜𝑠

𝑥𝑠
]

𝜕

𝜕𝑥𝑟
𝐴𝑟𝜌𝑜𝑟

∝𝑜𝑟
𝑢𝑜𝑟

+

[
𝑡𝑠𝑐𝑎𝑠𝑢𝑜𝑠

𝜌𝑜𝑠∝𝑜𝑠𝑥𝑠
]

𝜕

𝜕𝑥𝑟
𝐴𝑟𝑢𝑜𝑟

𝑐𝑎𝑟
= [

𝑡𝑠𝜑𝑜𝑠

𝜌𝑜𝑠∝𝑜𝑠

] 𝐴𝑟𝜑𝑜𝑟
+ [

𝑡𝑠

𝜌𝑜𝑠∝𝑜𝑠

𝛾𝑎
𝑠

] 𝐴𝑟𝛾𝑎𝑟
− [

𝑡𝑠𝑚𝑑𝑎𝑠

𝜌𝑜𝑠∝𝑜𝑠

] 𝐴𝑟

𝑠

𝑚𝑑𝑎𝑟
 

Oil in liquid phase: 

   
𝜕

𝜕𝑡𝑟
(𝜌𝑜𝑟

∝𝑜𝑟
) + [

𝑡𝑠𝑢𝑜𝑠

𝑥𝑠
]

1

𝐴𝑟

𝜕

𝜕𝑥𝑟
(𝐴𝑟𝜌𝑜𝑟

∝𝑜𝑟
𝑢𝑜𝑟

) = [
𝑡𝑠𝜑𝑜𝑠

𝜌𝑜𝑠∝𝑜𝑠

] 𝜑𝑜𝑟
  

Cleaver and Yates deposition model definition 

𝑁 =
0.084Δ𝐶𝑉𝑎𝑣𝑔√𝑓/2

𝑆𝑐2/3   

𝑤ℎ𝑒𝑟𝑒 Δ𝐶 = 𝐶𝑏 − 𝐶𝑠 

Rate of Asphaltene attachment  

𝑚𝑑𝑎𝑟
= [

1

𝑚𝑑𝑎𝑠𝑥𝑠
]

𝜕

𝜕𝑥𝑟
𝑆𝑃(𝑁)  

Momentum Balance Equation  

𝜕

𝜕𝑡𝑟
(𝜌𝑜𝑟

𝑢𝑜𝑟
) + [

𝑡𝑠𝑢𝑜𝑠

𝑥𝑠
]

𝜕

𝜕𝑥𝑟
(𝜌𝑜𝑟

𝑢𝑜𝑟
2) + [

𝑡𝑠𝑃𝑠

𝜌𝑜𝑠𝑢𝑜𝑠𝑥𝑠
] (144.0𝑔𝑐)

𝜕𝑃𝑟

𝜕𝑥𝑟
+

[
𝑡𝑠

𝑢𝑜𝑠

] 𝜌𝑜𝑟
𝑔𝑠𝑖𝑛𝜃 + [

𝜌𝑜𝑠𝑢𝑜𝑠
𝑡𝑠

𝜏𝑜𝑠

𝐴𝑠
]

𝜏𝑜𝑟𝜋𝐷

𝐴𝑟
= 0  

All the pi groups attained from the scaling procedure are shown in the brackets for 

deposition in both porous media and wellbore. For deposition in the wellbore it is 

important to note that the dimensions of 𝛼 = 𝑇−1;  𝛽 = 𝐿−1 𝑎𝑛𝑑 𝛾 = 𝐿−1 MATLAB 

was utilized to find the rank of the coefficient matrix in order to eradicate independence 

for both processes and the resulting pi groups are shown in Chapter 4. 
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Chapter 4: Scaling Analysis – Results and Discussion 

The results obtained from the scaling analysis of the equations described in Chapter 3 

are shown here and also analyzed. In this chapter, we start from results obtained from 

the scaling analysis for both pipe deposition and deposition in porous media. Then, 

results for the deposition in porous media is analyzed and finally deposition in pipes is 

equally analyzed. Results focus on specific pi groups obtained from the scaling analysis. 

 

4.1 Pi groups obtained from scaling analysis of the deposition equations 

The scaling analysis procedure resulted in the formation of dimensionless pi groups 

with an order of one magnitude after the constant numerical values are inputted. 

Thirteen pi groups were obtained for the deposition process in the porous media near 

the wellbore and are presented as pi groups 1 through 13. For asphaltene deposition in 

pipes, eight dimensionless pi groups were obtained from the scaling analysis procedure 

presented as pi groups 14 through 21. All pi groups are listed in Table 4.1.  

Since all pi groups are bounded by an order of one magnitude, they can only be 

have values between zero and one. A value equal to zero indicates that the variables, for 

which the pi group is a coefficient, is not relevant to asphaltene deposition. A pi group 

equal to one shows highest level of significance for the deposition process for a given 

scenario. Based on data specific to any formation being considered the significance of 

the pi groups can also be determined as a unit. 
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Table 4.1 Pi groups obtained from scaling analysis of the asphaltene deposition models 

in porous media near the wellbore and also in pipes. 𝜋1−𝜋13 were obtained from porous 

media deposition while 𝜋14 − 𝜋21 were from pipe deposition. 

𝑃𝑖 𝑛𝑢𝑚𝑏𝑒𝑟 𝐷𝑒𝑓𝑖𝑛𝑖𝑛𝑔 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 𝑔𝑟𝑜𝑢𝑝 

𝜋1 𝑡𝜌𝐿𝑢𝐿

𝑥𝜌𝑣𝜙
 

𝜋2 𝜌𝐿𝑤𝐴𝐿

𝐶𝐴𝜌𝐴
 

𝜋3 𝑡𝜌𝐿𝑢𝐿𝑤𝑆𝐴𝐿

𝑥𝜙𝐶𝐴𝜌𝐴
 

𝜋4 𝑡𝜌𝐿𝑢𝐿𝑤𝐴𝐿

𝑥𝜙𝐶𝐴𝜌𝐴
 

𝜋5 𝐸𝐴

𝜙𝐶𝐴
 

𝜋6 1

𝜙
 

𝜋7 𝐸𝐴

𝜙
 

𝜋8 
𝑓𝑝

𝜙

𝑘
 

𝜋9 𝑘𝑝

𝜇𝐿𝑥𝑢𝐿
 

𝜋10 𝛼𝐶𝐴𝜙

𝛽𝐸𝐴Δ𝑣
 

𝜋11 1

𝑡Δ𝑣𝛽
 

𝜋12 𝛾𝐶𝐴𝑢𝐿

𝛽𝐸𝐴Δ𝑣
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𝜋13 𝐿

𝑥
 

𝜋14 𝑐𝑎

𝜌0𝛼0
 

𝜋15 𝑥

𝑡𝑢0
 

𝜋16 𝑡𝜌0𝑢0

𝑥𝑐𝑎
 

𝜋17 𝑥𝜑0

𝜌0𝛼0𝑢0
 

𝜋18 𝑥𝛾𝑎

𝜌0𝛼0𝑢0
 

𝜋19 𝑥𝑚𝑑𝑎

𝜌0𝛼0𝑢0
 

𝜋20 𝑡𝜑0

𝜌0𝛼0
 

𝜋21 𝑆𝑝𝑁

𝑚𝑑𝑎𝑥
 

 

