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Abstract

Weather radar moments and polarimetric variables provide useful information about

the characteristics and motion of hydrometeors. However, the bulk information may

be masked when the meteorological signal of interest is contaminated by clutter.

The dual-polarimetric spectral densities (DPSD) may unveil additional information

about the polarimetric characteristics of groups of scatterers moving at different

Doppler velocities in a given radar resolution volume. Previous DPSD estimation

methods required averaging a large number of spectra (obtained from different range

gates, radials, or scans), or averaging in frequency to get accurate estimates; though

by doing so, the resolution is degraded, and important features of the meteorologi-

cal phenomenon may be masked, potentially affecting the ability to perform a good

spectral analysis. In an attempt to overcome these limitations, the Bootstrap DPSD

estimator is developed, which allows the estimation of DPSDs from a single dwell,

with minimal resolution loss. Briefly, the estimator pre-processes the weather radar

I/Q time-series signals and generates I/Q pseudo-realizations through bootstrap re-

sampling, which are then used to compute PSD estimates that are averaged to obtain

the DPSD estimate. Then, a post-processing stage applies a bias correction to the

estimates. The Bootstrap DPSD estimator’s performance is compared to that of

conventional methods for single-dwell as well as for multiple-dwell estimates. Addi-

tionally, the performance and limitations of the Bootstrap and conventional DPSD

estimators are assessed when identifying signals of different polarimetric signatures

xv



of scatterers moving at different radial velocities in the radar volume. The advan-

tages of the Bootstrap DPSD estimator as a tool for polarimetric spectral analysis is

demonstrated with a few examples of polarimetric spectral signatures in data from

tornado cases, and from a physically-based simulator. It is expected that, with the

Bootstrap DPSD and polarimetric spectral analysis, it will be possible to better

understand tornado dynamics and their connection to weather radar measurements,

as well as to elucidate important scientific questions that motivated this work.
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Chapter 1

Introduction

A summary of natural hazard statistics for the year 2013 by the National Weather

Service registered the fatalities, injuries and damages caused by severe weather

(NCDC 2014). Among the different weather events, tornadoes were responsible for:

55 fatalities accounting for 12.33% of the total coming in 4th place, 756 injuries

for 27.33% of the total - 2nd place, and $3,642.18 million in property damage for

41.34% of the total - 1st place. These statistics highlight the potential impacts of

tornadoes, which are one of the greatest weather-related threats to life and property

in the U.S. Part of these tornado-related fatalities are victims struck by airborne

debris (Bohonos and Hogan 1999), which can also inflict major structural damage

and increase the damage potential of the tornado as they are lofted along (Marshall

2002). Therefore, they are important in the study of tornadoes.

Continuous efforts have been led by the scientific community to improve the

knowledge about tornadoes with the goal of increasing their predictability and to

mitigate consequences. Despite this, many aspects of tornado mechanics are still not

completely understood (Cheong et al. 2015). In this context, weather radars have

proven to be an essential tool in tornado studies as their remote sensing capability

allows retrieving information in a way that would otherwise be extremely difficult
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and dangerous. Furthermore, advances in weather radar technology have played a

critical role by providing better measurements of the underlying phenomena.

The first meteorological application of a pulsed-Doppler radar was made in the

1950’s, and since then it has become increasingly important for remote measure-

ments of precipitation (Doviak and Zrnić 2006). However, it was not until the

1970’s that tornadoes were observed with pulsed-Doppler weather radar (Zrnić and

Doviak 1975). The discovery of the tornadic vortex signature (TVS) (Brown et al.

1978), which is a pattern of tornado formation before it is visible on the ground,

suggested a potential for improved warning for severe weather. This eventually

led to the nationwide deployment of a pulsed-Doppler weather radar (WSR-88D)

network as a joint effort of the U.S. Departments of Commerce (DOC), Defense

(DOD), and Transportation (DOT) –the NEXRAD (Crum and Alberty 1993). The

original WSR-88D network provided three main radar variables: radar reflectivity

factor (Z), mean radial velocity (v̄r), and spectrum width (σv). By 2013, the WSR-

88D network was upgraded to dual polarization, which provides new information

about the scatterers within the radar resolution volume through an additional po-

larization channel (Doviak et al. 2000). With the simultaneous transmission and

reception of the H- and V-polarized waves, three additional polarimetric products

were made available: differential reflectivity (ZDR), correlation coefficient (ρHV),

and differential phase (φDP). Consequently, discrimination of meteorological and

non-meteorological scatterers was possible, with potential application in tornado

detection (Ryzhkov et al. 2005).
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In light of the improved observation capabilities introduced by polarimetric

radar measurements, the detection of tornadic debris signatures (TDS) was pos-

sible (Ryzhkov et al. 2005). TDS are tornado-scale signatures with distinctive po-

larimetric characteristics collocated near a tornado vortex that are visible in radar

observations after a tornado touches ground (Ryzhkov et al. 2002), that is related

to the ejection and centrifuging of hydrometeors and debris by the cyclone (Dowell

et al. 2005). Since debris lofted by tornadoes can have polarimetric signatures that

depend on their electrical size, shape, orientation and concentration (Bodine 2014),

these signatures can be noticeably different from those of hydrometeors and can be

used for polarimetric tornado detection (Ryzhkov et al. 2005). Additionally, they

are clear indicators of tornadoes when ground observation is limited or impossible

(e.g., at night or during heavy rainfall) (Kumjian and Ryzhkov 2008). A set of val-

ues typically found to be associated with TDS is suggested in Ryzhkov et al. (2005)

and Bodine et al. (2013), though it is still unknown exactly how the characteristics

of different debris types affect different polarimetric radar measurements.

Nevertheless, in recent years, research on TDS has shown promising results in

different applications. Schultz et al. (2012a) and Schultz et al. (2012b) explore the

use of TDS as a tool for forecasters to improve the warning decision-making pro-

cess and to assess the potential threat of a tornado in a near-real time operational

environment, while Scharfenberg et al. (2005) reported TDS were used to enhance

the confidence of tornado detection. TDS may also provide information about the

damage potential and the intensity of a tornado (Bodine et al. 2013). Several studies

(Ryzhkov et al. 2005; Bluestein et al. 2007; Bodine et al. 2011) have shown evidence
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of negative ZDR values in TDS from different tornado cases, suggesting a possible

common alignment of the debris within the tornadic vortex, or a scattering in the

Mie regime due to large debris. In Bodine et al. (2014), a statistical analysis of

TDS is performed using dual-frequency observations in an attempt to better char-

acterize debris scattering and polarimetric signatures. Logically, important scientific

questions about the dynamics of a tornado, and the relationship between them and

the radar measurements arise: How do tornado dynamics affect debris centrifuging?

How does the centrifuging of tornadic debris vary for debris with different char-

acteristics? How do the size and concentration of lofted debris relate to tornado

intensity and damage severity and extent? What causes negative ZDR in tornadoes?

The answers to these questions could provide a better understanding of tornadoes,

which would potentially aid in the nowcasting and detection of imminent threats,

as well as to provide better near real-time estimation of the tornado intensity and

damage severity and extent. However, any attempt to exploit the advantages of the

TDS detection will come with its challenges.

While TDS can be helpful in the detection of tornadoes (Scharfenberg et al.

2005; Schultz et al. 2012a,b), there are clear limitations when assessing tornado

intensity through radar observations, and thus it is still a topic of much ongoing

research. One such limitation is due to the effects of centrifuging, which causes

hydrometeors and debris to move at slightly different velocities within a tornado

vortex. In addition, Doppler radars measure the scatterers’ motion rather than the

actual wind speed and as such, significant biases can be introduced in wind radar

measurements (Dowell et al. 2005). This can occur whether the signal scattered
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by debris is stronger than that of hydrometeors or vice versa. Moreover, TDS are

more likely to be seen in observations due to the debris signal power dominating

in a particular radar resolution volume (Ryzhkov et al. 2005), thus measurements

of mean radial velocity in volumes with TDS are more prone to centrifuging bias.

Hypothetically, this error in measurement can be corrected if the velocity of the

debris is known and can be separated from the velocity of hydrometeors which

passively trace the wind. Since the radar variables are computed by averaging the

contribution of all scatterers within a radar resolution volume, an alternative way

to retrieve the velocities must be employed. This can be achieved through spectral

analysis.

The power spectral density (PSD) of weather radar signals is the power-weighted

distribution of the radial velocities in a radar resolution volume (Doviak and Zrnić

2006). In a PSD, the power return of scatterers moving at different Doppler velocities

within a given resolution volume is shown. Janssen and Van Der Spek (1985) found

that approximately 75% of the spectra observed with a phased array system from

precipitation at close ranges were Gaussian-shaped. For the other 25% of the cases

with non-Gaussian spectra, spectral analysis can provide important information

about the distribution of radial velocities in the radar resolution volume (Yu et al.

2009). When assuming a Gaussian distribution, however, spectral analysis is only

useful when there is a multimodal signal composition, with each scatterer group

having its own velocity in the resolution volume; i.e., more than one peak in the PSD.

In the case where the weather signal is mixed with ground clutter, the spectra will

show the distribution of both signals as a function of their Doppler velocities with
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two peaks corresponding to each type of scatterer, where the ground clutter signal is

at zero and the weather signal can be moving at any Doppler velocity (Doviak and

Zrnić 2006). Provided that the weather signal does not have a zero mean velocity,

the ground clutter can be filtered from the spectra without significantly corrupting

the weather signal (Torres and Zrnić 1999). In the cases where the signals overlap

in the spectra, techniques have been developed to mitigate the clutter influence

and reconstruct the weather signal to provide better radar estimates (Cao et al.

2012; Torres and Warde 2014). However, it is difficult to discriminate the nature of

the non-static scatterers contained in the spectra since the peaks in a PSD do not

contain any information other than the power returns and their velocity towards

the radar. Without further information about the distribution of scatterers, any

attempt to classify them would be difficult.

Additional spectral information can be gathered from the dual polarimetric

spectral densities (DPSD). The DPSD depicts the polarimetric characteristics of

scatterers moving at different Doppler velocities within a radar resolution volume.

These tools for polarimetric spectral analysis provide three additional spectral vari-

ables: the spectral differential reflectivity (sZDR), the spectral correlation coefficient

(sρHV), and the spectral differential phase (sφDP). Although a universal definition

of the spectral polarimetric variables has not been established, the term DPSD used

herein can refer to any one spectral polarimetric variable or a set of them. Provided

that the polarimetric characteristics of the scatterers are known, it is hypothesized

that discrimination of scatterer type in the spectra would be possible by correlating

the DPSD values to known polarimetric characteristics of different scatterer types,
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though identification and characterization of all scatterers in the volume would not

be possible.

Previous work in DPSD have used different methods for their estimation as well

as other spectral variables. Some works have dealt with classification of scatterers

to filter out non-meteorological targets. In Bachmann and Zrnić (2007), different

biological scatterers were discriminated using Daniell’s method to estimate the PSD,

which is a three-point moving average filter on the power spectra estimate, and av-

eraging over several adjacent range gates. Additionally, an enhanced version of the

velocity-azimuth display (VAD), the spectral VAD was explored, showing promising

results for separating bird and insect flight speeds. In Moisseev and Chandrasekar

(2009), a filter for adaptive clutter and noise suppression based on the spectral

polarimetric variables was presented. This work used additional spectral variables

such as textures of spectral differential reflectivity and spectral differential phase.

The spectra were averaged in range to reduce the variance of spectral estimates.

Alku et al. (2015) expanded on Moisseev and Chandrasekar (2009) by proposing

the classification of a wide variety non-meteorological echoes based on thresholds

set by the DPSD values and strategies to mitigate such signal contaminants. The

spectra were estimated by averaging over four range gates. In a similar application,

Unal (2009) studied the use of the spectral linear depolarization ratio and found

improved measurements of atmospheric returns. The DPSD was estimated using

time averaging of up to 40 spectra, for an observation time of 1 minute. Other

works used DPSD estimates to study the microphysics and dynamics of weather
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events. Yanovsky (2011) studied the retrieval of microphysical and turbulence char-

acteristics of rain using phenomenological models and through the analysis of the

spectral differential reflectivity and spectral linear depolarization ratio. Here, the

DPSD were estimated with spectra averaged in time over an observation time of 15

minutes. Dufournet (2010) and Spek et al. (2008) assessed the retrieval of ice and

mixed-phase cloud microphysics characteristics using models for ice particles with

spectral differential reflectivity, spectral linear depolarization ratio and spectral cor-

relation coefficient. The spectra were averaged in time to obtain the DPSD using

10 observations. Moisseev et al. (2006) and Moisseev and Chandrasekar (2007), re-

trieved the drop-size distribution (DSD) through the spectral differential reflectivity

using the average of independent simulated spectra. Yu et al. (2013) analyzed a hail-

storm at a low elevation angle using spectral polarimetry to verify shear-induced size

sorting mechanisms, which was further validated with simulations. Finally, there is

only one work in the literature that studies the quality of the DPSD estimates. In

Yu et al. (2012), a much needed, thorough analysis of the statistical quality of the

spectral polarimetric variables was performed, yielding the number of independent

observations needed to ensure the errors of the polarimetric variables are within the

desired limits. It is important to note that all of these studies have used, in one way

or another, the averaging of the PSD to obtain the DPSD estimate. In this study,

focus is directed to the spectral differential reflectivity and the spectral correlation

coefficient, while the spectral differential phase is not analyzed because it may not

convey as much information to discriminate hydrometeors from debris.
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While the idea of analyzing the spectral signatures of TDS –whether it is for a

better characterization of the scattering properties of debris or to discriminate debris

from hydrometeors in the spectra– might seem simple at first, there are many con-

straints that prevent an adequate analysis. The main limitation for a polarimetric

spectral analysis for tornado observations is the large amount of independent obser-

vations needed to achieve the required accuracy and precision, shown in Yu et al.

(2012) as approximately 20 independent observations to achieve optimal statistical

quality. Currently, the operational WSR-88D can provide one scan for an elevation

angle every few minutes (Crum and Alberty 1993). It is essential to average more

than one spectra to get useful DPSD estimates. Furthermore, it is easy to show

that with one independent observation the estimator fails to yield useful results for

the spectral correlation coefficient. To account for this limitation, additional data

may be obtained from adjacent gates in radial, range, different dwells, or even by

smoothing the spectral estimates, but they ultimately end up reducing the spatial,

time, or frequency resolution, and thus far, an optimal solution to this problem has

not been proposed in the previous literature. Since tornadoes are events that evolve

fast in time, in a relatively small spatial extent, with different scatterers contained

within the tornadic vortex (Bodine et al. 2013), it is in our interest to preserve the

best resolution possible in all dimensions.

To overcome these constraints, a new estimator of the DPSD is developed. In this

work, the Bootstrap DPSD estimator is presented, which accounts for the aforemen-

tioned limitations and computes the DPSD using one dwell with minimal resolution
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loss. In Chapter 2, the concepts of polarimetric radar I/Q time-series signal process-

ing, TDS, spectral analysis and estimation of spectral variables are presented. Also,

an assessment of the advantages and limitations of currently available methods of

PSD and DPSD estimation is included. A complete description of the fundamental

concepts and considerations taken in the design of the Bootstrap DPSD estimator

is presented in Chapter 3. Thorough analysis of the quality of the Bootstrap DPSD

estimator under different scenarios by comparing the ideal and conventional meth-

ods are presented in Chapter 4. Chapter 5 shows the results of using the Bootstrap

DPSD estimator on data sets of real weather events, and data obtained from simu-

lations of hydrometeors and debris in a tornado vortex from a physical polarimetric

radar time-series simulator (Cheong et al. 2015). Finally, concluding remarks and

recommendations for future work are presented in Chapter 6.
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Chapter 2

Background

The context of the problem, as established in Chapter 1, would be incomplete with-

out a detailed description of the concepts. This chapter synthesizes the fundamental

theory required to properly understand the problem. In Section 2.1, the basics of the

polarimetric weather radar time-series signal processing are presented. A descrip-

tion of the TDS and a hypothesis about their spectral polarimetric characteristics

are presented in Section 2.2. Section 2.3 presents methods to estimate the PSD

and assesses the advantages and limitations of each method. Section 2.4 focuses

on DPSD estimators in a similar manner. This chapter concludes with a summary

highlighting key aspects of each section.

2.1 Polarimetric Radar Signal Processing

A complete review on the principles of Doppler weather radar can be found in Doviak

and Zrnić (2006), and with additional details on polarimetric Doppler weather radars

in Bringi and Chandrasekar (2001). This section will focus on the signal processing

aspects of a polarimetric radar.
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2.1.1 I/Q Time-Series Signals

As the radar sends out a pulse of electromagnetic waves, energy is radiated to the

scatterers along the path which reflect a portion of this energy back to the radar.

A weather signal is composed of the returns of a large number of hydrometeors in a

sub-volume of the atmosphere. Since the individual returns cannot be resolved, the

weather signal is sampled at discrete range-time delays with the use of gating circuits

which convert the analog backscattered returns to digital numbers. The range gates

define the approximate range of a resolution volume in space where the scatterers

have the largest contribution to the weather signal sample. The resolution volume

is determined by a range weighting function related to the radar filter’s amplitude

response and the transmitted pulse envelope, and an angular weighting function

related to the antenna’s radiation pattern. The echoes of each scatterer in the

resolution volume add constructively or destructively (depending on their position

within a wavelength) producing a composite complex voltage sample (Figure 2.1).

For a particular range time delay τs and the m-th transmitted pulse this is

V (τs,mTs) =
N−1∑
i=0

Aie
−jγi , (2.1)

γi =
4πri
λ

+
4πviTs
λ
− ψsi, (2.2)

where Ai is the amplitude of the i-th scatterer, ri is the range to the scatterer, λ

is the radar wavelength, vi is the radial velocity of the scatterer, Ts is the pulse

repetition time (PRT), ψsi is the phase shift imposed by the i-th scatterer, and N
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Figure 2.1: I/Q signals for different range gates as a function of sample time Ts,
with I(m) shown in blue and and Q(m) shown in cyan.

is the total number of scatterers. The amplitude of each scatterer is related to the

radar constants and the backscattering cross section (σb) by:

Ai ∝

√
Ptσb

(4π)3

λg

r2
WaWr, (2.3)

where Pt is the peak transmitted power, σb is the backscattering cross section of

the scatterer, g is the antenna gain, Wa is a weighting function due to the antenna

pattern, and Wr is a range-weighting function. Alternatively, for a given range

resolution volume,

V (m) = I(m) + jQ(m), (2.4)

I(m) =
N−1∑
i=0

|Ai| cos γi, (2.5)
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Q(m) = −
N−1∑
i=0

|Ai| sin γi, (2.6)

represent the I/Q signal, for a dwell defined by M consecutive pulses as m =

0, . . . ,M − 1. Hereafter, the range time delay and the pulse repetition time shall be

ignored for the sake of simplicity.

2.1.2 Polarimetric Radar Variables

Typical radar moments that can be estimated from the I/Q signals are: reflectivity

factor (Z), mean radial velocity (v̄r), and spectrum width (σv). Also, with the si-

multaneous transmission and reception of H- and V-channel polarized waves (with

the WSR-88D), polarimetric radar variables can be estimated, providing more in-

formation about the scatterers in a radar resolution volume; these are: differential

reflectivity (ZDR), magnitude of the lag-0 cross-correlation coefficient (ρHV, herein

referred to as the correlation coefficient), and differential phase (φDP). The polari-

metric I/Q signals shall be represented as

VH,V(m) = IH,V(m) + jQH,V(m). (2.7)

Weather radar signals can be considered to be stationary processes because no sig-

nificant changes in the statistical properties occur during the short observation time

of tens of milliseconds; also, they are assumed to be ergodic, i.e., the statistical

properties of the ensemble can be inferred from sample-time averages. Furthermore,

since they are random in nature, to make inferences about the properties of the
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received signals, we must rely on estimating average statistical parameters. We re-

call the autocorrelation function of a stationary process V (m) which is defined as:

(Doviak and Zrnić 2006)

RH,V(l) = E[V ∗H,V(m)VH,V(m+ l)] = lim
M→∞

1

M

M−|l|−1∑
m=0

V ∗H,V(m)VH,V(m+ l), (2.8)

where l is the time lag, with H or V indicating the polarization channel. Because

there is a finite number of samples, only an estimate of the autocorrelation function

can be obtained as

R̂H,V(l) =
1

M − |l|

M−|l|−1∑
m=0

V ∗H,V(m)VH,V(m+ l), (2.9)

for |l| ≤ M − 1, which is the unbiased autocorrelation function estimator. An

estimate of the average returned power can be obtained from the autocorrelation

function at lag 0 as

R̂H,V(0) =
1

M

M−1∑
m=0

V ∗H,V(m)VH,V(m) = P̂H,V. (2.10)

By subtracting the noise power N , an estimate of the signal power can be obtained

as

ŜH,V = P̂H,V −NH,V. (2.11)
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Also, an estimate of the autocorrelation function at lag 1 (l = 1) is used for calcu-

lating estimates of the mean velocity and spectrum width using the autocovariance

estimator (as will be shown later), which can be computed as

R̂H(1) =
1

M − 1

M−2∑
m=0

V ∗H(m)VH(m+ 1). (2.12)

Additionally, the cross-correlation between the H- and V-channel signals is repre-

sented as

R̂X(l) =
1

M − |l|

M−|l|−1∑
m=0

V ∗H(m)VV(m+ l). (2.13)

Brief descriptions of the polarimetric radar variables and their estimators are given

next.

The general radar terminology for the backscattering cross section per unit vol-

ume is reflectivity (η), and it is important to relate this measure to factors that have

meteorological significance. If the raindrops are spherical and have small diameters

compared to the radar wavelength, the radar reflectivity is related to the reflectivity

factor (Z) by (Doviak and Zrnić 2006)

η =
π5

λ4
|Kw|2Z, (2.14)

where Kw is the dielectric factor for water. The reflectivity factor measures of the

power returned from the scatterers in a radar resolution volume for a given dwell
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and it is typically used, along with an assumed DSD, to estimate the rainfall rate

and the liquid water content. The reflectivity factor can be estimated as

ẐH = 10 log ŜH + 20 log r + 10 logC, (2.15)

in dBZ, ignoring any losses, where r is the range to the radar volume and C is a

constant that depends on characteristics of the radar system such as the wavelength,

transmitted power, pulse-width, antenna gain, and antenna weighting patterns, as

well as the dielectric factor of the hydrometeor, and other scaling factors. The

reflectivity factor is related to the physical properties of the scatterers, so, high

returns are expected for higher concentration of particles and larger electrical sizes.

The mean radial velocity (v̄r) is the power-weighted average of the radial veloc-

ities of the scatterers in the radar resolution volume. It can be estimated using the

autocovariance estimator (Doviak and Zrnić 2006) as

v̂r = −va

π
arg(R̂H(1)), (2.16)

where va is the radar’s maximum unambiguous velocity, the argument of R̂H(1) is

in radians and v̂r is in m/s. The radar’s maximum unambiguous velocity is the

maximum range of radial velocity that can be observed by a Doppler radar and is

related to the radar’s wavelength and PRT by

va = ± λ

4Ts

. (2.17)
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The spectrum width (σv) is a measure of the spread of the radial velocities about

the mean, and it is a function of radar system parameters such as beamwidth, band-

width, and pulse width, and the meteorological parameters that describe the distri-

bution of hydrometeor density and velocity within the resolution volume (Doviak

and Zrnić 2006). There are many mechanisms that can broaden the spectrum width.

Meteorological factors include turbulence and wind shear, which can cause relative

motion of the scatterers in the volume. Antenna rotation can additionally broaden

the spectrum width as the location of the resolution volume changes from pulse to

pulse causing a decorrelation of signal samples and subsequent increase in spectrum

width. Additionally, depending on the data window used in spectral processing,

the spectrum width may also vary. More aggressive windows have wider main lobe

width, resulting in broader spectrum widths than with less aggressive windows. The

spectrum width can be simply estimated as

σ̂v =

√
2va

π

√√√√∣∣∣∣∣ln
(

Ŝ

|R̂(1)|

)∣∣∣∣∣. (2.18)

However, NEXRAD uses a hybrid spectrum width estimator (Meymaris et al. 2009)

that uses the lags 0/1, 1/2, and 1/3 estimators for wide, medium, and narrow

spectrum widths, respectively.

The differential reflectivity ZDR is the ratio of the power in the H-channel to the

V-channel and it provides an insight about the shape of the scatterers. It can be

estimated as

ẐDR = 10 log

(
ŜH

ŜV

)
. (2.19)
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Small raindrops are typically spherical in shape and have a ZDR of zero due to the

power returns in both channels being equal. Larger raindrops tend to become more

oblate in shape, corresponding to the horizontal backscattered power being larger

than the backscattered power in the vertical channel, and result in a positive ZDR.

Other hydrometeors, such as ice crystals, can have a prolate shape, producing the

opposite effect and thus having a negative ZDR (Bringi and Chandrasekar 2001).

The ZDR of debris can largely depend on its electrical properties, orientation, size

and concentration and it can vary in a wide range (Bringi and Seliga 1977).

