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Abstract 

 

The liquid transportation fuel B20 biodiesel is an 80:20 blend of petroleum-derived 

ultra-low sulfur diesel (ULSD) and biodiesel. Although B20 biodiesel represents a 

fungible fuel with a reduced carbon footprint compared to petroleum diesel, it is more 

susceptible to microbial contamination and biodegradation. The research described in 

this thesis characterized the numerically abundant fungi responsible for fouling in B20 

biodiesel storage tanks. This work also investigated the effect of microbial 

contamination and proliferation on B20 biodiesel composition. Fungi from the genera 

Wickerhamomyces and Byssochlamys were abundant in the B20 storage tanks that were 

monitored in this study. Members of the yeast Wickerhamomyces anomalus SE3 and the 

filamentous fungus Byssochlamys sp. SW2 that represent the major taxa in B20 storage 

tanks were isolated and characterized for their ability to degrade components of B20 

biodiesel. Both Wickerhamomyces anomalus SE3 and Byssochlamys sp. SW2 were able 

to use B20 biodiesel as sole carbon and energy source. We show that the presence of 

Byssochlamys sp. SW2 can alter the composition in B20 biodiesel in storage tanks, and 

we offer a model for predicting the severity of biodegradation. Byssochlamys sp. SW2 

preferentially degraded palmitic and linoleic acid methyl esters, and our in situ model 

supports the hypothesis that palmitic and linoleic acid methyl esters are the most 

susceptible components to biodegradation. We suggest the use of alternative feedstocks 

containing less palmitic and linoleic acid for B20 biodiesel production to increase fuel 

stability in storage tanks. 
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Chapter 1: Problem Statement 

 

The energy demand of a globalized, increasing world population is rising quickly. 

Worldwide energy consumption is projected to increase 1.4% per year (Sieminski, 

2014) from 549 quadrillion British Thermal Unit (BTUs) in 2012 to 815 quadrillion 

BTUs in 2040. Fossil fuels, including petroleum, coal and natural gas, account for 

more than three-quarters of the world’s total energy consumption (DOE, 2016).  The 

United States (U.S.) is the largest consumer of petroleum using approximately 19 

million barrels per day in 2014, and projected to increase 1% per year (EIA, 2016a).  

 

The Department of Defense (DoD) is the largest single consumer of energy in the 

U.S., with the Armed Forces purchasing 32.0 billion gallons of petroleum at a cost 

of $107.2 billion, from 2007 to 2014 (GAO, 2015). This represents approximately 

1.9% of total annual U.S. petroleum consumption (EIA, 2016a), with the Air Force 

(USAF) accounting for 48% of the total DoD energy consumption (USAF, 2013). 

The reliance on fossil fuel has led to concerns mainly related with energy security 

(Leiby, 2007) and environmental hazards (Kharaka & Dorsey, 2005). The DoD has 

focused on the use of alternatives to petroleum-based liquid transportation fuels in 

order to increase its use of renewable, reliable, and clean energy sources (Congress, 

2005).  

 

The DoD has established the technical, economic and environmental requirements 

for any alternative fuel to be included in their portfolio (Blakeley, 2012). 
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Technically, the fuel must be fungible or “drop-in”, meaning that it requires no 

modification to existing engines and infrastructure. Any alternative fuel must also 

be cost-competitive with petroleum fuels, as well as environmentally sustainable, 

derived from feedstocks that do not affect the food market, and fulfill regulatory 

initiatives to reduce greenhouse emissions. The USAF has selected Ethanol E85 

(85% ethanol and 15% gasoline) and B20 biodiesel (20% biodiesel and 80% Ultra 

Low Sulfur Diesel) for displacing gasoline and diesel, respectively (DOD, 2007). 

Both biofuels are used in non-tactical vehicles as part of a USAF goal for reducing 

in 2% the annual petroleum consumption for vehicles through 2020 (DOD, 2011).  

 

The majority of the USAF biofuel consumption was B20,, and by year 2011, more 

than 60 bases were dispensing it (DOD, 2011). Biodiesel is a “fuel comprised of 

mono-alkyl esters of long chain fatty acids derived from vegetable oils or animal 

fats” (ASTM-D7467-15, 2015). Biodiesel is produced by converting a triglyceride 

feedstock to fatty acid methyl esters (FAME) through a base-catalyzed 

transesterification reaction (Fig. 1.1) (Knothe, Krahl, & Van Gerpen, 2015). During 

this process, byproducts are produced including glycerol, soaps and water which are 

removed to obtain neat biodiesel (B100) (Hoekman, Broch, Robbins, Ceniceros, & 

Natarajan, 2012). Soybeans represent the feedstock most commonly used in 90% of 

U.S. production followed by corn oil, canola, and animal fats (EIA, 2016b). 

However, there is an increased interest in non-food feedstocks like jatropha (Sarin, 

Sharma, Sinharay, & Malhotra, 2007) and microalgae (Ahmad, Yasin, Derek, & 

Lim, 2011; Chen et al., 2015) for future commercialization. The triglyceride 
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feedstocks represent renewable sources of energy and the fuel produced with them 

biodegradable (Jakeria, Fazal, & Haseeb, 2014). 

  

 

 

 

 

 

 

 

Figure 1.1 Transesterification reaction scheme to produce biodiesel (Adapted 

from Knothe, 2008) R1, R2, R3 represent the hydrocarbon chains of the parental 

triglyceride. R’ present the alkyl radical of the used alcohol.   

 

Neat biodiesel can be blended in any proportion to petroleum diesel (Weiksner, 

Crump, & White, 2008), but B20 is the most commonly used blend in the U.S. 

(AFDC, 2016) due to several advantages (AFDC, 2016). Specifically, B20 is 

compatible with existing diesel engines and infrastructure, while contributing with 

the engine power and increasing the fuel efficiency (Lahane & Subramanian, 2015). 

B20 has better tolerance to cold weather than higher blends (Knothe et al., 2015), 

and presents a good balance between gas emissions and costs (NREL, 2009).  

 

Despite its advantages, the stability of biodiesel and, therefore B20 presents several 

technical problems (Jakeria et al., 2014; Pullen & Saeed, 2012). FAMEs in biodiesel 

increase its oxygen content and hygroscopic nature compared to the hydrocarbons in 

petroleum based ULSD. This makes biodiesel oxidatively unstable (Pullen & Saeed, 

2012) and susceptible to microbial contamination especially during mid and long 

term storage (Knothe et al., 2015; Lee, Ray, & Little, 2010; Zuleta, Baena, Rios, & 
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Calderón, 2012). Uncontrollable microbial growth in B20 fuel systems increases the 

presence of flocculent material along with sludge formation and fouling of fuel 

probes (Chao, Liu, Zhang, & Chen, 2010; Passman, 2003). Consequences of 

microbial metabolism of FAMEs (Jakeria et al., 2014; Schleicher, Werkmeister, 

Russ, & Meyer-Pittroff, 2009) include water formation and biodegradation of the 

fuel (Knothe et al., 2015). Ultimately, the properties and quality of the fuel are 

altered.  

 

We have studied the B20 fuels from underground storage tanks at several Air Force 

Bases, both with and without reported issues with fuel quality (color, clarity, 

particulates, Fig 1.2) reported by operators (Dr. Wendy J.Crookes-Goodson, 

personal communication). Fuels of compromised quality from two different AFBs 

(SE and SW) had substantial microbial contamination believed to be the root cause 

of reported issues. Molecular characterization of the microbial assemblages showed 

that these fuels harbored an abundance of biomass from the fungal classes 

Eurotiomycetes (genus Byssochlamys) and Saccharomycetes (genus 

Wickerhamomyces).  
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Figure 1.2 Images of B20 fuel samples obtained from a storage tank at a USAF 

facility. Yellow and bright fuel obtained prior exposure to the tanks (left) and fuel 

obtained from the bottom of a tank experiencing water and fouling problems (right). 

Flocculent material present in the interface between fuel and water (right).       
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Figure 1.3 Fungal communities detected at the bottom of storage tanks 

(Adapted from Stamps, 2016). Relative abundance of fungal families in B20 storage 

tanks at two different locations (SE and SW) based on amplified 18S rRNA gene 

libraries. 
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Members of the fungal genera Byssochlamys and Wickerhamomyces are ubiquitous 

(Passoth, Fredlund, Druvefors, & Schnürer, 2006; Samson, Houbraken, Varga, & 

Frisvad, 2009). Members from the genus Byssochlamys are commonly found in 

fruits and soil (Kotzekidou, 1999), and are usually associated with spoilage of heat-

processed foods (Samson, Houbraken, Varga, & Frisvad, 2009). Members from the 

genus Wickerhamomyces exhibit wide metabolic and physiological diversity 

(Passoth, Fredlund, Druvefors, & Schnürer, 2006) and have been frequently isolated 

in natural habitats like plants, fruits and insects (Walker, 2011).   

 

Members from both fungal genera have been detected in fuel systems (Bücker et al., 

2011; Gassen et al., 2015; Rauch et al., 2006), although they have not been 

extensively characterized. A detailed study of individual fuel contaminants is only 

recommended when the microbial organism is abundant and its analysis can provide 

insight on the sources of contamination (Hill & Hill, 2008) and/or the susceptibility 

of the fuel to its growth (Cazarolli et al., 2014; Sheridan, Nelson, & Tan, 1971).    

 

The present research sought to identify and characterize the abundant fungal 

contaminants from B20 fuel storage tanks at two Air Force bases, and determine 

whether their presence was correlated with fuel degradation.  In Chapter 2, the 

isolation and detailed characterization of the members of the genera Byssochlamys 

and Wickerhamomyces is described. Also, their ability to degrade B20 fuel as a sole 

carbon and energy source is analyzed. This information is used to discuss their 

ecological predominance in the tanks. In Chapter 3, the chemical composition of 
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B20 fuel samples obtained from the contaminated storage tanks is analyzed. The 

exploration of patterns of fungal biodegradation in the samples is discussed. This 

information was then used to evaluate the susceptibility of the B20 biodiesel to 

fungal contamination. Moreover, these results were applied to the development of a 

statistical tool useful to monitor biodegradation of the fuel.  
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Chapter 2: Characterization of Fungal Contaminants from B20 

Storage Tanks 

 

2.1 Introduction 

 

Biodiesel is composed of fatty acid methyl esters (FAMEs) converted from the fats 

and oils of various plant and animal feedstocks (ASTM-D7467-15, 2015). Blends of 

biodiesel, such as B20, which is composed of 20% FAMEs and 80% Ultra Low 

Sulfur Diesel (ULSD), have the advantage of retaining most of the properties of 

petroleum diesel but at the same time having a lower carbon footprint (Knothe et al., 

2015). Due to its composition, biodiesel is much more biodegradable than 

petroleum diesel (Mariano, Tomasella, De Oliveira, Contiero, & De Angelis, 2008; 

Peterson & Moller, 2005). This can be an advantage when there is a spill of 

biodiesel, but it is also a drawback when microorganisms that can degrade biodiesel 

colonize storage tanks (Passman, 2013). All grades of fuels are susceptible to 

microbial growth (Dodos, Konstantakos, Longinos, & Zannikos, 2012; Hill & Hill, 

2008; Leja & Broda, 2009; Rauch et al., 2006), but with the introduction of 

unleaded gasoline, ultra-low sulfur diesel and alternative fuels, microbial 

contamination and proliferation during storage has become more frequent and 

severe (Hill & Hill, 2008). 

