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Abstract 

An important factor in life expectancy of concrete bridges is the effect of corrosion of 

reinforcing steel on concrete and appurtenant embedded materials. New bridges, though 

continuously exposed to the elements, are expected to last roughly 75 years. Particularly 

important for aging infrastructure is determining methods to rehabilitate a structure 

where complete replacement may not be a feasible option. This research is intended to 

build on the current body of knowledge surrounding corrosion related deterioration of 

prestressed concrete girders due to extreme environments. Nine prestressed half-scale 

AASHTO Type II girders were constructed that replicated girders from a bridge 

recently taken out of service (from I-244 in Tulsa County), which was representative of 

a large number of aging bridges in the state of Oklahoma. Two different girder designs, 

corresponding to the different prestressing strand configurations used in the original 

bridge were utilized. One end region of each girder was exposed to a corrosion 

accelerant process, and three different exposures were used to illustrate varying 

environmental conditions. The end regions of six girders were shear tested, after 

damage by corrosion, to provide an understanding of the effects of end region 

deterioration on strand anchorage and shear capacity. Measured shear values were less 

than the nominal design shear capacity (ACI and AASHTO LFRD 2007 methods) for 

each girder. All of the girder ends that had been exposed to the corrosive environment 

had a larger measured shear than the control end, except for one girder (C2). Of the six 

shear tests on the corroded end of the girders, four resulted in slip of the prestressing 

strands prior to the initial crack of the beam. For the control end of the girders, all six 

shear tests illustrated cracking of the girder prior to the initiation of slip.  
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Concurrently with the lab experiments, this research included visiting and inspecting 

similar bridges as those used in the design for the lab experiment (prestressed concrete 

bridges with AASHTO Type II girders) to identify varying levels of deterioration due to 

corrosion. Over the course of 19 site visits, the following deterioration characteristics 

were identified: corroded bearing plates; corroded anchor bolts and nuts; spalling above 

the support; exposed rebar and prestressing strands; diagonal cracking of the back 

corner of the girder; vertical cracking along the girder and diaphragm interface; 

diagonal cracking from the top flange and web interface; and diaphragm deterioration. 

Together, the observations from the field inspections and the lab experiments were used 

to analyze existing retrofit methods and determine recommendations for in-situ 

rehabilitation for varying levels of deterioration. 

While the research does not provide a final solution, the results are expected to provide 

more breadth in our understanding of prestressed concrete, shear design, effects of 

corrosion and methods to rehabilitate aging infrastructure. 
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1 Introduction 

1.1 Prestressed Concrete 

Prestressed concrete can be traced back to the late 1800s, when P.H. Jackson received 

the very first patent in the United States for his prestressed concrete design (Dinges, 

2009). Five thousand miles away, also in the late 1800s, C.W. Doehring in Germany 

obtained a patent for prestressing slabs with metal wires (Nawy, 2010). Then in the 

1920s and 1930s, Eugene Freyssinet introduced the concept of utilizing high-strength 

steels for prestressed concrete design. In 1948, Gustave Magnel wrote the first book on 

prestressed concrete design (Dinges, 2009), and in the 20th century, American engineer 

T.Y. Lin greatly simplified the prestressed concrete design with his load-balancing 

method (Nawy, 2010). A number of other innovations were made in prestressed 

concrete construction throughout the 20th century and prestressed concrete girders are 

currently widely used for bridge construction in the United States. 

1.1.1 Differences between Prestressed Concrete and Reinforced Concrete 

Traditional reinforced concrete utilizes the best properties of both steel (tension) and 

concrete (compression) in structural systems to resist loading. The compressive strength 

of the concrete resists compressive stresses due to bending at the top of the component 

if the member is subjected to positive bending as shown in Figure 1. By itself, 

concrete’s low tensile strength causes the component (e.g., beam or slab) to crack when 

the tensile stresses introduced due to bending exceed the tensile capacity of the 

concrete, which can lead to sudden failure. To help the component resist tensile stress 

and cracking, reinforcing steel is placed at the bottom of the component as Figure 1 

illustrates in a theoretical interpretation of reinforced concrete beam design. 
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Figure 1. Typical reinforced concrete beam schematic (MIT OpenCourseWare, 2008) 

Prestressed concrete takes a more direct approach to resist loading. The theory of 

prestressed concrete relies on providing an internal bending counteractive to the 

bending caused by external loads. A prestressing force is created using high tensile 

strength strands in the longitudinal direction that are tensioned and then released to the 

concrete, thereby inducing a bending stress and curvature that counteracts bending from 

external loads. Prestressed concrete can be pre-tensioned (tensioning of the strands 

before the concrete sets) or post-tensioned (tensioning after the concrete sets) to create 

the required prestressing force. When the component is loaded, the component 

theoretically returns to a straighter shape. The induced compressive stress from the 

prestressing force also contributes to the beam’s shear capacity. Figure 2 illustrates a 

theoretical interpretation of prestressed concrete beam design. 

 

Figure 2. Typical prestressed concrete beam schematic (MIT OpenCourseWare, 2008) 
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In principle, prestressed concrete differs from reinforced concrete in its ability to 

influence a system’s properties (e.g., flexible/rigid) without altering its strength. A 

prestressed member requires roughly 20% less depth and reinforcement than a 

comparably designed reinforced concrete member with the same design strength 

(Nawy, 2010). The reduction in size of members reduces the weight of the structure and 

the required size of foundations. Prestressed concrete has also been found to have a 

lower lifetime cost due to reduced maintenance costs (e.g., fewer joints) (Nawy, 2010). 

The advancement in high strength steel strands has led to a substantial growth in the 

field of prestressed concrete. Prestressed concrete is used in buildings, tanks, oil drilling 

platforms, power stations, and bridges. The lighter foundations and longer spans 

associated with prestressed concrete provide more flexibility in design when compared 

to typical reinforced concrete. Nawy (2010) states that “very large spans such as 

segmental bridges or cable-stayed bridges can only be constructed [with concrete] 

through the use of prestressing.” 

1.2 Relevance of Research 

For prestressed concrete girders, the end zones play an integral part in the overall 

function of the design. In the end zones of pretensioned girders, the load is transferred 

to the beam through bond between the prestressing strands and the concrete. This force 

distribution process, coined the prestress transfer, requires higher concentrations of mild 

steel reinforcement in the end zone region to resist bursting stresses resulting from the 

prestress transfer as well as high shear loading. Along with being important for the 

prestress transfer process, the end zone region is subjected to the largest shear demand. 

Finally, the end zone regions are subjected to high compressive stress resulting from the 
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prestressing force, specifically areas past the transfer length where the full prestress is 

applied, since the moments due to dead load in these regions are small. 

Bridges designed 30-50 years ago typically used the American Association of State 

Highway and Transportation Officials (AASHTO) Standard Specifications to design 

prestressed girders. In the past, AASHTO recommended a “quarter-point rule” for shear 

design, which often produced a less conservative design than the current specifications. 

The “quarter point rule” considered the critical section for shear to be at a quarter (1/4) 

of the span length, and all sections between the end and the quarter point were designed 

using the applied shear from the quarter point. The current AASHTO Load and 

Resistance Factor Design (LRFD) Specifications are more conservative and specify that 

the critical section for shear be closer to the supports than the quarter-point of the span 

(e.g., h/2, h/8). This change in design codes has a large impact on shear demand from 

the quarter span point to the nearest end. Thus the shear capacity in the end zone 

regions of older bridges are influenced by the previous, less conservative design code. 

Figure 3 illustrates an example of the shear diagram for a simply supported beam with 

an applied distributed load; the span points h/2 and L/4 are highlighted to illustrate the 

difference in applied shear at critical locations for shear design. 
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Figure 3. Shear diagram of distributed load on a simply, supported beam 

Practicing engineers should be extremely mindful of the operation and maintenance of a 

structure when designing. Prestressed concrete girders require high percentages of mild 

steel reinforcement in girder end zones to resist shear loading and bursting stresses from 

the prestress transfer. These regions are particularly important because any damage in 

this region could have a lasting impact on the girder’s overall strength as well as shear 

capacity. The girder end zone region’s high percentage of steel provides more 

susceptibility to corrosion since this region is often near the joints of the bridge deck 

which provides a path for seepage and chlorides from deicing salts to reach the girder 

ends. 

As our population increases, city planners and engineers are tasked with creating and 

maintaining infrastructure capable of withstanding the increase. Naturally, one can 

engineer for capacity or human-induced actions. It is more difficult to properly plan and 

engineer for the natural environment and human-actions taken as a result of the 
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environment. New bridges, though continuously exposed to the elements, are expected 

to last approximately 75 years. An important factor in life expectancy of concrete 

bridges is the effect of corrosion on concrete and appurtenant embedded materials. 

Corrosion can quickly deteriorate a structure, causing it to lose its strength and designed 

purpose. Corrosion in the aforementioned end zone regions has the potential to affect 

shear capacity through deterioration of the concrete and affecting the transfer of 

prestress by decreased bonding between the strands and the concrete. 

Corrosion is the natural process by which metals are drawn to exist in their more-natural 

metallic compound state (e.g., oxide). In order for corrosion to take place there are three 

necessary components: an electrolyte, oxygen, and a material capable of supplying 

electrons. The reaction typically starts at the surface of the metal; there is a visible 

aspect of corrosion typically described as rusting. Once the steel embedded in concrete 

begins to corrode, and deteriorate, it typically expands since the corrosion products 

occupy a larger volume than the original metal. That expansion causes cracking which 

allows the steel to be exposed to even more elements (e.g., air, water) to further 

accelerate the corrosion process. Corrosion impacts the concrete member in many ways, 

with one being the loss of strength of the steel embedded in the concrete as it 

deteriorates. It is important to note that corrosion of steel occurs fastest in steel that is 

stressed (i.e., has a load on it). In order to prevent corrosion, many structures are now 

coated with materials to prevent/delay the ability of the corrosion process to occur. In 

the mid-1900s, an epoxy was not applied to reinforced steel, and almost certainly never 

applied to prestressed strands. 
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Along with natural impacts to our infrastructure, nationwide, it is simply aging. Much 

of the infrastructure was constructed over 65 years ago, and is now nearing the end of 

its expected design life. Increased scrutiny on public spending, along with the 

magnitude of concerns (i.e., deterioration of, and increased demand on infrastructure), 

creates a disastrous recipe when considering replacement of much of the aging 

infrastructure. In order to still be effective, planners are looking at rehabilitation as the 

best option, especially in a climate not very supportive of large-scale, large-dollar 

replacement projects. 

The ability to better design structures to mitigate the effects of corrosion is important. 

However, in order to do so, more research is necessary on prestressed concrete and 

corrosion, and opportunities are needed to perform in-situ rehabilitation. The research 

described in this thesis is intended to expand on the current body of knowledge 

surrounding corrosion of prestressed concrete girders due to extreme environments, 

with particular focus on how end zone deterioration ultimately affects the girder’s shear 

capacity.  
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2 Literature Review 

2.1 Corrosion and Concrete 

For decades, engineering researchers have been developing methods to mitigate the 

occurrence and effects of corrosion in prestressed concrete structures. As defined by 

Fasl et al. (2016), “corrosion is an electrochemical process that causes localized or 

uniform section loss in a metallic element, reducing the element’s cross-sectional area 

and overall strength.” Corrosion of steel in concrete, as discussed, can cause many 

concerns including cracking, delamination, and spalling of the concrete. In perfect 

conditions, the steel embedded in concrete is protected from elements causing corrosion 

by the alkalinity of the surrounding concrete. However, the following are major factors 

that influence the susceptibility of steel to corrosion: permeability of the concrete, 

degree of cracking, drainage, environmental conditions, surface treatment, structural 

geometry, concrete quality, and concrete cover (Basham, 2015; Coggins & French, 

1990). According to Chou and Hover (1987), industry and governing bodies in building 

codes and specifications reflect this concern by requiring concrete cover and chloride 

control. One major consequence of corrosion in concrete is the potential for reduction of 

the live load capacity. This capacity is impacted by both the reduction of the steel cross-

section and loss of bonding between the concrete and steel. In a study focused on 

deterioration of prestressed concrete bridge beams, Bruce et al. (2008) concluded that 

corrosion in prestressing strands reduces the structural performance of a beam faster 

than corrosion exhibited in conventional reinforced beams because a larger proportion 

of the steel cross-section is lost. Szilard (1969) emphasized that prestressing steel is also 

subjected to significantly higher stresses with smaller diameters in relation to 

conventional reinforcement. 
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Vu et al. (2005) found that concrete cover and w/c were good predictors for 

performance of chloride contaminated concrete related to cracking. The researchers 

found that generally “the rate of crack propagation decreases as concrete quality 

increases.” 

2.2 Susceptibility of Bridges to Corrosion 

Chlorides are particularly damaging for concrete and appurtenant embedded materials. 

Mukherjee and Rai (2009) state that “corrosion of steel reinforcement, both prestressing 

tendons and non-prestressed rebars, caused by infiltration of de-icing agents, is one of 

the primary sources of a structure’s deterioration.” Song and Shayan (1998) 

hypothesized that chlorides could be introduced to concrete through some of the 

following methods: use of chloride as an accelerant; use of water containing chloride, 

contaminated aggregates, sea salt spray; and use of chemicals and de-icing salts. A 

survey of bridges used in salt de-icing environments illustrated that the majority of 

chloride-induced corrosion over time was due to “chloride-laden water” from the bridge 

deck that trickled through expansion joints, cracks in the deck concrete overlay, and 

inadequately designed concrete cover (Novokshchenov, 1989).  Smith and Virmani 

(2000) of the Federal Highway Administration noted the ability to minimize the number 

of deck joints as a means to reduce the availability of seepage paths for chlorides to 

reach a bridge’s superstructure and substructure. The report notes that “bridges as long 

as 850 m (2800 ft) have been constructed without joints except at the abutments” (Smith 

& Virmani, 2000). This provides evidence that the 21st century design engineer must 

take care to not only create a beautiful system, but one that will also stand the test of 

time and the environment. 
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While researching chloride ion distribution in 20-year-old prestressed concrete girders 

in Minnesota, Coggins and French (1990) found that the only evidence of strand 

corrosion was observed at the ends of the beams. In these cases, “the mortar coating had 

spalled from the strand ends due to weathering or drainage at the deck joints.” They also 

found that chloride levels were higher on the side of interior beams facing oncoming 

traffic than exterior beams of the same direction through a detailed examination and 

performing a chloride ion penetration analysis on samples from girders (Coggins & 

French, 1990). The authors concluded that girders facing oncoming traffic contained 

greater concentrations of chlorides since “oncoming traffic carries salts toward the 

bridge in a mist or spray form.” The authors attributed the exterior beam to have lower 

chloride concentrations due to the salts being washed away from the exposed face by 

rain. 