 

4.2 Analysis of results from deposition in porous media 

For asphaltene deposition in the porous media 𝜋10, 𝜋11 and 𝜋12 were obtained 

specifically from the asphaltene deposition equation in 3.1 in chapter 3. The pi groups 

can be justified based on scenarios creating simplifications to Equation 3.1. Equation 

4.1 shows the deposition equation in its scaled form with the associated pi groups. In 

very low porosity formation, 𝜋10 would veer towards zero. The surface deposition term 

which multiplies this pi group would be negligible and the asphaltene deposition would 
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only depend on entrainment and the rate of pore throat plugging as shown in equation 

4.2. 

 This is an example of an obvious conclusion that can be verified with scaling 

analysis. If the porosity in a formation is very low, it is expected that the deposition of 

asphaltene would be driven by pore blockage, the positive term in equation in 4.1. It is 

also important to note that an increase in CA would cause an increase in the overall 

deposition rate, since the asphaltene concentration term is also important for the rate of 

pore throat plugging.    

[
1

𝑡Δ𝑣𝛽
]

𝜕𝐸𝐴

𝜕𝑡
= [

𝛼𝐶𝐴𝜙

𝛽𝐸𝐴Δ𝑣
] 𝐶𝐴𝜙 − 𝐸𝐴(𝑣𝐿 − 𝑣𝑐𝑟,𝐿) + [

𝛾𝐶𝐴𝑢𝐿

𝛽𝐸𝐴Δ𝑣
] 𝑢𝐿 𝐶𝐴   (4.1) 

𝜕𝐸𝐴

𝜕𝑡
= 𝛾𝑢𝐿 𝐶𝐴 − 𝛽𝐸𝐴(𝑣𝐿 − 𝑣𝑐𝑟,𝐿)                (4.2) 

 

When 𝑣𝑐𝑟,𝐿 , critical interstitial velocity of the liquid phase is greater than the interstitial 

velocity 𝑣𝐿 , the entrainment rate coefficient 𝛽, is equal to zero. In this case, the 

deposition would be driven by surface deposition and pore throat plugging rate, as 𝜋11 

and 𝜋12 would both get infinitely large in Equation 4.1. For all the pi groups discussed, 

decreasing the entrainment rate coefficient would increase the rate of asphaltene 

deposition since the entrainment of the solid particles in the fluid bulk abates the 

deposition of these particles. A decrease in the difference between the interstitial 

velocities would have similar effects as well. When both scenarios are combined, low 

porosity formation and insignificant entrainment, the deposition equation is further 

simplified to equation 4.3. 

𝜕𝐸𝐴

𝜕𝑡
=∝ 𝐶𝐴𝜙      (4.3) 
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Here, the deposition is solely driven by the rate of surface deposition. Based on the 

original Equation 3.1 alone, one would assume that the deposition would be driven by 

the rate of pore throat plugging. Scaling analysis performed in Equation 4.1 shows the 

relationship between entrainment and pore throat plugging. An increase in the 

entrainment rate constant would cause a significant decrease in the rate of pore throat 

plugging, reducing its effects on the overall deposition.  

For this scenario the rate of surface deposition, shown in Equation 4.3, would 

depend on the relative magnitude of porosity 𝜙 and the entrainment constant 𝛽 𝑖𝑛 𝜋10. 

For other cases where the entrainment rate coefficient is not equal to zero, the 

interstitial velocity is greater than the critical interstitial velocity of the fluid.  From the 

original Equation 3.1, it is important to keep the critical interstitial velocity as low as 

possible in order to increase the velocity difference and decrease the resulting 

asphaltene deposition. 

 

4.3 Analysis of results from deposition in pipes and wellbores 

The major equation describing asphaltene deposition in the wellbore and pipes is 

presented as Equation 3.2 in chapter 3. One of the pi groups obtained from the defining 

equations, 𝜋16, is a function of the time, density, fluid velocity, length of wellbore and 

asphaltene concentration in the crude oil. It is shown in Equation 4.4 and again in Table 

4.1. Figure 4.1 shows a speculative description of the relationship expected from the 

individual factors that make up the 𝜋16 group and asphaltene deposition in pipes. 
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Figure 4.1 Graphical representation of the expected relationship between 

the variables constituting the pi group and asphaltene deposition 

 

Again the graph shows the expected relationship between the variables in the pi group 

against asphaltene deposition. Due to an increase in the contact time between the 

flowing system and the pipe, an increase in the time should create an increase the total 

amount of asphaltene deposited. An increase in mixture density of the flowing system 

should cause a decrease in asphaltene deposition because increased density will cause 

increase stability and as a result there should be a reduction in the amount of asphaltene 

precipitating out of the solution.  

 If the velocity of the mixture is increased, the contact time of the flowing system 

and the pipe surface is reduced. As a result, the amount of asphaltene deposited in the 

pipe should equally reduce. Also, at increased velocity, there would be increased 

entrainment (refer to equation 3.2). This would cause the precipitated particles to 

remain in the flowing system, reducing the possibilities of the particles being dropped 

off as deposit on the pipe surface. If the pipe length is increased, there would be an 
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increase in the contact time between the flowing system and the pipe surface and as 

such the deposition should increase. 

 Finally, an increase in the concentration of asphaltene precipitate would increase 

the solid content in the flowing system and would result in an increased amount of 

deposition being experienced. Figure 4.2 shows the expected relationship between the 

pi group as a whole and asphaltene deposition. This speculation takes into account the 

effects of the individual factors that make up the pi group discussed above. 

