
AN INTERACTIVE DEBUGGING TOOL FOR C++

BASED ON DYNAMIC SLICING AND DICING

By

WIN AI WICHAIP ANITCH

Bachelor of Science (Electrical Engineering)
Rajamangala Institute of Technology

Bangkok, Thailand
1984

Master of Science (Computer Science)
Oklahoma State University

Stillwater, Oklahoma
1992

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
August 2003

AN INTERACTIVE DEBUGGING TOOL FOR C++

BASED ON DYNAMIC SLICING AND DICING

Thesis Approved:

Thesis Adviser

('

(p~ t..u, . £),1d-e/4f:-i)

ii

PREFACE

Since the article "Program Slicing" by Mark Weiser was initially published in

1981 [Weiser 81], program slicing has gained wide recognition in both academic and

practical arenas. Several debugging tools have been developed that utilize program

slicing. For example, Focus (designed and implemented by Lyle in 1984) was designed

to be used with Fortran programs, and C-Sdicer (designed and implemented by Nanja and

Samadzadeh in 1990) and C-Debug (designed and implemented by Wichaipanitch and

Samadzadeh in 1992) were designed to be applicable to C language programs based on

dynamic slicing.

Program slicing [Weiser 81, 82, and 84] is one of the debugging methods used to

localize errors in a program. The idea of program slicing is to focus on the statements

that have something to do with a certain variable of interest (criterion variable), with the

unrelated statements being omitted. Using slicing, one obtains a new program of

generally smaller size that still maintains all aspects of the original program's behavior

with respect to the criterion variable. Dynamic slicing differs from static slicing in that it

is defined on the basis of a computation or an execution rather than on all possible

computations. Furthermore, it allows one to treat the elements and fields in dynamic

records as individual variables [Korel and Laski 90]. As a result, the slice size

computed based on the dynamic slicing technique is generally smaller. Moreover,

iii

dynamic slicing allows one to keep track of the run-time type binding (involving the type

of each object) that is unknown at compile time but is determined when the program is

executed. Dynamic slicing technique was used in this study.

Dicing technique [Lyle 84] [Nanja 90] [Nanja and Samadzadeh 90] can then be

used to compare two or more slices resulting from the program slicing technique in order

to identify the set of statements that are likely to contain an error. The formal model of

static/dynamic slicing/dicing is presented. There is a need for debugging tools that are

capable of making some deductions regarding the presence and location of errors in

programs.

The main objective of this work was to develop an interactive debugging tool for

C++ programs. The tool that was developed is called C++Debug and it uses program

slicing and dicing techniques. The design started by including simple statements first and

then expanded to pointers, structures, functions, and classes. In order for C++Debug to

be more powerful, dynamic slicing rather than static slicing was chosen. The work

includes new algorithms that handle Class, Function, and Pointer in C++.

iv

ACKNOWLEDGMENTS

I owe a great deal of gratitude and appreciation to my major adviser Dr. Mansur

H. Samadzadeh for his guidance, motivation, dedication, and valuable instruction during

my dissertation work. Dr. Samadzadeh continued to spend endless hours reviewing my

work and offering suggestions for further refinement.

I wish to thank my other committee members Drs. Blayne E. Mayfield, John P.

Chandler, and Cecil Dugger. Their time and efforts are greatly appreciated.

Many thanks are due to my wife Cholada for her moral support.

Finally, but certainly not least, I wish to thank my parents, Mr. Arun and Mrs.

Tonghaw. It was their examples of hard work over many years that gave me the

inspiration and motivation to complete my graduate studies. I will be forever indebted to

them for this.

V

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ... 1

1.1 Introduction... 1
1.2 Purpose of the Study 2
1.3 Organization of the Report ... 3

Il. LITERATURE REVIEW... 5

2.1 Introduction ... 5
2.2 Program Slicing .. 7

2.2.1 Static Slicing... 8
2.2.2 Dynamic Slicing ... 8

2.3 Dicing 9
2.4 Examples 9
2.5 Dynamic Slicing Procedures 14

2.5.1 Background .. 14
2.5.2 Slicing Criterion ... 16
2.5.3 Steps Needed to Obtain a Dynamic Program Slice 17

2.6 Dicing Procedures ... 24
2.7 Problems with Slices ... 25

ill. C++ DYNAMIC SLICING AND DICING PROCEDURES ... 26

3.1 Introduction ... 26
3.2 Definitions ... 26
3.3 Algorithms .. 48
3.4 Examples: How to Compute a Slice of a Program

Containing Functions ... 52
3.5 A Slice with Classes, Structures, and Unions ... 59
3.6 Problems and Situations in C++ That Were Taken into

Account in the Design 70
3.7 Dicing Procedure .. 72

vi

Chapter Page

IV. C++DEBUG .. 73

4.1 Introduction ... 73
4.2 Software specification ... 74
4.3 Software Design and Implementation .. 74

4.3.1 C++Debug Block Diagram ... 74
4.3.2 Datastructures .. 76
4.3.3 Symbol Tables ... 76

4.4 Testing and Evaluation ... 77
4.4.1 Introduction ... 77
4.4.2 Testing... 77
4.4.3 Evaluation 77

4.5 Limitations 77
4.6 Program Documentation 78
4.7 System Evolution , ... 78
4.8 Slicing-Based Metrics .. 79

V. SUMMARY, CONCLUSIONS, AND FUTURE WORK... 82

5.1 Summary... 82
5.2 Conclusions : ... 83
5.3 Future Work .. 83

5.3.1 Improvements .. 83
5.3.2 Additions ... , ... 84
5.3.3 Future Work.. 84

REFERENCES .. 86

APPENDICES .. 88

APPENDIX A - GLOSSARY .. 89

APPENDIX B - USER'S MANUAL FOR C++DEBUG ... 94

APPENDIX C -DATASTRUCTURES DESIGN FOR
C++DEBUG BASED ON DYNAMIC
PROGRAM SLICING AND DICING .. 104

APPENDIX D -SOFTWARE SPECIFICATIONS ... 120

vii

Chapter Page

APPENDIX E-TESTING AND EVALUATION126

APPENDIX F - SAMPLE PROGRAMS USED FOR THE
COMPUTATION OF SLICING-BASED METRICS 139

APPENDIX G- SAMPLE C++DEBUG SOURCE CODE LISTING146

Vlll

LIST OF FIGURES

Figure Page

1. The basic idea of program slicing and dicing 6

2. A program for counting occurrences and calculating the sum and
average of a set of numbers 10

3. The output data of the program in Figure 2 ... 11

4. A static program slice computed based on variable Coun tNumber
in line 19 of the program in Figure 2 .. 11

5. A dynamic program slice computed based on variable
CountNumber [1] in line 19 of the program in Figure 2 ... 12

6. A dynamic program slice computed based on variable
CountNumber [2] in line 19 of the program in Figure 2 .. 12

7. A program slice computed based on variable Sum in line 19 of the
program in Figure 2 ... 13

8. A program slice computed based on variable Avg in line 19 of the
program in Figure 2 ... 13

9. A final program segment after using dicing ... 13

10. A trajectory of the program from Figure 2 on input data
MaxData = 2, Data= (3,5) ... 15

11. The sets D(XP) and U(XP), definition and use, for the trajectory
in Figure 10 .. 18

12. The DU (definition-use) relation for the trajectory depicted
in Figure 10 .. 19

ix

Figure Page

13. The TC (test-control) relation for the trajectory depicted
in Figure 10 20

14. The IR (identity relation) relation for the trajectory depicted
in Figure 10 20

15. A dynamic program slice computed based on variable
CountNumber[l] in line 19 of the program in Figure 2 .. 22

16. A dynamic program slice computed based on variable
CountNumber[5] in line 19 of the program in Figure 2 .. 22

17. A dynamic program slice computed based on variable
Sum in line 19 of the program in Figure 2 ... 23

18. A dynamic program slice computed based on variable
Avg in line 19 of the program in Figure 2 24

19. The final program segment after slicing and dicing ... 25

20. A program for computing the factorial of a number.. 28

21. A trajectory of the program in Figure 20 on input data Num = 3 29

22. The sets M(TFFac), DFFac(XP), UFFac(XP), and LFFac(XP)
for the trajectory in Figure 21 ... 33

23. The sets M(TFrnain), DFrnain (XP), UFrnain (XP), and LFrnain (XP)
for the trajectory in Figure 21 .. 33

24. The DUFFac relation for the trajectory depicted in Figure 21 ... 35

25. The DUFrnain relation for the trajectory depicted in Figure 21 ... 35

26. The LDRFFac relation for the trajectory depicted in Figure 21 .. 35

27. The LDRFMain relation for the trajectory depicted in Figure 21 35

28. The TCFFac relation for the trajectory depicted in Figure 21 .. 36

X

Figure Page

29. The IRFFac relation for the trajectory depicted in Figure 21 .. 37

30. A trajectory of functions A and B where function A calls function B............................ 38

31. Illustrate Called-to-Calling ,... 39

32. Illustrate Calling-to-Called ... 40

33. The EI relation for the trajectory depicted in Figure 21 ... 42

34. The IE relation for the trajectory depicted in Figure 21 ... 42

35. Rules for computing the cs (control scope) set... 46

36. The Prototype, Called, Calling, D, U, DCL, VS, and cs sets
for the program depicted in Figure 20 ... 47

37. Algorithm to compute a set of slices ... 49

38. Slicing data structures ... 50

39. Algorithm to compute a slice of each function ... 51

40. Function to compute the scope of influences of a slice .. 51

41. A dynamic program slice computed based on variable Num in line 23
of the program in Figure 20 54

42. A dynamic program slice computed based on variable Fae in line 22
of the program in Figure 20 56

43. A dynamic program slice computed based on variable I in line 8
of the program in Figure 20 59

44. A program for calculating the sum and average of a set of numbers 60

45. The trajectory of the program from Figure 44 on input data
Max= 4, Num = (10.0, 20.0, 15.0, 5.0) .. 61

46. The Prototype, Called, Calling, D, u, DCL, VS, and CS sets
for the program depicted in Figure 20 ... 62

xi

Figure Page

47. The DUFMain, TCFMain LDFMain, and IRFMain relations that are called
by 3220 for the trajectory depicted in Figure 45 ... 63

48. The DUFcompute, TCP compute LDFcompute, and IRFcompute relations
that are called by 3220 for the trajectory depicted in Figure 45 .. 63

49. The DUFsum, TCFsum, LDFsum, and IRFsumrelations that are called
by 3220 for the trajectory depicted in Figure 45 .. 63

50. The DUFsum, TCFsum LDFsum, and IRFsum relations that are called
by 2422 for the trajectory depicted in Figure 45 .. 63

51. The DUFAvg, TCFAvg, and IRFAvg relations for the trajectory
depicted in Figure 45 ... 64

52. A dynamic program slice computed based on variable Avg in line 33
of the program in Figure 44 .. 67

53. A dynamic program slice computed based on variable Sum in line 32
of the program in Figure 44 69

54. The final program segment after slicing and dicing .. 72

55. Block diagram of C++Debug ... 75

56. Help menu and prompt 95

57. The trajectory path .. 99

58. Data structure of Types .. 105

59. AC++ program that uses iterators .. 105

60. Show the database of Types used in C++106

61. Show how the database stores Types of the program in Figure 59 106

62. Data structure of Declarations .. 107

63. Show how the database stores Declarations of the program
in Figure 59 .. 107

xii

Figure Page

64. Scopes of variable x as a global, local, and second local .. 108

65. Data structure of Typedef .. 109

66. A program segment that uses typedef ... 109

67. Show how the database stores Typedef defined by typedef
in Figure 66 .. 109

68. Data structure of Pointers .. 110

69. A program segment that uses pointers ... 110

70. Show how the database stores Pointers of the part of the program
in Figure 69 .. 111

71. Show how the database stores Def (n) and Ref (n) of the part of the program
in Figure 69 ... 111

72. Data structure of Arrays .. 111

73. A program segment that uses arrays ... 112

74. Show the data base of Arrays used by the part of the program
in Figure 73 ... 112

75. A program segment that uses pointers into arrays ... 112

76. Show how the database uses function InsertPointerName(ID) in
Section C.3.1 to store variables of the part of the program in Figure 75 112

77. Show how the database uses function InsertArrayName(ID) in
Section C.3.2 to store variables of the part of the program in Figure 75 113

78. Show how the database stores Def (n) and Ref (n) of the part of the
program in Figure 75 .. 113

79. A program segment that uses const ... 113

80. Show how the database stores constant declared in Figure 79 .. 114

xiii

Figure Page

81. Show how the database uses function InsertPointerName(ID) in
Section C.3.1 to variables of the part of the program in Figure 79 114

82. Show how the database stores Def(n) and Ref(n) of the part of the program
in Figure 79 .. 114

83. Data structure of References .. 115

84. A program segment that uses references ... 115

85. Show how the database uses function InsertReferenceName(ID)
to store variables of the part of the program in Figure 84 .. 115

86. A program segment that uses pointer to void ... 116

87. Show how the database uses function InsertPointerName(ID) in
Section C.3 .1 to store variables of the part of the program in Figure 86 116

88. Data structure of Structures ... 117

89. A program segment that uses structures ... 117

90. Show how the database stores Structures of the part of the program
in Figure 89 .. 118

91. Show how to determine the set of variables by using functions Def(n)
and Def (n) .. 119

92. Part of function UsedVariable and its path .. 130

93. C++Debug block diagram ... 131

xiv

LIST OF TABLES

Table Page

I. Description of the five test programs 80

II. Slicing-based metrics obtained from C-Sdicer
for the five test programs.. 81

ill. Slicing-based metrics obtained from C++Debug
for the five test programs.. 81

IV. Background summary ... 136

V. Language frequency : .. 136

VI. Slices and program changes ... 137

VII. Time measures for debugging by using the tool .. 137

Vill. Time measures debugging without using the tool ... 138

xv

CHAPTER I

INTRODUCTION

1.1 Introduction

Once a programmer finds that a program fails to function properly in the testing

process, debugging techniques are used to localize the causes of the errors and to correct

them. All too often, one finds that the cost associated with testing and correcting a

program is likely to increase as the size of the program increases and as the program

becomes more complicated [Tassel 74]. As a result, various tools and methods have been

developed to debug programs; for example, file printing utilities, module testing

packages, built-in language facilities and programmed-in aids, post-mortem dumps, and

source code amendment facilities [Tassel 74].

Program slicing [Weiser 81, 82, and 84] is one of the debugging methods used to

localize errors in a program. The idea of program slicing is to focus on the statements

that have something to do with a variable of interest (criterion variable), with the

statement that are unrelated being omitted. Using the slicing method, one obtains a new

program of generally smaller size, which still maintains all aspects of the original

program's behavior with respect to the criterion variable. A dicing technique [Lyle 84]

[Nanja 90] [Nanja and Samadzadeh 90] can then be used to compare two or more slices,

1

2

resulting from the program slicing technique, to identify the set of statements that are

likely to contain an error.

Program slicing can be classified into two main categories according to how slices

are computed: static slicing and dynamic slicing. Static slicing is a method of computing

program slices directly from the original source programs. Dynamic slicing is a method

used to compute program slices from the trajectory, which is a feasible path that has

actually been executed for some input. Dynamic slicing differs from static slicing in that

it is defined on the basis of one computation rather than for all possible computations

[Korel and Laski 90]. As the results, the slice size computed based on the dynamic

slicing technique is typically smaller. Furthermore, it allows us to treat the elements and

fields in dynamic records as individual variables.

C++ is a general-purpose programming language and is successfully used in many

application areas [Stroustrup 97]. Implementations of C++ exist from some of the most

modest microcomputers to the largest supercomputers, and for almost all operating

systems. C++ adds to C the concept of class, a mechanism for providing user-defined

types that is also called abstract data type [Pohl 94]. C++ supports object-oriented

programming by providing inheritance and run-time type binding in addition to the

concept of class. As a result, a lot of programmers use C++ to implement programs and

hence tools are needed to localize the causes of errors detected during testing.

1.2 Purpose of the Study

The objective was to create an interactive debugging tool, called C++Debug, for

debugging a C++ program running under UNIX on the SUN machine in the Computer

3

Science Department at OSU. C++Debug was designed to function as a utility program of

the UNIX system and was developed based on slicing and dicing techniques. It was

designed in a way to provide ease of use and convenience on the part of the user. Using

C++Debug, a user can interact with the computer in locating errors in a program. In

order for C++Debug to give smaller slice sizes, dynamic slicing rather than static slicing

was chosen.

The scope of C++Debug includes programs that contain ANSI C and C++ codes.

Classes and objects, unions, records, arrays, pointers, references, dynamic allocations,

function and operator overloading, copy constructors and defaults, inheritances, virtual

functions and polymorphism, templates, and exception handling were included also.

1.3 Organization of the Report

The rest of this dissertation report is organized as follows. Chapter II reviews the

literature related to general information on program slicing and dicing techniques. The

chapter concludes with a discussion of the advantages and disadvantages of dynamic and

static slicing, and the procedures used to locate errors in a program using dynamic slicing

and dicing techniques. Chapter III presents definitions and algorithms to get slices and

dices in a C++ program. Chapter IV presents the steps involved in the design and

implementation of C++Debug, its testing and evaluation, and the advantages and

limitations of C++Debug. Chapter V contains a summary, conclusions, and some areas

of future work.

There are seven appendices: one on notation, one containing a user's manual for

C++Debug, one containing datastructure design for C++Debug, one containing software

4

specifications, one containing testing and evaluation, one containing sample programs

used for the computation of slicing-based metrics, and the final appendix contains sample

source code listing of C++Debug.

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

Localizing program errors is an arduous and time-consuming task, especially

when programs written by other people are involved. Several attempts have been made

to find ways that can enable one to locate errors more rapidly and effectively. Program

slicing [Weiser 81, 82, and 84] [Korel 88] [Gallagher and Lyle 91] is one of several

methods that have been used for this purpose.

Figure 1 shows the basic idea of program slicing and dicing. Let us assume that

Figure l(a) is a program to compute a tax fee. It is a large program with, say, 9000 lines

of code. In fact, the actual number of statements or functions is not very important. For

this program, let us assume we have found that the variable avg in line 8700 gives an

incorrect result, e.g., 4.25 instead of 3.25. Because the program is too large, it is difficult

to localize where the error is. Using program slicing technique based on variable avg,

we can get a new program of smaller size, 15 lines in this case, which still maintains all

aspects of the original program's behavior (Figure l(b)). Now, although the result is a

new program of a smaller size, sometime we cannot find where the error is. Fortunately,

5

~
(JC/
i::
ca -
~
~

cr'
i:,:,
Cl)
(")
~
i:,:,

0
°',

'rj
>-i
0

(JC/
>-i s
Cl) -..... (")
:::::s

(JC/

§
0..

~
(")
:::::s

(JC/

10 #include <stdio.h>

35 int summation(int count, int data) ;

100 int summation(int count, int data)
101 int sum= O;
102 for (int i = 0; i < count; i++)
103 sum= sum+ data[i];
104 return (sum);
105 }

8000 void main (int argc, char *argv[]) {
8001 float avg, sum;
8002 int data[4] = {3, 5, 2, 3), count= 4;

8004 sum= summation(count, data);
8005 avg = sum I count+ 1;

8700 printf(" %d %d \n", sum, avg);

9000}

(a) Original program

10 #include <stdio.h>
35 int summation(int count, int data) ;
100 int summation(int count, int data) {
101 int sum= O;
102 for (int i = O; i < count; i++)
103 sum= sum+ data[i];
104 return (sum);
105 }
8000 void main (int argc, char *argv[]) {
8001 float avg, sum;
8002 int data[4] = {3, 5, 2, 3), count= 4;
8004 sum= summation(count, data);
8700 printf(" %d %d \n", sum, avg);
9000}

(c) A program slice based on variable sum

10 #include <stdio.h>
35 int summation(int count, int data) ;
100 int summation(int count, int data) {
101 int sum= O;
102 for (int i = O; i < count; i++)
103 sum= sum+ data[i];
104 return (sum);
105 }
8000 void main (int argc, char *argv(]) {
8001 float avg, sum;
8002 int data[4] = {3, 5, 2, 3), count= 4;
8004 sum= summation(count, data);
8005 avg = sum I count + 1;
8700 printf(" %d %d \n", sum, avg);
9000}

(b) A program slice based on variable avg

8005 avg= sum I count+ 1;

(d) A final program segment,
which contains an error,
after using dicing

7

in this example, variable sum in line 8700 gives the correct answer and yields the slice as

shown in Figure l(c). To localize an error, dicing technique can be used by comparing

both slices, where one contains no errors but the other one does. Some statements

sliced on correct variables will then be removed from those sliced on variables with

incorrect values. Upon completion of these steps, we get a new slice that is smaller and

contains an error as shown in Figure l(d). Finally, it is discovered that the correct

statement should be avg= sum/count, instead of avg = sum/count+l.

2.2 Program Slicing

The notion of slicing is based on the premise that instead of locating errors in the

original program, which can be of large size, one can locate errors in a program of

smaller size, which is sliced from the original program but still preserves part of the

original program's behavior for a particular variable [Weiser 84].

Advantages of slices and slicing are based on four points [Weiser 84]. First,

slices can be found automatically by a method used to decompose programs through

analyzing their data flow and control flow. Second, a slice is normally smaller than the

original program. As a consequence, when slicing at a variable of interest, the size of the

resulting program slice is generally smaller than that of the original program. Third,

slices can be executed independently of one another. In other words, a slice is itself an

executable program whose behavior is identical to the specified subset of the original

program's behavior. In other words, a slice produces a specific projection of the original

program's behavior.

In addition to the four points mentioned above, Weiser also mentioned two

8

intuitively desirable properties of a slice [Weiser 81]. First, a slice must be obtained from

the original program by statement deletion. Second, once the statement deletion has been

accomplished, the behavior of the resulting slice must correspond to the behavior of the

original program as observed through a particular variable in the slicing criterion.

Program slicing can be classified into two main categories: static slicing and

dynamic slicing. These categories are discussed below.

2.2.1 Static Slicing

Static slicing [Weiser 81, 82, and 84] is a method defined on the basis of all

computations of a program. It yields a program slice of generally larger size than that of

dynamic slicing (or, in the best case, of equal size to that of dynamic slicing), because

static slicing often gives a slice containing statements that have no influence on the

values of variables of interest for a particular execution [Korel and Laski 90]. Also, static

slicing cannot treat the array elements and fields in dynamic records as individual

variables. Finally, static slicing cannot support run-time handling. A static program slice

is determined directly from the original source program (see Section 2.4 for examples).

2.2.2 Dynamic Slicing

Unlike static slicing, dynamic slicing [Korel 88] [Korel and Laski 88 and 90] is

defined on the basis of one computation rather than all computations, and generates a

dynamic program slice by computing from the trajectory that is a feasible path that has

actually been executed for some input of the original source program (see Section 2.4 for

examples). In addition, this method enables one to treat the array elements and fields in

dynamic records as individual variables [Korel and Laski 90]. In this way, the size of the

9

resulting slice becomes generally smaller. Moreover, dynamic slicing allows one to keep

track of run-time type binding, which is unknown at compile time but is determined until

when the program is executed.

2.3 Dicing

Dicing is the process of identifying a set of statements likely to contain an error

[Lyle 84] [Nanja 90] [Nanja and Samadzadeh 90] [Samadzadeh and Wichaipanitch 93].

The idea is first to compare two or more slices using program slicing techniques (see

Section 2.4 for an example). Only one of these will slice on a variable with an incorrect

value and the other(s) will slice on variables with correct values. One must first ascertain

that the latter contains no errors. Some statements sliced on correct variables will then be

removed from those sliced on the variable with incorrect values. Upon completion of

these steps, a new slice is obtained that is smaller and contains the error.

It should be noted that the validity of the use of dicing rests on three important

assumptions [Weiser and Lyle 86]. First, it is necessary that testing be reliable and that

all incorrectly computed variables be identified. Second, if the computation of a variable

V depends on the computation of another variable w, then whenever w has an incorrect

value, so does v. Third, it is necessary that one and only one fault exist in the program.

The next sections provide examples of the computation of slices (static and

dynamic) and dices.

2.4 Examples

Illustrated below are the comparison of the sizes of program slices generated from

10

static slicing, dynamic slicing, and dicing techniques.

The program in Figure 2 is designed to count the number of individual integers

falling between 1 and 5 read from the input data. Furthermore, this program computes

the sum and average of these integers. In this example, the variable MaxDa ta is 5 and

the array called Data contains 3, 5, 5, 2, and 2. Upon completion of program execution,

the program should yield the results as shown in Figure 3. However, this program

Var
MaxData, Count
Sum, Avg
Data, CountNumber

begin

integer;
real;
array[l .. 10] of integer;

/*Data= (3,5,5,2,2) */
/* MaxData = 5 */

1 read(MaxData, Data);
2 Count := 1;
3 Sum : = 0;
4 while Count<= MaxData do

begin
/* count occurrences of number*/

5 if Data[Count] = 1 then
6 CountNumber[l] := CountNumber[l] + 1;
7 if Data[Count] = 2 then
8 CountNumber[2] := CountNumber[2] + 1;
9 if Data[Count] = 3 then

10 CountNumber[3] := CountNumber[3] + 1;
11 if Data[Count] = 4 then
12 CountNumber[4] := CountNumber[4] + 1;
13 if Data[Count] = 5 then
14 CountNumber[5] .- CountNumber[5] + 1;

/* computing summation*/
16 Sum.- Sum+ Data[Count];
17 Count :=Count+ 1;

end;
/* computing average*/

18 Avg .- Sum I (MaxData + 1);
/* display output*/

19 write(CountNumber, Sum, Avg);
end

Figure 2. A program for counting occurrences and calculating the sum and
average of a set of numbers

11

contains an error m line 18. Rather than Avg Sum/MaxDa ta, the program

computes Avg : = Sum/MaxData+l), thus yielding an error (Avg= 2.8 instead of

3.4). To localize such an error, program slicing and dicing techniques can be used.

Figure 4 is a static program slice computed based on variable Coun tNurnber in

line 19. The static slicing method treats array variables as a single variable regardless of

the number of elements in the array. In contrast, if the dynamic slicing approach is used,

array elements are treated as individual variables. As a result, the size of a program slice

is generally reduced by using dynamic slicing techniques. As shown in Figure 5, no

Number of each integer: 0,2,1,0, and 2, respectively
Sum 17
Avg= 3.4

Figure 3. The output data of the program in Figure 2

Begin
1 read(MaxData, Data);
2 Count := 1;
4 while Count<= MaxData do

begin
5 if Data[Count] = 1 then
6 CountNumber[l] := CountNumber[l] + 1;
7 if Data[Count] = 2 then
8 CountNumber[2] := CountNumber[2] + 1;
9 if Data[Count] = 3 then

10 CountNumber[3] := CountNumber[3] + 1;
11 if Data[Count] = 4 then
12 CountNumber[4] := CountNumber[4] + 1;
13 if Data[Count] = 5 then
14 CountNumber[S] := CountNumber[S] + 1;
17 Count :=Count+ 1;

end;
19 write(CountNumber, Sum, Avg);

end

Figure 4. A static program slice computed based on variable Coun tNurnber
in line 19 of the program in Figure 2

12

program slice results from variable CountNumber [1] in line 19.

Figure 6 shows the program slice resulting from computing a dynamic slice based

on variable CountNumber [2] in line 19. Obviously, the sizes of the program slices

resulting from Coun tNumber [1] and Coun tNumber [2] are different because

dynamic slicing treats the two array elements as two different variables whereas static

slicing does not.

Figures 7 and 8 depict program slices generated based on variables Sum and Avg,

respectively, in line 19. For these variables, the static slicing method [Lyle 84] [Nanja

90] [Nanja and Samadzadeh 90] and the dynamic slicing method [Korel and Laski 90]

yield identical results.

Begin
19 write(CountNumber, Sum, Avg);

end

Figure 5. A dynamic program slice computed based on variable Coun tNumber [1]
in line 19 of the program in Figure 2

Begin
1 read(MaxData, Data);
2 Count := l;
4 while Count<= MaxData do

begin
7 if Data[Count] = 2 then
8 CountNumber[2] := CountNumber[2] + l;

17 Count :=Count+ l;
end;

19 write(CountNumber, Sum, Avg);
end

Figure 6. A dynamic program slice computed based on variable Coun tNumber [2]
in line 19 of the program in Figure 2

13

With the use of the dicing algorithm, a new program segment can be generated, as

shown in Figure 9. This program segment contains the final erroneous line (which is line

18).