2.3 Reduced Capacity of Corroded Members 

Several recent studies have investigated the capacity of decommissioned bridge beams 

with corrosion damage. Rogers et al. (2012) performed destructive tests on 19 

decommissioned pretensioned concrete bridge beams from a 1969 bridge that had 

corroded pretensioned reinforcement. The researchers found that the 40-year old beams 

exhibited chloride-induced corrosion from sea spray. The results from the destructive 

tests indicated that “the most severely corroded beam sustained 69% of the load of an 

equivalent good-condition beam.” ElBatanouny et al. (2014) found that pitting 

corrosion in prestressed strands caused a reduction in residual capacity in only 140 days 

- concluding that crack width was an important factor in “the formation and intensity of 

pitting in terms of pit depth.” By load testing, ElBatanouny et al. found that the most 
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corroded member had a tested capacity of 86.7% when compared to the original control 

specimen. 

Pape and Melchers (2013) found that as the degree of corrosion loss in the prestressing 

strands increased, then the maximum capacity of the girder decreased linearly. In 

determining the performance of three 45-year-old corroded prestressed concrete beams, 

the researchers concluded that using current design theory, estimated material 

properties, and neglecting cracking and corrosion damage, ultimately overestimates the 

actual capacity of the beams. In one beam, Pape and Melchers found that a 64% loss in 

prestressing cross-sectional area due to corrosion at the failure location contributed to a 

49% reduction in original, theoretical design capacity. 

Cai and Miao (2015) state that load capacity degradation is “due to the increasing age of 

the structural components and the aggressive environment bridge structures are exposed 

to.” Abosrra et al. (2011) found that the first day of corrosion acceleration caused a 

slight increase in steel/concrete bond strength, but after 7 and 15 days of corrosion 

acceleration, there was significantly reduced steel/concrete bond strength. 

2.4 Factors Influencing Shear Capacity 

As stated in the introduction, for prestressed concrete girders, the end zones play an 

integral part of the overall function of the design. The end zone regions are where the 

prestress transfer from the steel to the concrete takes place. The prestress changes the 

stress state in the concrete, and as a result the prestress ultimately affects the shear 

capacity. The transfer length defines the extent of the bonding between the concrete and 

prestressing strands where less than the full prestress is applied to the beam. This 

transfer length, should it be reduced, could have adverse impacts on the shear capacity 
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by changing the state of stress from that which was used to calculate the shear capacity 

at a given section. Also in the end zone regions, it is typical to have transverse steel 

reinforcement stirrups that provide additional shear capacity. Ultimately, corrosion 

impacting the bonding of the prestressing strands in this region, or the deterioration of 

the transverse steel, can reduce the shear capacity of the girder. 

2.5 Effect of Cracking at the End of Prestressed Members 

During fabrication of prestressed concrete girders, there arises the possibility for 

cracking at the ends of the members when tensile stresses caused by the prestress force 

exceed the tensile strength of the concrete. A study performed for the Oklahoma 

Department of Transportation (ODOT) described “Y” cracking of the bottom flange to 

be the most serious form of end-region cracking. “Y” cracks are described as splitting 

cracks that “form at or near the bottom flange-web interface and are oriented vertically 

at the end face of the girder” (Merrill et al., 2005). Figure 4 is an example of “Y” cracks 

on the end face of a girder. 

 

Figure 4. Example of "Y" cracks 
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The report states that “Y” cracks result from a “combination of lateral eccentricity of 

prestressing force and propagation of horizontal web-splitting cracks”, which “create 

planes of weakness adjacent to columns of prestressing steel ends in the bottom flange.” 

The report also states that “quantification of the increase in transfer length or corrosion 

of reinforcement due to end-region cracking has proven difficult, as have the in-place 

effects of such corrosion on structural capacity.” The literature review for this study 

showed that “debonding up to 25 percent of strands has the most significant effect on 

reducing end-region stress concentration and “Y” cracking.” The behavior of end zones 

is of interest, as other state DOTs are investigating cracking at prestressed girder ends 

(Transportation Research Board, 2016). 

The ODOT study also found that end-region cracking that parallels the prestressed 

reinforcement “is more likely to affect structural capacity than cracking perpendicular 

to the reinforcement” (Merrill et al., 2015). The authors go on to state that loss of 

confining bond, leads to “longer transfer length or increased strand corrosion along the 

crack.” Researchers found that corrosion of primary bottom prestressing strands was 

more likely to affect structural capacity than corrosion of draped strands or mild steel 

reinforcement. The greatest amount of moisture from deicing salts typically drips onto 

the girder end face. 

2.6 Methods to Repair and Strengthen Prestressed Concrete Girders 

It is particularly important for maintenance of aging infrastructure to determine 

rehabilitation methods for a structure when complete replacement may not be a feasible 

option. As stated by Cai and Miao (2015), bridges are the “backbones of the highway 

system [and] must be maintained and preserved to ensure safety to the traveling public.” 
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Almusallam (2001) stated that the “degree of reinforcement corrosion and the resulting 

decrease in the load-carrying capacity of both steel bars and the structural component 

need to be evaluated to assess the residual strength of concrete and formulate repair 

strategies.” The NCHRP 654 report recommends that cracks less than 0.012 inches 

width need not be repaired, with incremental repair strategies for cracks of widths 

greater than 0.012 inches. Those repair strategies could include epoxy injection and 

application of surface sealants. However, the NCHRP 654 report recommends 

“different acceptable crack widths based on severity of the bridge’s exposure 

conditions, with a width limit of 0.007 inches in girders subject to deicing chemicals.” 

Ideally, before repair, one would want to know how to prevent an issue with their 

infrastructure.  In general, corrosion prevention methods can be divided into electrical 

and non-electrical methods. Pritzl et al. (2014) consider non-electrical methods to 

include “coatings, sealers, and corrosion inhibiting admixtures.” The researchers stated 

that cathodic protection is an electrical approach “that can be used to prevent corrosion 

by shifting the reinforcing steel into a protected state.” Pritzl et al. found that “surface 

treatments (coatings) applied to the end zones of precast/prestressed concrete bridge 

girders at the time of construction can successfully prevent beam end corrosion.” 

Darwin et al. (2002) found that methods to reduce corrosion of reinforcing steel were 

divided into two categories: methods that slow the initiation of corrosion, and methods 

that lengthen the corrosion period. Darwin et al. defines the corrosion period as “the 

time between the initiation of corrosion and the end of service life.” The primary 

corrosion protection systems used for bridges have involved epoxy-coated 

reinforcement, and increased cover over reinforcing bars since the mid-1970s (Darwin 
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et al., 2012). Mukherjee and Rai (2009) proposed that replacing metallic reinforcement 

and strands with fiber reinforced polymer (FRP) materials may be a more positive 

solution. The researchers state that FRP materials “significantly increases the bridge 

life” and the increased costs of the non-metallic reinforcement may be justified. 

One repair material that has proven successful for repair of structural damage is FRP. 

Some of the major benefits of FRP include: “high strength to weight ratio, high fatigue 

endurance, excellent corrosion resistance, low thermal expansion, and the ease of 

fabrication, manufacturing, handling, and installation” (Cai and Miao, 2015). FRP is 

available in many forms, the two most common are laminates and bars. Cai and Miao 

found that structural systems strengthened with externally bonded FRP laminates 

“combine the benefits of mechanical properties of FRP composites, the compressive 

characteristics of concrete, and the ductility and deformation capacity of steel” – 

thereby improving the load capacity of the structure. A technical bulletin by the 

International Federation for Structural Concrete discussed design advantages of using 

externally bonded FRP reinforcement in reinforced concrete structures. Those 

advantages included: delaying crack formation in the shear span, improving 

serviceability and durability due to reduced cracking, improving the shear resistance of 

members, and achieving “greater structural efficiency as the neutral axis remains at a 

lower level in the prestressed case” (International Federation for Structural Concrete, 

2001). 

ElSafty (2013) explored the potential of carbon fiber reinforced polymer (CFRP) 

systems for impact-damaged girders. While ElSafty was concerned with flexural 

capacity of impact-damaged girders, there is potential for the CFRP retrofit to improve 
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shear capacity of girders exhibiting induced deterioration as well. ElSafty concluded 

that CFRP systems “can be designed to restore lost flexural capacity, possibly enhance 

the original capacity and maintain the desired failure mode.” He concluded that the 

outcome of the project would contribute to “savings of millions of dollars in repairing 

damaged prestressed concrete girders.” 

Higgins et al. (2012) focused on the use of CFRP systems for increasing shear strength 

of reinforced concrete girders. They found that repair systems for shear using discrete 

CFRP strips “provided a significant increase in ultimate strength capacity compared to 

unrepaired members.” They also caution that repairing for shear using CFRP “must 

recognize the impact of the increased shear capacity on the flexural demands to prevent 

anchorage failures at poorly detailed flexural bar cutoff and anchorage locations.” 

Higgins et al. concluded that it was possible to increase a member’s shear strength using 

a “targeted repair approach applying CFRP material only to a critical section rather than 

over the entire member.” It was also concluded that the addition of longitudinal CFRP 

strips “did not increase shear capacity due to debonding and bending of fibers at the 

poorly constrained diagonal cracks.” 

CFRP U-wraps are another potential application of CFRP material for repair. CFRP U-

wraps are when the FRP is applied continuously around the sides and bottom face of the 

beam in a “U shape.” Ray et al. (2011) suggest that CFRP U-wrapped anchors should 

be placed close to the initiation point of debonding so that its resistance can be activated 

before significant debonding has occurred. The researchers include that debonding 

initiates from a flexural or flexural-shear crack that forms near the load application 
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point; the crack propagates downward at a 30 degree angle, where the U-anchor should 

be placed to maximize the total load-carrying capacity. 
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3 Experimental Design 

The literature review yielded the following conclusions: there are many factors that 

cause steel to be susceptible to corrosion – including cracking at the end of prestressed 

members during fabrication. Corrosion impacting embedded steel within concrete can 

affect the prestressed member’s live load capacity through deteriorated reinforcement 

steel, and can affect shear capacity through reduced bonding of prestressed strands and 

the concrete; however, there are methods to repair and strengthen prestressed concrete 

girders including those still in-service. 

This research effort intends to build on the existing body of literature by investigating 

the effect of varying levels of corrosion on shear capacity. The literature review also 

yielded that much of the focus on repair materials for prestressed concrete girders have 

been for maintaining flexural capacity, or for repairing damage to the girders from 

impacts. 

3.1 Objectives 

The goal of this research is to expand on the current body of knowledge surrounding 

corrosion of prestressed concrete girders due to extreme environments, with particular 

focus on how end zone deterioration ultimately affects the girder’s shear capacity. 

After examining the current literature available, four objectives were defined. A typical 

corrosion condition for a prestressed concrete bridge girder includes exposed and 

potentially visible delamination of reinforcement, and spalling concrete. One particular 

area of interest is how specific levels of corrosion in pretensioned girders affect 

different attributes of the structure (e.g. initial corrosion may affect the bonding of steel 

and concrete, while more advanced corrosion may impact the capacity of the 
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reinforcement steel itself). Based on this work it is believed that for aged infrastructure, 

repair and strengthening of members for shear capacity may be achieved with externally 

bonded fiber-reinforced polymer sheets. 

The objectives of the research were to: 

1. Conduct quantitative and qualitative analyses on the effect of end zone 

deterioration (i.e., corrosion-induced) on the prestress force and shear capacity. 

2. Conduct quantitative and qualitative analyses on the effect of end zone 

deterioration on bonding of the concrete and embedded materials. 

3. Develop a procedure for visual inspection of end regions of AASHTO girders, 

with recommendations on relating end region deterioration to reduced strength. 

4. Conduct quantitative and qualitative analyses on the effects of repair material on 

heavily corroded sections of members. Ideally, relating the necessary material 

for repair to the level of deterioration. 

3.2 Methodology 

This research project is divided into two sections: lab experiments and field inspections. 

Lab experiments to accelerate corrosion in girder end regions of prestressed concrete 

girders took place over the course of the research project. The prestressed girders used 

were approximately half-scale AASHTO Type II girders that replicate girders from a 

bridge taken out of service in 2013 (I-244 bridge over the Arkansas River in Tulsa 

County) and tested by other graduate students in the research group. This bridge was 

representative of a large number of aging bridges in the state of Oklahoma. Two 

different girder designs, corresponding to the different prestressing strand 

configurations used in the bridge were examined. Nine girders were constructed with an 
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emphasis on consistency with the original design and engineering properties. One end 

region of each girder was exposed to an accelerated corrosion process. There were three 

different levels of corrosion exposure applied to all nine girders to illustrate varying 

environmental conditions (e.g., 2 months of exposure to two girders to be tested in the 

deteriorated state and one to be retrofitted in a later effort). Six of the girders were shear 

tested with end zone deterioration, and a retrofit of fiber-reinforced polymer sheets was 

designed for the remaining three girders. For the six girders, the shear testing helps 

provide an understanding of the effects of end region deterioration on strand anchorage 

and shear capacity. Concurrently with the lab experiments, efforts were placed on 

visiting and inspecting similar bridges to those used in the research project (prestressed 

concrete bridges with AASHTO Type II girders constructed in the 1960s and 1970s) to 

identify varying levels of visible deterioration due to corrosion. Together, the 

observations from the field inspections and the lab experiments were used to analyze 

the effects of corrosion on ends of prestressed, precast concrete girders to inform 

recommendations for in-situ rehabilitation based on the varying levels of deterioration. 

3.2.1 Laboratory Experiments 

For the laboratory experiments, the following occurred: construction of the prestressed 

concrete girders, end zone deterioration of those girders through the use of an 

accelerated corrosion setup, shear testing of the girders, and finally a discussion of a 

potential retrofit design option. 

