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Abstract 

Compressive Imaging has been an extensively researched area in optical imaging, 

object tracking, satellite applications, etc. There are many signal recovery methods and 

comparative analyses of different algorithms in the presence of Gaussian noise. 

However, certain applications such as optical imaging at low photon intensity have 

counts of discrete events, which cannot be modelled using a Gaussian noise model. 

Instead, a noise model that incorporates photon statistics is needed. Researchers have 

worked on the Poisson noise model and a different compressive sensing reconstruction 

was found.  

In this thesis, we considered a more general scenario of Compressive Imaging using 

non-classical photon states as light sources. We assumed that the Compressive Imaging 

system that consists of digital micro mirror device (DMD), lenses, and detectors are 

perfect so that all noises comes from photons. Fock states and squeezed light that 

possess non-Poissonian statistics plays an important role in Quantum Imaging. The 

image reconstruction was performed using several common compressive sensing signal 

reconstruction algorithms assuming Gaussian noise. This thesis showed the behavior of 

the root mean square error (RMSE) with respect to the signal-to-noise ratio (SNR) for 

different photon statistics. In particular, the study showed that all the noises perform 

similarly for the different algorithms.   

Based on the performance results for the different light sources, this research can be 

helpful in designing a generalized Compressive Sensing model incorporating the photon 

statistics that are applicable in the field of Quantum Optics.  
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1. Introduction 

Today’s world is data driven. In many emerging applications such as medical 

imaging, video, data analysis, spectroscopy etc., the amount of data generated is too 

high. The resulting Nyquist rate is so high that we end up with far many samples. This 

will pose a tremendous challenge, as it is extremely difficult to build such devices that 

are capable of acquiring samples at the necessary rate. We can overcome this 

computational challenge especially in dealing with high-dimensional data by 

“Compression” techniques. The most popular technique used for signal compression is 

transform coding (which finds a basis that gives the sparser representation of signal). 

Some of the common compression techniques such as JPEG, JPEG2000, and MPEG 

etc. are based on sparse transform coding. Using the same concept of sparse transform 

coding, a new framework is emerged for signal/image acquisition i.e., Compressive 

Sensing (CS). The idea of CS originates from approximation theory and was brought 

into forefront by E. Candès, J. Romberg, T.Tao and D. Donoho [1, 2]. 

In this thesis, we deal with imaging, as it has been an extensively researched area, 

which has contributed to technical advancement in the field of medical imaging, object 

tracking and satellite applications, etc. Image recognition, restoration, and 

reconstruction from projections are a few areas that are looked at in a different 

perspective after the introduction of compressive imaging. It selects the most important 

data from the data set i.e., for an image with 128 × 128 = 16384 pixels, only the most 

important data is considered for the image reconstruction process, thereby omitting the 

zero values (which are obtained by sparse representation of an image in some basis). 
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This is similar to data modelling/analysis where we extract the most important data 

from a huge data set. 

Compressive Imaging has wide range of applications. It is particularly useful in 

low-photon imaging where the number of samplings is limited. Applications in such 

domain include (1) Compressive Ghost Imaging with entangled photons [3] – The 

conventional Ghost Imaging consists of an object arm and reference arm where the 

intensities of light beam are collected by the bucket detector of object arm and are 

cross-correlated with the intensities measured by the CCD camera at the reference arm 

that has spatial resolution field. In Compressive Ghost Imaging, the Spatial Light 

Modulator (SLM) is used and is controlled by a computer. The compressive ghost 

imaging gives better results than the conventional approach [4], (2) object tracking – It 

is the most researched topic in the field of computer vision. The purpose of object 

tracking is to track the objects with specific representation or estimate information from 

the object. Many novel CS based object-tracking algorithms were developed [5], 

medical imaging – a good example of it is MRI, as it requires significant amount of 

time to produce best quality image [6]. CS has proven to provide better image quality 

thereby significantly reducing the time to acquire samples, and single pixel camera (see 

Chapter 4.1), etc. Many robust algorithms were developed in CS, which are designed by 

considering the Gaussian noise model. However, many applications consists of count of 

discrete events, which cannot be modelled using Gaussian noise model. Instead, Poisson 

noise model is required [7]. 

There are many comparative analyses of several algorithms in addition of 

Gaussian noise [8-12]. With the advent of the several algorithms in Compressive 
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Sensing field, the main motivation of the thesis to know the robustness of the 

algorithms (explained in Chapter 3) in the presence of photon noise by considering 

photon statistics [13]. In addition, comparative analysis and the detection of an object in 

low photon regime (low SNR) are described. The observations analyzed from the plots 

of CS algorithms for various noise sources would help in determining the best noise 

model for image reconstruction. As researchers have worked on Poisson noise models 

for Compressive Imaging framework, the observations made from this thesis would 

help in designing a generalized Compressive Imaging model that incorporates photon 

statistics. 

1.1 Contributions 

The valuable contributions of this thesis are listed as follows: 

1) Comparative analysis of the algorithms without addition of noise for two 

different objects (grayscale object and the binary object – The University of 

Oklahoma OU logo). 

2) Comparative analysis of the algorithms in presence of various noise models 

(Gaussian, Fock states, Poisson, thermal light and squeezed light) in the low 

photon regime for detecting an object by studying its photon statistics.  

3) Study of the general behavior of the image reconstruction (measured by the root 

mean squared error (RMSE)) with respect to the photon statistics (measured by 

the signal-to-noise ratio (SNR)) for the different light sources.  

 1.2 Organization of thesis 

This thesis is arranged into five chapters 
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In Chapter 2, a general idea of the compressive sensing framework is given. The 

mathematical formulations used in the compressive imaging framework are introduced. 

Next, important properties such as the sparsity, incoherence and Restricted Isometric 

Property were described. Finally, the norm minimization methods were explained using 

the geometric representation, which are convex programming methods. 

In Chapter 3, current existing optimization algorithms which are alternatives of 

𝑙1 minimization algorithms, are described. The algorithms include Greedy algorithms, 

thresholding algorithms, gradient pursuit and Bayesian algorithms.  

In Chapter 4, a brief description of the properties of the different light sources 

(Fock, Gaussian, Poisson, and squeezed light) along with SNR formulations that are 

used in our simulations are explained. 

In Chapter 5, the binary object (OU logo image), and gray scale object are 

considered for the comparative analysis of different algorithms with and without 

addition of noise. All the graphs are log log plotted for the two images for different 

algorithms by considering SNR on x-axis and Root Mean Square Error (RMSE) on y-

axis. Also, the reconstructed image results are shown. 

In Chapter 6, the conclusion of all the results in noisy case and future works are 

given.  
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2. Theory of Compressive Sensing 

Compressive Sensing (CS) also known as Sparse Signal Sampling is a new 

framework to reconstruct signals accurately and efficiently with less number of samples 

i.e., less than the Nyquist rate. According to the Shannon Nyquist sampling theorem, a 

signal can be reconstructed at a rate of twice the highest frequency of the signal. 

Generally, compressive sensing works with sparse signals. In many applications 

the signal of interest is sparse i.e., the signal has a sparse representation in some pre-

determined basis where most of the coefficients are zero. Traditional measurement 

techniques oversample the signal heavily. Compressive sensing technique avoids 

excessive oversampling by linear sampling operators. 

One of the breakthroughs in compressive sensing is by E. Candès, J. Romberg, 

T.Tao and D. Donoho in 2006 [2, 14], who showed Linear programming methods can 

be used to reconstruct the signal data efficiently with high accuracy. Since then many 

faster methods were proposed as alternatives to these linear programming algorithms.  

This chapter will give a general idea on the mathematical formulation, properties 

and norm minimization methodologies of Compressive Sensing. 

2.1 Compressive Imaging 

 Many natural images are sparse in some basis and are reconstructed efficiently 

using Compressive Sensing framework. The CS framework has two major steps The 

first is Signal Acquisition – it is the process of acquiring compressed measurements and 

it is known as sensing. The second is Reconstruction – that is recovering of the original 

sparse signal from compressed measurements and is known as reconstruction.  
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A 1-D signal 𝑥 can be represented as a 𝑁 × 1 column vector in R𝑁. Since this 

thesis deals with 2-D images in the CS framework, the author uses the name 

Compressive Imaging. The 2-D images are treated as higher dimensional data by 

vectoring it into a one-dimensional vector R𝑁 and are represented in terms of basis of 

𝑁 × 1 vector. A basis is a 𝑁 × 𝑁 matrix (discrete cosine transform, wavelet, canonical 

etc.) which makes an image sparse. In this thesis, I have considered wavelet basis for 

sparse representation of an image. An image 𝑥 can be expressed as 

𝑥 =  𝜓𝑠,                                                       (2.1)  

𝑠 is a sparse representation of an image 𝑁 × 1 and 𝜓 is 𝑁 × 𝑁 wavelet basis.  

The main compressive imaging framework is expressed by the following equation. 

𝑦 = 𝜑𝑥 =  𝜑𝜓𝑠,                                                (2.2) 

 

Figure 1. General representation of y 

 

where 𝜑 is a degrading matrix of size 𝑛 × 𝑁 in 𝑅𝑛×𝑁 which under-samples the sparse 

image less than the Nyquist rate. The resultant 𝑦 will be a low dimensional matrix of 

size 𝑛 × 1 in 𝑅𝑛. Since there are more unknowns than measurements, the system is 

classified as an undetermined system. It is clear that we cannot obtain an accurate input 

image using the conventional inverse transform. Instead, we can obtain an input image 
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using compressive imaging algorithms from fewer measurements. The optimization 

algorithms are explained in Chapter 3.   

 There are two fundamental properties underlying compressive imaging: Sparsity 

and Incoherence. 