 

Figure 4.2 Graphical representation of the expected relationship between 

𝝅𝟏𝟔 and asphaltene deposition in pipes 

Based on the speculative relationship presented in Figure 4.2, in order to reduce 

asphaltene deposition, it is important to make 𝜋16 as large as possible. An increase in 

the 𝜋16 would cause a decrease in the amount of asphaltene deposition experienced in 

pipes. 𝜋16 was also analyzed mathematically to create a better understanding of its 

description and potential role in asphaltene deposition. Figure 4.3 shows the description 

formulated in terms of an equation. Where texposure is defined as the time the flowing 

system spends in contact with the walls of the pipes. It can be related to residence time. 

ttravel is the time it takes the flowing system to travel through the pipe in its entirety.  
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Figure 4.3 Mathematical description of the dimensionless 𝜋16 

 

 

4.3.1 Analysis of  𝜋16 against flowrate 

The pi group was analyzed numerically based on experimental data obtained from 

Hashmi et al (2015) and Nabzar and Aguilera (2008). In the work done, a dimensionless 

time defined by Equation 4.5, was varied over a change in pressure drop to determine 

the onset of asphaltene deposition. Significant deposition was experienced at higher 

pressure drop values. These pressure drops were defined as difference in original and 

final pressure by Hashmini et al and as a ratio of final pressure to initial pressure by 

Nabzar and Aguilera. Figures from experimental data utilized are shown in Appendix C. 

𝜋16 =
𝑡𝜌0𝑢0

𝑥𝑐𝑎
          (4.4) 

𝜏 =
𝑄𝑡

𝑉
       (4.5)  

For the dimensionless time 𝜏 , Q is the flow rate, V is the volume of pipe and t is time in 

hours. At varied fluid velocities, the time it takes for significant asphaltene deposition 

was determined from Figures C-1 and C-2 in Appendix C, with the help of Equation 

4.4. These values were then utilized to calculate the critical value of  𝜋16 above which 

asphaltene deposition is significant. Figures 4.4 and 4.5 show the graph of critical 

values of the dimensionless 
𝜋16

𝜌0
 for different flow rates. It is important to note that the 

data sets could not be combined because varying assumptions were made during data 

collection on the representation of the pressure difference. Also, it is assumed that a 
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pressure difference of 0.2 and 1.2 constitutes significant deposition in Figures 4.4 and 

4.5 respectively.  

 
Figure 4.4. Critical values of dimensionless pi group obtained from scaling 

analysis above which significant deposition would occur. Assuming a change in 

pressure of 0.2 constitutes significant deposition. Experimental data obtained from 

Hashmi et al (2015). 

 

 
Figure 4.5. Critical values of dimensionless pi group obtained from scaling 

analysis above which significant deposition would occur. Assuming a change in 

pressure of 1.2 constitutes significant deposition. Experimental data obtained from 

Nabzar and Aguilera (2008). 
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The data points shown in Figures 4.4 and 4.5 were best fitted to a logarithmic and linear 

trend line respectively. The difference in fit may be as a result of the varied assumptions 

or could also imply that the trend becomes linear at increasing flow rates.  In order to 

draw conclusions on the nature of the trend line for this dimensionless group, 

simulations could be used to verify the critical values obtained. Ten percent error bars 

were used to account for inaccuracies that may have occurred from reading values of 

dimensionless time from the plots in Appendix C. 

In practice, results obtained from the numerical analysis of pi groups acquired 

by scaling analysis go a long way to determining optimum conditions that could be 

utilized in the field to prevent asphaltene deposition. Based on the trends observed for 

the pi group calculated against flow rate in Figures 4.4 and 4.5, it can be insinuated that 

a logarithmic trend exists between 𝜋16 and overall flow rate in the wellbore and pipes. 

Figures 4.6 and 4.7 show a graph and a schematic respectively explaining the overall 

trend based on the logarithmic trend line fitted to Figure 4.4. Deposition occurs below 

the logarithmic curve, therefore to prevent significant asphaltene deposition, the flow 

rate and calculated 𝜋16 group should be lie above the curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                
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Figure 4.6. Graph showing the 𝝅𝟏𝟔 relationship at varied flow rates. Above 

the curve, asphaltene deposition will occur. Above the curve, significant deposition 

does not occur. 

 

 
Figure 4.7. Schematic showing the general trend of the  𝝅𝟏𝟔 relationship 

flow rates. Above the curve, asphaltene deposition will not occur, this is a safe 

zone. Below the curve, where there is no shading, significant deposition occurs. 

Regions I, II and III show the different conditions and how an increase in flowrate 

would affect deposition under these conditions. 
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Generally, an increase in the flow rate between 0 and 200 cm3/hr would cause the 

downhole conditions to fall within the safe zone-above the graph. However, there exists 

a  𝜋16 value below which a decrease in the flow rate would have little to no effect on the 

mitigation of asphaltene deposition. Based on Figure 5, the value lies around 

16852cm3/kg from the equation and is shown in the graph by the star. There also exists 

a dimensionless value above which asphaltene deposition would not occur irrespective 

of the flow rate. This value is denoted by the dashed line in the graph and from the 

equation is 51000 cm3/kg. 

 For industrial purposes were an increased flow rate is desired, it is important to 

stay above this value to avoid problems resulting from asphaltene deposition. In 

Regions II and III shown in the schematic presented in Figure 6, it is possible to 

mitigate asphaltene deposition by reducing the flow rate. A greater reduction is required 

in Region II than in III, making a decrease in flow rate most effective for mitigation of 

deposition under conditions represented by region III.  

Another pi group of interest for the deposition of asphaltene in the wellbore 

is 𝜋21. It is a function of the Schmidt number through the definition of N shown in 

Appendix A. The Schmidt number is a dimensionless ratio of the viscous diffusion rate 

to the mass diffusion rate of a fluid. An increase in the Schmidt number would decrease 

the rate of asphaltene deposition in the pipes. As a result, a higher Schmidt number is 

desired to reduce asphaltene deposition in the wellbore. A relative numerical example, 

proving this is shown in Appendix D. Since there is only one term in Equation 3.2, 

various associated fluid properties are analyzed individually or collectively as a 
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dimensionless group.  Other equations involved in describing the deposition process 

were also scaled to give the pi groups presented in Appendix A for wellbores and pipes. 

The dimensionless 𝜋16 was discovered to have a lot of potential in the definition 

and classification of asphaltene deposition. Chapter 5 describes the pi group in more 

detail and utilizes experimental data to validate the speculative relationship with 

asphaltene deposition shown in this chapter. Further relationships and critical values of 

pi groups and their effects on asphaltene deposition are also discussed.  
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Chapter 5: Pi groups – Validation and Discussion 

In this chapter, data obtained from previously published experimental results are used to 

analyze and validate the speculated relationship between the 𝝅𝟏𝟔 group and asphaltene 

deposition. Other relationships are also deduced as a result and another pi group, 𝝅𝟏𝟗 is 

introduced to create a condition for the occurrence of total deposition in the pipes and 

wellbore. 