 

The susceptibility of a fuel to microbial contamination depends on its composition, 

especially when they provide a source of macro and micronutrients needed for 
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growth (Gaylarde, Bento, & Kelley, 1999). The FAMEs in biodiesel are a readily 

available source of carbon and energy (Prince, Haitmanek, & Lee, 2008). Coupled 

with the hygroscopic nature of the biodiesel (Fregolente, Fregolente, & Wolf 

Maciel, 2012) and the sub-inhibitory concentrations of sulfur in ULSD (Ali, 

Ghaloum, & Hauser, 2006; Londry & Suflita, 1998), B20 biodiesel blends are 

particularly prone to contamination and proliferation compared to fossil fuels 

(Bücker et al., 2011; Dodos, Konstantakos, Longinos, & Zannikos, 2012; Zimmer et 

al., 2013).  

 

Microorganism can be introduced to the fuel distribution systems soon after the 

refinery processes (ASTM:D6469, 2003). During normal operations, fuel transfers 

out of storage tanks increase the risk of microbial contamination (Engelen, 2009; 

Passman, 2013) because air/water vapor is pulled from outside the tanks, through 

vents, to compensate for the vacuum caused by the fuel removal. Microorganisms 

are easily dispersed through atmospheric circulation (Nemergut et al., 2013)  and 

contaminate the storage tanks when attached to particles, dust, and pollen from 

proximal soils (Rauch et al., 2006).  

 

Any B20 storage tank contains multiple habitats, each with unique selective 

pressures (Passman, 2003). At the fuel-water interface, aerobic and facultative 

microorganism will thrive (Engelen, 2009). In this zone, water, nutrients and 

oxygen are available to support biofilm formation (Lee et al., 2010), both in the 

fluid as well as on tank walls (Passman, 2003). Fuel degraders will metabolize 
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FAMEs (Bücker et al., 2011; Prince et al., 2008) through enzymatic hydrolysis and 

subsequent beta-oxidation. (Jakeria et al., 2014; Kumari & Gupta, 2014) Organic 

acids and other byproducts can serve as nutrient sources for other microorganisms 

(Hill & Hill, 2008). The co-metabolism of hydrocarbon in biodiesel/petroleum 

diesel blends is also possible (Pasqualino, Montane, & Salvado, 2006; Zhang, 

Peterson, Reece, Haws, & Möller, 1998). Anaerobic microorganisms will be present 

in the bottom of the tanks, where oxygen is usually depleted. The anaerobic 

metabolism of FAME will include hydrolysis (Lapinskienė & Martinkus, 2007) and 

β-oxidation (Sousa, Smidt, Alves, & Stams, 2009).  Under these conditions, the 

weak organic acids along with electro-potential gradients can accelerate the rate of 

biocorrosion (Aktas et al., 2010).  

 

We have monitored B20 biodiesel storage tanks at two USAF facilities since 2014. 

These installations have experienced recurrent filter clogging (fouling), presence of 

water, particulates, and increased rates of corrosion (Stamps, 2016). Microscopy, 

molecular analyses, and cultivation experiments indicated that the fungal organisms 

across multiple tanks and locations were members of the families Trichocomaceae 

and Saccharomycetaceae. The research presented here aimed to study the fungal 

organisms that were predominant in these biofilms. The numerically dominant OTU 

from these systems was a member of the family Trichocomaceae and the genus 

Byssochlamys. The numerically abundant Saccharomycetaceae was a member of the 

genus Wickerhamomyces (Stamps, 2016).  
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B20 storage tanks are adequate places to support fungal growth since moisture, 

nutrient availability, and surface area are available (Bücker et al., 2011). Fungi are 

heterotrophs showing great phenotypic plasticity to different environments (Barnett 

& Barnett, 2011; Hawker, 2016). During B20 fuel storage, uncontrollable 

proliferation of fungal hyphae and single-celled yeasts can contribute to flocs and 

filter plugging (Passman, 2003). Most fungi are capable of aerobic and fermentative 

assimilation of many carbon substrates (C. Kurtzman, Fell, & Boekhout, 2011) 

including biologically available fuel components in B20 biodiesel, which can 

originate from changes in fuel properties as result of deterioration (Bücker et al., 

2011; Gassen et al., 2015). Finally, organic acids and water are released as 

byproducts of fuel metabolism, creating favorable conditions for corrosion of metal 

surfaces (Little & Ray, 2002).  

 

The role of members of the genera Byssochlamys and Wickerhamomyces as fuel 

contaminants in storage tanks across the USAF is still under investigation, but their 

abundance suggests that they play a role both in biofilm formation, bio-

deterioration, and perhaps and increased risk of microbially influenced corrosion. 

This study aimed to isolate, identify, and characterize these fungal organisms from 

the contaminated storage tanks. We hypothesized that Byssochlamys and 

Wickerhamomyces are fuel degraders able to grow using B20 as sole carbon and 

energy source. To test this hypothesis, we quantified the loss of B20 components 

using GC-MS as part of growth experiments. We also investigated morphological 
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and physiological traits of the isolates as baseline information for future studies 

regarding the risks of fungal contamination and their role in B20 storage tanks. 
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2.2 Materials and Methods 

 

2.2.1 Sample Collection and Cultivation 

 

Fuel samples were collected from underground storage tanks at two USAF facilities 

located in the southwest (SW) and southeast (SE) of the continental United States. 

Samples from SE were obtained during the months of August 2014 and April 2015. 

Samples from SW were collected in September 2014.   

 

At SE, 1 L samples were collected from the bottom of 3 underground B20 biodiesel 

storage tanks using a sample thief (“Bacon Bomb”; Koehler Instrument Company; 

Holtsville, New York). Each sample was transferred into sterile HDPE bottles, 

shipped at room temperature, and processed within 24-72 h of collection. Biomass 

was recovered by filtration using a Stericup® bottle top filter unit (120 mm dia, 0.22 

µm pore size, PES filter; EMD Millipore, Billerica, MA) attached to a sterile 1 L 

glass bottle. After filtration, the filter was cut into quarters with a sterile disposable 

scalpel and placed into Hestrin Schramm (HS) broth (Hestrin & Schramm, 1954), 

which contains (per L); 20 g glucose, 5 g yeast extract, 5 g polypeptone, 2.7 g 

NH2PO4, and 1.15 g of citric acid. The pH of the medium was adjusted to 5.5 with 

0.1 M HCl prior to autoclaving. Inoculated cultures were incubated at 25 °C for 48 h 

and shaking at 250 rpm. Aliquots (100 µL) of each culture were subsequently 

spread onto solid HS medium containing 1.5% w/v agar to facilitate isolation of 

individual clonal populations. 
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At SW, biofilms were sampled from the surface of steel witness coupons suspended 

in three storage tanks (Stamps, 2016) using nylon flocked swabs (Therapak Corp, 

Los Angeles, CA). Enrichment cultures of the liquid media Sabouraud Dextrose 

(SAB), Potato Dextrose (PD), Malt Extract (ME) (Becton, Dickinson and Company; 

Franklin Lakes, NJ), and HS were inoculated on site, shipped to the laboratory, and 

spread (100 µL) onto solid agar medium of the same composition within 24-72 

hours of collection. Isolated fungi were obtained in pure culture by repeated sub-

culturing on solid agar. For all purposes, cultures were incubated aerobically at 

room temperature for 5-7 days and shaking at 250 rpm. Stocks of pure cultures were 

stored in 10% glycerol at -80 °C.  

 

2.2.2 Molecular Identification of Fungal Isolates  

 

Total genomic DNA was extracted from biomass of each isolate using the 

UltraClean Microbial DNA Isolation Kit (MoBio Lab. Inc., Carlsbad, CA) 

following manufacturer’s instructions. For molecular identification at the genus 

level, a fragment of the 18S rRNA gene including the V4 and V5 regions was 

amplified using PCR with universal primers 566F (5`-

CAGCAGCCGCGGTAATTCC-3`) and 1200R (5`-CCCGTG 

TTGAGTCAAATTAAGC-3`) (Hadziavdic et al., 2014). For identification at a 

potentially higher taxonomic level, the divergent D1/D2 domain of large subunit 

(26S) ribosomal RNA was amplified using primers NL-1 (5`-
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GCATATCAATAAGCGGAGGAAAAG-3`) and NL-4 

(5`GGTCCGTGTTTCAAGACGG-3`) (C. P. Kurtzman & Robnett, 1998).   Gene 

fragments were amplified using 20 µL of 5 Prime Hot master mix (5 Prime, Inc., 

Gaithersburg, MD) and 0.2 µM of each primer in a total volume of 50 µL. Thermal 

cycling for the 18S rRNA PCR was carried out in a Techne, TC-512 thermal cycler 

consisting for 35 cycles of 94 °C for 45 s, 60 °C for 45 s and 72 °C for 1 m, and 

held at 4 °C, while the reaction for the amplification of the 26S rRNA fragments 

consisted of 36 cycles, 94 °C for 1 m, 52 °C for 45 s and 72 °C for 2 m, and holding 

at 4 °C.       

 

Amplified fragments were purified using Agencourt AMPure XP paramagnetic 

beads (Beckman Coulter Inc., Indianapolis, IL) following the manufacturer’s 

recommendations. Fragments were sequenced in an automatic DNA sequencer 

(3130xl Genetic Analyzer, Applied Biosystems / Thermo Scientific, Carlsbad, CA) 

using the Big Dye terminator cycle sequencing kit (ver. 3.1). Sequences were 

aligned using ClustalX (Higgins, Thompson, & Gibson, 1997) against their closest 

matches according to the NCBI and SILVA refseq database and phylogenic trees 

were constructed using the Maximum Likelihood method with 500 bootstrap 

replicates in the program MEGA version v6.0 (Kumar, Nei, Dudley, & Tamura, 

2008).    
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2.2.3 Phenotypic and Biochemical Characterization 

 

The fungal isolates of interest were tested for utilization of various compounds as 

energy and/or carbon sources, as well as growth in vitamin-free medium, high 

osmotic pressure, different temperatures and pH under aerobic conditions (C. P. 