2.1.1 Sparsity 

Sparsity is a general modeling tool for efficient signal processing (efficient data 

compression, accurate statistical estimation and classification) [1]. An image is 

compressible if it is sparse in some basis such as the discrete cosine transform (DCT), 

wavelet, curvelet etc. Mathematically, a vector 𝑥 ∈ 𝑅𝑛 is expanded in basis 𝜓 =

[𝜓1 𝜓2 … 𝜓𝑁] and 𝑠 is expressed as: 

𝑠 = 𝜓𝑇𝑥,                                                          (2.3) 

in which 𝑠 is the weighing coefficients of an image.  

If we consider DCT, it converts the pixels in an image into sets of spatial 

frequencies. The DCT works by separating images into parts of different frequencies. 

During the step of quantization, where the parts of the compression actually occur, the 

less important frequencies are discarded. The important frequencies that remain are 

used to retrieve the image in the decomposition process. The main disadvantage of DCT 

is that it introduces block artifacts and the computational time involved in the 

reconstruction process is high. In the case of the wavelet basis, it decomposes an image 

into two parts – a set of low frequencies and a set of high frequencies. If we are 

interested in the low frequency part, we can discard the high frequencies and the same 

way the other. Compared to DCT, the wavelet basis provide better results in terms of 

properties like the root-mean-squared (RMS) error, image intensity and execution time. 
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In addition, the wavelet transform overcomes the block artifacts that are introduced in 

the reconstructed image by DCT.  

When an image has a sparse expansion in the wavelet basis, most of its 

coefficients are small and relatively few larger coefficients capture most of the 

information. Therefore, one can discard the smaller coefficients without any perceptual 

loss. A vector is sparse if it has fewer numbers of non-zeros than the number of zeros. 

By putting all together, we can say that the image is 𝑘-sparse when it satisfies this 

condition: 𝑘 < 𝑛 ≪  𝑁. 

2.1.2 Incoherence 

We have a pair of orthonormal bases (𝜑, 𝜓). The symbol 𝜑 is for sensing the 

object 𝑥 and 𝜓 is the representation of the object 𝑥. The coherence between the pair of 

the bases (𝜑, 𝜓) is expressed by the following equation 

𝜇(𝜑, 𝜓) =  √𝑁. max
1≤𝑖,𝑗≤𝑁

|〈𝜑𝑖, 𝜓𝑗〉|,                                   (2.4) 

Compressive Imaging is mostly concerned with low incoherence pairs. If the 

bases 𝜑 and 𝜓 contain correlated elements, it has high coherence. Otherwise, they are 

less coherent. From linear algebra, the coherence between the bases are bounded with 

𝜇(𝜑, 𝜓) ∈ [1, √𝑁]. If we consider noiselets for 𝜑 and wavelets for 𝜓 then the coherence 

between them is √2. Similarly if we consider noiselets and daubechies D4 and D8 

wavelets, then the coherence between them is 2.2 and 2.9 respectively [1]. 

2.2 Restricted Isometric Property (RIP) 

In addition to sparsity and incoherence, there is one more property that has to be 

satisfied i.e., the Restricted Isometric Property. Candès and Tao introduced the isometry 

conditions on the matrices 𝜑 and established its important role in compressive sensing. 
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In some of the papers, the Restricted Isometric Property (RIP) is the same as the 

Uniform Uncertainty Principle (UUP). The RIP matrices squash the sparse vectors from 

higher dimensional space into a lower dimensional space while being able to reconstruct 

the vectors [15]. 

RIP matrix has n rows and N columns (𝑛 ≪ 𝑁). For a given matrix 𝜑 and 𝑇 

which is a set of column indices, 𝜑𝑇 where 𝑇 ⊂ {1, … . , 𝑁} be 𝑁 × |𝑇| submatrix 

obtained by extracting the columns of 𝜑 corresponding to indices in 𝑇. Similarly, the 

vector 𝑥 in 𝑅𝑁 is denoted by the vector 𝑥𝑇 obtained by retaining the entries in 𝑥 

corresponding to the column indices in 𝑇. A matrix 𝜑 is said to be 𝑘-RIP (k number of 

non-zeros) if there exists a 𝛿𝑘 ∈ (0,1) and satisfy the following inequality 

(1 − 𝛿𝑘)||𝑥𝑇||2
2 ≤  ||𝜑𝑇𝑥𝑇||

2

2
≤ (1 + 𝛿𝑘)||𝑥𝑇||2

2,                           (2.5) 

Good matrices for compressive sensing should satisfy the above inequality for the 

largest possible value of 𝑘. 

There are several constructions for the RIP matrices such as the random 

normalized Gaussian matrices, the random normalized Fourier matrices, the 

Rademacher matrices etc. It is important to know which matrices obey the RIP with 

good isometric constants. If 𝜑 is a Gaussian random matrix, then stable recovery occurs 

for all 𝜑’s provided that the number of non-zeros of 𝑥 are of the same order as the 

number of observations with 𝑘 ≤ 𝐶.
𝑛

log(
𝑁

𝑛
)
. If  𝜑 is a random Fourier transform matrix 

with few Fourier samples of 𝑥, then stable recovery occurs for 𝑛 coefficients provided 

that the number of non-zeros is of order 𝐾 ≤ 𝐶.
𝑛

(𝑙𝑜𝑔𝑁)6. 
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Mostly, random processes are used to produce Restricted Isometric Property 

matrices. Deterministic matrices are also used, but only limited to smaller sparsity 

levels. For higher sparsity levels, random process would be a better choice and so is 

Gaussian random matrices. Along with this RIP, incoherence is also an important 

property which I mentioned earlier section 2.1.2 

It is important to note that verifying the RIP may be a difficult task and also 

there is no fast algorithm that tests whether a given matrix satisfies the RIP or not [16]. 

2.3 Norm minimization 

Generally, a norm is used to measure the strength of a signal or the size of an 

error. When dealing with vectors in 𝑅𝑁, we will make frequent use of 𝑙𝑝 norms for 𝑝 ∈

[1, ∞). The geometrical representation of some examples of norm minimizations 

appears in the following figure. 

 

(a)                                            (b)                                          (c) 

Figure 2. (a), (b) and (c) are l0 norm, l1 norm and l2 norm minimization 

respectively. 
 

From (2.2) we can say, it is a linear problem where 𝜑 is a degrading matrix and 

𝑥 is a vector. It is an under-determined system, which means there are more variables 
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than equations. One can solve this by norm minimization methods, which the author 

explains in the sub sections. 

2.3.1 𝑙0 norm minimization 

In general 𝑙0 minimization is not considered as a norm. The following is the 𝑙0 

minimization problem. 

min
𝑥

||𝑥||0 𝑠. 𝑡  𝑦 = 𝜑𝑥,                      (2.6) 

in which ||𝑥||0 represents the number of non-zero entries in 𝑥 which is also called the 

sparsity of vector. If the vector 𝑥 is 𝑘- sparse, we need to search (𝑁
𝑘

) possibilities which 

means the algorithm grows as (𝑁
𝑘

) with increase in 𝑘. This is a combinational problem; 

hence, the computational complexity with 𝑙0 norm regularization is NP Hard.  

2.3.2 𝑙1 norm minimization 

Since 𝑙0 norm is non-convex and it is known that non-convex problems are 

computationally difficult to solve, an alternative is to use convex 𝑙1 optimization 

problem. 𝑙1 norm minimization yields the sparsest recovery solution for large number 

problems if the solution of 𝑥 is sparse enough. The following is the 𝑙1 minimization 

problem. 

min
𝑥

||𝑥||1 𝑠. 𝑡  𝑦 = 𝜑𝑥,            (2.7) 

From Figure 2, we see that the line of solutions touches the 𝑙1 ball. It is highly probable 

that the data set solutions intersect the sharp contour of the 𝑙1 ball which results in 

sparser solutions. When we get exact sparse recovery solutions, the mean square error 

lessens. In a simpler way, we can say that 𝑙1 norm minimization tends to concentrate the 

signal energy on to a fewer non-zero coefficients. 𝑙1 norm minimization is advantageous 
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because it is a convex optimization problem. The complexity associated with this linear 

program is about 𝑂(𝑁3). 

2.3.3 𝑙2 norm minimization 

𝑙2  norm minimization is preferable if the signal data is not sparse enough. The 

following is the 𝑙2  minimization problem. 

min
𝑥

||𝑥||2 𝑠. 𝑡  𝑦 = 𝜑𝑥,                          (2.8) 

From Figure 2, we see that the line of solution (data set) touches the 𝑙2  ball. It is very 

less probable that the data set solutions intersect the axis, which results in extra non-

zero elements. In a simpler way, we can say that signal energy is spread around; 

therefore, it is difficult to satisfy the condition of sparsity for 𝑙2  norm. 

 Another alternative to the sparsest solution is by using Greedy algorithms such 

as Matching Pursuit (MP), Orthogonal Matching Pursuit (OMP), Iterative Hard 

Thresholding (IHT), Compressive Sampling Matching Pursuit (CoSaMP) etc. Likewise, 

many robust algorithms were developed in terms of complexity, implementation cost, 

speed etc. Each algorithm has its own advantages and disadvantages.  The algorithms 

which I used in my thesis will be explained in Chapter 3. 
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3. CS Reconstruction Algorithms 

Convex problem techniques are methods for computing a sparse representation 

of the signal/image. Several reconstruction algorithms were proposed in the CS 

framework; alternative to the convex optimization problem that are faster and give 

superior performance characteristics. 

This chapter explains several representative algorithms that will appear 

extensively in the rest of the thesis. These algorithms include greedy algorithms, 

shrinkage/thresholding algorithms, gradient projection algorithms and wavelet based 

compressive sensing algorithms.  