 

5.1 Validation of 𝝅𝟏𝟔 

In this section, the experiments that were conducted and the results that were obtained 

are shown. Further discussion and relationship between the obtained results and the pi 

groups obtained are also discussed. It is important to note that the experiments were 

conducted by the named authors. As a result, the data and results obtained are from 

previously published works. However, these inferences deduced from the results are 

utilized to validate the pi group relationships that were discussed in Chapter 4. 

 

5.1.1 Sang J. Park and G. Ali Mansoori, 1988 

In this work, the authors attempted to describe the basic mechanisms of organic 

deposition. They were interested in preventing deposition inside the wellhead and 

transmission lines by predicting the onset of deposition and the amount of deposition 

that occur due to various factors. They utilized proposed models to describe the process 

and then compared the models to experimentally determined results from Hirschberg et 

al.  To determine the solubility properties of the asphaltene, Hirschberg et al carried out 

titration experiments on tank oil. The onset of precipitation and amount of asphaltene in 
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the precipitate was then recorded for the crude oil upon dilution with several liquid 

alkanes. Table 5.1 show the titration results obtained from this work.  

 

Table 5.1 Onset and Amount of Asphaltene Deposition from Tank Oil. 

 

Sang J. Park and G. Ali Mansoori, used this experimental results and their model to 

determine the amount of asphaltene deposited from the tank oil when six different 

paraffin solvents are utilized (Park and Mansoori, 1988). Figure 5.1 shows the results 

obtained and the match between their model and experimental data.  
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Figure 5.1. Amount of asphaltene deposition from tank oil versus the 

volume of the paraffin solvents utilized. The experimental deposition data are 

shown by the dots, while the lines represent the predicted model (Park and 

Mansoori, 1988). 

 

Based on the experimental results shown in the figure above, 𝝅𝟏𝟔 was determined for 

the deposition present in pentane, octane and decane (paraffin with experimental data) 

using calculated mixture densities of the tank oil and individual alkanes and the 

concentration of the asphaltene ppt in each mixture shown in Table 5.2. Figure 5.2 

shows the relationship between the pi group and amount of asphaltene deposited based 

on the information provided.  
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Table 5.2 Calculated variables utilized to determine the deposition relationship 

with 𝝅𝟏𝟔 based on a 10cc dilution in Figure 5.1. 

 

 

Figure 5.2. Relationship between the 𝝅𝟏𝟔 =
𝒕𝝆𝟎𝒖𝟎

𝑳𝒄𝒂
 group and amount of 

asphaltene deposition. Where the length of pipe, travel time and the flow velocity 

are kept constant 

 

The relationship shown in Figure 5.2 verifies that which was expected in Chapter 4 and 

graphically represented in Figure 4.2. An increase in the pi group would cause a 

decrease in the total amount of asphaltene deposition occurring in the pipe. For this 
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experiment, data was not provided for the length of the flow area, so it was assumed 

constant for all experiments. We also see that the deposition occurring did not change 

much with an increase in solvent concentration from 10 cc to 20 cc. This can be 

explained by Figure 5.1 by Hirschberg et al, as further increase in volume from 10 cc 

had an insignificant effect on the amount of asphaltene deposited. 

 

5.1.2 Peyman Zanganeh et al, 2012 

In this work, a novel experimental setup was employed to create a visual cell with high 

pressure to investigate asphaltene deposition on a model rock. The evolution of the 

deposition was monitored under a microscope under different conditions. Crudes from 

two different Iranian oil fields were used and the results obtained were compared 

visually. Results obtained from these experiments provided a better idea on the different 

contributing factors to asphaltene deposition. It also gave insights as to what factors had 

an insignificant effect on the deposition of asphaltene on the model rock.  

 The experimental setup can be seen in the referenced paper. CO2 was injected 

into the setup at varied amounts and comparison of the results showed that an increasing 

the amount of CO2 injected increased the amount of asphaltene precipitate deposited. 

These results are shown in Figure 5.3. The dark particles on in the images are the 

aggregated asphaltene deposit on the model rock substrate. The amount of injected CO2 

was varied in 5% increments between 5-20 mol % CO2. Experiments were conducted at 

900C and 100 bar on the crude gotten from the Kuh-e-mond sample (Zanganeh et al, 

2012). 



56 

Figure 5.3 Effect of CO2 injection on asphaltene deposition (Zanganeh et al, 2012) 

 

From this figure, one can deduce that an increase in the amount of CO2 injected into the 

crude caused an increase in the amount of asphaltene deposited. Zanganeh et al, 

calculated the amount of asphaltene deposited based on the surface area covered and 

realized this to be true.  From the figure we see that at 20% mol of CO2 concentration of 

the injected gas, approximately 100% of the total surface had been covered in 

asphaltene deposit.  

 This is relevant to our work done because of the relationship between gas 

concentration and oil density. An increase in the concentration of the CO2 in the oil, as 

with gas injection, decreases the density of the oil. Based on Figure 5.3, a decrease in 

the density of the oil causes an increase in the amount of asphaltene deposit shown. This 

goes further to validate the relationship between asphaltene deposition and the pi group. 

Using density as a reference, a decrease in the density decreases the pi group and 

increases asphaltene deposition. Therefore, decreasing the pi group would increase 

asphaltene deposition as expected. Other interesting findings from this work are 

presented as Figures 5.4 and 5.5 for the Kuh-e-mond and Gachsaran field asphaltene 

respectively.  
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Figure 5.4 Fraction of asphaltene deposit at various pressures for kuh-e-

mond asphaltene at different CO2 concentrations 

 

 

Figure 5.5 Fraction of asphaltene deposit at various pressures for 

gachsaran asphaltene at different CO2 concentrations 
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From both figures we see that a decrease in the density reduces the chances of 

asphaltene deposition. Using the deposition without CO2 as a reference in both 

asphaltene types, we see that an increase in the amount of CO2 clearly reduces the 

surface fraction of the substrate occupied by asphaltene and by inference reduces the 

amount of asphaltene deposited in the substrate. It was also observed in both figures 

that an increase in the pressure increases the amount of asphaltene deposits even when 

the concentration of the CO2 gas injected is kept constant. Although pressure is not a 

factor defining our pi group, this is an interesting finding and can be explained with 

relationships based on  𝝅𝟏𝟔. 

 Recalling the definition of  𝝅𝟏𝟔, that is 𝜋16 =
𝑡𝜌0𝑢0

𝑥𝑐𝑎
 , we see that the pi group 

would decrease with an increase in ca, which is the concentration of precipitated 

asphaltene. As a result, we can say that an increase in the ca, would cause an increase in 

the amount of asphaltene deposited. This is intuitive, as an increase in the abundance of 

a substance to be deposited should naturally cause an increase in the deposition. 