3.2.1.1 Prestressed Concrete Girder Specimens 

The prestressed concrete girders were designed to be half-scale AASHTO Type II 

girders while maintaining similar properties (concrete compressive strength, stress state, 
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etc.) as the full-scale decommissioned I-244 bridge from Tulsa, Oklahoma. Since shear 

capacity in prestressed concrete beams is affected by the effective prestress, the beam 

designs were developed by determining the stress states for the full-scale 

decommissioned girders and adjusting the prestress configuration for the half-scale 

girders to obtain service level stress states equivalent to the full-scale girders within an 

acceptable range. Using a design spreadsheet based on the ACI and AASHTO methods, 

developed by another graduate student, the girders were designed through multiple 

iterations (Cranor, 2015). The girders were designed to replicate two girder designs, 

Beam “A” and Beam “C”, from the original design drawings of the decommissioned 

bridge. The design spreadsheet considered the concrete stress at release and in service. 

Reinforcing steel was also designed to follow the reinforcement configuration of the 

original Beam “A” and Beam “C” girders from the drawing set provided by the 

Oklahoma Department of Transportation (see appendix for rendering of Beam “A” and 

Beam “C”, as well as screenshots of the design for the girders constructed for this 

thesis). 

After many iterations, the half-scale girder design yielded the closest stress values when 

harped prestressing strands were used. However, the prestressing bed at Fears Lab 

placed limitations on construction that would prevent the ability to use harped 

prestressing strands. The girder designs were updated to account for different 

prestressing strands locations with emphasis on non-draped designs, transformed 

section calculations, and stress equivalence in the stress in service category. 

The final design included two ½ in. special strands located at 4 in. from the bottom of 

the section with a 186 ksi prestress for the “Girder A” design and two 0.6 in. strands at 
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4 in. with a 202.5 ksi prestress for the “Girder C” design, both using No. 3 shear stirrup 

bars. The design called for at least 2 in. of center-to-center spacing between the two 

prestressing strands. The design also considered pretensioned anchorage zones and 

consistent concrete-to-steel shear strength contribution ratios. For the full-scale Beam 

“A”, it was approximated to be 30% concrete to 70% steel, similarly, for the full-scale 

Beam “C” it was approximated to be 29% concrete to 71% steel. Using the design 

spreadsheet, the concrete-to-steel ratios were determined through determination of the 

transverse steel spacing and bar sizes. The concrete-to-steel strength contribution ratios 

at ¼ of the span from the support and h/2 from the support, the critical sections in the 

various design codes, are presented in Table 1 and Table 2. 

Table 1. Concrete-to-steel strength contribution ratios for Girder A design 

 Beam “A” 
(full scale 
ODOT) 

Girder A 
(half-scale test 

specimen) 
L/4 h/2 L/4 h/2 

Concrete 
Contribution 

31% 28% 26% 26% 

Steel 
Contribution 

69% 72% 74% 74% 

 

Table 2. Concrete-to-steel strength contribution ratios for Girder C design 

 
 

Beam “C” 
(full scale 
ODOT) 

Girder C 
(half-scale test 

specimen) 
L/4 h/2 L/4 h/2 

Concrete 
Contribution 

29% 29% 19% 18% 

Steel 
Contribution 

71% 71% 81% 82% 
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Also using the design spreadsheet, the girders were designed to have a stress state 

similar to the stress state of the original Beams “A” and “C” with a specific focus on the 

in-service compressive stress, which has the largest impact on shear capacity. The in-

service stresses were based only of the effects of prestress and dead load. Table 3 and 

Table 4 present the concrete stress values at release and in service. When the formwork 

for the girders was constructed, the depth of the girder was 4.5 in. greater than 

anticipated, which increased the stresses in the actual specimens. 

Table 3. Concrete stress values for Girder A design 

 
 

Beam “A” 
(full scale 
ODOT) 

Girder A 
(half-scale test 

specimen) 

Difference 
(%) 

Concrete Stress at Release 
f1 (ksi) -0.239 -0.056 76.5 
f2 (ksi) -1.151 -1.101 4.3 
 Concrete Stress in Service 
f1 (ksi) -0.450 -0.211 53.1 
f2 (ksi) -0.903 -0.896 0.8 

Note: f1 indicates the maximum stress at the section top, f2 indicates the maximum 
stress at the section bottom; (+) indicates compression, (-) indicates tension. 

 

Table 4. Concrete stress values for Girder C design 

 
 

Beam “C” 
(full scale 
ODOT) 

Girder C 
(half-scale test 

specimen) 

Difference 
(%) 

Concrete Stress at Release 
f1 (ksi) -0.268 -0.018 93.3 
f2 (ksi) -1.871 -1.604 14.3 
 Concrete Stress in Service 
f1 (ksi) -0.768 -0.176 77.1 
f2 (ksi) -1.31 -1.35 3.1 

Note: f1 indicates the maximum stress at the section top, f2 indicates the maximum 
stress at the section bottom; (+) indicates compression, (-) indicates tension. 
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Concurrently with the design of the prestressed concrete girders, the design and 

construction of the approximately 58 ft.-long prestressing bed at Fears Structural 

Laboratory occurred. Steel formwork was designed and fabricated for construction of 

the girders (see appendix for design and drawing of final girder section). The 

prestressing bed consists of two steel abutments bolted to the Fears Lab strong floor and 

a wooden platform for supporting the formwork. It was designed to cast up to 48 ft of 

beam at one time. The prestressing bed has a “dead end” for strand anchorage at the 

south which has no moveable parts, and a “live end” at the north where the prestress is 

applied. The live end prestressing abutment and the overall prestressing bed are shown 

in Figure 5. 

   

Figure 5. Prestressing Bed at Fears Lab 

The concrete mix utilized was identified from mixes considered technically comparable 

to the original concrete design used for the original girders based on compressive 

strength. The final mix design had a water/cement ratio of 0.37, no entrained air, and a 

theoretical unit weight of 150.9 lb/ft3.  

Table 5 presents the final proportions used for the concrete mix design. 
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Table 5. Mix proportions of the concrete at Saturated Surface-dry (SSD) condition 

Material Weight 
(lb/yd3) 

Cement 851 
Sand 1459 
Rock 1372 
Water 315 
Total 3997 

 

Concrete cylinder compression tests were performed for quality control purposes and to 

ensure the required compressive strength for the girders was achieved. The girders were 

cast using the prestressing bed over a period of five weeks. In total, ten, 18-ft long 

girders were cast: four using the Girder A design (only three were used however as 

there was a problem with consolidation of the first one cast), and six using the Girder C 

design. Three of the Girder C specimens were reserved for future retrofitting. The 

girders were cured for at least 28 days inside of Fears Lab and then taken outside in 

preparation for the accelerated corrosion setup, shown in Figure 6. 

 

Figure 6. Newly cast half-scale prestressed concrete girders 



26 
 

3.2.1.2 Corrosion Accelerant Setup 

After the girders were designed and cast, the next step was to begin the corrosion 

induced end-zone deterioration. As part of this effort, the corrosion accelerant process 

needed to be developed. Initially, a literature review was performed to understand 

chloride solutions successfully used in previous research, as well as the optimum 

duration for wet/dry cycles of chloride saturated water (e.g., 12 hrs. on/off vs. 2 hrs. 

on/off). Ultimately, a 5 percent by weight chloride solution was chosen and sodium 

chloride was used for the solution. A large plastic tub was selected to serve as a 

reservoir, from which a submersible pump was installed to pour the chloride solution 

over the end of the beams. Perforated plastic tubes were bonded to the beam ends 

approximately 6 in. from the beam ends. Four holes (3/32 in.) were drilled in the plastic 

tubes for each beam for the chloride solution to disperse over the beam ends. A valve 

was used to control the flow of the chloride solution through the perforated tubing. The 

final arrangement is shown in Figure 7. A cycle time of two hours on and two hours off 

was chosen based on the literature review, limitations of available timers, and to ensure 

drying between cycles.  

After 28 days of curing for all beams, the beams were subjected to the wet/dry 

accelerated corrosion process. The exposure process adhered to the following: 

a. Three girders, one from the Girder A and two from the Girder C reinforcement 

configuration, were subjected to the corrosion accelerant for two months. 

b. Two girders, one from the Girder A and one from the Girder C reinforcement 

configuration, were subjected to the corrosion accelerant for four months.  
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c. Three girders, one from the Girder A and two from the Girder C reinforcement 

configuration, were subjected to the corrosion accelerant for six months. 

d. One girder, from the Girder C reinforcement configuration, was subjected to the 

corrosion accelerant past six months, for a longer term exposure. 

 

Figure 7. Corrosion Accelerant setup (red arrows indicate the direction of flow from 
the perforated tubes) 

The corrosion exposure setup was monitored throughout testing to ensure a consistent 

concentration of chloride. The progress of the corrosion was monitored to determine 

whether other measures should be taken, such as, inducing cracking into the end zones 

of the members to facilitate more moisture movement or applying an electrical current. 

Ultimately, there were no deviations from the originally designed corrosion accelerant 

setup. Cracks occurred during fabrication of some of the girders (e.g., during the 

Perforated plastic tubes 

Reservoir 

Valve 
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prestress release). Before starting the acceleration corrosion process on the girders, pre-

existing cracks were recorded. 

3.2.1.3 Shear Testing of Corroded Specimens 

Following the accelerate corrosion period, each end of the exposed specimens was 

tested in shear. A three point bending setup using a hydraulic actuator to apply load to 

the girders was used to simulate the maximum shear stress at the critical section used 

for shear design, and the load point location was chosen to induce a bond-shear type 

failure. The opposite end of the beam from that being tested overhung the support to 

prevent damage during the first test. The critical section for shear was determined by 

using an “a/d” ratio of 2. The critical section is important in that it is the location where 

a shear failure is more likely to be created as opposed to a moment induced failure. The 

support was located 4 in. from the end of the beam and the center-to-center distance 

between the supports was 9 ft; leaving 8 ft-8 in. of overhang. A single point load was 

applied through a 6 in. wide plate, centered 41 in. from the end of the beam, using a 

hydraulic actuator. Sand was placed between the load plate and the beam to ensure 

uniform load distribution. The girders were loaded in 5000 lb increments before initial 

cracking, and 2000 lb increments after initial cracking to failure. 

Deflection at the load point was measured using wire potentiometers (wire pots) on 

each side of the beam, strand end slip was measured using linear voltage differential 

transformers (LVDTs) attached to the prestressing strands on the non-corroded end and 

placed touching the strand ends on the corroded end. Manual deflection measurements 

were also taken after each load increment using a steel ruler. Visual mapping of 

cracking was conducted during the testing by marking cracks with a permanent marker 
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and noting the load increments. Data was collected from all instruments during testing 

using a single data acquisition system. The data were used to compare the findings to 

the nominal design/theoretical values calculated using the ACI and AASHTO LRFD 

codes and to identify the failure mechanism. The results of tests of the undamaged ends 

of the girders were compared to tests of the corroded girder ends to identify differences 

in performance. Figures 8 – 14 illustrate the shear test setup. 

 

 

Figure 8. Shear Test Schematic (not to scale) 

 

Figure 9. Location of LVDTs on girders during shear testing 
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Figure 10. Shear Test Setup - LVDT 1 & 2 (A), Wirepots 1 & 2 (B), Supports at 9 ft. 
center-to-center (C), Single Load Point at 41 in. from end of beam (D), and 8 ft.-8 in. 
overhang of the beam (E) – looking towards the north 

 

Figure 11. Shear Test Setup - LVDT 1 (right) and LVDT 2 (left) – looking towards the 
north 

A 

B 

C

C 

D 
E 

A 
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Figure 12. Shear Test Setup - LVDT 3 & 4 (F) (foreground), load point, and supports 
(background) - looking towards the south 

 

Figure 13. Shear Test Setup - LVDT 3 (right) and LVDT 4 (left) - looking towards the 
south 

F 

F 
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Figure 14. Shear Test Setup - Wirepot 1 (left/west) and Wirepot 2 (right/east) - looking 
towards the north 

3.2.1.4 Retrofit of Remaining Corroded Specimens 

While outside the scope of this thesis, a retrofit will be designed for the three remaining 

corroded girders using fiber reinforced polymer sheets and the information collected 

during shear testing of the first six corroded girders as part of the larger research 

project. A literature review was performed on the products related to this topic and to 

determine the general types that are applicable to this research effort. After 

consideration, it is recommended that a Carbon Fiber Reinforced Polymer (CFRP) strip 

be applied to the ends of the girders – the location most critical to the shear strength. 

B 
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3.2.2 Field Data Collection 

The Oklahoma bridge inventory was surveyed using the National Bridge Inventory 

(NBI)1 and other available online resources to assess the current state of deterioration in 

concrete bridges and identify those that fit desired specifications for field visits. The 

construction period of the bridges to be investigated were 1960 through 1979 in order to 

match the full-scale decommissioned girders. Site visits to a representative sample of 

these bridges were conducted to verify and document the levels of end region 

deterioration in Oklahoma. Documentation and data were analyzed to identify common 

patterns, determine frequency of identified concerns, and ultimately, relate those 

identified concerns if possible to potential causes. 

3.2.2.1 Bridge Selections 

All 22,912 bridges in Oklahoma, as represented by the data provided from the Federal 

Highway Administration’s (FHWA) National Bridge Inventory (NBI), were filtered 

through to select bridges to inspect for this research effort. Using the FHWA’s 

Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation’s 

Bridges (e.g. (Features Intersected (6A)), bridges were selected using the following 

criteria: 

 Features Intersected (6A): Did not include bridges with “river” and “creek” 

 Construction Year (27): 1960-1979 

 Design Load (31): M13.5/H15, M18/H20 and MS18/HS20 (same loading as the 

decommissioned bridge) 

                                                 

1 http://www.fhwa.dot.gov/bridge/nbi.cfm 
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 Navigation Control (38): “N - Not Applicable, No waterway”  

 Structure Open, Posted, or Closed to Traffic (41): “A - Open, no restriction”   

 Type of Service under bridge: Highway, Railroad, Highway-Railroad 

 Structure Kind (43A): 5 - Prestressed Concrete 

 Structure Type (43B): 2 – Stringer/Multi-beam or Girder 

This criteria was used to remove bridges that were: not constructed of prestressed 

concrete, spanned over rivers and creeks, and thus were difficult to inspect, or were 

outside of the construction age this research intended to consider. The aforementioned 

criteria helped to narrow down the possible bridges to a more manageable 215 bridges. 