Kurtzman, Fell, Boekhout, & Robert, 2011). Growth was either monitored by 

optical density (OD) at 600 nm (Spectronic 20D, Milton Roy, DE) or by dry weight 

(Analytical Balance Metler Toledo AL104). Morphology was described using 

scanning electron microscope (ZEISS NEON 40 EsB, Samuels Roberts Noble 

Microscopy Laboratory, at the University of Oklahoma).  

 

For each growth experiment, an inoculum was prepared by growing the isolates on 

YM agar, which contains (per L); 3 g of yeast extract, 3 g of malt extract, 5 g of 

peptone and 10 g of glucose. These cultures were incubated for 24-48 h at room 

temperature and shaking at 250 rpm before inoculum preparation (C. P. Kurtzman et 

al., 2011). For the yeasts, the cells were transferred to Yeast Nitrogen Base (Sigma 

Aldrich) liquid medium with 1% glucose for 48 h at room temperature and shaking 

at 250 rpm. Each experimental tube was inoculated with a yeast suspension to 

achieve an initial OD of 0.02. For experiments with filamentous fungi, a spore 

suspension was prepared by removing mycelia from YM agar with sterile water, 

filtration (8.0 µm pore size) and washing (3 times) by filtration, followed by 

centrifugation and resuspension of spores in sterile water. Each experimental tube 

was inoculated with 1x106 spores ml-1. 
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To test the ability of the fungal isolates to grow in vitamin-free medium, 5 mL of 

Artificial Sump Water (ASW, per L; 15 mg, 35 mg NaF, 2 mg CaCl2, 18 mg 

KNO3, 10 mg Na2SO4, 15 mg (NH4)2SO4, and 17 mg K2HPO4) (McNamara et al., 

2005) was used, supplemented with 10 g of glucose. After 1 week of incubation at 

25 °C, an aliquot was transferred to a new set of test tubes and growth was 

evaluated after another week of incubation. To test the ability to grow at high 

osmotic pressure, the fungi were grown on 50% glucose agar plates containing per 

0.1 L 13 g of agar, 500 g of glucose and 1 g yeast extract, and in liquid medium 

containing per L 100 g of sodium chloride, 50 g of glucose, and 6.7 g of Yeast 

Nitrogen Base (Sigma Aldrich, USA) (C. P. Kurtzman et al., 2011). Growth at 

various temperatures was determined in Yeast Nitrogen Base liquid medium 

supplemented with 5% glucose for the yeast and 10 g/L of agar added for solid 

medium for the filamentous fungi. Temperatures tested included 9, 15, 20, 25, 30, 

37, 40, 45 and 50 °C.  The range and optimal pH for both organisms was determined 

by growth at various pH (3.0-10.0 with increments of 1.0 pH units) at 25 °C and 

shaking at 250 rpm in HS medium adjusting the pH with an appropriate buffer 

(citric acid-sodium solution, MES, MOPs, Tris base, sodium carbonate-sodium 

bicarbonate solution, Sigma Aldrich, Buffer Reference Center).  
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2.2.4 Chemotaxonomic Characterization 

 

Biomass for fatty acid analysis was collected from a plate of HS agar final pH 5.5 

after 48 hours incubation for the yeast and 5 days incubation for the filamentous 

fungi, both at room temperature. Fatty acid methyl esters were extracted using the 

Sherlock Microbial Identification System (MIDI; version 6.1) according to 

manufacturer’s protocol (MIDI, Newark, Delaware USA). Fatty acids were 

identified using an Agilent Technologies 6890N gas chromatograph (Patel et al., 

2015). The results were expressed in the form of percentages using the QTSA peak 

naming database.  

 

2.2.5 B20 Biodegradation Experiments with Fungal Isolates 

 

Fungal biodegradation was evaluated by direct measure of fungal growth and 

consumption of the fuel components. Two independent experiments were designed: 

a 15-day incubation experiment to measure fungal growth and evaluate the ability to 

degrade B20 biodiesel, and an 80-day experiment to determine preferential 

consumption of B20 components and detect biodegradation metabolites. All 

biodegradation experiments were incubated aerobically at 25 °C and shaking at 250 

rpm. Culture tubes for both growth experiments contained filter-sterilized B20 as 

the sole carbon source and ASW liquid medium (pH 5.5) in a 1:100 ratio. For the 

longer experiment, caps w/PTFE a liner were used to avoid evaporation of the fuel. 

For the yeast, the inocula were from cultures transferred multiple times in ASW 
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amended with B20. An equal amount of yeast inoculum was added to each test tube.  

The filamentous fungi were inoculated with a conidia suspension in a final 

concentration of 1x106 spores ml-1 in each test tube. Growth was measured as CFU 

mL-1 for the yeast and dry weight for the filamentous fungi. The fuel phase of these 

cultures was extracted with hexane (Sigma Aldrich CHROMASOLV®, for HPLC, 

≥97.0% (GC)) and analyzed by Gas Chromatography/Mass Spectrometry (GC/MS) 

(See protocol, Section 3.2). The experiment was carried out with numerous 

replicates, allowing for destructive sampling of triplicates at each time point. The 

degradation of compounds was evaluated as the amount (%) of the peak area 

remaining relative to day 0 of the negative control. The aqueous-phase from 

triplicate cultures was filtered, extracted and analyzed for metabolites. Ethyl acetate 

(3 mL) was added to 1 mL of aqueous culture, separated from the aqueous phase, 

and dried, under N2 gas to a final volume of 100 µL. These extractions were 

derivatized by addition of a 1:1 volume of BSTFA (N, O-Bis (trimethylsilyl) 

trifluoroacetamide, Sigma Aldrich) and incubation at 75 °C for 15 m. A 50-µL 

aliquot of the derivatized extraction was diluted with hexane to a final volume of 1 

mL and analyzed by GC/MS (Shimadzu QP2010-SE, University of Oklahoma). For 

all experiments, negative controls (un-inoculated) were included to evaluate 

contamination risks and assess abiotic degradation. Un-amended controls 

(inoculated but with no B20) were also included to evaluate nutrient carryover from 

the initial inocula. 
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2.3 Results 

 

2.3.1 Isolation  

 

A total of 10 fungal organisms were isolated under aerobic conditions, the majority 

of them recovered from HS agar (Table 2.1). Strain differentiation was first 

approached by alignment of the 18S rRNA gene sequences against the refseq 

database. From the swabs taken at SW, the isolates were related to the genera 

Byssochlamys, Rhodotorula and Rhodosporidium. From the fuel at SE, the isolates 

corresponded to the genera Aspergilllus, Aureobasidium, Galactomyces, 

Hypopichia, Meyerozyma, Rhizopus and Wickerhamomyces. Of the 10 isolates, the 

genus Wickerhamomyces and Byssochlamys represented the genera detected in 

greatest abundance in the storage tanks (Stamps, 2016), and were chosen for further 

characterization. 

 

2.3.2 Characterization of the Filamentous Fungus Byssochlamys (strain ID: SW2) 

 

An isolate, SW2, that was likely a member of the genus Byssochlamys was further 

characterized in order to more precisely determine its taxonomic identity, its 

physiological properties and metabolic capabilities. Colonies of SW2 on HS were 

15-20 mm in diameter, consisting of cinnamon-brown mycelia and cream-colored 

fuzzy edges (Figure 2.1 a), with brown mycelia covering the whole plate after 5 

days. Cellular morphology included ellipsoidal conidia with a flattened base and 
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average length of 4.32 x 2.70 µm (Fig. 2.1 b). A 511 bp sequence from the D1/D2 

domain of large subunit (28S) ribosomal RNA had a similarity of 99% with 

members of the genus Byssochlamys. Phylogenetic analysis based on this sequence 

fragment suggested that it might be a new species of Byssochlamys (Figure 2.3).  

Isolate SW2 was able to assimilate 44 carbon sources from 96 tested. It grew fast 

(<72 h) on sources like glucose, fructose, succinic acid, galactose, salicilin; growth 

was slow (> 4 days) in carbon sources like tween 80 and putrescine; and negative in 

compounds like glycerol (Table 2.3). Isolate SW2 grew in vitamin-free medium as 

well as in medium with high osmotic pressure (Table 2.3). The optimal growth 

temperature was 30°C. Growth at 37 °C and at 40°C was detectable after 5 days of 

incubation. SW2 was also able to grow at temperatures as low as 10°C in HS agar 

after 6 days of incubation (Figure 2.11). Growth was observed at pH range from 3 to 

8 (Figure 2.12).  The major fatty acids in its cell wall were C18:2 ω6,9c/C18:0 ANTE 

(Table 2.3).  

 

2.3.3 Characterization of the Yeast Wickerhamomyces (strain ID: SE3) 

 

Sequence (491 bp) from the D1/D2 domain of the large subunit (28S) ribosomal 

RNA of isolate SE3 was identical to that of members of the genus 

Wickerhamomyces and was clustered with the yeast Wickerhamomyces anomalus 

(Figure 2.2). Taxonomic identification of isolate SE3 was conducted by 

characterization of its morphological and physiological properties. Colonies of SE3 

were white and smooth with an entire margin after 48 h at 25 °C on HS agar (Fig. 



23 

2.1 d). The cellular morphology of this yeast consisted of spherical-elongated cells 

with multilateral budding (Fig. 2.1 e). Isolate SE3 was able to assimilate 34 carbon 

sources from the 96 that were tested. It grew quickly (<72 h) on sources like 

glucose, fructose, succinic acid, and glycerol; growth was slow (> 4 days) in carbon 

sources like tween, salicilin and serine; and negative in compounds like tween 80 

(Table 2.2). Isolate SE3 grew in vitamin-free medium as well as in medium with 

high osmotic pressure (Table 2.2). Isolate SE3 grew optimally at 30 °C (Figure 2.9). 

Growth was also noticeable after at 37 °C after 30 hours incubation and at 40 °C 

after 4 days. The lowest temperature where growth was determined was 9 °C in HS 

agar after 4 days of incubation. Isolate SE3 grew at a pH of 3 to 9 (Figure 2.10), and 

its major fatty acids were C18:2 ω6,9c/C18:0 ANTE (Table 2.2).  

 

2.3.4 Fungal Biodegradation of B20 biodiesel  

 

The isolates SW2 and SE3 were grown with B20 as sole carbon an energy source. 

Wickerhamomyces anomalus SE3 was able to use components of the B20 fuel to 

grow. Exponential growth of Wickerhamomyces anomalus SE3 was observed after 4 

days of lag phase. The yeast reached biomass maximum of 107 CFU ml-1 after 15 

days of incubation when the initial concentration was 103 CFU ml-1 (Fig. 2.6 c, Fig. 

2.1 f). Analysis of the B20 component of the medium at day 7 showed a reduction in 

the peak areas of all the detected fatty acid methyl esters as well as many of the 

hydrocarbon components of the fuel. Compared to the negative control at day 7, the 

FAMEs had a reduction of more than 50% from their original intensity by biotic 
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mechanisms (Fig. 2.4 a). Hydrocarbons including alkanes, branched alkanes such us 

octyl- cyclo hexane, and even some aromatics such as octyl-benzene also 

experienced a considerable reduction (Fig. 2.5).  