The correlation coefficient ρHV is a measure of how similar the H-channel voltage

return is, in average, to the V-channel return. Therefore, it is a measure of the

homogeneity of the returns from scatterers in the radar volume. To estimate the

correlation coefficient, the cross-correlation function between the H- and V-channels

at lag 0 is obtained from (2.13), then

ρ̂HV =
|R̂X(0)|√
ŜHŜV

. (2.20)

The returns in the H- and V-channels for any set of homogeneous scatterers will

have a high ρHV (e.g., only raindrops). When the voltage returns from different

types of scatterers are mixed (e.g., hydrometeors and debris), the scattering can

become less homogeneous, resulting in a lower ρHV.

The differential phase φDP is defined as the backscattered differential phase be-

tween the voltage returns from the H- and V-channels (from the scatterers in the
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resolution volume) and propagation differential phase (from the path the pulse trav-

elled). It can be estimated using the cross-correlation function between the H- and

V-channels at lag 0 as

φ̂DP = arg

(
R̂X(0)√
ŜHŜV

)
. (2.21)

The differential phase is a measure of the resistance experienced by the electromag-

netic waves as they travel through the atmosphere (Kumjian 2013). For example,

waves traveling through a spherical scatterer would experience the same amount of

resistance in both polarization channels (φDP = 0◦), while non-spherical scatterers

would experience a positive difference if they are oblate (φDP > 0◦) and a negative

difference if they are prolate (φDP < 0◦). It also provides an insight about the

concentration of the scatterers, as it is proportional to the number concentration of

particles and tends to increase with increasing particle size (Kumjian 2013).

2.1.3 Spectral Analysis

In addition to the radar moments and polarimetric radar variables, there are tools

which provide information about the Doppler velocities of the scatterers within a

radar resolution volume. Hereafter, the term ’bulk’ will be used to simply refer to

both radar moments and polarimetric variables, and to distinguish them from the

spectral variables. The power spectral density (PSD) represents the power-weighted

distribution of radial velocities of the scatterers within a resolution volume (Doviak

and Zrnić 2006). The Wiener-Khinchin theorem states that if a process is wide-sense
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stationary, the autocorrelation function and the PSD form a Fourier transform pair

(Papoulis and Pillai 2002). The PSD is defined as

sSH,V,X(kf0) ≡ lim
M→∞

Ts

M−1∑
l=−(M−1)

RH,V,X(l)e−j2πkf0Tsl, (2.22)

where f0 = 1/MTs, and k = 0, . . . ,M − 1 is the spectral component index. The

preceding s denotes spectral variables as opposed to bulk variables, and hereafter,

f0 will be omitted for simplicity. Methods to estimate the PSD will be presented in

Section 2.3.

In a similar way, the DPSD represents the distribution of the polarimetric vari-

ables as a function of the radial velocities of the scatterers within a resolution volume.

For example, the spectral differential reflectivity is the extension of the differential

reflectivity in the frequency domain. It is defined as the ratio between the horizontal

PSD sSH and the vertical PSD sSV:

sZDR(k) =
sSH(k)

sSV(k)
. (2.23)

The spectral correlation coefficient and the spectral differential phase are likewise

defined using the corresponding PSDs instead of the polarimetric radar variables.

This is,

sρHV(k) =
|sSX(k)|√

sSH(k)sSV(k)
, (2.24)

sφDP(k) = arg

(
sSX(k)√

sSH(k)sSV(k)

)
. (2.25)
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Figure 2.2: Power spectral densities of typical signals. Weather (WX, left), ground
clutter (GC, center), weather and ground clutter (right). The PSDs correspond to
returns from the H channel and are normalized to the noise power. Hence, the y-axis
represents signal-to-noise ratio in the H channel (sSNRH).

The DPSD estimators will be presented in Section 2.4.

To highlight the importance of spectral analysis in weather radar signal pro-

cessing, typical signatures found in observations are briefly discussed. Referring

to Figure 2.2, the power spectrum of weather is Gaussian-like with relatively wide

spectrum width and power that depends on the strength of the echoes and the radar

sensitivity (Zrnić 1975). For ground clutter, the power spectrum is also Gaussian-

like with narrow spectrum width, relatively high power, and centered at vr = 0

m/s (Doviak and Zrnić 2006). If the resolution volume contains weather but is

contaminated by ground clutter, the spectrum will be a combination of both.

For a single signal in the resolution volume (i.e., either weather only or ground

clutter only) and with the assumption of a Gaussian model, spectral analysis does

not provide additional information about the scatterers since the estimates of the

radar variables already reflect this. However, for a composite signal, the radar

variables are biased (e.g., they can be skewed towards the dominant signal). In

the case where the ground clutter signal is completely dominant over the weather
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Figure 2.3: Power spectrum of zero mean radial velocity weather mixed with ground
clutter.

signal, information about the hydrometeors will be lost. With spectral analysis,

the signals can be separated with minimal biases introduced in the radar estimates.

Even in the case where the weather signal has a zero mean radial velocity and it

is mixed with a ground clutter signal (Figure 2.3), information about the weather

signal can still be extracted because the ground clutter signal is spectrally narrower.

The separation of a ground clutter signal from others is relatively easy because

of the distinct characteristics seen in the power spectra, namely, the high power

return, the narrow spectrum width and a mean radial velocity about zero. However,

when dealing with groups of scatterers move independently with different radial

velocities, it becomes harder to separate them in the PSD alone because of the lack

of information to distinguish them from one another, as is the case in resolution

volumes with hydrometeors and debris. In such cases, the DPSDs provide additional

spectral information that could be used to identify groups of scatterers moving

with different radial velocities that have distinct polarimetric characteristics. It is
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hypothesized that these type of spectra could be found near TDSs, which is discussed

next.

2.2 Tornadic Debris Signatures

As mentioned previously, TDS are tornado-scale signatures with distinctive polari-

metric characteristics collocated near a tornado vortex that are visible in radar

observations (Figure 2.4) after a tornado touches ground (Ryzhkov et al. 2002). It

is hypothesized that they are related to the lofting, ejection and centrifuging of

debris by the tornado vortex (Dowell et al. 2005). Since debris have polarimetric

signatures that depend on their electrical size, shape, orientation and concentration

(Bodine 2014), these signatures can be noticeably different from those of hydrom-

eteors and can be used for polarimetric tornado detection (Ryzhkov et al. 2005).

In addition, they improve the detection of tornadoes (Wang and Yu 2015) when

ground observation is limited or impossible (e.g., at night or during heavy rainfall)

(Kumjian and Ryzhkov 2008).

Due to centrifuging in a tornado vortex, debris move at different velocities than

hydrometeors. Since Doppler radars measure the mean scatterers motion rather

than the actual wind speed, significant biases can be introduced in the radar mea-

surements (Dowell et al. 2005). This can occur whether the debris signal is stronger

than the weather signal or not. To effectively assess the potential damage (Bodine

et al. 2013), it is important to have accurate measurements to estimate the intensity

of the tornado. Ryzhkov et al. (2005) catalogued typical values of the polarimetric
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Figure 2.4: Tornadic debris signatures in observations of 20 May 2013 Moore, OK
tornado at 20:04:03 UTC with the PX-1000 radar. Reflectivity factor ZH (top
left), mean radial velocity v̄r (top right), differential reflectivity ZDR (bottom left),
correlation coefficient ρHV (bottom right).
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radar variables associated to the TDS as Z > 45 dBZ, ZDR < 0.5 dB, and ρHV < 0.8,

while Bodine et al. (2013) use more stringent sets of values for Z and ρHV: either

Z < 43 dBZ and ρHV < 0.82, or Z < 51 dBZ and ρHV < 0.72. With these cri-

teria, it can be inferred that TDS are more likely to be seen in observations due

to the debris signal dominating in a particular radar resolution volume (Ryzhkov

et al. 2005), thus the mean radial velocities in volumes with TDS are more prone to

centrifuging biases. Furthermore, it is hypothesized that this error in measurement

can be corrected if the velocity of the debris is known and can be separated from

the velocity of hydrometeors, which are passive tracers of the wind. It is argued in

this work that such information could be retrieved through spectral analysis.

With a Gaussian assumption, the PSD does not provide additional information

if there is only one type of scatterer in the radar resolution volume. In the case

where there is more than one type of scatterer, discrimination might be possible

provided that neither signal is completely obscuring the other signal. However, the

additional information provided by the DPSD is needed to appropriately classify

the signals. Because the DPSD shows the distribution of polarimetric variables as

a function of the radial velocities, it may be possible to determine the type of the

scatterers by correlating the DPSD values to known polarimetric characteristics of

the different groups of scatterers. However, identification of all scatterer types would

be impossible.

As an example, a sketch of a bimodal DPSD for a combination of weather and

debris signals is shown in Figure 2.5 (Cheong et al. 2015). The representation of

the spectral variables of debris may be exaggerated, but it illustrates a possible
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Figure 2.5: Sketch of spectral polarimetric variables for a combination of weather
and debris. Spectral power sSH (left), spectral differential reflectivity sZDR (center),
spectral correlation coefficient sρHV (right). Adapted from Cheong et al. (2015).

way to retrieve the actual velocity of the raindrops from DPSD estimates. In this

scenario, raindrops are moving faster, with a wider spectrum width, positive sZDR,

and sρHV high and close to 1. Conversely, debris is slower, with a narrower spectrum

width, negative sZDR and lower sρHV. It is expected that the spectral variables of

the scatterers would follow the polarimetric radar variables somewhat closely in

value. Without the DPSD, there would be a higher uncertainty in determining

which spectral components of the PSD correspond to weather and which to debris.

However, by inspecting the spectral polarimetric variables it should be possible to

separate the different scatterer types. Although the debris signal is depicted as

a Gaussian-shaped signal, it should be noted that such assumption is not realistic.

Nonetheless, it is a simple model that successfully illustrates the idea of the presence

of signals with different polarimetric characteristics in the spectra.
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2.3 Estimation of Power Spectral Densities

For PSD estimation, there are non-parametric and parametric methods. The former

type makes no assumptions about the structure of the underlying phenomena, while

the latter assumes their structure can be described with certain models by using

different parameters. The atmosphere is constantly changing, and only over 75% of

the observed power spectra are Gaussian shaped (Janssen and Van Der Spek 1985),

in addition to non-hydrometeor scatterers being present in the radar volume. Thus,

the uncertainty in determining the nature of the event would be high and extremely

difficult to parameterize a model for each case. Therefore, non-parametric methods

are better suited for this work.

Two common non-parametric methods to compute the PSD are the periodogram

and the correlogram methods. The periodogram consists in applying the discrete

Fourier transform (DFT) to the I/Q time-series signal to obtain

Z(k) =
M−1∑
m=0

V (m)e−j2πmk/M , (2.26)

where the signal V corresponds to either the H- or V-channel. Then an estimate of

the PSD can be obtained as

sŜ(k) =
|Z(k)|2

M
, (2.27)

where M is the total number of samples in the dwell, and k is the frequency compo-

nent index. The correlogram method (Stoica and Moses 1997) consists in estimating
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the autocorrelation function of the I/Q time series and then applying the DFT. An

estimate of the PSD with the correlogram can be computed as

sŜ(k) =

(M−1)∑
l=−(M−1)

R̂(l)e−j2πlk/M . (2.28)

It can be shown that the periodogram and the correlogram estimators are equivalent

under certain conditions (Doviak and Zrnić 2006). The method preferred herein

is the periodogram because of its relative simplicity and low computational cost.

In spite of its advantages, the periodogram comes with limitations regarding the

accuracy and precision of the PSD estimates. Many variants of the periodogram

(Hayes 1996; Stoica and Moses 1997) have been proposed in the literature to address

these issues, some of which will be described later in this chapter.

2.3.1 Modified Periodogram

Since the DFT assumes the underlying signal to be periodic, the discontinuities asso-

ciated with the periodic extension of an I/Q dwell introduce frequency components

that are not related to the underlying phenomenon. This effect is known as spectral

leakage (Harris 1978). The modified periodogram is a generalized variation of the

periodogram which accounts for this effect by applying a data window or tapering

function to smooth out the discontinuities associated with the periodic extension of

the time-series signal (Hayes 1996).

Z(k) =
M−1∑
m=0

d(m)V (m)e−j2πmk/M , (2.29)

29



A
m

p
lit

u
d
e

I/Q Signal V(m)

0

1

A
m

p
lit

u
d
e

Sample time T
s

Data Window d(m)

(a)
A

m
p
lit

u
d
e

I/Q Signal V(m)

0

1

A
m

p
lit

u
d
e

Sample time T
s

Data Window d(m)

(b)

Figure 2.6: Effects of data windowing in (a) the periodogram, and (b) the modified
periodogram. Whereas the former uses a rectangular window (i.e., no window), the
latter uses a tapered window (the von Hann window in this example). The in-phase
component I(m) shown in blue and the quadrature component Q(m) shown in cyan.

where d(m) is the data window function. Figure 2.6 shows how the data windowing

function is applied for the periodogram and for the modified periodogram. It is

important to note that by applying the taper the signal power is attenuated. To

compensate for this loss, the PSD is normalized by:

α =
1

M

M−1∑
m=0

|d(m)|2. (2.30)

Then, the modified periodogram estimate becomes

sŜ(k) =
1

α

|Z(k)|2

M
. (2.31)
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Figure 2.7: Bartlett’s method makes non-overlapping segments of the I/Q signal,
and computes the PSD for each segment using a rectangular data window. In this
case, the length of each segment is L = M/4, and each segment is enumerated.

The choice of the data windowing function can reduce the spectral leakage in

exchange for frequency resolution (Harris 1978). Typical choice of windows include

the Bartlett window (SLL -25 dB), the von Hann window (SLL -32 dB), the Ham-

ming window (SLL -43 dB), and the Blackman window (SLL -58 dB), among others.

From here on, this method will be simply referred to as the periodogram.

2.3.2 Bartlett’s Method

The method proposed by Bartlett (1950), consists in dividing the time-series signal

into non-overlapping segments. The PSD of each segment is computed with the

periodogram using a rectangular data window (Figure 2.7), and then these partial

estimates are averaged to reduce the variance of the frequency component estimates

(Stoica and Moses 1997). The PSD estimate of a single dwell with Bartlett’s method

is computed as

Zi(k) =
L−1∑
m=0

V (m+ iL)e−j2πmk/L, (2.32)
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sŜi(k) =
|Zi(k)|2

L
, (2.33)

sŜ(k) =
1

N

N−1∑
i=0

sŜi(k), (2.34)

for m = 0, . . . , L − 1, k = 0, . . . , L − 1 and i = 0, . . . , N − 1, where N = bM/Lc is

the number of segments, L is the segment length, and b·c is the floor function.

Although Bartlett’s method computes a smoother PSD estimate because the

partial estimates are independent, it comes with its limitations and tradeoffs. The

method, by definition, does not make use of data windowing functions and thus is

less flexible compared to other methods. Since it reduces the number of samples to

compute the partial PSD estimates, the frequency resolution gets degraded signifi-

cantly, although the variance is also reduced by a factor of N . This tradeoff between

frequency resolution and variance is clear (Stoica and Moses 1997). Moreover the

method has no control over the spectral leakage which makes it unsuitable for the

dynamic range of weather signals.

2.3.3 Welch’s Method

A variant of Bartlett’s method was proposed by Welch (1967) and it allows the

segments to overlap (Figure 2.8), as well as introducing an extra degree of freedom

when selecting the data windowing function for each segment (Stoica and Moses

1997). Bartlett’s method is reduced to a specific case of the Welch’s method when

the data window function used is the rectangular window and the segments do not

overlap. The PSD estimate of a single dwell with Welch’s method is obtained as
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Figure 2.8: Welch’s method makes overlapping segments of the I/Q signal, and
computes the PSD for each segment using a particular data window. In this case,
the length of each segment is L = M/2 with a 50% overlap and the von Hann
window. Each segment is enumerated.

follows:

Zi(k) =
L−1∑
m=0

d(m)V [m+ i(L−O)]e−j2πmk/L, (2.35)

α =
1

L

L−1∑
m=0

|d(m)|2, (2.36)

sŜi(k) =
1

α

|Zi(k)|2

L
, (2.37)

sŜ(k) =
1

N

N−1∑
i=0

sŜi(k), (2.38)

for m = 0, . . . , L − 1, k = 0, . . . , L − 1 and i = 0, . . . , N − 1, where N = bM−O
L−O c is

the number of segments, O the amount of segment overlap, and L is the segment

length.

Welch’s method accounts for the limitations of Bartlett’s method by adding more

flexibility in the selection of the appropriate parameters that improves the statistical

performance of the estimator. However, by allowing the overlap of the time-series

signal segments, the partial PSD estimates are no longer independent even though
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the windowing function works to “decorrelate” these estimates. The resolution and

the variance of Welch’s method are better than Bartlett’s method (Stoica and Moses

1997). The performance of the method is analyzed in Chapter 4.

2.3.4 Daniell’s Method

The smoothed periodogram method proposed by Daniell (1946) reduces the variance

of the estimate in a different manner than in the methods described above. In this

method, a moving average filter is applied to the “raw” periodogram estimate (Stoica

and Moses 1997) (See Figure 2.9). To obtain the PSD estimate with Daniell’s

method, we first get an estimate using Equations (2.29)-(2.31). Then, a moving

average filter is applied as

sŜ(k) =
1

2p+ 1

〈k+p〉M∑
k′=〈k−p〉M

sŜ(k′), (2.39)

where 2p+ 1 is the length of the filter, and 〈·〉M is the modulo M operator. Clearly

this method trades spectral resolution for reduction of variance, and it may lead

to higher bias as it smoothes out the raw PSD. Additionally, when the frequency

components of the signals of interest are too close, the ability to resolve them in-

dividually may be lost due to this smearing effect. The method can be extended

to a more general version which reduces the spectral leakage by using a weighted

moving average filter. However, such implementation is not analyzed in this study.

The performance of the method is analyzed in Chapter 4.
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2.4 Estimation of Dual-Polarimetric Spectral Densities

To estimate the DPSDs, the co- and cross-polar power spectra must be obtained

first as

ZH,V(k) =
M−1∑
m=0

d(m)VH,V(m)e−j2πmk/M , (2.40)

sŜH,V(k) =
1

α

|ZH,V(k)|2

M
, (2.41)

sŜX(k) =
1

α

ZH(k)Z∗V
M

, (2.42)

To illustrate this, the expressions for the modified periodogram are shown, but it

should be noted that the estimates sŜH, sŜV and sŜX may be obtained with any

PSD estimator.
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The polarimetric spectral estimates are obtained in a similar way to the polari-

metric radar variables but using the PSD estimates as:

sẐDR(k) =

K∑
i=1

sŜ
(i)
H (k)

K∑
i=1

sŜ
(i)
V (k)

, (2.43)

sρ̂HV(k) =

∣∣∣∣ K∑
i=1

sŜ
(i)
X (k)

∣∣∣∣√
K∑
i=1

sŜ
(i)
H (k)

K∑
i=1

sŜ
(i)
V (k)

, (2.44)

sφ̂DP(k) = arg


K∑
i=1

sŜ
(i)
X (k)√

K∑
i=1

sŜ
(i)
H (k)

K∑
i=1

sŜ
(i)
V (k)

, (2.45)

where K is the number of independent spectra that are averaged to obtain useful

DPSD estimates. As previously stated, the spectral differential phase will not be

part of the analyses because it does not convey as much information to discriminate

hydrometeors from debris.

Operational weather radars perform a scan every few minutes, which yields one

independent spectra (K = 1) for each radar resolution volume. Using the peri-

odogram estimator, for the spectral differential reflectivity, the frequency compo-

nents of the PSD have significantly large variance, providing a poor sZDR estimate.

36



Additionally, it can be shown that the spectral correlation coefficient estimate fails

to produce any useful results. By combining (2.44) and (2.41)-(2.42) for K = 1:

sρ̂HV(k) =
|sŜX(k)|√

sŜH(k)sŜV(k)
=

|ZH(k)Z∗V(k)|√
|ZH(k)|2|ZV(k)|2

=
|ZH(k)||Z∗V(k)|
|ZH(k)||ZV(k)|

= 1, (2.46)

which shows how the sρHV estimate always equals 1.

This limitation can be overcome in different ways. Perhaps the most obvious

solution is to average more independent spectra to reduce the statistical errors of

the estimates and to produce meaningful sρ̂HV. To this end, data can be obtained

from different sources such as adjacent radar resolution volumes in azimuth, range,

or scans. Alternatively, the methods described in Section 2.3 provide estimates with

better statistical performance than the periodogram estimator, and these could be

used to obtain more reliable DPSD estimates with data from one dwell. Previous

works (Bachmann and Zrnić 2007; Moisseev and Chandrasekar 2009; Alku et al.

2015; Unal 2009; Yanovsky 2011; Dufournet 2010; Spek et al. 2008; Moisseev et al.

2006; Moisseev and Chandrasekar 2007; Yu et al. 2013, 2012) have used one or more

of the previously mentioned methods.

The DPSD can be used as tool for polarimetric spectral analysis, and it has

been applied in the retrieval of microphysical parameters (Yanovsky 2011; Dufournet

2010; Spek et al. 2008; Moisseev et al. 2006; Moisseev and Chandrasekar 2007; ?),

as well as for detecting and suppressing clutter signals (Bachmann and Zrnić 2007;

Moisseev and Chandrasekar 2009; Alku et al. 2015; Unal 2009). Ideally, it is desired
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Figure 2.10: Range averaging scheme. Radar bins of three consecutive resolution
volumes along range are averaged in this example.

to obtain reliable DPSD estimates out of an individual dwell for polarimetric spectral

analysis to be both useful for interpretation and operationally feasible. Furthermore,

it is preferred that resolution loss in any dimension is kept to the minimum in order

to retrieve meaningful information for tornado observations. The advantages and

disadvantages of averaging in different dimensions is briefly discussed next.

2.4.1 Range Averaging

More spectra may be acquired from spatially correlated radar resolution volumes.

If the range gates of a particular radial are chosen to be averaged (Figure 2.10),

the range resolution is degraded by at least a factor of two (e.g., two adjacent

range gates). Depending on the range resolution of the radar, this could be quite

significant as important spatial features of the weather event may be masked by

averaging. Additionally, since the range dimension of the resolution volume remains

constant although the resolution volume increases in size with range due to the

antenna’s beamwidth and range may be oversampled, range averaging may be a less

compromising option in regard to resolution loss.
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Figure 2.11: Azimuthal averaging scheme. Radar bins of three consecutive azimuths
are averaged in this example.

2.4.2 Azimuth Averaging

A different spatial averaging can be performed using independent spectra from adja-

cent radar resolution volumes in azimuth (Figure 2.11). Similar to range averaging,

the azimuthal resolution is degraded at the very least by a factor of two (e.g., resolu-

tion volumes from two adjacent rays). At farther ranges, the radar resolution volume

gets wider in azimuth resulting in degraded spatial resolution, while for a constant

range, resolution volumes will be similar in size. Thus, averaging in azimuth may

be favored over range averaging at closer ranges. Additionally, if the azimuth is

oversampled or if signal processing techniques such as the super-resolution (Torres

and Curtis 2006) are used, the impact of azimuth averaging may be acceptable.

2.4.3 Scan-to-Scan Averaging

Averaging spectra from different scans (Figure 2.12) can also be performed to ob-

tain better DPSD estimates, provided the spectra are correlated in time (i.e., slow

moving phenomena or short scan times). By doing so, it must be ensured that the

observations are based on the same location in space for a given event. However, to

correctly capture the evolution of certain weather events, such as tornadoes, the time
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Figure 2.12: Dwell averaging scheme. Radar bins of three consecutive dwells are
averaged in this example.

between consecutive scans for a given radar resolution volume must be considerably

short.

2.4.4 Frequency Averaging

Some of the PSD estimation methods described in the previous section can provide

decent DPSD estimates using data from a single dwell by reducing the statistical

errors through averaging in the frequency domain. Albeit useful in cases where no

other type of averaging can be performed, these methods degrade the frequency

resolution (Bartlett, Welch) or add additional spectral “smearing” (Daniell). As a

consequence, the quality of these estimates are usually not enough to be used in any

quantitative analysis.

2.5 Summary

While the radar variables provide the “big picture” of a weather event, measure-

ments can be biased by the presence of dominant clutter (i.e., non-meteorological
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targets). In such cases, a spectral analysis may be useful to infer the character-

istics for groups of scatterers moving at different Doppler velocities. A potential

application for polarimetric spectral analysis is in radar resolution volumes with

TDS, where the measurements are more prone to errors due to the weather signal

being dominated by the debris signal. The correction of these biases is important

when estimating tornado intensity and damage potential through radar observa-

tions. However, the quality of the DPSD estimates is limited by the number of

independent observations that are needed to obtain accurate estimates. Polarimet-

ric spectral analysis of tornado observations is additionally hindered by the fact that

tornadoes evolve fast in time in a relatively small spatial extent, and because debris

are centrifuged in the tornadic vortex. This means that good temporal and spatial

resolutions are required to capture important features of the tornado, as well as a

good frequency resolution to discriminate the velocities of hydrometeors and debris.