When considering the same design load as used for the decommissioned I-244 bridge in 

Tulsa County, the 116 listed in Table 6 remained, which is organized by Oklahoma 

Department of Transportation (ODOT) Field Division (see Figure 15). 

Table 6. Bridges considered for a site visit by ODOT Field Division 

ODOT Field 
Divisions  

Number of Bridges 
(Total – 116) 

1 19 
2 29 
3 1 
4 23 
5 1 
6 0 
7 8 
8 35 

 

In the field, preference was placed on visiting bridges with significant ratings (i.e. a 

lower) on the superstructure, or main load carrying system, of the bridge. The goal 

being to select, and inspect bridges with a variety of superstructure ratings. Per the 

Figure 15. Geographical location of
ODOT Field Divisions
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FHWA’s Recording and Coding Guide, the superstructure rating is intended to describe 

the physical condition of all structural members. The Guide states the structural 

members should be inspected for “signs of distress which may include cracking, 

deterioration, section loss, and malfunction and misalignment of bearings.” Also, 

bridges were pre-screened with available online resources (e.g., Google Maps) to 

determine potential traffic levels, and access issues. 

3.2.2.2 Picture Reference System 

Photos were taken of the overall bridge, each girder end, and any other pertinent 

locations for each bridge visited. These provided a visual record of the bridge condition 

at the time of the field visit. At each bridge, photos were taken of each girder end at the 

abutments along with any visual deficiencies such as cracking, spalling, and corroded 

bearing plates. For certain deficiencies to be more noticeable, a water bottle was used to 

spray the surface and highlight the area of concern. In order to have a uniform approach 

for referencing bridge locations, the following system was followed: 

 The first set of numbers (e.g. 16606) are always the NBI Structure #. 

 The girders are numbered in sequential order with the northernmost girder (for 

east-west bridges) or westernmost girder (for north-south bridges) as first. Since 

the spans are (almost) always the end spans of the bridge they are not numbered 

but rather signified by their direction. Photos were taken of each side of each 

girder end resulting in north/south or west/east side photos of each girder. 
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Figure 16. Bridge #18554, photo taken from northern side of the northernmost, west 
exterior girder 

In the example shown in Figure 16, “18554” is the NBI Structure #, “1W-N” means the 

picture is taken from the northern side (“N”) of the northernmost (“1”) girder on the 

western end (“W”) of the bridge. Figure 17 and Figure 18 illustrate the picture reference 

system in a plan view layout of typical multi-span, multi-beam bridges. 
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Figure 17. Plan view of an example north-south bridge using the picture reference 
system 

  

Figure 18. Plan view of an example east-west bridge using the picture reference system 



38 
 

4 Results and Analysis 

The following section presents the results from the testing and field studies performed 

as discussed in the Experimental Design section, and discuss the interpretation of those 

results. Shear testing of the girders is discussed first. The results vary by both girder 

design, and time exposed to the corrosion accelerant setup. Followed by a discussion of 

the results of the site visits associated with the field experiment/field data collection 

aspect of this project. Finally, there is a brief discussion regarding the visual 

deterioration seen in the lab experiments in comparison to the bridges seen in the field.  

4.1 Experimental 

4.1.1 Compressive Strength of Beams 

During the casting of the girders, cylinders were taken to perform compression tests at 

the following intervals: 1 day, 7 days, and 28 days. For each interval, three cylinders 

were tested, and the compressive strength was calculated as an average of the results 

from each cylinder test. Table 7 shows the average compressive strengths for each time 

interval for all nine girders. 

Table 7. Compressive Strength of Girders 

Girder Compressive Strength (psi) 
1 day 7 day 28 day 

A2 4,080  6,600  6,490  
A3 5,400  6,820  7,000  
A4 4,590  5,720  5,780  
C1 5,650  6,890  7,600  
C2 6,220  7,150  8,250  
C3 5,030  6,740  7,050  
C4 5,030  6,940  7,160  
C5 4,320  5,630  6,140  
C6 4,530  6,180  6,630 
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All of the measured compressive strengths were larger than the targeted compressive 

strength of 4,000 psi at prestress release (1-day). However, there is a large variation in 

the measured strengths, with the maximum value being more than 50% larger than the 

target. The compressive strength of Girder A4 was 4% less than the design compressive 

strength of 6,000 psi at 28-days. The remaining girders exceeded the design 

compressive strength but there was a large variation. The maximum value was 37% 

greater than the design compressive strength. The variation in compressive strength 

could affect the prestress transfer and development length, as well as the girder’s shear 

capacity. Larger compressive strengths would lead to shorter transfer and development 

lengths, and higher shear capacity. 

4.1.2 Shear Test 

The cracking load, and failure load were determined via the notes taken that day when 

testing, along with the load-deflection data provided from the data acquisition system. 

The locations of the LVDTs and wire pots are referenced in the Experimental Design 

section as Figure 8 and Figure 9 . Whenever the north side of the girders were tested 

LVDT 1 and 2 were not in use as the overhang did not allow for measuring the slip on 

that overhung end. 

For the discussion to follow, the location of the shear test is abbreviated as follows: first 

the girder (i.e., A4), then the end of the girder (i.e., north or south), and lastly if it is the 

“corroded end” then a “C” follows. The label for the end of the girder identifies the 

location in the prestressing bed which may affect transfer length. The label is also 

significant in that the accelerated corrosion process was not consistently applied on one 

directional end (i.e., not all of the girders were corroded on the north end of the girders). 
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As an example, in describing the south end corroded of Girder A4, the abbreviation is 

A4SC. A summary of the results of all shear tests is given in Table 8. The results of 

each test is presented in greater detail in the following sections. 

Table 8. Failure mechanisms of girders during shear test 

 Corrosion Accelerated End Control End 

2-
M

on
th

 T
es

ts
 

Girder A4 Bond-shear failure; slip 
before flexural cracking 

Bond-shear failure; 
flexural-shear cracking 
before slip 

Girder C1 Bond-shear failure; slip 
before web-shear cracking 

Bond-shear/flexure failure; 
flexural-shear cracking 
before slip; flange 
deterioration 

4-
M

on
th

 T
es

ts
 

Girder A3 Bond-shear failure; slip 
before flexural cracking 

Bond-shear failure; maybe 
flexural failure first; 
flexural-shear cracking 
before slip 

Girder C2 Bond-shear failure; slip 
before web-shear cracking 

Bond-shear failure; 
cracking before slip 

6-
M

on
th

 T
es

ts
 

Girder A2 Web-shear failure; flexural 
cracking initially 

Bond-shear failure; web-
shear cracking before slip 

Girder C3 Bond-shear/flexure failure; 
web-shear cracking before 
slip; concrete crushed at 
load point 

Bond-shear failure; web-
shear cracking before slip 

 

4.1.3 Two-month Shear Testing 

For the two-month shear testing of Girders A4 and C1, the corroded end of the girders 

had a higher failure load than the control ends. The control end of Girder A4 had a 

failure load of roughly 77% of the corroded end. For Girder C1, the control end failure 

load was roughly 83% of the corroded end failure load. 
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4.1.3.1 A4SC 

Initial photos were taken of the girder before the testing began (Figure 19). The shear 

loading increased in approximately 5 kips intervals, until flexural cracking occurred at 

approximately 41 kips. The girder was then loaded in 2 kips intervals until the girder’s 

failure at approximately 56 kips. A web shear crack appeared at the girder’s failure, and 

more cracks formed under continued load. The load vs. deflection graph (Figure 20) for 

this test illustrates that: the load-deflection relationship was mostly linear until the 

cracking load where the girder began to behave non-linearly; at the cracking load 

deflection was roughly 0.15 in.; at the failure load the deflection of the girder was 

approximately 0.36 in.; the girder had a maximum deflection of almost 0.6 in. 

 

Figure 19. Before shear testing of A4SC 
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Figure 20. Load vs. Deflection of A4SC 

The load vs. slip graph (Figure 21) shows that slip began simultaneously with the 

applied load. Results from LVDT 3 and 4 were removed from the graph because the slip 

was approximately zero for these strands. LVDT 2 had more slip than LVDT 1 as 

shown in Figure 22. As the graph illustrates more than approximately 0.08 in. of slip 

occurred before visible cracking of the girder began. The shear failure caused the slip to 

occur before the first flexural crack was visible. 

Figure 23 is a photo of the visual map of cracking that occurred during the shear testing 

of A4SC. 

Initial Crack 
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Figure 21. Load vs. Slip of A4SC 

 

Figure 22. Slip during (left) and after (right) shear test on A4SC (LVDT 2 (left) and 
LVDT 1 (right)) 

Initial Crack 
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Figure 23. Visual Map of Cracking for Shear Test on A4SC 

4.1.3.2 A4N 

The north end of the girder, the control end, was tested second. Initial photos were taken 

of the girder before the testing began (Figure 24). The cracking load, determined 

visually, occurred at approximately 41 kips. The girder was then loaded in a 2 kip 

interval when further cracking occurred at 43 kips, after which the beam could take no 

further load. The beam was continuously re-loaded up to 43 kips until it became 

apparent that the beam had failed. A flexural-shear crack was the first crack that 

occurred, then by 43 kips, multiple web shear cracks appeared along the beam. The load 

vs. deflection graph (Figure 25) for this test illustrates that: the load-deflection 

relationship was mostly linear until the cracking load where the load had quick decline; 
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the beam did not take much loading past 41 kips; at the cracking load the deflection was 

approximately 0.07 in.; the maximum deflection was roughly 0.58 in. 

The load vs. slip graph (Figure 26) shows that slip appears to have occurred after 

cracking, and thus did not contribute to the shear failure. Figure 27 illustrates the 

cracking along the girder. 

 

Figure 24. Before shear testing of A4N 
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Figure 25. Load vs. Deflection of A4N 

 

Figure 26. Load vs. Slip of A4N 

Initial Crack 

Initial Crack 
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Figure 27. Visual Map of Cracking for Shear Test on A4N 
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4.1.3.3 C1NC 

For Girder C1, the north end of the girder was tested first. The north end of the girder, 

was also the end exposed to the accelerated corrosion setup. Initial photos were taken of 

the girder before the testing began (Figure 28). Web-shear cracking occurred at 

approximately 45 kips from the bottom of the flange up towards the load point, and the 

beam failed at approximately 52 kips. The girder exhibited both horizontal and shear 

cracks, typically indicative of a bond failure. The load vs. deflection graph (Figure 29) 

for this test illustrates that: the load-deflection relationship was mostly linear until the 

cracking load where the beam began to behave non-linearly; at the cracking load the 

deflection was roughly 0.05 in.; the maximum deflection was approximately 0.64 in. 

The load vs. slip graph (Figure 30) shows the slip occurred at the same time the loading 

began. LVDT 3 and 4 were removed from the graph because the slip was approximately 

zero for these strands; LVDT 1 seemed to be out of range, and also did not measure any 

slip. Approximately 0.08 in. of slip occurred before visible cracking of the beam began. 

Figure 31 shows a visual map of the cracking that took place during the shear testing; 

again, there was both horizontal and shear cracks. The web-shear cracks had a width 

between roughly 0.25 in. wide and 0.35 in. wide. Figure 32 illustrates the visible slip of 

the strand measured by LVDT 2. 
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Figure 28. Before shear testing of C1NC 
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Figure 29. Load vs. Deflection of C1NC 

 

Figure 30. Load vs. Slip of C1NC 

Initial Crack 

Initial Crack 
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Figure 31. Visual Map of Cracking for Shear Test on C1NC 

 

Figure 32. Visible Slip (LVDT 2 - left) after Shear Test on C1NC 
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4.1.3.4 C1S 

The south end of Girder C1, the control end, was tested after the corroded end. Initial 

photos were taken of the girder before the testing began (Figure 33). Cracking occurred 

at approximately 28 kips, the girder was then loaded in 2 kip intervals when the beam 

failed at approximately 43 kips. A flexural-shear crack was the first crack that occurred, 

then by 43 kips, multiple web shear cracks, as well as a horizontal crack near the strands 

appeared along the beam. At the widest, the main flexural-shear crack was 

approximately 0.3 in. wide. The load vs. deflection graph (Figure 34) for this test 

illustrates that: the load-deflection relationship was mostly linear until the cracking 

load, and then the relationship became non-linear; the maximum deflection was 

approximately 0.7 in. 

The load vs. slip graph (Figure 35) shows that slip occurred after cracking, and thus did 

not contribute to the shear failure. The flange did separate at the stop as evident by   

Figure 36, so this could be a bond-shear/flexure failure. Figure 37 and Figure 38 

illustrate the visual map of cracking of the girder. 
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Figure 33. Before shear testing of C1S 

 

Figure 34. Load vs. Deflection of C1S 

Initial Crack 
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Figure 35. Load vs. Slip of C1S 

  

Figure 36. C1S upon completion of shear test 

Initial Crack 
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Figure 37. Visual Map of Cracking for shear test on C1S 
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Figure 38. Visual Map of Cracking for shear test on C1S 

4.1.4 Four-month Shear Testing 

For the four-month shear testing of Girder A3, the corroded end of the girder had a 

higher failure load than the control, or non-corroded end. However, for Girder C2, the 

opposite was true – the corroded end had a lower failure load than the control end. The 

control end however was tested first this time, as opposed to the previous tests. The 

control end of Girder A3 had a failure load of roughly 87% of the corroded end. For 

Girder C2, the non-corroded end failure load was roughly 122% of the corroded end 

failure load. 

4.1.4.1 A3SC 

For Girder A3, the south end of the girder was tested first. The south end of the girder 

was also the end exposed to the accelerated corrosion setup. Flexural cracking occurred 

at approximately 45 kips. The girder was then loaded in 2 kip intervals until the beam’s 
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failure at approximately 57 kips when a large web-shear crack appeared. The load vs. 

deflection graph (Figure 39) for this test illustrates that: the load-deflection relationship 

was mostly linear until the cracking load where the beam began to behave non-linearly; 

the deflection at the cracking load was approximately 0.07 in.; the maximum deflection 

was slightly more than 0.2 in. Figure 40, Figure 41, and Figure 42 illustrate the cracking 

of the girder during and after the shear test. 