Begin
1 read(MaxData, Data);
2 Count . - 1;
3 Sum . - 0;
4 while Count <= MaxData do

begin
16 Sum:= Sum+ Data[Count];
17 Count :=Count+ 1;

end;
19 write(CountNumber, Sum, Avg);

end

Figure 7. A program slice computed based on variable Sum in line 19 of the
program in Figure 2

Begin
1 read(MaxData, Data);
2 Count := 1;
3 Sum .- 0;
4 while Count <= MaxData do

begin
16 Sum .- Sum + Data[Count];
17 Count . - Count + 1;

end;
18 Avg := Sum I (MaxData + 1);
19 write(CountNumber, Sum, Avg);

end

Figure 8. A program slice computed based on variable Avg in line 19 of the
program in Figure 2

18 Avg := Sum I (MaxData + 1);

Figure 9. A final program segment after using dicing

14

2.5 Dynamic Slicing Procedures

2.5.1 Background

To facilitate better understanding of program slicing, it is necessary that the

following background [Korel and Laski 90] be presented.

Let the flowgraph of a program P be a directed graph (N, A, s, e) and c be a

slicing criterion, where N is the set of nodes, A is a binary relation on N (a subset of N x

N), referred to as the set of arcs, s E N is a unique entry node, and e E N is a unique exit

node.

Each node in N consists of one statement: a single instruction or a control

instruction. A single instruction can be an assignment statement, an input or output

statement, etc. A control instruction can be such statements as an if-then-else statement

or a while statement that are also called test instructions.

An arc(n, m) E A corresponds to a possible transfer of control from instruction n

to instruction m.

A path from the entry nodes to some node k, k E N, is called a sequence <n1, n 2,

... , nq> of instructions, such that n 1 = s, nq = k, and (ni, ni+1) E A, for all ni, 1 ~ i < q.

If there are input data, which cause a path to be traversed during program execution, the

path is feasible.

A trajectory is a feasible path that has actually been executed for some input. For

example, in Figure 10, <1, 2, 3, 4, 9, 10, 16, 17, 4, 13, 14, 16, 17, 4, 18, 19> is the

trajectory when the program in Figure 2 is executed on input data MaxDa ta = 2, Data =

(3, 5). A resulting trajectory can be the initial segment of an infinite path if the execution

does not terminate in the case of an infinite loop. A trajectory is illustrated in terms of an

var

MaxData, Count
Sum, Avg

integer;
real;

Data, CountNumber

begin

array[l .. 10] of integer;
/*Data= (3,5), and MaxData

/* action instruction in action*/

11 read(MaxData, Data);
22 Count .- l;
33 Sum := O;
44 Count <= MaxData
95 Data[Count] = 3

10 6 CountNumber[3] := CountNumber[3] + l;
167 Sum:= Sum+ Data[Count];
17 8 Count :=Count+ 1;

49 Count<= MaxData
13 10 Data[Count] = 5
1411 CountNumber[S] := CountNumber[S] + l;
1612 Sum:= Sum+ Data[Count];
1713 Count :=Count+ 1;

414 Count<= MaxData
1815 Avg:= Sum I (MaxData + 1);
1916 write(CountNumber, Sum, Avg);

2 */

Trajectory T = <l,2,3,4,9,10,16,17,4,l3,14,16,l7,4,18,19>

Figure 10. A trajectory of the program from Figure 2 on input data
MaxData = 2, Data= (3,5)

15

abstract list whose elements are accessed according to their positions in it. For example,

T(2) = 2 and T(5) = 9. A trajectory is also illustrated in terms of a pair (instruction, its

position in the trajectory), rather than the instruction itself, so as to distinguish between

multiple occurrences of the same instruction in the trajectory.

For example, instruction X at position pin trajectory Tis represented by pair(X,

p). For brevity and ease of understanding, pair(X, p) is replaced by xP and is referred

to as an action. For example, 44 and 49 in trajectory T in Figure 10 are actions that

involve the same instruction 4. An action xP is a test action if X is a test instruction. For

16

example, 44, 49, and 414 in trajectory Tin Figure 10 are test actions.

Let T = <X1, X2, •.. , Xm> denote a trajectory of length m, and q be a position in T, 1

~ q ~ m. Then the following can be obtained.

1. Front(T, q) denotes the sublist <X1, X 2, ... , Xq>, consisting of the

first q elements of T.

2. Back(T, q) denotes the sublist <Xq+I, Xq+2, ... , Xm>, consisting of

elements that follows T(q), a trajectory at position q.

So, for all T and q the following can be obtained.

T = Front(T, q) II Back(T, q), where II represents concatenation.

3. DEL(T, R), where Risa predicate on the set of instructions in T, means

a subtrajectory obtained from T by deleting from it all elements T(i)

that satisfy R.

2.5.2 Slicing Criterion

A slicing criterion is the specification for a particular behavior of interest. A

slicing criterion can be expressed as the values of some set of variables at some set of

statements [Weiser 81]. If we let T be the trajectory of program P on input x, a slicing

criterion of program P executed on x can be defined as a triple c = (x, Iq, V) where Iq is

an action in T and V is a subset of the variables in P [Korel and Laski 90].

It is readily apparent that the slicing criterion of dynamic slicing differs from that

of static slicing. The slicing criterion of dynamic slicing contains an input value x,

whereas that of static slicing contains only a pair C = (I, V). This is because a change in

the value of input x will result in a change in the trajectory, which in turn may result in a

17

change in the size of the resulting slice. That is to say, the slicing criterion of dynamic

slicing is defined in terms of a given trajectory on a specific input x, rather than in terms

of the set of all possible paths. In the case of static slicing, a slicing criterion is an

instruction I in a program P, while in the case of dynamic slicing, a slicing criterion is an

instruction I at a particular execution position q in a trajectory T.

2.5.3 Steps Needed to Obtain a Dynamic Program Slice

The procedure needed to obtain a dynamic program slice can be summarized in

five steps as explained below along with examples to illustrate the process.

1. Find a trajectory [Korel 88] [Korel and Laski 88 and 90] of the program (a trajectory

is a feasible path traversed during program execution, see Subsection 2.5.1 for details).

For the program in Figure 2, a trajectory is shown in Figure 10. In Figure 10, all

instructions in the trajectory represent a pair consisting of an instruction and its position

in the trajectory, instead of the instruction itself. In other words, X at position p in T will

be referred to as pair(X, p) or xP, which is referred to as an action [Korel and Laski 90].

For instance, 44 and 49 in trajectory T in Figure 10 are actions involving the same

instruction 4. An action xP is a test action provided that x is a test instruction [Korel and

Laski 90].

2. For each line xP in the trajectory, compute U(XP), the set of variables that are used in

xP, and also compute D(XP), the set of variables that are defined in xP [Korel and Laski

90]. For example, in the execution trace of Figure 10 we have

1815 Avg : = Sum I (MaxData + 1) ;

Avg is a set of variables defined in 185, D(185). Sum and MaxData are a set of

18

variables that are used in 185, U(l 85). The sets U(XP) and D(XP) for the trajectory in

Figure 10 are shown in Figure 11.

Action D(XP) U(XP)

11 MaxData, Data

22 Count

33 Sum

44 Count, MaxData

95 Data [1], Count

106 CountNumber[3] CountNumber[3]

167 Sum Sum, Data [1], Count

178 Count Count

49 Count, MaxData

1310 Data[2], Count

1411 CountNumber[S) CountNumber[5]

1612 Sum Sum, Data[2], Count

1713 Count Count

414 Count, MaxData

1815 Avg Sum, MaxData

1916 CountNumber, Sum, Avg

Figure 11. The sets D(XP) and U(XP), definition and use, for the trajectory in Figure 10

3. Compute the DU (Definition-Use) Relation, a relation in which one action assigns a

value to an item of data and the other action uses that value [Korel and Laski 90]. For

example, in the execution trace of Figure 11, 22 defines the variable Count, and 44, 95,

167, and 178 use the defined value of that variable. Let M(T) be a set of actions in a given

trajectory T, where M(T) = { (X, p) : T(p) = X } . DU is a binary relation on M(T) defined

bellow [Korel 88].

xP DU yt, 1 ~ p < t, iff there exists a variable v such that
(1) v E U(Yt), and
(2) xP is the last definition of v at t

19

where, the last definition xP of variable v at t is the action which last assigned a value to

v when twas reached on trajectory T.

For example, in the trajectory of Figure 11, 22 is the last definition of variable

Count at the execution positions 3 through 8. The DU Relation for the trajectory in

Figure 11 is shown in Figure 12.

DU (1 1)

DU(2 2)

DU (3 3)

DU (106)

DU(l6 7)

DU (17 8)

DU(14 11)

DU (1612)

DU (1713)

DU (1815)

{44' 95' 167' 49' 1310' 1612' 414' 1815}

{44, 95 ' 167 ' 17 8 }

{ 167 }

{ 1916}

{ 1612}

{49,1310,1512,1713}

{1916}

{1815' 1916}

{ 414}

{ 1916}

Figure 12. The DU (definition-use) relation for the trajectory depicted in Figure 10

4. Compute the TC (Test-Control) Relation, capturing the effect between test actions and

actions that have been chosen to execute by those test actions [Karel and Laski 90]. For

example, in the execution trace of Figure 10, the scope of test action 44 influences the

execution of 95, 106, 167, and 178, but it does not influence the execution of 1310, 1411,

1612, and 1713 . Let M(T) be a set of actions in a given trajectory T. TC is a binary relation

on M(T) defined bellow [Korel and Laski 90].

xP TC yt, 1 ~ p < t, iff
(1) Y is in the scope of influence of x, and
(2) for all k, p< k < t, T(k) ct X

where, the scope of influence is defined as follows:

(1) if X then Bl else B2; Instruction Y is in the scope of influence of X

iff Y is in Bl or B2.

(2) while X do B; Instruction Y is in the scope of influence of X iff Y is
inB.

20

For example, in the program of Figure 2, instructions 5, 7, 9, 11, 13, 16, and 17

are in the scope of influence of test instruction 4, but instructions 18 and 19 are not. The

TC Relation for the trajectory in Figure 10 is shown in Figure 13.

5. Compute the slicing set Sc using the following definitions [Korel and Laski 90].

5.1 Let xP IR Y\ iff X = Y is the identity Relation IR on M(Front(T, q)). The IR

Relation for the trajectory in Figure 10 is obtained as shown in Figure 14.

TC (4 4)

TC (4 9)

TC (4 14)

TC (9 5)

TC(l3 10)

{9 5 ,10 6 ,16 7 ,17 8 }

{13 10 , 1411 , 1612 , 17 13 }

Figure 13. The TC (test-control) relation for the trajectory depicted in Figure 10

IR(4 4)

IR(4 9)

IR (4 14)

Figure 14. The IR (identity relation) relation for the trajectory depicted in Figure 10

21

5.2 Let C = (x, Iq, V) be a slicing criterion and T be a trajectory on input x. To find the

slicing set Sc, we first find the set A0 of all actions that have direct influence on V at q

and on action Iq. A0 is defined as follows

Ao= LD(q, V) U LT(Iq)

where, LD(q, V) is the set of last definitions of variables in V at the execution position q,

and LT(IP) is a set of test actions which have Test-Control influence on Iq.

Sc can be determined iteratively as the limit of a sequence s 0, s1, ... , sn, 0 ~ n <

q, which is defined as follows

where Ai+1 = { XPE M(T): 1 ~p<q,

(1) xv !l s\ and
(2) there exists yt E si, t < q, xv z yt }

where Z = DU U TC U IR.

Finally, we can get the slice from the following definition.

where skis the limit of the sequence {Si}.

Example 1. Consider again trajectory Tin Figure 10. Using the criterion

Cl= (x, 1916, {CountNumber[l]}), x = (MaxData, CountNumber) = (2,(3,5)),

we have

LD(16, {CountNumber[l]}) = {}, LT(1916) = {},

Ao={}, so={},

And finally, the dynamic slice is shown in Figure 15.

begin
19 write(CountNumber, Sum, Avg);

end.

22

Figure 15. A dynamic program slice computed based on variable CountNumber[l]
in line 19 of the program in Figure 2

Example 2. Consider again trajectory Tin Figure 10. Using the criterion

C2 = (x, 1916, {CountNumber[5]}), x = (MaxData, CountNumber) = (2,(3,5)),

we have

LD(16, {CountNumber[5]}) = {1411 }, LT(1916) = {},

Al= {49, 1310}, SI= {49, 1310, 1411},

A2 = {11,44, 178 }, S2 = {11,44, 178,49, 1310, 1411 },

A3 = {22 }, S3 = { 11, 22, 44, 178, 49, 1310, 1411 },

A4 = {},
Sc2= S 3 U {1916 } = {1 1,22,44, 178,49, 1310, 1411, 1916 }.

And finally, the dynamic slice is shown in Figure 16.

begin
1 read(MaxData, Data);
2 Count := l;
4 while Count<= MaxData do

begin
13 if Data[Count] = 5 then
14 CountNumber[SJ := CountNumber[SJ + l;
17 Count :=Count+ 1;

end;
19 write(CountNumber, Sum, Avg);

end.

Figure 16. A dynamic program slice computed based on variable CountNumber[5]
in line 19 of the program in Figure 2

Example 3. Consider again trajectory Tin Figure 10. Using the criterion

C3 = (x, 1916, {Sum}), x = (MaxData, CountNumber) = (2,(3,5)), we have

LD(16, {Sum})= {1612 }, LT(1916) = {},

Ao= { 1612},

A 1 = { 11, 167, 178, 49},

A2 = {22, 33, 44},

A3 = {},
Sc3 = S2 U { 1916 } = { 11, 22, 33, 44, 167, 178, 49, 1612, 1916 }.

And finally, the dynamic slice is shown in Figure 17.

begin
1 read(MaxData, Data);
2 Count := l;
3 Sum : = 0;
4 while Count<= MaxData do

begin
16 Sum:= Sum+ Data[Count];
17 Count :=Count+ 1;

end;
19 write(CountNumber, Sum, Avg);

end.

Figure 17. A dynamic program slice computed based on variable Sum in line 19
of the program in Figure 2

Example 4. Consider again trajectory Tin Figure 10. Using the criterion

C4 = (x, 1916, {Avg}), x = (MaxData, CountNumber) = (2,(3,5)), we have

LD(16, {Avg})= {1815 }, LT(1916) = {},

Ao = {1 815}, So = {1 815},

Al = { l 1, 1612}, SI = {11, 1612, 1815},

A2 = {167, 178,49 }, S2 = {11,167, 178,49, 1612, 1815 },

23

A3 = {22, 33, 44},

A4 = {},

Sc4 = S 3 u { 1916 } = { 11, 22, 33, 44, 167, 178, 49, 1612, 1815, 1916 }.

And finally, the dynamic slice is shown in Figure 18.

begin
1 read(MaxData, Data);
2 Count := 1;
3 Sum : = 0;
4 while Count<= MaxData do

begin
16 Sum:= Sum+ Data[Count];
17 Count :=Count+ l;

end;
18 Avg:= Sum I (MaxData + l);
19 write(CountNurnber, Sum, Avg);

end.

Figure 18. A dynamic program slice computed based on variable Avg in line 19
of the program in Figure 2

2.6 Dicing Procedures

24

Dicing [Lyle 84] [Nanja 90] [Nanja and Samadzadeh 90] is the process of

identifying a set of statements likely to contain an error. A dice is determined using the

following process.

1. Compute the slice (Si) for the incorrectly valued output variable(s),

which is a subset of KBI (known to be incorrect).

2. Compute the slice (Sc) for the correctly valued output variable(s), which

is a subset of CSF (correct so far).

3. Compute (Si - Sc), which makes up the dice.

25

Example 5. Observe that the dynamic program slice in Example 3 is a subset of CSF,

while the dynamic program slice in Example 4 is a subset of KBI. Consequently, using

the definition of dicing, a dice program can be shown in Figure 19.

18 Avg:= Sum I (MaxData + 1);

Figure 19. The final program segment after slicing and dicing

Once the procedure is finished, line 18 will be shown as the incorrect line.

2.7 Problems with Slices

Although a number of significant advantages exist with the use of program

slicing, program slicing does have disadvantages [Weiser 84]. These disadvantages can

be summarized as follows. First, slices can be expensive to find. Second, a program may

contain no significant slices other than itself. Third, total independence of slices may

result in additional complexity in each slice that could be cleaned up if simple

dependencies could be identified among slices. Finally, the selection of variables for

slicing and dicing could pose significant problems. However, it can be asserted that

whenever the program to be debugged is large, program slicing could effectively be used.

CHAPTER III

C++ DYNAMIC SLICING AND DICING PROCEDURES

3.1 Introduction

A number of definitions and algorithms originally introduced by Korel and Laski

[Korel and Laski 90] were modified, in order to compute slices in classes, objects, arrays,

pointers, references, dynamic allocation operators, function overloading, copy

constructors, default arguments, operator overloading, inheritance, virtual functions,

polymorphism, templates, and exception handling of a C++ program. Those modified

definitions plus a number of new definitions and algorithms are introduced in this

chapter.

3.2 Definitions

Based on Korel and Laski's work [Korel and Laski 90], let the flow graph of a

program P be a directed graph (N, A, s, e) and C be a slicing criterion, where N is a set

of nodes, A is a binary relation on N (a subset of N x N) referred to as the set of arcs, s E

N is a unique entry node, and e E N is a unique exit node.

Each node in N consists of one statement, including a single instruction, a control

instruction, and a function instruction. A single instruction can be, for example, an

26

27

assignment statement or an input or output statement. A control instruction can be such

statements as an if-then-else statement or a while statement, which are also called test

instructions. A function instruction can be either a called or a calling function

instruction.

An arc(n, m) E A corresponds to a possible transfer of control from instruction n

to instruction m.

A path from the entry node s to some node k, k E N, is called a sequence <n1 ,

n 2, ... , nq> of instructions, such that n 1 = s, nq = k, and (ni, ni+i) E A, for all ni, 1 :'.S: i

< q. If there are input data that cause a path to be traversed during program execution,

the path is feasible. A feasible path that has actually been executed for some input is

called a trajectory.

The program in Figure 20 is designed to compute the factorial of a given number

Num. For example, if Num = 3 the program yields the result of 6. Figure 21 shows a

trajectory of the program in Figure 20 on input data Num = 3.

Definition 1

Let X be an instruction m a program and X E IN+ (the set of non-negative

integers). Let P be the set of instruction numbers in a tested C++ program, then P = { 1,

2, ... , n} represents a program of length n, where n is the size of the program. For

example, the C++ program in Figure 20 is the program P = { 1, 2, ... , 25}, where

#include <iostream> is instruction X = 1, int Fac(int N) is instruction X = 3,

etc.

P = {Xjforallxwithl:'.S:X:'.S:n}

1 #include <iostream>
2
3 int Fac(int N);
4
5 int Fac(int N) {
6
7
8
9

int F
int I

1;
2;

10 while(I <= N)
11 F = F * I;
12 I++;
13 }
14 return F;
15
16
17 main() {
18
19
20
21
22

int Num;

cin>>Num;
cou t<<Fac(Num);

23 cout<<Num;
24
25 }

II function prototype

II called function

II main program

I I number

II calling function

Figure 20. A program for computing the factorial of a number

where n = length of the program.

Definition 2

28

Let F name be a function, i.e., a set of instruction X's in the scope of influence of

the function name, where all blank lines are ignored. For example, in Figure 20, FFac =

{5, 7, 8, 10, 11, 12, 13, 14, 15} and Fmain = {17, 19, 21, 22, 23, 25}. Fname C P, and

F name = F main if the program has one function.

Fname = {Xifora11Xwithi:5X:5k}

where (1) i is the starting line number of function name, i E P

(2) k is the ending line number of function name, k E P

29

Definition 3

Let T be a trajectory, i.e., a feasible path that has actually been executed for some

input [Karel and Laski 90]. A trajectory of length mis denoted by a list T = <X1 , X2 , •.. ,

Xrn>, where Xis an instruction of a tested C++ program. For example, in Figure 21, <17,

19, 21, 5, 7, 8, 10, 11, 12, 13, 10, 11, 12, 13, 14, 22, 23, 25> is the resulting trajectory

when the program in Figure 20 is executed on input data Num = 3.

T =<XI for all X, where X's are in a feasible path executed for some input
andXEP >

Action Instruction in

main() {

int Num;
cin>>Num;
int Fac(int N)

int F = 1;
int :i; = 2;

17 1

192

213

54
75
86
10 7

11 8

12 9

1310

while(I <= N)
F = F
I++;

}

1011

1112
while (I

F = F
12 13 I++;
1314 }

* I;

<= N)

* I;

action

{

{

{

1415 return F; <-- End of Function
22 16 cout<<Fac (Num);
23 17 cout<<Num;
2518 } <== End of Function

T
TFrnain
TFFac

<17,19,21,5,7,8,10,11,12,13,10,11,12,13,14,22,23,25>
<17,19,21,22,23,25>
<5,7,8,10,11,12,13,10,11,12,13,14>

Figure 21. A trajectory of the program in Figure 20 on input data Num = 3

Definition 4

Let TF name be a function trajectory, i.e., a feasible path of a function name that

30

has actually been executed for some input. TF name is a sublist of T. If a trajectory of

length mis denoted by T = <X1 , X2 , ... , Xrn>, then the function trajectory name is denoted

by TFname = <Xi, Xi+l, ... , Xk>, where Xi, Xi+l, ... , Xk are a list of the instruction X's

which are in the scope of a given function F name, where i denotes the position of entry

node and k denotes the position of ending node of the function name, (l ::; i < k, and i <

k::; m). For example, in Figure 21, <17, 19, 21, 22, 23, 25> is the trajectory of TFmain,

and <5, 7, 8, 10, 11, 12, 13, 10, 11, 12, 13, 14> is the trajectory of TFFac, when the

program in Figure 20 is executed on input data Num = 3.

TF name = < X I for all X, where X's are in a feasible path executed for some input,
XE Fname, and XE T>

Definition 5

Let action be pair(X,p), i.e., instruction X at position p, which will be replaced

by xP for brevity and ease of understanding [Korel and Laski 90]. For example, 118 and

11 12 in trajectory T in Figure 21 are actions that involve the same instruction 11. An

action xP is a test action if Xis a test instruction such as while or for. For example, 107

and 1011 in trajectory Tin Figure 21 are test actions.

Definition 6

Let M(T) be a set of actions in a given trajectory T, where M(T) = { xP: instruction

X at position pin trajectory T } [Korel and Laski 90]. For example, in Figure 21, { 171,

of actions M(T).

31

Definition 7

Let M(TF name) be a set of actions in a given function of a given trajectory TF name,

where M(TFname) = { xP: instruction X at position pin trajectory TFname }. M(TFname) is

a subset of M(T). For example, in Figure 21, {1?1, 192,213, 2216, 2317,2518 } is a set of

actions M(TFmain), and {54, 75, 86, 107, 118, 129, 1310, 1011 , 1112, 1213, 1314, 1415 } is a set

of actions M(TFFac),

Definition 8

Let C be a slicing criterion, which is the specification for a particular behavior of

interest (see Subsection 2.5.2 for more detail). A slicing criterion can be expressed as the

values of some set of variables at some set of statements [Weiser 81]. If we let T be the

trajectory of program P on input x, a slicing criterion of program P executed on x can be

defined as a triple C = (x, Iq, V), where Iq is an action in T and Vis a subset of variables

in P [Korel and Laski 90].

Definition 9

Let D(XP) be the set of variables that are defined in action xP, where xP E M(T).

For example, in the trajectory of Figure 21,

213 cin>>Num;

Num is a set of variables that are defined in 21 3, D(21 3) = {Num}.

Let DF name(XP) be the set of variables that are defined in action xP, where xP E

M(TFname). In Figure 21, since 213 E M(TFmain) and Num is a set of variables that are

defined in function main, DFmain(213) = {Num}.

32

Definition 10

Let U(XP) be the set of variables that are used in action xP, where xP E M(T). For

example in the trajectory of Figure 21,

1011 while (I<= N) {

I and N are the set of variables that are used in 1011 , U(1011) = { I, N}.

Let UF name(XP) be the set of variables that are used in action xP, where xP E

M(TFname). From last example, since 1011 E M(TFFac) and I and N are the set of variables

that are used in function Fae, UFFac(1011) = {I, N}.

Definition 11

Let LF name (XP) be a set of variables and C++ preprocessors that are declared as a

local declaration in function name. For example, in the trajectory of Figure 21,

LFFacC75) = {F}, LFFacC86) = {I}, and LFmain(192) = {Num}. There are no local C++

preprocessors in this example.

Definition 12

Let DU be a Definition-Use Relation, a relation in which one action assigns a

value to an item of data and the other action uses that value [Korel and Laski 90]. For

example, in the trajectory of Figure 21, 11 12 assigns a value to variable F and 1415 use

that value. Instead of using M(T) as Korel and Laski did, M(TF name) was used in this work

in order to compute a slice from functions or classes.

M(TFFac) DFFac(XP) UFFac(XP) LFFac(XP)

54 N
75 F

86 I

10 7 I, N

118 F F, I

129 I I

1310

1011 I, N
1112 F F, I

12 13 I I

1314

1415 F

Figure 22. The sets M(TFFac), DFFac(XP), UFFac(XP), and LFFac(XP)
for the trajectory in Figure 21

M(TFmain) DFmain(XP) UFmain(XP) LFmain(XP)

171

192 Nurn

21 3 Nurn

2216 Nurn

23 17 Num

2518

Figure 23. The sets M(TFmain), DFmain(XP), UFmain(XP), and LFmain(XP)
for the trajectory in Figure 21

33

Let M(TF name) be a set of actions in a given trajectory TF name· DUF name, a

Definition-Use-Functionname Relation, is a binary relation on M(TFname) defined as

follows:

xP DUF name Y\ i =::; p < t, iff there exists a variable v
such that (1) v E UFname (Yt), and

(2) xP is the last definition of v at t

34

where, the last definition xP of variable v at t is the action which last assigned a value to

v when t was reached on trajectory TF name·

For example, in the trajectory of Figure 21, 21 3 is the last definition of variable

Nurn at the execution positions 4 through 18. The DUFname Relation for the trajectory in

Figure 21 is shown in Figures 24 and 25.

Definition 13

Let LDR be a Local-Declaration Relation, a relation in which one action declares

a variable and the other action defines or uses that variable. For example, in the

trajectory of Figure 21, 75 declares variable F and 118,11 12 define and 118,11 12,1415 use

that variable.

Let M(TFname) be a set of actions in a given trajectory TFname· LDRFname, a Local-

Declarationname Relation, is a binary relation on M(TF name) defined as follows:

xP LDRF name Y\ i =::; p < t, iff there exists a variable v
such that (1) v E UFname(Yt) U DFname(Yt), and

(2) xP is the action where variable v was declared
in trajectory TF name·

The LDRF name Relation for the trajectory in Figure 21 is shown in Figures 26 and 27.

DUFFac (118)

DUFFac (12 9)

DUFFac (1112)

DUFFac (12 13)

{ 1112}

== { 1011 ' 1112 ' 12 13 }

{ 1415}

{}

Figure 24. The DUFFac relation for the trajectory depicted in Figure 21

Figure 25. The DUFrnain relation for the trajectory depicted in Figure 21

LDRFFac (5 4)

LDRFFac (7 5)

LDRFFac (8 6)

{10 7 , 1011 }

{11 8 ,1112 ,1415 }

{ 10 7 ' 11 8 ' 12 9 ' 1011 , 1112 ' 1213 }

Figure 26. The LDRFFac relation for the trajectory depicted in Figure 21

Figure 27. The LDRFrnain relation for the trajectory depicted in Figure 21

Definition 14

35

Let TC be a Test-Control Relation, capturing the effect between test actions and

actions that have been chosen to execute by these test actions [Korel and Laski 90]. For

example in the trajectory of Figure 21, the scope of test action 107 influences the

execution of 118, 129, and 1310, but it does not influence the execution of 1011, 11 12, and

1213• Instead of using M(T) as Korel and Laski did, M(TFnarne) was used in this work in

order to compute a slice from functions or classes. Let M(TF name) be a set of actions in a

36

given trajectory TF name· TCF name, a Test-Control-Functionname Relation, is a binary

relation on M(TF name) defined as follows:

p t . < 'ff X TCFname Y , l - p < t, 1

(1) Y is in the scope of influence of X, and
(2) for all k, p < k < t, T(k) -::J:. X

where, the scope of influence is defined as follows.