Currently available techniques for DPSD estimation are not sufficient to overcome

these constraints. In the following chapter, the Bootstrap DPSD estimator is in-

troduced which is capable of estimating reliable DPSDs with minimal resolution

loss.
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Chapter 3

The Bootstrap Dual-Polarimetric Spectral

Density Estimator

Obtaining radar-variable estimates with low errors is important to correctly charac-

terize the underlying meteorological phenomena. The estimators presented in Chap-

ter 2 yield estimates of sufficient quality provided that the number of independent

measurements is large (Melnikov and Zrnić 2004; Yu et al. 2012). In practice, how-

ever, it may be extremely difficult to obtain the required number of measurements

due to numerous reasons, some of which were mentioned in the previous chapter. In

this chapter, the Bootstrap DPSD estimator is presented as an alternative method

that overcomes some of the limitations of the conventional PSD and DPSD estima-

tors. The bootstrap concept and definitions of non-dependent and dependent data

bootstrap are presented in Section 3.1. Section 3.2 presents applications of these

methods to weather radar I/Q time-series signals and explores the utility of each

method for this application. In Section 3.3, the considerations taken into account in

the design of the Bootstrap DPSD estimator are presented. The criteria to evaluate

the performance of the methods and a few signal conditioning strategies that im-

prove the quality of the estimates are explained. Section 3.4 presents the rationale

behind the selection of the best strategies and parameters for the Bootstrap DPSD
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estimator. The algorithm of the Bootstrap DPSD estimator is described in Section

3.5. And finally, a summary of this chapter is presented in Section 3.6.

3.1 Bootstrap Resampling

In a statistical investigation, samples of an unknown distribution can be obtained

to make inferences about the actual distribution. In other words, the sample dis-

tribution is an estimate of the real distribution. It is explained by the law of large

numbers that the accuracy of an estimate improves as the number of samples in-

creases. Logically, as the sample size increases, the sample distribution will converge

to the real distribution. However, obtaining a large number of samples may not al-

ways be feasible or practical, in which case there is no choice other than to work

with the available data. In such situations, resampling methods can provide a bet-

ter estimate of the sample distribution because the distribution, albeit small and

discrete, is known and thus can be treated as a parent distribution (Hall 1992).

In this sense, the statistical characteristics of the resample distribution inferred

from the sample distribution can be compared to those of the sample distribution

inferred from the unknown, real distribution (Efron and Tibshirani 1994). Conse-

quently, more accurate inferences about the real distribution can be made, provided

that the sample distribution is reasonably representative of the underlying distribu-

tion (Varian 2005). According to Efron and Tibshirani (1994): “The bootstrap is a

computer-based method for assigning measures of accuracy to statistical estimates”.

This concept was first introduced in Efron (1979) as the random resampling with
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Figure 3.1: Bootstrap resampling. Adapted from Zoubir and Iskander (2004).

replacement of a given set of samples, and it is typically used to estimate statistical

properties of estimators (e.g., variance, confidence intervals). The bootstrapping

procedure is similar to a Monte Carlo simulation, where independent samples are

drawn from a known distribution, and by drawing a large number of them, an ap-

proximation to the real distribution is obtained. The difference is that the bootstrap

generates a large number of resamples from the sample distribution to obtain a boot-

strap distribution with which the statistical quality of an estimator can be assessed

(Varian 2005). Intuitively, the bootstrap simulates the probabilistic aspect of the

real world by substituting unknowns with estimates from the available data (Zoubir

and Iskander 2004). Figure 3.1 shows a diagram of the bootstrap concept, where

the mechanisms of the real world are compared to the bootstrap world. A proper

description will be presented later.

Although the bootstrap in its simplest form can fail under certain conditions

(e.g., correlated data), with proper modification it can be widely extended to many

applications (Hall 1992). The bootstrap has been used in many different areas of

engineering, including radar signal processing (Zoubir and Iskander 2004) and some
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applications related to radar meteorology include rainfall modeling through spatial

bootstrapping (Overeem et al. 2009), cloud radar observations and tests for similar-

ities between cloud occurrence profiles (Marchand et al. 2006), the determination of

the likelihood of TDS parameters observed in two different wavelengths having the

same parent distribution Bodine et al. (2014), and the analysis of tornado strength

through skill scores (Kingfield and LaDue 2015). However, to our knowledge, the

bootstrap has not been applied to weather radar signal processing.

There are bootstrap methods for non-dependent and dependent data, a brief

description of the methods is provided hereafter. In a later section, the bootstrap

methods are applied to I/Q signals, and it will be clear that only the dependent

data methods can yield meaningful results for spectral estimation.

3.1.1 Non-Dependent Data Bootstrap

For non-dependent data, i.e., data without structure, the independent and identi-

cally distributed (IID) bootstrap can be formulated as follows (Efron and Tibshirani

1994). Let

X = {X0, X1, . . . , XM−1} (3.1)

be the measured M -point sample set from a given distribution F . A resample

X′ = {X ′0, X ′1, . . . X ′M−1} (3.2)

45



of X is obtained by reassigning the samples of X randomly and with replacement

with probability

P (X ′i = Xj|X) =
1

M
, (3.3)

for 0 ≤ i, j ≤M − 1. Then, a number K ′ of resamples is generated, X′0, . . . ,X
′
K′−1,

of which the distribution is F̂ , an estimate of the distribution F . Hereafter, the

terms resample and bootstrap sample will be used interchangeably. It is shown in

Hall (1992) that as M goes to infinity, F̂ approaches F . In other words, the sample

distribution converges to the real distribution as the number of samples increases.

The numberK ′ of resamples needed varies depending on various factors which can be

application- or estimator-specific (Zoubir and Iskander 2004). From these resamples,

measures of the accuracy of a statistical property of interest θ̂′ = s(X′) can be

obtained. For example, if the sample mean estimator is used with a single set, only

one estimate of the mean could be computed. However, by bootstrapping the sample

mean estimator, the distribution of the mean can be obtained to assess the errors

of the measurement.

3.1.2 Dependent Data Bootstrap

For dependent data, such as the I/Q time-series signals from weather radars, the

former definition is inadequate. However, it can be extended to fit the definition if

the resampling is done by taking blocks of consecutive data instead of single points

to try to maintain the sample-time correlation of the data. There are many different
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block bootstrapping methods, each with its advantages and selection of parameters

(Lahiri 2003).

The general block bootstrap definition is derived from the definition of the IID

bootstrap. By resampling blocks of data instead of individual samples, that is, the

original sequence X0, . . . , XM−1 is divided into N blocks of consecutive samples as

X = {B0,B1, . . . ,BN−1}, (3.4)

and

Bj = {XjL, . . . , X(j+1)L−1}. (3.5)

for 0 ≤ j < N , where N is the number of blocks, and L is the block length. The

different dependent data bootstrap methods are similar in principle, though the

block selection scheme varies for each method. For now, it suffices to say that these

blocks of data can be arranged in different ways yielding different results. Following

this, a bootstrap sample becomes

X′ = {B′0,B′1, . . .B′N−1}, (3.6)

where X′, in this case, is obtained by reassigning blocks of consecutive samples in

X randomly with replacement, i.e., with probability

P (B′i = Bj|X) =
1

N
, (3.7)
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Figure 3.2: Non-overlapping block bootstrap block scheme. Adapted from Lahiri
(2003).

for 0 ≤ i, j ≤ N −1. It should be noted that for larger block lengths, these methods

are less computationally expensive because of the reduced number of blocks per

bootstrap sample. However, dividing the data into blocks reduces the degrees of

freedom to do resampling.

The concept of dividing the time-series signals into blocks may be similar to

Bartlett’s and Welch’s method of PSD estimation. In fact, two of the block bootstrap

methods that will be described hereafter employ a non-overlapping as well as an

overlapping block scheme like the aforementioned PSD estimators. However, neither

of them resample the blocks in the way bootstrap does. Additionally, a circular and

a stationary block bootstrap method will be presented. The former method allows

the samples in the blocks to wrap around the data circularly, while the latter uses

a dynamic block length.

3.1.2.1 Non-Overlapping Block Bootstrap (NBB)

This method was introduced by Carlstein (1986) and consists in dividing the sig-

nal into blocks that do not overlap. These blocks are then resampled with equal

probability (Lahiri 2003).
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By definition (Lahiri 2003),

X = {B0,B1, . . . ,BN−1, . . . , XM−1} (3.8)

Bj = {XjL, . . . , X(j+1)L−1} (3.9)

B = {B0,B1, . . . ,BN−1}, (3.10)

where B defines all the possible blocks available for resampling (Figure 3.2). A

bootstrap sample X′ is obtained as

X′ = {B′0,B′1, . . .B′N−1} (3.11)

with

P (B′i = Bj|B) =
1

N
(3.12)

N =

⌊
M

L

⌋
, (3.13)

for 0 ≤ i, j ≤ N − 1, where M is the length of the signal, L is the block length,

N is the number of blocks, and b·c is the floor function. If L is an integer multiple

of M (i.e. NL = M), there will be exactly N blocks in X. Otherwise, there will

be N blocks of length L, and the remaining M −NL samples of X will not have a

block assigned. In this case, an extra block at index N is drawn and the resulting

sequence is truncated to have exactly M data points (as the original sequence).

49



Figure 3.3: Moving block bootstrap block scheme. Adapted from Lahiri (2003).

3.1.2.2 Moving Block Bootstrap (MBB)

In the moving block bootstrap (MBB) (Künsch 1989; Liu and Singh 1992), unlike

the NBB, the blocks are allowed to overlap as depicted in Figure 3.3. The blocks

are then resampled with equal probability (Lahiri 2003).

By definition,

Bj = {Xj, . . . , Xj+L−1} (3.14)

B = {B0,B1, . . . ,BN ′−1}, (3.15)

for 0 ≤ j ≤ N ′− 1, where N ′ = M −L+ 1 is the number of available blocks (Figure

3.3). A bootstrap sample X′ is obtained as

X′ = {B′0,B′1, . . .B′N−1} (3.16)

P (B′i = Bj|B) =
1

N ′
(3.17)

N =

⌈
M

L

⌉
, (3.18)

for 0 ≤ i ≤ N − 1, where N is the number of blocks to be drawn from B for each

bootstrap sample, L is the block length, and d·e is the ceiling function. As with
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Figure 3.4: Circular block bootstrap block scheme.

the previous scheme, the bootstrap samples exceeding the length of the original

sequence will be truncated to M .

3.1.2.3 Circular Block Bootstrap (CBB)

A variant of the MBB, which additionally allows the blocks to wrap around the data

circularly, is the circular block bootstrap (CBB) (Lahiri 2003) depicted in Figure

3.4.

By definition,

Bj = {X〈j〉M , . . . , X〈j+L−1〉M} (3.19)

B = {B0,B1, . . . ,BM−1}. (3.20)

A bootstrap resample X′ is obtained as

X′ = {B′0,B′1, . . . ,B′M−1} (3.21)

P (B′i = Bj|B) =
1

M
(3.22)

N =

⌈
M

L

⌉
, (3.23)
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for 0 ≤ i ≤ N−1 and 0 ≤ j ≤M−1, where N is the number of blocks per bootstrap

resample. The bootstrap samples exceeding the length of the original sequence will

be truncated to M .

3.1.2.4 Stationary Block Bootstrap (SBB)

The stationary block bootstrap (SBB) (Politis and Romano 1994) makes the as-

sumption of stationarity by dynamically varying the block lengths for each boot-

strap sample (Lahiri 2003). The blocks, however, are not allowed to wrap around

circularly. The length of each block is a random number with geometric distribution

with parameter p. This allows for even higher variability and randomness than the

previous methods. Let the bootstrap resample be drawn as

X′ = {B(i0, j0),B(i1, j1), . . .} (3.24)

B(i, j) = {Xi, . . . , Xi+j−1}, (3.25)

where i defines the starting index of the block, and j defines the length of the block.

Furthermore, i has an uniform distribution:

i ∼ U(0,M − 1), (3.26)

and j has a geometric distribution with probability parameter p:

P (j = k) = p(1− p)k−1. (3.27)
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For each bootstrap sample, blocks are continuously drawn until the length of the

resample is greater than the original sequence. Then, the resulting sequence is

truncated to have a length equal to M .

3.1.2.5 Other Methods

Bootstrapping can also be performed in the frequency domain rather than in the

time domain. There are a variety of methods within this group of which the general

procedure is to assume a spectral model and then to bootstrap the residuals, i.e.,

the difference between the model and the spectral estimate. This procedure yields

bootstrapped PSDs directly, as opposed to bootstrapped time-series signals. Addi-

tionally, bootstrapped time-series signals may be obtained with the inverse Fourier

transform of the bootstrapped PSD. Although they make no assumption on data

dependence in the time domain, these methods rely on a good spectral model in

order to be effective. Obviously, this is unsuitable for DPSD estimation since the

model of the underlying phenomena is unknown, and hence will not be discussed in

this work.

3.2 Bootstrapping I/Q Time-Series Signals

The diagram in Figure 3.5 illustrates the bootstrap process applied to I/Q time-

series signals. After gathering the measurements for a dwell, instead of estimating

the PSD as per the classical approach, bootstrap samples of the I/Q signals are gen-

erated and the PSD of the resamples are estimated. This yields K ′ spectra per dwell,
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Figure 3.5: Diagram of the bootstrap. Adapted from Zoubir and Iskander (2004)
for I/Q time-series signals.
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which are averaged to compute the DPSD estimates. The process of averaging boot-

strapped estimates is known as bootstrap aggregating (Breiman 1996). Hereafter,

the bootstrap resamples of the I/Q signals shall be referred to as pseudo-realizations.

For weather radar signals, although the samples of the I and Q components are un-

correlated with each other, the random processes controlling the changes in I and

Q are correlated (Doviak and Zrnić 2006). Therefore, the structure of the pseudo-

realizations must be similar to the original sequence in order to correctly convey

the sample-time coherence. For this reason, it is evident that the IID bootstrap

assumption is inadequate and cannot be applied to estimate the spectra of weather

signals. The different block bootstrapping methods have a different selection of

blocks available for resampling, which is why a preliminary assessment is necessary

to determine the method that yields the best results for DPSD estimation. This sec-

tion illustrates the block bootstrap methods applied to polarimetric weather radar

I/Q time-series signals and the DPSD estimates obtained with each method. At the

end of this section a summary of methods is presented.

3.2.1 IID Bootstrap

Given the I/Q signal for the H- and V- channels from Equation (2.7),

VH,V = [VH,V(0), . . . , VH,V(M − 1)] (3.28)
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Figure 3.6: Obtaining I/Q pseudo-realizations with the IID bootstrap.

and the definitions in Equations (3.1-3.3), a pseudo-realization is obtained as

V′H,V = [V ′H,V(0), . . . , V ′H,V(M − 1)], (3.29)

where

P (V ′H,V(m′) = VH,V(m)|VH,V) =
1

M
, (3.30)

and 0 ≤ m,m′ ≤ M − 1. In this sense, a pseudo-realization is obtained from V

by resampling randomly with replacement, which means the data points are drawn

with equal probability, and as such, they can be repeated in the sequence (Figure

3.6). The IID bootstrap is a particular case of a block bootstrap with unit block

length.

To assess the quality of the spectral estimates obtained from each bootstrap

method, simple simulations for a single signal are run. The simulation parameters
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Parameter Value
SNR 30 dB
v̄r 5 m/s
σv 2 m/s
ZDR 1.5 dB
ρHV 0.9
M 100
K 1 independent spectrum
K ′ 100 pseudo-realizations
Ni 1000 iterations
va 15.7 m/s

Table 3.1: Simulation parameters for a simple single signal case.

of the bulk radar variables of the signal are summarized in Table 3.1. The param-

eters are chosen to resemble a realistic weather signal, while ρHV is arbitrarily set

to a low value so that potential biases become more evident. Ni independent re-

alizations of a signal are simulated and, for each of them, K ′ pseudo-realizations

are bootstrapped. The PSD of the pseudo-realizations are estimated using the pe-

riodogram with a Blackman-Nuttall window, and then averaged to compute the

DPSD assuming only one independent spectrum is available. Simply put, for each

independent realization, the PSD is estimated using the average of K ′ bootstrapped

spectra, and K independent spectra (in this case, K = 1) may be averaged to esti-

mate the DPSD. The K independent spectra may be obtained from different sources

(i.e., different azimuth, range or dwell, or generated from simulations), whereas the

K ′ bootstrapped spectra are obtained from the same source. The Ni independent

realizations are performed to assess the statistical characteristics of the DPSD. The

weather-like I/Q time-series signals are simulated using the procedure described in

Zrnić (1975), extended to dual-polarized signals with the procedure described by

Galati and Pavan (1995), as presented in Torres and Zrnić (2003). This procedure
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Figure 3.7: Mean of Ni = 1000 DPSD estimates obtained with IID bootstrap (blue)
and the ideal estimates (black): s ˆSNRH (top), sẐDR (middle), and sρ̂HV (bottom).

is the same for all the methods evaluated hereafter. The estimates using the IID

bootstrap are shown in Figure 3.7. To assess the quality of the estimates, the boot-

strap DPSD estimates are compared to ideal DPSD estimates obtained with a large

number of independent spectra (K = 100). It can be seen that the mean of the

spectral estimates of the IID bootstrap tend to the average radar variables. For

this single signal case, the values of the DPSD for frequency components with high

enough SNR should be approximately equivalent to the bulk radar variables. How-

ever, by assuming no data dependence in the time domain, the information about
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the distribution of radial velocities cannot be captured. As previously mentioned,

the underlying phenomena controlling the I/Q time-series signals are correlated,

thus a dependent data bootstrap must be used.

3.2.2 Non-Overlapping Block Bootstrap (NBB)

The NBB was defined in Section 3.1.2.1, where the I/Q time-series signal can be

expressed as,

VH,V = {B0,B1, . . . ,BN−1, . . . , VH,V(M − 1)}, (3.31)

where

Bj = {VH,V(jL), . . . , VH,V[(j + 1)L− 1]}, (3.32)

and an I/Q pseudo-realization V′H,V is obtained as

V′H,V = {B′0,B′1, . . .B′N−1}, (3.33)

with

P (B′i = Bj|B) =
1

N
(3.34)

for 0 ≤ i, j ≤ N−1. B is the set of all available blocks, M is the length of the signal,

L is the block length, and N =
⌊
M
L

⌋
is the number of blocks. Figure 3.8 illustrates

this process. If N = ML, there will be exactly M samples in the pseudo-realization.

Otherwise, the last M − NL samples from V will not have a block assigned and

therefore will not be part of any pseudo-realization. In this case, an additional block

is drawn from B and the pseudo-realization is truncated to M samples.
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Figure 3.8: Obtaining I/Q pseudo-realizations with the NBB.

The DPSD is estimated using the same procedure mentioned in the previous

section, but using the NBB scheme for different block lengths (Figure 3.9). The

effect of spectral leakage can be seen in all estimates and it is such that even a

very aggressive data window function as the Blackman-Nuttall (SLL -98 dB) is not

enough to mitigate it. This example shows the tradeoff between the selection of

the bootstrap block length and the spectral leakage introduced by disrupting the

sample-time coherence. Methods to mitigate this effect will be discussed later, but

for now, it is assumed that the discontinuities between blocks are not accounted for

in any of the methods.
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3.2.3 Moving Block Bootstrap (MBB)

The definition of the MBB was presented in Section 3.1.2.2, and the implementa-

tion on the I/Q time-series signal is as follows. Let the set of available blocks for

resampling be

B = {B0,B1, . . . ,BN ′−1}, (3.35)

where each block is given by

Bj = {VH,V(j), . . . , VH,V(j + L− 1)} (3.36)

for 0 ≤ j ≤ N ′ − 1, where N ′ = M − L + 1 is the number of available blocks. An

I/Q pseudo-realization V′H,V is obtained as

V′H,V = {B′0,B′1, . . .B′N−1}, (3.37)

where

P (B′i = Bj|B) =
1

N ′
, (3.38)

for 0 ≤ i ≤ N − 1, where N =
⌈
M
L

⌉
is the number of blocks to be drawn from B

for each pseudo-realization, and L is the block length. Figure 3.8 illustrates this

process.

The DPSD estimated using MBB for different block lengths is shown in Figure

3.11 For block lengths of 0.9M and 0.8M there is almost no spectral leakage, while

it is noticeable for 0.7M and even higher for 0.6M . However, for larger block lengths
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Figure 3.10: Obtaining I/Q pseudo-realizations with the MBB.

the DPSD estimates are significantly biased. The MBB estimates for block lengths

of 0.8M seem to follow the shape of sρHV better, but sẐDR still has large biases. As

the block length is reduced, it can be seen that the error is also reduced. Moreover,

in the limit where the estimates are unbiased, the block length is 1, which is the

case of the IID bootstrap. The tradeoff between the block length and the quality of

the estimates is thus evident.

3.2.4 Circular Block Bootstrap (CBB)

The CBB was defined in Section 3.1.2.3. The implementation on the I/Q time-series

signal is similar to the MBB, though the blocks are now allowed to wrap data points

circularly. With the CBB, an I/Q pseudo-realization V′H,V is obtained as

V′H,V = {B′0,B′1, . . .B′M−1}, (3.39)
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where

P (B′i = Bj|B) =
1

M
, (3.40)

for 0 ≤ i ≤ N − 1, where N =
⌈
M
L

⌉
is the number of blocks to be drawn from

B for each pseudo-realization, and L is the block length (Figure 3.12). The set of

available blocks B is

B = {B0,B1, . . . ,BM−1}, (3.41)

with

Bj = {VH,V(〈j〉M), . . . , VH,V(〈j + L− 1〉M)}, (3.42)

for 0 ≤ j ≤M − 1, and there are as many blocks available as M samples in the I/Q

signal. The 〈·〉x is the modulo-x operator.
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Figure 3.12: Obtaining I/Q pseudo-realizations with the CBB.
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Figure 3.13: Mean of Ni = 1000 DPSD estimates obtained with CBB for L = 0.9M
(blue), L = 0.8M (green), L = 0.7M (red), L = 0.6M (teal) and the ideal estimates
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With the CBB, results similar to those of the MBB are expected. However, be-

cause circular wrapping is allowed, higher spectral leakage is also introduced by the

lack of coherence between the samples in blocks closer to the ends of the original

sample set. The DPSD estimated using CBB for different block lengths is shown

in Figure 3.13. Once again the counteracting effects of block length and spectral

leakage can be seen. An advantage of the CBB is that it has a larger number of

different blocks available to resample, which yields higher variability or “random-

ness” of the pseudo-realizations. Additionally, it is observed that when compared
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to the MBB for a same block length, the biases for frequency components with high

sSNR are lower for the CBB although the spectral leakage is higher, as expected.

It is important to note that a very aggressive window is used for the analysis, yet

the spectral leakage is significant. This leakage contaminates the frequency compo-

nents of noise, and as such, there is a possibility to wrongfully conclude that there

is significant signal where there is none.

3.2.5 Stationary Block Bootstrap (SBB)

Following the SBB scheme defined in Section 3.1.2.4, the pseudo-realizations are

obtained as

V′H,V = {B(i0, j0),B(i1, j1), . . .}, (3.43)

where

B(i, j) = {VH,V(i), . . . , VH,V(i+ j − 1)}, (3.44)

i is uniformly distributed in U(0, j − 1) and defines the starting index of the block,

and j has a geometric distribution with parameter p and defines the length of the

block. For each pseudo-realization, blocks are continuously drawn until the length

of the pseudo-realization is equal to or greater than the original sequence. Then,

it is truncated to have a length equal to M . The estimates for values of p = 0.1,

0.01 and 0.01 are shown in Figure 3.14. The estimates show results similar to those

obtained with the MBB and CBB. The biases for frequency components with high

sSNR are lower compared to the MBB and CBB. However, due to the randomness
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of the block length of each pseudo-realization, it is harder to control the spectral

leakage on the estimates.

3.2.6 Summary of Block Bootstrap Methods

It has been observed that smaller block lengths can help increase the variability

which in turn decreases the errors for the spectral coefficients corresponding to the

significant components of the signal, but also decreases the sample-time coherence,

which in turn increases the spectral leakage. Herein, the significant components of

the signal are the spectral coefficients for which the sSNR is higher than 20 dB. The

NBB has the lowest variability for any block length because the blocks are not al-

lowed to overlap. This means that individual blocks from the NBB block population

are less correlated. The MBB has a higher variability than the NBB, but lower than

both the CBB and SBB. Due to this, the errors in the MBB estimates are higher,

but the main advantage of the MBB is that its block population best preserves the

signal coherence and thus has the lowest spectral leakage. The CBB has lower errors

than the MBB, but higher spectral leakage due to the characteristics of its block-

ing scheme. The SBB has the lowest errors because of the high variability in the

pseudo-realizations. However, it is also the worst at preserving signal coherence and

the has highest spectral leakage. With this exercise, it has been understood that the

spectral leakage and the error of the block bootstrap methods depend mainly on the

block length L and the block arrangement. For the NBB, MBB and CBB methods,

the block length L can be adjusted to obtain better estimator quality, while for the

SBB this cannot be done. The NBB exhibits side-lobe contamination in the spectra
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even with an aggressive window such as the Blackman-Nuttall window; therefore,

it can be concluded that this method is not appropriate for spectral estimation of

weather signals. The SBB performs poorly for detecting features in the spectra, so

it is also discarded from the analysis. Ideally, the spectral leakage characteristics of

the MBB and the error characteristics of the CBB would be desired characteristics

of a useful block bootstrap method. Since the CBB is an extension of the MBB,

the advantages of both methods can be exploited to obtain optimal results both in

terms of spectral leakage and statistical errors. Such strategies and considerations

are discussed in the following section.