However, Figure 5.6 shows the relationship between pressure and the concentration of 

precipitated asphaltene based on experimental work conducted by Soulgani et al. based 

on the experimental data obtained, ca decreases with increased pressures. This 

decreases  𝝅𝟏𝟔, and as a result increases the amount of asphaltene deposited, validating 

Figures 5.4 and 5.5. 
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Figure 5.6 Asphaltene precipitate concentration as a function of pressure 

(Soulgani et al., 2010). 

 

5.2 Further interpretation of 𝝅𝟏𝟔 and its relationship with other pi groups 

Based on work experimental work done by Soulgani et al, we were able to further 

interpret the relationship between the pi group and asphaltene deposition, as well as 

make modifications to the relationship proposed from the work done.  

 

5.2.1 Interpretation of 𝝅𝟏𝟔 based on experiment by Soulgani et al.  

Soulgani et al attempted to model formation damage due to asphaltene deposition and to 

achieve this, some experiments were conducted. The experimental apparatus utilized 

determined the mass of the asphaltnee deposited as a function of time by measuring the 

changes in the thermal resistance resulting from deposition (Soulgani et al, 2010). The 

heat transfer coefficient was calculated over time since temperature was known and the 

thermal resistance was then determined This resistance was then converted to mass of 
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asphaltene deposit using equation 5.1 below. A comprehensive description of the 

experimental procedures and apparatus utilized is detailed in the work done by Soulgani 

et al.  

𝑚𝑑𝑎 = 𝜌𝑑𝜆𝑑𝑅𝐴      (5.1) 

Where 𝑚𝑑𝑎 is the mass of asphaltene deposit, 𝜌𝑑 is the density of the deposit, 𝜆𝑑 is the 

thermal conductivity of the deposit and 𝑅𝐴 is the thermal resistance of the asphaltene 

deposit calculated based on the heat transfer coefficient and temperatures measured.  

 Based on the results obtained from the experimental work, models were 

proposed to describe the relationship between various factors present during production 

and the rate at which asphaltene deposition occurs. Figure 5.7 shows the plot originated 

for the relationship between fluid velocity and the rate of asphaltene deposition. 

       

Figure 5.7 Rate of asphaltene deposition as a function of velocity (Soulgani 

et al., 2010). The line represents the model while the data points are experimental 

findings.  
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Soulgani et al. suggested that a linear relationship exists between the velocity 

and rate of asphaltene deposition, however we found that the relationship is not linear. 

Our proposed relationship, which we prove in latter parts of this work can be seen in 

Figure 5.8. Based on the relationship shown in the figure, although an increase in 

velocity reduces the rate of asphaltene deposition, there exists a critical velocity above 

which a further increase in the velocity has insignificant effects on the rate of asphaltene 

deposition. This is important to note for practical purposes to ensure that a cost effective 

measures are taken to reduce asphaltene deposition optimally. 

 
Figure 5.8 Rate of asphaltene deposition as a function of velocity. An 

increase in the velocity reduces the rate of asphaltene deposition but not linearly. 

Proposed relationship is shown in dashed line. Original graph by Soulgani et al, 

2010. 
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Using the data obtained from Figure 5.7, 𝜋16 was calculated at different velocities and 

plotted for different times. Since the pi group is dependent on time, the calculation was 

performed for times equaling 200 hours, 400 and 600 hours respectively. Results 

obtained were plotted and is shown in Figure 5.9 below. From the gra at higher fluid 

velocities we see that there is a larger 𝝅𝟏𝟔 value associated. This is expected, however 

more interestingly, we can see also that time has a larger effect in the pi group at higher 

velocities.  

 

Figure 5.9 Effects of Velocity and Time on 𝝅𝟏𝟔 and Asphaltene deposition 

rate. 

 

The rate at which asphaltene deposition occurs is reduced at higher velocities. This 

supports the proposed velocity deposition model presented as Figure 5.8. At a decreased 

velocity, more time is required to get a certain pi group associated with a certain rate of 
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asphaltene deposition. Time increases upwards as shown by the blue arrow. That is to 

say, when the velocity is at 60 cm/s only 400 hours is required to get the pi group of 

1.5E+09, however 600 hours is required to obtain that same pi group at a velocity of 40 

cm/s. It is also important to note that the flow velocity of the fluid scales linearly with 

the pi group. Therefore 𝝅𝟏𝟔 can be used to  describe flow behavior at varying velocities 

during asphaltene deposition.  

Figure 5.10 show a graph created with the experimental data of the direct 

relationship between the velocity and amount of deposit in the pipes. As expected, at 

higher velocities there is less asphaltene deposit realized in the pipe. We expect this to 

be the case because of the relationship previously proposed for the pi group and 

asphaltene deposition in Figure 4.2 and the effects of velocity on the pi group shown in 

Figure 5.9 above. The calculated pi group was then plotted against the realized 

deposition rate and the relationship given, shown in Figure 5.11 is similar to that 

proposed in Chapter 4 with a R2 value of over 98%, further verifying the assumption. 
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Figure 5.10 Effects of Velocity on Amount of Asphaltene deposit realized in 

pipe. Experiment by Soulgani et al.  

 

 

Figure 5.11 Effects of 𝝅𝟏𝟔 on Rate of Asphaltene deposition verified. 

Experiment by Soulgani et al.  
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5.2.2 Relationships between pi groups 

Other pi groups of interest for the deposition of asphaltene in the wellbore 

include 𝜋19 𝑎𝑛𝑑 𝜋21.  𝜋21is a function of the Schmidt number through the definition of 

N shown in Appendix A. The Schmidt number is a dimensionless ratio of the viscous 

diffusion rate to the mass diffusion rate of a fluid. An increase in the Schmidt number 

would decrease the rate of asphaltene deposition in the pipes. As a result, a higher 

Schmidt number is desired to reduce asphaltene deposition in the wellbore. A relative 

numerical example, proving this is shown in Appendix D. Since there is only one term 

in Equation 2, various associated fluid properties are analyzed individually or 

collectively as a dimensionless group.  Other equations involved in describing the 

deposition process were also scaled to give the pi groups presented in Appendix A for 

wellbores and pipes. 

Experimental data from Soulgani et al and Hashmi et al were used to calculate 

the pi groups  𝜋16 and 𝜋19. These groups were plotted against the rate of asphaltene 

deposition and fitted by the sum of squares linear regression to obtain a mathematical 

equation defining the existing relationship. Figures 5.12 and 5.13 show the graphs along 

with the mathematical relationship realized for asphaltene deposition rate as a function 

of both pi groups. The equation shown in figure 5.12 was plotted for infinite  𝜋16 values 

and an ultimate deposition rate was determined. The ultimate deposition rate is defined 

as the deposition rate to which infinitely large values of the pi group tend towards. All 

the deposition rates realized from experimental work were then made dimensionless by 

this ultimate value and plotted against the pi group. With this, the value of  𝜋16 in which 
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90% of the total deposition has occurred was determined and named 𝜋16
∗ . This is shown 

in Figure 5.14 and is later utilized to find the equation for the critical velocity proposed 

in Figure 5.8. 