(1) if X then Bl else B2; Instruction Y is in the scope of influence of X iff Y
is in Bl or B2.

(2) while X do B; Instruction Y is in the scope of influence of X iff Y is in B.
(3) do B while X; Instruction Y is in the scope of influence of X iff Y is in B.
(4) case X do B; Instruction Y is in the scope of influence of X iff Y is in B.
(5) for X do B; Instruction Y is in the scope of influence of X iff Y is in B.
(6) function X do B; Instruction Y is in the scope of influence of X iff Y is in

B.

For example, in the trajectory of Figure 21, instructions 11, 12, and 13 are in the

scope of influence of test instruction 10, but instructions 17, 19, 21, 5, 7, 8, 14, 22, 23,

and 25 are not. The TCF name Test-Control-Functionname Relation for the trajectory in

Figure 21 is shown in Figure 28.

TCFFac{10 7)

TCFFac{10 11)

{11 8 ,12 9 ,13 10 }

{ 1112
f 1213

I 13 14 }

Figure 28. The TCFFac relation for the trajectory depicted in Figure 21

Definition 15

Let IRF name be an Identity Relation in Functionname, then XP IRF name yt, iff X =

Y is the identity relation IRFname on M(Front(TFname, q)), where Front(TFname, q) is

37

a sublist of TFname consisting of the first q elements of TFname, where TFname = <Xi,

Xi+l, ... , Xt, ... , Xq, ... , Xk> denotes a function trajectory, q is a position in TFname, 1 ~ i

< t, and t < q ~ k. The IRF name Relation for the trajectory in Figure 21 is obtained as

shown in Figure 29.

IRFFac (1017)

IRFFac (1011)

Figure 29. The IRFFac relation for the trajectory depicted in Figure 21

Definition 16

Figure 30 presents a part of the trajectory of FuncA(int i) and FuncB(int j),

where called FuncA(int i) is called by calling FuncA(5) at xn+i, and called

FuncB(int j) is called by calling FuncB(2) at x 1+1. From Figure 30, we find that T =
i-2 xi-1 i i+l xi+2 xj xj+l xk xk+l xl xl+l xm xn xn+l < ... , X , , X , X , , ... , , , ... , , , ... , , , ... , , , , ,

n+2 h . . k 1 d . . xi X , ... >, w ere i<J< , <m<n an X 1s any statement ma program P, TFFuncA = < ,

i+l Xi+2 j xl+l xm xn d TF _ Xj+l Xk xk+l Xl X ' ' ... , X ' ' ... , ' ... , >, an FuncB - < ' ... , ' ' ... , >.

Functions FuncA(int i) at xi and FuncB(int j) at xj+l are called a called function

instruction. An action xP is a called action if X is a called function instruction.

FuncA(5) at xn+i and FuncB(2) at x 1+1 are called calling function instructions. An

action xP is a calling action if X is a calling function instruction.

Called-to-Calling occurs when a slice is computed from a called action first and

then from a calling action. For example, in Figure 31, suppose one needs to find a slice

xi

x1+1

: \ .
FuncA(int i) { ... tlllli---+------ Called function

I
i

FuncB (int j) { ... ~1--i ----- Called function

Y U + V;

1 ~ -····-···················-··--
z = FuncB(2); ... tllllt---....----- Calling function

Xm O = Z + P;

:. _ _, _,
FuncA(5) ----------- Calling function

Figure 30. A trajectory of functions A and B where function A calls function B

38

of variable u at xk. The process starts from xk (which is in the scope of influence of

called function FuncB(int j), which is called by calling function FuncB(2) at x1+1),

and then xj+l, x 1+1, respectively. We find that called action xj+l comes before calling

action x1 +1 .

Calling-to-Called occurs when a slice is computed from a calling action first and

then from a called action. For example, in Figure 32, suppose that one needs to find a

slice of variable z at xm. The process starts from xm, and then x 1+1 (since z is last

FuncA(int i) {

FuncB(int j) {

Y = U + V;

xi }

x1+1 z = FuncB(2);

0 Z + P;

} Front (TF-~, l+l)

} Front I TF-~, kl

} Back(TF-,k)

Back (TFFuncA, l+l)

xn+l FuncA (5) ;
xn+2

Figure 31. Illustrate Called-to-Calling

1st Step:
Compute a slice on
variable u at xk
c = (x,xk, {U})

2nd Step:
After finishing
computing a slice
in FuncB,
computing a slice
in FuncA will be
started here.

39

defined at x 1+1 and used at xm) and then xj+l (since called FuncB(int j) is called by

calling FuncB(2)), respectively. We find that calling action x1 +1 comes before called

Modified from Korel and Laski's approach [Korel and Laski 90], let TFname =

<Xi, Xi+l, Xi+2, ... , Xk> be a trajectory of function name, and q be a position in

TFname, i ~ q ~ k. Then Front(TFname, q) is a sublist <Xi, Xi+l, ... , Xq> and

Back(TFname, q) is a sublist <Xq+l, Xm+2, ... , Xk> as shown in Figures 31 and 32. All

FuncA(int i) { I}
xj+l FuncB (int j) {

Y U + V;

xi }

x1+1 }
IO Z + P;

I } }

Z = FuncB(2);

• --··--·········'""''''""''''''''""'"-········-··~
xn+l FuncA (5) ;
xn+2

1st Part of
Front (TFFuncA,m)

2nd Part of
Front (TFFuncA,m)

Back(TFFuncA,m)

Figure 32. Illustrate Calling-to-Called

Compute a slice on
variable z at xm
C = (x,Xm, {Z})

40

Back(TFnarne, q)'s can be ignored in computing a slice. Just Front(TFnarne, q) must be

concentrated on.

Let A and B be two functions, where function A calls function B. Therefore, a

slice .can be computed in two different ways as follow.

1) Called-to-Calling

Total sliceAB = Slicen u SliceA

where

(1) SliceB is a slice computed based on Front(TFB, k) and
slicing criterion C = (x, xk, V)

(2) SliceA is a slice computed based on Front(TFA, 1+1) and
used variables at calling action x1 +1 , u(x1 +1).

2) Calling-to-Called

Total sliceAB = SliceA u TFB

where
(1) SliceA is a slice computed based on Front(TFA, m) and

slicing criterion C = (x, xrn, V)

(2) TFB is a function trajectory of function B.

41

Let Calling(XP) be a set of calling functions that are used to call a called

function in action xP, where xP E M(T). For example in the trajectory of Figure 21,

Calling(2i6) = {Fae}.

Let Ca 11 ed(XP) be a set of called functions that are called by a calling function

in action xP, where xP E M(T). For example in the trajectory of Figure 21, Called(54) =

{Fae}.

Let EI be a Called-to-Calling Relation between called and calling functions. Let

M(T) be a set of actions in a given trajectory T of length m. EI is a binary relation on

M(T) defined as follows:

Let T = <X1, X2, ... , Xt, ... , Xrn>,

xP EI yt, t ~ p < m, iff there exists function f

such that (1) a called function f E Called(Yt),

(2) a calling function f E Calling(XP), and
(3) xP is the calling action, where the calling function f

at p calls a called function f at t

For example in the trajectory of Figure 21, we have 2216 EI 54, as shown in Figure 33.

42

Figure 33. The EI relation for the trajectory depicted in Figure 21

Let IE be a Calling-to-Called Relation between called and calling functions. Let

M(T) be a set of actions in a given trajectory T of length m. IE is a binary relation on

M(T) defined as follows:

Let T = <X1, X2, ... , Xt, ... , Xm>,

xP IE yt, 1 ::; p < t, iff there exists function f

such that (1) a calling function f E Calling(Yt),

(2) a called function f E Called(XP), and
(3) xP is the called action where the called function f

at p is called by a calling function f at t

For example in the trajectory of Figure 21, we have 54 IE 2216, as shown in Figure 34.

Figure 34. The IE relation for the trajectory depicted in Figure 21.

Definition 17

To find the slicing set Sc, we first find the set AO of all actions that have direct

influence on Vat q and on action Iq. A0 is defined as follows [Korel and Laski 90].

where LD(q, V) is the set of last definitions of variables in V at the execution position q,

and LT(I~ is a set of test actions that have Test-Control influence on Iq.

43

We will find Sc iteratively, as the limit of a sequence s 0, si, ... , sn, o 5 n < q,

which is defined as follows.

where

Ai+l = { XP E M(TFname): l 5p < q,

(1) xP ~ s\ and

(2) there exists yt E si, t < q, xP z yt}

where Z = DU u TC U IR u LDR

Finally, we can get the slice from the following definition.

k Sc= S

where skis the limit of the sequence { si} .

Definition 18

Let FN(q) be a string of function name such that Xq, X is in the scope of

. fl 1 . F. 21 { 4 s 6 107 s 29 1 10 1011 1112 m uence. For examp e m 1gure , TFFac = 5 , 7 , 8 , , 11 , 1 , 3 , , ,

1213, 13 14, 1415, 1516}, then FN(8) = "Fae", because 11 is in the scope of influence of

function name Fae. FN(l 7) = "main" for the same reason.

Definition 19

Let G(X) be a set of variables and precedences that are declared as a part of global

declaration. G(X) is computed from the source program, not from a trajectory path. In

Figure 20, G(l) = {include} and G(3) = {Fae}.

44

Definition 20

Let VDU(FunctionName) be a set of variables that are used, UF name, and defined,

DFname, in a given function name. For example, VDU(main) = {Num} and VDU(Fac) =

{F, I, N} in Figure 21.

Definition 21

In order to find the scope of influence of each instruction, variable scope, VS, and

control scope, CS, are used as defined bellow.

1. Variable scope, VS, gives the information that the variables that used or defined in

each instruction were declared at what instructions.

Let XncL be an instruction that declared variables such as "int I ."
I •

Let Xnu be an instruction that used or defined the variables declared by XncL,

where variables that are used or defined are in the scope of influence of the variables that

are declared in XncL· For example, "I= I+ 1 ; ", which is the first I is defined and the

second I is used both are declared by "int I . "
I •

Then we get VS(Xnu), a variable scope relation at Xnu, which 1s a set of

' instructions XncL, where Xnu is in the scope of influence ofXncL·

For example in Figure 20, we get VS { 11} = {7, 8} since variable F at Xnu = 11

was declared in XncL = 7, and variable I at Xnu = 11 was declared in XncL = 8. The VS

relation for the program depicted in Figure 20 is shown in Figure 36.

2. Control scope, cs, gives information about instructions that are in the scope of

influence of control instructions such as test statements, functions, and classes. For

45

calculation of the scope of influence of each statement, the me_ too set is used [Lyle

84].

Let X be an instruction, the me_ too is a set of instructions that are in the scope

of influence of instruction X.

Due to the complexity of the C++ language and in order for C++Debug to be

applicable to programs containing functions, classes, namespaces, unions, structures, and

preprocessors (a separate first step in compilation, e.g., #include, #define, or #if), the

me too set was modified according to the rules shown in Figure 35 and will still be

called the control scope, cs, set.

Based on the rules in Figure 35, Figures 36 shows an example of computing the

cs set of a tested program that computes the factorial in Figure 20.

To find the final slicing set F s with scope, we first find the set s 0 of all

instructions that sliced :from the tested program P based on slicing criterion C(x,Iq,V).

s 0 is defined as follows.

where Sc is a slicing set defined in Definition 17.

We will find F s iteratively, as the limit of a sequence F 0, F1, ... , Fn, O :::; i < n, n

= length of program P, which is defined as follows.

where

si+i = { x E P : 1:::; x < n, n = length of program P,

(1) X ~ Fi, and

(2) there exists Y E Fi, X E Z(Y) }

1. For any straight-line instruction, the cs set must contain:

1.1 Instruction of which it is in the scope of influence

2. For any control instruction, the CS set must contain:

2.1 Instruction of which it is in the scope of influence

2.2 Instruction representing the beginning of the scope of

influence

2.3 Instruction representing the end of the scope of influence

3. In case of functions, the cs set of that instruction must contain

3.1 Instruction of which it is in the scope of influence

3.2 Instruction representing the beginning of the scope of

influence

3.3 Instruction representing the end of the scope of influence

4. In case of classes, structures, unions, and namespaces, the cs

set of that instruction must contain

4.1 Instruction representing the beginning of the scope of

influence

4.2 Instruction representing the end of the scope of influence

Figure 35. Rules for computing the CS (control scope) set

where z = VS u CS

Finally, we can get the final slice with scope from the following definition.

where Fk is the limit of the sequence { Fi } .

46

Instruction (X) Prototype Called Calling D-set U-set DCL-set VS-set CS-set

1 #include <iostream> include
2
3 int Fac(int N); Fac(2) N(l)
4
5 int Fac(int N) { Fac(2) N(3) 3 15
6
7 int F = 1; F(4) 5
8 int I= 2; I(5) 5

:!:'i 9
10 while (I <= N) { N(3), I(5) 5, 8 5, 13
11 F = F * I; F(4) F(4), I(5) 7, 8 10
12 I++; I (5) I(5) 8 10
13 } 10
14 return F; F(4) 7 5
15} 5
16
17 main() { main(6) 25
18
19 int Num; Num(7) 17
20
21 cin>>Num; Num(7) cin(8) 19 17
22 cout<<Fac (Num) ; Fae (10) Num(7), cout(9) 19 17
23 cout<<Num; cout(9), Num(7) 19 17
24
25} 17

Figure 36. The Prototype, Called, Calling, D, U, DCL, VS, and CS sets for the program depicted in Figure 20

3.3 Algorithms

3.3.1 Algorithm for Computing a Slice

48

Figure 37 presents the algorithm designed and implemented for C++Debug. The

algorithm is separated into 4 parts: Datastructures, Initialize, PASS I, and PASS II. The

Datastructures part is shown in Figure 38. The Initialize part is used to initialize

variables, files, etc., when the program starts.

The objectives of PASS I are to create databases and to create a trajectory T. All

computations in PASS I are determined based on a source code program. The databases

are used to collect the necessary information used in PASS II such as Symbol Table, List

of Reserved Words, List of Basic Types, Types, Identifiers Information, Scope of Influent,

etc. The trajectory T is created by a tool named cpptrace (for more detail see

Subsection 4.3.1).

PASS II uses the information in each database and the trajectory T from PASS I

to compute a set of slices. First, a slicing criterion comprising of a set of variables V and

position q is entered. After that, each slice of each variable in set V at position q is

computed one by one. The process starts with finding a slice inside the function where

position q is at, until finished. Then the algorithm goes to its calling function and starts

to find a slice in this calling function again. The process is repeated until the final slice

of the calling function named main() is computed. Clearly, the slice of each variable in

the set V is computed based on all functions that related to each variable in the set V

starting from the function where position q is at, its calling function, ... , and end at

function main(). Compute_scope_of_influence(C) makes the final slice

completed by adding some statements that may govern each statement in the slice.

Datastructures II see Figure 38

Begin

Initialize(); II initialize files, variables, etc.;

II PASS I
II compute from source code program P

Create_Information_Database(P); // see Appendix C

II compute trajectory code T
// see Definition 3

T = gen_T(P);
II by using tool named cpptrace
II see Subsection4.3.1

II PASS II
II compute slices from trajectory T

I= 1;

C = Read_Criterion();

while (C. V =I= "Exit") {
S[OJ = {};

while (C.q ~ 1 and C.q

STEP I:

// slicing criterion at position q
// on a set of variables V
// see Definition 8

II to check not exit the program
II clear temporary slice storage

~ MaxTraj) { // Is C. q a valid number
II in the trajectory T?

II compute slice in called function
S [OJ = S [OJ u Compute_Slice_in_Function_Name(C);

STEP II:

}

if (FN(C.q))
then

break;
else

"main") // check called-to-calling function
I/ finish computing a slice for each variable
II then break the loop

xP EI yt ; yt E s [o] // get a new position of its calling function
C. q = xP //see Definition 16

STEP III: I/ add scope of influent to complete each slice
Add_Scope_of_Influent(S[OJ) Slice [IJ

I++
C = Read_Criterion(); // get a new slicing criterion at

// position q on a new variables V
}

II finally we get each Slice [I] for each variable V [I]
II at a specific position q's

end

Figure 3 7. Algorithm to compute a set of slices

49

Constants

MaxLine

MaxTraj

VarLength=

N

Types

X

Action

X

q

}

Maximum linenumbers of a source code

Maximum linenumber of a trajectory

Maximum number of variables per instruction

Maximumnumber of slices

1 .. MaxLine

1 .. MaxLine

1 .. MaxTraj

II an instruction in a program, see Definition 1

II instruction X at position q, see Definition 2

Variable= string

SliceCriterion, LastDef {

I I variable name is a string of characters

I I slicing criterion, see Definition 8,

q l .. MaxTraj II and last defmition, see Defmition 16

II variable Vat position q in a trajectory V : set [Variable]

}

Variables
p

Fname

T

TFname

MT

MTFname

C

DFname

UFname

LFname

DUFname

LDRFname

TCFname

IRFname

A

s
LD

LT

vs
cs
Slice

Dice

set [X] II a source program, see Definition 1

set [X] II a function, see Definition 2

list [X] II a trajectory, see Defmition 3
list [X] II a function trajectory, see Definition 4

set [Action] II a set of Action in trajectory T, see Definition 6

set [Action] II a set of Action in trajectory T, see Definition 6

SliceCriterion

set [Variable]

set[Variable]

set[variable]

I I a slice criterion, see Defmition 8

II defined variables, see Definition 9

II used variable, see Defmition 10

I I local var & pre declaration , see Definition 11

set [action] II Definition-Use-FunctionName-Relation, see Def. 12

set [action] II Local-Declaration-FunctionName-Relation, see Def. 13

set [action] II Test-Control-FunctionName-Relation, see Definition 14

set [action] II Identity-Relation-FunctinName, see Defmition 15

array [1. .N] of set [Action] II see Defmition 16

array [1. . N] of set [Action] II see Definition 16

LastDef II a set oflast defmition, see Defmition 16

set [Action] II a set oftest actions, see Defmition 16

set [Xl II Variable-Scope, see Defmition 21

set [XJ II Control-Scope, see Definition 21

array [l .. N] of set [X] II Slices, see Definition 17

set [XJ II a final dice, see Section 3.6

Figure 38. Slicing data structures

50

Step 1.1: II function to compute a slice without its scope of influence

Compute_Slice_in_Function_Name(SliceCriterion C) {

name

TFname

DFname

UFname

DUFname

TCFname

IRFname

FN (C . q) ; I I get function name, see Definition 18

SubT(LF(C)); II compute a sublist function trajectory, see Definition 4

ComputeDFname(TFname); II compute defined var., see Definition 9

ComputeUFname(TFname); II compute used var., see Definition 10

ComputeDUFname(TFname); II compute defined used rel., see Def. 12

ComputeTCFname(TFname); II compute test control rel., see Def. 14

ComputeIRFname(TFname); II compute identity rel., see Definition 15

LDRFname = ComputeLDRFname(TFname); II compute local declaration rel.,

I I see Definition 13

Step 1.2: I I compute a slice in a function name, see Definition 17

S = ComputeSlice(DUFname, TCFname, IRFname, LDRFname, C);

Step 1. 3 : II see Definition 16

if (XP IE yt; yt E S) II check Calling-to-Called function

name = FN (p) I I get calling function name

S = S u TFname II where IE, a Calling-to-Called function, is an element of S

return (S);

Figure 39. Algorithm to compute a slice of each function

II function to compute the scope of influence ofa slice

Add Scope of Influent(array [1 .. n] of set [action] S) { - - -

s = Var_Control_Scope (S); II Add scope of influence to a slice,
II see Definition 21

return S;

Figure 40. Function to compute the scope of influence of a slice

51

52

3.4 Examples: How to Compute a Slice of a Program Containing Functions

There are three examples in this section: an example of slicing a program based

on variable Num (which is in the function main), an example of slicing a program based

on the calling function F ac (in the case of Calling-to-Called function), and an example of

slicing a program based on the calling function I (in the case of Called-to-Calling

function).

Example 1. This example shows how to compute a slice based on variable Num, which is

in the function main. Consider trajectory Tin Figure 21. Using the criterion C = (x,

23 17, {Num}), we have x = (Num) = (3).

The step-by-step trace of the algorithm in Figure 37 follows.

· Step 1:

Compute s[O] = S [O] u Compute_Slice_in_Function_Name(C)

Step 1.1: II start from Compute_Slice_in_Function_Name(C)

FN(C.q) = FN (17) = "main"

II therefore compute slice in function "main"

compute TF main= { 1 ?1, 192, 21 3, 2i16, 23 17, 2518 } II as shown in Figure 21

compute DFmain, UFmain II as shown in Figure 23

I I as shown in Figure 25 compute DUF main

compute TCF main

compute I RF main

compute LDRF main

Step 1.2:

= {} I I as shown in Definition 13

= {} II as shown in Definition 15

= {} II as shown in Figure 27

53

Compute S = ComputeSlice(DUFmain, TCFmain, IRFmain, LDRFmain, C)

Since C = (x, 2317, {Num}) // given

LD(l7, {Num}) = {21 3}, LT(23 17) = {1?1}, Iq = 23 17

A0 = {1?1 21 3 23 17 } s 0 = {1?1 21 3 23 17}
' ' ' ' ' '

A 1 = { 192} , S 1 = { 1 ?1, 192, 21 3, 23 17},

A 2 = {}, S2 = {1?1, 192,21 3,2317}.

Step 1.3: Check Calling-to-Called functions

No.

Finally, we get S[O] = s[O] u Sc= {1?1, 192,21 3, 23 17}.

Step 2: Check for more Called-to-Calling functions

since FN(l 7) = "main" then.no more calling functions and break.

Step 3: Add scope of influence

Slice[l] =Add_Scope_of_Influence(S[O])

Let F0 = So= S[O] = {17, 19, 21, 23},

Fo = { 17, 19, 21, 23},

F1 = {1, 25},

F2 = {},

s 0 = {17, 19, 21, 23},

S1 = {l, 17, 19, 21, 23, 25},

s 2 = {l, 17, 19, 21, 23, 25},

Slice[l] = S2 = {1, 17, 19, 21, 23, 25}.

And finally, the dynamic slice is shown in Figure 41.

Example 2. This example shows how to compute a slice based on the calling function

Fae (in case of Calling-to-Called function). Consider trajectory Tin Figure 21. Using

1 #include <iostream>
17 main() {
19 int Num;
21
23
25}

cin>>Num;
COUt<<Num;

II main program
II number

II calling function

Figure 41. A dynamic program slice computed based on variable Num in line 23
of the program in Figure 20

the criterion C = (x, 2216, {Fae}), we have x = (Num) = (3).

The step-by-step trace of the algorithm in Figure 37 follows.

Step 1:

Compute S[O] = S [O] u Compute Slice in Function Name(C) - - - -

Step 1.1: II start from Compute_Slice_in_Function_Name(C)

FN(C.q) = FN (16) = "main"

II therefore compute slice in function "main"

54

{ 1 2 3 16 17 18} II h · · compute TFmain = 17 , 19 , 21 , 22 , 23 , 25 ass own m Figure 21

compute DFmain, UFmain II as shown in Figure 23

compute DUF main I I as shown in Figure 25

compute TCF main = {} II as shown in Definition 14

compute I RF main = {} II as shown in Definition 15

compute LDRF main = {} II as shown in Figure 27

Step 1.2:

Compute S = ComputeSlice(DUFmain, TCFmain, IRFmain, LDRFmain, C)

Since C = (x, 2216, {Fae}) II given

LD(l6, {Fae})={}, LT(2i16) = {1?1}, Iq = 2i16

S1 = {1 ?1 192 21 3 2i16}
' ' ' '

S =S2 ={1?1192 213 2i16}
C ' ' ' '

Step 1.3: Check Calling-to-Called functions

Yes, because

FN(4) = "Fae"

TF = <54 75 86 107 118 129 1310 1011 11 12 1213 1314 1415 > Fae , , , , , , , , , , , ,

Finally, we get S[O] = s[O] u Sc

Step 2: Check for more Called-to-Calling functions

since FN(l 6) = "main" then no more calling functions and break.

Step 3: Add scope ofinfluence

Slice[l] = Add_ Seope_of _Influenee(S[O])

Let F0 = So= S[O]

F0 = {5, 7, 8, 10, 11, 12, 13, 14, 17, 19, 21, 22},

s 0 = {5, 7, 8, 10, 11, 12, 13, 14, 17, 19, 21, 22},

F1 = {l, 3, 15, 25},

S1 = {1, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 25},

F2= {},

55

S2 = {l, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 25},

Slice[l] = S2 = {1, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 25}.

And finally, the dynamic slice is shown in Figure 42.

1 #include <iostream>
3 int Fac(int N); II function prototype
5 int Fac(int N) { II called function
7 int F = l;
8 int I = 2;

10 while(I <= N)
11 F = F * I;
12 I++;
13
14 return F;
15 }
17 main() { II main program
19 int Num; II number
21 cin>>Num;
22 cout<<Fac(Num); II calling function
25

Figure 42. A dynamic program slice computed based on variable Fae in line 22
of the program in Figure 20

56

Example 3. This example shows how to compute a slice based on the calling function I

(in case of Called-to-Calling function). Consider trajectory T in Figure 21. Using the

criterion C = (x, 86, {I}), we have x = (Num) = (3).

The step-by-step trace of the algorithm in Figure 37 follows.

Step 1:

Compute S[O] = S [OJ u Compute_Sliee_in_Funetion_Name(C)

Step 1.1: // start from Compute_Sliee in_Funetion_Name(C)

FN(C.q) = FN (6) = "Fae"

II therefore compute slice in function "Fae"

compute TF Fae

compute DFFac I UFFac

compute DUFFac

I I as shown in Figure 21

I I as shown in Figure 22

I I as shown in Figure 24

compute TCFFac = {} II as shown in Definition 14

compute IRFFac = {} II as shown in Definition 15

compute LDRF Fae = {} I I as shown in Figure 26

Step 1.2:

Compute S = ComputeSliee(DUFFac, TCFFac, IRFFac, LDRFFac, C)

Since C = (x, 86, {I}) II given·

LD(6, {I})={}, LT(86) = {54}, Iq = 86

A0 = {54, 86},

Al={},

Sc= S1 = {54, 86}.

Step 1.3: Check Calling-to-Called functions

No.

Finally, we get S[O] = S[O] u Sc= {54, 86}.

Step 2: Check for more Called-to-Calling functions

since FN(6) = "Fae", there is more calling functions

since 2216 EI 54, then C. q = 16; Go to Step 1

Step 1:

Compute S[O] = S [O] u Compute_Sliee_in_Funetion_Name(C)

Step 1.1: II start from Compute_Sliee_in_Funetion_Name(C)

57

58

FN(C.q) = FN (16) = "main"

II therefore compute slice in function "main"

{ 171 192 21 3 2216 2317 2518 } II h . F" 21 compute TF main = , , , , , as s own m 1gure

compute DF main, UF main I I as shown in Figure 23

compute DUF main I I as shown in Figure 25

compute TCFmain = {} II as shown in Definition 14

compute IRFmain = {} II as shown in Definition 15

compute LDRF main = {} I I as shown in Figure 26

Step 1.2:

Compute S = ComputeSlice(DUFmain, TCFmain, IRFmain, LDRFmain, C)

Since C = (x, 2i16, {Fae}) II given

LD(16, {Fac})={},LT(2i16)= {1?1}, Iq= 2i16

8 1 = {1?1, 192,213, 2i16},

8 2 ={1?1192 21 3 2316}
' ' ' '

Step 1.3: Check Calling-to-Called functions

No.

Finally, we get S[O] = s[O] u Sc= {21 3, 54, 86, 2216}.

Step 2: Check for more Called-to-Calling functions

since FN(16) = "main", no more calling functions and break.

Step 3: Add scope of influence

Slice[l] =Add Scope of Influence(S[O]) - - -

LetF0 =s0 =S[0] = {5,8, 17, 19,21,22},

Fo= {5, 8, 17, 19, 21, 22},

s0 = {5,8, 17, 19,21,22},

F 1 = {l, 3, 15, 25},

S 1 = {l, 3, 5, 8, 15, 17, 19, 21, 22, 25},

F2={},

s2 = {l, 3, 5, 8, 15, 17, 19, 21, 22, 25},

Slice[l] = S2 = {1, 3, 5, 8, 15, 17, 19, 21, 22, 25}.