The measured slip data was not conclusive, and therefore is not presented. 

 

Figure 39. Load vs. Deflection of A3SC 

Initial Crack 
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Figure 40. Web-shear crack on A3SC 
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Figure 41. Flexural crack on A3SC 
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Figure 42. Web shear and flexural cracks of Girder A3SC 

4.1.4.2 A3N 

For Girder A3, the north end of the girder, the control end, was tested after the corroded 

end. Cracking occurred at approximately 46 kips. The girder was then loaded in 2 kip 

intervals until further cracking occurred at 50 kips; much load was lost and the beam 

was reloaded when it failed completely at 41 kips. The load vs. deflection graph (Figure 

43) for this test illustrates that: the load-deflection relationship was mostly linear until 

the cracking load where the beam had a small deformation; the beam was reloaded until 

about 50 kips when more cracking occurred, as well as a larger deflection, and then the 

beam was loaded until it failed completely and was left with a maximum deflection of 

approximately 0.74 in. 
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The load vs. slip graph (Figure 44) shows that slip was not measured until after 

cracking, and thus did not contribute to the shear failure. A bond failure occurred as the 

strand slip was slightly greater than 0.4 in. Figure 45 shows the visual map of cracking 

of A3N. 

 

Figure 43. Load vs. Deflection of A3N 

Initial Crack 
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Figure 44. Load vs. Slip of A3N 

 

Figure 45. Visual Map of Cracking along A3N 

Initial Crack 
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4.1.4.3 C2NC 

For Girder C2, the north end of the girder was tested second. The north end of the girder 

was also the end exposed to the accelerated corrosion setup. Initial photos were taken of 

the girder before the testing began; a horizontal crack below the web/flange interface of 

the girder (Figure 46 and Figure 47) was observed. Failure occurred at approximately 

40 kips. A large web-shear crack appeared when the beam began to crack/fail, and 

widened and extended as additional load was applied. The load vs. deflection graph 

(Figure 48) for this test illustrates that: the load-deflection relationship was mostly 

linear until the cracking/failure load; there then was a long residual load curve; followed 

by a strange unloading curve. The maximum measured deflection for the girder was 

approximately 0.65 in. 

The data from LVDT 2 was unreliable, so the data is not presented (Figure 49). Strand 

slip could have contributed to the shear failure, as more than 0.05 in. of slip occurred 

before visible cracking of the beam began. Figure 50, Figure 51, and Figure 52 illustrate 

the visual map of cracking of the girder. 
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Figure 46. Initial photos of C2NC 

 

Figure 47. Horizontal crack below the web/flange interface of C2NC 
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Figure 48. Load vs. Deflection of C2NC 

 

Figure 49. Load vs. Slip of C2NC 

Initial Crack 

Initial Crack 
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Figure 50. Visual Map of cracking of C2NC 

 

Figure 51. Visual Map of cracking of C2NC 
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Figure 52. Visual Map of cracking of C2NC 

4.1.4.4 C2S 

For Girder C2, the south end of the girder, the control end, was tested before the 

corroded end. Cracking occurred at approximately 45 kips, and then the girder was 

loaded until failure at approximately 49 kips. The load vs. deflection graph (Figure 53) 

for this test illustrates that: the load-deflection relationship was mostly linear until the 

failure load; the beam was reloaded slightly until it was apparent that the beam had 

failed; there was a large residual capacity, with a maximum deflection of approximately 

0.7 in. 

The load vs. slip graph (Figure 54) shows the non-linear relationship between the load 

and measured slip. A bond failure occurred as the strand slip was slightly greater than 
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0.43 in. Slip appears to have occurred after cracking, and thus did not contribute to the 

shear failure. Figure 55 and Figure 56 show the visual map of cracking of C2S. 

 

Figure 53. Load vs. Deflection of C2S 

 

Figure 54. Load vs. Slip of C2S 

Initial Crack 

Initial Crack 
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Figure 55. Cracking of C2S 

 

Figure 56. Cracking of C2S  
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4.1.5 Six-month Shear Testing 

For the six-month shear testing of Girders A2 and C3, the corroded end of the girders 

had a higher failure load than the control ends. The control end of Girder A2 had a 

failure load of roughly 51% of the corroded end. For Girder C3, the control end failure 

load was roughly 51% of the corroded end failure load. 

4.1.5.1 C3NC 

For Girder C3, the north end of the girder was tested first. The north end of the girder 

was also the end exposed to the accelerated corrosion setup. Before shear testing, 

photos were taken to document the condition (Figure 57). Cracking occurred at 

approximately 45 kips, and the beam failed at approximately 53 kips. The load vs. 

deflection graph (Figure 58) for this test illustrates that: the load-deflection relationship 

was mostly linear until the cracking load; the cracking load caused a quick deflection of 

the beam; additional load caused a non-linear relationship between the load and 

deflection; the maximum deflection was recorded at slightly more than 0.5 in. 

The load vs. slip graph (Figure 59) shows slip occurring after cracking of the girder had 

initiated. LVDTs 3 and 4 were removed because the slip was approximately zero for 

these strands. The girder had multiple web-shear cracks at the time of failure (Figure 60, 

and Figure 61). The top flange of the girder also started to fail (Figure 62 and Figure 

63). 



71 
 

 

Figure 57. C3NC before testing 

 

Figure 58. Load vs. Deflection of C3NC 

Initial Crack 



72 
 

 

Figure 59. Load vs. Slip of C3NC 

 

Figure 60. Shear cracking of C3NC after shear test 

Initial Crack 
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Figure 61. Shear cracking of C3NC after shear test 

 

Figure 62. Concrete failure at top of top flange, C3NC 
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Figure 63. Concrete failure at top of top flange, C3NC 

4.1.5.2 C3S 

For Girder C3, the south end of the girder, the control end, was tested second. Web-

shear cracking occurred at approximately 27 kips. The load vs. deflection graph (Figure 

64) for this test illustrates that: the load-deflection relationship was mostly linear until 

the cracking/failure load; the residual load capacity was fairly stable around 26 kips; the 

maximum deflection was roughly 0.36 in. 

The load vs. slip graph (Figure 65) shows the non-linear relationship between the load 

and measured slip. A bond failure occurred as the strand slip was greater than 0.3 in. 

Slip appears to have occurred after cracking, and thus did not contribute to the shear 

failure. Cracking occurred along the side and under the beam (Figure 66 and Figure 67). 
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Figure 64. Load vs. Deflection of C3S 

 

Figure 65. Load vs. Slip of C3S 

Initial Crack 

Initial Crack 
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Figure 66. Visual map of cracking of C3S 
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Figure 67. Visual map of cracking of C3S 

4.1.5.3 A2SC 

For Girder A2, the south end of the girder was tested first. The south end of the girder 

was also the end exposed to the accelerated corrosion setup. Prior to testing, photos 

were taken of the girder (Figure 68). Flexural cracking occurred at approximately 47 

kips, and the beam failed at approximately 57 kips. The load vs. deflection graph 

(Figure 69) for this test illustrates that: the load-deflection relationship was mostly 

linear until the cracking load; after the cracking load, the curve changed its trajectory 

but was still relatively linear; the failure caused a large deflection of the beam. The 

maximum deflection was roughly 0.25 in. The girder had multiple web-shear cracks and 

one large flexural crack at the time of failure (Figure 70 and Figure 71). While slip was 
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measured during this test (Figure 72), the data did not prove reliable upon investigation 

after completing the shear test, and therefore is not presented. 

  

Figure 68. Prior to testing of A2SC 
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Figure 69. Load vs. Deflection of A2SC 

 

Figure 70. Visual map of cracking of A2SC 

Initial Crack 



80 
 

 

Figure 71. Visual map of cracking of A2SC 

 

Figure 72. Visible Slip of A2SC 
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4.1.5.4 A2N 

For Girder A2, the north end of the girder, the control end, was tested after the corroded 

end. Prior to testing, photos were taken of the girder (Figure 73). Cracking occurred at 

approximately 25 kips. The load vs. deflection graph (Figure 74) for this test illustrates 

that: the load-deflection relationship was mostly linear until the cracking load; after the 

cracking load, the deflection increased slightly as it lost the load applied to it; the beam 

was reloaded several times up to the 27-29 kips range until its apparent failure; the 

maximum deflection was approximately 0.38 in. 

The load vs. slip graph (Figure 75) shows the non-linear relationship between the load 

and measured slip. A bond failure occurred as the strand slip was a little greater than 

0.38 in. Slip appears to have occurred after cracking, and thus did not contribute to the 

shear failure. Cracking along the beam went under the bottom of the beam near one of 

the strands (Figure 76, Figure 77, and Figure 78). 
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Figure 73. Prior to testing A2N 

 

Figure 74. Load vs. Deflection of A2N 

Initial Crack 
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Figure 75. Load vs. Slip of A2N 

 

 

Figure 76. Cracking along the flange and web of A2N 

Initial Crack 
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Figure 77. Cracking from bottom flange to top flange of A2N 

 

Figure 78. Cracking near prestressing strands  
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4.2 Experimental Results Summary 

Table 9 compares the design values to the measured values for each shear test. For 

example, for A4SC, the failure load of 56 kips, corresponds to a Mmax of 113 k-ft., and a 

Vmax of 36.5 kips. The design value for the shear capacity, using the LRFD 2007 

method, is 45.5 kips. 

Table 9. Design vs. Measured values for each shear test 

 

Figure 79 illustrates for comparison the design and measured shear values for each 

girder. Overall, the measured shear values were less than the design shear capacity (ACI 

and AASHTO LRFD 2007 methods) for each girder. The measured compressive 

strengths were used to calculate shear capacities, which should account for the variation 

in compressive strength related to concrete shear strength. The a/d ratio used was 2 

which is near the limiting value for the methods given by the codes which may have 

reduced the applicability of the code equations. Due to variation in compressive 

Failure Load, 
kips

Mmax, 

kip-ft

Vmax, 

kips

Mn, 

kip-ft

Vn LRFD 2007, 

kips

Vn LRFD 2012, 

kips

Vn ACI, 

kips
A4SC 56 113.0 36.5
A4N 43 86.6 27.9
C1NC 52 104.9 33.8
C1S 43 86.6 27.9
A3SC 57 115.0 37.1
A3N 50 100.8 32.5
C2NC 40 80.6 26.0
C2S 49 98.8 31.9
C3NC 53 106.9 34.5
C3S 27 54.2 17.4
A2SC 57 115.0 37.1
A2N 29 58.3 18.7

27.8

165.7 46.6 27.7 59.1

166.4

55.1

58.327.446.2

53.427.245.5126.2

Measured Design

Test

126.9 46.0 27.5 54.1

165.0

127.3 46.5

47.1 27.9 60.0
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strengths, transfer lengths may have been greater than estimated during calculation of 

shear capacity. 

  

Figure 79. Design Shear Capacity vs. Measured Shear at Failure 

All of the corroded ends had a larger measured shear than the control end, except for 

Girder C2. Similar results were shown by Abosrra et al. (2011) for minor corrosion. 

With the exception of Girder C2, the corroded end of the girders were tested first. The 

order of testing could have potentially impacted the condition of the beam and had an 

impact on the remaining end – resulting in less resistance available. The corroded ends 

of the girders may have had a larger measured shear, due to increased moisture from the 

corrosion accelerant process which was applied shortly after the theoretical curing 

process. For many of the girders, the prestressing strands slipped prior to cracking of the 

beam, this slip is believed to have caused the beams to failure sooner than they 

otherwise may have. The six-month, control ends of girders A2 and C3 had a 
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significantly lower actual shear than the other tested control ends. It is not immediately 

clear as to why this occurred. 

Figure 80 and Figure 81 illustrate the varying failure loads by girder design. Overall, the 

corroded ends of the girders with the Girder A design, sustained a larger failure load 

than those corroded ends of the girders with the Girder C design. The larger diameter of 

the 0.6 in. strands used in the Girder C design may have contributed to earlier slip and 

reduced capacity. Further research could explain if the larger strands in the Girder C 

design contributed to being more likely to slip, and in turn fail sooner. 

 

Figure 80. Failure Loads for Girder A Design 



88 
 

 

Figure 81. Failure Loads for Girder C Design 

Figure 82 illustrates the comparison of the applied load at 0.01 in slip and at the 

initiation of cracking of the girder for the end tested. During the testing of one end, the 

other end of the girder had zero slip for the six tests where slip was measured on both 

ends. Also, there were three tests that had unreliable data due to the LVDTs being 

clamped to the support instead of the web of the beam and/or insufficient contact with 

the strands due to the irregular surface of the corroded ends. Of note, C3S and A2N 

both decreased in loading after cracking and then slip occurred at the decreased loading 

(i.e., cracking occurred before slip). The girders that had unreliable slip data are not 

presented in Figure 82. 
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Figure 82. Comparison of load at 0.01 in. slip and initiation of cracking (*Note: C3S 
and A2N decreased in loading after cracking and then slip occurred at that decreased 
load) 
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4.3 Field Visits 

4.3.1 Data Analysis 

4.3.1.1 Structural Evaluation 

The FHWA uses appraisal ratings to “evaluate a bridge in relation to the level of service 

which it provides on the highway system of which it is a part” (Federal Highway 

Administration, 1995). The structural evaluation rating compares the existing bridge to 

a bridge that would be built to current standards. Table 10 discusses the description for 

each rating used, and Figure 83 illustrates the structural evaluation ratings of bridges 

under the criteria used for inspection and all of the prestressed concrete girder bridges in 

Oklahoma built between 1960 and 1979. 

Table 10. Structural Evaluation Criteria (Federal Highway Administration, 1995) 

Code Description 

9 Superior to present desirable criteria 

8 Equal to present desirable criteria 

7 Better than present minimum criteria 

6 Equal to present minimum criteria 

5 Somewhat better than minimum adequacy to tolerate being left in place as 
is 

4 Meets minimum tolerable limits to be left in place as is 

3 Basically intolerable requiring high priority of corrective action 

2 Basically intolerable requiring high priority of replacement 

1 This value of rating code not used 

0 Bridge closed 
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Figure 83. Oklahoma Prestressed Concrete Girder Bridges by Structural Evaluation 

Of the 577 bridges built between 1960 and 1979, 94% of the bridges are better than the 

minimum criteria, with some equal to the present desirable criteria. Of the remaining, 

there were 29 bridges that met the minimum tolerable limits, and 8 bridges that were 

considered intolerable: six requiring corrective action, and two requiring replacement. 