3.1 Greedy Algorithms 

Greedy algorithms operate by iteratively choosing the columns of a matrix and 

after each iteration, the column which reduces the approximation error the most is 

chosen [17]. Examples of the greedy algorithms are Matching Pursuit (MP) and 

Orthogonal Matching Pursuit (OMP), which the author explains below. 

3.1.1 Matching Pursuit algorithm  

The Matching Pursuit (MP) algorithm was first introduced by Mallat and Zhang 

(1992) [9] which is the simplest and purest greedy algorithm in the approximation 

theory. The fundamental vector used in the Matching Pursuit algorithm is a residual 

vector, which represents the remaining part of 𝑦 after updating the solution vector. MP 

starts from a zero solution and initializes the residual with the measurement vector 𝑦. At 

the end of each iteration, the column that is highly correlated with the residual is chosen 

from the dictionary. Each iteration consists of two steps: (i) atom selection – finds the 
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atom (column) that has the highest correlation with the current residual error and (ii) 

residual update – updates the residual error by subtracting the correlated part from it.  

 MP algorithm repeatedly selects the same columns from 𝜑 in order to further 

refine the approximation. The residual update would converge linearly to zero whenever 

the columns of 𝜑 span 𝑅𝑛. Therefore, the MP will stop in a finite number of iterations if 

the norm of the residual update is used to define the stopping criterion for the algorithm 

[12]. The main drawback of the Matching Pursuit algorithm is its slow convergence and 

poor sparsity result due to its sub-optimality. The pseudo-code of the MP algorithm is 

shown below. 

Matching Pursuit (MP) algorithm 

Input: 𝑦 ∈ 𝑅𝑛, 𝜑 ∈ 𝑅𝑛𝑥𝑁 and termination threshold of residual norm 

Output: Sparse vector 𝑥[𝑖], 𝑟[𝑖] 

Initialization: 𝑥[0] = 0, 𝑟[0] = 𝑦, 𝑖 = 1 

Compute the correlation vector: 𝑔[𝑖] = 𝜑𝑇𝑟[𝑖−1] 

Find the column of matrix 𝜑 that is correlated with residual vector:  

𝑗[𝑖] = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗

|𝑔𝑗
[𝑖]

|

||𝜑𝑗||2
 

Update the 𝑖th solution coefficient: 𝑥𝑗[𝑖]
[𝑖] = 𝑥[𝑖−1] + 𝑔

𝑗[𝑖]

[𝑖]
/||𝜑𝑗[𝑖]||2

2 

Compute new residual vector: 𝑟[𝑖] = 𝑟[𝑖−1] − 𝜑𝑗[𝑖]𝑔
𝑗[𝑖]

[𝑖]
/||𝜑𝑗[𝑖]||2

2 

 

3.1.2 Orthogonal Matching Pursuit algorithm  

A modified version of the MP algorithm is proposed to limit the number of the 

required iterations by adding an orthogonalization step, known as the Orthogonal 
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Matching Pursuit (OMP) algorithm. Many steps were inherited in OMP from the MP 

algorithm. OMP starts from the zero solution same as in MP and initializes the residual 

with the measurement vector 𝑦. At the end of each iteration, OMP gives the optimal 

approximation with respect to the subset of selected dictionary elements by making the 

residue orthogonal to the chosen dictionary elements. Like MP, OMP selects the atom 

in the same manner. The main difference between MP and OMP is that it never 

reselects an atom in its subsequent iterations [12]. 

 The main advantage of OMP over MP is that it converges in a fewer number of 

iterations. Though computational cost and the storage cost involved with OMP is larger 

than MP, it enjoys superior performance than MP, particularly in the CS framework. 

For a large scale of data, the computational cost and the storage cost of a single iteration 

of OMP is quite high [17]. The pseudo-code of the OMP algorithm is shown below. 

Orthogonal Matching Pursuit (OMP) algorithm 

Input: 𝑦 ∈ 𝑅𝑛, 𝜑 ∈ 𝑅𝑛𝑥𝑁 and termination threshold of residual norm 

Output: Sparse vector 𝑥[𝑖], 𝑟[𝑖] 

Initialization: 𝑥[0] = 0, 𝑟[0] = 𝑦, 𝑖 = 1, 𝐼[0] = ∅ 

Compute the correlation vector: 𝑔[𝑖] = 𝜑𝑇𝑟[𝑖−1] 

Find the column of matrix 𝜑 that is correlated with residual vector:  

𝑗[𝑖] = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗

|𝑔𝑗
[𝑖]

|

||𝜑𝑗||2
 

𝐼[𝑖] = 𝐼[𝑖−1] ∪ 𝑗[𝑖] 

Solve least squares problem: 𝑥
𝑇[𝑖]

[𝑖]
=  𝜑

𝑇[𝑖]
† 𝑦 

Compute new residual vector: 𝑟[𝑖] = 𝑦 − 𝜑𝑥[𝑖] 
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The table below shows the computational and storage costs of the greedy algorithms. 

Algorithm Computational Cost Storage Cost 

Matching Pursuit (MP) 𝑛 +  𝜑 + 𝑁 𝜑 + 𝑛 + 2𝑝 + 𝑁 

Orthogonal Matching 

Pursuit (OMP) 

2𝑛𝑝 + 𝑛 +  𝜑 + 𝑁 2(𝑛 + 1)𝑝 + 0.5𝑝(𝑝 + 1) + 𝜑 + 𝑁 

Table 1. Computational cost and storage costs of greedy algorithms 

where 𝑝 refers to the size of the support set in the current iteration [17] and 𝜑 is the 

computational cost of applying or storing the transform 𝜑 𝑜𝑟 𝜑𝑇 . 

 Both MP and OMP update their coefficients differently by minimizing the 

squared error criterion ||𝑦 − 𝜑𝑥[𝑖]||2
2. In MP, the minimization involves only the 

coefficient of the most recently selected element whereas in OMP, the minimization 

involves the coefficients for all selected elements at iteration 𝑖. 

3.2 Shrinkage/Thresholding Algorithms 

Another type of algorithm for image restoration and linear inverse problems that 

handle convex unconstrained optimization problems is known as Iterative 

shrinkage/thresholding (IST) algorithms. This type of algorithms uses a combination of 

linear observation parameter and nonquadratic regularizer such as wavelet-based 

regularization etc. The IST algorithm can be formulated to define a solution 𝑥 as a 

minimizer of convex objective function f given below: 

                       𝑓(𝑥) =
1

2
||𝑦 − 𝜑𝑥||2 + 𝜆||𝑥||1,     (3.1) 

in which 𝜆 is the regularization parameter that controls the relative weight between two 

terms. 
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The IST algorithm has the form  

𝑥𝑖+1 = (1 − 𝛽)𝑥𝑖 + 𝛽𝜓𝜆(𝑥𝑖 + 𝜑𝑇(𝑦 − 𝜑𝑥𝑖)) 

When 𝛽 = 1 in the above equation, it is the original version of the IST algorithm 

When 𝛽 ≠ 1 in the above equation, it can be seen as a relaxed version of IST algorithm 

The computational effort involved in solving the equation is the matrix-vector 

multiplications involving 𝜑 𝑎𝑛𝑑 𝜑𝑇. In wavelet-based methods, 𝜓𝜆 is a shrinking 

operator. Each iteration of the IST algorithm consists of gradient step followed by the 

shrinkage operation. The main advantage of the IST algorithm is that it is very simple. 

However, the IST algorithm has poor convergence. Several accelerated algorithms were 

developed such as the Fast Iterative Shrinkage/Thresholding (FIST) algorithm, Two 

Step Iterative Shrinkage/Thresholding (TwIST) algorithm etc. The TwIST algorithm is 

explained in the following subsection. 

3.2.1 Two Step Iterative Shrinking/Thresholding (TwIST) algorithm 

TwIST is the modification of IST and FIST algorithms. The update equation in TwIST 

depends on the previous two iterations rather than only one iteration. From the Two-

Step method for linear systems, a linear function 𝐴𝑥 = 𝐵 is considered where the matrix 

𝐴 is split to 𝐶 and 𝑅 given below 

𝐴 = 𝐶 − 𝑅,      (3.2) 

Taking 𝐶 = 𝐼 + 𝜆𝐷𝑖 and 𝑅 = 𝐼 − 𝜑𝑇𝜑 in the above equation 

𝐴 = 𝜆𝐷𝑖 + 𝜑𝑇𝜑,        (3.3) 

The two-step iteration for linear system 𝐴𝑥 = 𝜑𝑇𝑦 becomes 

𝑥𝑖+1 = (1 − 𝛼)𝑥𝑖−1 + (𝛼 − 𝛽)𝑥𝑡 + 𝛽𝐶−1(𝑥𝑖 + 𝜑𝑇(𝑦 − 𝜑𝑥𝑖)),  (3.4) 
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By setting 𝛼 = 1 and replacing the 𝐶−1 with shrinkage operator 𝜓𝜆, the Two Step IST 

is written as  

𝑥1 = Γ𝜆(𝑥0),      (3.5) 

         𝑥𝑖+1 = (1 − 𝛼)𝑥𝑖−1 + (𝛼 − 𝛽)𝑥𝑖 + 𝛽Γ𝜆(𝑥𝑖),    (3.6) 

The TwIST algorithm has better converge than IST or FIST algorithms since it updates 

the equation using the previous two iterations [8]. The pseudo-code of the algorithm is 

given below. 