And finally, the dynamic slice is shown in Figure 43.

1 #include <iostream>
3 int Fac(int N);
5 int Fac(int N) {
8 int I= 2;

15
17 main()
19 int Num;
21 cin>>Num;
22 COUt<<Fac(Num);
25

II function prototype
II called function

II main program
II number

II calling function

Figure 43. A dynamic program slice computed based on variable I in line 8
of the program in Figure 20

3.5 A Slice with Classes, Structures, and Unions

59

A class contains members, variables, and functions. Each slice of the member

functions is computed in the same way as a normal function mentioned in Section 3.4.

After a slice of a member function is computed, the rest of the slice code in the class is

determined by variable scope vs and control scope CS. The VS and CS sets are the key

to obtaining a slice program of a program with classes. A slice of a program with

60

Structures and Unions is computed the same way as a slice of a program with classes,

since all have the same grammar structures.

The program in Figure 44 computes the sum and average of integers. In this

example, variable Max is 4 and the array called Num contains 10.0, 20.0, 15.0, and 5.0.

Upon completion of program execution, the program should yield one results as 12.5.

However, this program contains an error in line 24. Rather than return Sum () /Max,

the program computes return Sum () / (Max+l), thus yielding an error (Avg= 10.0

instead of 12.5). To localize such an error, program slicing and dicing techniques can be

used. The trajectory of the program in Figure 44 is shown in Figure 45.

1: #include <iostream>
2:
3: class Compute {
4: private:
5: int Max;
6: float Num[4];
7:
8: public:
9: Compute(int M, float *N) {

10: Max= M;
11: cout<<"allocate mem"<<endl;
12: for(int I=O; I<Max; ++I)

13:
14:
15:

Num[I] = N[I);

16: float Sum(void) {
17: float Tsum = O;
18: for(int I=O; I<Max; ++I)

Tsum = Tsum + Num[I];

return Tsum;

float Avg(void) {
return Sum()/(Max + l);

}

19:
20:
21:
22:
23:
24:
25:
26: };
27:
28:
29:
30:
31:
32:
33:
34:

main () {

}

int Max= 4;
float Num[4] = {10.0,
Compute A(Max, Num);
cout<<A.Sum()<<endl;
cout<<A.Avg()<<endl;

20.0, 15.0, 5.0};

Figure 44. A program for calculating the sum and average of a set of numbers

28 1 main() {
292 int Max= 4;
303 float Num[4] = {10.0, 20.0, 15.0, 5.0};

94 Compute (int M, ·float *N) {
105 Max= M; allocate mem
116 coutcc"allocate mem"ccendl;
127 for(int I=O; IcMax; ++I)

Num[O] = N[O];
12 8 for(int I=O; IcMax; ++I)

Num[l] = N[l];
12 9 for(int I=O; IcMax; ++I)

Num[2] = N[2];
12 10 for(int I=O; IcMax; ++I)

Num [3] = N [3 l ;

3112 Compute A(Max, Num);

1613 float Sum (void) {
1714 float Tsum = O;
1815 for(int I=O; IcMax; ++I)

Tsum = Tsum + Num[O];
1816 for(int I=O; IcMax; ++I)

Tsum = Tsum + Num[l];
1817 for (int I=O; IcMax; ++I)

Tsum = Tsum + Num[2];
1818 for(int I=O; IcMax; ++I)

Tsum = Tsum + Num[3];
2019 return Tsum; 50

32 20 coutccA.Sum() ccendl;

2321 float Avg(void) {
24 22 return Sum()/(Max + 1);

1623 float Sum (void) {
1 7 24 float Tsum = O;
1825 for (int I=O; IcMax; ++I)

Tsum = Tsum + Num[O];
1826 for(int I=O; IcMax; ++I)

Tsum = Tsum + Num[l];
1827 for (int I=O; IcMax; ++I)

Tsum = Tsum + Num[2];
1828 for(int I=O; IcMax; ++I)

Tsum = Tsum + Num[3];
20 29 return Tsum; 10

33 30 coutccA.Avg()ccendl;
3431

T

TFMain

TFcompute

TFsum(l)

TFsum(2)

TFAvg

Figure 45. The trajectory of the program from Figure 44 on input data
Max= 4, Num = (10.0, 20.0, 15.0, 5.0)

61

°' N

Instruction (X) Prototype Called Calling D-set U-set DCL-set VS-set

1: #include <iostream> include
2:
3: class Compute { Compute(Ol)
4: private:
5: int Max; Max(02)
6: float Num[4]; Num(03)
7:
8: public:
9: Compute(int M, float *N) { Compute(Ol) M(04) N(05)
10: Max=M; Max(02) M(04) 5,9
11: cout<<"allocate mem"<<endl; cout(07) endl(08)
12: for(int 1=0; l<Max; ++I) Num(03) Max(02) N(05) 1(09) 5,6,9

Num[I] = N[I]; 1(09) 1(09)
13:
14: }
15:
16: float Sum(void) { Sum(lO)
17: float Tsum = O; Tsum(ll)
18: for(int 1=0; l<Max; ++I) Tsum(ll) Max(02) Num(03) 1(12) 5,6,17

Tsum = Tsum + Num[I]; 1(12) Tsum(l 1) 1(12)
19:
20: return Tsum; Tsum(l 1) 17
21: }
22:
23: float Avg(void) { Avg(13)
24: return Sum()/(Max + 1); Sum(lO) Max(02) 5
25: }
26: };
27:
28: main() { main(14)
29: int Max = 4; Max(15)
30: float Num[4] = { 10.0, 20.0, 15.0, 5.0}; Num(16)
31: Compute A(Max, Num); Compute(Ol) Max(15) Num(16) A (17) 9,29,30
32: cout<<A.Sum()<<endl; Sum(19) cout(07) endl(08) A(17) 31
33: cout<<A.Avg()<<endl; Avg(20) cout(07) endl(08) A(17) 31
34:}

Figure 46. The Prototype, Called, Calling, D, U, DCL, VS, and CS sets for the program depicted in Figure 44

CS-set

26

3
3

3,14
9
9
9
9

9

3,21
16
16

16
16

3,25
23
23
3

34
28
28
28
28
28
28

DUFMain {}
TCFMain {}
IRFMain {}

LDFMain (292)
LDFMain (30 3)

Figure 47. The DUFMain, TCFMain LDFMain, and IRFMain relations that are called
by 3220 for the trajectory depicted in Figure 45

DUFcompute (10 5)
DUFcompute (12 7)

TCFcompute

LDFcompute (94)

IRFcompute (12 7)
IRFcompute (12 8)
IRFcompute (12 9)
IRFcompute (12 10)

{128 I 129 I 1210}

{127,12 9,12 10 }
{127,12 8, 12 10 }
{127,12 8 I 12 9}

Figure 48. The DUFcompute, TCFcompute LDFcompute, and IRFcompute relations
that are called by 3220 for the trajectory depicted in Figure 45

DUFsum (1815)
DUFsum (1816)
DUFsum (1817)
DUFsum (1818)

TCFsum

{ 1816}
{1817}
{1818}
{ 2 019}

{}

IRFsum (18 15)
IRFsum (18 16)
IRFsum(l8 17)
IRFsum (1818)

{1815 I 1816 I 18171 1818 I 2019}

{ 1816 I 1817 I 1818}
{1815, 1817, 1818}
{ 1815 I 1816 I 1818}
{ 1815 I 1816 I 1817}

Figure 49. The DUFsum, TCFsum, LDFsum, and IRFsum relations that are called by
3220 for the trajectory depicted in Figure 45

DUFsum (1825)
DUFsum (18 26)
DUFsum (18 27)
DUFsum (1828)

TCFsum

{ 18 26}
{ 1827}
{ 1828}
{ 2 029}

{ }

IRFsum (1825)
IRFsum (18 26)
IRFsum (18 27)
I RF sum (1828)

{ 1825, 1826, 1827, 1828, 2029}

{ 1826 I 1827 I 1828}
{ 1825 I 1827 I 1828}
{1825 I 1826 I 1828}
{ 1825 I 1826 I 1827}

Figure 50. The DUFsum, TCFsum LDFsum, and IRFsum relations that are called by
2422 for the trajectory depicted in Figure 45

63

DUFAvg

TCFAvg

IRFAvg

{}
{}
{}

Figure 51. The DUF Avg, TCF Avg, and IRF Avg relations for the trajectory
depicted in Figure 45

64

Example 4. Consider trajectory Tin Figure 45. Using the criterion C = (x, 3330, {Avg}),

we have x = (Max, Num) = (3, (10.0, 20.0, 15.0, 5.0)).

The step-by-step trace of the algorithm in Figure 37 follows.

Step 1:

Compute S[O] = S [OJ u Compute_Slice_in_Function_Name(C)

Step 1.1: II start from Compute_Slice_in_Function_Name(C)

FN(C.q) = FN (30) = "main"

II therefore compute slice in function "main"

compute TF main II as shown in Figure 47

compute LDF main II as shown in Figure 47

compute DUF main II as shown in Figure 47

compute TCF main = {} II as shown in Definition 47

compute I RF main = {} II as shown in Definition 47

compute LDRF main = {} II as shown in Definition 47

Step 1.2:

Compute S = ComputeSlice(DUFmain, TCFmain, IRFmain, LDRFmain, C)

Since C = (x, 3330, {Avg}) II given

LD(30, {Avg})={}, LT(3330) = {281}, Iq = 3330

Al= {3112},

A 2 = {292, 303},

Step 1.3: Check Calling-to-Called functions

Yes, since {2321 } IE {3330}, and {94} IE {31 12},

FN(4) = "Compute", and FN(21) ="Avg",

Sc= Sc U TFcompute U TFAvg,

94 05 1·16 1 7 1 8 9 10 11 TFcompute = < , 1 , , 2 , 2 , 12 , 12 , 14 >,

2 21 22 TFAvg = < 3 , 24 >,

Sc = {281,292,303, 94, 105, 116, 127, 128, 129, Ii1°, 1411 , 31 12,

2321, 2422, 3330},

FN(23) = "Sum",

Sc= Sc U TFsum,

TF = < 1623 1724 1825 1826 1821 182s 2029 >
Sum , , , , , , ,

Finally, we get S[O] = S[O] u Sc

Step 2: Check for more Called-to-Calling functions

since FN(30) = "main" then no more calling functions and break.

65

Step 3: Add scope of influence

Slice[l] =Add_ Scope_ of_ Inf 1 uence(s[O])

Let F0 = So = S[O]

F0 = {9, 10, 11, 12, 14, 16, 17,18,20,23,24,28,29,30,31,33}

s0 = {9, 10, 11, 12, 14, 16, 17, 18, 20, 23, 24, 28, 29, 30, 31, 33},

F 1 = {l, 3, 5, 6, 21, 25, 34},

8 1 ={1,3,5,6,9, 10, 11, 12, 14, 16,17,18,20,21,23,24,25,28,29,30,

31, 33, 34},

F2 = {26},

8 2 = {l, 3, 5, 6, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29,

30, 31, 33, 34},

F3= {},

8 3 = {l, 3, 5, 6, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29,

30, 31, 33, 34},

Slice[l] = s3 = {1, 3, 5, 6, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25,

26,28,29,30,31,33,34}.

And finally, the dynamic slice is shown in Figure 52.

66

Example 5. Consider trajectory Tin Figure 45. Using the criterion C = (x, 3220, {Sum}),

we have x = (Max, Num) = (3, (10.0, 20.0, 15.0, 5.0)).

The step-by-step trace of the algorithm in Figure 37 follows.

Step 1:

Compute S[O] = S [O] u Compute Slice in Function Name(C) - - - -

1: #include <iostream>
3: class Compute {
4: private:
5: int Max;
6: float Num[4];
8: public:
9: Compute(int M, float *N) {

10: Max = M;
11: cout<<"allocate mem"<<endl;
12: for(int I=O; I<Max; ++I)

Num[I] = N[I];
14: }
16: float Sum(void) '{
17: float Tsum = O;
18: for(int I=O; I<Max; ++I)

Tsum = Tsum + Num[I];
20: return Tsum;
21:
23: float Avg(void) {
24: return Sum()/(Max + 1);
25:
26: } ;
28: main ()
29: int Max= 4;
30: float Num[4] = {10.0, 20.0, 15.0, 5.0};
31: Compute A(Max, Num);
33: cout<<A.Avg()<<endl;
34:

Figure 52. A dynamic program slice computed based on variable Avg in line 33
of the program in Figure 44

Step 1.1: II start from Compute Slice in Function Name(c) - - - -

FN(C.q) = FN (20) = "main"

II therefore compute slice in function "main"

compute TF main I I as shown in Figure 4 7

compute LDF main I I as shown in Figure 4 7

compute DUF main II as shown in Figure 47

compute TCFmain = {} II as shown in Definition 47

compute I RF main = {} II as shown in Definition 47

67

68

compute LDRFmain = {} // as shown in Definition 47

Step 1.2:

Compute S = ComputeSlice(DUFmain, TCFmain, IRFmain, LDRFmain, C)

Since C = (x, 3220, {Sum}) // given

LD(20, {Avg})={}, LT(3220) = {281}, Iq = 3220

A0= {281, 3220},

Al= {3112},

A 2 = {292,303},

A 3 = {},

s0 = {281, 3220},

8 1 = {281, 31 12, 1613, 3220},

8 2 = {281,292,303, 31 12, 3220},

83 = {281, 292, 303, 31 12, 3220},

Sc= 8 3 = {281,292,303, 31 12, 3220}.

Step 1.3: Check Calling-to-Called functions

Yes, since {94} IE {31 12}, and {1613 } IE {3220},

FN(4) = "Compute", and FN(l3) ="Sum",

Sc= Sc U TFcompute U TFsum,

4 05 1 6 1 7 8 129 210 1 11 TFcompute = < 9 , 1 , 1 , 2 , 12 , , 1 , 4 >,

TF = < 1623 1724 1825 1826 1821 1828 2029 >
Sum , , , , , , ,

Sc = {281,292,303, 94, 105, 116, 127, 128, 129, ll1°, 1411, 31 12,

1623, 1724, 1825, 1826, 1827, 1828, 2029, 3l2o},

Finally, we get s[O] = s[O] u Sc

= {28 1,292,303, 94,105,11 6,127,128, 129, 1210, 1411 , 31 12,

1623, 1724, 1825, 1826, 1827, 1828, 2029, 3220}.

Step 2: Check for more Called-to-Calling functions

since FN(20) = "main" then no more calling function and break

Step 3: Add scope of influence

Slice[l] = Add_Scope _of_ Inf 1 uence(S[O])

Let F0 = So= S[O]

F0 = {9, 10, 11, 12, 14, 16, 17, 18,20,28,29,30,31,32}

s0 = {9, 10, 11, 12, 14, 16, 17, 18,20,28,29,30,31,32},

F1 = {l, 3, 5, 6, 21, 34},

8 1 = {1, 3, 5, 6, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 28, 29, 30, 31, 32, 34},

F2 = {26},

8 2 = {1, 3, 5, 6, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 26, 28, 29, 30, 31, 32, 34},

F3 = {},

8 3 = {1, 3, 5, 6, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 26, 28, 29, 30, 31, 32, 34},

Slice[l] = 8 3 = {1, 3, 5, 6, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 26, 28, 29, 30,
31, 32, 34}.

And finally, the dynamic slice is shown in Figure 53.

1: #include <iostream>
3: class Compute {
4: private:
5: int Max;
6: float Num[4];
B: public:
9: Compute(int M, float *N) {

10: Max= M;
11: cout<<"allocate mem"<<endl;
12: for(int I=O; I<Max; ++I)

Num[I] = N[I);
14: }
16: float Sum(void) {
17: float Tsum = O;
18: for(int I=O; I<Max; ++I)

Tsum = Tsum + Num[I];
20: return Tsum;
21: }
26: } ;
28: main ()
29: int Max= 4;
30: float Num[4] = {10.0, 20.0, 15.0, 5.0};
31: Compute A(Max, Num);
32: cout<<A.Sum()<<endl;
34:

Figure 53. A dynamic program slice computed based on variable Sum in line 32
of the program in Figure 44

69

3.6 Problems and Situations in C++ That
Were Taken into Account in the Design

70

There are eight major problems and situations in C++ that were taken into account

in the design of C++Debug. They are discussed bellow.

1. Problems and situations with classes and objects such as classes, structures, unions,

anonymous unions, friend functions, friend classes, inline functions, defining inline

functions within a class, parameterized constructors, static class members, static data

members, static member functions, the scope resolution operator, nested classes, local

classes, passing objects to functions, returning objects, and object assignment.

2. Problems and situations with arrays, pointers, references, and the dynamic allocation

operators such as arrays of objects, uninitialized arrays, pointers to objects, type checking

C++ pointers, the this pointer, pointers to derived types, pointers to class members,

reference parameters, passing references to objects, returning references, independent

references, references to derived types, restrictions to references, dynamic allocation

operators (i.e., the new operator in C++), initializing allocated memory, allocating arrays,

allocating objects, the nothrow alternative, and the placement forms of new and

delete.

3. Problems and situations with function overloading, copy constructors, and default

arguments such as function overloading, overloading constructor functions, overloading a

constructor to gain flexibility, initialized and uninitialized objects, copy constructors,

finding the address of an overloaded function, the overload anachronism, default

function arguments, default arguments vs. overloading, using default arguments

correctly, and function overloading and ambiguity.

71

4. Problems and situations with operator overloading such as operator overloading using

a friend function, using a friend to overload ++ or --, friend operator functions adding

flexibility, overloading new and delete, overloading new and delete for arrays,

overloading the no throw version of new and delete, overloading some special

operators, overloading [], overloading (), overloading ->, and overloading the comma

operator.

5. Problems and situations with inheritance such as base-class access control, inheritance

and protected members, protected base-class inheritance, inheriting multiple base classes,

constructors, destructors, inheritance, passing parameters to base-class constructors,

granting access, and virtual base classes.

6. Problems and situations with virtual functions and polymorphism such as virtual

functions, calling a virtual function through a base class reference, the inherited virtual

attribute, hierarchical virtual functions, pure virtual functions abstract classes, and late

binding.

7. Problems and situations with templates such as generic functions, a function with two

generic types, explicitly overloading a generic function, overloading a function template,

using standard parameters with template functions, generic function restrictions, applying

generic functions, a generic sort, compacting an array, generic classes, a generic array

class, using non-type arguments with generic classes, using default arguments with

template classes, explicit class specializations, and the typename and export

keywords.

8. Problems and situations with exception handling such as exception handling

fundamentals, catching class types, using multiple catch statements, handling derived-

72

class exceptions, exception handling captions, catching all exceptions, restricting

exceptions, rethrowing an exception, terminate() and unexpected(), the

uncaught_exception() function, and the exception and bad_exception

classes.

3. 7 Dicing Procedures

Dicing [Lyle 84] [Nanja 90] is the process of identifying a set of statements likely

to contain an error. A dice is determined as follows:

1 Compute the slice (Si) for the incorrectly valued output variable(s),
which is a subset ofKBI (known to be incorrect).

2 Compute the slice (Sc) for the correctly valued output variables(s),
which is a subset of CSP (correct so far).

3 Compute (Si - Sc), which makes up the dice.

Example 6. Observe that a dynamic program slice in Example 4 is a subset ofKBI, while

a dynamic program slice in Example 5 is a subset of CSP. Consequently, using the

definition of dicing, a dice program can be shown as follows

23: float Avg(void) {
24: return Sum()/(Max + 1);
25:

Figure 54. The final program segment after slicing and dicing

Once the procedure is finished, line 24 will be shown as the incorrect line.

CHAPTER IV

C++DEBUG

4.1 Introduction

C++Debug is an interactive debugging tool designed to function as a utility

program of the UNIX system. C++Debug was developed based on slicing and dicing

techniques. In order for C++Debug to be more powerful, dynamic slicing rather than

static slicing was chosen for implementation. C++Debug was designed in a way to allow

ease and convenience on the part of the user. Using C++Debug, the user can interact

directly with the computer in locating errors in a program. Menus are provided to allow

the user to select any one of a number of functions (Slice, Dice, Help, etc.) supported by

C++Debug.

To produce the C++Debug tool, three activities of a software process are

introduced: software specification, software development, and software validation. Some

parts of the waterfall approach are used to take those three activities and represent them

as separate process phases: requirements specifications, software design, implementation,

testing, and valuation. In order to make C++Debug a good piece of software, essential

attributes such as maintainability, dependability, efficiency, and usability were

considered.

73

74

4.2 Software specification

According to Sommerville [Sommerville 01], the intention of this phase is to

establish what services are required from C++Debug and the constraints on C++Debug' s

operation and development. The requirements document of C++Debug is shown in

Appendix D.

4.3 Software Design and Implementation

In order to convert the C++Debug software specification, mentioned above in

Section 4.2, into an executable system, architectural design, abstract specification,

interface design, component design, datastructure design, and algorithm design were

carried out [Sommerville 01]. However, because of the limitation of the size of this

dissertation, only a few parts are introduced in the following subsections.

4.3.1 C++Debug Block Diagram

C++Debug is comprised of four parts: Cpptrace, Database, Slicer, and Dicer (as

shown in Figure 55).

1. Cpptrace was designed as a tool allowing one to follow the execution of a C++

program, statement-by-statement. Cpptrace reads the C++ source program in a file,

inserts statements to print the text of each executable statement and the values of all

variables referenced or modified, and writes the modified program to generate two major

parts: 1. a trajectory of the program and 2. some databases, where a trajectory is a

feasible path that has actually been executed for some input and the databases are a list of

reserved words, a list of basic types, identifier information, types, symbol tables, and

C++ Source
Program

...
Cpptrace

a target language
specific component

C++Debug

Trajectory Path

75

,
. .

List of List of Identifiers Database
Reserved Words Basic Types Information

[J [J
DandU

Types Symbol Table Scope of Inf! uence j Sets

[J [J [J [J
...

'···+·· ··•···············•···••••••••·••• ...

Compute
• DU Set
• TU Set
• IR Set
• DCLset
• LDF set
• Sc Set
• A, Set
• etc.

Slicing
Criterion

Program
Slice #1

Slicer

Program
Slice #2

Slicer

Program
Slice #n

Figure 55. Block diagram of C++Debug

Dicer

Dicer

Erroneous
Program
Segment

scope of influence. f l ex and bison are tools used to implement Cpptrace. f l ex reads

76

a specification file containing regular expressions for pattern matching and generates a C

or C++ routine that performs lexical analysis [Flex 01]. This routine reads a stream of

characters and matches sequences that identify tokens. Bison reads a specification file

that codifies the grammar of a language and generates a parsing routine [Bison 00]. This

routine groups tokens into meaningful sequences and invokes action routines to act upon

them. C++ grammar from Stroustrup's textbook was used in this implementation

[Stroustrup 97].

2. Database stores ordered sets of data such as a list of reserved words, a list of basic

types, identifier information, types, symbol tables, and scope of influence, etc. All data

are created by Cpptrace as a database. The D and U ordered sets of data are computed

from the trajectory path. This database is used by Slicer to compute a program slice(s).

3. Slicer was created by using the algorithms in Figure 37. The number of program slices

is dependent on the slicing criterion.

4. Dicer was created by using the techniques mentioned in Section 3.6.

4.3.2 Datastructures

The datastructures of a source program, functions, a trajectory, sets such as D, u

DU, DCL, etc. were implemented based on datastructures shown in Figure 38.

4.3.3 Symbol Tables

Symbol tables were designed by following the concepts of symbol tables that are

used in cool, the Classroom Object-Oriented Language [Cool 94]. cool is a small

language designed for use in an undergraduate compiler course project at the University

of California at Berkley [Cool 94]. The key is two functions: enterscope () and

77

exi tscope (). Function enters cope () makes the table point to a new scope

whose parent is the scope it pointed to previously, while function exits cope () makes

the table point to the parent scope.

4.4 Testing and Evaluation

4.4.1 Introduction

After C++Debug was implemented, the testing process was applied to verify that

each unit met its specification (unit testing) and to ensure that the software requirements

had been met (integration and system testing) [Sommerville 01]. Testing is the primary

means for showing that the implementation has the requisite functionality and other non­

functional properties [McDermid 93].

4.4.2 Testing

Each problem and situation in Section 4.2 was tested independently upon

completion of the tool. C++Debug was also tested on non-trivial programs containing

several problems and situations identified. For more information see Appendix E.

4.4.3 Evaluation

C++Debug was evaluated by a number of graduate students at the Computer

Science of Oklahoma State University. They used C++Debug to locate errors in their

programs. For more information see Appendix E.

4.5 Limitations

C++Debug has some limitations as listed bellow.

78

1. Limitation of OS : UNIX

2. Limitation of language: GNU G++

3. Limitations of algorithm: worst-case O(N2V), average-case O(N log N), best-case

O(N), where N is the #LOC of the trajectory part, and Vis the maximum number of

variables in each line in a debugged program.

4. In the current implementation, limitation of #LOC of the executable part: 1,000.

4.6 Program Documentation

The main purpose of program documentation is to communicate with other people

about a finished program [Hedrick 75]. In this study, program documentation for

C++Debug was prepared in two parts. The first part involves comments internal to the

program. The second part is an auxiliary paper accompanying the program that is

included in Chapter III on Software Design. Furthermore, a user's manual was prepared

for the convenience of the users of C++Debug.

4.7 System Evolution

System evolution describes the system base, anticipated change due to hardware

and software evolution, and the changing user needs [Sommerville 01].

1. System Base

C++Debug is a slicing and dicing based debugging tool for C++ which runs under

UNIX on the SUN machine in the Computer Science Department at OSU.

2. Anticipated Change Due to Hardware Evolution

79

C++Debug is designed to be a portable tool. It is a machine independent tool. It

can run on every hardware with a UNIX run-time support. However, C++Debug should

be provided on PC as well.

3. Anticipated Change Due to Software Evolution

In case of ANSI C++ is updated e.g., if new functions or instructions are added,

C++Debug must be updated too.

4. Changing User Needs

C++Debug was designed by using menus in a way to allow ease and convenience

on the part of the user. C++Debug should be provided in a windowing environment as

well.

4.8 Slicing-Based Metrics

Program slicing is applied to two main areas [Weiser 81]. First, program slicing

is used for debugging and maintenance purposes. This is due to the fact that the size of a

resulting slice is relatively smaller than the original program in general, thus making it

easier to locate errors or to modify the program at the stage of program maintenance.

Second, program slicing is used to obtain slicing based program metrics. It allows the

analysis of the structure of the program. Weiser proposed three slicing-based program

metrics.

1. Coverage compares the length of slices to the length of the
entire program. Coverage might be expressed as the ratio of
mean slice length to program length. A low coverage value,
indicating a long program with many short slices, may indicate
a program which has several distinct conceptual purposes.

ii. Overlap is a measure of how many statements in a slice are
found only in that slice. This could be computed as the mean

of the ratios of non-unique to unique statements in each slice.
A high overlap might indicate very interdependent code.

iii. Clustering reveals the degree to which slices are reflected in
the original code layout. It could be expressed as the mean of
the ratio of statements formerly adjacent to total statements in
each slice. A low cluster value indicates slices intertwined like
spaghetti, while a high cluster value indicates slices physically
reflected in the code by statement grouping.

80

In order to compare the output obtained using C++Debug (which is dynamic

slicing based) with the output obtained using C-Sdicer (which is static slicing based), the

test programs must be the same ones as used in Nanja's study in testing C-Sdicer [Nanja

90]. These test programs are listed in Appendix F. The number of output variables and

the size of each program is shown in Table I.

The results obtained from C-Sdicer and C++Debug are shown in Tables II and III,

respectively.

TABLE I
DESCRIPTION OF THE FIVE TEST PROGRAMS

Metric Pl P2 P3 P4 PS

Size (# of lines) 120 35 56 67 58

of output

variables 26 3 3 10 1

(Source: [Nanja 90])

TABLE II
SLICING-BASED METRICS OBTAINED FROM C-SDICER

FOR THE FIVE TEST PROGRAMS

Metric Pl P2 P3 P4

Coverage 0.86 0.77 0.57 0.75

Overlap 0 4.42 10.13 0

Clustering 0.66 0.64 0.87 0.65

(Source: [Nanja 90])

TABLE III
SLICING-BASED METRICS OBTAINED FROM C++DEBUG

FOR THE FIVE TEST PROGRAMS

Metric Pl P2 P3 P4

Coverage 0.26 0.48 0.58 0.35

Overlap 52.33 3.60 14.60 57.00

Clustering 0.06 0.44 0.30 0 .11

81

PS

0.83

1. 00

0.95

PS

0.70

1. 00

0.42

CHAPTER V

SUMMARY, CONCLUSIONS, AND FUTURE WORK

5.1 Summary

Chapter I discusses the necessity of using debugging tools in locating and

correcting the errors contained in programs. Included in this chapter are the purposes of

the study as well as the organization of the study.