4.3.1.2 Superstructure Condition 

According to FHWA’s Recording and Coding Guide for the Structure Inventory and 

Appraisal of the Nation’s Bridges, condition ratings are used to describe existing 

bridges in relation to the original, as-built condition (Federal Highway Administration, 

1995). The guide states the following in respect to condition ratings: 

“Condition codes are properly used when they provide an overall 
characterization of the general condition of the entire component 
being rated. Conversely, they are improperly used if they attempt to 
describe localized or nominally occurring instances of deterioration 
or disrepair. Correct assignment of a condition code must, therefore, 
consider both the severity of the deterioration or disrepair and the 
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extent to which it is widespread throughout the component being 
rated.” 

The following is stated regarding superstructure condition ratings: 

“This item describes the physical condition of all structural 
members… The structural members should be inspected for signs of 
distress which may include cracking, deterioration, section loss, and 
malfunction and misalignment of bearings. The condition of bearings, 
joints, paint system, etc. shall not be included in this rating, except in 
extreme situations, but should be noted on the inspection form.” 

Table 11 discusses the description for each rating used, and Figure 84 illustrates the 

superstructure condition ratings of bridges under the criteria used for inspection, and all 

of the prestressed concrete girder bridges built between 1960 and 1979. Additional 

information on the superstructure condition ratings are included in the appendix. 

Table 11. Superstructure Condition Ratings (Federal Highway Administration, 1995) 

Code Description 

9 Excellent Condition 

8 Very Good Condition 

7 Good Condition 

6 Satisfactory Condition 

5 Fair Condition 

4 Poor Condition 

3 Serious Condition 

2 Critical Condition 

1 “Imminent” Failure Condition 

0 Failed Condition 
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Figure 84. Oklahoma Prestressed Concrete Girder Bridges by Superstructure Rating 

Of the 577 bridges built between 1960 and 1979, almost 99% of the bridges have 

superstructure ratings equal to or better than fair condition. There were five bridges 

rated in poor condition, and two bridges in serious condition. 

4.3.1.2.1 Ownership and Superstructure Ratings  

The vast majority of the prestressed concrete girder bridges, constructed in 1960-1979, 

are under the ownership and maintenance responsibilities of either ODOT or the 

Oklahoma Turnpike Authority (OTA). The two agencies serve as the agencies 

responsible for intrastate travel within Oklahoma. ODOT is broken into eight field 

divisions that have maintenance and construction responsibilities in the respective 

jurisdictions. ODOT maintains the majority of the highway system, and OTA maintains 

the Oklahoma turnpike system. Figure 85 illustrates prestressed concrete girder bridges 

built between 1960 and 1979 by superstructure rating and ownership. During this 

timeframe, ODOT built 287 bridges while OTA built 164 bridges. 
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Figure 85. Oklahoma Prestressed Concrete Girder Bridges (1960-1979) by 
Superstructure Rating and Ownership 

Almost all of the applicable OTA bridges were rated in either good or very good 

condition. The ODOT bridges had more reasonable variability given the age of the 

bridges where many were considered good or very good, but also more reasonably rated 

as fair or satisfactory condition. Figure 86 illustrates the breakdown of ownership for 

applicable bridges built between 1960 and 1979. While having higher superstructure 

ratings, the OTA bridges were generally older than the ODOT bridges. Further research 

should consider the maintenance per bridge spent at OTA vs. ODOT, as a possible 

indicator to the varied success; or differences in inspection opinion. 
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Figure 86. Oklahoma Prestressed Concrete Girder Bridges Ownership (1960-1979) 

4.3.1.2.2 Field Divisions and Superstructure Ratings 

As mentioned previously, ODOT is broken into eight field divisions that have 

maintenance and construction responsibilities within their respective jurisdictions. For 

the 1960 – 1979 timeframe, as Figure 87 shows, most of the prestressed concrete 

bridges in Field Divisions 1, 2, 4, and 7 were considered in good or very good 

condition. Field Division 8 had a reasonable distribution between poor and very good 

condition. Field Divisions 1, 2, 4 and 7 had sharp drops in bridges that were considered 

to be in fair condition or less. Funding and maintenance could play a part in why there 

were greater proportions of the bridges in favorable conditions in those regions, or 

potentially differences in inspections. Interestingly, OTA accounted for the majority of 

the bridges constructed in 1960-1979 in Field Divisions 1 and 2, and approximately 

50/50 with ODOT in Field Division 4. 
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Figure 87. Oklahoma Prestressed Concrete Girder Bridges (1960-1979) by 
Superstructure Rating and Field Division 

4.3.2 Visual Inspection 

A total of 19 bridges were inspected through five site inspections to serve as a survey of 

the prestressed concrete girder bridges constructed from 1960 – 1979 in Oklahoma. The 

five site visits took place in five different ODOT Field Divisions. A thorough discussion 

of each bridge visit can be found in the Appendix. During the inspections, various 

deterioration characteristics were found at multiple sites. The following sections 

summarize those characteristics and hypothesizes their origins. 

4.3.2.1 Corroded Bearing Plates 

Many of the bridges inspected had corroded bearing plates; the corrosion, however, 

ranged from an initial stage to heavily corroded with expansion of the steel. Heavily 

corroded bearing plates had a “flaky” appearance to them – likely providing little to no 
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structural support. The steel in the bearing plate had corroded to the point where a few 

layers were held together in the center, but no cohesion was provided at the edge. 

Figure 88 is an example of a corroded bearing plate. 

The bearing plates rested right on the concrete abutment of the bridge. The location of 

the bearing plates, also coincide with the end of the beams, which allow for potential 

drainage from the deck to fall, and pool near the bearing plates. The bearing plates are 

also exposed to the elements and could be impacted by eroded materials introduced by 

wind or liquid flow. Of many of the features inspected, the bearing plates were 

aesthetically the most displeasing. 

 

Figure 88. Example of corroded bearing plate 
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4.3.2.2 Corroded Anchor Bolts and Nuts 

The anchor bolts and nuts for many of the bridges were also corroded. It was very likely 

for a corroded anchor bolt to be found through a corroded bearing plate. The corroded 

anchoring system, much like the bearing plates, hypothetically could not provide much 

structural support due to the level of corrosion and deterioration of the members. The 

anchor bolts may also have been subjected to ponding of water and other liquids, as 

well as just the effects of being exposed to the elements. Figure 89 is an example of a 

corroded anchor bolt. 

 

Figure 89. Example of corroded anchor bolt 

In one observed case, deteriorated and necking members were coated to prevent further 

corrosion and damage (Figure 90). It was not immediately apparent the significance and 
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effect of coating the anchor bolts and nuts that had already suffered severe deterioration 

without replacing them. 

 

Figure 90. Example of coated, damaged anchor bolt and nut 

4.3.2.3 Spalling above Support 

The corroding bearing plates, almost always resulted in spalling of the concrete on the 

bottom of the girder directly above the bearing plate. The observed spalling correlated 

with the degree of corrosion exhibited on the bearing plates. The rusting coloration 

associated with corrosion could be found on much of the concrete that came in contact 

with the corroded bearing plates. Figure 91 is an example of spalling above the bearing 

support. 
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Figure 91. Example of spalling above bearing support 

In many cases, the spalling also resulted in cracks emanating from the deteriorating 

area.  

Figure 92 is an example of cracking surrounding damage above a bearing support. 
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Figure 92. Example of crack from damage around the bearing plate 

4.3.2.4 Exposed Rebar and Prestressing Strands 

Deterioration of concrete typically leaves the embedded materials exposed to the 

elements. This exposure provides an opportunity for further corrosion of the embedded 

steel, and further deterioration of the concrete structure. Exposed steel that begins to 

corrode, such as shown in Figure 93, likely does not have adequate bonding to provide 

any actual strength to the member at hand. Figure 94 is an example of exposed 

prestressing strands. 
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Figure 93. Example of exposed steel 

 

Figure 94. Example of exposed prestressing strands 
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4.3.2.5 Diagonal Crack at Back Corner of Girder 

At the back corner of many of the prestressed girders visited, there was a diagonal crack 

that often resulted in a considerable amount of concrete missing from this area. This 

commonly noted deterioration characteristic is not immediately explainable like many 

of the previous characteristics. The common “back diagonal crack” typically led to 

insufficient concrete cover exposing the embedded steel materials to extreme 

environments. For most bridges where this characteristic was observed, many of the 

aforementioned deterioration characteristic were also present: corroding bearing plates, 

anchor bolts, and nuts; spalling above the support; and exposed steel. The “back 

diagonal crack” characteristic took many forms as Figure 95 and Figure 96 depict. 

 

Figure 95. Example of back diagonal cracking/spalling 
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Figure 96. Example of back diagonal cracking 

4.3.2.6 Vertical Cracking along Girder and Diaphragm Interface 

Many of the prestressed girders were connected to a diaphragm that spanned multiple 

girders at the ends of the spans. In many cases, there was a vertical separation 

(cracking) between the diaphragm and girder, as shown in Figure 97. The separation 

could likely be attributed to a weak point created during the construction process where 

the elements were formed separately and cast at different times. Opposing movements 

of the two structural elements may also have occurred due to temperature, shrinkage, 

and creep effects causing cracking in that location. A crack at this location could 

potentially allow water and chlorides to penetrate to the prestressing strand ends. 
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Figure 97. Example of vertical cracking along diaphragm and girder 

4.3.2.7 Horizontal Cracking along Top Flange and Web Interface 

Horizontal cracking was observed along the interface of the top flange and web many 

times, as shown in Figure 98 and Figure 99. The horizontal cracking may have occurred 

due to differential movement caused by shrinkage or high stresses resulting from the 

eccentric prestress force or release forces. The exact cause of these cracks was not 

explicitly apparent. 
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Figure 98. Example of horizontal cracking along the top flange and web interface 



107 
 

 

Figure 99. Example of horizontal cracking along the top flange and web interface 

4.3.2.8 Diagonal Cracking from the Top Flange and Web Interface 

Another frequently noted deterioration characteristic was diagonal cracking that 

emanated from the top flange and web interface, shown in Figure 100 and Figure 101. 

The cause of the diagonal cracking was not immediately apparent, but may be related to 

stresses caused by the eccentric prestress. The cracks were generally small in width and 

had varying lengths. 
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Figure 100. Example of diagonal cracking from the top flange and web interface 

 

Figure 101. Example of diagonal cracking from the top flange and web interface 

4.3.2.9 Diaphragm Deterioration 

While not exactly pertinent to the structural health of the prestressed girders, it is worth 

mentioning that many of the diaphragms spanning the girders were in a deteriorated 
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state. Many seemed to have insufficient concrete cover, leading to exposed rebar, and 

initiation of corrosion, as shown in Figure 102 and Figure 103. 

 

Figure 102. Example of Diaphragm deterioration 

 

Figure 103. Example of Diaphragm deterioration 

Overall, the girders subjected to the corrosion accelerant process did not exhibit many 

of the common factors noticed in girders visited in the field. Those corroded ends 

exhibited the common rusting discoloration, as well as the initiation of corrosion 

impacting the prestressing strands. In general, the deterioration in the field was 

frequent, but visually seemed much worse. 
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5 Summary, Conclusions, and Recommendations 

5.1 Summary 

Over the course of this research, nine half-scale AASHTO Type II girders were 

designed, constructed, and exposed to varying levels of a corrosive environment 

through a corrosion accelerant process. The varying levels of exposure to the end zone 

of the girders replicated the various environmental conditions a bridge girder could be 

exposed to in the field. The girders were designed with two different reinforcement 

configurations (Girder A and Girder C design) to create similar stress states to a 

recently decommissioned prestressed concrete girder bridge in Oklahoma built within 

1960-1979. Six of the half-scale girders were shear tested to determine what, if any 

effect the end zone deterioration has on the shear capacity of the girder. The remaining 

three half-scale girders that were exposed to the various environmental conditions will 

form the basis of additional research discussed later in this section. Of the six shear tests 

on the corroded end of the girders, four resulted in slip of the prestressing strands prior 

to the initial crack of the beam. For the control end of the girders, all six shear tests 

(both Girder A and Girder C designs) illustrated cracking of the girder prior to the 

initiation of slip. The control end of the girders cracking prior to slip shows that 

bonding was not affected in the same manner as the corroded end. The two most 

common failure mechanisms were: bond-shear failure (either cracking before slip or 

slip before cracking) and bond-shear/flexure failure where cracking occurred before slip 

and the flange deteriorated. 

Shear tests resulted in measured shear values less than the design shear capacity for 

each girder in all cases (i.e., corroded and control end) when compared to the ACI and 
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AASHTO LRFD 2007 methods. The designed shear capacities were calculated using 

actual girder dimensions and measured compressive strengths. The a/d ratio used was 2 

which is near the limiting value for the methods given by the codes which may have 

reduced the applicability of the code equations. All of the girder ends that had been 

exposed to the corrosive environment had a larger measured shear than the control end, 

except for one girder (Girder C2). Similar results were shown by Abosrra et al. (2011) 

for minor corrosion. The percent difference between the measured and design shear 

values ranged from 21–32% below expectation for the corroded ends not including 

Girder C2 which was 58% below expectation. For the control end, the percent 

difference had a much larger range – from 35–91% below expectation. These results 

may be due to several issues. The corroded ends may have sustained a larger load 

because the moisture from the corrosion accelerant process actually helped the girders 

cure longer. With the exception of Girder C2, the corroded end of the girders were 

tested first. The order of testing could have potentially impacted the condition of the 

beam and had an impact on the remaining end – resulting in less resistance available. 

While the measured compressive strengths were used to calculate the shear capacities, 

variation in the measured strengths could have caused transfer lengths greater than 

estimated during calculation of shear capacity. 