Two Step Iterative Shrinkage/Thresholding algorithm (TwIST) 

Input: 𝛼, 𝛽, 𝜑, 𝑦 

Output: 𝑥 

Consider the linear function: 𝐴𝑥 = 𝐵 

𝐴 is split to 𝐶 𝑎𝑛𝑑 𝑅: 𝐶 = 𝐼 + 𝜆𝐷𝑖 and 𝑅 = 𝐼 − 𝜑𝑇𝜑  

Find the value of 𝑥𝑖+1:  

𝑥𝑖+1 = (1 − 𝛼)𝑥𝑖−1 + (𝛼 − 𝛽)𝑥𝑡 + 𝛽𝐶−1(𝑥𝑖 + 𝜑𝑇(𝑦 − 𝜑𝑥𝑖)) 

TwIST is performed: 𝑥1 = Γ𝜆(𝑥0) 

𝑥𝑖+1 = (1 − 𝛼)𝑥𝑖−1 + (𝛼 − 𝛽)𝑥𝑖 + 𝛽Γ𝜆(𝑥𝑖) 

𝛼 and 𝛽 values are set: 𝛼 = 𝜌2 + 1, 𝛽 =
2𝛼

𝜉𝑚+𝜉1
 

where 𝜌 is given by 𝜌 = (
1−√𝑘

1+√𝑘
) < 1 

 

3.3 Gradient Projection Algorithms 

The gradient projection method was first proposed by Goldstein, Levitin and 

Polyak [18, 19]. Like IST algorithms, the method requires the matrix vector products 
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involving 𝜑 and 𝜑𝑇. The gradient projection algorithm is applied to the quadratic 

formulation in (2.1), where the search path from each iterate is obtained by projecting 

the negative gradient direction onto a feasible set. This is referred to as the Gradient 

Projection for Sparse Reconstruction (GPSR). Unlike the Basis Pursuit and 𝑙1  least 

squares algorithms, GPSR involves only one level of iteration.  

GPSR can be solved for a sequence of values of 𝜆 in (2.1). Once the solution has 

been obtained for a specific 𝜆, it can be used as a warm-start for a closer value. It has 

been noted that the speed of GPSR may degrade considerably for smaller values of the 

regularization parameter 𝜆. However, if we use GPSR for a larger value of 𝜆, then 𝜆 

should be decreased in steps towards its desired value [10].  

The key step of the GPSR algorithm is to express as a quadratic program by 

splitting 𝑥 into its positive and negative parts. 

𝑥 = 𝑢 − 𝑣, 𝑢 ≥ 0, 𝑣 ≥ 0 

So, the equation (2.1) can be written as a bound constrained quadratic program: 

min
𝑢,𝑣

1

2
||𝑦 − 𝜑(𝑢 − 𝑣)||2

2 + 𝜆1𝑛
𝑇𝑢 + 𝜆1𝑛

𝑇𝑣     𝑠. 𝑡.     𝑢 ≥ 0, 𝑣 ≥ 0,  (3.7) 

The equation can be written in a more standard format as follows 

min
𝑧

𝑐𝑇𝑧 +
1

2
𝑧𝑇𝐵𝑧 ≡ 𝐹(𝑧)    𝑠. 𝑡.      𝑧 ≥ 0,    (3.8) 

where  

𝑧 = [
𝑢
𝑣

] , 𝑏 =  𝜑𝑇𝑦, 𝑐 = 𝜆12𝑛 + [
−𝑏
𝑏

]  𝑎𝑛𝑑 𝐵 = [
𝜑𝑇𝜑 −𝜑𝑇𝜑

−𝜑𝑇𝜑 𝜑𝑇𝜑
] 

The Basic Gradient Projection (GPSR-Basic) algorithm is explained in the following 

subsection 
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3.3.1 GPSR-Basic algorithm 

Each iteration in the GPSR-Basic search for 𝑧𝑖 along the negative gradient 

−∇𝐹(𝑧𝑖) is projected onto a non-negative orthant [10]. Then, a backtracking line search 

is performed until a sufficient decrease is attained in 𝐹. Here, an initial guess 𝛼𝑖 is used 

that yields the exact minimizer of 𝐹 along this direction if no bounds were encountered. 

The vector 𝑔𝑖 is defined as follows 

𝑔𝑗
𝑖 = {

(∇𝐹(𝑧𝑖))𝑗, 𝑖𝑓 𝑧𝑗
𝑖 > 0 𝑜𝑟 (∇𝐹(𝑧𝑖))𝑗 < 0,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (3.9) 

The initial guess 𝛼𝑖 is chosen 

𝛼0 = arg min
𝛼

𝐹(𝑧𝑖 − 𝛼𝑔𝑖),     (3.10) 

To protect the values of 𝛼0 that are too small or large, we confine it to the interval 

[𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥]. The pseudo-code of the algorithm is given below. 

GPSR-Basic algorithm 

Input: 𝑦, 𝜑 𝑎𝑛𝑑 𝜆  

Output: 𝑥 

Initialization: parameters are chosen 𝛽 ∈ (0, 1) 𝑎𝑛𝑑 𝜇 ∈ (0,
1

2
) ; 𝑠𝑒𝑡 𝑖 = 0 

Compute the initial guess 𝛼0 =
((𝑔𝑖))

𝑇
𝑔𝑖

((𝑔𝑖))
𝑇

𝐵𝑔𝑖
  

Replace 𝛼0 by 𝑚𝑖𝑑(𝛼𝑚𝑖𝑛, 𝛼0, 𝛼𝑚𝑎𝑥) 

The backtracking line search is performed 

𝐹 ((𝑧𝑖 − 𝛼𝑖∇𝐹 ((𝑧𝑖))
+

)) ≤ 𝐹(𝑧𝑖) − 𝜇∇𝐹(𝑧𝑖)
𝑇

(𝑧𝑖 − (𝑧𝑖 −  𝛼𝑖∇𝐹(𝑧𝑖))+)), 

Set  
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𝑧𝑖+1 = 𝑧𝑖 − 𝛼𝑖∇𝐹((𝑧𝑖))+ 

Finally, the convergence test is performed and is terminated with appropriate solution 

𝑧𝑖+1 if it is satisfied. 

 

3.4 Wavelet Based Compression algorithms 

The wavelet based compression algorithms incorporate the wavelet tree structure 

that can be represented by Hidden Markov Tree (HMT).  The wavelet coefficients 𝑠 

from (1.1) can be represented in terms of a tree structure for an image. For scale 𝑝 = 1, 

the coefficients correspond to root nodes and for the large scale 𝑝 = 𝐿, the coefficients 

correspond to leaf nodes. Each wavelet coefficient has four children coefficients, and it 

has the statistical relationship between parent and children coefficient as shown in the 

Figure 3. Top left block corresponds to scaling coefficients, which capture the coarse 

scale representation of an image. These statistics are represented by HMT. 

 

Figure 3. Tree structured wavelet decomposition of an image depicted across 

scales. 
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When modelling the statistics by HMT model, the observation is the wavelet 

coefficient for each of the two states where the observation is drawn from a zero mean 

Gaussian having low state (low variance) and high state (high variance). In the CS 

framework, we observe only on the projection of these coefficients, not the wavelet 

coefficients. If a given parent coefficient is negligible, the children coefficients are also 

negligible.  

Baranuik et al [20] demonstrated that it is possible to improve the performance of 

compressive imaging reconstruction by introducing independencies between the 

locations of the image coefficients. A modification of the HMT model was proposed 

and it is known as Bayesian Compressive Sensing (BCS), where the coefficient 

associated with low state is set to zero and that infers the coefficients are sparse. 

Therefore, the Bayesian framework has been employed for the reconstruction of an 

image and hence the name Bayesian Tree Structured Wavelet – Compressive Sensing 

(TSW-CS). The Bayesian Compressive Sensing (BCS) framework Matlab code is 

downloaded from (code available at: http://people.ee.duke.edu/~lcarin/BCS.html). 

In addition, it is assumed that all the coefficients at scale 𝑝 with a zero valued parent 

share a mixing weight 𝜋𝑝
0. Similarly, all the coefficients at scale 𝑝 with a non-zero 

parent share a mixing weight 𝜋𝑝
1. Different Beta priors are imposed based on the scale 

and the parent coefficients. 

3.4.1 Tree Structured Wavelet Compressive Sensing Monte Markov Chain Monte Carlo 

(TSWCS-MCMC) 

The wavelet tree structured information explained in the above section is 

integrated into the TSW-CS model with a MCMC inference. The two components in the 
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spike and slab prior, which are used in Bayesian regression models [21] are analogous 

to the two states (low and high states) in the HMT model. The posterior computation by 

Markov Chain Monte Carlo (MCMC) has been implemented based on Gibbs sampling 

(randomized MCMC algorithm that makes use of random numbers and produce 

different results each time when it is run), where posterior distribution is approximated 

by sufficient number of samples. 

             For each MCMC iteration, 𝑠 can be sampled in a block manner. In block 

sampling, computing the conditional posterior of 𝑠𝑗 uses all other elements of 

𝑠 (𝑠𝑘 𝑓𝑜𝑟 𝑘 ≠ 𝑗) from the last MCMC iteration whereas in sequential sampling, 

computing the conditional posterior of 𝑠𝑗 can use 𝑠𝑘 for 𝑘 < 𝑗 from current iteration and 

𝑠𝑘 for 𝑘 > 𝑗 from the last iteration [11]. This means, the sequential sampling typically 

achieves faster convergence i.e., it requires few iterations to achieve MCMC 

convergence. With the MCMC model, typically a burn-in period of 5000 iterations are 

required for an image size of 128 × 128 for image reconstruction with few samples. In 

addition, the parent-child relationships in the prior setting would provide much sparser 

solution. The main advantage of TSWCS-MCMC is faster convergence and it 

outperforms with faster and accurate results when compared to other algorithms such as 

MP, OMP, TwIST and GPSR etc. 
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 4. Compressive Imaging Configuration and Properties of Light 

Sources 

This chapter describes the physical constructs of compressive imaging setups - 

the single pixel camera [22] and its modified version [23]. Both classical light (Poisson 

and thermal light) and nonclassical light (Fock states and squeezed light) are used as the 

light sources to illuminate the object. The properties of these light sources are described 

in detail in the following. 