 

Byssochlamys sp. SW2 was able to use B20 fuel components to grow. Spore 

germination of the fungus Byssochlamys sp. SW2 was observed after 4 days.  After 

15 days of incubation, biomass reached 2.6±0.5 mg (dry weight). Following 

inoculation with a suspension of conidia (1x106 spores mL-1) at day 0, analysis of 

the B20 biodiesel component of the medium at day 7 did not show any reduction of 

the fuel components compared to the negative control at day 0  (Fig. 2.4). After 30 

days of incubation; however, a reduction of 21.0 ±9.4% of the peak area for methyl 

palmitate was observed relative to the negative control at day 0 (Fig. 2.7). After 80 

days of incubation, an analysis of the aqueous phase for metabolites detected 

palmitic, linoleic, oleic and stearic acid (Figure 2.8). The spectra showed palmitic 

acid as the most abundant fatty acid detected in the water phase. Phase contrast 

microscopy of samples at day 80 revealed the presence of chlamydospores and 

hyphae (Fig. 2.1 c).  

 

In all of the biodegradation experiments, no growth was seen in the un-amended 

controls (no B20 added). Analysis of the negative controls after 7 days of 

incubation, showed evaporation of all fuel components (~15-20% reduction in the 

peak areas). All long-term incubations were sealed with Teflon-lined caps and; 
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therefore, the negative controls showed no abiotic losses.  After 80 days incubation, 

no metabolites were detected in the negative controls.  
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2.4 Discussion 

 

In the present study, members representing ten different genera of fungi were 

isolated from B20 storage tanks at two USAF facilities. Prior molecular analyses 

based on 18S rRNA gene libraries indicated that representatives of the genera  

Byssochlamys and Wickerhamomyces were persistent in these tanks and numerically 

abundant (Stamps, 2016). The isolates identified as Byssochlamys sp. SW2 and 

Wickerhamomyces anomalus SE3 were of particular interest in this study because 

previous studies have implicated them in fouling and increased risk of microbially 

influenced corrosion (Stamps, 2016). Most of the organisms isolated in this study 

have been reported as contaminants of fuel systems, especially Aspergillus sp., 

Rhodotorula   sp., and Aureobasidium sp. (Bücker et al., 2011; Rauch et al., 2006).   

 

The genus Byssochlamys (anamorph Paecilomyces) is composed of a group of 

mitosporic filamentous fungi that are widely distributed in nature (Zawadneak et al., 

2015). Members of this genus have been implicated in fuel contamination and have 

been isolated from petroleum diesel tanks (Gassen et al., 2015; Lee et al., 2010), jet 

fuel (Rauch et al., 2006) and biodiesel storage tanks (Bento & Gaylarde, 2001).  Its 

presence has been considered an important problem in the food industry, 

particularly in pasteurized and canned food (Banner, Mattick, & Splittstoesser, 

1979; Houbraken, Varga, Rico-Munoz, Johnson, & Samson, 2008) due to its heat 

resistant spores (Samson et al., 2009). In the tanks under study, members of the 

genus Byssochlamys have proven to be a numerically abundant organisms in 
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biofilms causing fouling (Stamps, 2016). We isolated the strain Byssochlamys sp. 

SW2 from biofilms attached to the metal surface of coupons placed inside B20 

biodiesel storage tanks.   

 

Phylogenetic analysis of sequences from portions of the small subunit (SSU) and 

large subunit (LSU) rRNA genes showed that strain SW2 clustered within the genus 

Byssochlamys. However, there was not close similarity with any referenced species. 

We attempted to amplify the ITS region with the primers ITS1 and ITS4; ITS1-F 

and ITS4 (White, Bruns, Lee, & Taylor, 1990) and use this sequence data to more 

closely identify/differentiate SW2 from the other known taxa. The ITS region of the 

rRNA represents a highly variable region that is useful for species identification 

(Martin & Rygiewicz, 2005); however, successful amplification with these primers 

can vary (Schoch et al., 2012). Amplification of the ITS with these primers for our 

isolate was not successful. Based on phylogenetic analysis of the sequence for the 

LSU rRNA gene, our isolate might be a novel species, but this remains to be 

demonstrated.   

 

Byssochlamys sp. SW2 grew with B20 as the sole carbon and energy source using 

Teflon-lined caps, producing a biofilm. Members of the genus Byssochlamys, are 

known for their ability to grow under low oxygen tensions (Taniwaki, 1995).  

Degradation of the fuel was observed at day 30 with a preferential consumption for 

palmitic acid methyl ester. This result is in agreement with other studies where the 

closest relative Pichia variotti has been reported as a major contaminant of crude 



28 

palm oil (Campinha, Machado, & Araújo, 2007). Similar biodegradation 

experiments demonstrated a preferential consumption for palmitic and oleic acid 

ME by Pichia variotii (Bücker et al., 2011).  

 

The components of B20 biodiesel that are preferentially degraded can also be 

deduced by the detection of their metabolite intermediates (Aktas et al., 2010; Parisi 

et al., 2009). After 80 days of incubation, the major FAMEs of the B20 were 

substantially reduced in abundance and their fatty acids were detectable in the 

aqueous phase. Palmitic acid ME was reduced more than the other FAMEs and 

palmitic acid was more abundant than linoleic, oleic and stearic acid. Overall, this 

could suggest that these FAMEs were initially hydrolyzed to methanol and their 

representative fatty acids. This process can be catalyzed by lipases able to break 

down the FAME structure (Jakeria et al., 2014), just as members of the genus 

Paecilomyces have been shown to do (Fernandes, Valério, Feltrin, & Sand, 2012). 

Fatty acids of smaller chain lengths by two C  would have suggested subsequent β-

oxidation was occurring; however, these metabolites were either not present or in 

amounts not detectable by our methods.  

 

Abiotic oxidation of FAMEs to fatty acids is also possible (Jakeria et al., 2014). 

Nevertheless, these acidic compounds were not detected in any of the replicates for 

the negative controls. The cell walls of fungi also contain C16:0, C18:2, C18:0 and 

C18:1 as major fatty acids, which could have been extracted and detected. However, 

the biodegradation of the fatty acid methyl esters peaks by Byssochlamys sp. SW2 is 
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in agreement with the correspondent detected fatty acids (Figure 2.8). Moreover, the 

aqueous phase of the culture was filtered prior to extraction in order to limit the 

concentration of fatty acids proceeding from the cell walls.   

 

An interesting observation of the fungal growth during the long-term growth 

experiments was the formation of chlamydospores in ASW with B20 as sole carbon 

and energy source. Chlamydospores are thick-walled resting spores that are 

produced under unfavorable conditions, and due to their perennation nature, these 

cultures still harbored plenty of viable organisms (Barnett & Barnett, 2011; Hawker, 

2016). Chlamydospores can occur when the fungus competes with other 

microorganisms for substrates or when nutrients are deficient (Lockwood & 

Filonow, 1981).  In the long-term experiments, there were plenty of carbon 

substrates but other macronutrients were limited and waste products were definitely 

accumulating. 

 

Members of the genus Wickerhamomyces are yeasts considered to be ubiquitous in 

natural environments (C. P. Kurtzman, 2011; Walker, 2011) such as soil (Hesham et 

al., 2006), plants (Sláviková, Vadkertiová, & Vránová, 2007), and associated with 

human (Murphy et al., 1986) and animal (Ricci et al., 2010) hosts.  The study 

described here was the first in which an isolate of Wickerhamomyces anomalus was 

obtained from a B20 fuel storage tank. The ubiquity of members of this genus, in 

particular Wickerhamomyces anomalus, is due to their tolerance to different and 

often stressful conditions (Passoth et al., 2006; Walker, 2011). Our isolate SE3 was 
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able to grow under rather acidic and basic pH (3-9), high salinity (5% NaCl), high 

osmolarity (50% Glucose), over a wide range of temperatures (9-40°C), as well as in 

vitamin-free medium. The isolate SE3 differs from the Wickerhamomyces anomalus 

type strain (NRRL-Y-366) in that SE3 cannot grow at pH 10, cannot assimilate 

galactose, and is able to grow at 37 °C.  

Wickerhamomyces anomalus SE3 was able to grow using B20 as sole carbon source 

degrading FAMEs and hydrocarbons of various chain lengths. Aerobic experiments 

posed a specific technical challenge with evaporation of fuel components (Prince et 

al., 2008). Although some of the loss of fuel components might have been due to 

evaporation, our results are in agreement with those of other studies. For example, 

Wickerhamomyces anomalus strains AEH and 2.2540 isolated from oil-

contaminated soil are fuel degraders able to metabolize aromatic hydrocarbons 

(Hesham et al., 2006; Pan, Yang, Zhang, Zhang, & Yang, 2004). We found that 

Wickerhamomyces anomalus SE3 was able to degrade octyl-benzene but not 

naphthalene. Wickerhamomyces sp. are closely related to members of the genus 

Candida, which are frequently implicated as capable of degrading the hydrocarbons 

in fuels (Bento & Gaylarde, 2001; Miranda et al., 2007; Rauch et al., 2006). The 

yeast Candida silvicola has a teleomorph named Pichia hosltii that can grow 

aerobically in B20 reaching a maximum biomass of 108 CFU mL-1 after 7 days of 

incubation (Bücker et al., 2011). In this study, Wickerhamomyces anomalus SE3 

reached a maximum biomass of 107 CFU mL-1 after 7 days that was the basis for 

proposing the organism was capable of degrading B20 biodiesel.  
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During long-term incubation experiments, cultures and controls were sealed with 

Teflon-lined caps to avoid issues with evaporation of the more volatile fuel 

components. Despite a 4:1 volume ratio of air to medium, Wickerhamomyces 

anomalus SE3 was not able to degrade components of the B20 biodiesel and did not 

exhibit obvious growth. These incubations still yielded viable cells, even after 45 

days of incubation. One explanation could rely on a metabolic characteristic found 

in some members of the order Saccharomycetaceae (Dashko, Zhou, Compagno, & 

Piškur, 2014). In an anoxic environment, cell synthesis stops in Saccharomyces 

cerevisiae and Candida albicans after a few generations if the anaerobic growth 

factors ergosterol, unsaturated fatty acids, and nicotinic acid are not present 

(Fornairon-Bonnefond, Demaretz, Rosenfeld, & Salmon, 2002). We considered the 

possibility that oxygen would be rapidly consumed by the cells inside the sealed 

tubes, but wanted to simulate what might happen in a B20 biodiesel storage tank 

that became anoxic. In a minimal medium like ASW with B20, these organisms 

would not have access to these anaerobic growth factors. From these results, we 

hypothesized that Wickerhamomyces anomalus SE3 needs unknown anaerobic 

factors to continue to grow and degrade B20 in ASW once O2 is depleted. This 

remains to be tested. 