Overall, the corroded ends of the girders with the Girder A design, sustained a larger 

failure load than those corroded ends of the girders with the Girder C design. Based on 

the results, the larger prestressing strands in the Girder C design could have been more 

susceptible to slip, causing the beam to fail sooner than the smaller prestressing strands 

used in the Girder A design. Larger diameters of reinforcement and prestressing strands 
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require larger anchorage lengths per the ACI and AASHTO LRFD codes, which 

supports this possibility. Further research would be necessary to prove if this indeed 

was the reason. 

Concurrently with the lab experiments, a total of 19 bridges were inspected through five 

site inspections to serve as a survey of the prestressed concrete girder bridges 

constructed from 1960 – 1979 in Oklahoma. The five site visits took place in five 

different Oklahoma Department of Transportation (ODOT) Field Divisions. During the 

inspections, various deterioration characteristics were found at multiple sites. Those 

deterioration characteristics include: corroded bearing plates; corroded anchor bolts and 

nuts; spalling above the support; exposed rebar and prestressing strands; diagonal 

cracking of the back corner of the girder; vertical cracking along the girder and 

diaphragm interface; diagonal cracking from the top flange and web interface; and 

diaphragm deterioration. In reviewing the National Bridge Inventory data, there was 

variance in superstructure condition ratings between bridges owned by ODOT and those 

owned by the Oklahoma Turnpike Authority. It was not immediately clear if this 

variance was a result of deferred maintenance and lack of funding, or differences in 

inspector opinions among the entities.  

Together, the observations from the field inspections and the lab experiments were used 

to analyze existing retrofit methods and determine recommendations for in-situ 

rehabilitation for varying levels of deterioration. Fiber reinforced polymer, such as 

carbon fiber reinforced polymer systems (e.g., sheets, U-wraps, and strips) were 

identified as a viable option for increasing strength of girders damaged in the field. 
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Available literature reviewed showed improved strength (flexural and shear) for 

repaired members in comparison to those unrepaired. 

While this research effort has been largely inclusive in the data sought and presented, 

the results are expected to be similar only to the work performed during this analysis. 

Any differences in girder designs, concrete mix, bridge configurations, etc. could cause 

a variation from the results presented in this thesis. 

5.2 Conclusions 

The following conclusions can be drawn from the results obtained during the research 

discussed in this thesis: 

 The corroded ends of the members exhibited larger measured shear strengths for 

the conditions tested. 

 The difference in measured and design shear strengths could be attributed to: the 

variation in compressive strengths; an a/d ratio near the limit for the methods 

used; and potential variations in transfer length related to compressive strength. 

 All of the shear failures included the effects of strand slip and the tests of 

corroded ends indicated that strand slip occurred prior to cracking, while the 

tests of the control ends indicated cracking occurred prior to strand slip. 

 Common deterioration characteristics were observed at various bridges across 

the State of Oklahoma but did not appear to correlate with the superstructure 

ratings. 
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5.3 Recommendations 

As a result of the work reported in this thesis, the following items are recommendations 

and topics for future research: 

 Further analysis of the benefits associated with prestressed girders exposed to 

corrosive environments will take place as part of a larger research effort that this 

thesis does not discuss. The remaining three half-scale girders that were exposed 

to the various environmental conditions will be repaired on the corroded end and 

then shear tested on both ends. The shear tests will provide an opportunity to 

analyze the benefit of the exposed, repaired end to the unrepaired, control end of 

the girder. 

 The effect of the order of testing of the corroded and control ends on the shear 

capacity should be investigated further. 

 A larger number of specimens and more heavily corroded members should be 

tested to better understand the effects of corrosion on shear capacity. 

 The effects of larger prestressing strands to be more susceptible to strand slip, 

causing the beam to potentially fail sooner than smaller prestressing strands 

should be investigated further. 

 It is recommended that for end girders exposed to chloride-laden water that 

caution is taken to prevent the initiation of extreme deterioration though 

preventative maintenance of the metal bearing plates, anchor bolts and nuts such 

as use of a protective coating system. Those that have begun the deterioration 

process would benefit from repair to the member such as patching, coupled with 
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the use of a fiber reinforced polymer, particularly near the end of the girder to 

increase the shear strength. 
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7.1 Beam “A” and Beam “C” Drawings 

From “Sections Prestressed Concrete Girders FAP 244-2(134)093, Sheet No. 44, 

Revision #6” Drawing 

 

Figure 104. End view of Beam "A" and Beam "C" 
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Figure 105. Span of Beam "A" and Beam "C" 
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Figure 106. Midspan view of Beam "A" and Beam "C" 
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7.2 Girder Design 

Girder A 
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Girder C 
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7.3 Bridge Site Visits 

The following sections provide a detailed discussion of each site visit, and photos 

representative of observations for each entire bridge. Each photo includes a reference 

location within the bridge based on the numbering system described in the Methodology 

section. The bridges are listed in order of superstructure rating, from best to worst, and 

organized by ODOT field division. 
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7.3.1 Field Division No. 1 

Field Division No. 1 (Figure 107), located in eastern Oklahoma, includes Adair, 

Cherokee, Haskell, McIntosh, Muskogee, Okmulgee, and Wagoner counties.  The 

Division’s headquarters is in Muskogee, and as of 

January 30, 2016, Mr. Darren A. Saliba is the 

Division Engineer. 

Figure 107. Field Division 1 Jurisdiction2 

On April 17, 2015, four bridges were visited in Field Division No. 1, as detailed below. 

7.3.1.1 NBI# 24219, Indian Nation Turnpike & Co. Rd. E1095, Okmulgee County 

This bridge was built in 1965, and is maintained by the Oklahoma Turnpike Authority. 

For this bridge, located at Indian Nation Turnpike (under3) & Co. Rd. E1095, the 

superstructure rating is 8, or very good condition. 

The following highlights some key findings at this site: 

 Bearing plates are expanding, and corroding (Figure 108 and Figure 109) 

                                                 

2 http://www.odot.org/flddiv1/images/flddiv1.gif 
3 For future reference, the first descriptor in the bridge’s location, is the feature that is “under.” 
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Figure 108. Example of corroding bearing plate (2W-S) 

 

Figure 109. Another example of a corroding bearing plate (3W-S) 

 Horizontal crack at 4W-S flange/web interface; and vertical crack (Figure 110 

and Figure 111) 
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Figure 110. Horizontal Crack at Flange/Web Interface4(4W-S) 

                                                 

4 Some pictures will be exaggerated in size to clearly show the small feature of interest, that otherwise 
would likely be unnoticeable.  
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Figure 111. Vertical Crack from web through flange (4W-S) 

7.3.1.2 NBI# 19214, S.H. 150 & U.S. 69 SB, McIntosh County 

This bridge was built in 1976, and is maintained by ODOT. The superstructure rating is 

7, or good condition. The following highlights some key findings at this site: 

 Corroded anchor bolts (Figure 112) 
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Figure 112. Corroded anchor bolt (1S-W) 

 Underside of bridge deck corroded with exposed rebar (Figure 113) 

 

Figure 113. Exposed rebar, showing insufficient concrete cover at end of bridge deck 
(1N-W) 

 Example of concrete repair work likely to prevent further spalling of the 

concrete (Figure 114). The repair seems to consist of mortar added to the surface 

of the existing girder end. 



136 
 

 

Figure 114. Repaired concrete on girder end and corroded bolt (1S-W) 

7.3.1.3 NBI# 19215, S.H. 150 & U.S. 69 NB, McIntosh County 

The bridge was built in 1976, and is maintained by ODOT. The superstructure rating is 

7, or good condition. The following highlights some key findings at this site: 

 Diagonal cracking on the web of the beam (Figure 115 and Figure 116) 



137 
 

 

Figure 115. Diagonal cracking on the web of the beam (3N-W) 

 

Figure 116. Diagonal cracking on the web of the beam, heading towards the bottom 
flange (1S-W) 
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 Repair to spalled back corner likely to prevent further spalling of the girder end 

(Figure 117). 

 

Figure 117. Repair to spalled back corner (6N-W) 

7.3.1.4 NBI# 15804, I-40 & Lotahwatah Rd. N41, McIntosh County 

The bridge was built in 1963, and is maintained by ODOT. The superstructure rating is 

5, or fair condition. The following highlights some key findings at this site: 

 Back concrete diagonal crack in the beam (Figure 118) 
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Figure 118. Back diagonal crack in the beam end (3N-E) 

 Separation at diaphragm and girder (Figure 119) 

 

Figure 119. Separation at the diaphragm and girder end (1N-W) 
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7.3.2 Field Division No. 2 

Field Division No. 2 (Figure 120), located in southeastern Oklahoma, includes Atoka, 

Bryan, Choctaw, Latimer, Le Flore, McCurtain, Marshall, Pittsburg, and Pushmataha 

counties. The Division’s headquarters is in 

Antlers, and as of January 30, 2016, Mr. Anthony 

Echelle is the Division Engineer. 

Figure 120. Field Division 2 Jurisdiction5 

On March 21, 2015, four bridges were visited in Field Division No. 2, as detailed 

below. 

7.3.2.1 NBI# 18554, S.H. 78 & U.S. 69 SB, Bryan County 

The bridge was built in 1973, and is maintained by ODOT. The superstructure rating is 

8, or very good condition. The following highlights some key findings at this site: 

 Diagonal back corner cracking/spalling in the beam (Figure 121 and Figure 122) 

 

Figure 121. Spalled back corner of beam end (1W-S) 

                                                 

5 http://www.odot.org/flddiv2/images/flddiv2.gif 
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Figure 122. Spalled back corner of beam end (4E-N) 

 Cracking and spalling at pipe interface with exterior of concrete girder (Figure 

123). It was not immediately clear the purpose of the pipe (e.g., drainage pipe, 

hole for diaphragm connection). 

 

Figure 123. Crack from interior pipe that runs through web of beam (4E-N) 
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 Diaphragm deterioration, exposed rebar showing corrosion (Figure 124) 

 

Figure 124. Deterioration of an interior diaphragm (6W-N); the diaphragm connects 
two interior beam ends 

7.3.2.2 NBI# 18555, S.H. 78 & U.S. 69 NB, Bryan County 

This bridge was built in 1973, and is maintained by ODOT. The superstructure rating is 

8, or very good condition. The following highlights some key findings at this site: 

 Spalling at pipe interface with exterior of concrete girder (Figure 125) 

 

Figure 125. Spalling around pipe interface with exterior of concrete girder (3E-N) 
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 Heavily deteriorated anchor bolts (Figure 126 and Figure 127) 

 

Figure 126. Anchor bolt with extreme deterioration, with necking of the anchor bolt at 
the top (4E-S) 

 

Figure 127. Close-up of deterioration of anchor bolt, with necking at the top (4E-S). 
The pen is shown in the picture to illustrate the amount of necking occurring to the steel 
member. 

 Diagonal cracks from top flange/web interface towards pipe (Figure 128) 
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Figure 128. Diagonal cracks from top flange/web interface towards pipe on interior 
beam (5W-N) 

 Back corner diagonal cracking in beam (Figure 129) 

 

Figure 129. Back corner diagonal cracking of beam end (5W-S) 
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7.3.2.3 NBI# 17536, U.S. 271 & Indian Nation Turnpike, Pushmataha County 

The bridge was built in 1969, and is maintained by the Oklahoma Turnpike Authority. 

The superstructure rating is 7, or good condition. The following highlights some key 

findings at this site: 

 Spalling above support of corroding bearing plate, minor spalling horizontally 

along base of girder, and cracking emanating from spalling location (Figure 130, 

Figure 131, and Figure 132) 

 

Figure 130. Spalling above corroded support of exposed, exterior girder (1E-N) 



146 
 

 

Figure 131. Corroded bearing plate (1E-S) 

 

Figure 132. Diagonal crack in bottom flange of beam from corroding support (10W-N)  
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 Spalled back corner of girder and exposed prestressing strand ends (Figure 133) 

 

Figure 133. Spalled back corner and exposed prestressing strands 
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7.3.2.4 NBI# 16606, S.H. 31/ U.P. R.R. & Indian Nation Turnpike, Pittsburg County 

This bridge was built in 1965, and is maintained by the Oklahoma Turnpike Authority. 

The superstructure rating is 5, or fair condition. The following highlights some key 

findings at this site: 

 Bottom of girders with exposed and deteriorating rebar and/or prestressing 

strands (Figure 134 and Figure 135) 

 

Figure 134. Exposed rebar due to spalled concrete on the bottom of an exposed, 
exterior girder (1N-E) 
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Figure 135. Exposed rebar due to spalled concrete (1N-W) 

 Horizontal cracking along top flange/web interface (Figure 136) 

 

Figure 136. Crack along intersection of the top flange and web 
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 Extremely corroded bearing plates (Figure 137) 

 

Figure 137. Corroded, and deteriorated bearing plate (8N-E) 

 Cracking near concrete/corroded bearing plate interface (Figure 138) 

 

Figure 138. Cracking from corroded bearing plate into bottom flange (10S-W) 
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7.3.3 Field Division No. 3 

Field Division No. 3 (Figure 139), located in central Oklahoma, includes Cleveland, 

Coal, Garvin, Hughes, Johnston, Lincoln, McClain, Okfuskee, Pontotoc, Pottawatomie, 

and Seminole counties. The Division’s 

headquarters is in Ada, and as of January 30, 

2016, Mr. Kevin Bloss is the Division Engineer. 

Figure 139. Field Division 3 Jurisdiction6 

There was only one bridge that fell within the specified criteria, and that bridge was not 

inspected. 

  

                                                 

6 http://www.odot.org/flddiv3/images/flddiv3.gif 
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7.3.4 Field Division No. 4 

Field Division No. 4 (Figure 140), located in northcentral Oklahoma, includes 

Canadian, Garfield, Grant, Kay, Kingfisher, Logan, Noble, Oklahoma, and Payne 

counties. The Division’s headquarters is in Perry, 

and as of January 30, 2016, Mr. Brian Taylor is 

the Division Engineer. 

Figure 140. Field Division 4 Jurisdiction7 

On October 24, 2015, three bridges were visited in Field Division No. 4, as detailed 

below. 

7.3.4.1 NBI# 18497, Cimarron Turnpike & Co. Rd N3340, Pawnee County 

This bridge was built in 1973, and is maintained by the Oklahoma Turnpike Authority. 