4.1 Compressive Sensing (CS) – single pixel camera 

One of the main applications of compressive sensing is single pixel camera [22]. 

The architecture of CS - single pixel camera is comprised of a Digital Micro mirror 

Device (DMD), two lenses, photon detector and A/D converter. The output image is 

retrieved from the measurements by the digital computer. 

Before going into the working mechanism of CS- single pixel camera, it is 

important to know the working mechanisms of DMD, and the photon detector. The 

DMD is a reflective spatial light modulator (SLM) that selectively redirects the light 

beam. It consists of an array of bacterium sized, electro statistically actuated micro 

mirrors, where each mirror in the array is suspended above an individual static random 

access memory (SRAM) cell [22]  shown in Figure 4. Each mirror rotates about a hinge 

and can be positioned in either of the two states +20 and -20 degrees from horizontal. 

Thus, the light falling on the DMD can be reflected in two directions depending on the 

mirror orientations.  
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Figure 4. Schematic diagram of DMD (showing orientation of two mirrors)  

[24] 

Generally, the photon detector counts the number of photons in light. It has some 

surface that absorbs photons and produces voltage effect, which is directly proportional 

to the absorbed number of photons. 

The working mechanism of CS – single pixel camera is (see Figure 5): when a 

light source illuminates an object, the light is reflected onto the lens 1. From the lens 1, 

the image is projected onto the DMD that consists of several micro mirrors (each micro 

mirror represents a pixel of an image and is set to a particular phase). The light is then 

collected by the lens 2 and focused onto the photon detector. Each mirror can be 

independently oriented either towards the photon detector or away from the photon 

detector. Measurements are collected by setting the micro mirror orientations using 

random number generator in a pseudorandom 0’s and 1’s pattern (known to be 

canonical matrix) to create the measurement vector 𝜑. The voltage of the single photo 

diode is 𝑦 which is the inner product between measurement matrix 𝜑 and the desired 

image 𝑥. This voltage 𝑦 is digitized by an A/D converter. The process is repeated 𝑛 
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number of times to obtain all entries in 𝑦. The design of the camera is very simple and 

reduces the size. The schematic diagram of a single pixel camera is shown in the figure 

below 

 

Figure 5. CS - Single Pixel Camera [25] 

 

A modification of CS - single pixel camera is done by introducing DMD’s with +1 and -

1, where +1 is reflected onto collecting lens 1 and -1 is reflected onto co as shown in the 

figure 6 [23]. This method uses two photon detectors which collects the photons on both 

the sides 𝑆+1 𝑎𝑛𝑑 𝑆−1. The total number of photons collected at the end will be 𝑆 =

 𝑆+1 − 𝑆−1. All the measurements are collected by setting the micro mirror orientations 

using a pseudo random number generator in a pseudo random +1 and -1 pattern (also 

known for Rademacher distribution). 
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The advantage of the modified compressive imaging setup is that the use of the 

Rademacher distribution gives a much better CS reconstruction than 0 and 1 sensing 

matrix as in the original single-pixel camera. The drawback is the use of an additional 

photo-detector and the need of a proper synchronization of the output currents from the 

detectors. 

The complete working mechanism can be presented by a mathematical 

formulation for both noiseless and noisy cases (different light sources such as Gaussian, 

Fock states, Poisson, thermal, squeezed light) in the following sections. 

4.2 Noiseless Case 

The mathematical formulation of the noiseless case is mentioned in (1.2) where 

𝑥 is an image that is recovered from noiseless measurements. The noiseless image is 

independent of the mean photon number. It is easier to compare the mean number of 

Figure 6. Modified CS – Single Pixel Camera 
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photons to Root Mean Square Error (RMSE) of two objects, as both noiseless and noisy 

cases are plotted in a single graph.  So is the reason we have considered the noiseless 

image to be multiplied by the mean photon number. Then the CS optimization 

algorithms are performed to reconstruct an image from few samples. All the equations 

mentioned in the Chapter 1 are based on the noiseless case. 

From Figure 6, it is assumed that no noise exists and the simulation is done 

using several CS optimization algorithms. 

4.3 Noisy Case 

We have considered different light sources such as thermal light, Poisson light, 

Fock states and squeezed light in the noisy case. The noise here stems from the quantum 

nature (discreteness) of photons. It is assumed that the detecting system is perfect so 

that all the noise is arising in the final signal comes solely from the light sources. As a 

comparison, the usual Gaussian noise is also considered to contrast the behavior of CS 

in the different cases.  

Properties of different light sources are explained in the following subsections. 

4.3.1 Gaussian noise 

Generally, the Gaussian noise is “added” to the image in the compressive 

imaging framework according to  

𝑦 =  𝜑𝑥 +  𝜃𝑛,       (4.1) 

where 𝜃𝑛 is the noise added to an image of size 𝑛 × 1. However, in our simulations we 

have “applied” Gaussian noise to an image [26]. Generally, Poisson noise is position 

dependent. This means that noise is accumulated at the position of an object. Since we 
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are considering zero background gray scale object, we have “applied” Gaussian noise to 

an image for better comparison between two different objects.  

The Gaussian noise usually does not correspond to a real light source of well-

defined photon statistics, as the former is a continuous random variable whereas the 

latter corresponds to a discrete random variable. It is well known that in the limit of 

very light mean photon number, the Poisson distribution can be approximated by a 

Gaussian. Nevertheless, the consideration of the Gaussian noise here is for the purpose 

of comparison, as most CS algorithms assume additive noise of the type of Eq. (4.1), 

and the main purpose of the thesis is to study the robustness of these algorithms and 

their behaviors when different noises arising from different photon statistics are 

considered.  

The Gaussian light source has an intensity light distribution given by 

𝑃𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝐼, 𝑥|𝜇, 𝜎) =
1

√2𝜋 𝜎
𝑒

−
(𝐼−𝜇(𝑥))

2

2𝜎2 ,   (4.2) 

where mean = 𝜇(𝑥) and variance = 𝜎2. 

The Signal-to-Noise ratio (SNR) is given by  

𝑆𝑁𝑅(𝑥) =
𝜇(𝑥)

𝜎
,      (4.3) 

The Gaussian light source can be used to provide 𝜇(𝑥) ≫ 𝜎, so that the intensity 𝐼 

has a very low probability of getting negative, which is unphysical. For a binary object, 

the SNR can be defined without any difficulty when the variance is properly chosen. 

For an object with a non-unity transmission or reflection coefficient, we need to be 

careful in defining the SNR. 

We consider that the variance is equal to the mean photon number, i.e., 𝜎2 = 𝜇, so 

that there can be a direct comparison with the Poisson case. To simplify the study, we  
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also allow the photo detector signal in the Gaussian case to be negative in the low 

photon regime, while keeping in mind that it is unphysical and is for the purpose of 

comparison study. 

4.4 Photon Statistics of different light sources  

Photon statistics can be learned through the statistical distributions produced in the 

photon counting experiments that use photon detectors to analyze the statistical nature 

of photons in different light sources such as Fock states, Poisson, thermal and squeezed 

states.  

Suppose the transmission function of the object is 𝑇(𝑥) which has the value 

between 0 and 1. We also consider the light sources having photon statistics 𝑃(𝑛) 

shining uniformly on the object. In this way, the photon statistics of the light passing 

through the object and measured by the detector [27] can be modelled as 

𝑃𝑚(𝑥) = ∑ 𝑃(𝑛)
𝑛!

𝑚!(𝑛−𝑚)!
 𝑇(𝑥)𝑚 [1 − 𝑇(𝑥)]𝑛−𝑚∞

𝑛=𝑚 ,   (4.4) 

The properties of light sources are described in the following subsections. 

4.4.1 Fock states 

Fock state corresponds to light with a well-defined number of photons 𝑁. It is 

named after the physicist Vladimir Fock [28]. The photon number distribution is given 

by 𝑃(𝑛) =  𝛿𝑛𝑁. For a binary object 𝑃𝑚(𝑥) = 𝑃(𝑚) = 𝛿𝑚𝑁 at the positions with 

𝑇(𝑥) = 1 and 𝑃𝑚(𝑥) = 𝛿𝑚0 at the positions 𝑇(𝑥) = 0. On the other hand, for an object 

with a general transmission coefficient, 

𝑃𝑚(𝑥) =
𝑁!

𝑚!(𝑁−𝑚)!
 𝑇(𝑥)𝑚 [1 − 𝑇(𝑥)]𝑁−𝑚,      (4.5)  

which is a binomial distribution 
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 Fock states are ideal light sources as the variance of photon number is zero. 

They provide the performance closest to the noiseless situation. Nevertheless, there are 

no known method to produce them except when the number of photon 𝑁 is one or two. 

4.4.2 Poisson light source 

The Poisson light source has Poisson distribution, which models a single mode 

laser. Poisson noise is generally applied to an image [26]. Adding Poisson noise in 

compressive imaging framework can be modelled as  

𝑦 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜑𝑥),      (4.6) 

where 𝑥 is image of interest (to be recovered) and 𝜑 is the measurement matrix 

For Poisson light source, each pixel in an image (both gray scale image and binary 

image) will have random number of photons accumulated in it. This means that Poisson 

noise is correlated with the intensities of an image. Therefore, Poisson noise is position 

dependent. 

The Poisson distribution is given by 

𝑃(𝑛|𝜇) =
𝑒−𝜇𝜇𝑛

𝑛!
,     (4.7) 

where 𝜇 is the mean of the distribution 

The Poisson distribution has both mean and variance equal i.e., 𝜇 

The number of photons hitting the photon detector through the Poisson process is given 

by 

𝑃𝑚(𝑥) = ∑ 𝑃𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑛|𝜇)
𝑛!