 

 Fungi have various adaptations that allow them to colonize and survive in diverse 

niches (Leducq, 2014). The isolates SW2 and SE3 have the morphological and 

physiological potential to grow as numerically abundant organism in the B20 

storage tanks. Byssochlamys sp. SW2 and Wickerhamomyces anomalus SE3 are fuel 
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degraders, which is a characteristic that provides a nearly unlimited source of 

carbon and energy inside the tanks. Wickerhamomyces anomalus SE3 also had the 

ability to assimilate glycerol, which would be an advantage if the fuel contains 

traces of glycerol, a by-product of the transesterification reaction (Gandhi & Wille, 

2013). The morphological trait of Byssochlamys sp. SW2 to form mycelium 

networks can be beneficial at the fuel-water interface where it will compete for 

limited nutrients with other organisms (Buzzini & Margesin, 2014). Both isolates 

Byssochlamys sp. SW2 and Wickerhamomyces anomalus SE3 showed a wide range 

of adaptation to temperature and pH, the ability to grow under high osmotic pressure 

and without added vitamins. The tolerance to temperature and pH is beneficial in 

B20 biodiesel, where temperatures can fluctuate depending on the environmental 

conditions (Passman, 2003), and where bottom water can range from 6.8-8.5 

(Passman, 2003), but can be acidify due to the presence of organic acids from 

microbial metabolism (Bücker et al., 2011) or can become very basic due to the  

presence of atmospheric corrosion products like iron hydroxides (Morcillo, Fuente, 

Díaz Ocaña, & Cano, 2011). Their tolerance to high osmotic pressure can provide 

more resistance to the attack of antimicrobials added to the fuel as mitigation 

strategy (Passman, 2003) and would serve them well in the low water environment 

of the fuel. Finally, the isolates showed that they can synthesize all the vitamins that 

they require (Madan & Thind, 1998), which would be beneficial in the 

micronutrient-limited environment of fuel storage tanks.  
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The results of this research have lead us to conclude that Byssochlamys sp. SW2 and 

Wickerhamomyces anomalus SE3 were the fungal flora dwelling in the B20 storage 

tanks. Understanding the flora of the fuel system represents an essential baseline for 

a comprehensive analysis of the problems occurring with the fuel and the 

infrastructure. The identification of the prominent fungi in contaminated B20 

biodiesel storage systems and their physiological properties should allow operators 

to better monitor, understand, and prevent contamination and proliferation.  
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Table 2.1 Identity and provenance of isolated fungi. 

 

Isolatea 
Sample/Incubation 

Descriptionb 

Wickerhamomyces sp. SE, 3, F, HS 

Rhizopus sp. SE, 3, F, HS 

Aureobasidium sp. SE, 3, F, HS 

Galactomyces sp. SE, 3, F, HS 

Hypopichia sp. SE, 3, F, HS 

Aspergillus sp. SE, 3, F, HS 

Meyerozyma sp. SE, 3, F, HS 

Byssochlamys sp. SW, 2, C, HS 

Rhodosporidium sp. SW, 3, C, SAB 

Rhodotorula sp. SW, 3, C, SAB 

  

a Isolate identity based on 18S SSU rRNA gene sequence identity (100%) with 

nearest cultivated representative.  
 

b Sample descriptors include the Southeast (SE) or Southwest (SW) AFB, tank (2 or 

3), fuel (F) or coupon surface (C) as inoculum, and initial isolation on either 

Hestrin-Schramm (HS), Malt Extract (ME), or Sabouraud (SAB) medium.   
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Figure 2.1 Morphology of Byssochlamys sp. SW2 and Wickerhamomyces 

anomalus SE3. Byssochlamys sp. SW2 (a) colony morphology agar and (b) conidia 

and conidiophore morphology (1.00 kX mag) after 5 days growth on HS are shown. 

Panel (c) shows terminal chlamydospores (arrow) and hyphal morphology using 

phase contrast microscopy (400x mag) after incubation (80 d) in B20 minimal 

medium. Wickerhamomyces anomalus SE3 (d) colony morphology and (e) cellular 

morphology with budding scars (24.08 kX mag) after 3 days of growth on HS agar. 

Panel (f) shows cellular morphology using phase contrast microscopy (1000 X mag) 

after 15 days of growth in B20 minimal medium.  

 

  

 

  

20 µm 

 a    d    

 

200 nm 
 b    e    

 c    f    



36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Maximum Likelihood tree based on 28S rRNA sequence phylogeny 

of the yeast Wickerhamomyces anomalus SE3 and its close relatives. Phylogeny 

is based on sequences of the D1/D2 domains of the 28S rRNA genes for the isolate 

(arrow) and selected closest relatives. Sequence for Hypopichia burtonii was used as 

the outgroup, values of a bootstraps analysis >50% (500 replicates) are displayed at 

each node, and the scale bar represents 0.02 changes per nucleotide position.    
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Figure 2.3 Maximum Likelihood tree based on 28S rRNA sequence phylogeny 

of the filamentous fungus Byssochlamys sp. SW2 and its close relatives.  

Phylogeny is based on sequences of the D1/D2 domains of the 28S rRNA genes for 

the isolate (arrow) and selected closest relatives. Sequence for Aureobasidium 

pullulans was included as the outgroup. Bootstraps values >50% (1000 replicates) 

are displayed on supported nodes. The error bar represents 0.02 changes per 

nucleotide position.    
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Table 2.2 Physiological characteristics of Wickerhamomyces anomalus SE3.  

 

 

Symbols denote assimilation +, Positive; -, Negative; w, Weak. 

Tween 80 - Salicin w 

N-Acetyl-DGalactosamine - Sedoheptulosan - 
N-Acetyl-DGlucosamine - D-Sorbitol - 

N-Acetyl-DMannosamine - L-Sorbose - 

Adonitol - Stachyose - 

Amygdalin - Sucrose + 

D-Arabinose - D-Tagatose - 

L-Arabinose - D-Trehalose - 
D-Arabitol + Turanose + 

Arbutin + Xylitol - 

D-Cellobiose + D-Xylose - 
α-Cyclodextrin - γ-Amino-butyric Acid + 

β-Cyclodextrin - Bromosuccinic Acid - 

Dextrin - Fumaric Acid + 
i-Erythritol + β-Hydroxy-butyric Acid - 

D-Fructose + γ-Hydroxy-butyric Acid + 

L-Fucose - p-Hydroxyphenylacetic Acid - 
D-Galactose - α-Keto-glutaric Acid + 

D-Galacturonic Acid - D-Lactic Acid Methyl Ester + 

Gentiobiose w L-Lactic Acid + 
D-Gluconic Acid - D-Malic Acid + 

D-Glucosamine - L-Malic Acid + 

α-D-Glucose + Quinic Acid + 
Glucose-1-Phosphate + D-Saccharic Acid - 

Glucuronamide - Sebacic Acid - 

D-Glucuronic Acid - Succinamic Acid + 
Glycerol + Succinic Acid + 

Glycogen - Succinic Acid Mono-Methyl Ester - 

m-Inositol - N-Acetly-LGlutamic Acid - 
2-Keto-D-Gluconic Acid - Alaninamide - 

α-D-Lactose - L-Alanine + 

Lactulose - L-Alanyl-Glycine - 
Maltitol + L-Asparagine + 

Maltose + L-Aspartic Acid + 

Maltotriose + L-Glutamic Acid + 
D-Mannitol + Glycyl-L-Glutamic Acid - 

D-Mannose w L-Ornithine w 

D-Melezitose + L-Phenylalanine w 

D-Melibiose - L-Proline + 

α-Methyl-DGalactoside - L-Pyroglutamic Acid - 

β-Methyl-DGalactoside - L-Serine w 
α-Methyl-D-Glucoside + L-Threonine - 

β-Methyl-D-Glucoside + 2-Amino Ethanol - 

Palatinose + Putrescine - 
D-Psicose - Adenosine - 

D-Raffinose - Uridine - 

L-Rhamnose - Adenosine-5'-Monophosphate - 
D-Ribose -   

    

Growth on/at:    
Vitamin-free medium + pH 3 + 

9°C + pH 10 - 
37°C + 10% NaCl 5% Glucose  + 

40°C + 50% Glucose + 

45°C -   
    

Major Fatty Acids : C16:0  15.50%  

 C18:2 ω6,9c/C18:0 ANTE 35.21%  
 C18:1 ω9c 24.94%  

  C18:1 ω7c 15.55%   

 



39 

Table 2.3 Physiological characteristicsa of Byssochlamys sp. SW2. 

  

 

a symbols denote assimilation +, Positive; -, Negative; w, Weak. 

Tween 80 w Salicin + 

N-Acetyl-DGalactosamine - Sedoheptulosan - 
N-Acetyl-DGlucosamine - D-Sorbitol + 

N-Acetyl-DMannosamine w L-Sorbose + 

Adonitol - Stachyose - 
Amygdalin + Sucrose + 

D-Arabinose - D-Tagatose - 

L-Arabinose + D-Trehalose + 
D-Arabitol ` Turanose + 

Arbutin + Xylitol - 

D-Cellobiose + D-Xylose + 
α-Cyclodextrin - γ-Amino-butyric Acid + 

β-Cyclodextrin + Bromosuccinic Acid - 

Dextrin + Fumaric Acid - 
i-Erythritol + β-Hydroxy-butyric Acid - 

D-Fructose + γ-Hydroxy-butyric Acid - 

L-Fucose - p-Hydroxyphenylacetic Acid + 
D-Galactose + α-Keto-glutaric Acid - 

D-Galacturonic Acid + D-Lactic Acid Methyl Ester - 

Gentiobiose + L-Lactic Acid w 
D-Gluconic Acid + D-Malic Acid - 

D-Glucosamine w L-Malic Acid - 

α-D-Glucose + Quinic Acid + 
Glucose-1-Phosphate - D-Saccharic Acid - 

Glucuronamide - Sebacic Acid + 

D-Glucuronic Acid - Succinamic Acid - 
Glycerol - Succinic Acid + 

Glycogen + Succinic Acid Mono-Methyl Ester + 

m-Inositol + N-Acetly-LGlutamic Acid - 
2-Keto-D-Gluconic Acid + Alaninamide - 

α-D-Lactose + L-Alanine + 

Lactulose + L-Alanyl-Glycine w 

Maltitol + L-Asparagine - 

Maltose + L-Aspartic Acid - 

Maltotriose + L-Glutamic Acid + 
D-Mannitol + Glycyl-L-Glutamic Acid - 

D-Mannose + L-Ornithine - 

D-Melezitose - L-Phenylalanine - 
D-Melibiose - L-Proline + 

α-Methyl-DGalactoside - L-Pyroglutamic Acid - 

β-Methyl-DGalactoside - L-Serine - 
α-Methyl-D-Glucoside w L-Threonine - 

β-Methyl-D-Glucoside + 2-Amino Ethanol - 

Palatinose + Putrescine w 
D-Psicose - Adenosine - 

D-Raffinose w Uridine - 

L-Rhamnose + Adenosine-5'-Monophosphate - 
D-Ribose -   

    

Growth on/at:    
Vitamin-free medium + pH 3 + 

9°C - pH 9 - 
37°C + 10% NaCl 5% Glucose  + 

40°C + 50% Glucose + 

45°C -   
    

Major Fatty Acids : C16:0  11.34%  

 C18:2 ω6,9c/C18:0 ANTE 43.86%  

 C18:1 ω9c 21.99%  
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Figure 2.4 Degradation of FAME in B20 biodiesel after 7 days of incubation 

with isolates Wickerhamomyces anomalus SE3 and Byssochlamys sp. SW2. 