3.3 Considerations in the Design of the Bootstrap

DPSD Estimator

The selection of the best block bootstrap method is based on parameters that result

in an “optimal” quality of the spectral estimates. The choice of such parameters is a

compromise between a number of factors, such as spectral leakage, statistical errors

of estimates, and computational cost. Before selecting the block bootstrap method

and analyzing the performance with different parameters, the criteria to determine

the quality of the DPSD estimates must be established.
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3.3.1 Indicators of the Quality of Spectral Estimates

3.3.1.1 Spectral Leakage

As mentioned before, the random processes controlling the changes in the I and Q

components are correlated. Provided that the pulse repetition time is small enough,

the phasor of the I/Q signal follows a somewhat ordered path (Doviak and Zrnić

2006). Block bootstrap methods randomly resample blocks of data to generate a

pseudo-realization, but by doing so the sample-time coherence is disrupted (i.e.,

discontinuities are added to the phasor’s path) increasing spectral leakage. As men-

tioned previously, this leakage contaminates the frequency components of noise or

other weaker signals, which can lead to the wrong conclusion when performing spec-

tral analysis. Therefore, mitigating spectral leakage is important in terms of the

quality of the spectral estimates.

Discontinuities The two main sources of spectral leakage for block bootstrapping

are block discontinuities and circular discontinuities. A block discontinuity is a

transition that occurs between the last (or first) sample of a block and the first (or

last) sample of an adjacent block. Clearly, with an increasing number of blocks, there

is also an increasing number of discontinuities. A circular discontinuity is a transition

that occurs between the last (or first) sample of the original sequence and the first (or

last) sample of the same sequence when the signal is extended periodically. Although

these incoherencies added by the random resampling of blocks can provide additional

variability, they should be kept to a minimum to reduce spectral leakage. To achieve

this, it is important to keep the bootstrap block length as large as possible to have
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the least amount of discontinuities in the signal while also keeping the population of

different blocks as large as possible to have more variability. This tradeoff must be

considered in the design to ensure estimates provide useful information with minimal

errors.

Data Windowing The choice of the data windowing function to be applied to

the original sequence as well as to the pseudo-realizations has an impact on spectral

leakage. As shown by Harris (1978), the data windowing function smoothes a time-

series signal as samples near the edges are attenuated, which improves the spectral

estimates because the extraneous frequency components due to the discontinuity at

the edges are attenuated. However, doing so decreases the ability to resolve different

peaks in the spectra due to the “smearing” of the power of frequency components

into adjacent components, i.e., the main-lobe of the spectral window is wider. If a

proper windowing function is not applied to the signal, additional spectral leakage

may occur. By de-emphasizing the incoherent pulses, the spectral leakage can be

reduced.

3.3.1.2 Statistical Errors

In addition to the other indicators of quality of spectral estimates, the accuracy

and precision of the estimates obtained with the block bootstrap methods must be

assessed to select the method that produces the best estimates. As it was observed

from the preliminary results of implementing the block bootstrap methods to es-

timate the DPSD, a major tradeoff between the statistical errors and the spectral

72



leakage is expected. Clearly, the aim is to develop an estimator with small errors

and little spectral leakage. However, that is not feasible and a compromise between

both must be reached. A reasonable compromise is to determine a block bootstrap

method that results in minimal leakage while still providing acceptable error levels

for practical purposes. For this, the quality of the estimates of the different block

bootstrap methods is analyzed in terms of spectral leakage and statistical errors.

3.3.1.3 Computational Cost

Because the bootstrap methods inherently depend on generating a large number

of pseudo-realizations from one measurement, their computational cost is also of

interest since we would like the Bootstrap DPSD estimator to be viable in an op-

erational environment (i.e., a real-time implementation should be feasible). This

is especially important because there are typically hundreds of thousands of I/Q

signals per radar scan, which can quickly increase the computational cost by a few

orders of magnitude depending on the complexity of the blocking scheme and the

number of pseudo-realizations generated. While this is noted, a proper analysis is

beyond the scope of this work, though a discussion about the resampling scheme

will be presented later.

3.3.2 Strategies to Improve the Quality of the Spectral Estimates

Although bootstrapping weather radar I/Q signals can enable spectral estimation

when the available number of independent spectra is limited, improvements must

be made to obtain the best possible results. The strategies described in this section
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work independently to optimize the quality of the spectral estimates; thus, the core

of the Bootstrap DPSD estimator is a combination of the best block bootstrap

method and these pre-processing strategies.

3.3.2.1 Signal Coherency Correction

To mitigate the effects of discontinuities, coherency corrections can be applied to the

blocks of a pseudo-realization. These corrections consist in multiplying an adjacent

block in a pseudo-realization by a complex scalar. Borowska et al. (2016) presents a

phase correction technique for phased array radar signals similar to the one presented

in this work, though the strategy presented here is better suited for polarimetric

radar I/Q time-series signals. In general, these correction factors have three degrees

of freedom: the block used as reference, the polarimetric channel used as reference,

and the type of correction.

The propagation of the correction factor can be either forward or backward

depending on block used as a reference to compute the correction factor. That is

Ci =


B′i−1(L−1)

B′i(0)
= C+

i for forward correction

B′i+1(0)

B′i(L−1)
= C−i for backward correction,

(3.45)

where i indicates the index of the block (within the pseudo-realization) to be cor-

rected. A superscript by the correction factor indicates whether it is a forward or

backward correction, and the lack of a superscript indicates that the propagation

direction is irrelevant. The first element of the block has an index of 0, while the
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last element of the block has an index of L− 1. The propagation of the correction

indicates whether the i-th block is corrected using the last element of the previous

block (forward propagation), or the first element of the next block (backward prop-

agation). When applying a forward (or backward) correction, the blocks must be

drawn with an additional data point (i.e., a block length of L+ 1) because the first

(or last) pulse in the corrected block will be equal to the last (or first) pulse of the

contiguous block and, as such, should be eliminated. Because the I/Q signals are

random processes, the choice of forward or backward correction should provide simi-

lar results since the correction factors are random. However, from our experience, it

is best to keep an uncorrected block around the center of the signal as the reference

to correct the other blocks because the data windowing functions have maximum

weight around M/2. In such case, if the center block is the i-th block, the blocks

with indices greater than i should be corrected using forward correction, and those

with indices lesser than i should be corrected using backward correction.

The type of correction could be based on magnitude, phase, or both. The cor-

rected pseudo-realization then becomes

V′ =
{
C ′0B

′
0, C

′
1B
′
1, . . . , C

′
N−1B

′
N−1

}
= {C ′iB′i} (3.46)

C ′i =



|Ci| for magnitude correction

ej arg(Ci) for phase correction

Ci for magnitude and phase correction,

(3.47)
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Figure 3.15: Correcting sample-time coherency on a periodically extended complex
sinusoid using different methods.

Figure 3.15 shows the propagation and the complex constant correction methods

that can be applied to a signal. Here, the signal used to illustrate this concept is

a sum of complex sinusoids of different frequencies. The block of the uncorrected

signal is in the center, while the signal is periodically extended to the left and

to the right. The first row shows the extended signal with no corrections, the

second row is corrected by magnitude, the third row is corrected by phase, and

the last row is corrected by magnitude and phase. Additionally, the blocks on the

left side are backward-corrected, whereas the blocks on the right side are forward-

corrected. Clearly, the magnitude-and-phase-corrected signal appears to have a

smoother transition for both its real and imaginary parts while the magnitude-

and phase-corrected signals are inferior in correcting the discontinuities. It can be
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inferred that the magnitude and phase correction provides the best discontinuity

mitigation, and thus, is the preferred type of correction.

Although it is not explicitly stated in the formulas, the correction factors depend

on other correction factors applied to other blocks prior to the correction of the i-th

block. For example, consider the case where all blocks of a particular pseudo-

realization are corrected with forward correction in magnitude and phase. If B̃′1 =

C ′1B
′
1 is the first block of the pseudo-realization after a coherency correction, the

second block should be computed as B̃′2 = C ′1C
′
2B
′
2. This is done to consistently

propagate the coherence throughout the blocks, otherwise there would still exist

discontinuities in the sequence. From this, it should be clear that the corrections

are propagated along the pseudo-realization, which is one reason why it is important

to keep the number of blocks as small as possible when corrections are applied.

So far, two degrees of freedom of the correction factor have been presented. The

last one deals with which polarimetric channels are used as a reference to apply the

corrections. That is, the correction factor may be applied to both channels based on

the H- or V-channel, to each channel individually, or to both channels simultaneously

using a combined correction factor. A correction based on the H-channel is

V′H =
{
C ′H,0B

′
H,0, C

′
H,1B

′
H,1, . . . , C

′
H,N−1B

′
H,N−1

}
= {C ′H,iB′H,i}

V′V =
{
C ′H,0B

′
V,0, C

′
H,1B

′
V,1, . . . , C

′
H,N−1B

′
V,N−1

}
= {C ′H,iB′V,i},

(3.48)
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where the C ′H,i are correction factors based on blocks of the H-channel. Similarly, a

correction based on the V-channel is

V′H =
{
C ′V,0B

′
H,0, C

′
V,1B

′
H,1, . . . , C

′
V,N−1B

′
H,N−1

}
= {C ′V,iB′H,i}

V′V =
{
C ′V,0B

′
V,0, C

′
V,1B

′
V,1, . . . , C

′
V,N−1B

′
V,N−1

}
= {C ′V,iB′V,i},

(3.49)

where the C ′V,i are correction factors based on blocks of the V-channel. The choice

of either the H- or V-channel based correction should yield similar results for the

DPSD, although the spectral leakage will be lower for H-channel if using the H-

channel based correction, and vice versa. The individual correction for each channel

is

V′H =
{
C ′H,0B

′
H,0, C

′
H,1B

′
H,1, . . . , C

′
H,N−1B

′
H,N−1

}
= {C ′H,iB′H,i}

V′V =
{
C ′V,0B

′
V,0, C

′
V,1B

′
V,1, . . . , C

′
V,N−1B

′
V,N−1

}
= {C ′V,iB′V,i}.

(3.50)

And the combined correction is

V′H =
{
C ′X,0B

′
H,0, C

′
X,1B

′
H,1, . . . , C

′
X,N−1B

′
H,N−1

}
= {C ′X,iB′H,i}

V′V =
{
C ′X,0B

′
V,0, C

′
X,1B

′
V,1, . . . , C

′
X,N−1B

′
V,N−1

}
= {C ′X,iB′V,i}

(3.51)

Two variants of the combined correction were considered:

CX,i =


B′H,i−1(L−1)+B′V,i−1(L−1)

B′H,i(0)+B′V,i(0)
= C+

X,i for forward correction

B′H,i+1(0)+B′V,i+1(0)

B′H,i(L−1)+B′V,i(L−1)
= C−X,i for backward correction,

(3.52)
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and

CX,i =


1
2

[
B′H,i−1(L−1)

B′H,i(0)
+

B′V,i−1(L−1)

B′V,i(0)

]
= C+

X,i for forward correction

1
2

[
B′H,i+1(0)

B′H,i(L−1)
+

B′V,i+1(0)

B′V,i(L−1)

]
= C−X,i for backward correction.

(3.53)

However, the latter variant is selected because it is more robust for a wide range of

φDP values (e.g., the denominator in 3.52 would become small or tend to zero as the

value of φDP gets close to 180◦, which can produce unexpected results). It should

be noted that the selection of the channel used for the correction is independent of

the choice of the type or propagation. Figure 3.16 is provided to illustrate how the

different correction factors can be applied to the H- and V-channel signals.

To summarize the correction methods, the following set of expressions are pro-

vided for a clearer interpretation on how these corrections are applied. The general

form of the corrected signal becomes

V′H = {C ′′H,iB′H,i}

V′V = {C ′′V,iB′V,i},
(3.54)
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for 0 ≤ i ≤ N − 1, where i is the block index within the pseudo-realization, N is

the number of blocks in the pseudo-realization, and the correction factors C ′′H,i and

C ′′V,i depend on how the channels are corrected as

C ′′H,i, C
′′
V,i =



C ′H,i, C
′
H,i for H-channel based correction

C ′V,i, C
′
V,i for V-channel based correction

C ′H,i, C
′
V,i for individual correction

C ′X,i, C
′
X,i for combined correction.

(3.55)

Then, the factors C ′H,i, C
′
V,i, and C ′X,i depend on the complex constant as

C ′x,i =



|Cx,i| for magnitude correction

ej arg(Cx,i) for phase correction

Cx,i for magnitude and phase correction,

(3.56)
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for x = H,V or X, and where the Cx,i factors depend on whether the previous or

next block is used as a reference, as

CH,i =


B′H,i−1(L−1)

B′H,i(0)
= C+

H,i for forward correction

B′H,i+1(0)

B′H,i(L−1)
= C−H,i for backward correction,

CV,i =


B′V,i−1(L−1)

B′V,i(0)
= C+

V,i for forward correction

B′V,i+1(0)

B′V,i(L−1)
= C−V,i for backward correction,

CX,i =


1
2

[
B′H,i−1(L−1)

B′H,i(0)
+

B′V,i−1(L−1)

B′V,i(0)

]
= C+

X,i for forward correction

1
2

[
B′H,i+1(0)

B′H,i(L−1)
+

B′V,i+1(0)

B′V,i(L−1)

]
= C−X,i for backward correction.

(3.57)

Because some concepts need to be introduced in order to simplify the analysis, the

selection of the best channel correction method will be deferred to later.

3.3.2.2 Extended Signal

Although the corrected data provides an added variability to the pseudo-realizations,

it is desired to keep the number of original (uncorrected) samples as high as possible,

regardless of the coherence correction method used, so that the estimated spectra

are as close to the true spectra as possible. The MBB is suited for this task because

it introduces fewer discontinuities when the block length is large. However, by

doing so, the block population available for resampling gets reduced significantly.

The CBB can overcome this limitation since it allows large blocks and has good

variability, but the spectral leakage is very high. In the limit when the block length
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is M (i.e., same as the original sequence), the signal is as coherent as possible.

Though by assigning blocks of length M , the MBB would only have one block in the

population. However, the CBB has exactly M blocks of length M available because

the signal is extended periodically. If the samples of the periodically extended signal

were coherent, the CBB would have the best performance of all methods. Thus,

the coherence correction can be applied to the periodic extensions of the original

sequence to improve the quality of the estimates. Therefore, to benefit from both

methods, an extended I/Q signal with coherency corrections is proposed. With this

idea, the extended signal is kept as coherent as possible by applying the correction

to the periodic extension, while also keeping the original signal unaltered. To create

this extended signal (Figure 3.17), three instances of the signal V are concatenated.

Then, the left extension is backward-corrected and the right extension is forward-

corrected. That is,

XH,V = {VL
H,V,VH,V,V

R
H,V}, (3.58)

where

VL
H,V = C ′′−H,V{VH,V(0), . . . , VH,V(M − 2)},

VR
H,V = C ′′+H,V{VH,V(1), . . . , VH,V(M − 1)},

(3.59)

and the correction factors C ′′−H,V and C ′′+H,V can be obtained with (3.55)-(3.57) depend-

ing on the type of correction. Here, the superscripts indicate backward and forward

corrections specifically, while the type of correction and the polarimetric channel(s)

used as reference(s) are unspecified. It should also be noted that the extensions are

of length M − 1 due to the fact that, with the correction, the first (or last) element
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Figure 3.17: Generation of the extended signal XH,V(m). The left and right exten-
sions of the original sequence are denoted by the superscripts L and R, respectively;
while the channel of polarization is indicated by the H and V subscripts, for hori-
zontal and vertical channels, respectively.
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of a block is matched to the last (or first) element of the adjacent block. The length

of the extended signal then becomes M ′ = 3M − 2, and the block population for

the extended signal is defined as

B = {B0,B1, . . . ,BN ′−1}, (3.60)

where

Bj = {XH,V(j), . . . , XH,V(j +M − 1)}. (3.61)

With the use of an extended signal, the block population increases to N ′ = 2M −

2, where the block length is now M . However, a pseudo-realization obtained by

resampling from this set of blocks is still prone to spectral leakage, albeit lesser than

the case with no coherency correction applied.

3.3.2.3 Ratio of Original Samples

To further improve the quality of the bootstrapped estimates, a careful selection

of the blocks can be made. As mentioned previously, by keeping a larger number

of original samples in a pseudo-realization, it is guaranteed that the spectral esti-

mates will be less biased. Logically, pseudo-realizations with more discontinuities

(corrected or not) are more likely to contain more spectral leakage. Hence, instead

of using all the blocks of the extended signal, it is possible to select the set of blocks
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r = 0.5

Figure 3.18: Applying data windows on blocks with different ratio.

that contain more original samples than corrected samples. The concept of the ratio

of corrected samples in a block (or pseudo-realization) is introduced as

r =
Ncorrected

M
, (3.62)

whereNcorrected is the number of corrected samples in the block (or pseudo-realization).

In this sense, the original sequence has a ratio r = 0, while the (M/2) and (3M/2)-

th blocks have a ratio close to r = 0.5, and the first and the last blocks have a

ratio close to r = 1. For example, by establishing a threshold for blocks that have a

maximum ratio of r = 0.5, it can be guaranteed that all the blocks in the reduced

population will have at least 50% of the original samples (Figure 3.18). Clearly,

this strategy can additionally reduce the spectral leakage due to the incoherencies

remaining in the periodic extension of the original signal.

While the selection of r can be made arbitrarily with tradeoffs in spectral leak-

age and error statistics, its automatic determination is more convenient. Due to
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how the blocks are arranged, r depends on the data windowing function used. The

spectral leakage is reduced with this strategy mainly because the data points near

the discontinuities are de-emphasized, while more weight is placed on the original

samples. Essentially, it is comparable to applying a sliding data window on a sig-

nal, while allowing the signal to be periodically extended. A similar approach is

presented by Barbé et al. (2010), where Welch’s method is extended by allowing

segments to overlap circularly. The segments that overlap circularly use windows of

different length to deal with the circular discontinuities. However, this method still

loses frequency resolution if the length of the segments is not equal to the number of

samples. Moreover, the use of different windows for the segments results in poor SLL

for spectral estimation. Another approach where different data windows are used

is with the Thomson’s multi-taper method (MTM) for PSD estimation (Thomson

1982). In this method, a discrete number of orthogonal windows are used to capture

different characteristics of the spectra, then the partial PSD estimates are averaged

together. However, this method is not suitable for the spectral analysis of weather

signals because there is no control over the SLL, and therefore estimates show can

be severely biased. The use of an extended signal along with a maximum ratio of

corrected samples allows extracting spectral information from data points that are

attenuated by the data windowing function without introducing additional biases in

terms of both spectral leakage and statistical errors. As mentioned before, the ratio

that maximizes the amount of information depends on the data windowing function
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used in the analysis. A good compromise between spectral leakage and statistical

errors is obtained by limiting the selection to blocks with a maximum ratio of:

r =

1−

√
1
M

M−1∑
m=0

|d(m)|2

2
=

1−
√
α

2
, (3.63)

where α is the mean power of the data windowing function, and the amplitude
√
α/2

is related to the number of points in the data window that contribute the most to

the spectral estimate. It is assumed that the data windows are normalized to a

maximum amplitude of 1. With this definition, r is bounded between 0.5, where

half of the samples are corrected, and 0, where none of the samples are corrected. It

can be easily seen that more aggressive windows have a lower window power, thus

leading to higher maximum ratio and vice versa. For example, if only the original

sequence is used to estimate the PSD, with the use of a data window, part of the

information is lost due to the end samples being severely attenuated. The setting

of a maximum ratio threshold for the resampling of blocks can be thought of as if

a data window is shifted and applied on the extended signal to recover information

that was attenuated by the conventional application of the data window. Less

aggressive windows allow more power from the corrected samples, therefore their

corresponding maximum ratio is lower than for more aggressive windows. In other

words, the amplitude of the data windowing function determines the number of

corrected samples, as weighted by the window, that can be present on either end of

a sequence before the spectral leakage becomes significant.
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3.3.2.4 Power Correction

An additional step is taken to correct the power of the I/Q pseudo-realizations.

Since the coherence correction factors scale both magnitude and phase of corrected

samples, a power correction must be applied to preserve the power of the original

signal. Let P̂H,V be the estimated average power of the H- and V-channels of the

original signal, and P̂ ′H,V be the average power of the H- and V-channels of a I/Q

pseudo-realization. The average power of each pseudo-realization is matched to the

average power of the original signal; mathematically,

V ′′H,V(m) =

√√√√ P̂H,V

P̂ ′H,V
V ′H,V(m), (3.64)

so that

P̂ ′′H,V = P̂H,V. (3.65)

3.3.2.5 Bias Correction

In general, the expected value of the DPSD estimate and the true value are related

by

E[sẐdr(k)] = sZdr(k) + bias[sẐdr](k), (3.66)

and

E[sρ̂HV(k)] = sρHV(k) + bias[sρ̂HV](k), (3.67)

where sZdr is the linear spectral differential reflectivity (i.e., sZDR = 10 log sZdr).

The analytical expressions of the statistical errors of sẐDR and sρ̂HV were determined
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in Yu et al. (2012). The biases of the DPSD depend on the number of independent

spectra K, the spectral SNR of the H- and V-channels, sSNRH,V, and the real

spectral correlation coefficient, sρHV. The bias expressions derived from Yu et al.

(2012) are:

bias[sẐdr](k)

sẐdr(k)
=

1

βK

[
1− sρ̂2

HV(k)
]

(3.68)

bias[sρ̂HV](k)

sρ̂HV(k)
=

1

βK

{
[1− sρ̂2

HV(k)]2

4sρ̂2
HV(k)

}
, (3.69)

where β is introduced in this work as a error scaling factor accounting for the

changes in the quality of bootstrapped estimates prior to the bias correction, and

the estimates of the DPSDs are used rather than the true DPSDs. The sSNR terms

are neglected because it is assumed that the SNR of the signal of interest is high

(more than 20 dB). The factor β is determined by fitting different values of r such

that the error is minimized for all K, as

β =


(1− r)−3.3 − 2(1− r)1.1 for K = 1

(1− r)−4.5 − (1− r)−2.1 for K > 1,

(3.70)

where r is the maximum ratio defined by (3.63), and K the number of independent

spectra. By replacing (3.68) and (3.69) in (3.67), the following expressions are

obtained

sZ̃dr(k) = sẐdr(k)

{
1− 1

βK
[1− sρ̂2

HV(k)]

}
(3.71)

sρ̃HV(k) = sρ̂HV(k)

{
1− 1

βK

{
[1− sρ̂2

HV(k)]2

4sρ̂2
HV(k)

}}
, (3.72)
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where the tilde denotes the bias corrected estimate to distinguish it from the true

DPSD.

3.4 Analysis and Optimal Selection of Strategies

While some parameters have already been selected, there are others that still need

further analysis before a final selection can be done. So far it has been established

that neither the MBB nor the CBB were by themselves the best block bootstrap

methods, which is why the periodic extension of the signal and the maximum ratio

strategies have been proposed. In this sense, the block bootstrap method of choice

is essentially the MBB because the blocks are not allowed to wrap around circularly

on the extended signal. However, the periodic extension idea was inspired by the

CBB, even though the method is not a CBB under the formal definition because of

the coherency corrections. A more appropriate description is as a hybrid between

the MBB and the CBB. Hereafter, the proposed method is referred to as the hybrid

block bootstrap (or HBB). The parameters that give useful DPSD estimates under

this method have been found to be L = M (i.e., blocks of the same size as the

original I/Q signal), while an optimal value for K ′ is yet to be determined (and will

be analyzed later in this section). Moreover, with L = M and also the limitation

set by a maximum value of r, the block population B is further reduced to a point

in which it is useful to compare a deterministic resampling scheme, as opposed

to a random resampling scheme, i.e., using all or a subset of the possible pseudo-

realizations in a systematic order, versus randomly selecting the pseudo-realizations.
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The maximum ratio of corrected samples establishes a limit on the block pop-

ulation to control the leakage that is introduced in the spectral coefficients. The

selection of the maximum ratio can be made arbitrarily, although the value that

maximizes the information in the set of pseudo-realizations can be computed and it

depends on the data windowing function.

The parameter β for correcting the biases of the DPSD estimates is dependent

on the maximum ratio. While simpler expressions for β have been studied, the

current form, which was obtained empirically (as explained in the previous section),

gives satisfactory results. Additionally, it can be automatically obtained for different

data windows and number of independent spectra, which could further improve the

quality of the Bootstrap DPSD estimates.

By having selected most parameters, the dimension of the problem is simplified.

A statistical assessment of the quality of the estimates using different polarimetric

channel correction methods was mentioned previously and will be analyzed next,

followed by a comparison of bootstrap and deterministic resampling schemes.

3.4.1 Performance of Channel Correction Methods

Two of the three aspects of the correction factor have been analyzed in previous

sections. An analysis of the polarization channel correction must be made to de-

termine which one yields the best results. Since it is difficult to objectively assess

the performance of each channel correction method, the statistical quality of the

estimates obtained with each variant must be analyzed (Figure 3.19). To estimate

the DPSD, the HBB is performed, as indicated earlier. The simulation parameters
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Figure 3.19: Statistics of the estimator quality for different channel correction meth-
ods as a function of the correlation coefficient (sρHV). The average noise floor as
a measure of spectral leakage (left), the bias and stabdard deviation (SD) of sẐDR

(center), and the bias and standard deviation of sρ̂HV (right) are shown. The sim-
ulation parameters are shown in Table 3.1, but with SNR = 40 dB and a von Hann
window.
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used for this analysis are similar to those in Table 3.1, though the SNR is set to 40

dB, and the data window used in the analysis is a von Hann window. This is done

in order to emphasize the spectral leakage as a quality indicator, since the errors

(bias and standard deviation) are expected to be similar for all cases. The spectral

leakage is measured by the average noise floor in the PSD of both channels, while

the accuracy and precision are measured by the statistical errors of the DPSD. A

proper description on how these statistical analyses are performed will be presented

in Chapter 4. For now, it suffices to say that the average noise floor is computed as

the average SNR of frequency components with s ˆSNR < 20 dB over all independent

realizations, while the bias and standard deviation are computed as the averages

for frequency components with s ˆSNR ≥ 20 dB based on to the modeled value of

ZDR and ρHV, and over all independent realizations. The ρHV of the signal is var-

ied to highlight the effects of the different polarization channel correction methods.