𝑚!(𝑛−𝑚)!
 𝑇(𝑥)𝑚 [1 − 𝑇(𝑥)]𝑛−𝑚∞

𝑛=𝑚 ,  (4.8) 

where 

𝑃𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑛|𝜇) is the Poisson distribution 

𝑇(𝑥)𝑚 is an image with 𝑚 number of photons detected 
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[1 − 𝑇(𝑥)]𝑛−𝑚 is an image with 𝑛 − 𝑚 photons not detected 

The above equation (4.8) can be written as 

𝑃𝑚(𝑥) =
𝑒−𝑇(𝑥)𝜇[𝑇(𝑥)𝜇]𝑚

𝑚!
,     (4.9) 

The equation (4.9) also follows Poisson distribution having  

mean = 𝑇(𝑥)𝜇 

variance = 𝑇(𝑥)𝜇 

Therefore the signal-to-noise ratio at position 𝑥 is given by 

𝑆𝑁𝑅(𝑥) = √𝑇(𝑥)𝜇,           (4.10) 

SNR is directly proportional to the square root of the mean number of photons. So, the 

more the number of photons the better the reconstructed image [29]. 

4.4.3 Thermal light source 

The electromagnetic radiation emitted by a hot body is called thermal light (also 

known for black-body radiation). The thermal light source has super-Poissonian 

statistics and is broader than Poisson distribution of Poisson light source [13]. The 

super-Poissonian statistics are described in detail with the help of Mandel factor 𝑄 in 

the following subsections. The thermal light is noisier that they have large variations in 

the intensity. In the quantum sense, we can say that they have a large photon number of 

fluctuations.  

The thermal light source possesses photon statistics and the distribution is given 

by 

𝑃𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑛|𝜇) =
𝜇𝑛

(1+𝜇)𝑛+1
,    (4.11) 

where mean = 𝜇 and variance = 1 + 𝜇 

The distribution in (4.11) is known as the Bose-Einstein distribution. 
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Based on the modified CS – Single pixel camera approach, the noisy image 

illuminated by thermal light is 

𝑃𝑚(𝑥) = ∑ 𝑃𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑛|𝜇)
𝑛!

𝑚!(𝑛−𝑚)!
 𝑇(𝑥)𝑚 [1 − 𝑇(𝑥)]𝑛−𝑚𝑁𝑚𝑎𝑥

𝑛=𝑚   (4.12) 

The above equation (3.11) can be written as 

𝑃𝑚(𝑥) =
[𝑇(𝑥)𝜇]𝑚

[1+𝑇(𝑥)𝜇]𝑚+1     (4.13) 

The equation (3.12) also possesses thermal distribution having 

mean = 𝑇(𝑥)𝜇 

variance = 1 + 𝑇(𝑥)𝜇 

From equation (3.12), it is clear that the variance of Bose-Einstein distribution is larger 

than that of Poisson distribution. Therefore, the signal-to-noise ratio at position 𝑥 is 

given by 

𝑆𝑁𝑅(𝑥) = √
𝑇(𝑥)𝜇

1+𝑇(𝑥)𝜇
, which is always less than or equal to one  (4.14) 

Thermal light is usually considered when the object sits in an environment with 

very strong background radiation. As mentioned in the previous subsection (4.4.2) that 

more the number of photons, better the quality of reconstructed image. Since 𝑆𝑁𝑅 ≤ 1, 

it means that there are only a few photons. This gives sense that the image is noisy and 

the quality of image reconstructed is poor. In addition, we consider mainly the effect of 

photons on compressive imaging and ignore the influence of the background excess 

noise. So is the reason, we are not considering thermal light source in our simulations. 

4.4.4 Squeezed multimode 

The squeezed light is a special form of light, which possesses sub-Poissonian or 

super-Poissonian statistics for different squeezing parameter (𝑟), and is researched in 
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the field of quantum optics [30]. The sub-Poissonian light has a narrower photon 

number distribution than that of Poisson distribution. This means, it has less noise 

compared to Poisson and thermal light source. Sub-Poissonian light sits in between 

Fock states and Poisson Light. One of the main applications of a squeezed light source 

is to suppress the quantum noise of the photon in high-precision measurement such as 

the detection of gravitational waves. 

In multimode squeezed light, the number of photons accumulated in each pixel 

is independent of the number of photons in another pixel. That is, we can consider each 

spatial position of the object be illuminated independently by a squeezed light beam. 

This is in contrast to single mode squeezed light over the object, in which case the 

photons arriving at one position of the object are correlated to that on another position 

of the object.  

The photon statistics of squeezed light is given by the following distribution 

𝑃𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑛|𝛼, 𝑟) =  
𝑒−𝛼2(1+tanh 𝑟)

cosh 𝑟
 
|tanh 𝑟|𝑛

2𝑛𝑛!
 |𝐻𝑛(

𝛼(1+tanh 𝑟)2

√2 tanh 𝑟
)|  (4.15) 

where 𝐻𝑛(𝑧) is the Hermite function of order 𝑛 

 𝛼 is related to the light intensity, and 

 𝑟 is the squeezing parameter 

We take both 𝛼 and 𝑟 to be real numbers. The mean and variance of the photon number 

of squeezed light is given by  

mean = |𝛼|2 + sinh2 𝑟        (4.16) 

variance = 2 sinh2 𝑟 𝑐𝑜𝑠ℎ2𝑟 + |𝛼|2(𝑐𝑜𝑠ℎ𝑟 − 𝑠𝑖𝑛ℎ𝑟)2      (4.17) 

Based on the modification of CS – single pixel camera, the noisy image illuminated by 

squeezed light is given as 
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𝑃𝑚(𝑥) = ∑ 𝑃𝑠𝑞𝑢𝑒𝑒𝑧𝑒𝑑(𝑛|𝛼, 𝑟)
𝑛!

𝑚!(𝑛−𝑚)!
 𝑇(𝑥)𝑚 [1 − 𝑇(𝑥)]𝑛−𝑚𝑁𝑚𝑎𝑥

𝑛=𝑚   (4.18) 

The statistical distribution of different light sources (Poisson, thermal and squeezed 

light) are shown in the figure below 

Figure 7. Statistics of different light sources with mean number of photons = 10 

and the squeezing parameter (r) = 0.5 

4.5 Mandel Factor 

L. Mandel introduced the Mandel Q factor in Quantum optics. It is a convenient 

way to classify the Possionian statistics of light sources. The Mandel Q factor is used to 

characterize photon count distributions [31] and statistical fluctuations in the number of 

counts are represented by variance (∆𝑛)2. 

The mathematical formulation of Mandel Q factor is given by 

𝑄 =
<(∆𝑛)2>−<𝑛>

<𝑛>
= {

0 𝑓𝑜𝑟 𝑃𝑜𝑖𝑠𝑠𝑜𝑛
> 0   𝑓𝑜𝑟 𝑠𝑢𝑝𝑒𝑟 − 𝑃𝑜𝑖𝑠𝑠𝑜𝑛𝑖𝑎𝑛
< 0    𝑓𝑜𝑟 𝑠𝑢𝑏 − 𝑃𝑜𝑖𝑠𝑠𝑜𝑛𝑖𝑎𝑛

     (4.19) 

where 𝑛 is the photon number  
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In the squeezed multimode, it possess different statistics for different levels of 

squeezing parameter 𝑟. 
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5. Simulation results 

In this thesis, we have considered two different objects (binary object – OU logo 

and a gray scale object with zero background) of 128 × 128 pixels shown in the Figure 

4. A gray scale object is an object that has intensities other than 0’s and 1’s, and the 

binary object is an object that is comprised of only ones and zeros. These two images 

are used in the simulation process of different algorithms (MP, OMP, TwIST, GPSR-

Basic and TSWCS-MCMC) as described in the Chapter 3. 

                                                 

           (a)                       (b) 

Figure 8. (a) OU logo – Binary Object (b) Gray scale Object 

The results and the observations made from the graphs are explained in this chapter for 

both binary object and gray scale object. 

5.1 Binary Object (OU logo) Results 

A log log graph is plotted for different values by taking the Signal-to-Noise ratio 

(SNR) on x-axis and the Root Mean Square Error (RMSE) on y-axis. We have 

considered the mean photon number varying from 0 to 1000, as SNR is directly 

proportional to the square root of the mean number of photons (Gaussian and Poisson 

case) and SNR is dependent on the mean photon number and the squeezing parameter 

‘𝑟’. RMSE is the root MSE between original image and the reconstructed image. We 
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have set the scale of x-axis from 0.4 to 70 and the scale of y-axis from 0.0008 to 3. The 

graph is plotted for different algorithms (MP, OMP, TwIST, GPSR and TSWCS-

MCMC) by considering different light sources (Gaussian, Poisson and squeezed light). 

In addition, the noiseless case is also plotted in the same graph for different algorithms 

in the same graph. The RMSE values of noiseless case of OMP and TSWCS-MCMC 

are not displayed, as their RMSE values are below the defined y-axis scale. The graph is 

shown below. 

The binary object (OU logo) in Figure 8(a) is restored from only 
1

4
 samples (i.e., 

25% of 16384 samples). 

The valuable observations made from the graph are: 

1. The common observation is that, higher the SNR, better the reconstructed image 

quality (i.e., low RMSE). 

Figure 9. Comparative analysis of different algorithms by considering different light sources 

for a binary OU logo object (SNR Vs RMSE). 
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2. Gaussian (represented by ‘o’) and Poisson noise (represented by ‘x’) perform 

almost the same way for all the algorithms. 