Chapter II describes the general knowledge on program slicing and dicing

techniques. The chapter concludes with a discussion of both advantages and

disadvantages of dynamic slicing and static slicing, and the procedures used to locate

errors in a program using dynamic slicing and dicing techniques.

Chapter III presents the definitions, the algorithms, and the approaches used to

compute a program slice and a program segment after dicing. Some examples were

shown as well.

Chapter IV presents the steps involved in producing the C++Debug tool. The

C++Debug block diagram, the results of the experiment, slicing-based metrics, testing

and evaluation, documents, and the advantages and limitations of C++Debug were

presents also.

82

83

5.2 Conclusions

C++Debug was designed to allow ease and convenience on the part of the user.

Using C++Debug, a user can interact directly with the computer in locating errors in a

certain program. For convenience, the program provides menus to allow the user to

select any one of the functions contained therein. Based on the results of the

experimentation, C++Debug could generate a new slicing program that is of smaller size

than the original source program. The new slicing program still preserves part of the

program's original behavior for a specific input. In addition, C++Debug can be used as a

tool like ctrace under UNIX. C++Debug can work on both C and C++.

By using the -g option, C++Debug supports the generation of grammar

derivation trees. A users can study how the parser checks the syntax of a program. By

using the -i option, all information about C++Debug can be displayed. One who is

interesting in the dynamic slicing area can use the information provided by C++Debug,

such as D, U, DU, symbol tables, etc., to investigate the process of slicing, dicing, or

compiling in general.

5.3 Future Work

Based on the initial experiments with C++Debug, we found that improvements

and additions can be made to C++Debug in the following aspects.

5.3.1 Improvements

The size of C++Debug after compiling by an optimized compiler is 2,088,720

bytes. It appears that it should be smaller if some algorithms and memory uses are

84

managed better. Time and space complexities are dependent on the size of the trajectory

(and not necessarily the size of the source code). To avoid running out of disk space

(which is needed to store the trajectory path), the user must know how far the trajectory

must go and how much disks space is required. It would be better if C++Debug can

automatically check and tell the user about the sufficiency of the disk space. And it

should also estimate the time that C++Debug is going to take to obtain the slices and the

dices.

5.3.2 Additions

Instead of just menus, some windows should be supported so that a user can view

the source code, the trajectory path, the program slice, etc. on the screen. Using a mouse

can help a user probably better than using the keyboard in selecting which function to

use, or selecting the variables and positions required to compute a slice.

5 .3 .3 Future Work

For a tested C++ program that has pointers, global variables, and static

declarations in classes, the algorithm that was used to implement C++Debug yields an

output slice larger than it should be (however, it still gives the correct output and its size

is smaller than the original source program). Some lines that should be eliminated are not

eliminated. If a better algorithm to manage pointers, global variables, and static

declarations in classes is implemented, the size of the resulting slice will be smaller.

It will be desirable if C++Debug can be made a multi-user-tool. However, in the

current implementation, since C++Debug saves specific files in a local directory, it

cannot be used in the multi-user mode.

85

Because of the complexities of the C++ symbol table and the time constraint, the

current version of C++Debug cannot treat array elements and fields in dynamic records

as individual variables.

REFERENCES

[Bison 00] "Bison 1.35 Manual," http://www.gnu.org/manual/bison-1.35/html mono/
bison.html.gz, Last Update: March 2000, Last Access: April 30, 2003.

[Cool 94] "CoolAid: The Cool Reference Manual," http://www.cs.berkeley.edu/
-aiken/ftp/cool-manual.ps, Last Update: January 1994, Last Access: April 30,
2003.

[Flex 01] "Flex, version 2.5 A Fast Scanner Generator Edition 2.5, March 1995,"
http://www.gnu.org/manual/flex-2.5 .4/html mono/flex.html, Last Update:
February 23, 2001, Last Access: April 30, 2003.

[Gallagher 90] Keith Brian Gallagher, Using Program Slicing in Software Maintenance,
Ph.D. Dissertation, Computer Science Department, University of Maryland,
Baltimore County, MD, 1990.

[Gallagher and Lyle 91] Keith B. Gallagher and James R. Lyle, "Using Program Slicing ·
in Software Maintenance," IEEE Transactions on Software Engineering, Vol. 17,
No. 8, pp. 751-761, August 1991.

[Hedrick 75] G. E. Hedrick, "Program Documentation," Journal of Data Education, Vol.
15, No. 4, pp. 20-21, July 1975.

[Korel 88] Bogdan Korel, "PELAS-Program Error-Locating Assistant System," IEEE
Transactions on Software Engineering, Vol. 14, No. 9, pp. 1253-1260, September
1988.

[Korel and Laski 88] Bogdan Korel and Janusz Laski, "Dynamic Program Slicing,"
Information Processing Letters, Vol. 29, No. 3, pp. 155-163, October 1988.

[Korel and Laski 90] Bogdan Korel and Janusz Laski, "Dynamic Slicing of Computer
Programs," Journal of Systems and Software, Vol. 13, No. 3, pp. 187-195,
November 1990.

[Lyle 84] James R. Lyle, Evaluating Variations on Program Slicing for Debugging,
Ph.D. Dissertation, Computer Science Department, University of Maryland,
College Park, MD, 1984.

86

87

[McDermid 93] John McDermid, Software Engineer's Reference Book, CRC Press, Inc.,
Boca Raton, Florida, 1993.

[Nanja 90] Sekaran Nanja, An Interactive Debugging Tool for C Based on Program
Slicing and Dicing, Master of Science Thesis, Computer Science Department,
Oklahoma State University, Stillwater, OK, May 1990.

[Nanja and Samadzadeh 90] Sekaran Nanja and Mansur H. Samadzadeh, "A
Slicing/Dicing-Based Debugger for C," The 8th Annual Pacific Northeast
Software Quality Conference, Portland, OR, pp. 204-212, October 1990.

[Pohl 94] Ira Pohl, C++ for C Programmers, 2nd Edition, The Benjamin/Cummings
publishing Company, Inc., Redwood City, CA, 1994.

[Samadzadeh and Wichaipanitch 93] Mansur H. Samadzadeh and Winai Wichaipanitch,
"An Interactive Debugging tool for C based on Dynamic Slicing", Proceedings of
the 1993 ACM Computer Science Conference, Indianapolis, IN, pp. 30-37,
February 1993.

[Sommerville 01] Ian Sommerville, Software Engineering, 6th Edition, Addison Wesley
Publishing Company, New York, N.Y., 2001.

[Stroustrup 97] B. Stroustrup, C++ Programming Language, 3rd Edition, Addison­
Wesley, Inc., Reading, Massachusetts, 1997.

[Tassel 74] Dennie V. Tassel, Program Style, Design, Efficiency, Debugging, and
Testing, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1974.

[Weiser 81] Mark Weiser, "Program Slicing," Proceedings of the Fifth International
Conference on Software Engineering, San Diego, CA, pp. 439-449, March 1981.

[Weiser 82] Mark Weiser, "Programmers Use Slices When Debugging,"
Communications of the ACM, Vol. 25, No. 7, pp. 446-452, July 1982.

[Weiser 84] Mark Weiser, "Program Slicing," IEEE Transactions on Software
Engineering, Vol. SE-10, No. 4, pp. 352-357, July 1984.

[Weiser and Lyle 86] Mark Weiser and James R. Lyle, "Experiments on Slicing-Based
Debugging Aids, " a paper presented at The First Workshop on Empirical Studies
of Programmers, (Soloway, E. and Iyengar, S., Editors), Ablex Publishing
Corporation, Norwood, NJ, pp. 187-197, 1986.

APPENDICES

88

APPENDIX A

GLOSSARY

Action: An action, e.g., an instruction X at position p in a trajectory T, sometimes
represented as the pair(X,p). For example, 44 and 49 in trajectory Tin
Figure 10 are actions that involve the same instruction 4. See also
trajectory.

Back(T,q): Denotes the sublist <Xq+l, ... , Xm> of T, consisting of elements that follows
T(q), a trajectory at position q. Where T = <X1 , X2 , ... , Xm> denotes a
trajectory of length m, and q is a position in T, 1 < q < m. See also
trajectory, Front(T,q) and Del(T,R).

Bug: An error in a computer program that may be either a syntax error or a logical
error.

Called action: An action xP is a called action if X is a called function instruction.

Called-to-Calling: Occurred when a slice is computed from a called action first and then
a calling action.

Calling action: An action xP is a calling action if X is a calling function instruction.

Calling-to-Called: Occurred when a slice is computed from a calling action first and then
a called action.

D(XP): The set of variables that are defined in action xP. For example, in the
execution trace of Figure 10, 1815 Avg := Sum/(MaxData + 1); Avg is a
set of variables that are defined in 1815 , D(l815). See also trajectory, U(XP),
DU(XP), IR(XP), and TC(XP).

Debugging: A process to locate and correct errors or bugs. Debugging differs from
testing in that testing is used to determine whether a program is working
properly, whereas debugging localizes and corrects the errors.

89

90

DEL(T,R): A subtrajectory obtained from T by deleting from it all elements T(i) that
satisfy R. Where T = <X1 , X2 , ... , Xm> denotes a trajectory of length rn, and q
is a position in T, 1 < q < rn. Where R is a predicate on the set of
instructions in T. See also trajectory, Front(T,q), and Back(T,R).

DF name(XP): A set of variables that are defined in action xP; where xP E M(TF name).

Dicing:

DUFname:

The process of identifying a set of statements prone to contain an error.

Definition-Use Relation, a binary relation on M(T) in which one action
assigns a value to an item of data and the other action uses that value. For
example, in the execution trace of Figure 10, 22 assigns a value to variable
Count and 44, 95, 167, and 178 use that value. See also trajectory, M(T),
D(XP), U(XP), IR(XP), and TC(XP).

A Definition-Use-Functionname Relation, is a binary relation on M(TFname).

DV(V, TF name): A function that return a set of line numbers, where Vis set of variables.

Dynamic Slicing: A slicing method defined on the basis of a computation rather than all
computations. It generates a dynamic program slice by computing from the
executable part of the original source program. See also program slicing
and static slicing.

EI:

Fname:

A Called-to-Calling Relation between 2 functions, xP IE yt, iff both are in
a Called-to-Calling situation, where xP is a calling action and yt is a called
action.

A function, a set of instruction X's which is in the scope of influence of
function name.

Feasible Path: Let a flowgraph of program P be a directed graph and C = (N, A, s, e) be
a slicing criterion where:

1. N is a set of nodes,
2. A is a binary relation on N (a subset of N x N), referred to as a set of

arcs,
3. s E N is a unique entry node, and
4. e E N is a unique exit node.

A node in N is referred to as an instruction, including a single instruction
and a control instruction. A single instruction includes, for example, an
assignment statement, an input or output statement, etc. A control
instruction includes such statements as if-then-else or while statements,
which are called test instructions. An arc(n,rn) E A corresponds to a

FN(q):

91

possible transfer of control from instruction n to instruction m. A path :from
entry node s to some node k when k E N is called a sequence <n1, n 2, ..• ,

nq> of instructions, such that n1 = s, nq = k and (ni,ni+1) E A, for all ni, 1
< i < q. If there is input data, which causes the path to be traversed during
program execution, the path is called feasible.

A function name such thatxq, Xis in the scope of influence.

Front(T,q): The sublist <X1, X2 , ••• , Xq> of T, consisting of the first q elements of T,
where T = <X1, X2 , ••• , Xm> denotes a trajectory of length m, and q is a
position in T, 1 < q < m. See also trajectory, Back(T,q), and DEL(T,R).

G(X): A set of variables and precedences that are declared as a global declaration.

IE: A Calling-to-Called Relation between 2 functions, xP IE Y\ iffboth are in
a Calling-to-Called situation, where xP is a called action and yt is a calling
action.

I RF name:

Let xP IR Y\ iff X = Y is the Identity Relation IR on M(Front(T,q)). See
also trajectory, M(T), D(XP), u(xP), DU(XP), TC(XP), and Front(T,q).

An Identity Relation in Functionname, XP IRFname Y\ iff X = Y is the identity
relation IRFname on M(Front(TFname,q)).

Last Definition: Last definition xP of variable vat t is the action which has last assigned
a value to v when tis reached on trajectory T. See also trajectory.

LF name(XP): A set of variables and C++ precedences that are declared as a local
declaration in function name.

M(T): A set of actions in a given trajectory T, where M(T) = { (X,p) : T(p) = X }.
See also trajectory.

M(TF name): A set of actions in a given function of a given trajectory TF name, where
M(TF name) = { XP : instruction X at position p in trajectory TF name } .
M(TFname) is a subset ofM(T).

P: A set of instruction X's, in a C++ tested program.

Preprocessor: A separate first step in compilation, e.g., #include, #define, or #if.

Program Slicing: A segment of a program that is separated and identified based on the
premise that instead of localizing errors in the original program, which can
be of large size, one can locate such errors in a program of smaller size
which is sliced from the original program but still preserves part of the

92

original program's behavior for a particular input or relative to a particular
variable.

Slicing Criterion: The specification that a behavior of interest of a program can be
expressed as the values of some set of the variables at some set of
statements.

Static Slicing: A method defined on the basis of all computations and used for
generating a static program slices. The computations of static slices are
done directly from the original source program. See also program slicing
and dynamic slicing.

T(p): The abstract list of a trajectory T whose elements are accessed at position p,
e.g., for Tin Figure 10, T(3) = 3, T(5) = 9, etc. See also trajectory.

TCFname:

Test-Control Relation, a binary relation on M(T), capturing the effect
between test actions and actions that have been chosen to execute by those
test actions. For example, in the execution trace of Figure 10, the scope of
the test action 44 influences the execution of 95, 106, 167, and 178, but
it does not influence the execution of 1310, 1411, 1612, and 1713• See also
trajectory, M(T), D(XP), U(XP), DU(XP), and IR(XP).

A Test-Control-Functionname Relation, is a binary relation on M(TFname).

Test Action: An action xP is a test action if Xis a test instruction. See also trajectory.

Test Instruction Statements: A control instruction such as an if-then-else or a while
statement.

TF name: A function trajectory, a feasible path of a function name that has actually
been executed for some input. TF name is a sublist of T.

Trajectory: A feasible path that has actually been executed for some input. For
example, <1,2,3,4,9,10,16,17,4,13,14,16,17,4,18,19> is the trajectory
when the program in Figure 1 is executed on the input data MaxDa ta = 2,
Data = (3,5). A trajectory will be illustrated in terms of a pair (instruction,
its position in the trajectory) rather than the instruction itself so as to
distinguish between multiple occurrences of the same instruction in the
trajectory. For example, instruction X at position pin Twill be represented
by the pair (X, p). For ease of understanding, the pair (X, p) will be
replaced by xP and will be referred to as an action. For example, 44 and 49

in trajectory T in Figure 10 are actions that involves the same instruction 4.
See also feasible path.

93

The set of variables that are used in xP. For example, in the execution trace
of Figure 10, 1815 Avg:= Sum/(MaxData + I); Sum andMaxData are
a set of variables that are used in 1815 , U(18 15). See also trajectory, D(XP),
DU(XP), IR(XP), and TC(XP).

UF nameCXP): A set of variables that are used in action xP; where xP E M(TF name)-

VDU(FunctionName): A set of variables that are used, UFname, and defined, DFname, in the
given function name.

VS(XDu):

x:

A variable scope relation at XDu, be a set of instructions XDcL, where Xnu is in
the scope of influence of XDcL·

An instruction in a program and XE IN+. See also program P.

An instruction that declared variables such as "int I;".

An instruction that used or defined the variables that declared by XDcL,
where variables that used or defined are in the scope of influence of
variables that declared in XDcL·

xP: An action, e.g., an instruction X at position p in a trajectory T, sometimes
represented as the pair(X,p). For example, 44 and 49 in trajectory Tin
Figure 10 are actions that involve the same instruction 4. See also
trajectory.

yt: An action, instruction Y at position tin a trajectory T. See also xP.

APPENDIX B

USER'S MANUAL FOR C++DEBUG

B.1 Introduction

C++Debug is a slicing and dicing based debugging tool for ANSI C++ that runs

under the UNIX or Linux operating system. It has been designed in a way to provide

ease and convenience to the user. Using C++Debug, the user can interact with the

computer in locating errors in a program. For convenience of the user, the menu shown

in Figure 56 allows the user to select any of the available functions.

B.2 C++Debug's Commands

At a UNIX prompt, C++Debug is invoked by typing the following command:

$C++Debug [prog_name]

where $ is a UNIX Bourne shell prompt and prog_name, the optional parameter, is the

name of the program to be loaded into the C++Debug environment. Once this command

is executed, C++Debug will return to the help menu so that additional commands can be

executed.

94

* C++Debug *
* A slicing and dicing *
* based debugging tool *
* version 1.31 *
* 04/10/03 *

S (lice)
D (ice)
V (iew)
T (rajectory)
R (un)

L (evel)

E (ditor)

produces slice(s)
produces dice(s)
display source program
displays trajectory path
a program slice to check output

select level of slice
(now set to level 1)

select editors 'VI' or 'EMACS'
(now set to use 'EMACS')

Q (uit)
invokes UNIX command interpreter
quit from C++Debug environment

C++Debug>

Figure 56. Help menu and prompt

95

The following commands are available within the C++Debug environment. They

are explained in the order that they appear in the C++Debug menu.

Sor
Slice

Dor
Dice

Produces a slice of the program currently resident within the C++Debug
environment with the variables supplied to it as its arguments.

Example:
C++Debug>S line_num varl [var2 ...]

C++Debug>Slice line_num varl [var2 ... J

where line_num is a valid line number in the program and varl,
var2 are variables in the program. This command requires a line
number and at least one variable to produce a slice.

Produces a dice, given a set of variables and a line number.

Example:
C++Debug>D line_num varl [var2 . ..] / var3 [var4 . ..]

C++Debug>Dice line_num varl [var2 . ..] / var3 [var4 . .. J

Vor
View

Tor
Trajectory

Ror
Run

Lor
Level

Eor
Editor

Q or
Quit

96

where line_num is a valid line number in the program and varl,
var2, var3, and var4 are variables in the program. This command
requires a line number and at least two variables to be supplied, separated
bya I-

Views or displays the source program resident within the C++Debug
environment on the display unit. VI or EMACS is used to view the
source program. One can select to uses VI or EMACS by using E or
Editor.

Displays the trajectory path or the execution trace of the source program
resident within the C++Debug environment on the display unit.

Compiles and run the slice program currently resident within the
C++Debug environment with the G++ compiler (to compare the slice
output with the original program output).

In level 1:

C++Debug can work with any size source program. C++Debug will use
some harddisk space (about 1 K-byte) to keep track of information.
Level 1 yields an output slice larger than level 2.

In level 2:

Level 2 allows the user to get a program slice smaller than Level 1. The
limitation is that C++Debug will use more of your space than Level 1 in
order to keep track of the trajectory path.

Selects editor from VI, EMACS, or EMACS for windows.

Invokes a UNIX command.
Example:
C++Debug>!ls -1

C++Debug>!who

Exits from the C++Debug environment to the UNIX system.

97

B.3 Tutorial

In order to make it easier to understand, this tutorial walks the user through

C++Debug step by step. The tutorial guide you from the basic commands, such as view

manual or version, to the more complicated commands such as Slice or Dice.

B.3.1 A Step-by-Step Guide

1. At the UNIX prompt, type C++Debug. You will see the following message:

$ C++Debug

usage: C++Debug [-mvg] [-lnnnn] [file]

-m Display manual Ex. $C++Debug -m
-v Display version Ex. $C++Debug -v
-g Display grammar Ex. $C++Debug -g filename.cpp
-t Display trajectory Ex. $C++Debug -t filename.cpp
-1 Check nnnn consecutively executed statements for looping

by default nnnn = 10 Ex. $C++Debug -140 filename.cpp

2. Type

$ C++Debug -m

C++Debug' s user's manual should be display on the screen.

3. Type

$ C++Debug -v

C++Debug' s version should be display on the screen.

4. Type

$ C++Debug -g Testl.cpp

For a grammar, you will see the tree corresponding to the derivation of program

Testl. cpp (see Subsection B.3.2.1). The tree is up side down (the root is at the

bottom).

98

Display on the screen Should look like

...... Program:
compound_statement declaration _seq
......

declaration_seq:
declaration: declaration _seq declaration
function _definition

declaration:
declaration _seq: function - definition
declaration _seq declaration

....
Program: compound_statement
declaration _seq

Or, it can be represented graphically as follow:

This area is left for someone who is interested and would like to translate a

derivation tree from the text mode to graphical representation (a directed graph).

5. Type

$ C++Debug -t Testl.cpp

The trajectory path that allows you to follow the execution of a C++ program,

statement by statement, will show on the screen as follows:

99

P . . Line number
os1t1on 't ~oftheprogram

Jl,31Jmain () {
J2,32J int Max= 4;
J3,33J float Num[4] = {10.0, 20.0, 15.0, 5.0};

Input/Output

1
J4,11J Compute(int M, float *N) {
J5,12J Max= M; allocate mem

Figure 57. The trajectory path

where 1, 2, 3, ... are positions and 31, 32, 33, 11, 12, ... are line numbers of program

Testl. cpp. The input and/or output of the program will be shown after';'.

Now you can keep track of your program as to what line numbers are running.

6. Let's try program Test2. cpp (see Subsection B.3.2.2). with multiple loops, type

$ C++Debug -110 Test2.cpp

Be careful, -110 is letter ell and one zero.

Compare it with:

$ C++Debug -1100 Test2.cpp

Now you have some idea about C++Debug and how it works as a cpptrace

tool, and what a trajectory is. However, locating errors in a trajectory still

requires work. C++Debug can help users to find errors. Please follow the examples to

gain facility in using the tool.

Next, let's try program slicing.

7. Type

$ C++Debug Testl.cpp

100

The screen should display the menu shown in Figure 56.

8. Type

C++Debug> s 21 Tsum

That means you are going to slice a program based on variable Tsum at line 21. The new

program (which is smaller than the original) will be shown in the editor mode (by

selecting between VI and EMACS).

Using slicing, one obtains a new program of generally smaller size that still

maintains all aspects of the original program's behavior with respect to the criterion

variable.

Now, let's try another line number:

C++Debug> s 32 Max

That means you are going to slice a program based on variable Max at line 32. The new

program (which is smaller than the original) will be shown.

Now, let's try another line number:

C++Debug> s 10 public

You will get an empty slice, because that line has not been executed.

Tip: To select 'Line' and 'Variable', one must be careful. One must
make sure that the line will be executed.

For example,

10: if(a> 100)
11: cout<<"greater than 100"<<endl;
12: else
13: cout<<"less than or equal 100"<<endl;

Assume that a = 150.

101

In this case, suppose that you select line 13, you will get an empty slice, because line 13

has not been executed.

Let's slice program Testl. cpp based on variable Sum and Avg by first typing

C++Debug> s 35 Sum

you should get a slice program based on variable Sum at line 35, and by typing

C++Debug> s 36 Avg

you should get a slice program based on variable Avg at line 36.

9. Dice

Now you know to slice a program.

Now, let's try 'Dice'.

Dicing technique is used to compare two or more slices resulting from the program

slicing technique in order to identify the set of statements that are likely to contain an

error.

In the previous examples, Avg gives an incorrect output. The correct output of

Avg must be

(10.0 + 20.0 + 15.0 + 5.0) I 4 = 12.5

However, Sum gives the correct output of 50. Therefore you can locate the error

in the program by using the dicing technique.

C++Debug> d 36 Avg 35 Sum

where 36 Avg is a slice at line 36 based on variable Avg (which gave an incorrect

result) and 35 Sum is a slice at line 35 based on variable Sum (which gave a correct

result).

You should get the following output:

25: float Avg(void)
26: return Sum()/(Max + 1);
36: cout<<A.Avg()<<endl;

You know that line 25 and line 36 are correct (obviously). So we have line 26 left.

We find that line 26 should be

26: return Sum()/(Max); II which is correct

instead of

26: return Sum()/(Max + 1);

There exists an extra ' + 1 ' , which is incorrect.

B.3.2 Source Code Listing

B.3.2.1 Testl.cpp

/**

*
* A program for calculating the sum
* and average of a set of numbers.

*

*
*
*
*

**/
#include <iostream>
using namespace std;

class Compute

} ;

private:
int Max;
float Num[4];

public:
Compute(int M, float *N) {
Max= M;
cout<<"allocate mem"<<endl;
for(int I=O; I<Max; ++I)
Num[I] = N[I];

float Sum(void) {
float Tsum = 0;
for(int I=O; I<Max; ++I)

Tsum = Tsum + Num[I];
return Tsum;

float Avg(void) {
return Sum()/(Max + 1);

main () {
int Max= 4;
float Num[4] = {10.0, 20.0, 15.0, 5.0);
Compute A(Max, Num);
cout<<A.Sum()<<endl;

102

cout<<A.Avg()<<endl;

B.3.2.2 Test2.cpp

/**

* *
*
*

A program for loops testing *
*

**/
#include <iostream>
using namespace std;

int main (void)

for(int i
for(int
}

l; i<=lOO; i++) {
j = l; j<=lOO; j++)

103

APPENDIX C

DATASTRUCTURE DESIGN FOR C++DBUG

BASED ON DYNAMIC PROGRAMSLICING AND DICING

C. l Introduction

In order to design datastructures for C++Debug, the grammar that appears in C++

Programming Language Third Edition written by Bjarne Stroustrup, the creator of C++,

has been used in this design. The design was started from basic functions and expanded

to pointers, structures, functions, and classes.

C.2 Types and Declarations

C.2.1 Types

Every name (identifier) in a C++ program has a type associated with it. The type

determines what operations can be applied to the name and how such operations are

interpreted. In this design, the data structure of Types used to store all built-in and user-

defined types used in the program is shown in Figure 58.

InsertTypes(ID) is used to manage database in Figure 60, which includes all of these
six functions:

InsertBasicType(ID) is used to insert basic types into the list such as bool, char,
int, double, void, unsigned, long, short, etc.

InsertClassName(ID) is used to insert class names into the list.

104

enum Groups= { Basic, Structure, Class, Template, TypeDef };
struct Types {

char Type[TYPELENGTH];
char Group[Groups];

Figure 58. Data structure of Types

1 #include <assert.h>
2 #include <stdlib.h>
3 #include <iostream.h>

4 typedef int Item;

5 class ItemArray {
6 friend class Itemiterator;
7 int size;
8 Item* array;
9 public:

10 ItemArray(int elms) : size(elms)
11 {
12 assert(elms>O);
13 array= new Item[elms];
14 assert(array!=NULL);
15 }
16 -ItemArray() {
17 delete []array;
18 size=O;
19 array=NULL;
20 };
21 };
22 class Itemiterator {
23 int index;
24 ItemArray* obj;
25 public: Itemiterator(ItemArray& i) :obj(&i),

index (0) {} ;
2 6 Item* operator () () {
27 if (index< obj->size)
28 return &obj->array[index++];
29 else
30 return NULL;
31 };
32 };
33 main() {
34 ItemArray a(lOO);
35 Itemiterator p(a);
36 Item* ptr;
37 Item i(O);
38 while ((ptr=p()) != NULL)
39 *ptr=i++;
40 // The same without ptr
41 Itemiterator check(a), use (a);
42 while (check() != NULL)
43 cout << *use() << '\n';
44 return O;
45 }

Figure 59. AC++ program that uses iterators

105

InsertStructureName(ID) is used to insert structure names into the list.
InsertEnumName(ID) is used to insert enumeration names into the list.
InsertTemplateName(ID) is used to insert template names into the list.
InsertTypeDefName(ID) is used to insert type definition names into the list.

106

For example, all types of the program in Figure 59 can be stored in the database

as shown in Figure 61.

Type Group

bool Basic
char Basic
unsigned Basic
long Basic
short Basic
int Basic
float Basic
double Basic
void Basic
List of Enum Names Enum
List of Structure Names Structure
List of Class Names Class
List of Template Names Template
List of TypeDef Names Type Def

Figure 60. Show the database of Types used in C++

Type Group

int Basic
Item TypeDef
ItemArray Class
Itemlterator Class

Figure 61. Show how the database stores Types of the program in Figure 59

107

C.2.2 Declarations

Before a name (identifier) can be used in a C++ program, it must be declared.