For high ρHV, all methods should have comparable performance given that the H-

and V-channel signals are very similar, and thus the correction factors based on

any method should be roughly the same. For lower ρHV, the correction factors can

no longer appropriately correct both channels simultaneously. If the correction is

based on either the H- or V-channel, either the V- or H-channel, respectively, will

not be completely matched and will be affected with higher spectral leakage, as can

be seen in the green curve of the top-left panel and red curve of the bottom-left

panel of Figure 3.19. If both channels are corrected individually, the lowest joint

effect of leakage is observed. However, this negatively affects sẐDR because the cor-

rection factors are not necessarily equivalent, and also affects sρ̂HV because it adds
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an artificial modification to the correlation coefficient. Therefore, the method that

reasonably corrects the spectral leakage for both channels while keeping good error

statistics is the combined correction method.

3.4.2 Bootstrap versus Deterministic Resampling

Since many constraints have been put on the bootstrap resampling mechanism and

the block population in order to obtain estimates of good quality, an analysis of

the performance of bootstrap as compared to a deterministic resampling scheme is

appropriate. A deterministic resampling scheme consists in selecting all or a subset

of the available pseudo-realizations in a systematic order in order to obtain averaged

estimate. If the block population is small, it would be beneficial to implement this

type of scheme because all of the available information would be used. Figure 3.20

shows the quality indicators as a function of the number of pseudo-realizations gen-

erated. The same simulation procedure as in the previous analysis is maintained.

The difference between the two estimates is the way the blocks are resampled. The

bootstrapped estimates are shown in blue, while estimates with deterministic sam-

pling are shown in green. The deterministic resampling scheme used for this case

takes contiguous blocks with increasing ratio as the number of pseudo-realizations

increases. It can be observed that with this scheme, while the deterministic sam-

pling starts with a lower leakage, its errors are very high. In the limit where the

maximum number of different blocks has been sampled (i.e., around K ′ = 40 for this

particular data window), the deterministic resampling scheme converges with the

bootstrap in error statistics. However, it should be noted that bootstrap resampling
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Figure 3.20: Estimator statistics for bootstrap and deterministic resampling schemes
as a function of the number of pseudo-realizations (K ′). The average noise floor as a
measure of spectral leakage (left), the bias and SD of sẐDR (center), and the bias and
SD of sρ̂HV (right) are shown. The deterministic resampling scheme in this scenario
takes contiguous blocks with increasing ratio as the number of pseudo-realizations
increases.
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Figure 3.21: Estimator statistics for bootstrap and deterministic resampling as a
function of the number of pseudo-realizations (K ′). A modified deterministic re-
sampling scheme is used. The blocks with r = 0.5 are sampled first, and successive
blocks are taken as the mid-point ratio of the previously sampled blocks.

achieves these error levels for smaller values of K ′. Assuming 10 pseudo-realizations

are good enough, the difference with a deterministic sampling scheme is four-fold.

The number of computations can rapidly increase for a large number of radar bins

in an operational setting, though a more thorough analysis is required to estimate

the actual difference in computational cost.

A different deterministic sampling scheme is analyzed next. In this scheme, the

blocks with r = 0 and r = 0.5 are sampled first, and successive blocks are taken as

the mid-point ratio of the previously sampled blocks, i.e. r = 0.25 then r = 0.125

and r = 0.375, and so on. With this modification, faster convergence is expected for

the deterministic scheme. In this case, it is observed that the modified deterministic

resampling scheme converges faster to the bootstrap, though a higher noise floor
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is present because the pseudo-realizations with r ' 0.5 have the least sample-time

coherence from the population. The standard deviation of estimates is lower, but the

spectral leakage is higher (indicated by the average noise floor of sSNRH and sSNRV

in Figure 3.21). Moreover, the sẐDR bias is negative and higher than the bootstrap

in absolute value. It may be possible that a deterministic resampling scheme may be

vulnerable to artifacts in the signal or sampling biases, and also depending on the

scheme, systematic biases may be introduced (e.g., by choosing pseudo-realizations

with r ' 0.5, as mentioned previously). The bootstrap appears to be superior in

both cases. The statistical errors have a marginal improvement with increasing

number of pseudo-realizations starting from approximately K ′ = 10. At this point,

it would be a reasonable compromise to keep a lower number of pseudo-realizations

to save computational cost.

3.5 The Bootstrap DPSD Estimator

All of the strategies and design considerations as well as the selection of parameters

have been taken into account to develop the Bootstrap DPSD estimator. The con-

cepts employed in the design of the Bootstrap DPSD estimator are explained with

the necessary details in Sections 3.2, 3.3, and 3.4. Here, a concise description of the

estimator is given.

The Bootstrap DPSD estimator is the result of the combining the bootstrap

method with the DPSD estimator using averaged periodogram estimates. The basic

idea is to generate bootstrap samples of the weather radar I/Q time-series signals, in
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Figure 3.22: Diagram of the Bootstrap DPSD estimator.

order to construct a bootstrap aggregate of the PSD of the I/Q pseudo-realizations

from which a DPSD estimate can be obtained. The signals of the H- and V-channels

are bootstrapped as a pair in order to preserve the correlation between channels.

Since the processes controlling the I/Q time series signals are correlated, the signals

must be conditioned prior to the generation of bootstrapped pseudo-realizations,

such that additional information can be extracted from each signal without degrad-

ing the quality of the estimates. A block bootstrap method is then employed to gen-

erate a suitable number of pseudo-realizations from which the PSD are computed.

These are then input to the DPSD estimator which averages the PSDs to obtain a

DPSD estimate. Finally, a bias correction technique is applied to the DPSD esti-

mate to obtain the Bootstrap DPSD estimate. A diagram of the Bootstrap DPSD

estimator is shown in Figure 3.22.

The steps taken by the Bootstrap DPSD estimator are summarized as follows:

99



1. Construct the periodic extension of the time series signal XH,V(m) as in (3.58)

and (3.59), using the magnitude and phase correction, and the combined cor-

rection.

2. Compute the maximum ratio of corrected samples rmax as in (3.63) for the

selected data windowing function.

3. Generate K ′ = 20 pseudo-realizations of length M from XH,V(m) limiting the

blocks to those with r ≤ rmax.

4. Apply the power correction to each pseudo-realization as in (3.64).

5. Compute the PSD estimates using (2.41) and (2.42).

6. Average the PSD estimates obtained and compute the biased DPSD estimate

using (2.43) and (2.44).

7. Compute the corrected DPSD estimates with (3.71) and (3.72) and the results

from the previous step.

The statistical performance of the Bootstrap DPSD estimator in various scenar-

ios will be compared to conventional DPSD estimators and to the ideal DPSD in

the next chapter.

3.6 Summary

The bootstrap as a tool to measure the accuracy of statistical estimates was intro-

duced. Such methods are useful to make inferences about the unknown underlying
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distribution when the sample size is relatively small. Different methods to boot-

strap dependent data (e.g., correlated data) have been presented. These methods

are known as block bootstrap methods, and they may be applied to weather radar

I/Q time-series signals, provided that the signals are conditioned in a way that addi-

tional information can be extracted from each pseudo-realization without degrading

the quality of the estimates. These considerations and strategies are at the core of

the Bootstrap DPSD estimator. Moreover, the appropriate selection of the param-

eters and methods plays a big role in the quality of the estimates. With objective

analyses of the most important parameters, the optimal set of values was defined

for the Bootstrap DPSD estimator, which was summarized in algorithmic terms. In

the following chapter, the statistical performance of the proposed Bootstrap DPSD

estimator will be analyzed under different scenarios.
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Chapter 4

Performance of the Bootstrap Dual-Polarimetric

Spectral Density Estimator

To properly demonstrate the advantages of the Bootstrap DPSD estimator, the

statistical performance under different conditions must be analyzed. First of all, the

methodology is explained thoroughly, from the simulation of dual-polarized weather

radar signals to the computation of the statistical errors. Also, the relationship

between the bulk and spectral polarimetric radar variables is studied. Next, the ideal

DPSD estimator is analyzed in terms of statistical errors and their dependence with

relevant parameters. Then, the analysis of the performance of the Bootstrap DPSD

estimator is presented in three different categories: single signal single dwell, single

signal multiple dwells, and dual signal. Finally, an overview of the error performance

of the Bootstrap DPSD estimator is presented at the end of the chapter.

4.1 Methodology

4.1.1 Synthetic I/Q Time-Series Weather-Signal Simulator

A dual polarimetric version of the weather-like signal simulator (Zrnić 1975) is used,

as presented in Torres and Zrnić (2003) and Yu et al. (2012). Let VH(m) and VV(m)

be the I/Q time-series signals of the H and V channels, respectively. As shown in

102



Torres and Zrnić (2003), and by following the procedure in Galati and Pavan (1995),

these can be obtained as:

VH(m) =
√
SHX(m) +NH(m),

VV(m) =
√
SV

[
ρHVX(m) +

√
1− ρ2

HVY (m)
]
e−jφDP +NV(m),

(4.1)

where SH, SV, ρHV and φDP are the true values of the bulk radar variables, NH(m)

and NV(m) are additive white Gaussian noise (AWGN), and X(m) and Y (m) are

unit power, independent time-series signals obtained as (Zrnić 1975):

X(m) = F−1{
√
−sS(k) lnu(k)ejθ(k)}, (4.2)

where sS(k) is the Gaussian PSD model of the weather signal, u(k) is an inde-

pendent and identically distributed (IID) random variable with uniform distribu-

tion between 0 and 1, and θ(k) is also an IID random variable but with uniform

distribution between −π and π. Y (m) is obtained similarly from (4.2) but using

independently generated u(k) and θ(k). With this procedure, the signal parameters

that can be modified are: mean radial velocity (v̄r) and spectrum width (σv) of

the Gaussian PSD model, the bulk radar variables in terms of signal power (SH or

SV), signal-to-noise ratio (SNRH or SNRV), differential reflectivity (ZDR = SH/SV),

correlation coefficient (ρHV) and differential phase (φDP). Additionally, radar ac-

quisition parameters can also be modified, which include maximum unambiguous

velocity (va) and number of samples per dwell (M). Multiple realizations can be

produced to get K independent spectra, and statistical properties of the estimator
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are computed running N iterations in the simulation. With (4.1), the coefficients of

the DPSDs corresponding to the signal follow a constant value which agrees with the

true value of the bulk polarimetric radar variable. However, the DPSDs of weather

radar signals are not necessarily constant for all radial velocities. To simulate dif-

ferent profiles of DPSDs as a function of radial velocity, the method described in Yu

et al. (2012) is more appropriate, as it allows the DPSDs to follow a model for each

spectral coefficient. Physically, the presence of turbulent winds may produce signals

with constant spectral polarimetric variables (Yanovsky 2011). Nevertheless, the as-

sumption that the DPSDs are constant in the spectrum is sufficient to analyze the

statistical performance of the DPSD estimates. This type of synthetic simulation

allows generation of virtually any desired signal or composite signal under different

scenarios, making it a powerful tool to study the statistical properties of any estima-

tor. However, the challenge in simulating a realistic signal using this method is that

while it is possible to modify the simulation parameters to match actual observa-

tions, the mechanisms that drive the underlying phenomena may not be emulated.

Further discussion on this type of physical simulators is presented in Chapter 5.

Throughout this chapter, the signal parameters were selected to resemble typical

observations. The SNR is arbitrarily set high (20 dB) such that the noise contami-

nation is minimal. While a Gaussian assumption for the simulated signals may not

be the most realistic case, it provides a simple model that can capture features of

the signal such that quantitative performance analyses can be conducted.
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4.1.2 Statistical Error Calculation

Assuming the signal originates from a single group of uniform scatterers, for each

set of independent estimates (sẐDR and sρ̂HV), the spectral coefficients above a SNR

threshold are used to compute the average spectral errors. Herein, the bulk radar

variables are used as the true value to compute the errors because the signal is

modeled as such. If we used a more complex model as described above, the errors

would become a function of the spectral coefficient and the statistical analysis would

unnecessarily become more complicated. The average value of the SNR-thresholded

spectral coefficients represents the strong signal components with minimal noise.

These are obtained as

sẐdr = 〈sẐdr(k
′)〉, (4.3)

sρ̂HV = 〈sρ̂HV(k′)〉, (4.4)

where k′ are the spectral coefficients for which s ˆSNRH and s ˆSNRV are greater than

20 dB, and 〈·〉 indicates averaging in the frequency domain. The bias of sẐDR is

then obtained as

bias(sẐdr) = E

[
sẐdr − Zdr

]
' 1

N

N−1∑
n=0

(
sẐdr,n − Zdr

)
, (4.5)

bias(sẐDR) ' 10 log

[
1 +

bias(sẐdr)

Zdr

]
(dB), (4.6)
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where N is the number of independent DPSDs used to study the statistical variabil-

ity of the spectral estimates, not to be confused with the K independent spectra

used to compute the DPSDs. The standard deviation (SD) of sẐDR is computed as

SD(sẐdr) =

√
E

[(
sẐdr − Zdr

)2]
'

√√√√ 1

N

N−1∑
n=0

(
sẐdr,n − Zdr

)2

, (4.7)

SD(sẐDR) ' 10 log10

[
1 +

SD(sẐdr)

Zdr

]
(dB). (4.8)

The normalized bias and SD of sρ̂HV are

bias(sρ̂HV)

ρHV

=

E

[
sρ̂HV − ρHV

]
ρHV

'

1
N

N−1∑
n=0

(
sρ̂HV,n − ρHV

)
ρHV

, (4.9)

SD(sρ̂HV)

ρHV

=

√
E

[(
sρ̂HV − ρHV

)2]
ρHV

'

√
1
N

N−1∑
n=0

(
sρ̂HV,n − ρHV

)2

ρHV

. (4.10)

Equations (4.5)-(4.10) will be used later to quantify the dependence on the different

parameters under analysis.

4.1.3 Relationship between Bulk and Spectral Radar Variables

As presented by Yu et al. (2012), the values of the bulk polarimetric variables may

be obtained from the spectra as:

Zdr =
1

PV

∞∫
−∞

sZdr(f)sSV(f)df, (4.11)

106



ρHV =
1√
PHPV

∣∣∣∣∣∣
∞∫

−∞

sSX(f)df

∣∣∣∣∣∣ , (4.12)

where sSX is related to sρHV by

sρHV(f) =
|sSX(f)|√

sSH(f)sSV(f)
. (4.13)

In other words, the bulk variables are obtained by integrating power-weighted DPSDs.

While bulk variables provide a good insight about the underlying phenomena for

single signals, it is clear that they can be biased when there is more than one signal

in the spectra. The spectral polarimetric variables add another dimension (of veloc-

ity) to the bulk polarimetric variables, and display additional information about the

scatterers in a resolution volume that is not depicted in bulk variables. Furthermore,

the average of the thresholded coefficients is arguably a better way to obtain bulk

estimates, provided that the statistical error of the DPSDs are better than those of

bulk estimates, since the noise spectral coefficients can be ignored altogether.

Additionally, the errors for bulk and spectral variables have a different parameter

dependence. An extensive analysis on the errors of bulk polarimetric variables was

done by Melnikov and Zrnić (2004) and the analytical expressions for the errors

were obtained with the perturbation method as:

bias(ẐDR) =
10

M ln 10

[
1 + 2SNRV

SNR2
V

+
0.56(1− ρ2

HV)

σvn

]
, (4.14)

SD(ẐDR) =
10√

M ln 10

√
1 + 2SNRH

SNR2
H

+
1 + 2SNRV

SNR2
V

+
1.13(1− ρ2

HV)

σvn
, (4.15)
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bias(ρ̂HV)

ρHV

=
1

M

[
2SNRH + 3

8SNR2
H

+
2SNRV + 3

8SNR2
V

+
SNRH + SNRV + 1

4SNRHSNRVρ2
HV

+
0.14(1− ρ2

HV)2

σvnρ2
HV

]
,

(4.16)

SD(ρ̂HV)

ρHV

=

√
1

M

[
1− 2SNRH

4SNR2
H

+
1− 2SNRV

4SNR2
V

+
SNRH + SNRV + 1

2SNRHSNRVρ2
HV

+
0.28(1− ρ2

HV)2

σvnρ2
HV

]
,

(4.17)

where σvn is the normalized spectrum width. Likewise, Yu et al. (2012) studied the

spectral polarimetric variables and obtained the analytical expressions for the errors

as:

bias(sẐDR) =
10

K ln 10

[
1 + 2sSNRV

sSNR2
V

+ (1− sρ2
HV)

]
, (4.18)

SD(sẐDR) =
10√
K ln 10

√
1 + 2sSNRH

sSNR2
H

+
1 + 2sSNRV

sSNR2
V

+ 2(1− sρ2
HV), (4.19)

bias(sρ̂HV)

sρHV

=
1

K

[
2sSNRH + 3

8sSNR2
H

+
2sSNRV + 3

8sSNR2
V

+
sSNRH + sSNRV + 1

4sSNRHsSNRVsρ2
HV

+
(1− sρ2

HV)2

4sρ2
HV

]
,

(4.20)

SD(sρ̂HV)

sρHV

=

√
1

K

[
1− 2sSNRH

4sSNR2
H

+
1− 2sSNRV

4sSNR2
V

+
sSNRH + sSNRV + 1

2sSNRHsSNRVsρ2
HV

+
(1− sρ2

HV)2

2sρ2
HV

]
.

(4.21)

A simple comparison of these expressions shows the differences in variable depen-

dence for bulk and spectral variables. For these analyses the SNR in both channels

is assumed to be high, and thus, the terms with SNRH,V and sSNRH,V can be ne-

glected. Consequently, in the absence of noise, the errors do not depend on ZDR

(Melnikov and Zrnić 2004) or sZDR, but show a dependence on ρHV, M and σv

for bulk variables, and sρHV, and K for spectral variables. Although the spectral

variables do not explicitly show dependence with M and σv in the analytical expres-

sions, the thresholded spectral coefficients are averaged. Thus, a smaller dependence
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in the spectral variables is expected because the number of thresholded coefficients

depends on M and σv. In the next section, the errors of the spectral variables are

analyzed for different parameters to illustrate the error behavior of spectral variables

in detail.

4.2 Analysis of the Ideal Estimator

As described in Chapter 2, with the use of the periodogram PSD estimator and

by averaging independent spectra, DPSDs with better precision can be obtained.

It is expected that the errors will be higher for spectral variables because they

mostly depend on K, whereas the bulk variables depend on M (generally, M is

larger than K). Ideally, the number of independent spectra to obtain estimates

with acceptable error levels must be large. It was determined by Yu et al. (2012)

that K ≥ 20 yields good error levels. Hereafter, the periodogram DPSD estimator

is the one that averages K independent periodogram PSD estimates; and the ideal

DPSD estimator becomes the periodogram DPSD estimator with K = 20. It is

important to recall that it is not operationally possible to obtain estimates with a

large number of independent spectra. In this section, the errors of the periodogram

DPSD estimator for different values of K as functions of relevant parameters are

analyzed, so that a standard for comparison for further performance analyses can

be established. The signal parameters that have a potential impact in the quality

of the spectral estimates are SNR, M , σv, ZDR, ρHV, and K. Since studying the

effect of each parameter on the error quality over a wide range of values for all
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Simulation parameter Value

M 64
N 5000
v̄r 5 m/s
σv 2 m/s

SNRV 30 dB
ZDR 1.5 dB
ρHV 0.90
va 15.7 m/s

Table 4.1: Simulation parameters for the analysis of the errors.

DPSD estimators under consideration would be cumbersome, the analysis of the

ideal estimator can help determine the parameters with higher impact on the errors.

Thus, by focusing on these parameters, the complexity of further analyses are greatly

simplified. The signal parameters are summarized in Table 4.1. Each point in the

error curves are computed using (4.5)-(4.10) with a total of NK independent signals

per step in the x-axis.

4.2.1 Dependence with SNR

The behavior of the errors as a function of the SNR is analyzed using the parameters

listed in Table 4.1, but by varying SNRV between 14 and 30 dB. In bulk variables, for

a fixed M , higher SNR yields smaller errors (Melnikov and Zrnić 2004). In spectral

variables, higher SNR will cause more spectral leakage if data windows with insuffi-

cient SLL are used. When spectral leakage occurs, the effective number of samples

above the SNR threshold can unrealistically increase, and it may potentially affect

the interpretation of the errors of estimates. Ideally, for higher SNR, it is expected

that the errors are smaller and independent of the SNR values because the thresh-

olded spectral coefficients already have minimal noise contamination. Additionally,
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Figure 4.1: Errors of the spectral polarimetric variables as function of the true V-
channel SNR for the periodogram DPSD estimator and different values of K. Bias
(top left) and SD (bottom left) of sẐDR, normalized bias (top right) and SD (bottom
right) of sρ̂HV for K = 2 (blue), K = 5 (green), K = 10 (red), K = 20 (cyan), and
K = 100 (magenta). Herein, the periodogram DPSD with K = 20 is considered to
be the “ideal” DPSD estimator.

the dependence on SNR for bulk variables is stronger because all M samples are

used to compute the estimates and errors, as opposed to using averaged thresholded

spectral coefficients. The bias and standard deviation (SD) of sẐDR and sρ̂HV as

a function of SNRV are shown in Figure 4.1. Since the noise components in the

spectra have sZDR = 0 dB and the signal components have sZDR = 1.5 dB, the

errors in sZDR for the cases corresponding to bulk SNRV < 20 dB are more biased

towards the noise DPSD values, which explains the unusual behavior (smaller biases

for smaller SNR). In other words, the bias of sẐDR for this estimator is inherently
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positive and large, and lower SNR values “help” reduce the bias, though this effect

is a function of the bulk ZDR chosen. For example, if a negative ZDR is selected, the

bias of sZDR will decrease with increasing SNR, as expected. Likewise, the noise

components have sρHV = 0, while the signal components have sρHV = 0.90; it can

be seen that sρHV is overestimated for lower K, while it shows the expected behavior

for the curves corresponding to higher K. The bias and SD of sẐDR and sρ̂HV as a

function of SNRV are almost constant for the curves corresponding to K = 5, 10, 20

and 100, for SNRV ≥ 20. Clearly, this exercise shows that the estimates with K = 2

are not reliable even for signals with high SNR; and with higher K, the errors be-

come increasingly independent of the SNR (for SNR ≥ 20) and gradually smaller.

Higher bulk SNR translates into more spectral coefficients that meet or exceed the

SNR threshold (SNRH,V ≥ 20 dB); and thus, the SD of the estimates is reduced

(higher number of averaged samples), while the biases tend to an asymptotic value.

The rest of the analysis is conducted for an SNR of 30 dB to ensure minimal noise

contamination in the spectral coefficients of the signal.

4.2.2 Dependence with M

In bulk variables, the errors have a strong dependence with M , while a weaker

dependence is expected for spectral variables. The errors as a function of the number

of samples (M) are shown for different number of independent spectra (K) in Figure

4.2. The signal parameters are shown in Table 4.1, except different values of M are

analyzed. As usual, it is desired to have small errors in the estimates, and once again

it can be seen how the errors improve for higher K. Increasing M increases the
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Figure 4.2: Same as Figure 4.1, but as a function of the number of samples (M) for
different values of K.
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frequency resolution and translates into having more sample points in the spectral

estimates. Although the choice of M does not necessarily affect the accuracy of the

DPSD estimates, averaging SNR-thresholded spectral coefficients does depend on

M . Logically, by increasing M , the number of spectral coefficients above the SNR

threshold also increases. A small dependence of the errors and M can be observed

for small M , where the number of samples above the SNR threshold is insufficient to

produce good estimates, and a bias towards the noise value of 0 dB can be observed

(similar to the case with small SNR). Furthermore, for M ≥ 32, the biases are

approximately constant, while an improvement in the SDs can be seen. Hereafter,

the number of samples for the analyses is set to M = 64 to resemble operational

settings.

4.2.3 Dependence with σv

The signal parameters used in this analysis are those of Table 4.1, but for different

values of σv from 0.5 to 3 m/s. In bulk variables, as seen in (4.14)-(4.17), the errors

have a term that depends on the spectrum width; however, spectral variables do

not strongly depend on the spectrum width. As with the previous analysis for M ,

the actual value of σv does not affect the accuracy of the DPSD estimates, but

it does affect the averaging of SNR-thresholded spectral coefficients. Thus, a small

dependence with σv is expected. For spectral variables, the dependence of the errors

with the spectrum width is similar to that with M (Figure 4.3), though slightly

stronger because the number of samples above the threshold increases at a higher

rate for increasing σv than for increasing M . The biases of the DPSD estimates have
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Figure 4.3: Same as Figure 4.1, but as a function of the true spectrum width (σv)
for different values of K.
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stronger dependence with σv for smaller K, as seen in the blue curves corresponding

to K = 2, while for higher K, the biases become almost independent of σv. For all K,

the SDs decrease with increasing σv as expected, because of the increased number

of samples above the SNR threshold. The spectrum width for the simulations is

selected to match typical raindrop signals with σv = 2 m/s (Fang et al. 2004).