3. In the case of squeezed light (represented by ‘.’), we have considered 𝑟 ∈

[0.1,1.5]. As SNR depends on the mean photon number and squeezing 

parameter in squeezed light, we see that some dotted points are plotted for SNR 

beyond the value SNR ≅ 33. In addition, the graph shows that the squeezed light 

performs almost the same as with Gaussian and Poisson for all the algorithms. 

Note that, we did not differentiate several values of 𝑟 in the above graph. 

4. The RMSE values of MP (represented by the black line), GPSR (represented by 

the red line) and TwIST (represented by the green line) algorithms ‘decrease 

linearly’ with increase in SNR. There comes a point beyond SNR ≅ 33, where 

the RMSE values become saturated. 

5. The RMSE values of OMP (represented by blue line) algorithm decrease 

linearly till certain point SNR ≅ 8, and then there is a steep decrease in the 

RMSE values beyond SNR ≅ 8. 

6. The RMSE values of TSWCS-MCMC (represented by magenta line) algorithm 

shows better results compared to other algorithms in low photon regime. Its 

RMSE values decrease linearly until a certain point SNR ≅ 5, and then there is 

steep decrease in the RMSE values beyond SNR ≅ 5. 

As we have already mentioned the larger the SNR, the better the image quality (low 

RMSE). This means that all the algorithms should have linear decrease in the RMSE 

values with increase in SNR. However, two algorithms i.e., OMP and TSWCS-MCMC 

stand out, as their plot does not linearly decrease with an increase in SNR. 
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The following graphs show the log log plot between the mean number of photons ‘𝑛’ 

and RMSE for different values of squeezing parameter ‘𝑟’ for each algorithm. 

(a) MP algorithm with different light sources 

(b) OMP algorithm with different light sources 
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(c) TwIST algorithm with different light sources 

(d) GPSR algorithm with different light sources 
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(e) TSWCS-MCMC algorithm with different light sources 

Figure 10. (a), (b), (c), (d) and (e) are plots of each algorithm by considering light 

sources (number of photons ‘n’ Vs RMSE) 

To understand clearly the comparative analysis, we have considered log log plot 

between photon number ‘𝑛’ and RMSE for each algorithm.  

The observations made from Figure 10 are: 

1. Gaussian and Poisson noise perform almost the same and it linearly decreases 

with increase in the number of photons for MP, TwIST and GPSR algorithms. 

For OMP algorithm, the RMSE values decrease linearly until a certain photon 

number and deviates slightly continuing linear decrease with increase in the 

photon number. For the TSWCS-MCMC algorithm, the RMSE values decrease 

linearly until a certain photon number and there is a steep decrease in RMSE 

values with an increase in the photon number.  

2.  In the case of squeezed light, we have differentiated the squeezing parameter 

‘𝑟’ with different colors.  
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a. For MP and TwIST algorithms, all the different squeezing parameters (𝑟 =

0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3 𝑎𝑛𝑑 1.5) decrease linearly until a certain 

photon number and becomes saturated with increase in the photon number. 

b. For GPSR algorithm, all the different squeezing parameters decrease linearly 

with increase in the photon number.  

c. For OMP and TSWCS-MCMC algorithms, all the different squeezing 

parameters decrease linearly until a certain photon number and there is steep 

decrease in the RMSE values with an increase in the photon number. 

3. For higher squeezing parameter i.e., 𝑟 = 0.5, 0.7, 0.9, 1.1, 1.3, 1.5 and high 

photon number, the RMSE values are low. This means that higher the squeezing 

and high photon number, the better the quality of reconstructed image. 

4. Since this thesis deals mostly in low photon regime, for low squeezing 

parameter 𝑟 = 0.1, 0.3 and low photon number, the RMSE values are low. The 

higher squeezing parameters do not perform well in the low photon regime.  

5. All the graphs have RMSE values of the squeezing parameter above and below 

the Poisson noise. For the Poisson noise, we know that variance is equal to 

mean. From the calculations of variance, we see that the RMSE values of 

different squeezing parameters above Poisson noise comes under super-

Poissonian and the values below the Poisson noise are sub-Poissonian. 

As mentioned earlier, all the images are reconstructed with ¼ of samples. We have a 

huge amount of data plotted (shown in the Figures 9, 10) for different levels of SNR. In 

this thesis, we show the reconstructed images in low photon, low-mid level, and high 

photon case for Gaussian noise, Poisson noise and squeezed light. The results of the 
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reconstructed image are shown for different algorithms and for different light sources in 

the following 
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Figure 11. OU logo reconstructed with ¼ samples having mean photon number of 

0.5, 45 and 1000 respectively in the presence of Gaussian noise 
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Figure 12. OU logo reconstructed with ¼ samples having mean photon number of 0.5, 45 

and 1000 respectively in the presence of Poisson noise 
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Figure 13. OU logo reconstructed with ¼ samples having mean photon number 0.5, 30 

and 500 respectively for the given squeezed light source 
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From Figure 11, we see that the OU logo image is reconstructed with ¼ samples 

for different algorithms in the presence of Gaussian noise. The TSWC-MCMC 

algorithm performs far better than all other algorithms in terms of low RMSE and has a 

better-reconstructed image quality in low, low-mid level and high photon regime. 

Another interesting observation is that, some algorithms such as OMP, GPSR 

algorithms perform well in the high photon regime compared to other algorithms. These 

algorithms do not perform well in low photon regime compared to other algorithms. 

TwIST algorithm shows good performance in low photon regime compared to all other 

algorithms. The quality of image reconstructed in high photon regime is not good if 

compared to other algorithms.  

From Figure 12, it is clear that TSWCS-MCMC algorithm out performs all other 

algorithms in terms of better image quality in low, low-mid level and high photon 

regime.  

In the higher photon regime, some algorithms such as OMP, GPSR perform well 

in terms of low RMSE. The same algorithms do not give better results in low photon 

regime. TwIST algorithm performs well in low photon regime in terms of image quality 

and low RMSE.  

 Figure 13 shows the results of a reconstructed image for the mean photon number 

0.5, 30, and 500 for squeezing parameters 0.1, 1.1 and 1.5 respectively. For the 

squeezed light source, the SNR depends on the mean photon number and the squeezing 

parameter ‘𝑟’. It is also clear that TSWCS-MCMC algorithms outperforms all other 

algorithms in terms of image quality and low RMSE. 
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5.2 Gray scale Object Results 

The size of the gray scale object is 128 × 128 pixels. Similar to OU logo image, the 

gray scale object is reconstructed from ¼ samples. All the data is log log plotted for 

different values of average SNR vs RMSE. Since the gray scale object has values 

varying from zero to 255, defining a SNR is difficult. Therefore, we have considered 

average SNR. We have set the scale of x-axis from 0.4 to 70 and the scale of y-axis 

from 0.0008 to 3. The plots are shown in the following 

Before going into observations, the average SNR can be calculated as follows 

The mean photon number 〈𝑁〉 of light source is given by ∑ 𝑃𝑛𝑛 ≡ 𝑛̅𝑛 ,                     (5.1) 

The variance 〈∆2𝑁〉 is given by 

(𝑛2̅̅ ̅ 〈𝑇2〉

〈𝑇〉
− 𝑛̅2 〈𝑇2〉

〈𝑇〉
) + 𝑛̅(1 −

〈𝑇2〉

〈𝑇〉
),         (5.2) 

Where 〈𝑇〉 = ∑ 𝑇𝑥𝑥  

Figure 14. Comparative analysis of different algorithms by considering different light 

sources for a gray scale object (SNR Vs RMSE). 
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〈𝑇2〉 = ∑ 𝑇𝑥
2

𝑥

 

For binary object (OU logo), 〈𝑇〉 = 〈𝑇2〉 

The average SNR is given as 

𝑎𝑣𝑔〈𝑆𝑁𝑅〉 ≡
〈𝑁〉

√〈∆2𝑁〉
=

𝑛̅

√(𝑛2̅̅ ̅̅ 〈𝑇2〉

〈𝑇〉
−𝑛̅2〈𝑇2〉

〈𝑇〉
)+𝑛̅(1−

〈𝑇2〉

〈𝑇〉
)

 ,  (5.3) 

where 𝑛2̅̅ ̅ ≡ ∆2𝑛 + 𝑛̅2 

The above equation can be simplified as 

𝑎𝑣𝑔〈𝑆𝑁𝑅〉 =
𝑛̅

√(∆2𝑛
〈𝑇2〉

〈𝑇〉
)+𝑛̅(1−

〈𝑇2〉

〈𝑇〉
)

,      (5.4) 

where ∆2𝑛 is the variance of photon number of light sources 

The valuable observations made from the graph in Figure 14 are: 

1. The common observation is that, higher the average SNR, the better the 

reconstructed image quality (i.e., low RMSE). 

2. Gaussian (represented by ‘o’), Poisson noise (represented by ‘x’) and Fock state 

(represented by ‘square’) perform almost the same way for all the algorithms. 

3. In the case of squeezed light (represented by ‘.’), we have considered 𝑟 ∈

[0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5]. As average SNR depends on the mean 

photon number and squeezing parameter in squeezed light, we see that some 

dotted points are plotted for average SNR beyond the value of average SNR ≅ 

33. In addition, the graph shows that the squeezed light performs almost the 

same as with Gaussian, Poisson and Fock for all the algorithms. Note that, we 

did not differentiate several values of 𝑟 in the above graph. 
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4. The RMSE values of MP (represented by black color), GPSR (represented by 

red color) and TwIST (represented by green color) algorithms ‘decrease 

linearly’ with increase in average SNR. There comes a point beyond average 

SNR ≅ 33, where the RMSE values become saturated. 

5. The RMSE values of OMP (represented by blue color) algorithm decrease 

linearly until a certain point of average SNR ≅ 12, and then there is steep 

decrease in the RMSE values beyond average SNR ≅ 12 with increase in 

average SNR. 