That is, its type must be specified to inform the compiler to what kind of entity the name

refers. The data structure of Declarations is used to store all variables declared in

the program with their characteristic and scopes. It is designed as shown in Figure 62.

For example, for the program in Figure 59, all variables can be stored in the database as

shown in Figure 63.

struct Declarations {
char VariableName [VARIABLELENGTH];
char Type[TYPELENGTH];
bool Array;
bool Pointer;
bool Reference;
bool Const;
bool Function;
bool Argument;
int ScopeStart;
int ScopeEnd;

Figure 62. Data structure of Declarations

Variable Type Array Poin- Refer- Const Fune- Argu- Scope Scope
Name ter ence tion ment Start

Size int F F F F F F 7
Array Item F T F F F F 8
Elms int F F F F F T 10
Index int F F F F F F 23
Obj ItemArray F T F F F F 24
I ItemArray F F T F F T 25
Operator Item F T F F T F 1
A ItemArray F F F F F F 34
p ItemArray F F F F F F 35
Ptr Item F F F F F F 36
I Item F F F F F F 37

Figure 63. Show how the database stores Declarations of the program
in Figure 59

End

21
21
15
32
32
25
45
45
45
45
45

108

Where the elements in the field named Type is one of the elements contained in

the field named Type in Figure 58. Field named Array, Pointer, Reference,

Const, Function, and Argument are used to specify the kinds of each variable in

the field of VariableName. Function InsertDeclaration(ID) is used to insert

the variables into the database as shown in Figure 63. Function InsertTypes(ID) in

Section C.2.1 is called to store all built-in and user-defined types also.

Function ScopeStart(ID) and ScopeEnd(ID) are used to determined the

scope of each variable name. See Section C.2.3 for more information.

C.2.3 Scope

A declaration introduces a name into a scope; that is, a name can be used only in a

specific part of the program text. Figure 64 shows the example of the scopes. Function

ScopeStart(ID) and ScopeEnd(ID) are used to determined the scope of each

identifier and store it in the database as shown in Figure 63.

int x; II global x
void f(x)

int x; II local x hides global x
X 1; II assign to local x
{

int x; II hides first local x
X = 2.

' II assign to second local x

X 3; II assign to first local x
}

int * p &x; II take address of global x

Figure 64. Scopes of variable x as a global, local, and second local

109

C.2.4 Typedef

A declaration prefixed by the keyword typedef declares a new name for the type

rather than a new variable of the given type. The data structure of Typedef is used to

store the real types of the types defined by typedef statement. Its data structure is shown

in Figure 65. The field named Type in Figure 65 is related to the field named Type in

Figure 58. For example, the part of the program in Figure 66 can be stored in the

database as shown in Figure 67.

struct Typedef {

}

char Type[TYPELENGTH];
char RealType[TYPELENGTH];

Figure 65. Data structure of Typedef

typedef
typedef
typedef
typedef
Pchar
char

short
int
long
char*
Pl, P2;
P3 = Pl;

intl6;
int32;
int64;
Pchar;

Figure 66. A program segment that uses typedef

Type Real Type

Pchar char*
int16 short
int32 int
int64 long

Figure 67. Show how the database stores Typedef defined by typedef in Figure 66

110

C.3 Pointers, Arrays, Constant, References, and Structures

C.3.1 Pointers

For a type T, T* is the type pointer to T. That is, a variable of type T* can hold

the address of an object of type T. The data structure named Pointers is used to store

the variables pointed to. The field named VariableName in Figure 68 is related to the

field VariableName in Figure 62. The function named InsertPointerName(ID)

is used to manage Figure 70. For example, the part of the program in Figure 69 can be

stored in the database as shown in Figure 70.

struct Pointers {
char VariableName[VARIABLELENGTH];
char PointTo[VARIABLELENGTH];
int NoOfStars;

Figure 68. Data structure of Pointers

1 int * pi; II point to int
2 char ** ppc; II point to pointer to char
3 int * ap[15]; II array of 15 pointers to ints
4 int (*fp) (char*); II pointer to function taking a

II char * argument; return an int
5 int * f (char *) ;
6 char C = \ a I ;

7 char *p &c; II p holds the address of C

8 char c2 = *p; II c2 -- 'a'

Figure 69. A program segment that uses pointers

Note: We do not care prefixed '*' and '&' of variables p and c, because their

characteristic was stored in Figure 70.

VariableN ame PointTo NoOfStars

pi NULL 1
ppc NULL 2
ap NULL 1
fp NULL 1
f NULL 1
p &c 1

Figure 70. Show how the database stores Pointers of the part of the program in
Figure 69

Line Number Def(n) Ref(n)

6 c -
7 p C

8 c2 p

Figure 71. Show how the database stores Def(n) and Ref(n) of the part of the
program in Figure 69

C.3.2 Arrays

111

For a type T, T[Size] is the type array of size elements of type T. The elements

are indexed from Oto size-I. The data structure named Arrays is used to store all array

variables' dimensions. The field named VariableName in Figure 72 is related to the

field named VariableName in Figure 62. The function InsertArrayName(ID) is

used to manage Figure 74.

Struct Arrays {

}

char VariableName[VARIABLELENGTH];
char Dimension[DIMENSIONLENGTH];

Figure 72. Data structure of Arrays

float
char

v[3]; II 1 Dimension and size
a[32] [10]; II 2 dimension and size

3
32x10

Figure 73. A program segment that uses arrays

VariableName Dimension

V [3]
a [32] [10]

Figure 74. Show the data base of Arrays used by the part of the program
in Figure 73

C.3.3 Pointers into Arrays

112

In C++, pointers and arrays are closely related. The name of array can be used as

a pointer to its initial element. Therefore, all variables of these types will be managed by

the mixing of Pointers in Section C.3.1 and Arrays in Section C.3.2.

1 int V [] = {1,2,3,4};
2 int * pl v; II pointer to initial element

II (implicit conversion)
3 int * p2 &v [0 l ; II pointer to initial element
4 int * p3 &v [4] ; II pointer to one beyond last element

Figure 75. A program segment that uses pointers into arrays

V ariableN ame PointTo NoOfStars

pl V 1
p2 &v[OJ 1
p3 &v[4] 1

Figure 76. Show how the database uses function InsertPointerName(ID)
in Section C.3.1 to store variables of the part of the program in
Figure 75

113

V ariableN ame Dimention

V [4]

Figure 77. Show how the database uses function InsertArrayName(ID)
in Section C.3.2 to store variables of the part
of the program in Figure 75

Line Number Def(n) Ref(n)

1 V -
2 pl V

3 p2 v[O]
4 p3 v[4]

•'

Figure 78. Show how the database stores Def(n) and Ref(n) of the part of the
program in Figure 75

C.3.4 Constant

C++ offers the concept of a user-defined constant, a constant, to express the

notation that a value doesn't change directly. The datastructure named Declarations

in Section C.2.2 1s used to manage by using the function named

InsertDeclaration(ID), while the data structure named Pointers in Section

C.3.1 used to manage their pointers.

1 const int model = 90;
2 const int x;
3 const char * pc 9;
4 char *strcpy(char *p, const char *q) II cannot modify *q
5 int V [] = {l,2,3,4};
6 const int c3 = my_f93);

Figure 79. A program segment that uses const

114

Variable Type Array Poin- Refer- Const Fune- Argu- Scope Scope
Name ter Ence tion ment Start End

model int F F F T F F 1 6
X int F F F T F F 2 6
pc char F T F T F F 3 6
strcpy char F T F T T F 4 6
V int T F F T F F 5 6
c3 int F F F T F F 6 6
p char F T F F F T 4 6
q char F T F T F T 4 6

Figure 80. Show how the database stores constant declared in Figure 79

For example, from the part of the program in Figure 79, all variables can be stored

in the data base as shown in Figure 80, all pointers are stored in the database as shown in

Figure 80, and their Def (n) and Ref (n) can be determined as shown in Figure 82.

V ariableN ame PointTo NoOfStars

pc 9 1
strcpy NULL 1

Figure 81. Show how the database uses function InsertPointerName(ID) in
section C.3.1 to variables of the part of the program in Figure 79

Line Number Def(n) Ref(n)

1 model -
2 pc -
3 c3 my_f

Figure 82. Show how the database stores Def (n) and Ref (n) of the part of the
program in Figure 79

115

C.3.5 References

A reference is an alternative name for an object. The main use of references is for

specifying arguments and returns values for functions in general and for overloaded

operators in particular. The notation x& means reference to X. In this design we will

see a reference variable as copied variable as shown in Figure 85 which is managed by

the function named InsertReferenceName(ID).

structure References
char VariableName [VARIABLELENGTH];
char ReferenceTo [VARIABLELENGTH];

Figure 83. Data structure of References

1 int i l;
2 int &r i; II X and i now refer to
3 int X r; II X 1;
4 r 2; II i = 2;

the

Figure 84. A program segment that uses references

same

VariableN ame Reference To

r

int

Figure 85. Show how the database uses function InsertReferenceName(ID)
to store variables of the part of the program in Figure 84

C.3.6 Pointer to Void

A pointer of any type of object can be assigned to a variable of type void*, a

void* can be assigned to another void*, void*s can be compared for equality and

116

inequality, and a void* can be explicitly converted to another type. In this design,

functions named InsertDeclarationNarne(ID) in Section C.3.2 and

InsertPointerNarne(ID) in Section C.3.1 are used to manage their variables.

void f (int* pi)
{

}

void* pv = pi;
*pv;
pv++;
int* pi2 = static_cast<int*>(pv);
double* pdl pv;
double* pd2 = pi;

Figure 86. A program segment that uses pointer to void

C.3.7 Structures

An array is an aggregate of elements of the same type. A struct is an aggregate

of elements of (nearly) arbitrary types. In this design, the data structure of

Structures used to store all structures defined in the program is shown in Figure 88.

Functions InsertStructureNarne(ID) and InsertDeclaration(ID) in section

C.2.2 are used to manage as shown in Figure 90.

V ariableN ame PointTo NoOfStars

pi NULL 1
pv pi 1
pi2 static_cast 1
pdl pv 1
pd2 pi 1

Figure 87. Show how the database uses function InsertPointerNarne(ID)
in section C.3.1 to store variables of the part of the program
in Figure 86

struct Structures {
char StructureName [VARIABLELENGTH];
Declarations* Elements [MAXELEMENTS]; II See Figure 62

}

Figure 88. Data structure of Structures

struct address {

char * name;
long int number;
char * street;
char * town;
char state[2];
int zip;

} ;

II to be defined later struct List;
struct Link {

Link* pre;

} ;

Link* sue;
Link* member_of;

struct List {
Link* head;

} ;

Figure 89. A program segment that uses structures

C.4 Operators

117

The function named Def(n) is used to determine the set of variables whose

values may be defined at line number n, while the function named Ref(n) is used to

determine the set of variables whose values may be referenced at line number n, as

shown in Figure 91.

118

Structure Elements
Name

address
Link
List

Variable Type Array Poin- Refer- Const Fune- Argu- Scope Scope
Name ter ence tion ment Start End

name char F T F F F F - -
number long F F F F F F - -
street char F T F F F F - -
town char F T F F F F - -
state char T F F F F F - -
zip int F F F F F F - -

Variable Type Array Poin- Refer- Const Fune- Argu- Scope Scope
Name ter ence tion ment Start End

pre Link F T F F F F - -
sue Link F T F F F F - -
member_of Link F T F F F F - -

Variable Type Array Poin- Refer- Const Fune- Argu- Scope Scope
Name ter ence tion ment Start End

head Link F T F F F F - -

Figure 90. Show how the database stores Structures of the part of the program
in Figure 89

Description Grammar Statement Def(n) Ref(n)
post increment lvalue ++ I++ I I
post decrement lvalue -- d-- d d
size of object sizeof (expr) a= sizeof(int) a sizeof
pre increment ++ lvalue ++I I I
pre decrement -- value --d d d
complement -expr t=-e t e
not ! expr t= !e t e
unary minus - expr t = -e t e
unary plus +expr t= +e t e
address of & lvalue &t=e t e
dereference *expr *t=e t e
create(allocate) new [type] t = new [Type] t e, Type
multiply expr * expr t =el* e2 t el,e2
divide expr I expr t = el I e2 t el,e2
modulo (remainder) expr % expr t=el % e2 t el,e2
add (plus) expr+ expr t= el+ e2 t el, e2
subtract (minus) expr-expr t = el - e2 t el,e2

shift left expr << expr t= el<< e2 t, el e2
shift right expr>> expr t =el>> e2 t, el e2

less than expr< expr b =el< e2 b el, e2
less than or equal expr<= expr b= el<= e2 b el,e2
greather than expr > expr b =el> e2 b el,e2
greather than or equal expr>= expr b = el >=e2 b el,e2

equal expr== expr b=el =e2 b el,e2
not equal expr != expr b = el != e2 b el,e2
bitwise AND expr&expr b = el & e2 b el,e2
bitwise exclusive OR expr" expr b =el" e2 b el,e2
bitwise inclusive OR expr I expr b = el I e2 b el,e2

logical AND expr&&expr b=bl && b2 b bl, b2
logical inclusive OR expr II expr b = bl II b2 b bl, b2
simple assig nment lvalue = expr t=e t e
multiply and assign lvalue *= expr t *= e t t, e
divide and assign lvalue /= expr ti= e t t, e
modulo and assign lvalue %= expr t%=e t t, e
add and assign lvalue += expr t+=e t t, e
subtract and assign lvalue -= expr t-= e t t, e
shift left and assign lvalue <<= expr t<<=e t t, e
shift right and assign lvalue >>= expr t>>=e t t, e
AND and assign lvalue &= expr t&=e t t, e
inclusive OR and assign lvalue I= expr t I= e t t, e
exclusive OR and assign lvalue "= expr t "= e t t, e

Figure 91. Show how to determine the set of variables by using functions
Def(n) and Ref (n)

119

APPENDIX D

SOFfW ARE SPECIFICATION

D .1 Introduction

The main purpose of software specification is used to define the functionality of

C++Debug and constraints on its operation, plan the system development process,

develop validation tests for the system, and help understand the system and the

relationships between its parts.

D.2 General Description

C++Debug is an interactive debugging tool designed to function as a utility

program of the UNIX system. C++Debug is developed based on slicing and dicing

techniques. In order for C++Debug to be more powerful, dynamic slicing rather than

static slicing is chosen for implementation. C++Debug was designed in a way to allow

ease and convenience on part of the user. Using C++Debug, the user can interact directly

with the computer in locating errors in a program. Menus are provided to allow the user

to select any one of a number of functions (Slice, Dice, Help, etc.) supported by

C++Debug.

120

121

D.3 Specific Requirements

Functional and non-functional requirements are introduced in this part.

Functional requirements provide how the system react to particular inputs, behave in

particular situations, and explicitly state what the system should not do [Sommerville 01].

Non-functional requirements are about constraints such as timing constraints, constraints

on the development process, standards, etc.

D.3.1 Functional Requirements

Function requirements describe services provided for the user by using natural

language with cross-references to requirement specifications [Sommerville 94].

4.2.0 General

4.2.0.1 Name
C++Debug

Rational:
C++Debug is a slicing and dicing based debugging tool for C++.

4.2.0.2 Purpose
This project develops an interactive debugging tool, called C++Debug,
for debugging a C++ language program.

Rational:
C++Debug is designed to function as a utility program of the UNIX
system and is developed based on slicing and dicing techniques.

4.2.0.3 Hardware and Software
C++Debug runs under UNIX machine.

Rational:
The SUN machine locates on the second floor of the Computer Science
Building.

4.2.1. Program Slicing

4.2.1.1 ANSI C++

122

Can be used with every command and every instruction of ANSI C++
based on UNIX environment.

Rational:
C++Debug has to generate a program slice for every user program that
uses ANSI C++ based on UNIX environment to implement the program.

4.2.1.2 Automatic
Program slices can be found automatically by a method used to
decompose programs through analyzing their data flow and control flow.

Rational:
C++Debug automatically generates program slices.

4.2.1.3 Eighty percent of A program slice must be smaller size than that of the
original program.

Rational:
This is because there always at least one slice, that is, program itself As
a consequence, when slicing at a variable of interest, the size of the
resulting program slice is generally smaller than that of the original
program.

4.2.1.4 Property Consistency
Program slice can be executed independently of one another.

Rational:
The smaller size of the program slice is a C++ program that still
maintains all aspects of the original program behavior with respect to the
criterion variable.

4.2.1.5 Produces Exactly one projection
Each slice produces exactly one projection of the original program's
behavior.

Rational:
The smaller size of the program slice must still maintain all aspects of the
original program behavior with respect to the criterion variable.

4.2.1.6 Reduction
The slice must have been obtained from the original program by
statement deletion.

Rational:
The idea of a program slicing is to focus on the statements that have
something to do with a variable of interest (criterion variable), with those
statements that are unrelated being omitted.

4.2.3. Dynamic Slicing

4.2.3.1 Computation

123

C++Debug generates a dynamic program slice by computing from the
trajectory of the original source program.

Rational:
Contradict with static slicing, which generates a static program slice
directly from the original source program.

4.2.3.2 Arrays and Fields
C++Debug treats array elements and fields m dynamic records as
individual variables.

Rational:
Dynamic slicing characteristics [Korel 90].

4.2.3.3 Size Comparing with Static Slicing
Dynamic slicing yields a program slice of generally smaller size than that
of static slicing, or in the worst case, of equal size to that of static slicing.

Rational:
The runtime handling of arrays and pointer variables helps to reduce the
size of the slice.

4.2.3.4 # lines of executable path of the original source program at least 5,000
lines of the executable path of the original codes can be computed by
C++Debug.

Rational:

4.2.4. Dicing

To make sure that it can work with for any small run-time programs,
medium run-time programs and any run-time modules.

4.2.4. l Computation of a Variable
If the computation of a variable, V, depends on the computation of
another variable, W, then when ever W has an incorrect value, so does V.

Rational:
From dicing characteristics [Lyle 84].

4.2.4.2 Using the dicing technique, C++Debug can then be used to compare two
or more slices resulting from the program slicing technique to identify the
set of statements that are likely to contain an error.

Rational:
From dicing characteristics [Lyle 84].

4.2.5 Time Complexity

4.2.5.1 Dynamic Slicing
Time to compute the program slice is less than 2 minutes at 5,000 lines of
the executable path of the original codes.

124

Rational:
Protected from infinite loops.

4.2.5.2 Static Slicing
Time to compute the program slice is less than 2 minutes at 5,000 lines of
the original codes.

Rational:
Protected from infinite loops.

4.2.5.3 Dicing
For two variables and 1000 lines of program slices the time to find the
error line is less than 30 seconds.

Rational:
Users cannot wait for a long time.

4.2.6 Space Complexity

4.2.6.1 Size of the machine code.
After compiled, the total size of machine code is not more than 100 k­
byte.

Rational:
Comparing with the other debugger e.g. SDB, DBX etc.

4.2.6.2 Memory Space
While executing, C++Debug can use the total memory in the system e.g.
stack, heap, code etc., not more than 1 m-byte.

Rational:
If C++Debug uses a small primary and secondary storage, it can be used
on a small machine.

4.2.7 Single-user and Multi-user
C++Debug can be used for both single-user and multi-user modes.

Rational:

4.2.8 GUI

C++Debug has been designed to have no critical section, shared memory
and shared process, but it was designed to run independently like a UNIX
utility command.

Gill's menus are provided by C++Debug to allow the users to select any
one of the functions of slice, dice, help, etc.

Rational:
To make system user-friendly.

4.2.9 Software Metrics
Following by Cyclomatic complexity theory

125

D.3.2 Non-function Requirements

5.2.1 User futerface

Although GUI's menus are provided by C++Debug to allow the user to select any

one of the functions i.e. slice, dice, help, etc., for other function we cannot specify

one. However, C++Debug must be designed to user-friendly.

5.2.2 System Cost

fu order to compete with other debugger tools in the market, the pnce of

C++Debug at full functions should not more than 49$. So the total cost of

C++Debug project should not more than 10,000 dollars.

5.2.3 Software Size

Although a large program can be run in UNIX environment, however, the size of

C++Debug should not be more than 100 k-byte. The reason is that average size of

other debuggers e.g. DBX, SDB are not more than 1 OOk bytes.

5 .2.4 Reliability

After delivering C++Debug to the customer, the number of errors must exist not

more than 3 times a month. And the existing errors must be corrected in 1 week

since it has been found.

APPENDIX E

TESTING AND EVALUATION

E.1 Introduction

C++Debug was designed to function as a utility program of the UNIX system and

was developed based on slicing and dicing techniques. After C++Debug was

implemented, testing was conducted to ensure that each unit met its specification (unit

testing), and to ensure that the software requirements had been met integration and

system testing was done. Testing is the primary means for showing that the

implementation has the requisite functionality and satisfies other non-functional

properties [McDermid 93]. Testing and other forms of verification and validation are

important at all stages of the software development process. In order to know how

C++Debug can be used to enhance the debugging process, evaluation was introduced.

E.2 Testing

E.2.1 Black and White Testing

Black and white testing was used to test C++Debug. In black-box testing, the

internal structure and behavior of a system is not considered when the test data is selected

126

127

[McDermid 93]. Acceptance testing is the testing of a software system to ensure that it

meets user requirements (see Appendix D). At this stage the test data is chosen by a

careful reading of the requirements specification. In white-box testing, (e.g., unit

testing), the internal structure and behavior of a system is considered when the test data is

selected. Here a program unit (subroutine, procedure) of C++Debug was exercised with

data, with the aim of ensuring that the code inside the unit implemented its specification.

In this form of testing, a major aim is to ensure that a certain proportion of the software

structure are exercised, a typical target being the execution of about 85% of the branches

and 100% of all the statement in a program unit [McDermid 93]. The test data sets have

to be developed to maximize the proportion of structural elements being exercised. To

do this, the internal structure of a unit has to be examined.

E.2.2 Testing and The Software Life Cycle

During the various phases of the software life cycle, C++Debug was tested as

follows.

E.2.2.1 Testing and Requirements Analysis

The major development activities that take place during this phase are the

elicitation and clarification of requirements and the subsequent construction of the system

specification [McDermid 93]. The major testing activity that occurs during this phase is

the derivation of the verification requirements. The C++Debug requirements are listed in

Appendix D. During the latter stages of C++Debug development, their requirements

were converted into system validation tests and acceptance tests. Their tests determine

whether a system meets its requirements. For example,

7 .8 When the slice-criterion command is typed with a correct
variable name and with a valid trajectory number, the program
slice will be generated and stored in the file named
"_cpptrace_slice.dat".

This leads to a number of tests as follows:

1. If there exists an invalid variable name, an error message will be
displayed.

2. If there exists an invalid trajectory number, an error message will
be displayed.

3. If there is no slice, a prompt message "No Slice" will be
displayed, otherwise the program slice will be stored in the file
named "_cpptrace_slice.dat".

E.2.2.2 Testing and System Design

128

There are a number of activities during system or architecture design that are

relevant to testing [McDermid 93]. First the verification requirements were expanded so

that they would correspond more closely to the individual tests.

A second testing-related activity, which should occur during this phase, is to

develop the test coverage matrix. This is a matrix, which relates the expanded

verification requirements to the modules, which implement the requirements.

A third activity is the development of the integration test strategy. This involves

specifying the order in which the program µnits are to be added to the system, which is

being built. A bottom-up strategy, instead of a top-down strategy, was used to test

C++Debug, because it is easier to detect flaws that occur toward the bottom of a design.

For example, using the verification requirement in previous example, we will have the

following situation.

The number of tests will be expanded as follows:

V 7 .8/1 When the slice-criterion command is typed, with a user
identification A, the error message will be displayed on
the originating console.

V 7.8/2 When the slice-criterion command is typed, with a user
identification B, the error message will be displayed on
the originating console.

V 7 .8/3 When the slice-criterion command is typed with a user
identification which does not match a user currently
logged on, the error message will be displayed on the
originating console.

E.2.2.3 Testing and Detailed Design

129

The main testing activity that occurs during this phase is the construction of

C++Debug test procedures. A test procedure is a detailed step-by-step set of instructions

[McDermid 93]. A test procedure contains details of the software configuration used, the

hardware configuration, the location of the job control language commands necessary for

carrying out the test, the files containing test data, the expected outcomes of the tasks,

and the location of the files that contain the test outcome. For example,

bool UsedVariable(Type Var)

executed the function UsedVariable with parameter Var with type Type. If variable

Var is a "used" set, then return true, otherwise return false.

E.2.2.4 Testing and Programming

The primary activity in this phase is programming or coding the individual units

or modules [McDermid 93]. Work may also be carried out on producing test harnesses or

stubs. The second activity is the testing of the program units after they have been

programmed. The aim of unit testing is to check that a program unit matches the

specification produced for it during C++Debug system design. Unit testing is a structural

testing activity, the aim being to ensure some degree of test thoroughness with respect to

130

some measure of structural coverage. A typical measure is that the test data generated

should ensure that 100% of the statements in a unit are executed [McDermid 93].

Although this is a common metric, it is beginniging to be regarded as inadequate, and the

better metric of 100% statement coverage and 85% branch coverage is being gradually

adopted in industry. For example, Figure 92 shows the template of function used

variable and its path. We must make sure that every path in the program is tested.

bool UsedVariable(Type Var) {
int ;

};

if(...){
while(...) {

} ;
} else {

};

if(...){

} else {

}; Path

Figure 92. Part of function UsedVariable and its path

E.2.2.5 Testing and Integration

Testing during the integration phase will follow the plan set out in the system or

architecture design [McDermid 93]. The primary aim of testing at this stage is to verify

the design, but a subsidiary aim is to begin to verify the requirements.

131

After coding and testing, individually, tested program unit are produced. These

units are then progressively integrated according to the agreed strategy, e.g., top-down or

bottom-up. A number of specific facets of the design are tested, leading up to the testing

of the full design and requirements functions. For example, in C++Debug, module

coupling and cohesion, as depicted in Figure 93, was tested.

User

Runtime
file

DU

Lex&
Yacc

TU

Reserved
words

ME TOO

Symbol
table

Document
file

Figure 93. C++Debug block diagram

E.2.2.6 System and Acceptance Testing

Execute
file

In contrast to unit testing, system and acceptance testing are black-box activities

[McDermid 93]. System testing is the process of executing the test procedures associated

132

with the verification tests. Acceptance testing is the process of executing the test

procedures associated with a subset of the verification requirements that are agreed on by

both the customer and the developer as being an adequate representation of the user

requirements. The major difference between system and acceptance testing is the fact

that the former takes place in a simulated environment. For example, in C++Debug all

modules in Figure 93 were tested as a system.

E.2.2.7 Testing and Maintenance

The last testing activity associated with the software life cycle is regression

testing. This occurs during maintenance after a system has been modified [McDermid

93]. Therefore, this kind of test will be not applied to C++Debug. Regression testing is

the execution of a series of tests to check that a modification, applied during

maintenance, has not affected the code corresponding to those function of the system

which should be unaffected by the maintenance modification that had been carried out.

E.2.3 Testing Techniques

The aim of this section is to show that the various techniques, which can be used

to support the testing activities described in the previous section, were used to test

C++Debug.

E.2.3.1 Random Testing

Random testing is a technique that is applicable for unit testing as a useful adjunct

to other testing techniques [McDermid 93]. It involves identifying the input data space

for a program unit and randomly generating test data from inside that space. In the case

of C++Debug, a number of C++ programs were used for testing.

133

E.2.3.2 Structural Testing

Structural testing involves testing a software system so that some structural metric

or a particular path is traversed [McDermid 93]. In the case of C++Debug, every path of

the control statements was tested.

E.2.3.3 Assertion Testing

An assertion is a predicate that relates the value of variables in a program and

describes a condition that must be true during the execution of a program unit or a

program [McDermid 93]. In the case of C++Debug, for example,

Dice_A_B = = Slice_A & Slice_B

represents a relation that must hold between the three variables used in the condition.

Such conditions can be inserted by hand or by mean of software tools.

E.2.3.4 Grammar-Based Testing

Grammar-based testing is based on describing the data set to be used in a test by

means of some grammar formalism [McDermid 93]. In the case of C++Debug, for

example from Figure 93, the C++ grammars, which implemented in the "Lex & Yacc"

block, were tested.