4.2.4 Dependence with ZDR

As previously mentioned, in the absence of noise, it is expected that the errors

do not show a dependence with ZDR (Melnikov and Zrnić 2004). The simulation

parameters are listed in Table 4.1 with the ZDR varied from −2.5 to 2.5 dB (Figure

4.4). For the curves corresponding to K > 2, it is observed that the errors remain

almost constant as a function of ZDR, as expected. However, it can be seen that

K = 2 is insufficient to yield good estimates, as the bias in sẐDR is weakly dependent

on the true value of ZDR. In other words, the estimates are influenced by the ZDR of

the noise (0 dB). For further analyses, a ZDR of 1.5 dB is used to resemble slightly

larger raindrops of about 2.70 mm (Bringi and Chandrasekar 2001).

4.2.5 Dependence with ρHV

The correlation coefficient is varied from 0.70 to 0.99 to obtain the curves for Figure

4.5. Both bulk and spectral variables have a similar, strong dependence with ρHV.

It is observed that for higher ρHV, the errors become smaller. Additionally, the

dependence with ρHV can be interpreted as a measure of signal consistency, as the

estimates for high true ρHV values are less dispersed, both in bias and variance;
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Figure 4.4: Same as Figure 4.1, but as a function of the true differential reflectivity
(ZDR) for different values of K.
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Figure 4.5: Same as Figure 4.1, but as a function of the true correlation coefficient
(ρHV) for different values of K.
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while the estimates for lower true ρHV values are highly dispersed and inaccurate.

Although most hydrometeors exhibit high correlation coefficient (i.e., ρHV > 0.98),

the value of ρHV = 0.90 was used in most simulations (unless otherwise stated) to

reveal potential biases in the DPSDs.

4.2.6 Dependence with K

So far, it was shown that for spectral variables, errors show weak to no dependence

on most parameters, with the exception of ρHV, and the remaining parameter to

be analyzed is K. The errors as a function of K, are presented for different values

of ρHV in Figure 4.6. Again, the simulation values are those shown in Table 4.1,

with K ranging from 2 to 30, and for ρHV values of 0.80, 0.90, 0.95, and 0.99. For

K > 20, the improvement in the errors is marginal, while for K < 10 the quality of

the estimates can be significantly degraded.

4.3 Analysis of the Single-Dwell Estimator for the

Single-Signal Case

It is understood that a large number of independent spectra for DPSD estimation

is not feasible in practice. The Bootstrap DPSD estimator presented in Chapter

3 was developed to overcome this limitation by allowing the estimation of DPSDs

from a single dwell (K = 1), with minimal resolution loss. Moreover, there are

conventional estimators that are also capable of producing DPSD estimates from

a single dwell. In this section, the performance of the conventional and Bootstrap
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Figure 4.6: Errors of the spectral polarimetric variables as function of the number of
independent spectra (K) of the periodogram DPSD estimator for different values of
ρHV. Bias (top left) and SD (bottom left) of sẐDR, normalized bias (top right) and
SD (bottom right) of sρ̂HV for ρHV = 0.80 (blue), ρHV = 0.90 (green), ρHV = 0.95
(red), and ρHV = 0.99 (cyan).
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DPSD estimators is studied for a single signal, and the ideal estimator with K = 20

is selected as a standard for comparison. Additionally, the analysis focuses on the

errors as a function of ρHV as justified by the previous analysis.

For a fair comparison between the different DPSD estimators, the parameters

for the conventional methods are selected such that there is minimal frequency

resolution loss and spectral smearing. That is, for Welch’s estimator, the segment

length is set to L = M − 1 with maximum overlap; and for Daniell’s estimator,

a 3-point moving average filter (p = 1) is used for PSD smoothing. Bartlett’s

estimator is not analyzed because its frequency resolution is degraded by at least

a factor of 2. The Bootstrap DPSD estimates are obtained using K ′ = 20 pseudo-

realizations. The analysis parameters are listed in Table 4.1, with ρHV varying from

0.85 to 0.99. The data window for the analysis is a Blackman-Nuttall window,

though it should be noted that other windows with sufficient SLL yield similar

results. The performance of the estimators in terms of the statistical errors as a

function of the true correlation coefficient is shown in Figure 4.7. The errors for

Welch estimates (red) with the best possible frequency resolution are very high

and useless for practical purposes. It can be observed that the Bootstrap DPSD

estimates (blue) are better than Daniell estimates (red) for all cases. For sẐDR,

and ρHV = 0.90, the Daniell estimator has a bias of 0.708 dB, while the biases

of the Bootstrap estimator and the ideal estimator are of 0.057 dB and 0.029 dB,

respectively. The SDs are 1.187, 0.686, and 0.1662 dB, for the Daniell, Bootstrap,

and ideal estimators, respectively. For the same ρHV = 0.90, the normalized biases

of sρ̂HV are 0.0344, 0.0177, and 0.0006; and the normalized SDs are 0.0476, 0.0377,
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and 0.0089, for the Daniell, Bootstrap, and ideal estimators, respectively. A clear

improvement in the quality of the DPSD estimates can be seen for the Bootstrap

estimator over conventional methods, especially for the sẐDR bias. It is important

to note that for higher ρHV, the errors of the Bootstrap estimates are closer to the

error levels of the ideal estimator. However, for less coherent signals (i.e., lower

ρHV), the quality of the estimates is degraded. Therefore, in practice, with single-

dwell DPSD estimates using the Bootstrap DPSD estimator, a good qualitative

analysis can be performed but the error levels may not be sufficient for a reliable

quantitative analysis. Nonetheless, the following section will show that the errors

can be improved by using multiple dwells.

4.4 Analysis of the Multiple-Dwell Estimator for

the Single-Signal Case

The results of the conventional and Bootstrap DPSD estimators using a single dwell

were shown in the previous section. However, it is possible to obtain better error

levels by averaging multiple spectra for DPSD estimation (i.e., K ≥ 2) with the

estimators under analysis. As mentioned in Chapter 2, more spectra can be ob-

tained from different range gates, azimuths, or dwells, and it is important to keep

the averaging in any of these dimensions to a minimum in order to avoid degrading

the resolution if the results. For this analysis, the statistical errors of conventional

and Bootstrap DPSD estimators for K ≥ 2 are compared to the ideal estimator as

depicted in Figure 4.8 (same simulation parameters as before). For ρHV = 0.90, the
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biases of the ideal estimator are equivalent to the Daniell estimator with K ' 16,

and the Bootstrap estimator with K ' 3. The Bootstrap DPSD estimator shows a

significant improvement in the biases and in the reduction of the number of indepen-

dent spectra needed. However, to meet the SD of the ideal estimates, a considerable

number of independent spectra is still needed. The SDs for the ideal estimator

are equivalent to the Daniell estimator with K ' 20, and the Bootstrap estima-

tor with K ' 9. For the Daniell estimator, a marginal improvement is observed,

while the Bootstrap estimator shows overall better performance. When K > 20,

the Welch estimator converges with the ideal estimator, while the Daniell estimator

performs marginally better, and the Bootstrap estimator exceeds the performance

of the ideal estimator. One important drawback of the Bootstrap DPSD estimator

is the inherent loss of coherence associated with the application of correction strate-

gies, depicted in the negative biases of sρ̂HV for larger K. Still, the normalized bias

of sρ̂HV is within 0.002 for K ≥ 2 and for ρHV = 0.90, which is within the error

level recommended by Melnikov and Zrnić (2004). While this limitation is noted,

the Bootstrap DPSD estimator can generally achieve better quality estimates (for

a given number of independent spectra) than other estimators. A more in-depth

analysis of the impact of this effect is beyond the scope of this work. Additionally,

it should be indicated that while the spectra in this analysis are independent, in

practice, the spectra could be correlated depending on where the additional spectra

come from (e.g., different scans vs. adjacent range gates).
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4.5 Analysis of the Single-Dwell Estimator for the

Dual-Signal Case

4.5.1 Signal Interaction

In order to discriminate signals in the spectra, the interaction of different signals

in a composite weather radar I/Q signal must be understood. A signal becomes

dominant in the spectrum whenever its power relative to the powers of other signals

is large (e.g., > 20 dB), and for these spectral coefficients, the characteristics in

the DPSDs become predominantly those of the stronger signal. The single-signal

case is essentially composed of two spectral signatures: the simulated signal and the

white noise. As such, the spectra in the single-signal analysis can be separated into

three regions: dominant signal, dominant noise, and the transition where neither is

dominant. That is, if the PSD can be represented as:

sS(k) = sS0(k) + sS1(k), (4.22)

where sS1 is the PSD of the signal without noise, and sS0 is the PSD of noise; then

the DPSDs become:

sZdr(k) ' sS0(k)sZdr,0(k) + sS1(k)sZdr,1(k)

sS(k)
, (4.23)

and

sρHV(k) ' sS0(k)sρHV,0(k) + sS1(k)sρHV,1(k)

sS(k)
. (4.24)
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Based on this, when sS1 � sS0, the signal is dominant and sZdr ' sZdr,1, sρHV '

sρHV,1; and when sS1 � sS0, noise is dominant and sZdr ' sZdr,0, sρHV ' sρHV,0.

For spectral coefficients where neither the signal nor the noise is dominant, the

DPSDs are a weighted average of the DPSDs of the individual signals; i.e., they are

neither the DPSDs of the signal nor the noise.

A similar behavior is expected when an additional signal is present in the spectra.

The purpose of this dual-signal analysis is to study the effects of having an additional

signal in the spectra, both in terms of statistical errors and in terms of the ability to

discriminate the different signals. With two signals and noise, (4.22)-(4.24) become:

sS(k) = sS0(k) + sS1(k) + sS2(k), (4.25)

where sS2 is the PSD of the additional signal; and the DPSDs become:

sZdr(k) ' sS0(k)sZdr,0(k) + sS1(k)sZdr,1(k) + sS2(k)sZdr,2(k)

sS(k)
, (4.26)

sρHV(k) ' sS0(k)sρHV,0(k) + sS1(k)sρHV,1(k) + sS2(k)sρHV,2(k)

sS(k)
. (4.27)

To demonstrate this, the ideal DPSDs for each signal are estimated individually and

the power-weighted average of the DPSDs is then computed. This is compared with

the ideal DPSDs estimated from the composite I/Q signal, as shown in Figure 4.9,

for a unimodal and a bimodal case. The blue and green lines are the averaged ideal

estimates as obtained from the individual I/Q signals. The continuous black line

represents the averaged ideal estimate of the composite signal (i.e., the I/Q signal
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Parameter Signal 1 Signal 2
SNR 20 dB 40 dB
v̂r 0 m/s 0 m/s
σv 3.5 m/s 1 m/s
ZDR 1.5 dB −1.5 dB
ρHV 0.99 0.90
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Parameter Signal 1 Signal 2
SNR 20 dB 35 dB
v̂r −3 m/s 3 m/s
σv 2.5 m/s 0.75 m/s
ZDR 0.5 dB 2 dB
ρHV 0.99 0.85
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Figure 4.9: Dual-signal spectral coefficient interaction and composite effect on the
DPSD for (a) unimodal case, and (b) bimodal case. The mean of the ideal estimates
of signal 1 (blue) and signal 2 (green) are computed separately. The mean ideal esti-
mate of the composite signal (continuous black) is compared to the power-weighted
average of the DPSDs of signals 1 and 2 (dashed black).
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composed of signals 1 and 2 plus noise). The dashed black line is computed as

the power-weighted average of the DPSDs of signals 1 and 2 (the noise is negligible

in this case). When the two signal powers are comparable, the DPSDs do not

exactly follow one signal or the other. Instead, they show characteristics that fall

in between the two signals, and as the power of one signal increases, it gradually

becomes dominant. The unimodal case shows how two signals may appear as one,

even though the spectrum width is exaggerated for clarity. Here, the DPSDs provide

evidence that a narrower signal is overlaid on top of a wider signal, and that these

two have different polarimetric characteristics. In the bimodal case, the two different

signals show a difference in velocity, which makes them somewhat easier to identify.

Once again, both signals show different polarimetric characteristics which can be

used to classify them accordingly. While the power-weighted average of the DPSDs

does not exactly follow the composite signal’s DPSDs for regions with comparable

SNR, both curves are similar for higher SNR. Thus, qualitatively, it can be seen

assumed that the DPSDs are a power-weighted average of the DPSDs of each signal.

Moreover, this suggests the possibility for discriminating signals that are overlapped

by identifying distinct polarimetric signatures in the spectra. A few representative

examples will be presented next.

4.5.2 Case Studies

There are various signal parameters that affect the ability to separate different spec-

tral signatures; some of them are the difference between the mean radial velocities,
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Case
Signal 1 Signal 2

SNR v̄r σv ZDR ρHV SNR v̄r σv ZDR ρHV

(dB) (m/s) (m/s) (dB) (dB) (m/s) (m/s) (dB)

0 25 -6 2 1.5 0.995 40 9 1 -1.5 0.97
1

25 -6 2 1.5 0.995 40

-6

1 -1.5 0.97
2 -4
3 -2
4 0
5

25 -6 2 1.5 0.995 25

-6

1 -1.5 0.97
6 -4
7 -2
8 0
9

40 -6 2 1.5 0.995 25

-6

1 -1.5 0.97
10 -4
11 -2
12 0

Table 4.2: Signal parameters for dual-signal analysis cases.

the spectrum widths, the difference between the SNRs, and the polarimetric char-

acteristics. The parameters for the signals used hereafter are summarized in Table

4.2, with N = 1000 iterations. Signal 1 is assumed to be a highly coherent signal

with values resembling those of typical raindrops, while signal 2 is less coherent

with negative ZDR resembling hypothetical tornadic debris. Although a Gaussian

assumption for debris signals is not realistic, it serves to illustrate the presence of

signals with different polarimetric characteristics in the spectra, as will be shown in

the following cases.

4.5.2.1 Case 0

When the spectra of the signals do not overlap (i.e., the difference in mean radial

velocities is sufficiently large and the spectrum widths are not too wide), the signals

can be easily separated by their velocities, and by assessing their spectral polari-

metric variables, it may be possible to classify them accordingly (Figure 4.10). The

average of N = 1000 DPSD estimates of the signals is shown in Figure 4.10a, for
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Figure 4.10: Dual-signal analysis, case 0. (a) The mean of the DPSD estimates of
Bootstrap (blue), Daniell (green), and ideal (black) estimates, and the true bulk
polarimetric variables of signal 1 (dashed red) and signal 2 (dashed dark red) are
shown. (b) A 2D histogram of sρ̂HV and sẐDR for thresholded spectral coefficients
in logarithmic (log10) scale, of Bootstrap (top), Daniell (middle), and ideal (bot-
tom) estimates, with × indicating the bulk estimates of the composite (black) and
individual (red) signals.

131



the Bootstrap (K = 1), Daniell (K = 1), and ideal (K = 20) estimators. Addition-

ally, the values for the true bulk polarimetric variables for the signals are plotted

in dashed lines. Whenever the difference in radial velocity is large enough, there is

no ambiguity in determining the presence of different signals, and with the DPSDs,

the polarimetric characteristics of the signals can be obtained. In Figure 4.10b, a

2D histogram (hereafter, histogram) of sρ̂HV and sẐDR is computed for the thresh-

olded spectral coefficients, over N = 1000 iterations, in logarithmic (log10) scale.

The red marker indicates the true values of the signals, while the black marker in-

dicates the bulk estimate of the composite signal. For this and upcoming cases, it

is important to note that the distributions are skewed towards high sρHV, but the

mean values depicted in the DPSD estimates (e.g., in Figure 4.10a) are in fact closer

to the markers (e.g., in Figure 4.10b) than it appears. The logarithmic scale was

chosen to emphasize the distributions of the polarimetric characteristics of the SNR-

thresholded spectral coefficients, since the mean values of the DPSD estimates may

not always correctly represent important differences between the estimators under

analysis. Comparing the estimators, the effect of increasing K in the ideal estimator

can be seen to reduce the errors. Additionally, in the Bootstrap estimates, the dif-

ference between the values of the signals is clearer than with the Daniell estimates,

showing a better performance for the Bootstrap DPSD estimator. While the Boot-

strap estimates are slightly more dispersed when compared to the ideal estimates,

it should be noted that the Bootstrap estimates are obtained using K = 1, while

the ideal estimates are obtained with K = 20, which is a significant difference. The

actual values of the SNR, the mean radial velocities, or the spectrum widths of the
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signals are irrelevant in this case (assuming the signals are not “leaking” into one

another), since the separation between the signals is evident. The error statistics

for each individual signal are equivalent to those of the single-signal analysis.

The spectrum widths and the difference between the mean radial velocities of

the signals determine the degree to which the spectral coefficients of one signal

are “leaking” into the spectral coefficients of other signals. Now that it is better

understood how different signals interact to yield the DPSDs, it can be inferred

from the SNR which spectral coefficients are more relevant. Additionally, certain

patterns in sẐDR and sρ̂HV can aid in determining characteristics of dominant (or

non-dominant) signals in the spectra. In practice, however, it would be impossible

to determine the amount of overlap to perform a one-to-one classification of the

polarimetric variables for each spectral coefficient. Nevertheless, even if the presence

of two or more different signals is not readily apparent in the spectra, it is possible

to obtain a meaningful qualitative inference of the underlying phenomena with the

DPSDs.

4.5.2.2 Cases 1-4

For this set of cases, the hypothetical debris signal is assumed to be higher in power.

The mean radial velocity of the debris signal is varied such that the difference in

radial velocity with the hypothetical raindrop signal is 0 for case 1, σv,1 for case 2,

2σv,1 for case 3, and 3σv,1 for case 4. Case 1 (Figure 4.11a) shows a complete overlap

of the debris spectral signature on the raindrop spectral signature, which yields a

unimodal PSD. An analysis based on the PSD alone would not provide any useful
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Figure 4.11: Same as Figure 4.10, but for case 1.
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information about the additional signal. However, the spectral signatures of ZDR

and ρHV show evidence of different polarimetric characteristics. Spectral techniques

to extract information from the DPSDs could be developed for various applications,

though this is beyond the scope of this work. In Figure 4.11b, the histograms of

the ideal estimates show two distinct regions distributed near the true values of the

signals. The Bootstrap estimates are also able to produce these two regions, though

the errors are visibly higher than the ideal estimates (higher bias and variance).

With the Daniell estimates, the values are distributed across a wider range of ZDR

and mostly high ρHV values. The distinction between the values of the two different

signals is not apparent, and thus it fails to produce distinctive signatures in the

DPSDs.

The subsequent cases show bimodal spectra (Figures 4.12a-4.14a), with the dif-

ference in mean radial velocities increased to σv,1, 2σv,1, and 3σv,1 for cases 2, 3, and

4, respectively. With the increasing separation between the signals’ mean radial

velocities, it becomes easier to identify the different spectral signatures based on the

PSD. With the aid of the DPSDs, the influence of the debris signal can be detected

and the raindrop signal can be extracted to obtain more accurate measurements of

its properties. Additionally, the histograms (Figures 4.12b-4.14b) of the Bootstrap

and ideal estimates indicate the presence of two distinct signals, with the separa-

tion becoming clearer with increasing difference in the mean radial velocities. The

Daniell estimates, while they show a weak separation for higher sρ̂HV values, are

not able to properly capture the less coherent signal.
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Figure 4.12: Same as Figure 4.10, but for case 2.
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Figure 4.13: Same as Figure 4.10, but for case 3.
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Figure 4.14: Same as Figure 4.10, but for case 4.
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4.5.2.3 Cases 5-8

This set of cases assume the raindrop and the debris signals are comparable in power.

Similar to the previous set, the mean radial velocity of the debris signal is varied such

that the difference in radial velocities is: 0 for case 5, σv,1 for case 6, 2σv,1 for case

7, and 3σv,1 for case 8. A unimodal spectrum is observed for case 5 (Figure 4.15a).

Here, since the signals are comparable in power, neither signal is dominant across

the width of the debris signal. As such, the spectral polarimetric variables show

sẐDR values in between ZDR,1 and ZDR,2, while sρ̂HV is slightly less coherent due to

the mixing of signals of different nature. Outside this range, the raindrop signal,

which is wider, becomes slightly more dominant and the DPSDs tend to its true bulk

polarimetric variable values. Although it is not possible to quantitatively retrieve

accurate estimates of the debris signal, the raindrop signal may be reconstructed

based on the most accurate information available. Thus, it would be possible to

obtain more accurate estimates of the raindrop signal properties; e.g., for retrieval

of bulk polarimetric estimates. While the histogram of the ideal estimator (Figure

4.15b, bottom) shows the values spread close to the true values, the debris signal is

not dominant for any spectral coefficients and the likely value of sẐDR,2 and sρ̂HV,2 is

shifted towards ZDR,1 and ρHV,1. Likewise, the Bootstrap histogram (Figure 4.15b,

top) does not show a clear separation of two signals, but the presence of the dominant

signal given by sẐDR ≈ sẐDR,1, and sρ̂HV ≈ sρ̂HV,1 is evident. Additionally, the

Daniell histogram values (Figure 4.15b, middle) are inaccurate even to determine

the properties of the dominant signal.
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Figure 4.15: Same as Figure 4.10, but for case 5.
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With a mean radial velocity difference of σv,1 (case 6, Figure 4.16), a minimal

discrimination improvement in the histograms can be seen, though a clear separa-

tion of the signals is still not detectable for the Bootstrap estimates. Additionally,

the PSD is still somewhat unimodal, but the DPSDs show evidence of different po-

larimetric characteristics in the spectra. The previous analysis for case 5 still holds

true. It is possible to filter out the non-dominant signal to obtain a better estimate

of the dominant signal (which, in this case, is the raindrop signal).

In cases 7 and 8, the difference in mean radial velocities are 2σv,1 and 3σv,1,

respectively (Figures 4.17 and 4.18). The bimodal spectra become more evident

and the histograms of the Bootstrap and ideal estimates show a separation closer to

the actual values of the signals. Even the Daniell estimates show a weak separation

in the sẐDR range, but they are unable to accurately represent the sρ̂HV of less

coherent signals, as previously mentioned.

4.5.2.4 Cases 9-12

In these cases, it is assumed the raindrop signal has higher power. For cases 9 and

10 (Figures 4.19 and 4.20), the PSDs are unimodal because the raindrop signal,

which is wider and stronger, masks the debris signal. The information about the

debris signal is completely obscured in the histograms, and even the ideal estimator

fails in these cases. There are subtle signatures in the DPSDs that another signal is

obscured by this stronger signal; they are characterized by a slight loss in sρ̂HV and

a variation in sẐDR towards the true value of the debris signal. Despite this, any

meaningful qualitative information about the masked signal is lost. In a practical
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Figure 4.16: Same as Figure 4.10, but for case 6.
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Figure 4.17: Same as Figure 4.10, but for case 7.
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Figure 4.18: Same as Figure 4.10, but for case 8.
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weather radar situation, if a hydrometeor signal is completely dominant, that would

not constitute a problem. However, if the dominant signal is of non-hydrometeor

nature, the weather information would be irretrievable.

For case 11 (Figure 4.21), the signals are simulated with a difference in mean

radial velocities of 2σv,1, but with the raindrop signal being higher in power, the PSD

still appears to be unimodal. However, the DPSDs show a more noticeable variation

as the raindrop signal weakens and the influence of debris signal becomes stronger.

The histogram of the ideal estimates show a distribution around the true value

of the dominant signal, and also around the weighted values where neither signal

is dominant. As previously mentioned, this shifted distribution can be attributed

to the presence of a different signal, albeit not quantitatively meaningful due to

the poor accuracy. The performance of the Bootstrap estimates in detecting this

additional signal is inferior as the distribution in the histogram is mostly around the

true value of the raindrop signal. Nevertheless, with the information provided by

the DPSDs, it is possible to filter out spectral coefficients with different polarimetric

characteristics and focus on the dominant characteristics; e.g., to get better bulk

estimates of the polarimetric variables. Once again, Daniell estimates have high

variance on sẐDR and are skewed towards higher sρ̂HV, and thus, are unreliable.

The mean radial velocity difference is set to 3σv,1 for Case 12 (Figure 4.22). Note

that the signals are sufficiently apart in velocity such that the PSD is somewhat

bimodal and the DPSDs are closer to their respective true values. This can be

detected in the histograms as the values are more closely distributed around the

true values of the signals. While both the ideal and the Bootstrap estimates show
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Figure 4.19: Same as Figure 4.10, but for case 9.
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Figure 4.20: Same as Figure 4.10, but for case 10.
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Figure 4.21: Same as Figure 4.10, but for case 11.
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Cases

Methods
1, 5, 9 2, 6, 10 3, 7, 11 4, 8, 12 0

(|∆v̄r| = 0) (|∆v̄r| = σv,1) (|∆v̄r| = 2σv,1) (|∆v̄r| = 3σv,1) (|∆v̄r| > 3σv,1)
Daniell None None 1 out of 3 (sZDR only) 1 out of 3 (sZDR only) All

Bootstrap 1 out of 3 1 out of 3 2 out of 3 All All
Ideal 2 out of 3 2 out of 3 All All All

Table 4.3: Ability to distinguish signal constituents.

two distinct signals (with the Bootstrap estimates being less accurate), the Daniell

estimates are still inferior to the Bootstrap estimates.