 
Figure 5.12. Rate of asphaltene deposition as a function of 𝝅𝟏𝟔. 

Mathematical equation shown defines the relationship realized. 

 
Figure 5.13. Rate of asphaltene deposition as a function of 𝝅𝟏𝟗. 

Mathematical equation shown defines the relationship realized. 
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Figure 5.14. Dimensionless asphaltene deposition as a function of 𝝅𝟏𝟔.  𝝅𝟏𝟔

∗  

is defined as the  𝝅𝟏𝟔 value at which 90% of total deposition has occurred and is 

approximately equal to 𝟑𝐄 + 𝟎𝟗 

 

In order to find a relationship between time and the deposition rate, an equality between 

the two pi groups was initiated based on common terms between the groups, like the 

length, density and velocity. This relationship is shown in Equation 5.2 and is depicted 

graphically in Figure 5.15. Based on this relationship and the  𝜋16
∗  value at which time 

90% of the total possible deposition has occurred, a conditional relationship was 

formed. This condition is important because it allows the user to determine the time it 

will take for 90% of the total possible asphaltene deposition to occur. It is shown in 

Equation 5.3. If the conditional statement is true for any producing well, then 90% of 

the total deposition has occurred and one can make an informed decision as to whether 

further deposition would create significant damage where the size of the wellbore is 
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known. Based on equation 5.3, the critical velocity above which 90% of total deposition 

has already occurred is given in equation 5.4. 

𝑚𝑑𝑎 = [𝜋16] ∗ [𝜋19] ∗
𝑐𝑎∗𝛼0

𝑡
                (5.2) 

3𝐸+09∗𝑐𝑎∗𝐿

𝜌0𝑢0
≤ 𝑡90      (5.3) 

𝑉𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
3𝐸+09∗𝑐𝑎∗𝐿

𝜌0∗𝑡90
      (5.4) 

 

 

 
Figure 5.15. Asphaltene deposition as a function both pi groups. The y-scale 

on the right of the plot is for  𝝅𝟏𝟔 while that on the left is for 𝝅𝟏𝟗.   

 

The time it will take for 10%, 50% and 90% of total deposition to occur was calculated 

for different scenarios varying flowrate, length of the pipe and oil density. These graphs 

and conditions used to calculate this examples are shown in the following section. 

Results are in line with relationship expected and can serve as an aid for further 

comprehension of the presented material. 
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5.3 Upscaling to well scale 

The following plots compare the time at which certain levels of deposition take place 

when the size of the problem area is increased to mimic the flow within the well. The 

experimental data utilized were collected from various sources and thus they represent 

different sticking probabilities discussed in section 3.2.2. Therefore, the total 

deposition, used as the basis for each experiment, varies from one experiment to 

another; that is, total deposition may either lead to full plugging or not depending on the 

sticking probability pertinent to the experiment utilized to gain results. Consequently, 

10, 50 and 90 % of total deposition does not necessarily signify a full blockage of the 

pipe. 

Generally, an increase in the flow rate causes an increase in fluid velocity at a 

constant cross sectional area.  𝜋16 is different for different flowrates and the rate of 

asphaltene deposition decreases with an increase in  𝜋16 as shown in Figure 5.12. Based 

on this, the rate of asphaltene deposition would decrease with an increase in flowrate. 

This decrease would eventually level off as shown in Figure 5.16. The time it would 

take to achieve 90% and 50% of total possible deposition is shown at different flowrates 

in the graph and also in the table within.  

Figures 5.17 and 5.18 show the time it would take to achieve 90%, 50% and 

10% of total possible deposition with varying oil density and pipe length respectively. 

An increase in the density reduces the time it would take for the percent deposition of 

interest to be reached. However, an increase in the length increases the time required. 

This is the case because an increased length would provide more surface area for 
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deposition to occur and as a result 90% of deposition for instance in a 8000 ft. pipe 

would be significantly greater than 90% of the total deposition in a 4000 ft pipe.  

 

Figure 5.16.  The time it takes for 90, 50 and 10% of total asphaltene 

deposition to occur at varied flowrates in bbl/day. Length was kept constant at 

4000 ft, pipe radius at 6.75 inches, density at 800 kg/m3 and the fraction of 

asphaltene concentration in oil as 0.04. 
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Figure 5.17 The time it takes for 90, 50 and 10% of total asphaltene 

deposition to occur at varied oil densities in kg/m3. Length was kept constant at 

4000 ft, pipe radius at 6.75 inches, flow rate at 10000 bbl/day and asphaltene 

concentration in oil at 0.04. 

 

Figure 5.18. Time it takes for 90, 50 and 10% of total asphaltene deposition 

to occur at varied pipe lengths in ft. Density was kept constant at 800 kg/m3, pipe 
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radius at 6.75 inches, flowrate at 10000 bbl/day and asphaltene concentration in oil 

at 0.04. 
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Conclusion 

Scaling Analysis method is used to simplify and understand the relationship between 

significant terms in a set of describing equation. In this work asphaltene deposition in 

porous media and in the pipes are studied with the use of this scaling analysis. 

Describing equations for both processes are obtained from published literature and are 

analyzed to form dimensionless pi groups. The pi groups obtained from the deposition 

in the porous media showed that in specific scenarios, like low porosity formations 

having insignificant entrainment constant, the driving force of asphaltene deposition 

would be the surface deposition. This term comprises of the volume fraction of 

precipitate in the liquid phase and formation porosity. Since formation porosity cannot 

be changed by the user, it is important that care is taken to reduce the amount of 

asphaltene deposition in the liquid phase during production.  

In the wellbore, scaling analysis was utilized to find a range of critical values of 

a pi group within which asphaltene deposition can be prevented by decreasing flow rate. 

They are 51000 cm3/kg - 16852 cm3/kg and are obtained from 𝜋16. Above the upper 

bound of this range deposition would not occur for any flow rate utilized and below this 

range a reduction in the flow rate would not prevent significant asphaltene deposition. 