E.2.3.5 Functional Testing

Functional testing involves checking the functions of a computer system by

means of examining either the system specification or the system design [McDermid 93].

In the case of C++Debug, for example, all functions in Appendices C and D were tested.

134

E.3 Evaluation

E.3.1 Introduction

C++Debug was evaluated based on Lyle [Lyle 84] and Gallagher's [Gallagher 90]

approach by training several Computer Sciences graduate students at Oklahoma State

University in its operation and by collecting data on how the students used C++Debug to

locate faults in C++ programs. The main objective of the evaluation was how can

C++Debug be used to enhance the debugging process and localize errors.

E.3.2 Evaluation Procedure

The debugging process was studied by allowing each student to debug one

program with and without C++Debug. There were four steps as listed below.

E.3 .2.1 Step I: Familiarization

Let each student answer a questionnaire covering background information (see

Subsection E.3.2.4), read an overview of the evaluation, and finally read the manual on

how to use C++Debug (see Appendix B).

E.3.2.2 Step II: First Treatment

Let each student debug C++ programs without using the C++Debug tool. Each

student can use other tools such as DBX, GDB, etc.

E.3.2.3 Step III: Second Treatment

In this step, the C++ programs in step II were debugged by using the C++Debug

tool.

135

E.3.2.4 Step IV: Subject Remarks

All information from Step I, Step II, and Step ill were collected and analyzed

based on Lyle's [Lyle 84] approach to find out:

1. Is C++Debug useful?
2. Are there some negative and positive comments?
3. What do they like about C++Debug?
4. What don't they like about C++Debug?

The students involved in the evaluation of C++Debug were asked to fill out a

questionnaire based on Lyle's [Lyle 84] approach as follows.

Questionnaire

(1) How long have you been programming (Years/Months)?
(2) How many CS, (Computer Science), classes in your BS/BA?
(3) How many CS classes taken so far in grad school?
(4) How many other CS classes have you taken?
(5) Which programming languages are you familiar with? Familiar

means you used the language for at least a semester's work.
(6) On a scale from Oto 10, how familiar are you with C++?

where
0 = I've never used C++
2 = I know some C++
5 = I know C++ about average
7 = I am comfortable with C++

10 = I know C++ well

0 2 4 6 8 10
+---+---+---+---+---+---+---+---+---+---+
(put a check mark on the scale)

(7) On the same scale from O to 10, how familiar are you with the
VI or EMACS text editor?

0 2 4 6 8 10
+---+---+---+---+---+---+---+---+---+---+
(put a check mark on the scale)

(8) Do you know about program slicing?

136

The subjects involved in the evaluation of C++Debug were ten graduate students

at the Computer Science Department of Oklahoma State University. The student

responses to the questions are summarized in Table IV and V. The number of changes

made to the tested programs by each student, and the number of slices each student

computed are shown in Table VI. And finally, edit times, compile times, and execution

times are presented in Tables VII and VIII.

TABLE IV

BACKGROUND SUMMARY

Variable N mean sd min max median

time_programming 10 8.1 3.0 3.0 13.0 8.5

n_bs_classes 10 7.4 5.8 0.0 15.0 8.5

n_ms_classes 10 10.2 2.5 6.0 15.0 9.5

n_other_classes 10 1.6 1.8 0.0 4.0 1.0

n_languages 10 7.9 2.2 4.0 12.0 8.0

skill_C++ 10 7.1 2.5 2.0 10.0 8.0

skill_ vi_or_emacs 10 7.8 2.9 1.0 10.0 9.0

TABLE V

LANGUAGE FREQUENCY

Language Number of Subjects

Assembler 3

C 9

C++ 7

Java 6

Lisp 2

Pascal 3

137

TABLE VI

SLICES AND PROGRAM CHANGES

Subject Slices Changes

1 4 3

2 * 2

3 * 3

4 1 3

5 * 2

6 * 3

7 4 3

8 8 7

9 3 5

10 * 3

* not slicing

TABLE VII

TIME MEASURES FOR DEBUGGING BY USING THE TOOL

N mean sd mm max median

Edit user time 10 832 397 352 1177 782

Edit system time 10 437 184 194 486 412

Compile user time 10 15490 2822 11882 16957 14510

Compile system time 10 4664 842 3872 5543 4602

Execute user time 10 580 223 391 774 460

Execute system time 10 845 212 618 1021 757

E.3.3 Comments on C++Debug

Seven of the ten subjects reported that in the slicing mode C++Debug was very

useful. In the dicing mode, four subjects reported that C++Debug can help them to locate

errors in a program. Five subjects felt surprised that C++Debug could eliminate

138

irrelevant statements. Three subjects said that in the -t mode the trajectory path

generated by C++Debug worked like the cpptrace tool in C, in an effective and useful

manner.

TABLE VIII

TIME MEASURES FOR DEBUGGING WITHOUT USING THE TOOL

Name N mean sd mm max median

Edit user time 10 1224 1012 371 2501 902

Edit system time 10 713 633 286 1522 411

Compile user time 10 12501 492 11903 12833 12532

Compile system time 10 3962 557 3255 4482 3921

Execute user time 10 588 113 464 621 521

Execute system time 10 730 248 492 919 627

On the negative side, one subject felt that C++Debug was not more powerful than

other debugging tools like GDB. Two subjects mentioned that the dicing process is quite

complicated because of the process of selecting the appropriate slicing criteria (variables

and positions for dicing). One subject mentioned that in the -g mode, C++Debug

generated derivation tree that were too long, and that it was difficult to understand all of

them.

APPENDIX F

SAMPLE PROGRAMS USED FOR THE COMPUTATION

OF SLICING-BASED METRICS

The sample programs shown below were used for the computation of slicing-

based metrics (see Section 4.8 for more detail). In order to compare the output obtained

from C++Debug (which is based on dynamic slicing) with C-Sdicer (which is based on

static slicing), the test programs must be the same as the ones used in Nanja's study in

testing C-Sdicer [Nanja 90]. These test programs are provided bellow.

/***
* TEST PROGRAM 1 *
* This program reads a file of text, echoes the text and*
* computes some statistics on lines, letters, words, and *
* sentences. *
***/
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#define BIG 16384
#define MAX_CHAR 80
#define MAX_LINE 100
#define TRUE 1
#define FALSE 0
main()
{

char ll[MAX_CHAR] [MAX_LINE];
char l[MAX_CHAR + l];
char c, fname[20];
int let, word, i, j;
int nl,ncl,tnlet,tnw,tnl,tns,nlettw,nlettl,nwtl,nwts;
int mlettw,mlettl,mwtl,mwts,aletpw,aletpl,awpl,awps;
int xlettw,xlettl,xwts,xwtl,qlettw,qlettl,qwtl,qwts;
float sletpw,sletpl,swpl,swps;
FILE *infile;
nl = O;
printf("\nEnter filename:");
gets (fname) ;
infile = fopen(fname, "r");

139

if (infile == NULL) {
printf("%s does not exist --- program aborted ... ",fname);
exit(l);

}

while (fgets(ll[nl],MAX_CHAR,infile) != NULL) {
printf("%s",ll[nl]);
++nl;

tnl = nl;
nwts = O;
mlettw = mlettl = mwts = BIG;
mwtl = qlettw = qlettl = qwtl = qwts = xlettw O;
xlettl = xwts = tnlet = tnw =tns = O;
ncl = MAX_CHAR + l;
for(i = O; i < tnl; ++i) {

strcpy(l,ll[i]);
nwtl = nlettl O;
word= FALSE;
for (j = 0; j < strlen (11 [i]) ; ++j) {

C = ll[i] [j];
if (isalpha (c))

let= TRUE;
++nlettl;

if (let && !word)
++nwtl;
++nwts;
nlettw = O;
word= TRUE;

if (let && word)
++nlettw;

if(!let && word)
word= FALSE;
++tnw;
if(nlettw < mlettw)

mlettw nlettw;
if(nlettw > xlettw)

xlettw nlettw;
qlettw += nlettw * nlettw;

}

if(let)
++tnlet;

if((c == '.' I I c
++tns;
++nlettl;
if (nwts < mwts)

mwts = nwts;
if(nwts > mwts)

xwts = nwts;

'?' 11 C

qwts += nwts * nwts;
nwts = O;

if(nlettl < mlettl)
mlettl = nlettl;

if(nlettl > xlettl)
xlettl = nlettl;

qlettl += nlettl * nlettl;
nlettl = O;
if (nwtl < mwtl)

mwtl = nwtl;
if (nwtl > xwtl)

xwtl = nwtl;
qwtl += nwtl * nwtl;
nwtl = O;

if (tnw != 0)
aletpw = tnlet I tnw;
if(tnw != 1)

' ! ') && (j ! = 0)) {

sletpw = sqrt((float) (qlettw - tnlet*tnlet/tnw)

140

}

I (float) (tnw - 1));

if (tnw != 0)
aletpl = tnlet/tnl;
if (tnl != 1)

sletpl = sqrt((sqrt) (qlettl - tnl * tnl/tnl)
I (sqrt) (tnl - 1));

if (tnl ! = 0) {
awpl tnw I tnl;
if (tnl ! = 1)

swpl sqrt((float) (qwtl tnw*tnw/tns)
I (float) (tnl -1));

if (tns ! = OJ
awps
if(tnl

swps

tnw/tns;
!= 1)

sqrt((float) (qwts - tnw*tnw/tns)
I (float) (tns - 1));

printf ("\nrnin %d %d %d %d" ,rnlettw,mlettl,mwtl,mwts);
printf("\nrnax %d %d %d %d",xlettw,xlettl,xwtl,xwts);
printf("\navg %d %d %d %d",aletpw,aletpl,awpl,awps);
printf("\nssq %d %d %d %d",qlettw,qlettl,qwtl,qwts);
printf("\nstd %d %d %d %d",sletpw,sletpl,swpl,swps);
printf("\n\n letters words lines sentences");
printf("\n %d %d %d %d", tnlet,tnw,tnl,tns);

Program 1 (Pl) Source: [Nanja 90]

/***************~***

* TEST PROGRAM 2
* This program inputs and echoes back integers,
* beginning a new output line at each point where a comma
* appears in the input. Each line is labeled, and at the
* end of each output line, total of all integers on that
* line is displayed. The input must itself consist of
* only one line. Any characters other than digits and
* commars are ignored, except as delimiters for the
* numbers. The new line is used to detect the end of the
* line.

*
*
*
*
*
*
*
*
*
*

***!
#include <stdio.h>
main ()

char character, last_char;
int line_total, next_line, current_nurnber;
line_total = O;
next_line = 2;
current_nurnber O;
last_char = O;
printf ("Type a line of integers,

with a comma everywhere\n");
printf("the line is to split. Any other characters\n");
printf ("are ignored: \n\n");
scanf("%c", &character);
printf("Line 1> ");
while (character!= '\n')

if(character == ', ') {
if(last_char >= '0' && last_char <= '9') {

line_total += current_nurnber;
current_nurnber = O;

printf(" < total: %d\nLine %d>"
line_total, next_line);

line_total = O;
next_line++;
else {

141

if(character >= '0' && character<= '9') {
current_nurnber

else {

current_nurnber * 10
+ character - '0';

if(last_char >= '0' && last_char <= '9')
line_total += current_nurnber;
current_nurnber = O;

last_char = character;
scanf ("%c", &character) ;

printf ("< total: %d\n", line_total);

Program 2 (P2) Source: [Nanja 90)

/***
TEST PROGRAM 3 *

* Program to print histogram of word lengths. *
***/
*include <stdio.h>
*define MAXSIZE 32
*define WIDTH 50
main(argc,argv)
int argc;
char * argv [] ;
{

int i,n,maxlen,maxcount,tick;
long lengths[MAXSIZE], total;
char buffer[BUFSIZ], *gets(};
for(i = 0; i < MAXSIZE; i++) {

lengths[i] = O;

maxlen = O;
while(gets(buffer) != (char*) NULL) {

n = strlen(buffer);
if(n >= MAXSIZE) {

lengths[O]++;

else {
lengths[n]++;
if (n > maxlen}

maxlen = n;

maxcount = 0;
for(i = 0; i <= maxlen; i++) {

if(lengths[i] > maxcount) {
maxcount = lengths[i];

}

printf ("length\ t I");
for(i = O; i <= WIDTH; i++} {

printf (" - "} ;

printf (" I count\n"};
tick= (maxcount + (WIDTH - 1)) I WIDTH;
total= O;
if (lengths [0] } {

n = lengths[O] I tick;
printf(''%5d+\tl%*s%*s%6d\n",i,n+l,"*",

(WIDTH - n + l},"l",lengths[O]};
total+= lengths[O];

for(i maxlen; i > O; i--}
n = lengths[i] I tick;

142

}

}

printf ("%5d+\ t I %*s%*s%6d\n", i, n+l, "*",
(WIDTH - n + ll,"l",lengths[OJ);

total+= lengths[i];

printf ("TOTAL\t I");
for(i = O; i <= WIDTH; i++) {

printf ("-");
}

printf (" I %6d\n", total);
exit(O);

Program 3 (P3) Source: [Nanja 90]

/***
* TEST PROGRAM 4 *
* Program to generate multiple coin toss samples. *
***/
#include <stdio.h>
#define MAX_RAND 2000
#define MODULUS 327681
#define SEMI_MOD (MODULUS %2)
main()
{

int index,start,nr_trials,nr_iter;
int head,tail,h_lead,t_lead,iter,curr_seed;
int multl,mult2,incrl,incr2;
double ratio, lead_sum, side_sum;
double d_vals[MAX_RAND];

head= tail= h lead= t_lead O;
lead_sum = side_sum = 0.0;
printf("\n Starting seed?");
scanf (• %d" , &curr_seed) ;
printf("\n Sample size?");
scanf ("%d", &nr_trials) ;
printf("\n Number of samples to generate?");
scanf ("%d" ,&nr_iter);
printf("\n First multiplier?");
scanf ("%d", &multl);
printf("\n First increment?");
scanf ("%d" , &incrl) ;
printf("\n Second multiplier?");
scanf ("%d", &mult2);
printf("\n Second increment?");
scanf ("%d • , &incr2) ;
printf ("Starting seed = %d\n\n", curr_seed);
printf ("generating random values \n");
for(iter = O; iter < nr_iter; iter++) {

head = O;
tail = O;
h_lead = O;
t_lead = O;
for(index= 0; index< nr_trials; index++) {

if(curr_seed >= SEMI_MOD)
start (multl * curr_seed + incrl) % MODULUS;

else
start (mult2 * curr_seed + incr2) % MODULUS;

if (start)
head++;

else
tail++;

if (head > tail)
h_lead++;
else if(tail > head)

t_lead++;

printf ("%3d heads; %3d tails;• ,head, tail);
printf ("H leads = %3d; T leads = %3d", h_lead, t_lead);

143

if(h_lead > t_lead)
ratio (double) h_lead I (h_lead + t_lead);

else
ratio (double) t_lead I (h_lead + t_lead);

d_vals[iter] = ratio;
lead_sum += ratio;
if (head > tail)

side_sum += (double) head I nr_trials;
else

side_sum += (double) tail I nr_trials;
printf("ratio = %.4lf\n",ratio);

printf ("\n DONE \n") ;
printf("side_sum == %.4lf; mean side lead== %.4lf\n",

side_sum,side_sum I nr_iter);
printf("lead_sum == %.4lf; mean lead== %.4lf\n",

lead_sum,lead_sum I nr_iter);

Program 4 (P4) Source: [Nanja 90)

/***
* TEST PROGRAM 5 *
* Program to compute correlation coefficients. *
***/
#include <stdio.h>
#define MAX_VALS 50
#define MAX_STR 100
main()
{

float c_vals[MAX_VALS];
float d_vals[MAX_VALS];
float suml,sum2,varl,var2;
float coeff,co_vari,numer,denom;
int index ,nl,n2;
char *null_str = "";
char info[MAX_STR];

printf (" Enter values for group 1. \n") ;
printf("?");
gets (info) ;
index = O;
while(strcmp(info, null_str) != 0) {

c_vals[index] = atoi(info);
++index;
printf("?");
gets (info);

nl = index;
printf (" Enter values for group 2. \n") ;
printf ("?") ;
gets (info);
index= O;
while(strcmp(info, null_str) != 0) {

d_vals[index] = atoi(info);
++index;
printf("?");
gets (info) ;

n2 = index;
if (nl = n2)

suml = 0.0;
for(index = O; index< nl; index++)

suml += c_vals[index];
sum2 = 0.0;
for(index = O; index< nl; index++)

sum2 += c_vals[index];
co_vari = 0.0;
for(index = O; index< nl; index++)

144

co_vari += c_vals[index] * d_vals[index];
numer = co_vari - (suml * sum2);
varl = 0.0;
for (index= O; index< nl; index++)

varl += c_vals[index] * c_vals[index];
for (index= O; index< nl; index++)

var2 += d_vals[index] * d_vals[index];
denom = (varl - suml * sum2) * (var2 - sum2 * sum2);
denom = sqrt(denom);
if (denom ! = 0)

coeff = numer I denom;
printf("r == %7.31lf\n",coeff);

}

else
printf ("Arrays must be the same size. \n •);

Program 5 (PS) Source: [Nanja 90]

145

APPENDIX G

SAMPLE C++DEBUG SOURCE CODE LISTING

C++Debug is comprised of 24 files. The following files contain code written in

the C++ programming language. Some sample code segments are shown as well.

Makefile II used to compile the programs

CDbug_Global . h II used to declare all global constants and variables

main. h II start the program
main.cpp II

Menu. h II manage the menu
Menu.cpp II

CPPtrace. h II create 'cpptrace' file
CPPtrace. cpp II

SourceLine. h II store all information of each line such as program line, sets, i.e., D, U, DU,
SourceLine. cpp II etc.

Symbol Table. h II keep track of all variables, constants, types, classes, templates, etc.
Symbol Table. cpp II

LexYaccinitialize. h II initialize some variables before using 'Lex' and 'Yacc'

Token. h II defines 'Token'

1.1 II generate 'Lexer' to scan the string

y. y II generate 'Parser' to analyze C++ grammar

Parser. h II determine D-set, U-set, function prototype, called functions,
Parser. cpp II calling functions

Utilities. cpp II contains utility functions that are used to create C++Debug
Utilities.h ll

Slice. h II to compute a slice
Slice.cpp ll

Dice. h II to compute a dice
Dice. cpp II

146

/**
* *
* C++DEBUG *
* *
* C++Debug is a slicing and dicing based debugging tool for ANSI C++ that *
* runs under the UNIX or Linux operating system. It has been designed in a way*
* to provide ease and convenience on the part of the user. Using C++Debug, *
* the user can interact with the computer in locating errors in a program. For *
* convenience of the user, menu is introduced that allows the user to *
* select any one of the available functions. *
* *
**/
#include "main.h"

main(int argc, char *argv[]) {

FLAGINFO = false; II Do not display C++Debug information
II Global initialize

Maininitialize();

CDbugMenu Menu;

if ((argc<2) I I (argc>4)) {
II 'C++Debug' manual

C.cpptrace_usage();
else {
if (argv[ll [OJ == ' - ')

switch (argv[ll [ll)
case 'm': system("page lclwinaltooll _C++Debug_manual_l_3_1 \n");

exit(O);
break;

case 'v': system("page lclwinaltooll_C++Debug_version_l_3_1");
exit (0);
break;

case 'g': if(argc == 2) { II display grammar
printf ("#H# Filename not found\n");
C.cpptrace_usage();

P.TRACE_ON = true; II display grammar

II set cpptrace not to print trace file
FILE* OU;
ou = fopen ("_cpptrace_breakpoint. dat", •w•) ;
fprintf(ou, "0");

P.Parsing(argv[2]);

fclose (ou);
exit (0);
break;

case 't': if(argc == 2) { II display trajectory
printf ("#### Filename not found\n");
C.cpptrace_usage();

P.TRACE_ON = false; II off grammar
II to set flag show on screen in cpptrace file

if(! P.CheckFileNotFound("_cpptrace_breakpoint.dat"))
system(" rm _cpptrace_breakpoint.dat ");

P.Parsing(argv[2]);
system("g++ -o _cpptrace __ cpptrace_.cpp");
system("_cpptrace_");
system ("rm _cpptrace_ *") ;
exit(O);
break;

case 'l': if(argc == 2) { II set# of loops in loop statements
printf("#### Filename not found\n");

147

default:

if{argc == 4) {

c.cpptrace_usage{);
)

argv[lJ [OJ = '0';
argv[lJ [lJ = '0';
if (C.NNNN<O)

C.NNNN G_NNNN;

II clear variable for lnnnn
II clear variable for lnnnn

else {
C.NNNN atoi{argv[lJ);

P.TRACE_ON = false; II off grammar
II to set flag show on screen in cpptrace file

if (! P. CheckFileNotFound { "_cpptrace_breakpoint. dat"))
system{" rm _cpptrace_breakpoint.dat ");

P.Parsing(argv[2J);
system{ •g++ -o _cpptrace __ cpptrace_. cpp");
system{• _cpptrace_");
system ("rm _cpptrace_*") ;
exit (0);
break;

II 'C++Debug' manual
C.cpptrace_usage{);
break;

if{{argv[2J [OJ == '-') && {argv[2J [lJ == '1')) {
argv[2] [OJ = '0'; II clear variable for lnnnn
argv[2J [lJ = '0'; II clear variable for lnnnn
C.NNNN = atoi{argv[2J);
if{C.NNNN<O) C.NNNN = G_NNNN;

else {
printf { "#### Filename not found\n") ;

II 'C++Debug' manual
C.cpptrace_usage{);

II argv[lJ = FileName
Menu.MainMenu{argv[l]);

void Maininitialize()

II main program initialize

II# of loop to show
II set default to G_NNNN

C.NNNN = G_NNNN;
II set default not to show grammar

P.TRACE_ON = false;

II use EMACS by default
P.VI = false;

P.EMACS_WIN false; II no windows

II use Level 1 by default
P.LEVEL2 = false;

strcpy{P.LIBRARY, "-lGLU -lGL -lXll -lm -lglut -lXext -lXi -lXmu");

P.Flaginfo = false;

#include " CDbug_Global.h "
#include <iostream>

148

#include <fstream>
#include <string>
#include <vector>
#include <map>
using namespace std;

II ***
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

Class Name:

Description:

Data:
- LineNo
- Size

Methods:

MapSingle

Create one dimension arrays

Arrays of type T_Elm
size of arrays of LineNo

- T_LineNo GetSize(void) return Size of arrays
- PutDat(LineNo, Dat) Put data, Dat, at line LineNo
- GetDat(LineNo) Get data, Dat, at line LineNo
- ReadFile(FileName) Read data from file into an array
- Print() Print data in the arrays on the screen

template <class
class MapSingle

protected:

T_LineNo, class T_Elm>
{

} ;

T_Elm *LineNo;
T_LineNo Size;

public:

II create one dimension arrays of size Size

MapSingle(const T_LineNo &Sizein) : Size(Sizein) {LineNo = new T_Elm[Size+l);};
T_LineNo GetSize(void) { return Size; }
void PutDat(const T_LineNo &line_no, const T_Elm &v) {LineNo[line_no) = v;};
T_Elm GetDat(const T_LineNo &line_no) { return LineNo[line_no); }
int ReadFile(char *FileName);
void Print(void);

-MapSingle() { delete [) LineNo; }; II destructor

template <class T_LineNo, class T_Elm>
int MapSingle <T_LineNo, T_Elm>

::ReadFile(char *FileName) { II read data from file and put it
II into the arrays.

ifstream in(FileName); I I file name
if(!in) {

cout<<"### Cannot open "<<FileName<<" input file.\n";
return 1;

T_LineNo i 1; T_Elm temp;

in>>temp;
while((!in.eof()) && (i<Size))

LineNo[i++J = temp;
in>>temp;

in.close();

template <class T_LineNo, class T_Elm>
void MapSingle<T_LineNo, T_Elm>

II read until EOF and< Size

::Print(void) { II show data in the arrays on the screen

for(T_LineNo i=l; i<Size; i++)
cout<<i<<"l"<<LineNo[i)<<endl;

149

II ***
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

Class Name: Map Pair

Description: Create arrays of type MAP, Standard Template Library

Data:
- LineNo
- Size

Methods:

Type MAP supported by Standard Template Library
Size of dynamic arrays

- GetSize(void) return Size of arrays
- PutPair(line_no, vl, v2) put data vl, v2 at line_no
- GetPair(line_no, vl) return data v2 at line_no with key vl
- Find(line_no, vl) return TRUE if find vl at line_no
- LineUnion(LineNol, LineNo2) Set union between LineNo 1 and 2
- ReadFile(FileName) read data from file and put in the arrays
- PrintLine(line_no) print data at line_no
- PrintVar(void) print pure data in the MAP
- PrintSet(Act) print data including Action set
- Addr(line_no) return address of LineNo[line_no]

template <class T_LineNo, class T_Elml>
class MapSingle;

template <class T_LineNo, class T_Elml, class T_Elm2>
class MapPair {

protected:
map <T_Elml, T_Elm2> *LineNo;
T_LineNo Size;

public:
MapPair(const T_LineNo &Size);

II create arrays of map pairs
II size of arrays

T_Elm2 GetSize(void) { return Size; };
void PutPair(const T_LineNo &line_no, const T_Elml &vl, const T_Elm2 &v2);
T_Elm2 GetPair(const T_LineNo &line_no, const T_Elml &vl);
bool Find(const T_LineNo &line_no, const T_Elml &vl);
void LineUnion(const T_LineNo &LineNol, const T_LineNo &LineNo2);
int ReadFile(char *FileName);
void PrintLine(const T_LineNo &line_no);
void PrintVar(void);
void PrintSet(MapSingle <T_LineNo, T_Elml> &Act);
map <T_Elml, T_Elm2> Addr(const T_LineNo &line_no)

-MapPair(){delete []LineNo;}; II destructor
} ;

template< class T_LineNo, class T_Elml, class T_Elm2>
MapPair<T_LineNo, T_Elml, T_Elm2>

::MapPair(const T_LineNo &Sizein)

Size= Sizein;
LineNo = new map <T_Elml, T_Elm2> [Size+l];

template< class T_LineNo, class T_Elml, class T_Elm2>
void MapPair< T_LineNo, T_Elml, T_Elm2>

return LineNo[line_no];};

::PutPair(const T_LineNo &line_no, const T_Elml &vl, const T_Elm2 &v2) {

LineNo[line_no].insert(pair< T_Elml, T_Elm2>(vl, v2));

template< class T_LineNo, class T_Elml, class T_Elm2>
T_Elm2 MapPair< T_LineNo, T_Elml, T_Elm2>

::GetPair(const T_LineNo &line_no, const T_Elml &vl)

map<T_Elml, T_Elm2>::iterator p;

p = LineNo[line_no].find(vl);
if(p!= LineNo[line_no].end()) return p->second; II if found

150

else return (0) ; II if cannot find

template< class T_LineNo, class T_Elml, class T_Elm2>
bool MapPair< T_LineNo, T_Elml, T_Elm2>

::Find(const T_LineNo &line_no, const T_Elml &vl) {

map<T_Elml, T_Elm2>::iterator p;

p = LineNo[line_no].find(vl);
if(p!= LineNo[line_no].end())
else return false;

return true; II if found
II if cannot find

template< class T_LineNo, class T_Elml, class T_Elm2>
void MapPair<T_LineNo, T_Elml, T_Elm2>

:: LineUnion(const T_LineNo &LineNol, const T_LineNo &LineNo2) {

map<T_Elml, T_Elm2>::iterator p; II set Union between two lines
II and store in the first line

p = LineNo[LineNo2].begin();

while(p != LineNo[LineNo2].end())
PutPair(LineNol, p->first,p->second);
p++;

template< class T_LineNo, class T_Elml, class T_Elm2>
void MapPair< T_LineNo, T_Elml, T_Elm2>

::PrintLine(const T_LineNo &iine_no) {

map<T_Elml, T_Elm2>::iterator p; II print data at line_no

p = LineNo[line_no] .begin();
cout<<"Line No. "<<line_no<<": ";
while(p != LineNo[line_no].end())

cout<<" I "<<p->first<<", "<<p->second<<" I ";
p++;

cout<<endl;

template< class T_LineNo, class T_Elml, class T_Elm2>
void MapPair< T_LineNo, T_Elml, T_Elm2>

::PrintVar(void) {

for(T_LineNo i = O; i<Size; i++) II print all data
PrintLine(i);

cout<<endl;

template <class T_LineNo, class T_Elml, class T_Elm2>
int MapPair<T_LineNo, T_Elml, T_Elm2>

::ReadFile(char *FileName) {

ifstream in(FileName); II D data input
if(!in) {

cout<<"### Cannot open "<<FileName<<" input file.\n";
return l;

T_Elml line, dat; II read data from file and put in the map_pair

in>>line;
while((!in.eof()) && (line< Size)) { II read until EOF and< Size

in>>dat;
while((!in.eof()) && (dat != 0)) { II read until EOF and< Size

PutPair(line,dat,0);
in>>dat;

151

in>>line;

in.close();

template< class T_LineNo, class T_Elml, class T_Elm2>
void MapPair< T_LineNo, T_Elml, T_Elm2>

::PrintSet(MapSingle <T_LineNo, T_Elml> &Act) {

map<T_Elml, T_Elm2>::iterator p; II print data with vl
II v2 = trajectory

for(T_LineNo i = O; i<Size; i++l {
p = LineNo[i].begin();
cout<<"Line No. 11 <<i<<": ";
while(p != LineNo[i].end())

cout<<" I "<<Act. GetDat (p->first) <<", • <<p->first<<" I ";
p++;

cout<<endl;

cout<<endl;

line number

II***
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

Class Name: Action

Description: A trajectory will be illustrated in terms of
a pair(instruction, its position in the trajectory), rather
than the instruction itself, so as to distinguish between
multiple occurrences of the same instruction in the trajectory.
For example, instruction X at position Pin Twill be represented
by pair(x,p). For ease of understanding, pair(x,p) will
be replaced by Xp, and will be refered to as an action.