The superstructure rating is 7, or good condition. The following highlights some key 

findings at this site: 

 Corroded bearing plate and resulting spalling above the support (Figure 141) 

                                                 

7 http://www.odot.org/flddiv4/images/flddiv4.gif 
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Figure 141. Corroded bearing plate, and spalling along bottom of girder and back of 
girder end (3S-W) 

 Spalling above the support and at back of girder (Figure 142) 

 

Figure 142. Corroded anchor bolt and spalling along bottom of girder and girder end 
(5N-E) 
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7.3.4.2 NBI# 19028, U.S. 77 & Cimarron Turnpike, Noble County 

This bridge was built in 1975, and is maintained by the Oklahoma Turnpike Authority. 

The superstructure rating is 7, or good condition. The following highlights some key 

findings at this site: 

 Serious deterioration of girder and back wall due to moisture/water (Figure 143 

and Figure 144) 

 

Figure 143. Extreme deterioration of back wall and girder end due to moisture/water 
(1E-N). The exposed, exterior girder has a corroded bearing plate and spalling 
occurring at the girder end. 



155 
 

 

Figure 144. Vertical cracking with visible corrosion on exterior, exposed girder (12E-
S) 

 Back corner spalled and prestressing strands exposed (Figure 145 and Figure 

146) 
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Figure 145. Exposed prestressing strands of an exposed, exterior girder (1W-N) 

 

Figure 146. Exposed prestressing strands (10W-N) 
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 Exposed prestressing strands and expanded, (“flaky”) bearing plates (Figure 

147) 

 

Figure 147. Corroded and flaky bearing plate, not providing much functionality as 
original designed (1W-S) 

 Heavily corroded and broken anchor bolt (Figure 148) 

 

Figure 148. Corrosion at cavity of abutment and bolt interface (7E-S) 
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 Spalling above corroded bearing plates and missing anchor bolts (Figure 149) 

 

Figure 149. Spalling above corroded bearing plate, missing anchor bolt (10E-S) 

 Back corner diagonal cracking of beam end (Figure 150) 

 

Figure 150. Back corner diagonally cracked on beam end (11W-S) 
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7.3.4.3 NBI# 19487, U.S. 64/U.S. 412 & S.H. 74, Garfield County 

This bridge was built in 1978, and is maintained by ODOT. The superstructure rating is 

6, or satisfactory condition. The following highlights some key findings at this site: 

 Spalling and cracking at pipe in the web (Figure 151) 

 

Figure 151. Spalling and cracking above pipe in web (1N-E) 

 Diagonal crack in web towards bottom of girder from top of beam (Figure 152) 
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Figure 152. Diagonal crack in web from top flange towards bottom of beam (1N-W) 

 Corroding anchor bolts (Figure 153) 

 

Figure 153. Corroding anchor bolt (4S-E)  
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7.3.5 Field Division No. 5 

Field Division No. 5 (Figure 154), located in southwestern Oklahoma, includes 

Beckham, Blaine, Custer, Dewey, Greer, Harmon, Jackson, Kiowa, Roger Mills, 

Tillman, and Washita counties. The Division’s 

headquarters is in Clinton, and as of January 30, 

2016, Mr. Brent Almquist is the Division 

Engineer. 

Figure 154. Field Division 5 Jurisdiction8 

There was only one bridge that fell within the specified criteria, and that bridge was not 

inspected. 

7.3.6 Field Division No. 6 

Field Division No. 6 (Figure 155), located in northwestern Oklahoma (the Panhandle), 

includes Alfalfa, Beaver, Cimarron, Ellis, Harper, Major, Texas, Woods, and 

Woodward counties. The Division’s headquarters 

is in Buffalo, and as of January 30, 2016, Mr. Ron 

McDaniel is the Division Engineer. 

Figure 155. Field Division 6 Jurisdiction9 

There were no bridges that fell within the specified criteria. Interestingly, the vast 

majority of bridges on the western side of the state (Divisions No. 5 and 6) were steel 

bridges, as opposed to concrete bridges.  

                                                 

8 http://www.odot.org/flddiv5/images/flddiv5.gif 
9 http://www.odot.org/flddiv6/images/flddiv6.gif 
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7.3.7 Field Division No. 7 

Field Division No. 7 (Figure 156), located in southcentral Oklahoma, includes Caddo, 

Carter, Comanche, Cotton, Grady, Jefferson, Love, Murray, and Stephens counties. The 

Division’s headquarters is in Duncan, and as of 

January 30, 2016, Mr. Jay Earp is the Division 

Engineer. 

Figure 156. Field Division 7 Jurisdiction10 

On February 21, 2015, five bridges were visited in Field Division No. 7, as detailed 

below. 

7.3.7.1 NBI# 18793, UP R.R.  & U.S. 62, Grady County 

This bridge was built in 1963, and is maintained by ODOT. The superstructure rating is 

8, or very good condition. The following highlights some key findings at this site: 

 Back corner diagonal cracking (Figure 157) 

 

Figure 157. Back corner diagonal crack of exposed, exterior beam (1E-N) 

                                                 

10 http://www.odot.org/flddiv7/images/flddiv7.gif 
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 Spalling above corroding bearing plate (Figure 158) 

 

Figure 158. Corroded bearing plate and anchor bolt, with spalling above the support 
(5E-S) 

 Back corner spalling (Figure 159) 

 

Figure 159. Back corner spalling of girder (9E-S) 
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7.3.7.2 NBI# 18494, U.S. 81 & S.H. 7 EB, Stephens County 

This bridge was built in 1973, and is maintained by ODOT. The superstructure rating is 

8, or very good condition. The following highlights some key findings at this site: 

 Back corner diagonal cracking (Figure 160 and Figure 161) 

 

Figure 160. Back corner diagonal cracking of exterior beam (1E-S) 

 

Figure 161. Similar back corner cracking (deformation) (2E-S) 



165 
 

 Spalling above corroded bearing plates (Figure 162) 

 

Figure 162. Spalling above the corroded bearing plate (1W-N) 

 Separation at diaphragm and girder interface (Figure 163) 

 

Figure 163. Vertical separation of diaphragm and girder at interface (5E-S) 
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 Spalling and cracking at corroded bearing plate (Figure 164 and Figure 165) 

 

Figure 164. Corroded bearing plate and anchor bolt, with spalling and cracking above 
the corroded bearing plate (5W-N) 

 

Figure 165. Spalling girder end and corroded bearing plate (5W-S) 
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7.3.7.3 NBI# 15798, I-44 & Co. Rd. E1990, Cotton County 

This bridge was built in 1963, and is maintained by ODOT. The superstructure rating is 

7, or good condition. The following highlights some key findings at this site: 

 Back corner spalled and exposed vertical rebar (Figure 166) 

 

Figure 166. Exposed vertical rebar due to spalled girder end of exposed, exterior beam 
(1W-N) 

 Concrete spalled off at diagonal crack on back corner (Figure 167) 



168 
 

 

Figure 167. Back corner diagonal crack with a width at the base of approximately three 
inches (2E-N) 

 Spalling at diaphragm and girder interface (Figure 168) 

 

Figure 168. Spalling at diaphragm and girder interface (3W-N) 
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7.3.7.4 NBI# 18581, U.P. R.R./7th St. & S.H. 7 WB, Stephens County 

The bridge was built in 1973, and is maintained by ODOT. The superstructure rating is 

7, or good condition. The following highlights some key findings at this site: 

 Heavily corroded bearing plate, anchor bolt, and nut; with spalling above 

support (Figure 169) 

 

Figure 169. Corroded bearing plate, bolt, and nut along with spalling above the 
support of an exposed, exterior girder (1E-N) 

 Corroded bearing plate and diagonal cracking at back corner (Figure 170 and 

Figure 171) 
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Figure 170. Corroded bearing plate and diagonal back corner crack with a maximum 
width of approx. four inches 

 

Figure 171. Corroded bearing plate and diagonal back corner crack with a maximum 
width of approx. five inches (2W-N) 
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 Corroded, flaky bearing plate (Figure 172 and Figure 173) 

 

Figure 172. Corroded, flaky bearing plate 

 

Figure 173. Corroded, flaky bearing plate 

 Vertical crack at back corner of girder and diaphragm interface (Figure 174) 
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Figure 174. Vertical crack along interface of girder end and diaphragm (1W-S) 

7.3.7.5 NBI# 18582, U.P. R.R./7th St. & S.H. 7 EB, Stephens County 

This bridge was built in 1973, and is maintained by ODOT. The superstructure rating is 

7, or good condition. The following highlights some key findings at this site: 

 Exposed rebar and corroded bearing plate (Figure 175) 
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Figure 175. Exposed rebar, corroded, flaky bearing plate, and spalling of concrete (5E-
N) 

 Vertical cracks near the top flange and web intersection in the beam (Figure 

176) 
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Figure 176. Crack along the web of girder (5E-S) 

 Diagonal back corner spalling and exposed, corroded prestressing strands 

(Figure 177) 

 

Figure 177. Diagonal back corner spalling and exposed prestressing strands (5W-S) 
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 Corroded bearing plate and spalling back corner (Figure 178) 

 

Figure 178. Corroded bearing plate, exposed rebar, and spalled back corner of girder 
(5W-S)  
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7.3.8 Field Division No. 8 

Field Division No. 8 (Figure 179), located in northeastern Oklahoma, includes Craig, 

Creek, Delaware, Mayes, Nowata, Osage, Ottawa, Pawnee, Rogers, Tulsa, and 

Washington counties. The Division’s headquarters 

is in Tulsa, and as of January 30, 2016, Mr. 

Randle White is the Division Engineer. 

Figure 179. Field Division 8 Jurisdiction11 

On October 17, 2015, three bridges were visited in Field Division No. 8, as detailed 

below. 

7.3.8.1 NBI# 18768, BNSF R.R./Co Rd & S.H. 167, Rogers County 

This bridge was built in 1974, and is maintained by ODOT. The superstructure rating is 

8, or very good condition. The following highlights some key findings at this site: 

 Horizontal crack at top flange and web intersection for about a foot from beam 

and diaphragm interface (Figure 180 and Figure 181) 

                                                 

11 http://www.odot.org/flddiv8/images/flddiv8.gif 
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Figure 180. Horizontal crack at top flange and web interface for about one foot into the 
beam (1S-E) 

 

Figure 181. Horizontal crack at top flange and web interface for about one foot into the 
beam (5S-E) 
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 Corroded and necking anchor bolt and bearing plate covered with a protective 

coating (i.e. paint coating) (Figure 182 and Figure 183) 

 

Figure 182. Anchor bolt and bearing plate coated (1S-E) 

 

Figure 183. Necked anchor bolt and bearing plate both deteriorated and coated (2S-E) 
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 Crack at girder and diaphragm intersection (Figure 184) 

 

Figure 184. Crack at girder and diaphragm intersection (1S-W) 

 Cracking in the back corner of the diaphragm (Figure 185, Figure 186, and 

Figure 187) 

 

Figure 185. Back diagonal and vertical crack in girder end (2N-W) 
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Figure 186. Diagonal crack at back corner of girder end (2S-W) 

 

Figure 187. Diagonal crack in back corner of girder end (4N-E) 
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7.3.8.2 NBI# 18076, S.H. 20 & U.S. 75 SB, Tulsa County 

This bridge was built in 1971, and is maintained by ODOT. The superstructure rating is 

5, or fair condition. The following highlights some key findings at this site: 

 Vertical crack at girder/diaphragm intersection (Figure 188 and Figure 189) 

 

Figure 188. Vertical crack at girder/diaphragm interface (1N-W) 
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Figure 189. Vertical crack at bottom flange and diaphragm interface (3N-E) 

 Spalling at girder/diaphragm intersection (Figure 190) 

 

Figure 190. Exposed rebar, back corner spalled (2S-W) 
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 Diagonal cracking from top flange/web intersection towards end of the beam 

(Figure 191 and Figure 192) 

 

Figure 191. Diagonal crack from top flange and web interface (2S-W) 
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Figure 192. Diagonal crack from top flange and web interface 

 Underside corrosion on diaphragm between girders (Figure 193 and Figure 194) 

 

Figure 193. Corrosion and deterioration of underside of diaphragm 
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Figure 194. Similar corrosive underside of diaphragm, with exposed rebar cage 

7.3.8.3 NBI# 18077, S.H. 20 & U.S. 75 NB, Tulsa County 

This bridge was built in 1971, and is maintained by ODOT. The superstructure rating is 

5, or fair condition. The following highlights some key findings at this site: 

 Cracking along top flange/web intersection, as well as cracks emanating from 

this region and going towards the flange of the beam (Figure 195 and Figure 

196) 
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Figure 195. Horizontal crack along top flange and web interface (3N-E) 

 

Figure 196. Diagonal crack from top flange and web intersection going further into the 
web (5N-W) 

 Diagonal back corner spalling and exposed prestressing strands (Figure 197) 
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Figure 197. Diagonal back corner spalling of diaphragm and exposed prestressing 
strands (5S-W)  
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7.4 FHWA’s Recording and Coding Guide for the Structure Inventory and 

Appraisal of the Nation’s Bridges 

Superstructure Condition Ratings 

N NOT APPLICABLE 

9 EXCELLENT CONDITION 

8 VERY GOOD CONDITION - no problems noted. 

7 GOOD CONDITION - some minor problems. 

6 SATISFACTORY CONDITION - structural elements show some minor 

deterioration. 

5 FAIR CONDITION - all primary structural elements are sound but may have 

minor section loss, cracking, spalling or scour. 

4 POOR CONDITION - advanced section loss, deterioration, spalling or scour. 

3 SERIOUS CONDITION - loss of section, deterioration of primary structural 

elements. Fatigue cracks in steel or shear cracks in concrete may be present. 

2 CRITICAL CONDITION - advanced deterioration of primary structural 

elements. Fatigue cracks in steel or shear cracks in concrete may be present or 

scour may have removed substructure support. Unless closely monitored it may 

be necessary to close the bridge until corrective action is taken. 

1 "IMMINANT" FAILURE CONDITION - major deterioration or section loss 

present in critical structural components or obvious vertical or horizontal 

movement affecting structure stability. Bridge is closed to traffic but corrective 

action may put it back in light service. 

0 FAILED CONDITION - out of service; beyond corrective action. 

99 Miscoded Data 

 