Other pi groups were analyzed to interpret the deposition in pipes and experimental data 

from different authors were used to analyze and validate the relationship amongst the pi 

groups and also between the pi groups and asphaltene deposition. Based on the 

understanding gained from the introduction of these pi groups, the assumed relationship 

between asphaltene deposition and velocity was modified in Chapter 5.  
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The pi groups analyzed were useful in creating a better description of asphaltene 

deposition and as a result, a mathematical relationship was determined to define a 

critical velocity above which an increase in asphaltene deposition would have an 

insignificant effect on deposition. This critical velocity was determined from the 

relationship between two pi groups for a certain set of experiments conducted by 

Soulgani et al and Hashmini et al. Examples of how this critical velocity would affect 

field applications were also listed in terms of time it would take for a certain percentage 

of asphaltene deposition to occur under specific field conditions at varied lengths and 

flowrate. As expected, an increase in the flowrate would decrease the time it would take 

for certain percentage of deposition to occur and an increase in length would cause an 

increase in the time it would take for a certain percentage of asphaltene deposition to 

have occurred in the pipes.  
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Future Work 

In order to further investigate the usefulness of scaling analysis in determining 

conditions necessary to prevent asphaltene deposition, other dimensionless numbers can 

be described to better understand ranges above which asphaltene deposition can be 

inhibited when other properties besides flow rate and velocity are varied.  Experiments 

can be designed and performed based on the relationships obtained from the scaling 

analysis method to further define the effects of asphaltene deposition in porous media 

and in pipes. Also software like COMSOL can be utilized for validation purposes. This 

work introduces the usefulness of scaling analysis and this analysis can be utilized on a 

wide range of flow assurance problems experienced in the field today. 
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Appendix A: Mathematical equations used to model deposition process  

Porous Media 

Mass Balance Equations 

Oil in liquid phase: 

𝜕

𝜕𝑡
(𝜙𝜌𝑣𝑤𝑂𝐿) +

𝜕

𝜕𝑥
(𝜌𝐿𝑢𝐿𝑤𝑂𝐿) = 0     (A-1) 

Asphaltene in liquid phase: 

𝜕

𝜕𝑡
(𝜙𝐶𝐴𝜌𝐴 + 𝜙𝜌𝐿𝑤𝐴𝐿) +

𝜕

𝜕𝑥
(𝜌𝐿𝑢𝐿𝑤𝑆𝐴𝐿 + 𝜌𝐿𝑢𝐿𝑤𝐴𝐿) = −𝜌𝐴

𝜕𝐸𝐴

𝜕𝑡
   (A-2) 

Asphaltene Deposition Model 

𝜕𝐸𝐴

𝜕𝑡
=∝ 𝐶𝐴𝜙 − 𝛽𝐸𝐴(𝑣𝐿 − 𝑣𝑐𝑟,𝐿) + 𝛾𝑢𝐿 𝐶𝐴          (A-3) 

Porosity Reduction Model 

𝜙 = 𝜙0 − 𝐸𝐴       (A-4) 

Permeability Reduction Model 

𝑘 = 𝑓𝑝𝑘0 (
𝜙

𝜙0
)

3

       (A-5) 

Momentum Balance Equation 

𝑢𝐿 = −
𝑘

𝜇𝐿

𝜕𝑃

𝜕𝑥
       (A-6) 
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Wellbores and Pipes 

Mass Balance Equations 

Solid Asphaltene in stream: 

𝜕

𝜕𝑡
(𝐴𝜌𝑜 ∝𝑜+ 𝐴𝑐𝑎 ∝𝑜) +

𝜕

𝜕𝑥
(𝐴𝜌𝑜 ∝𝑜 𝑢𝑜 + 𝐴𝑢𝑜𝑐𝑎) = 𝐴(𝜑𝑜 + 𝛾𝑎 − 𝑚𝑑𝑎) 

  (A-7) 

Oil in liquid phase: 

𝜕

𝜕𝑡
(𝜌𝑜 ∝𝑜) +

1

𝐴

𝜕

𝜕𝑥
(𝐴𝜌𝑜 ∝𝑜 𝑢𝑜) = 𝜑𝑜          (A-8) 

Cleaver and Yates deposition model definition 

𝑁 =
0.084Δ𝐶𝑉𝑎𝑣𝑔√𝑓/2

𝑆𝑐2/3        (A-9) 

𝑤ℎ𝑒𝑟𝑒 Δ𝐶 = 𝐶𝑏 − 𝐶𝑠 

Rate of Asphaltene attachment  

𝑚𝑑𝑎 =
𝜕

𝜕𝑥
𝑆𝑃(𝑁)       (A-10) 

Momentum Balance Equation  

𝜕

𝜕𝑡
(𝜌𝑜𝑢𝑜) +

𝜕

𝜕𝑥
(𝜌𝑜𝑢𝑜

2) + (144.0𝑔𝑐)
𝜕𝑃

𝜕𝑥
+ 𝜌0𝑔𝑠𝑖𝑛𝜃 +

𝜏𝑜𝜋𝐷

𝐴
= 0  (A-11) 
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Appendix B: Table Showing Pi groups obtained 

𝑃𝑖 𝑛𝑢𝑚𝑏𝑒𝑟 𝐷𝑒𝑓𝑖𝑛𝑖𝑛𝑔 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 𝑔𝑟𝑜𝑢𝑝 

𝜋1 𝑡𝜌𝐿𝑢𝐿

𝑥𝜌𝑣𝜙
 

𝜋2 𝜌𝐿𝑤𝐴𝐿

𝐶𝐴𝜌𝐴
 

𝜋3 𝑡𝜌𝐿𝑢𝐿𝑤𝑆𝐴𝐿

𝑥𝜙𝐶𝐴𝜌𝐴
 

𝜋4 𝑡𝜌𝐿𝑢𝐿𝑤𝐴𝐿

𝑥𝜙𝐶𝐴𝜌𝐴
 

𝜋5 𝐸𝐴

𝜙𝐶𝐴
 

𝜋6 1

𝜙
 

𝜋7 𝐸𝐴

𝜙
 

𝜋8 
𝑓𝑝

𝜙

𝑘
 

𝜋9 𝑘𝑝

𝜇𝐿𝑥𝑢𝐿
 

𝜋10 𝛼𝐶𝐴𝜙

𝛽𝐸𝐴Δ𝑣
 

𝜋11 1

𝑡Δ𝑣𝛽
 

𝜋12 𝛾𝐶𝐴𝑢𝐿

𝛽𝐸𝐴Δ𝑣
 

𝜋13 𝐿

𝑥
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𝜋14 𝑐𝑎

𝜌0𝛼0
 

𝜋15 𝑥

𝑡𝑢0
 

𝜋16 𝑡𝜌0𝑢0

𝑥𝑐𝑎
 

𝜋17 𝑥𝜑0

𝜌0𝛼0𝑢0
 

𝜋18 𝑥𝛾𝑎

𝜌0𝛼0𝑢0
 

𝜋19 𝑥𝑚𝑑𝑎

𝜌0𝛼0𝑢0
 

𝜋20 𝑡𝜑0

𝜌0𝛼0
 

𝜋21 𝑆𝑝𝑁

𝑚𝑑𝑎𝑥
 

Table 1-Pi groups obtained from scaling analysis of the asphaltene deposition models in 

porous media near the wellbore and also in pipes. 
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Appendix C: Data utilized to analyze 𝝅𝟏𝟔 =
𝒕𝝆𝟎𝒖𝟎

𝒙𝒄𝒂
  for pipe deposition 

Figure C-1. Effect of Q- flow rate on the difference in pressure drop in a pipe. Flow 

rates are written in colors and are in cm3/hr. Models were made from raw experimental 

data obtained by Hashmi et al. Aligned parameters, also collected experimentally, are 

used to calculate the pi group and are calculated as a function of fluid density. 