Colored bars represent the remaining percentage of compound after 7 days of 

incubation compared to negative control at day 0.   
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Figure 2.5 Degradation of hydrocarbons in B20 biodiesel after 7 days of 

incubation with isolate Wickerhamomyces anomalus SE3. Colored bars represent 

the remaining percentage of compound after 7 days of incubation compared to 

negative control at day 0.  
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Figure 2.6 Growth curve for Wickerhamomyces anomalus SE3 in ASW medium 

containing B20 biodiesel as sole carbon source. Error bars represent standard 

deviation of triplicates. 
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                            Negative Control Day 30                   Byssochlamys sp. 

 

Figure 2.7 Degradation of FAME in B20 biodiesel after 30 days of incubation 

with isolate Byssochlamys sp. SW2. Colored bars represent the remaining 

percentage of compound after 30 days of incubation compared to negative control at 

day 0. Error bars represent standard deviation of triplicates. 
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Figure 2.9 Effect of temperature on growth of the yeast Wickerhamomyces 

anomalus SE3. p-value <0.01 between all treatments (Anova-Tukey Test). Error bars 

represent standard deviation of triplicate samples.  
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Figure 2.10 Effect of pH on growth of the yeast Wickerhamomyces anomalus SE3. 

Significant differences were found between treatments (p-value = 0.03. According to 

Tukey’s test, pH 4 is the treatments that differs from pH 5 (*p-value<0.05). The other 

combinations does not differ between each other significantly.  Error bars represent 

standard deviation of triplicate samples. 
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Figure 2.11 Effect of temperature on growth of Byssochlamys sp. SW2. According 

to ANOVA-Tukey’s HSD test, treatments sharing letter represent: a, not significantly 

different; b, p-value<0.05. No shared letters represent p-value<0.01.  
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Figure 2.12 Effect of pH on growth of the Byssochlamys sp. SW2. According to 

ANOVA-Tukey’s HSD test, shared letters denote significance: a-c, p-value between 

0.05-0.1; d-f, p-value <0.05. 
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Chapter 3: Chemical Analysis of B20 Biodiesel Fuel Exposed to 

Contaminated Underground Storage Tanks and its Correlation to 

Fungal Biodegradation   

 

3.1 Introduction 

 

B20 biodiesel is an alternative fuel considered to be a suitable option to replace 

petroleum diesel as a source of liquid transportation fuel (Hoekman, Broch, 

Robbins, Ceniceros, & Natarajan, 2012; Knothe, Krahl, & Van Gerpen, 2015). The 

DoD considers B20 biodiesel to be a means to reduce it’s carbon footprint and 

achieve energy security (DOD, 2011; GAO, 2015). During long term; however, 

storage the fuel can be susceptible to microbial contamination (Bücker et al., 2011; 

Lee, Ray, & Little, 2010) and oxidative instability (Jakeria et al., 2014). The 

negative effects associated with these problems include fuel degradation (Zuleta, 

Baena, Rios, & Calderón, 2012) and damage to the infrastructure due to fouling 

(Passman, 2013) and corrosion (Lee et al., 2010; Zuleta et al., 2012). The 

maintenance costs related with these problems can quickly surpass the savings of 

using biodiesel (Chavez, 2013), which ultimately threaten its broader use.    

 

The fuel B20 is a blend of 20% biodiesel and 80% ultralow sulfur diesel (ASTM-

D7467-15, 2015). The biodiesel portion is a mixture of fatty acid methyl esters 

(FAME) produced by chemical transesterification of raw materials rich in 

triglycerides (ASTM-D7467-15, 2015; NREL, 2009). The feedstocks for biodiesel 



50 

production can be obtained from edible and non-edible sources including vegetable 

oils, animal fats, waste grease, and even some microalgae species (Hoekman et al., 

2012). The triglyceride content of the parental feedstock determines the FAME 

mixture in the final product (Jakeria, Fazal, & Haseeb, 2014; Knothe, 2005). The 

most common FAMEs present in biodiesel are composed of 16 to 18 carbons and 

varying degrees of unsaturation (Table 3.1). 

 

Biodiesel and its blends are more easily degraded by abiotic and biotic mechanisms 

than ULSD (Bücker et al., 2011; Mariano, Tomasella, De Oliveira, Contiero, & De 

Angelis, 2008; Zhang et al., 1998), especially during fuel storage. Autoxidation is 

the abiotic mechanism that is considered to be of primary concern during long term 

storage (Pullen & Saeed, 2012), however it can be controlled by the addition of 

antioxidants (Pullen & Saeed, 2012). Fuel biodegradation refers to changes in the 

fuel composition as the consequence of microbial metabolism, which affects the 

integrity and properties of the fuel (Pullen & Saeed, 2012). Fuel biodegradation 

depends on the microbial contaminants and their potential to accelerate degradation 

processes (Jakeria et al., 2014; Makareviciene & Janulis, 2003), as well as on the 

fuel chemistry, environmental conditions, presence of fuel additives, storage and 

handling conditions and the design of the fuel tanks and delivery systems (Passman, 

2013).    

 

The evaluation of biodegradation problems in a fuel system is a complex process 

that requires both the fuel and infrastructure be examined and monitored (Knothe et 
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al., 2015). An initial examination is usually done by gross observations for signs of 

microbial contamination such as, changes in fuel color and turbidity, the presence of 

water, or accumulation of particulates (Passman, 2003). A thorough analysis is 

necessary to understand the extent of the problem and to define the strategies for an 

effective control. For further root-cause analysis and monitoring, a correlation 

between data obtained by physical, chemical and microbiological analyses is 

required (Hoekman et al., 2012; Passman, 2003).  

 

Recent studies have suggested a correlation between the presence of the fungal 

genus Byssochlamys (family Trichocomaceae) and recurrent problems of discolored 

fuel, presence of flocculent material, and fouling at two USAF facilities (Stamps, 

2016). However, the impact of the contamination on the fuel was unknown. We 

hypothesized that fungal contamination of USAF B20 fuel tanks changes the 

chemical composition of the B20 biodiesel. This hypothesis was tested by measuring 

the effect of the growth of Byssochlamys sp. SW2 on the chemical composition of 

B20 fuel in cultivation experiments. A statistical model was then developed to 

predict fuel degradation for quality monitoring purposes. To validate our model, we 

characterized B20 biodiesel samples from contaminated storage tanks at two USAF 

facilities. 
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3.2 Materials and Methods 

 

3.2.1 Sampling and GC/MS data collection   

 

Samples of B20 biodiesel were collected from six underground storage tanks at two 

USAF facilities in the Southwest (SW2, SW3, and SW4) and Southeast (SE3, SE4, 

and SEE) United States. Samples (1 L) were collected at multiple levels over an 18-

month period to measure the temporal variation in fuel composition. A total of sixty 

samples were collected (17 from SW and 43 from SE) into sterile bottles using a 

fuel sampler (Koehler Instrument Company, Inc., Holtsville, New York) and 

transported at room temperature in the dark. The fuel was sterilized by filtration 

using 0.22 µm polyether sulfone bottle top filters (EMD Millipore, Billerica, MA), 

prior to chemical analysis. Triplicate 2 mL aliquots of each sample were stored in 

gas chromatography vials at room temperature in the dark. 

 

The chemical composition of each B20 biodiesel sample was determined by Gas 

Chromatography/Mass Spectrometry (GC/MS) using a Shimadzu QP 2010 SE 

(Shimadzu Corporation, USA). Each sample was diluted 1:200 with hexane 

(ChromasolV®, for HPLC, >95%, Sigma Aldrich) prior to injection. A volume of 1 

µL was injected via autosampler with a split ratio of 1:10. Injection started at 300 

°C, oven at 40 °C with a 0.5 min hold and increased to 320 °C at a rate of 10 °C 

min-1. Peaks were separated with a Restek Column Rxi 5Sil with dimensions: 30 m, 

0.25 mm ID, 0.25 µm. High purity helium was used as carrier gas at a linear 
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velocity of 36.8 cm s-1. Mass spectra were analyzed in scan mode with the following 

conditions: interface at 320 °C, ion source 200 °C, solvent cut of 2 min, event time 

of 0.25 sec and scan speed of 2000.  

 

3.2.2 Chromatographic Data Analysis 

 

Each Total Ion Chromatogram (TIC) was processed using the software 

LabSolutions version 4.20 (Shimadzu Corporation, USA). Peaks were identified 

using the mass spectra library NIST version 14. Reference standards for FAME 

(Supelco® 37 Component FAME Mix, Sigma Aldrich, USA) and B20 

(Diesel:Biodiesel (80:20) Blend Standard, RESTEK, USA) were used to confirm 

major alkanes and FAME peaks identified by the NIST library. Qualitative 

integration of peak areas was performed using a common detection sensitivity 

(slope: 1000/min) to distinguish peaks from background/noise. Only well-defined 

peaks with more than 90% similarity with the NIST library were chosen for further 

analysis. A similarity index of 100 was used when the spectra were perfectly 

identical.  Individual peaks were quantified using the area normalization method 

following the equation  𝑖% =
𝐴𝑖

∑𝐴𝑖
× 100  where Ai is the peak area of a compound 

and ∑Ai is the sum of peak area of all components (Linskens et al., 1986; Qi et al., 

2011).  

 

Data was analyzed in R version 3.2.2, using the Stats (Team, 2014), Caret (Kuhn, 

2008), Mass (Venables & Ripley, 2002) and Vegan (Oksanen et al., 2015) packages. 
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An ANOVA-based variable selection was applied to highlight the compounds with 

relevant differences among the samples. Each compound was treated as a one-way 

ANOVA type problem with N measurements represented by the 60 samples and K 

groups represented by the two facilities (SE and SW). Compounds with p-values 

<0.05 were selected for multivariate analysis using Permutational Multivariate 

Analysis of Variance (PERMANOVA) and Principal Component Analysis (PCA).  