6. The RMSE values of TSWCS-MCMC (represented by magenta color) algorithm 

show better results compared to other algorithms in low photon regime. Its 

RMSE values decrease linearly until a certain point average SNR ≅ 9, and then 

there is a steep decrease in the RMSE values beyond average SNR ≅ 9 with 

increase in average SNR. 

7. Since all the algorithms mentioned in this thesis are designed for Gaussian noise 

model, the Gaussian noise perform well in terms of low RMSE compared to 

other noise cases for gray scale object. 

As we have already mentioned that higher the average SNR, the better the image quality 

(low RMSE). This means that all the algorithms should have linear decrease in the 

RMSE values with increase in average SNR. However, two algorithms i.e., OMP and 

TSWCS-MCMC stand out, as their plot is not linearly decreasing with increase in 

average SNR.  

For a particular mean photon number in squeezed light case, the SNR value 

varies with the squeezing parameter i.e., SNR increases with increase in the squeezing 
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parameter until a certain point in the squeezing parameter data set and then the SNR 

decreases beyond that squeezing parameter. This means that the RMSE decreases with 

increase in squeezing parameter until a certain point and then the RMSE value increase 

beyond that squeezing parameter. 

The results of reconstructed image (in low, low-mid level, high photon regime) 

are shown for different algorithms and for different light sources in the following 
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Figure 15. Gray scale object reconstructed with ¼ samples having mean photon number 1, 

100 and 1000 respectively in the presence of Gaussian noise 
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Figure 16. Gray scale object reconstructed with ¼ samples having mean photon number 

1, 100 and 1000 respectively in the presence of Poisson noise 
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Figure 17. Gray scale object reconstructed with ¼ samples having mean photon 

number 1, 100 and 1000 respectively for Fock states. 
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Figure 18. Gray scale object reconstructed with ¼ samples having mean photon 1, 60 and 

500 respectively for the given squeezed light source 
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6. Conclusions and Future work 

6.1 Conclusion 

In this thesis, we have described CS recovery algorithms (Greedy, Thresholding 

and Bayesian algorithms) in the presence of different light sources (Fock, Gaussian, 

Poisson and squeezed light) by considering their photon statistics. We have not 

considered Thermal noise, as its SNR is always less than 1 (higher noise level). The 

simulated results were obtained for the two different images (OU logo and Indorre), that 

are reconstructed with ¼ samples (less than Nyquist rate).  

The modified single pixel camera setup having two photon detectors (see Figure 

6) is implemented in a simulated environment to reconstruct an image with less number 

of samples. Since the image size is 128 × 128 pixels, the computational time required 

for reconstructing an image for different SNR levels for GPSR and TSWCS-MCMC 

algorithms is larger than other algorithms. Though the computational time is larger for 

GPSR and TSWCS-MCMC algorithms, they are especially good for image 

reconstruction (very low RMSE) without addition of noise.    

Generally, the higher the number of photons, the better the reconstructed image 

quality. This means that the RMSE values have power law with number of photons.  

From the results in figure 9 and 14, we see that two algorithms (OMP and TSWCS-

MCMC) differ linearity compared to other algorithms.  

In the case of squeezed light, we know that SNR depends on the mean photon 

number and the squeezing parameter. For a particular mean photon number, the SNR 

value varies with the squeezing parameter i.e., SNR increases with increase in the 

squeezing parameter until a certain point in the squeezing parameter data set and then 
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the SNR decreases beyond that squeezing parameter. This means that the RMSE 

decreases with increase in squeezing parameter until a certain point and then the RMSE 

value increase beyond that squeezing parameter. 

     In a low photon regime, we see that the detection of binary and gray scale object are 

almost similar in the presence of noise.  

6.2 Future Work 

In this thesis, we have used modified CS- single pixel camera in the simulation 

environment by taking Rademacher distribution (+1 and -1) for sensing matrix. The 

immediate future work is to implement different light sources in Bayesian framework of 

compressive sensing etc. In addition, the expander graphs for sensing matrix are 

considered for different light sources for comparative analysis.   

As we know, many CS recovery algorithms are designed by considering 

Gaussian noise model. The Matlab codes for CS recovery algorithms can be 

downloaded from https://sites.google.com/site/igorcarron2/cs#reconstruction. However, 

many applications consist of counting of discrete events, which cannot be modelled 

using Gaussian noise model. Instead, the Poisson noise model is required. The results 

obtained for different light sources by studying photon statistics would help in 

designing generalized compressive imaging framework that incorporates photon 

statistics.  

 

 

 

 

https://sites.google.com/site/igorcarron2/cs#reconstruction


59 

 

References 

[1] E. J. Candè and M. B. Wakin, "An introduction to compressive sampling," 

Signal Processing Magazine, IEEE, vol. 25, pp. 21-30, 2008. 

 

[2] D. L. Donoho, "Compressed sensing," Information Theory, IEEE Transactions 

on, vol. 52, pp. 1289-1306, 2006. 

 

[3] P. Zerom, K. W. C. Chan, J. C. Howell, and R. W. Boyd, "Entangled-photon 

compressive ghost imaging," Physical Review A, vol. 84, p. 061804, 2011. 

 

[4] O. Katz, Y. Bromberg, and Y. Silberberg, "Compressive ghost imaging," 

Applied Physics Letters, vol. 95, p. 131110, 2009. 

 

[5] D. Ma, Z. Yu, J. Yu, and W. Pang, "A novel object tracking algorithm based on 

compressed sensing and entropy of information," Mathematical Problems in 

Engineering, vol. 2015, 2015. 

 

[6] C. Chen and J. Huang, "Compressive sensing MRI with wavelet tree sparsity," 

in Advances in neural information processing systems, 2012, pp. 1115-1123. 

 

[7] Z. T. Harmany, R. F. Marcia, and R. M. Willett, "This is SPIRAL-TAP: Sparse 

Poisson intensity reconstruction algorithms—theory and practice," Image 

Processing, IEEE Transactions on, vol. 21, pp. 1084-1096, 2012. 

 

[8] J. Bioucas-Dias and M. Figueiredo, "TwIST: Two-step iterative 

shrinkage/thresholding algorithm for linear inverse problems," ed: Feb, 2014. 

 

[9] S. G. Mallat and Z. Zhang, "Matching pursuits with time-frequency 

dictionaries," Signal Processing, IEEE Transactions on, vol. 41, pp. 3397-3415, 

1993. 

 

[10] M. A. Figueiredo, R. D. Nowak, and S. J. Wright, "Gradient projection for 

sparse reconstruction: Application to compressed sensing and other inverse 

problems," Selected Topics in Signal Processing, IEEE Journal of, vol. 1, pp. 

586-597, 2007. 

 

[11] L. He and L. Carin, "Exploiting structure in wavelet-based Bayesian 

compressive sensing," Signal Processing, IEEE Transactions on, vol. 57, pp. 

3488-3497, 2009. 

 

[12] G. Rath and A. Sahoo, "A comparative study of some greedy pursuit algorithms 

for sparse approximation," in Signal Processing Conference, 2009 17th 

European, 2009, pp. 398-402. 



60 

[13] M. Fox, Quantum Optics - An Introduction. 

 

[14] E. J. Candès, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact 

signal reconstruction from highly incomplete frequency information," 

Information Theory, IEEE Transactions on, vol. 52, pp. 489-509, 2006. 

 

[15] T. Tao. (2007). Open Question: Deterministic UUP Matrices.  

 

[16] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. (2008, 3). A simple 

proof of the restricted isometry property for random matrices.  

 

[17] Y. C. E. a. G. Kutyniok, Compressed Sensing Theory and Applications. United 

States of America. 

 

[18] A. A. Goldstein, "Convex programming in Hilbert space," Bulletin of the 

American Mathematical Society, vol. 70, pp. 709-710, 1964. 

 

[19] E. S. Levitin and B. T. Polyak, "Constrained minimization methods," USSR 

Computational mathematics and mathematical physics, vol. 6, pp. 1-50, 1966. 

 

[20] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, "Model-based 

compressive sensing," Information Theory, IEEE Transactions on, vol. 56, pp. 

1982-2001, 2010. 

 

[21] H. Ishwaran and J. S. Rao, "Spike and slab variable selection: frequentist and 

Bayesian strategies," Annals of Statistics, pp. 730-773, 2005. 

 

[22] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly, et 

al., "Single-pixel imaging via compressive sampling," IEEE Signal Processing 

Magazine, vol. 25, p. 83, 2008. 

 

[23] M. A. Neifeld and J. Ke, "Optical architectures for compressive imaging," 

Applied optics, vol. 46, pp. 5293-5303, 2007. 

 

[24] Overview of Digital Micromirror Device. Available: 

http://www.opticalsciences.com/dmd.html 

 

[25] Compressive Imaging: A New Single-Pixel Camera. Available: 

http://dsp.rice.edu/cscamera 

 

[26] T. Roelandts. (2014). Gaussian noise is added, Poisson noise is applied.  

 

[27] D. F. W. a. G. J. Milburn, "Quantum Optics ". 

 

[28] Fock States Available: https://en.wikipedia.org/wiki/Fock_state 

 

http://www.opticalsciences.com/dmd.html
http://dsp.rice.edu/cscamera


61 

[29] J. Fessler, Chapter6  X-ray imaging: noise and SNR, 2009. 

 

[30] Squeezed Light. Available: http://www.squeezed-light.de/ 

 

[31] H. ARNOLDUS and T. GEORGE, "Conditions for sub-poissonian photon 

statistics in phase conjugated resonance fluorescence," Optics communications, 

vol. 87, pp. 127-133, 1992. 

 

http://www.squeezed-light.de/