 

Figure C-2. Effect of Q- flow rate on the difference in pressure drop in a pipe, shown by 

raw data by Nabzar and Aguilera. Flow rates are written in colors and are in cm3/hr. 

Aligned parameters, also collected experimentally, are used to calculate the pi group 
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and are calculated as a function of fluid density. In calculating the fluid velocity, 𝑢0 =

𝑄0

𝐴
 . 
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Appendix D: Numerical example showing the effects of Schmidt 

number on Asphaltene deposition using Scaling Analysis 

Starting from Equation 2, re-written below: 

𝑚𝑑𝑎 =
𝜕

𝜕𝑥
𝑆𝑃 (

0.084Δ𝐶𝑉𝑎𝑣𝑔√𝑓/2

𝑆𝑐2/3 )  

The equation can be rewritten as shown in Equation C-1 

𝑚𝑑𝑎 = 0.084𝑉𝑎𝑣𝑔√𝑓/2
𝜕

𝜕𝑥
𝑆𝑃 (

Δ𝐶

𝑆𝑐2/3)     D-1 

Defining unspecified scale and reference factors yields 

𝑚𝑑𝑎
∗ 𝑚𝑑𝑎𝑠

= 0.084𝑆𝑃𝑉𝑎𝑣𝑔√𝑓/2
𝜕

𝜕𝑥∗𝑥𝑠
(

Δ𝐶∗Δ𝐶𝑠

𝑆𝑐∗2/3𝑆𝑐𝑠
2/3)    D-2 

Forming dimensionless variables and introducing them into describing equations yields 

𝑚𝑑𝑎
∗ = [

0.084𝑆𝑃𝑉𝑎𝑣𝑔√𝑓/2Δ𝐶𝑠

𝑚𝑑𝑎𝑠𝑥𝑠𝑆𝑐𝑠
2/3 ]

𝜕

𝜕𝑥∗ (
Δ𝐶∗

𝑆𝑐∗2/3)    D-3 

C-3 is equal to Equation C-4 by the definition of N in the Nomenclature. Note that the 

coefficient in C-4 is equal to 𝜋21 

𝑚𝑑𝑎
∗ = [

𝑆𝑝𝑁

𝑚𝑑𝑎𝑠𝑥𝑠
]

𝜕

𝜕𝑥∗ (
Δ𝐶∗

𝑆𝑐∗2/3)     D-4 

With all other variables remaining unchanged, an increase in the Schmidt number from 

1 to 1000 would reduce N by a multiple of 0.001. This would reduce the coefficient in 

C-4 by an equal manner causing a 1000th place reduction in the rate of solid asphaltene 

deposition in the pipes, denoted by 𝑚𝑑𝑎∗.  
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Appendix E: Original plot of asphaltene deposition rate as a function 

of velocity proposed by Soulgani et al 

 

 

 Figure E.1: Velocity vs. rate of asphaltene deposition by Soulgani et al, 2010 
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Appendix F: Nomenclature 

Porous deposition  

t = time, (s) 

x = distance, (ft) 

𝜙 = porosity 

𝜌𝑣 = density of vapor phase, (lb/gal) 

𝑤𝑂𝐿 =mass fraction of the oil component in the liquid phase  

𝜌𝐿 = density of liquid phase, (lb/gal) 

𝑢𝐿 =fluxes in the liquid phase, (cm/s) 

𝐶𝐴 =volume fraction of suspended asphaltene precipitates in the liquid phase  

𝜌𝐴 =density of asphaltene, (lb/gal) 

𝑤𝐴𝐿 =mass fraction of the dissolved asphaltene in the liquid phase  

𝑤𝑆𝐴𝐿 = mass fraction of the suspended asphaltene precipitates in the liquid phase 

𝐸𝐴 =volume fraction of the deposited asphaltene in the bulk volume of the porous 

media 

∝= surface deposition rate coefficient, (1/s) 

𝛽 = entrainment rate coefficient, (1/cm) 

𝑣𝐿 =
𝑢𝐿

𝜙
= intersticial velocity of liquid phase (cm/s) 

𝑣𝑐𝑟,𝐿 =critical intersticial velocity of liquid phase, a constant, (cm/s) 

𝛾 =instantenous plugging deposition rate coefficient, (1/s) 

𝑘 =absolute permeability of the porous media, (md) 

𝑓𝑝 =permeability modification coefficient, constant 

𝑝 =pressure of fluids in the pore volume, (psia) 
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𝜇𝐿 =viscosity of the liquid phase, (cp) 

 

Pipe deposition 

𝐴 =Pipe cross sectional area (ft2) 

𝜌𝑜 =density of oil, (lb/gal) 

∝𝑜=volume fraction of oil 

𝑐𝑎 =asphaltene concentration in the crude oil (lbm/ft3) 

𝑢𝑜 =velocity of oil (cm/s) 

𝜑𝑜 =molar flux of oil between the wellbore and reservoir 

𝛾𝑎 =flocculation of solid asphaltene particles  

𝑚𝑑𝑎 =deposition rate of solid asphaltene, (lbm/s.ft3) 

𝐾𝑡 = global mass transfer coefficient, (m/sec) 

𝑉𝑎𝑣𝑔√𝑓/2 =Average friction velocity 

𝑆𝑐 =
𝜇

𝜌𝐷𝐵
= Schmidt number 

𝑁 =total mass flux, (lbm/s) 

𝑆𝑃 = Sticking probability 

𝑔𝑐 =acceleration due to gravity – conversation factor 

𝑃 =pressure, (psi) 

𝑔 = acceleration due to gravity, (ft/s2)  

𝜏𝑜 =initial shear stress, (lbm/s2.ft) 

𝐷 = pipe diameter, (ft)  
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