 

3.2.3 Fungal Biodegradation Classification Model  

 

The results from biodegradation experiments of B20 with Byssochlamys sp. SW2 

were used to construct a Linear Discriminant Analysis (LDA) classification model 

with prediction properties. Biodegraded and non-biodegraded datasets were defined 

as classes for discrimination. For the biodegraded group, four samples of B20 fuel 

that were retained prior to addition to tanks, that were never exposed to the biology 

in the tanks, were individually exposed during 30 days of incubation to fungal 

biodegradation using Byssochlamys sp. SW2. The non-biodegraded group consisted 

of negative controls with no inoculum for each fuel. Samples from tanks SE3, SE4 

and SEE were used as test sets to validate the model (Table 3.4). In the test set we 

included two samples representing a pre- and post-cleaning procedure applied to the 

tanks after a contamination event (Table 3.4).   

 

Experimental conditions included destructive sampling at days 0, 5, 14 and 30 of 

triplicates for each experimental tube and control, to simulate a fuel biodegradation 
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progression. Each experiment was set up in 16 x 100 mm glass tubes filled with 1 

mL of ASW and 10 µL of filter-sterilized B20 as the sole carbon and energy source, 

sealed with vials with a cap that had a PTFE liner to avoid evaporation. An 

inoculum resulting in 1x106 spores mL-1 of Byssochlamys was added to each tube 

and incubated at 25°C, shaking at 250 rpm. Un-amended controls containing no 

electron donor were included to evaluate carbon source carryover. At then end of 

each incubation period, the fuel phase was extracted and a chromatographic analysis 

was performed (see above, Section 3.2.2).  
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3.3 Results 

 

3.3.1 Characterization of the Composition of B20 Fuel Samples  

 

B20 fuel samples exposed to bio-contaminated tanks were analyzed by GC/MS. The 

TIC of each sample showed a complex mixture of compounds (Fig. 3.1). Alkanes 

and FAMEs were detected in all B20 fuel samples. Well-defined peaks with a 

similarity index of >90% to the NIST library were identified (Table 3.2). The 

identified peaks were well spread over the retention time range in the chromatogram 

(Table 3.2) in accordance with the reference standards. Minor peaks that were not 

qualified by the selection criteria were discarded from further analysis and included 

various branched alkanes, naphthalenes and aromatics. Sixteen major fuel 

components including alkanes of various chain lengths and FAMEs were retained. 

 

Patterns of variation in the dataset were identified using a combined approach of 

variable selection and multivariate analysis. Nine peaks were highlighted with 

significant differences among samples (Table 3.2), using a one-way ANOVA 

approach. Fuel samples between SE and SW (GC/MS data 1-factor PERMANOVA, 

F=25.32, R2=0.30, p=0.001) showed significant differences in their composition of 

the selected variables. Geographic location appeared as a discrimination factor (Fig. 

3.2). Linoleic and palmitic acid methyl esters (loadings = 0.4445 and -0.4388 

respectively) accounted for most of the discrimination between locations SE and 

SW, with an indirectly proportional trend in their concentrations (Table 3.3). 
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Variations within location SE were also investigated (Fig. 3.2). Fuel composition 

between tanks at SE3, SE4 and SEE varied significantly (GC/MS data 1-factor 

PERMANOVA, F=3.8017, R2=0.21, p=0.013). The discrimination was based on the 

first three principal components (Table 3.3), capable of explaining 75% of the 

variability in the dataset. 

  

Four samples of B20 obtained at SE and never exposed to the biology in the tanks 

showed differences in their proportion of FAMEs (Fig. 3.3). Unexposed fuels A and 

C showed similar relative abundances of linoleic and oleic acid methyl esters, while 

B and D had similar abundances of palmitic and oleic acid methyl ester (Fig. 3.3). 

Unexposed fuels were discriminated according to their patterns and clustered in two 

separated groups (Fig. 3.2).  

 

3.3.2 Fungal Biodegradation Model 

 

An LDA model constructed with biodegraded and non-biodegraded datasets 

allowed us to predict the severity of biodegradation in B20 fuel samples. The 

variables used to construct the model were identical to those used for the 

characterization of in situ B20 fuel samples (Table 3.2). The model consisted of 

three clusters that showed separation between each other (Figure 3.4), 

corresponding to the length of incubation and a progression from non-degraded 

(days 0, 5), degraded at day 14, and the most degraded group at day 30. The linear 

discriminant LD1 accounted for 97.1% of the total discrimination, responsible for 
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the observed separation. The largest linear discriminant coefficients were Linoleic 

and Palmitic Acid ME (-16.969, -12.964 respectively).  

 

Samples of B20 fuel obtained from SE (Table 3.4) were objectively classified by the 

apparent severity of their fungal biodegradation. Nine samples including an 

unexposed fuel control were classified in the non-degraded group (Figure 3.5). 

These samples corresponded to fuels obtained from different locations (nozzle, 

middle and bottom) inside tanks SE4 and SEE, and differences between them were 

not detectable. Four samples obtained from the bottom of tank SE3 (sample 

numbers 27, 30, 16, 36; Table 3.4) were classified as degraded. Samples 27 and 30 

were similar to fuels exposed to Byssochlamys sp. SW2 for 14 and 30 days. Sample 

30 was obtained in March 2015 and sample 27 in the month of May 2015. Both 

represent the pre- cleaning stage of tank 3 where contamination was highest. Sample 

16 represents the post-cleaning state of tank 3 in the Month of May 2015 and it was 

classified as degraded but in the group of Day 14. Sample 36 was classified as the 

most degraded since it most closely related to the degraded sample at day 30. These 

results represented a demonstration of the predictive properties of the LDA model.  
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3.4 Discussion  

 

We hypothesized that fungal contaminants of USAF B20 biodiesel fuel tanks 

metabolize components of the fuel, causing changes in its chemical composition. 

The stability and properties of B20 are influenced by its composition (Ghazali, 

Mamat, Masjuki, & Najafi, 2015), which can be affected during its storage. We 

detected variation in fuel components in B20 fuel samples obtained from 

underground storage tanks with recurrent problems of fungal contamination. Our 

results suggested that the observed differences are the result of different FAME 

feedstocks that are susceptible to fungal biodegradation. These results are important 

to assessing the risk of fungal growth on particular feedstocks used to produce B20 

blends.    

 

Biodiesel blends can contain over 2000 compounds (Marchal, Penet, Solano-Serena, 

& Vandecasteele, 2003) that can be characterized by GC/MS (Pauls, 2011). Pattern 

recognition methods (Brereton, 2009; Hochkirchen, 2010; Johnson & Synovec, 

2002; Sutro, 1971; Wongravee et al., 2009) have been successfully used in the 

discrimination of fuel types (Flood, Goding, O’Connor, Ragon, & Hupp, 2014), 

identification of fuel adulteration (Skrobot, Castro, Pereira, Pasa, & Fortes, 2007)   

and  monitoring of fuel degradation (Johnson, Rose-Pehrsson, & Morris, 2004). We 

found 9 compounds that change significantly among samples and used them to 

evaluate how fuel changes can be altered by fungal biodegradation using 
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multivariate techniques. This allowed us to identify differences in fuel composition 

in situ and monitor degradation in vivo.    

 

Fuel components varied among facilities and tanks within facilities (Fig. 3.2). The 

unexposed fuels varied in their content of FAMEs, suggesting the use of different 

feedstocks in biodiesel production (Jakeria et al., 2014). Feedstock availability and 

production capacity directly affect the supply chain (DOD, 2007). It is reasonable to 

expect different FAME profiles between or within different storage facilities. The 

provenance of the feedstock oil was not known or available, but the source of 

feedstock could potentially explain the differences observed between facilities. 

Common biodiesel feedstocks in the U.S are soybean and canola (EIA, 2016b), and 

have high concentrations of mono- and poly-unsaturated fatty acids (Knothe, 2008). 

Other well-known feedstocks are palm oil and tallow (EIA, 2016b), which contain 

abundant saturated fatty acids (Knothe, 2008).  

 

We identified the FAMEs Palmitic (C16:0) and Linoleic Acid (C18:2) ME as the 

compounds that accounted for most of the variation among clusters. Interestingly, 

Palmitic and Linoleic Acid ME explained most of the variation in the fungal 

community structure (Stamps, 2016), suggesting a selective biodegradation. The 

genus Byssochlamys was an abundant OTU in the fungal community (Stamps, 

2016). Because Byssochlamys sp. can use B20 as sole source of carbon and energy 

(Andrade, Chapter 2), we used it to investigate  selective biodegradation.   
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An LDA (Hochkirchen, 2010) was constructed using GC/MS chemical profile data 

of the fuel component of the B20 biodegradation experiments with Byssochlamys 

sp. SW2 (Fig. 3.4). Palmitic and linoleic acid ME corresponded to the largest and 

negative linear coefficients (Brereton, 2009), which indicate a preferential 

degradation of palmitic and linoleic acid ME by this organism. This is consistent 

with other studies that show that Byssochlamys sp. and a close relative 

Paecilomyces variotti, can degrade palmitic acid ME in storage tanks (Andrade, 

Chapter 2; Curvelo, Almeida, Nunes, & Feitosa, 2011). New feedstocks rich in 

palmitic acid ME (Chen et al., 2015; Fazaeli & Aliyan, 2015) are considered a 

promising alternative to satisfy future biodiesel demands. In this study; however, we 

quite clearly show the susceptibility of palmitic acid ME in B20 biodiesel to 

microbial contamination during storage, especially by fungi of the genus 

Byssochlamys.  

 

The LDA model was used to objectively classify samples of B20 fuel from storage 

tanks in service into groups and identify patterns of fungal biodegradation. Samples 

of B20 obtained from the bottom of these tanks were classified as biodegraded (Fig. 

3.5). This prediction was reasonable considering that most of the microbial 

contaminants will thrive in the bottom of tanks due to water accumulation (Bento & 

Gaylarde, 2001) and only very limited mixing occurs in these tanks. The water-fuel 

interface is often the location of dense fungal biofilms and thus biodegradation of 

the fuel (Passman, 2003). 
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The LDA prediction of patterns of biodegradation appeared to be an effective tool to 

evaluate fungal contamination during fuel storage.  In the test set, we detected a 

biodegraded sample from the bottom of tank SE3 (#36, Fig. 3.5) that contained only 

low amounts of adenosine triphosphate (ATP; 3.2X102 RLU, (Stamps, 2016)) 

measured in situ.  Quantification of ATP is a standard method used to detect 

microbial contamination in fuel systems (ASTM:D7687, 2011), but the results can 

be deceiving if the values are low. For instance, fungal spores have << 1 fg 

ATP/spore (Passman, 2013), and their higher hydrophobicity can pull them to the 

fuel phase compared with mycelium that lies in the fuel-water interface (Linder, 

Szilvay, Nakari-Setälä, & Penttilä, 2005). Thus, when sampling fuel contaminated 

with fungi, it is possible that only fungal spores might be present (ASTM:D7687, 

2011), generating a false negative result with low ATP measurements below the 

detection limit (Passman, 2013; Rakotonirainy, Heraud, & Lavédrine, 2003).  