4.5.2.5 Recap of All Cases

It was clear from the previous analysis that the Daniell estimates performed the

worst, mainly due to the inability to correctly estimate the DPSDs of less coherent

signals (the sρ̂HV distributions were particularly skewed). As summarized in Table

4.3, in 8 out of the 13 cases under analysis, the histogram of Bootstrap estimates

showed distinct distributions near the true ZDR values of the signals, though with

a somewhat skewed distribution in sρ̂HV, with a mean bias similar to the values

from the single signal single dwell analysis. A successful separation in the histogram

means that the polarimetric characteristics of two distinct signals were properly

identified for these cases (in a qualitative manner). Likewise, the ideal estimates

were slightly more successful, with 11 out of 13 cases, and obviously with less errors.

However, it should be emphasized that the ideal estimates used K = 20 independent

spectra, whereas Daniell and Bootstrap estimates were obtained using only one inde-

pendent spectrum (K = 1). Additionally, the cases included unimodal and bimodal

spectra. In the three cases where the Bootstrap estimates performed poorly, it was

shown that there was evidence of dispersion in the distribution. In these situations,
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Figure 4.22: Same as Figure 4.10, but for case 12.
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techniques such as filtering of non-desired signals could be used to further improve

the estimation of the properties of the desired signal. Furthermore, in two cases

where a wider and stronger signal was completely dominating the weaker signal,

not even the ideal estimates were able to identify the distinct spectral signatures.

It should be noted that there are many cases in which the identification may not

be at all possible even with an ideal DPSD estimator; e.g., wide high-power sig-

nal completely masking a narrow weaker signal, signals of similar widths and mean

radial velocities, signals with similar polarimetric characteristics and mean radial

velocities, etc.

4.6 Summary

The Bootstrap DPSD estimator shows superior error statistics when compared to

conventional DPSD estimators under similar conditions (i.e., minimal frequency res-

olution loss). Moreover, it allows estimation of DPSDs with better quality using a

single dwell (K = 1), without resorting to averaging PSDs in time, range, azimuth

or frequency. However, if it is acceptable to compromise the resolution in any of

those dimensions, the Bootstrap DPSD estimates with just a few dwells produce

accurate results with better performance than the conventional DPSD estimators.

In such cases, the bias levels of the ideal DPSD estimator (K = 20) are equivalent to

the Bootstrap DPSD estimator with K = 5; and the variance levels are equivalent

to the Bootstrap DPSD estimator with K = 13. These numbers show a significant

reduction in the number of independent spectra needed to achieve desirable error
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levels (and to consequently produce accurate quantitative spectral analyses), though

they may still be somewhat elevated to be operationally feasible. The dual-signal

analysis showed that the single-dwell Bootstrap DPSD estimates still yield useful

results for meaningful qualitative spectral analysis, and is superior than the conven-

tional DPSD estimator. For bimodal (or multimodal) spectra, the Bootstrap DPSD

estimates are able to identify distinct spectral signatures, regardless of the difference

in mean radial velocities, as long as the polarimetric characteristics of the signals

are not too similar. Additionally, even with certain unimodal spectra composed of

different signals, the Bootstrap DPSD estimator is able to identify distinct spectral

features, though not as good as (and with more errors than) the ideal estimates.

The next chapter discusses the results of applying the Bootstrap DPSD estimator

on data from a simulated environment and from real observations.
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Chapter 5

Results on Observations and Simulations

When non-hydrometeor scatterers are dominant (e.g., in TDS), the desired weather

information, which is given by the non-dominant scatterers, may be lost in bulk

radar estimates. It was mentioned previously that a major limitation with the con-

ventional polarimetric spectral analysis techniques was the requirement of a large

number of independent spectra in order to obtain accurate estimates. Averaging

spectra from different range gates, azimuths, dwells, or even by smoothing in the

frequency domain, are different methods used in the past to estimate the DPSDs.

However, the associated resolution loss could obscure important details of the un-

derlying phenomena, especially if it is evolving fast in time and in a small spatial

extent. The Bootstrap DPSD estimator provides a means to obtain better quality

dual-polarimetric spectra based on a single dwell. This chapter illustrates the per-

formance of the Bootstrap DPSD estimator when applied to real and simulated data.

The first section presents examples of polarimetric spectral signatures observed in

four different datasets obtained with different radars for two tornado cases, with the

goal of illustrating the advantages of the Bootstrap DPSD estimator over conven-

tional DPSD estimators, and over range-, azimuth-, scan-, or frequency-averaged
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DPSDs. The next section shows examples of DPSDs obtained from a radar simu-

lator, based on raindrops and debris in a tornadic vortex, to assess the impact of

tornado dynamics on radar measurements from a spectral polarimetric perspective.

5.1 Real Observations

The following analyses use I/Q time-series data collected with the KOUN, OU-

PRIME, and PX-1000 radars during the 10 May 2010 Moore-Norman, OK, and the

20 May 2013 Moore, OK tornadoes. A brief description of the radar systems is

presented hereafter next and a summary of the characteristics of the radar systems

is presented in Table 5.1. KOUN is an S-band polarimetric radar with a 0.9◦ 3-dB

beamwidth, range sampling of 250 m, and a peak transmit power of 750 kW; on these

dates, it operated with a maximum unambiguous velocity of 27.5 m/s. OU-PRIME

is a C-band polarimetric radar with a 0.45◦ 3-dB beamwidth, a range sampling of

up to 60 m, and a peak transmit power of 1 MW. During the acquisition of the data,

it operated with a range sampling of 125 m and a maximum unambiguous velocity

of 16 m/s. PX-1000 is a transportable, X-band polarimetric radar, with a 1.8◦ 3-dB

beamwidth, a range sampling of up to 30 m, and two identical and independent solid

state transmitters with total peak power of 200 W (at the time of data collection).

Data under analysis were collected with a maximum unambiguous velocity of 15.7

m/s and a range sampling of up to 30 m.

Detailed technical specifications on OU-PRIME can be found in Palmer et al.

(2011), and on PX-1000 in Cheong et al. (2013). Data were collected with KOUN
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Transmitter
KOUN OU-PRIME PX-1000

Operating frequency 2705 MHz 5510 MHz 9550 MHz
Wavelength 11.1 cm 5.44 cm 3.14 cm

Peak transmitter power 750 kW 1000 kW 0.2 kW SSPA*
Polarization STSR** STSR** STSR**
Pulse lengths 1.57 or 4.7 µs 0.4 to 2.0 µs 1 to 70 µs

Antenna
KOUN OU-PRIME PX-1000

Diameter 8.5 m 8.5 m 1.2 m
Beamwidth (-3 dB) 0.9◦ 0.45◦ 1.8◦

Gain 44.5 dB 50 dB 38.5 dB
First SLL Better than -27 dB Better than -27 dB Better than -26 dB

Cross-polar isolation Better than -35 dB Better than -35 dB Better than -26 dB
Rotation rate 36◦/s max 30◦/s max 50◦/s max

Receiver
KOUN OU-PRIME PX-1000

A/D converter bits 16 bit 16 bit 14 bit
Gate spacing 250 m 25-500 m 30 m

* Solid State Power Amplifier.
** Simultaneous Transmission - Simultaneous Reception.

Table 5.1: Characteristics of the KOUN, OU-PRIME, and PX-1000 radar systems.
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05/10/2010 data sets KOUN OU-PRIME

Time (UTC) 22:21:33-22:58:28 22:00:47-22:59:12
Scanning strategy PPI PPI

Elevation angles (◦)
0.5, 0.9, 1.4, 1.9, 2.4, 3.2, 4.0, 5.1, 0.2, 1.0, 2.0, 3.0,

6.4, 8.0, 10.0, 12.5, 15.6, 19.5 4.0, 5.0, 6.5, 9.0
Update time ∼4’20” ∼2’30”
Wavelength 11.1 cm 5.44 cm

PRF 1000 Hz 1176.5 Hz
Maximum unambiguous velocity 27.5 m/s 16 m/s

Range sampling 250 m 125 m

05/20/2013 data sets KOUN PX-1000

Time (UTC) 19:46:29-20:42:31 19:44:49-20:39:51
Scanning strategy PPI PPI

Elevation angles (◦)
0.5, 1.0, 2.0, 3.0, 4.0,

2.6
5.0, 6.0, 8.0, 10.0

Update time ∼4’20” ∼20”
Wavelength 11.1 cm 3.14 cm

PRF 1000 Hz 2000 Hz
Maximum unambiguous velocity 27.5 m/s 15.7 m/s

Range sampling 250 m 30 m

Table 5.2: Operational settings and acquisition parameters for the four cases under
analysis.

and OU-PRIME radars for the 10 May 2010 case, and with KOUN and PX-1000

for the 20 May 2013 case. The operational settings corresponding to the available

data are summarized in Table 5.2.

Brief descriptions of the two weather events are presented next. The first case

took part in the second largest tornado outbreak documented in Oklahoma, which

affected a large part of northern, central, and southern portions of the state. Ac-

cording to NWS Weather Forecast Office Norman (2010), during the late afternoon

and early evening hours of May 10, 2010, thirteen different storms produced tor-

nadoes, spawning a total of 36 tornadoes in the NWS Norman forecast area alone,

and also producing significant structural damage over many areas with estimated

losses in excess of $595 million, three fatalities and over 450 injuries. It is indicated
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that due to the potent combination of atmospherical conditions, the storms that

developed quickly became tornadic after initiation, with typical storm motions of

50 to 60 mph. Reports indicate that between 22:33 and 22:59 UTC, three to five

tornadoes were occurring simultaneously every minute, which includes two EF-4

tornadoes (the Moore and Norman tornadoes), and two other EF-3 tornadoes. Ad-

ditionally, very large hail was reported in several locations with sizes up to 4.25”

in diameter (softball size). A detailed report of this event can be found in NWS

Weather Forecast Office Norman (2010).

The second case was part of another tornado outbreak, which took place in

parts of the midwest and the Great Plains from May 18-20, 2013. According to

NWS Weather Forecast Office Norman (2013), where the most relevant aspects are

summarized, during the afternoon and evening hours of May 20, 2013, several super-

cell thunderstorms developed along a dryline in central Oklahoma. It is indicated

that one of these storms developed and rapidly intensified, producing a tornado to

the west of Newcastle. The tornado, which touched down at 19:56 UTC, quickly be-

came violent with an east-northeastward direction, across Moore and parts of south

Oklahoma City causing catastrophic damage in these areas for about 40 minutes

before finally dissipating. The reported losses due to the tornado were over billions

of dollars in damage, 24 fatalities, and over 200 injuries. It was given a maximum

rating of EF-5, making it the deadliest and most devastating tornado of the year

in the United States. In addition to the tornadoes, large hail and damaging winds

caused significant damage in many areas. A detailed report of this event can be

found in NWS Weather Forecast Office Norman (2013).
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In-depth analyses based on weather radar observations of the 10 May 2010 case

can be found in Bodine et al. (2011), and of the 20 May 2013 case in Kurdzo et al.

(2015). Hence, no discussions about the spatial and temporal evolution or charac-

teristics of the storm will be given in this work. The following sections will provide

some examples of polarimetric spectral signatures estimated with the Bootstrap

DPSD estimator that are not captured by the bulk polarimetric variables.

5.1.1 Case 1: 10 May 2010, OU-PRIME and KOUN

To make a fair comparison between the datasets corresponding to different radars, it

is important that the spatial and temporal characteristics of the event are matched

as closely as possible. In this example, the KOUN set corresponding to 22:22:38

UTC with an elevation angle of 1.36◦, and the OU-PRIME set corresponding to

22:23:22 with an elevation angle of 0.96◦ were selected, which are approximately

one minute apart. The PPIs for the selected scans for each radar are shown in Fig-

ure 5.1. KOUN data were grouped into 2.0◦ radials with a 0.5◦ azimuthal spacing,

yielding approximately 79 pulses per radial. OU-PRIME data were grouped into

1.0◦ radials with a 0.5◦ azimuthal spacing, yielding approximately 70 pulses per ra-

dial. Range-Doppler plots are useful for spectral analyses, as they illustrate spectral

variables as a function of range and radial velocity, with the intensity representing

the particular spectral variable. Each row in the y-axis of the range-Doppler plots

represents the spectrum for a given range gate, and the x-axis represents the radial

velocity. With the aid of range-Doppler plots, it is possible to observe the spatial

distribution and radar-relative motion of the scatterers in a particular radial; and
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Figure 5.1: PPI plots corresponding to (a) KOUN data at 22:22:38 UTC, and el-
evation φ = 1.36◦ with azimuth θ = 30◦ highlighted, and (b) OU-PRIME data at
22:23:22 UTC, and elevation φ = 0.96◦ with azimuth θ = 25◦ highlighted: SNRH

(top left), v̄r (top right), ZDR (bottom left), and ρHV (bottom right). Grid lines are
30◦ and 10 km apart.
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with the DPSDs, it is also possible to detect any significantly different scatterer

signatures for given radar resolution volumes. First, the differences between the

different DPSD estimators will be illustrated. By computing the DPSD estimates,

distinct spectral signatures can be found near azimuth θ = 30◦ in KOUN data, and

θ = 25◦ in OU-PRIME data, as depicted in Figures 5.2-5.4. The DPSDs were esti-

mated with a Blackman window (-58 dB SLL), with no zero-padding for the DFT.

Furthermore, a 20-dB SNR threshold is used to censor low-SNR spectral coefficients.

For a single dwell (i.e., K = 1), both Bootstrap and Daniell DPSD estimators pro-

vide qualitatively meaningful results, while the periodogram estimator fails to yield

useful results. For an easier interpretation, the velocities were manually de-aliased

(i.e., x-axis from 0 to +2va) with information about the storm motion, illustrating

the peak of the stronger signal moving at similar radial velocities from both radar

measurements. Additionally, estimates with K = 3 averaged spectra from adjacent

radials are included for clarity. Each spectrum corresponds to a coverage of ap-

proximately 4◦ for the KOUN dataset and 2.5◦ for the OU-PRIME dataset (Figures

5.5-5.7). It can be observed that the spectral signatures are similar in both cases

(using K = 1 and K = 3), although the single-dwell estimates are noisier. As it

has been mentioned in previous chapters, it is desirable to minimize the averaging

in any dimension to avoid masking spectral features that may be present. Upon a

quick examination, the Daniell estimates are qualitatively similar to the Bootstrap

estimates as previously shown. However, the Daniell estimator smoothes the spectra

in frequency, and it also does not take into account additional signal information

obtainable with bootstrapping. Hence, the sρHV tends to be higher for higher SNR
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Figure 5.2: Range-Doppler plots of single-dwell Bootstrap DPSD estimates corre-
sponding to: (a) KOUN data at 22:22:38 UTC, elevation φ = 1.36◦, and azimuth
θ = 30◦, and (b) OU-PRIME data at 22:23:22 UTC, elevation φ = 0.96◦, and
azimuth θ = 25◦ (after velocity dealiasing).
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Figure 5.3: Same as Figure 5.2, but for Daniell DPSD estimates.
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Figure 5.4: Same as Figure 5.2, but for periodogram DPSD estimates.
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Figure 5.5: Range-Doppler plots of K = 3 averaged Bootstrap DPSD estimates
corresponding to: (a) KOUN data at 22:22:38 UTC, elevation φ = 1.36◦, and az-
imuth θ = 30◦, and (b) OU-PRIME data at 22:23:22 UTC, elevation φ = 0.96◦, and
azimuth θ = 25◦.
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Figure 5.6: Same as Figure 5.5, but for Daniell DPSD estimates.
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Figure 5.7: Same as Figure 5.5, but for periodogram DPSD estimates.
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spectral coefficients and lower where the spectral coefficients are more affected by

the smearing. Moreover, it can be demonstrated that the quality of the Daniell es-

timates are significantly degraded in cases with lower frequency resolution; i.e., for

lower number of samples per dwell. By arbitrarily reducing the azimuthal extent of

a radial to 0.5◦, and keeping an azimuthal spacing of 0.5◦ for the KOUN dataset at

the same azimuth of θ = 25◦, the number of pulses per radial is approximately 20.

Figure 5.8 shows the estimated DPSDs, where the spectral broadening due to aver-

aging in frequency of the Daniell estimates is more evident. Additionally, the region

around 31.5 km in range is continuously high in sρHV, which could be interpreted

as one signal with a wide spectrum width, depicted in Figure 5.9.

Moving on to a more interpretative analysis of the estimates, typical features

such as unimodal weather signal, bimodal weather, and ground clutter are readily

apparent in the range-Doppler plots. Examples of these typical DPSDs are shown

in Figure 5.10. Other interesting signatures are the unimodal signal with markedly

different polarimetric characteristics for different radial velocities spanning from

approximately 20 km to 40 km in range in the OU-PRIME observation, the bimodal

signal spanning from approximately 20 km to over 50 km in range in the KOUN

observation, and a multimodal signal composed of weather, ground clutter, and an

isolated peak at ∼8 km in the KOUN observation. The DPSDs of these signatures

are shown in Figure 5.11. While it is difficult to provide a precise explanation

for these observations, some hypotheses can be elaborated. The unimodal signal

with differences in sZDR (Figure 5.5b, between approximately 20 and 42.5 km in

range) may be attributed to smaller raindrops being centrifuged or size sorting,
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Figure 5.8: Range-Doppler plots of single-dwell DPSD estimates corresponding to
KOUN data at 22:22:38 UTC, elevation φ = 1.36◦, azimuth θ = 30◦ and 0.5◦ radials
with an average of 20 pulses per radial, for (a) Bootstrap estimator, (b) Daniell
estimator, and (c) zoomed comparison of both estimates.
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Figure 5.9: Line spectra at 31.5 km for the range-Doppler plots of Figure 5.8.
Bootstrap (blue) and Daniell (green) estimates illustrating the effects of degraded
frequency resolution.
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Figure 5.10: Plots of Bootstrap DPSD estimates corresponding to KOUN data at
22:22:38 UTC, elevation φ = 1.36◦, and azimuth θ = 30◦: (a) weather signature at
9.5 km, and (b) weather and ground clutter signature at 4.25 km.
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Figure 5.11: Plots of Bootstrap DPSD estimates corresponding to: (a) unimodal
spectra with different polarimetric characteristics at 36 km, (OU-PRIME) (b) bi-
modal spectra at 32.25 km (KOUN), and (c) multimodal spectra at 9 km (KOUN).
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while the decreasing values in range would possibly be due to attenuation. However,

collocated with these sZDR values are really low sρHV values, which might be an

indication of non-meteorological scatterers. An example of the spectra at a range

gate of 36 km is depicted in Figure 5.11a. Additionally, since OU-PRIME operates

at C-band, it might be more susceptible to non-Rayleigh scattering from scatterers

relatively larger than hydrometeors. Also, another indication that supports the

hypothesis of non-meteorological scatterers lies farther ahead in range, where a

wide distribution of lower sSNR with negative sZDR and low sρHV is surrounding

the weather signal. The KOUN spectral data also shows a weaker signal of low

sZDR that is not apparent in the OU-PRIME spectral data. This weaker signal is

observed within a bimodal spectrum (Figure 5.11b), along with a stronger weather

signal with varying sZDR values, and relatively high sρHV values. Although the

weaker signal has high sρHV values in the KOUN data, this may be due to the fact

that these presumably non-hydrometeor scatterers might be small in size such that

the scattering is mostly homogeneous. Another plausible explanation is that the

weaker signal corresponds to a range-folded echo, as evidence of range folding was

observed in the vicinity of the radial under analysis in later PPI scans for the same

dataset. If such were the case, the range-folded echoes could be mitigated with

polarimetric spectral analysis, showing another important potential application of

the Bootstrap DPSD estimator. Finally, a signal with multiple peaks in the spectrum

(Figure 5.11c) can be observed in range gates near 8 km in the KOUN range-Doppler

plots. The peak at approximately 2 m/s corresponds to weather, with sZDR values

close to 0 (small raindrops) and high sρHV. A wider signal with negative sZDR and
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varying values of sρHV can be seen with a mean radial velocity of approximately 14

m/s. The polarimetric characteristics of this spectral signature are similar to those

of debris. And also, an isolated peak of a scatterer with high sZDR and high sρHV

with a motion of over 20 m/s can be seen in the spectra. This unknown scatterer

could be a single large piece of debris being lofted in the air, and a hypothesis for the

velocity being higher than the surrounding wind could be explained if the object

was ejected radially in the direction of the radar beam with a higher tangential

velocity. Alternatively, since ground clutter contamination is still affecting at this

elevation angle and range, the echo could correspond to a vehicle. It is important

to note that these characteristics can be appreciated even with single dwell DPSDs,

showing the potential of the Bootstrap DPSD estimator in different spectral analysis

applications.

5.1.2 Case 2: 20 May 2013, KOUN and PX-1000

A PPI of the selected elevation angle and time is shown in Figure 5.12. For the

PX-1000 dataset, the update time is 20 seconds, the range gate spacing is 30 m with

a resolution of 112 m, while the azimuthal spacing is 0.5◦ with a resolution of 1.8◦.

Since range is oversampled, it is possible to compute range-averaged DPSDs without

significantly compromising the amount of information. Additionally, with faster

update times, it would also be reasonable to obtain dwell-averaged DPSDs, as long

as the underlying phenomenon is not evolving too rapidly. A comparison of DPSDs

computed by averaging in different dimensions is possible with this dataset, which

will be discussed next. The single-dwell Bootstrap DPSD estimate with K = 1 (first
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Figure 5.12: PPI plots corresponding to (a) KOUN data at 20:23:59 UTC, and
elevation φ = 2.99◦ with azimuth θ = 27◦ highlighted, and (b) PX-1000 data at
20:23:56 UTC, and elevation φ = 2.6◦ with azimuth θ = 21◦ highlighted: SNRH

(top left), v̄r (top right), ZDR (bottom left), and ρHV (bottom right). Grid lines are
30◦ and 10 km apart.

174



column, Figure 5.13) is compared to those that resulted from the Daniell estimator

with a three-point moving average (second column, Figure 5.13), and by averaging

three gates in range (third column, Figure 5.13), three radials in azimuth (fourth

column, Figure 5.13), and three scans in time (last column, Figure 5.13).

With range averaging, some information in range may be obscured, though if

range is oversampled, the impact on the quality of DPSD estimates should be min-

imal. The azimuth-averaged DPSDs exhibit spectral leakage, mainly due to discon-

tinuities in azimuth during the data acquisition. Spectral products are vulnerable

to these artifacts, and in such a case, averaging in another dimension would be more

appropriate. Additionally, scan-to-scan-averaging does not reduce the resolution in

range or azimuth, but it is sensitive to the time between scans. By averaging three

dwells that are 20 seconds apart, it yields an effective observation time of approxi-

mately 1 minute. If the phenomena is evolving fast in time, extraneous information

may be gathered by averaging in time; e.g., the signature with high sρHV with mean

velocities close to 12.5 m/s is absent from all other DPSD estimates.

Similar spectral signatures as those found in previous examples can also be ob-

served in the KOUN dataset for the 20 May 2013 case. Using a single spectrum

for DPSD estimation (K = 1) and at an azimuth of θ = 27◦, a unimodal spectra

with marked polarimetric characteristics can be observed (Figure 5.14). The weaker

signal is collocated with low sZDR, while the stronger signal has small sZDR. The

sρHV behaves differently for both signals as their power ratio varies in range. From

ranges 32 to 34 km, the dominant signal has high sZDR, and as the dominant signal

power weakens for higher positive radial velocity (i.e., the right edge of the spectral
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Figure 5.13: Comparison of different averaging methods. PX-1000 data at 20:23:56
UTC, elevation φ = 2.6◦ and azimuth θ = 21◦, estimated with the Bootstrap DPSD
estimator using a single dwell (first column), with the Daniell three-point single-
dwell estimator (second column), range averaging estimator (third column), azimuth
averaging estimator (fourth column), and scan-to-scan averaging estimator (fifth
column), for: (a) sSNRH, (b) sSNRV, (c) sZDR, and (d) sρHV.
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Figure 5.14: Range-Doppler plots of KOUN data at 20:23:59 UTC, elevation
φ = 2.99◦ and azimuth θ = 27◦, estimated with the Bootstrap DPSD single-dwell
estimator (K = 1).
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signature), the mixing is stronger such that none of the signals are dominant, thus

exhibiting a lower sρHV (Figure 5.15a). From ranges 25 to 31 km, a similar effect is

observed but the dominant signal is weaker for lower radial velocities; i.e., left side of

the spectrum (Figure 5.15b). From ranges 22 to 24 km, the low sZDR signal is wider

and less dominant, while the high sZDR signal is narrower and likely moving at about

the same mean radial velocity as the less dominant signal; these marked differences

in the unimodal spectra are more evident in sZDR (Figure 5.16a). From ranges 19 to

21 km, an overall decrease in sρHV is evident, which could be explained by no signal

being completely dominant over the other in the spectra (Figure 5.16b). And finally,

from ranges 18 km and below, the power of the high sZDR signal starts weakening

as the wider, low sZDR signal starts exhibiting higher sρHV (Figure 5.17a). Another

spectral signature featured in this radial is the helicopter at about 7 km in range

(Figure 5.17b). It is known that this particular scatterer is a helicopter because it

exhibits (in PPI plots, not shown) spatially isolated, unusually high returned power,

rapid movement as a function of time, mean radial velocities that do not follow the

surrounding winds, and non-homogeneous scattering (low ρHV). One last example

of a spectral signature of a TDS range gate is shown in Figure 5.18. The range

gate corresponds to KOUN data at 20:14:16 UTC, elevation φ = 1.98◦, azimuth

θ = −29◦, and range 9.5 km, with a ẐDR of -2.83 dB and a ρ̂HV of 0.50, which is

consistent with a typical TDS. The spectra is multimodal and it exhibits different

spectral polarimetric signatures collocated with different peaks in radial velocity,

though it is unlikely that they are associated with typical weather signals due to the

difference in polarimetric characteristics. Additionally, an isolated peak at 15 m/s
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Figure 5.15: Plots of Bootstrap DPSD estimates corresponding to KOUN data at
20:23:59 UTC, elevation φ = 2.99◦, and azimuth θ = 27◦. Signatures at: (a) 33.5
km, and (b) 27.75 km.
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Figure 5.16: Same as Figure 5.15 but for signatures at: (a) 22.5 km, and (b) 20 km.
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Figure 5.17: Same as Figure 5.15 but for signatures at: (a) 17.75 km, and (b) 7.5
km.
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Figure 5.18: Plots of Bootstrap DPSD estimates corresponding to KOUN data at
20:14:16 UTC, elevation φ = 1.98◦, azimuth θ = −29◦, and range r = 9.5 km. The
dashed black lines in sẐDR and sρ̂HV indicate the values of the bulk estimates.
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can be observed with sẐDR < −10 dB, which may be debris that is being ejected

from the vortex.