Data:
- Act Arrays of data class MapSingle

Methods:
Action(Size) create object Act size Size

- void PrintAction() print action sets

template <class T_LineNo, class T_Elm>
class MapSingle;

template <class T_LineNo, class T_Elm>
class Action {

protected: II data
MapSingle <T_LineNo, T_Elm> Act; II class of one dimension arrays

public: I I method
Action(const T_LineNo &Size) : Act(Size) {}; II create object Act size Size
void PrintAction(void) { II print action sets

cout<<endl<<"<<< Action Set >>>"<<endl;
Act.Print();

} ;

II***
II
II
II
II
II
II
II
II
II

Class Name: Control

Description: Test Action, an action Xp is a test action if X
is a test instruction. Where Test Instruction statement is
a control instruction such as an if-then-else or a
while statement.

Data:

152

II
II

- Crt Arrays of type MapSingle

II Methodes:
II
II
II
II

- Control(Size)
- Printcontrol ()

create object Crt size Size
print control sets

template <class T_LineNo, class T_Elm>
class MapSingle;

template <class T_LineNo, class T_Elrn>
class Control {

protected: II data
MapSingle <T_LineNo, T_Elrn> Ctr;

public:
II class of one dimension arrays

II method

} ;

Control(const T_LineNo &Size)
void PrintControl(void) {

: Ctr(Size) {}; II create object Crt size Size
II print control sets

cout<<endl<<"<<<
Ctr.Print();

Test-Control Set >>>"<<endl;

II ***
II
II
II
II
II
II
II
II

Class Name: MapSingle
- PutDat(LineNo, Dat)
- GetDat(LineNo)
- ReadFile(FileName)
- Print()

Single Arrays
Put data, Dat,
Get data, Dat,
Read data from

at line LineNo
at line LineNo
file

Print data in the arrays

template <class T_LineNo>
class ActionSize {

private:

} ;

T_LineNo ActSize;
public:

ActionSize(T_LineNo Size) { ActSize = Size; };
T_LineNo GetActionSize(void) { return ActSize; };

II***

II
II
II
II
II
II
II
II
II
II
II
II
II

Class Name: Dset

Description: D(Xp) Define, the set of variables that are
defined in action Xp.

Data:
- D Defined sets, Arrays of data typ MapPair

Methods:
- Dset(Size) create D with class MapPair of size Size
- PrintD() Print D set

template <class T_LineNo, class T_Elml, class T_Elrn2>
class MapPair;

template <class T_LineNo, class T_Elml, class T_Elrn2>
class Dset {

} ;

protected:
MapPair <T_LineNo, T_Elml, T_Elrn2> D;

public:
Dset(const T_LineNo &Size): D(Size) {};
void PrintD(void);

template< class T_LineNo, class T_Elml, class T_Elrn2>

153

void Dset< T_LineNo, T_Elml, T_Elrn2>
: : PrintD {void) {

cout<<endl<<"<<< · D sets >>>"<<endl;
D.PrintVar{);

II ***
II
II
II
II
II
II
II
II
II
II
II
II
II

Class Name: Uset

Description: U{Xp) The set of variables that are used in Xp.

Data:
- u a data of class MapPair

Methods:
- Uset{Size)
- PrintU{)

Create U of size Size
Print u sets

template <class T_LineNo, class T_Elrnl, class T_Elm2>
class MapPair;

template <class T_LineNo, class T_Elrnl, class T_Elrn2>
class Uset {

} ;

protected:
MapPair <T_Elml, T_Elml, T_Elrn2> U;

public:
Uset{const T_LineNo &Size): U{Size) { };
void PrintU{void);

template< class T_LineNo, class T_Elml, class T_Elm2>
void Uset< T_LineNo, T_Elml, T_Elrn2>

::PrintU{void) {

cout<<endl<<"<<< U sets >>>"<<endl;
u. PrintVar {) ;

II ***
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

Class Name: DUset

Based classes:
- Dset D{Xp) Define,

in action Xp.
- Uset U{Xp) The set

the set of variables that are defined

of variables that are used in Xp.
source line number from a trajectory - Action Used to find

Description: DU{Xp) Definition-Use Relation, a binary relation
on M{T) in which one action assigns a value to an item of data
and the other action uses that value.

Data:
- DU Data of class MapPair

Methods:
- DUset{Size)
- ComputeDU {)

PrintDU{)

Create DU of size= Size
Compute DU set from Dset and Uset by using
[Karel 90) Alg. Time Complexity O(NA2)
Print DU sets

template <class T_LineNo, class T_Elrnl, class T_Elm2>
class MapPair;

154

template <class T_LineNo, class T_Elml>
class Action;

template <class T_LineNo, class T_Elml, class T_Elm2>
class Dset;

template <class T_LineNo, class T_Elml, class T_Elm2>
class Uset;

template <class T_LineNo, class T_Elml, class T_Elm2>
class DUset : virtual public Action <T_LineNo, T_Elml>,

public Dset <T_LineNo, T_Elml, T_Elm2>,
public Uset <T_LineNo, T_Elml, T_Elm2> {

protected:
MapPair <T_LineNo, T_Elml, T_Elm2> DU;

public:
DUset(const T_LineNo &Size) : DU(Size), Action(Size}, Dset(Size}, Uset(Size} {};
void ComputeDU(void);
void PrintDU(void};

} ;

template <class T_LineNo, class T_Elml, class T_Elm2>
void DUset <T_LineNo, T_Elml, T_Elm2>

: :PrintDU(void) {

cout<<"<<< DU sets >>>"<<endl;
DU.PrintSet(Act};

template< class T_LineNo, class T_Elml, class T_Elm2>
void DUset< T_LineNo, T_Elml, T_Elm2>

::ComputeDU{void} {

map<T_Elml, T_Elm2>::iterator p;
map<T_Elml, T_Elm2> x;

T_LineNo Size DU.GetSize();

l; i<Size; i++) for{T_LineNo i
x D.Addr{i);
p = x.begin{);

II read all D sets at line i

while(p != x.end())
for(T_LineNo j = i+l; j<Size; j++) {

if(U.Find{j,p->first)) II if find v in Uset at line j
DU.PutPair{i,j, p->first); II put v in Uset

if(D.Find{j,p->first)}
break;

p++;

II break if vis re-defined

II ***
II
II
II
II
II
II
II
II
II
II
II
II
II

Class name: TCset

Based classes:
- Action Used to find a source line number from a trajectory
- Control Used to find which line is a test-action such as

if, while, switch, etc.

Description: Test-Control relation, a binary relation on M(T},
captures the effect between test actions and actions that have
to be chosen to execute by these test actions.

Data:

155

II
II

- TC Data of class MapPair

II Methods:
II
II
II
II
II
II

TCset(Size) Create TC of size= Size
- ComputeTC(void) Compute TC relation set by using [Korel 90]

Alg. Time complexity= O(NA2)
- PrintTC() Print all IR sets

template <class T_LineNo, class T_Elrnl>
class Action;

template <class T_LineNo, class T_Elml>
class Control;

template <class T_LineNo, class T_Elrnl, class T_Elrn2>
class MapPair;

template <class T_LineNo, class T_Elrnl, class T_Elrn2>
class TCset: virtual public Action <T_LineNo, T_Elrn2>,

virtual public Control <T_LineNo, T_Elrn2>
protected:

MapPair <T_LineNo, T_Elml, T_Elrn2> TC;
public:

TCset(const T_LineNo &Size) : TC(Size), Action(Size), Control(Size) {};
void ComputeTC(void);
void PrintTC(void);

} ;

template <class T_LineNo, class T_Elml, class T_Elrn2>
void TCset <T_LineNo, T_Elml, T_Elrn2>

::PrintTC(void) {

cout<<"<<< TC sets >>>"<<endl;
TC.PrintSet(Act);

template< class T_LineNo, class T_Elrnl, class T_Elm2>
void TCset< T_LineNo, T_Elml, T_Elrn2>

::ComputeTC(void) {

T_LineNo
T_Elrn2
T_Elml

j' k;
Dat;
Size TC.GetSize();

for(T_LineNo i l; i<Size; i++)
if(Ctr.GetDat(i) != 0) II looking for the test action line

Dat = Act.GetDat(i);

j = i+l;
while ((Dat

j++;

II if found, then looking for another that identity
!= Act.GetDat(j)) && (j<Size)) {

if(j<Size) { II if founnd, then put lines between them into TC sets
for(k = i+l; k<j; k++)

TC.PutPair(i,k, Act.GetDat(k));

II***
II
II
II
II
II
II
II

Class Name: IRset

Based class:
- Action Used to find a source line number from a trajectory
- Control Used to find which line is a test-control such as

if, while, switch, etc.

156

II
II Description: Let Xp IR Yt, iff X Y is the identity relation
II IR on M(Front(T,q)).
II
II
II
II
II
II
II
II
II
II
II

Data:
- IR Data of class MapPair

Methods:
IRset(Size) Create IR of size= Size

- ComputeIR(void) Compute IR relation set by using [Korel 90]
Alg. Time complexity= O(NA2)

- PrintIR() Print all IR sets

template <class T_LineNo, class T_Elml>
class Action;

template <class T_LineNo, class T_Elml>
class Control;

template <class T_LineNo, class T_Elml, class T_Elm2>
class MapPair;

template <class T_LineNo, class T_Elml, class T_Elm2>
class IRset: virtual public Action <T_LineNo, T_Elm2>,

virtual public Control <T_LineNo, T_Elm2>
protected:

MapPair <T_LineNo, T_Elml, T_Elm2> IR;
public:

IRset(const T_LineNo &Size) IR(Size), Action(Size), Control(Size) {};
void ComputeIR(void);
void PrintIR(void);

} ;

template <class T_LineNo, class T_Elml, class T_Elm2>
void IRset <T_LineNo, T_Elml, T_Elm2>

::PrintIR(void) { II print all IR sets

cout<<"<<< IR sets >>>"<<endl;
IR.PrintSet(Act);

template< class T_LineNo, class T_Elml, class T_Elm2>
void IRset< T_LineNo, T_Elml, T_Elm2>

::ComputeIR(void) {

T_LineNo j;
T_Elm2 Dat;
T_Elml Size IR.GetSize();

for(T_LineNo i l; i<Size; i++)
if(Ctr.GetDat(i) != 0) { II looking for line that is a test-control

Dat = Act.GetDat(i); II such as if, while, switch, etc.

j = i+l; II looking for a test-control line
while((Dat != Act.GetDat(j)) && (j<Size)) {

j++; II if line i is a test control, then looking for
II another line that identity

if(j<Size) II found the line
IR.PutPair(i,j, Dat); II put line that identity for the i-j
IR.PutPair(j,i, Dat); II put line that identity for the j-i

II ***
II
II Class Name: Zset

157

II
II Based classes:
II - Action Used to find a source line nUillber from a trajectory
II - Control Used to find which line is a test-control such as

if, while, switch, etc.
- DUset DU(Xp) Definition-Use Relation
- IRset Let Xp IR Yt, iff X = Y is the identity relation

IR on M(Front(T,q)).
- TCset Test-Control relation

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

Description: A Union set ofDUset, TCset, and IRset.

Data:
- z Data of class MapPair

Methods:
Zset(Size)

- Computez ()

- Printz ()

Create DU of size= Size
Time complexity O(NA2)
Compute z sets from DUset,
Time Complexity O(NA2)
Printz sets

IRset, and TCset.

template <class T_LineNo, class T_Elml, class T_Elm2>
class MapPair;

template <class T_LineNo, class T_Elml>
class Action;

template <class T_LineNo, class T_Elml>
class Control;

template <class T_LineNo, class T_Elml, class T_Elm2>
class DUset;

template <class T_LineNo, class T_Elml, class T_Elm2>
class IRset;

template <class T_LineNo, class T_Elml, class T_Elm2>
class Zset: virtual public Action <T_LineNo, T_Elml>,

virtual public Control <T_LineNo, T_Elml>,
public DUset <T_LineNo, T_Elml, T_Elm2>,
public TCset <T_LineNo, T_Elml, T_Elm2>,
public IRset <T_LineNo, T_Elml, T_Elm2> {

} ;

protected:
MapPair <T_LineNo, T_Elml, T_Elm2> Z;

public:
II create arrays of Z set

Zset(const T_LineNo &Size) : Z(Size), Action(Size), Control(Size),

void
void

DUset(Size), IRset(Size), TCset(Size) {} ;
Computez (void) ;
Printz (void) ;

template< class T_LineNo, class T_Elml, class T_Elm2>
void zset< T_LineNo, T_Elml, T_Elm2>

: : Printz (void) {

cout<<"<<< z sets >>>"<<endl;
Z.PrintSet(Act);

template< class T_LineNo, class T_Elml, class T_Elm2>
void Zset< T_LineNo, T_Elml, T_Elm2>

::ComputeZ(void) {

map<T_Elml, T_Elm2>::iterator pDU;
map<T_Elml, T_Elm2> xDU;

map<T_Elml, T_Elm2>::iterator pIR;
map<T_Elml, T_Elm2> xIR;

II point to DU sets

II point to IR sets

158

map<T_Elml, T_Elm2>::iterator pTC;
map<T_Elml, T_Elm2> xTC;

II point to TC sets

for(T_LineNo i = 1; i<Z.GetSize(); i++) {

xDU = DU.Addr(i); II put all DU sets into Z sets
pDU = xDU.begin();
while(pDU != xDU.end()) {

Z.PutPair(i,pDU->first,pDU->second);
pDU++;

xIR = IR.Addr(i); II put all IR sets into z sets
pIR = xIR.begin();
while(pIR != xIR.end()) {

Z.PutPair{i,pIR->first,pIR->second);
pIR++;

xTC = TC.Addr(i); II put all TC sets into z sets
pTC = xTC.begin();
while(pTC != xTC.end()) {

Z.PutPair(i,pTC->first,pTC->second);
pTC++;

II ***
II
II Class Name: SliceCriterion
II
II Description: The specification that the behavior of interest can be
II expressed as the values of a set of the variables at a subset of
II the statements.
II
II ***

template <class T_LineNo, class T_Elml>
class SliceCriterion {

} ;

private:
T_LineNo q;
T_Elml v;

public:
SliceCriterion{void) { q = O; v = O;);
SliceCriterion(const T_LineNo &Q, const T_Elml &V) { q
void PutQ{const T_Elml &Q} { q = Q; };
void PutV(const T_Elml &V) { v = V; };
T_Elml GetQ(void) { return q; };
T_Elml GetV(void) { return v; };

Q; V

II***

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

Class name: SliceSet

Based class:
- Action Used to find a source line number from a trajectory

Description: Based on the premise that instead of localizing
errors in the original program, which can be of a large size,
one can locate such errors in a program of smaller size which
is sliced from the original program but still preserves part
of the original program's behavior for a particular input or
relative to a particular variable.

Data:
- SN
- Slice

A number of a current program slice
Set of program slices

V; } ;

159

II
II Methods:
II
II
II
II
II
II
II

- SliceSet(Size)
- PutSN(v)
- GetSN(void)
- GetFinalSlice()
- PrintSlice ()

Create object Slice of class MapPair.
Set value of SN
return SN
Transfar slice from SO to SN
Print slice sets

template <class T_LineNo, class T_Elml>
class Action;

template <class T_LineNo, class T_Elml>
class SliceCriterion;

template <class T_LineNo, class T_Elml, class T_Elm2>
class SliceSet: virtual public Action <T_LineNo, T_Elml>

protected:
T_LineNo SN;
MapPair <T_LineNo, T_Elml, T_Elm2> Slice;

public:

} ;

SliceSet(const T_LineNo &Size) : Slice(Size), Action(Size), SN(l) {};
void PutSN(const T_LineNo &v) {SN= v; };
T_LineNo GetSN(void) { return SN; };
void
void

PrintSlice(void);
GetFinalSlice(void);

template< class T_LineNo, class T_Elml, class T_Elm2>
void SliceSet< T_LineNo, T_Elml, T_Elm2>

::GetFinalSlice(void) {

map<T_Elml, T_Elm2>::iterator p;
map<T_Elml, T_Elm2> x;
T_LineNo Size= Slice.GetSize();

x Slice.Addr(O);
p x. begin () ;

while(p != x.end()) II transfer slice from SO to SN
Slice.PutPair(SN,Act.GetDat(p->first),p->first);
p++;

SN++;
if(SN >= Size) SN 1;

template <class T_LineNo, class T_Elml, class T_Elm2>
void SliceSet< T_LineNo, T_Elml, T_Elm2>

::PrintSlice(void) {
cout<<"<<< Slice >>>"<<endl;
Slice.PrintVar();

II***

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

Class name: ComputeSliceSet

Based classes:
- Action Used to find a source line number from a trajectory

Control Used to find which line is a test-control such as
if, while, switch, etc.

- z class A union set of DUset, IRset and TCset
- SliceSet Sets of slice programs.
- Dice class, Sets of pieaces of programs

Description: Compute a slice set based on [Korel 90] Alg.

Data:
- A

Time complexity

A set of all actions

160

II
II

- s A set of all slices

II Methods:
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

ComputeSliceSet(Sizein) Create A, S of size Size
Time complexity= O(N)

- LastD(Crit) Compute Last-Defined with Slice criterion, Crit
Time complexity= O(N)

- LastT(Crit) Compute Test-Control
Time complexity= O(N)

- ComputeAOSO(Crit) Compute AO and SO
- ComputeAc(line_no, Crit) Compute Ac, c = {1,2,3, ... ,}

Time complexity= O(N)
- ComputeSc(LineNo) Compute Sc, c = {1,2,3, ... ,}
- ComputeSlice(Crit) Compute a program slice

Time complexity= O(N)
- PrintLastD_T(Crit) Print Last Defined and Test-Control
- PrintA(void) Print A sets
- PrintS(void) Print S sets
- TestProgramSlice() To check that program slice working

properly with the sample data

template <class T_LineNo, class T_Elml>
class Action;

template <class T_LineNo, class T_Elml>
class Control;

template <class T_LineNo, class T_Elml, class T_Elm2>
class Zset;

template <class T_LineNo, class T_Elml, class T_Elm2>
class SliceSet;

template <class T_LineNo, class T_Elml, class T_Elm2>
class ComputeSliceSet: virtual public Action <T_LineNo, T_Elml>,

virtual public Control <T_LineNo, T_Elml>,
public Zset <T_LineNo, T_Elml, T_Elm2>,
public SliceSet <T_LineNo, T_Elml, T_Elm2>

private:
MapPair <T_LineNo, T_Elml, T_Elm2> A;
MapPair <T_LineNo, T_Elml, T_Elm2> S;

public:
ComputeSliceSet(const T_LineNo &Sizein);
void PrintA(void);
void PrintS(void);

II create arrays of A
II create arrays of S

void PrintLastD_T(SliceCriterion <T_LineNo, T_Elml> &Crit);
T_Elm2 LastD(SliceCriterion <T_LineNo, T_Elml> &Crit);
T_Elm2 LastT(SliceCriterion <T_LineNo, T_Elml> &Crit);
void ComputeAOSO(SliceCriterion <T_LineNo, T_Elml> &Crit);

sets
sets

bool ComputeAc(const T_LineNo &LineNo, SliceCriterion <T_LineNo, T_Elm2> &Crit);
void ComputeSc(const T_LineNo &LineNo);
void ComputeSlice(SliceCriterion <T_LineNo, T_Elml> &Crit);
void TestProgramSlice(void);

} ;

template< class T_LineNo, class T_Elml, class T_Elm2>
ComputeSliceSet<T_LineNo, T_Elml, T_Elm2>

::ComputeSliceSet(const T_LineNo &Size): A(Size), S(Size),
Action(Size),
Control(Size),
Zset(Size),
SliceSet(Size) { };

template< class T_LineNo, class T_Elml, class T_Elm2>
void ComputeSliceSet< T_LineNo, T_Elml, T_Elm2>

::PrintLastD_T(SliceCriterion <T_LineNo, T_Elml> &Crit)

cout<<"Slice Criterion at V = "<<Crit.GetV()<<", Q = "<<Crit.GetQ()<<endl<<endl;
cout<<"Last Def = "<<LastD(Crit)<<endl;

161

cout<<"Last Test "<<LastT(Crit)<<endl<<endl;

template< class T_LineNo, class T_Elml, class T_Elm2>
void ComputeSliceSet< T_LineNo, T_Elml, T_Elm2>

: :PrintA(void) {

cout<<"<<< A sets >>>"<<endl;
A. PrintSet (Act) ;

template< class T_LineNo, class T_Elml, class T_Elm2>
void ComputeSliceSet< T_LineNo, T_Elml, T_Elm2>

: : Prints (void) {

cout<<"<<< S sets >>>"<<endl;
S.PrintSet(Act);

template< class T_LineNo, class T_Elml, class T_Elm2>
T_Elm2 ComputeSliceSet< T_LineNo, T_Elml, T_Elm2>

::LastD(SliceCriterion <T_LineNo, T_Elml> &Crit) {

T_Elml V Crit.GetV();
T_LineNo i Crit.GetQ() l;

while(i > 0) { II looking for v, last defined in Dset
if(D.Find(i,v) == true)

return i;
i--;

return O; II if cannot find

template< class T_LineNo, class T_Elml, class T_Elm2>
T_Elm2 ComputeSliceSet< T_LineNo, T_Elml, T_Elm2>

::LastT(SliceCriterion <T_LineNo, T_Elml> &Crit) {

T_Elml v Crit.GetV();
T_LineNo i Crit.GetQ() - l;

while(i > 0) II looking for its scope
if(TC.Find(i,v) == true)

return i;
i--;

return O; II if cannot find

template< class T_LineNo, class T_Elml, class T_Elm2>
bool ComputeSliceSet<T_LineNo, T_Elml, T_Elm2>

:: ComputeAc(const T_LineNo &LineNo, SliceCriterion <T_LineNo, T_Elm2> &Crit) {

T_LineNo Line;
Line= LineNo - l;

II Slice Nurober 0, compute slice in this nurober
II and translate it later into the nurober SN

map<T_Elml, T_Elm2>::iterator p;

T_LineNo sn O;

map<T_Elml, T_Elm2> x;

bool FlagDone = true;

X S.Addr(Line);
p x.begin();

while(p != x.end()) {
for(T_LineNo i = Crit.GetQ(); i>O; i--) {

if (Z.Find(i,p->first)) {
if (!Slice.Find(sn, i)) {

Slice.PutPair(sn, i,0);

162

A.PutPair(LineNo, i,O};
FlagDone = false;

p++; II if there is a new set, compute A(c+l}

return FlagDone; II nothing change in Ac set, end compute

template< class T_LineNo, class T_Elml, class T_Elm2>
void ComputeSliceSet<T_LineNo, T_Elml, T_Elm2>

:: ComputeSc(const T_LineNo &LineNo} {

T_LineNo Line;

if((Line = LineNo - 1) < 0)
cout<<"### Error in compute SI"<<endl;

map<T_Elml, T_Elm2>::iterator p;
map<T_Elml, T_Elm2> x;

X S.Addr(Line};
p x.begin(};

II Sc= S(c-1) + Ac
while(p != x.end(}} II combine with S(c-1)

S.PutPair(LineNo, p->first,p->second};
p++;

x A.Addr(LineNo};
p x.begin(};

while(p != x.end(}} II combine with Ac
S.PutPair(LineNo, p->first,p->second};
p++;

template< class T_LineNo, class T_Elml, class T_Elm2>
void ComputeSliceSet< T_LineNo, T_Elml, T_Elm2>

::ComputeAOSO (SliceCriterion <T_LineNo, T_Elml> &Crit}

T_Elml v = Crit.GetV(};
T_LineNo line_no = Crit.GetQ(};

T_LineNo LD = LastD(Crit};

A.PutPair(O, LD, 0};
S.PutPair(O, LD, O};
Slice.PutPair(O, LD, 0};

II compute AO and SO

T_LineNo LT= LastT(Crit};

if (LT} {
A.PutPair(O, LT, O};
S.PutPair(O, LT, O};
Slice.PutPair(O, LT, O};

II and then put them into AO and SO sets

II put Last Test-Control, if has
II put them into AO and SO sets

template< class T_LineNo, class T_Elml, class T_Elm2>
void ComputeSliceSet< T_LineNo, T_Elml, T_Elm2>

::ComputeSlice(SliceCriterion <T_LineNo, T_Elml> &Crit}

T_LineNo Size= A.GetSize(};

ComputeAOSO(Crit};

T_LineNo i = 1; II compute Ac, Sc, where c
while((i<Size} && (!ComputeAc(i,Crit}}} {

{1,2,3, ... ,}

163

Compu tesc (i) ;
i++;

Slice.PutPair(O,Crit.GetQ(),0);

template< class T_LineNo, class T_Elml, class T_Elm2>
void ComputeSliceSet< T_LineNo, T_Elml, T_Elm2>

::TestProgramSlice(void) {

Act.ReadFile("action.dat"); II test action sets
PrintAction();

Ctr.ReadFile("control.dat"); II test control sets
PrintControl();

D.ReadFile ("D.dat");
PrintD();

U.ReadFile("U.dat");
PrintU();

Compu teDU () ;
PrintDU();

ComputeIR();
PrintIR();

ComputeTC();
PrintTC();

ComputeZ();
Printz();

II test D sets

II test Usets

II test DU sets

II test IR sets

II test TC sets

II test z sets

II assign Slice criterion
SliceCriterion <NUMTYPE, NUMTYPE> Crit(15, 2);

II test compute slice ComputeSlice(Crit);
PrintLastD_T(Crit);
PrintA();

II check data, lats define, Test-Control

Prints();
PrintSlice();
GetFinalSlice();
PrintSlice();

II
II
II
II
II

check data, Ac sets
check data, Sc sets
check slice at line 0
move slice from line 0 to line SN
check slice at line SN

164

Winai Wichaipanitch

Candidate for the Degree of

Doctor of Philosophy

Thesis: AN INTERACTIVE DEBUGGING TOOL FOR C++ BASED ON
DYNAMIC SLICING AND DICING

Major Field: Computer Science

Biographical:

Personal Data: Born in Lopburi, Thailand, October 23, 1958, the son of Arun and
Tonghaw. Married to Cholada Singhasurasakdhi on March 9, 1984.

Education: Graduated from Lopburi Vocational College, Lopburi, Thailand, in
May 1977; received the Bachelor of Science in Electrical Engineering degree
with a Major in Electronics from the Rajamangala Institute of Technology,
Bangkok, Thailand in April 1984; received the Master of Science degree in
Computer Science at the Computer Science Department of Oklahoma State
University in December 1992; completed the requirements for the Doctor of
Philosophy degree in Computer Science at the Computer Science Department
of Oklahoma State University in August 2003.

Professional Experience: Instructor, Department of Electrical Engineering,
Rajamangala Institute of Technology, 1979 to present.