 

The LDA model was also useful in assessing the efficacy of a procedure used to 

remove water from the bottom of a storage tank (Figure 3.5).  Samples obtained 

before the removal of water from SE3 tank were categorized as the most degraded 

(Table 3.4). Samples taken after removal of water (and some fuel); however, still 

indicated that biodegradation had occurred, but noticeably less. This data suggests 

that the biodegraded fuel is most closely associated with water and/or the bottom of 

the tank. Fuel higher up in the tank does not carry the same chemical profile that 

would be recognized as biodegradation. A storage tank with fungal contamination 

that affects the fuel composition, fouling, and potentially microbially influenced 
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corrosion may be asymptomatic according to fuel samples taken from the dispenser 

or top of the tank.  

 

 

Chemical characterization of B20 biodiesel samples from contaminated 

underground storage tanks is an effective method for detection of past or current 

fungal contamination. This signal is largely due to the fungi altering the content of 

the FAMEs palmitic and linoleic acid methyl ester. Biodiesel containing a 

significant proportion of these FAMEs is more likely to support the growth of the 

fungi studied here and; therefore, more susceptible to fungal biodegradation. The 

research presented here not only provides a methodology that should be considered 

for monitoring B20 biodiesel for fungal contamination and proliferation, but also 

suggests that the feedstocks used in production of biodiesel should be reconsidered 

for their susceptibility to biodegradation.  
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Figure 3.1  Representative total ion chromatogram (TIC) obtained from a B20 

fuel sample.  Major peaks for n-alkanes and FAMEs are labeled.  
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Table 3.2 Retention times of major peaks identified in B20 fuel samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Compounds selected for multivariate analysis. 

 

 

 

 

  

Variable Compound Retention Time (min) 

n-C9a n-nonane 5.316 - 5.337 

n-C11 n-undecane 8.502 - 8.525 

n-C12 n-dodecane 10.030 - 10.053 

n-C13a n-tridecane 11.473 - 11.497 

n-C14a n-tetradecane 12.834 - 12.859 

n-C16 n-hexadecane 15.335 - 15.361 

n-C17 n-heptadecane 16.485 - 16.512 

n-C18 n-octadecane 17.578 - 17.605 

n-C19a n-nonadecane 18.617 - 18.645 

n-C20a n-eicosane 19.609 - 19.637 

C16:0a n-palmitic acid methyl ester 18.854 - 18.895 

C18:2a n-linoleic acid methyl ester 20.496 - 20.594 

C18:1a n-oleic acid methyl ester 20.564- 20.594 

C18:0a n-stearic acid methyl ester 20.738 - 20.811 
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Table 3.3 Principal component analyses (PCAs) of global B20 fuel dataset.  

 

Order of 

importance 
PC1 39%a PC2 20%a PC3 16%a 

1st 

 

Linoleic Acid ME 

(0.44) 

n-C20 

(-0.50) 

n-C9 

(0.51) 

2nd 

 

Palmitic Acid ME 

(-0.43) 

n-C19 

(-0.46) 

n-C14 

(-0.50) 

3rd 

 

Stearic Acid ME 

(0.38) 

n-C13 

(0.43) 

 

Stearic Acid ME 

(0.42) 

4th 

 

n-C19 

(0.36) 

n-C14 

(0.32) 

n-C13 

(-0.29) 

5th 

 

n-C13 

(0.35) 

 

Oleic Acid ME 

(0.28) 

n-C20 

(-0.27) 

6th 
 

n-C14 

(0.29) 

 

Palmitic Acid 

ME 

(-0.24) 

 

Palmitic Acid 

ME 

(-0.24) 

7th 

 

Oleic Acid ME 

(-0.25) 

n-C9 

(0.23) 

 

Oleic Acid ME 

(0.19) 

8th 
 

n-C20 

(0.22) 

 

Stearic Acid ME 

(-0.15) 

 

Linoleic Acid 

ME 

(0.16) 

9th 
n-C9 

(-0.023) 

 

Linoleic Acid 

ME 

(0.13) 

n-C19 

(0.08) 

  

a Percentage correspond to the variation explained by the Principal Component. 

Variable loadings of the three principal components (PC) are shown in parenthesis.  
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Figure 3.3 Proportion of 16 major compounds of B20 found in unexposed fuel 

samples. Fuels ‘A to D’ where obtained at SE location, while fuel ‘E’ at SW 

location. 
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Table 3.4 Description of the test set of B20 samples obtained from SE facility and 

used to validate the LDA model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a Sample descriptors include the facility Southeast (SE), tank (3, 4 or E), location in 

the tank (B, bottom; M, middle; N, nozzle; -, unknown location), fuel unexposed to 

the tanks (R).  

 
b Sample predicted to be not degraded (ND). Sample predicted to be degraded (D). 

 

 

  

Sample  

#  

Sampling Location  

Description a 

Sampling  

Date 

LDA 

 prediction b 

36 SE,3,B 10/28/2014 D 

42 SE,E,B 3/12/2015 ND 

30 SE,3,B 3/12/2015 D 

14 SE,-,N 5/7/2015 ND 

48 SE,E,B 5/7/2015 ND 

52 SE,E,M 5/7/2015 ND 

53 SE,E,N 5/7/2015 ND 

4 SE,3,N 5/7/2015 ND 

13 SE,3,R 5/7/2015 ND 

16 SE,3,B (post-cleaning) 5/7/2015 D 

27 SE,3,B (pre-cleaning) 5/7/2015 D 

44 SE,4,B 5/7/2015 ND 

47 SE,4,M 5/7/2015 ND 
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Chapter 4: Summary and Future Directions 

 

The Department of Defense (DoD) has been increasing the use of alternative fuels 

in ground vehicles and equipment as part of its Strategic Energy Plan (DOD, 2011). 

As a result, many military bases have infrastructure dedicated to the storage and 

dispensing of B20 biodiesel.  Biodiesel is composed of single chain fatty acid 

methyl esters (FAME) derived from plant or animal fats, and B20 is an 80:20 blend 

of petroleum-derived ultra-low sulfur diesel (ULSD) and biodiesel (ASTM-D7467-

15, 2015). Biodiesel contains more oxygen, is more hygroscopic, and is more 

oxidatively unstable compared to ULSD (Jakeria et al., 2014). This potentially 

increases the susceptibility of biodiesel to microbial contamination and degradation 

(Bücker et al., 2011; Mariano et al., 2008; Prince et al., 2008).  

 

We have studied B20 biodiesel from storage tanks at several Air Force Bases, both 

with and without reported issues with fuel quality (color, clarity, particulates). Fuels 

of compromised quality from two different AFBs had substantial microbial 

contamination, which was believed to be the root cause of reported issues. 

Molecular characterization of the microbial assemblages showed that these fuels 

harbored a high concentration of the fungal genera Byssochlamys and 

Wickerhamomyces. We isolated ten different genera of fungi from B20 storage tanks 

at two USAF facilities. Two of these isolates were representatives of the most 

abundant genera in the B20 storage tanks (Stamps, 2016). Byssochlamys sp. SW2 

and Wickerhamomyces anomalus SE3 are able to grow in B20 as the sole source of 
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carbon and energy. These fungi were capable of aerobic degradation of many 

carbon substrates in low water environments over a broad pH range. 

 

In this research we hypothesized that fungal contamination of USAF B20 fuel tanks 

cause changes in the chemical composition of the fuel. Fuel components varied 

among facilities and tanks within facilities (Figure 3.2). The unexposed fuels varied 

in their content of FAMEs, suggesting the use of different feedstocks in biodiesel 

production (Jakeria et al., 2014). Byssochlamys sp. SW2 and Wickerhamomyces 

anomalus SE3 preferentially degraded palmitic and linoleic acid methyl esters, and 

our in situ model supports the hypothesis that palmitic and linoleic acid methyl 

esters are the most susceptible components to biodegradation.  

 

In our data, we lack the information regarding the specific feedstocks used to 

produce the B20 fuel stored in the USAF tanks, which was a limitation. Based on 

our findings, we suggest that biodiesel from different feedstocks will be differentially 

susceptible to fungal contamination. This hypothesis remains to be tested by 

biodegradation experiments comparing the susceptibility of different feedstocks to 

fungal attack. Feedstocks commonly used with high content of palmitic acid methyl 

ester include palm oil and cottonseed (Knothe, 2008), as well as novel feedstocks 

from marine microalgae (Chen et al., 2015). Feedstocks with high concentrations of 

linoleic acid include soybean, sunflower and cottonseed (Jakeria, Fazal, & Haseeb, 

2014). Current investigation about the design of optimal biodiesel blends (Knothe, 

2008) is focused only in the improvement of the oxidative stability, cold flow, and 
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increased NOx exhaust. We suggest that considering the effect of microbial 

degradation in the search of new feedstocks and mixtures for biodiesel production is 

also important.  

 

We show that the presence of Byssochlamys sp. SW2 can alter the composition of 

B20 biodiesel in storage tanks, and we offer a model for predicting severity of 

biodegradation. We used Byssochlamys sp. SW2 in our research, because it 

represented an abundant organism in the tanks that were studied (Stamps, 2016). 

However, we are aware that microorganisms that contribute to alterations of the fuel 

quality during storage are part of microbial communities and consortia (Bücker et 

al., 2014; Lee, Ray, & Little, 2010; Passman, 2003; Stamps, 2016). In consortia, 

microorganism can accomplish complex tasks that are not possible individually 

(Brune & Bayer, 2012; Passman, 2003). Our understanding of the most abundant 

organism represents an essential baseline for future studies of root-cause analysis. 

Based on our results, our hypothesis is that Byssochlamys sp. and 

Wickerhamomyces anomalus have an active role in biodegradation of B20 inside 

the storage tanks. Modeling and monitoring of mesocosm experiments where 

Byssochlamys sp. and Wickerhamomyces anomalus interact with other bacteria and 

fungi, will be a first approach to test this hypothesis.  

 

In conclusion, we show that the presence of Byssochlamys sp. alters the composition 

of B20 biodiesel in storage tanks, and we offer a model for predicting severity of 

biodegradation. Byssochlamys sp. SW2 and Wickerhamomyces anomalus SE3 
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preferentially degraded palmitic and linoleic acid methyl esters, and our in situ 

model supports the hypothesis that palmitic and linoleic acid methyl esters are the 

most susceptible components to biodegradable. We suggest the use of alternative 

feedstocks containing less palmitic and linoleic acid for B20 biodiesel production to 

increase fuel stability in storage tanks. 
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