In summary, a few examples of the Bootstrap DPSD estimator applied to real

data have been shown. Additionally, it has been demonstrated that the Bootstrap

DPSD estimates show more details compared to the conventional estimators. Also,

it was possible to identify spectral signatures using single-dwell estimates, in contrast

to averaging in range, azimuth, scan, or frequency, where the resolution is degraded.

The following section presents results of the Bootstrap DPSD estimator applied to

data from a physically based simulator.

5.2 Simulated Observations

To generate realistic I/Q weather radar signals in a tornadic environment, a polari-

metric radar time-series simulator (Cheong et al. 2015), SimRadar, is used (Figure

5.19). Briefly, this physical simulator synthesizes radar returns based on the po-

sition, velocity, orientation, and radar cross section (RCS) of scatterers, which in-

clude both raindrops and debris. It ingests large-eddy-simulation (LES) models for

tornado-vortex wind fields and trajectories of the scatterers. The tumbling behavior

of non-spherical objects and the drag forces are calculated based on a 6DOF model

(Maruyama and Noda 2012; Richards 2012) and LES-meteorological-background

wind vectors. For the RCS of hydrometeors, the electrical scattering model of an

oblate raindrop is used (Bringi and Chandrasekar 2001), and for debris, the RCS
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Figure 5.19: User interface of the polarimetric radar time-series simulator (Sim-
Radar).

measurements of a leaf at different orientations are ingested into the radar simula-

tor. The body of the leaf is modeled by a rectangular plate of 6-cm wide by 8-cm

long; the stem is modeled as a cylinder of 12-cm long attached to the body. The

DSD of the raindrops is modeled with a Marshall-Palmer distribution. Finally, the

contribution of each scatterer is weighted by its radial and angular position relative

to the radar beam. To produce the simulated I/Q time-series signals, contributions

from all scatterers are coherently summed after updating the physical properties

of the scene at each time step. Detailed technical specifications on the simula-

tion framework can be found in Cheong et al. (2015). Thanks to the versatility of

the simulator, many scenarios with different radar acquisition and simulation scene

parameters can be generated, making it an incredibly powerful and useful tool to
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tackle the scientific questions regarding tornado dynamics and interaction with de-

bris. While the goal here is not to answer these scientific questions, a few examples

of the Bootstrap DPSD estimates of simulated data are presented next to illustrate

the potential utility of spectral-analysis tools in the study of tornado dynamics.

5.2.1 Simulation Case 1: Weather Only

The radar parameters (Table 5.3) are similar to typical WSR-88D values, though

the PRT is arbitrarily modified to ensure there is no aliasing in velocity, and the

range resolution is 30 m with a gate spacing of 15 m. The scene is populated

with 1.024 × 106 raindrops with 5 different diameters for the weather-only case,

and 1.024 × 106 leaves for the debris-only case. In both cases, there are about 240

scatterers per cell in both cases. The rest of the simulation parameters are listed in

Table 5.3. The PPI plots of the simulation with weather-only scenes are shown in

Figure 5.20. Briefly, the weather-only case shows the tornado vortex structure in the

SNR field and a TVS in the velocity field. Also, the ZDR plot shows that moderately-

sized raindrops with ZDR of approximately 2 dB are moving at a distance of ∼200

m in radius and with smaller sized raindrops in the core of the vortex, resembling

what appears to be a ring in the SNR and ZDR fields. The ρHV is also consistently

high, as expected, since the simulation domain is only populated with raindrops.

Spectral analysis shows unimodal weather spectra for most parts of the domain.

As an example, a range-Doppler plot of a radial corresponding to an azimuth of

θ = −10◦ depicts this signature (Figure 5.21). Moreover, some signatures of possible

size sorting due to the drag forces can be observed as larger drops (larger sZDR)
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Radar parameters
PRT 0.2 ms

Wavelength 10 cm
Peak transmit power 50 kW

Antenna gain 50 dBi
Beamwidth 1.0◦

Pulse width 0.2 µs
Range resolution 30 m

Gate spacing 15 m
Samples per dwell 100

Azimuthal sampling 0.5◦

Maximum unambiguous velocity 82.5 m/s

Simulation domain
Scatterer type Raindrops Debris (Leaf)

Number of scatterers 1.024× 106 1.024× 106

Density ∼ 470 particles per cell
DSD Marshall-Palmer

Number of diameter classes 5 (1, 2, 3, 4, 5 mm)
LES model Suction vortices

Size of simulation domain 864.77 m x 738.81 m x 217.02 m

Table 5.3: Radar acquisition and simulation domain parameters.
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Figure 5.20: PPI plots of simulated weather-only data at elevation φ = 3.00◦: SNRH

(top left), v̄r (top right), ZDR (bottom left), and ρHV (bottom right).
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Figure 5.21: Range-Doppler plots of simulated weather data at elevation φ = 3.00◦

and azimuth θ = −10◦.

are collocated with smaller radial velocities than smaller raindrops (smaller sZDR).

Again, the correlation coefficient, indicates high values owing to the homogeneity

of the scatterers in motion. The DPSDs of a particular range gate exhibiting this

behavior are shown in Figure 5.22.

5.2.2 Simulation Case 2: Debris Only

A more interesting case is the one with the debris signals only (Figure 5.23), where

a ring can be appreciated in the SNR and ZDR fields, while ρHV exhibits a low

value region collocated near the core of the tornado vortex. The low to negative

values of ZDR could be explained by some degree of common alignment of the leaves,

which is also supported by the fact that the ρHV in the annular region is also high

(i.e., common alignment results in more homogeneous scattering). A range-Doppler

plot of a radial across the core (azimuth θ = 1.5◦, Figure 5.24) shows multimodal

spectra in power, as well as a wide range of sZDR values, while the sρHV suggests
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Figure 5.22: Bootstrap DPSD estimates of simulated weather data at elevation
φ = 3.00◦, azimuth θ = −10◦ and r = 1.925 km.
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Figure 5.23: PPI plots of simulated debris-only data at elevation φ = 3.00◦: SNRH

(top left), v̄r (top right), ZDR (bottom left), and ρHV (bottom right).
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Figure 5.24: Range-Doppler plots of simulated debris data at elevation φ = 3.00◦

and azimuth θ = 1.5◦.

centrifuging of debris. With the radar beam pointing approximately perpendicular

to the vortex-relative wind direction, a reasonable assumption is that most leaves

that are carried by the wind will have a mean radial velocity close to zero. This

observation is clearer between ranges 1.85 and 2.05 km, and between 2.25 and 2.4

km. Additionally, the high sρHV values collocated with the mean radial velocities

suggest higher homogeneity of the scatterers, which in turn supports the hypothesis

of commonly aligned debris. Finally, another interesting signature observed in these

range-Doppler plots is how a few of the non-dominant peaks in the spectra exhibit

higher motion towards (away from) the radar for the southern (northern) region

of the vortex, as if these debris were being ejected radially outwards from the core

(Figures 5.25a and 5.25b). They are also collocated with low sρHV values, suggesting

these leaves are tumbling rapidly and are not commonly aligned with the wind

motion.
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Figure 5.25: Bootstrap DPSD estimates simulated debris data at elevation φ = 3.00◦

and azimuth θ = 1.5◦ at: (a) 1.94 km, and (b) 2.36 km.
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Figure 5.26: PPI plots of simulated weather and debris data at elevation φ = 3.00◦:
SNRH (top left), v̄r (top right), ZDR (bottom left), and ρHV (bottom right).

5.2.3 Simulation Case 3: Weather and Debris Mix

The next simulated scenario is composed of weather and debris (Figure 5.26), each

with a count of 1.024 × 166, totaling 2.048 × 106 particles with a density of ap-

proximately 470 particles per radar resolution volume, and with the same radar

acquisition parameters. It is possible to analyze each signal and the composite sig-

nal separately, with the goal of testing hypotheses regarding velocity biasing. In

a raindrops-only scenario, the differential velocity (i.e., the difference between the

velocities estimated from the H and V channels) is expected to be minimal, pro-

vided that the raindrops are small, since the velocities estimated from each channel

should be approximately equal. This hypothesis is tested with the weather-only

signal (Figure 5.27), and the results are as expected. Following a similar logic, the
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Figure 5.27: PPI plot of differential velocity for weather only at elevation φ = 3.00◦.
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Figure 5.28: PPI plot of differential velocity for weather and debris at elevation
φ = 3.00◦.

differential velocity for the composite weather-and-debris signal is expected to have

a higher dispersion since the radial velocities estimated from either channel are more

vulnerable to biases owing to the possibility that one signal could be more dominant

than the other for a given polarization, and vice versa. The differential velocity of

the weather-and-debris scenario is shown in Figure 5.28. Furthermore, the weather

and weather-and-debris cases can be compared closely as they correspond to the

same simulation scene, allowing the subtraction of the true wind motion from the
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Weather and Weather/Debris − Velocity Difference
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Figure 5.29: PPI plot of difference in mean radial velocities between weather and
debris, and weather at elevation φ = 3.00◦.

composite case in order to assess the biases introduced by the presence of debris.

This difference in velocity (Figure 5.29), i.e., the mean velocity of weather and debris

minus the mean velocity of only weather, provides an insight into the measurement

bias in the mean radial velocities. A difference close to zero can be interpreted as the

wind velocity in the weather-and-debris case following the true wind motion accu-

rately, while a negative difference means the wind motion is underestimated, and a

positive difference represents overestimation. In a similar analysis, the difference in

velocity between the debris-only case and the composite case is compared in Figure

5.30, where the values close to zero indicate that the radar is likely measuring debris

motion rather than wind motion. Upon closer inspection of the northwestern quad-

rant where the wind motion seems to be underestimated, spectral analysis shows

that the spectra is mostly dominated by debris (θ = 0.5◦, Figure 5.31a), as the

signatures in power are very similar to those of the debris-only case (Figure 5.31b).

Clearly, the biases in the mean radial velocities are due to the high-power returns

from debris. However, even when the weather signal is dominated to some degree by
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Figure 5.30: PPI plot of difference in mean radial velocities between weather and
debris, and debris at elevation φ = 3.00◦.

debris, some signatures can be observed in the spectral correlation coefficient. As

it was mentioned in Section 4.5, depending on the difference in power of the signals

that are mixed in the composite signal, certain features remain possible to be iden-

tified. By comparing the range-Doppler plots of the three cases (weather, debris,

and weather and debris), it is evident that a line of low sρHV is embedded in the

weather-and-debris spectral signature, and it is collocated mostly with the peak of

the weather spectral signature (Figure 5.31). Additionally, the decrease in sρHV can

be attributed to the individual signals being comparable in power (i.e., within 20

dB of each other), such that none of them are dominant in that particular spectral

coefficient, hence decreasing the homogeneity of the scattered signal. Finally, focus

is directed to the northeastern quadrant, where the velocity is overestimated. At a

radial in the θ = 7.5◦ direction, the mixing of both signals is more widespread, and

at farther ranges, the debris spectral signatures start diverging more rapidly from

the mean wind motion (Figure 5.32). This might be an indication of debris ejection,
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Figure 5.31: Range-Doppler plots of Bootstrap DPSD estimates at elevation φ =
3.00◦, and azimuth θ = 0.5◦, for: (a) weather and debris, (b) debris only, and (c)
weather only.
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Figure 5.32: Range-Doppler plots of Bootstrap DPSD estimates for weather and
debris at elevation φ = 3.00◦, and azimuth θ = 7.5◦.

since the fastest moving object appears to have a radial velocity close to the max-

imum radial velocity observed tangential to the vortex. The bulk radar estimates

mask the velocities of all underlying groups of scatterers that are depicted in the

DPSDs. Through visual analysis and statistical study of the simulation scene, it

would be possible to determine the positions, velocities and orientations of the scat-

terers, in order to validate the results of the polarimetric spectral analysis. However,

such study is beyond the scope of this work.
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5.3 Summary

The advantages of using the Bootstrap DPSD estimator over conventional DPSD

estimators were shown for single- and multiple-dwell cases. Also, it has been demon-

strated that spectral signatures and qualitative features of the spectra can be identi-

fied with a single dwell estimate, without the resolution losses associated with range-,

azimuth-, scan-, or frequency-averaged DPSDs. Polarimetric spectral analysis can

unveil additional information masked in bulk estimates, and a few representative

spectral signatures have been presented as examples to illustrate this. While a few

interpretations for the observations have been provided, a validation of these is be-

yond the scope of this work. It is deemed appropriate to perform more in-depth

studies with the simulator and the Bootstrap DPSD estimator to confirm the hy-

potheses discussed herein. Such work would entail exploiting many of the advantages

provided by such a powerful simulation tool in its many possible configurations, in

conjunction with the dual-polarimetric spectral analysis capabilities provided by

the Bootstrap DPSD estimator. It is believed that the results of such studies will

provide a better understanding of tornado dynamics and its connection to weather

radar measurements, as well as to answer the scientific questions that motivated this

work. In the next chapter, the conclusion for this work and discussions for future

work will be presented.
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Chapter 6

Conclusions and Future Work

In this chapter, the conclusions of this work are presented, and a few applications

and recommendations for future work using the Bootstrap DPSD estimator are dis-

cussed. The primary objective of this work was the development of the Bootstrap

DPSD estimator, which is capable of obtaining accurate dual-polarimetric spectral

density estimates from a single dwell. A summary of the key aspects of each chapter

is provided next. The fundamentals of weather radar signal processing and spectral

analysis were presented in Chapter 2, along with a brief description of the TDS

and how important weather information could be masked in bulk radar estimates.

Typical non-polarimetric spectra were presented to demonstrate cases where the

PSD alone would not be sufficient to determine the nature of the scatterers; and

a hypothetical depiction of a spectral signature of tornadic debris was used as an

example to demonstrate how the DPSDs could reveal additional spectral informa-

tion that would aid in discriminating groups of scatterers of different nature moving

at different radial velocities in a radar volume. The advantages and disadvantages

of the periodogram, Bartlett, Welch, and Daniell non-parametric PSD estimation

methods were evaluated to be used for DPSD estimation. While Bartlett, Welch,

and Daniell PSD estimates can be used to obtain single-dwell DPSD estimates, the

periodogram fails to yield useful single-dwell estimates. However, it was shown that
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these degrade the frequency resolution considerably. Conventional DPSD estimation

methods average in frequency or use PSDs from multiple dwells that are averaged in

range, azimuth, scan; however, the resolution in the averaged dimension can get sig-

nificantly degraded. This preliminary study helped in understanding the context of

the problem, and showed the importance of having more accurate DPSD estimates

for polarimetric spectral analyses. In Chapter 3, the Bootstrap DPSD estimator

was introduced. First, the bootstrap resampling concept was presented, and the

different block bootstrapping methods were evaluated taking into account their ap-

plicability to weather radar I/Q time-series signals. Next, the design considerations

of the Bootstrap DPSD estimator were presented. In this context, a few indicators

of the quality of the DPSD estimates, such as spectral leakage, statistical errors, and

computational cost, were defined to establish comparison standards for selecting the

optimal parameters in the design process of the Bootstrap DPSD estimator. Addi-

tionally, signal pre-processing strategies such as signal extension, coherency correc-

tion, ratio of original samples and power correction, and post-processing strategies

such as the bias correction were explained in detail. In accordance with the quality

indicators, performance analyses for the block bootstrap methods as well as for dif-

ferent configurations of the design strategies were conducted to obtain the optimal

set of parameters that define the Bootstrap DPSD estimator. Finally, a summary

of the algorithm of the Bootstrap DPSD estimator was provided. Chapter 4 be-

gan by describing the simulation methodology, and the calculation of the statistical

errors. Also, the relationship between bulk and spectral radar variables, and their

differences in error dependence was discussed. An analysis of error dependence on
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radar acquisition and signal parameters for the ideal estimator was presented, which

helped simplify the complexity of subsequent performance analyses. Additionally,

the effects in the spectral estimates of the interaction of two signals were briefly

explained. These preliminary analyses were important for a better interpretation

of the results presented in the following chapter. A statistical error performance of

the DPSD estimators was then presented in single-signal single-dwell, single-signal

multiple-dwell, and dual-signal analyses, providing an objective evaluation of the

advantages and limitations of the Bootstrap DPSD estimator. A few representative

examples of the application of the Bootstrap DPSD estimator to real data and data

obtained from a physical simulator were presented in Chapter 5. The examples

of real data focused more on the differences between the Bootstrap DPSD estima-

tor and conventional DPSD estimators, and on the effects of averaging spectra in

different dimensions, while the examples of simulated data focused on information

that is masked by the bulk radar estimates, and that can be revealed with po-

larimetric spectral analyses. These examples featured dual-polarimetric signatures

of hydrometeor and non-hydrometeor scatterers in the same radar volume, which

demonstrated the ability of the Bootstrap DPSD estimator to identify signals with

different spectral characteristics.

From a broader perspective, this work can be summarized as follows. The bulk

radar estimates depict useful information about the characteristics and motion of

meteorological phenomena, though these measurements are susceptible to biases

when the signal of interest is contaminated by other types of scatterers in the radar

volume. The dual-polarimetric spectral densities may unveil additional information
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for groups of scatterers moving at different Doppler velocities, which can potentially

aid in the characterization of distinct scatterer types. Identification of different po-

larimetric spectral signatures is important for many applications. For example, by

discriminating hydrometeors in spectra, it should be possible to obtain more ac-

curate wind velocity measurements, which is very important for tornado intensity

and damage potential estimation. Previous estimation methods required averaging

K ≥ 20 spectra to get DPSD estimates of desirable error levels, which could be ob-

tained from different range gates, radials, scans. A smaller number of spectra could

be averaged, though the quality of the estimates is usually insufficient for quan-

titative spectral analyses. Good resolution is required in all dimensions in order

to capture important features of meteorological phenomena that evolve relatively

fast in time, in a small spatial extent, and with scatterers moving at different ve-

locities within the radar volume (e.g., tornadoes). The Bootstrap DPSD estimator

was introduced as a means to compute the DPSDs from a single dwell with mini-

mal resolution loss. It employs the bootstrap resampling concept, which is a useful

method to measure statistical properties of estimators when the available sample

size is small. Briefly, the estimator pre-processes and then bootstraps the condi-

tioned I/Q time-series signals to obtain I/Q pseudo-realizations, which are in turn

used to obtain bootstrapped PSD estimates. The DPSDs are then computed by

averaging the bootstrapped estimates, and a bias correction is applied to obtain the

final estimates. The pre- and post-processing strategies, as well as the appropriate

selection of parameters are at the core in the design of the Bootstrap DPSD estima-

tor. The Bootstrap DPSD estimator shows superior error statistics when compared
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to conventional DPSD estimators for single-dwell as well as for multiple-dwell esti-

mates, and it was shown that it meets the performance of the ideal estimator with

about half the number of averaged independent spectra. However, the Bootstrap

DPSD estimator has a particular limitation in that, by attempting to correct the

signal coherency, it could introduce an incoherence that adds a minimal bias into

the spectral correlation coefficient estimates. Further analyses of the impacts of this

limitation are needed. Additionally, the Bootstrap DPSD estimator shows better

performance than the conventional DPSD estimators when discriminating polari-

metric signatures of signals corresponding to different groups of scatterers moving

at different radial velocities in the radar volume. However, the ideal estimator still

outperforms the single-dwell Bootstrap DPSD estimator in the dual-signal analysis.

Though a multiple-dwell dual-signal analysis was not conducted, it is expected that

the Bootstrap DPSD estimator will have superior performance compared to con-

ventional and the ideal DPSD estimators. The potential of the Bootstrap DPSD

estimator was demonstrated with a few representative examples using data from

real tornado cases and from a physically-based simulator. It was illustrated in the

examples how polarimetric spectral analyses can unveil additional information ob-

scured by bulk estimates. It is expected that spectral analysis can provide more

insight to better understand tornado dynamics and their connection to weather

radar measurements. However, to validate the observations from a physical point of

view and to answer the scientific questions that motivated this work, more in-depth

analyses are required. Such studies are beyond the scope of this work and a few

recommendations for future work are proposed next.
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By identifying the spectral coefficients that correspond to hydrometeors using

the DPSDs, it is possible to obtain better estimates of the weather components, and

to consequently improve the bulk radar estimates for the signal of interest. A simple

spectral-based algorithm would entail thresholding the spectra for components with

high SNR (e.g., sSNRH > 20 and sSNRV > 20 dB), and to perform a Gaussian fit

on the PSD, though algorithms of higher complexity can be implemented. Based

on the PSD, multiple Gaussian fits could determine the number of signals in the

spectra, their power distribution, mean radial velocities and spectrum widths. The

polarimetric characteristics of each signal could be discriminated with the DPSDs,

by analyzing the distribution of sZDR and sρHV that correspond to the spectral

coefficients of the fitted curves. Such additional information of the scatterers in

a radar resolution volume could be exploited for many different applications. Ve-

locity bias correction should be possible by filtering out the signals that are more

likely to be of non-hydrometeor nature, and by recalculating the spectra (if more

than one signal is tagged as weather after filtering), or by simply using the fitted

curve of the weather signal (if only one signal is left after filtering). Another im-

portant application is a spectral-based hydrometeor classification algorithm (HCA).

Since evidence of unimodal spectra with different polarimetric characteristics has

been found, it is possible to extend the HCA to work with spectral coefficients,

as to provide a distribution of hydrometeors for a given radar resolution volume.

Moreover, as it was suggested in an example in Chapter 5, the contribution from

range-folded echoes may be mitigated from bulk radar estimates, provided that their

spectral signature is different. Additionally, the Bootstrap DPSD estimator can be
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used to improve already existing analysis techniques. The performance of previous

DSD retrieval algorithms using spectral analysis may be improved by using Boot-

strap DPSD estimates. Also, clutter mitigation techniques can now be based on the

spectral polarimetric variables to more accurately discriminate moving clutter and

zero-mean radial velocity weather signals.

Polarimetric spectral signatures that are tagged as coming from non-hydrometeors

can be useful in other applications. From a qualitative point of view, the Bootstrap

DPSD estimator is an important tool of analysis in quest to answer some of the

science questions that motivated this work. As it was presented in Chapter 5,

identification of non-hydrometeor scatterers may provide more insight into debris

ejection and loading dynamics, as well as for common alignment of debris in tornadic

flows. Such hypotheses can be validated by cross-referencing the polarimetric spec-

tral signatures obtained with the Bootstrap DPSD, with visual outputs and statisti-

cal studies of the positions, velocities and orientations of the debris particles in the

physically-simulated scene. Additionally, the connection between different physical

and electrical debris characteristics with radar variables can be tested and charac-

terized. This includes the dependence of spectral differential reflectivity, spectral

correlation coefficient, and differential velocity with different debris characteristics,

including size, shape, material, concentration, orientation, etc. Also, hypotheses

about the differences in radar data (both bulk and spectral estimates) for differ-

ent radar wavelengths can also be validated with the aid of the physically-based

simulator.
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While the bootstrap term derives from the phrase: “to pull oneself up from one’s

bootstrap”, the Bootstrap DPSD estimator is not magical. The general idea of the

estimator is that it rearranges its limited, yet available data, in a way that additional

information (which is otherwise lost with other estimators) can be extracted. It is

expected that weather radar researchers could use this work to gain some insight into

the interpretation of polarimetric spectral signatures. Additionally, further work to

improve the current state of the Bootstrap DPSD estimator, and the understanding

of spectral polarimetry, in general, is encouraged.
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Alku, L., Moisseev, D. N., Aittomäki, T. and Chandrasekar, V. (2015), ‘Identifi-
cation and Suppression of Nonmeteorological Echoes Using Spectral Polarimetric
Processing’, IEEE Transactions on Geoscience and Remote Sensing 53(7), 3628–
3638.
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