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PREFACE 

Since the article "Program Slicing" by Mark Weiser was initially published in 

1981 [Weiser 81], program slicing has gained wide recognition in both academic and 

practical arenas. Several debugging tools have been developed that utilize program 

slicing. For example, Focus (designed and implemented by Lyle in 1984) was designed 

to be used with Fortran programs, and C-Sdicer (designed and implemented by Nanja and 

Samadzadeh in 1990) and C-Debug (designed and implemented by Wichaipanitch and 

Samadzadeh in 1992) were designed to be applicable to C language programs based on 

dynamic slicing. 

Program slicing [Weiser 81, 82, and 84] is one of the debugging methods used to 

localize errors in a program. The idea of program slicing is to focus on the statements 

that have something to do with a certain variable of interest (criterion variable), with the 

unrelated statements being omitted. Using slicing, one obtains a new program of 

generally smaller size that still maintains all aspects of the original program's behavior 

with respect to the criterion variable. Dynamic slicing differs from static slicing in that it 

is defined on the basis of a computation or an execution rather than on all possible 

computations. Furthermore, it allows one to treat the elements and fields in dynamic 

records as individual variables [Korel and Laski 90]. As a result, the slice size 

computed based on the dynamic slicing technique is generally smaller. Moreover, 
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dynamic slicing allows one to keep track of the run-time type binding (involving the type 

of each object) that is unknown at compile time but is determined when the program is 

executed. Dynamic slicing technique was used in this study. 

Dicing technique [Lyle 84] [Nanja 90] [Nanja and Samadzadeh 90] can then be 

used to compare two or more slices resulting from the program slicing technique in order 

to identify the set of statements that are likely to contain an error. The formal model of 

static/dynamic slicing/dicing is presented. There is a need for debugging tools that are 

capable of making some deductions regarding the presence and location of errors in 

programs. 

The main objective of this work was to develop an interactive debugging tool for 

C++ programs. The tool that was developed is called C++Debug and it uses program 

slicing and dicing techniques. The design started by including simple statements first and 

then expanded to pointers, structures, functions, and classes. In order for C++Debug to 

be more powerful, dynamic slicing rather than static slicing was chosen. The work 

includes new algorithms that handle Class, Function, and Pointer in C++. 
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CHAPTER I 

INTRODUCTION 

1.1 Introduction 

Once a programmer finds that a program fails to function properly in the testing 

process, debugging techniques are used to localize the causes of the errors and to correct 

them. All too often, one finds that the cost associated with testing and correcting a 

program is likely to increase as the size of the program increases and as the program 

becomes more complicated [Tassel 74]. As a result, various tools and methods have been 

developed to debug programs; for example, file printing utilities, module testing 

packages, built-in language facilities and programmed-in aids, post-mortem dumps, and 

source code amendment facilities [Tassel 74]. 

Program slicing [Weiser 81, 82, and 84] is one of the debugging methods used to 

localize errors in a program. The idea of program slicing is to focus on the statements 

that have something to do with a variable of interest ( criterion variable), with the 

statement that are unrelated being omitted. Using the slicing method, one obtains a new 

program of generally smaller size, which still maintains all aspects of the original 

program's behavior with respect to the criterion variable. A dicing technique [Lyle 84] 

[Nanja 90] [Nanja and Samadzadeh 90] can then be used to compare two or more slices, 

1 



2 

resulting from the program slicing technique, to identify the set of statements that are 

likely to contain an error. 

Program slicing can be classified into two main categories according to how slices 

are computed: static slicing and dynamic slicing. Static slicing is a method of computing 

program slices directly from the original source programs. Dynamic slicing is a method 

used to compute program slices from the trajectory, which is a feasible path that has 

actually been executed for some input. Dynamic slicing differs from static slicing in that 

it is defined on the basis of one computation rather than for all possible computations 

[Korel and Laski 90]. As the results, the slice size computed based on the dynamic 

slicing technique is typically smaller. Furthermore, it allows us to treat the elements and 

fields in dynamic records as individual variables. 

C++ is a general-purpose programming language and is successfully used in many 

application areas [Stroustrup 97]. Implementations of C++ exist from some of the most 

modest microcomputers to the largest supercomputers, and for almost all operating 

systems. C++ adds to C the concept of class, a mechanism for providing user-defined 

types that is also called abstract data type [Pohl 94]. C++ supports object-oriented 

programming by providing inheritance and run-time type binding in addition to the 

concept of class. As a result, a lot of programmers use C++ to implement programs and 

hence tools are needed to localize the causes of errors detected during testing. 

1.2 Purpose of the Study 

The objective was to create an interactive debugging tool, called C++Debug, for 

debugging a C++ program running under UNIX on the SUN machine in the Computer 
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Science Department at OSU. C++Debug was designed to function as a utility program of 

the UNIX system and was developed based on slicing and dicing techniques. It was 

designed in a way to provide ease of use and convenience on the part of the user. Using 

C++Debug, a user can interact with the computer in locating errors in a program. In 

order for C++Debug to give smaller slice sizes, dynamic slicing rather than static slicing 

was chosen. 

The scope of C++Debug includes programs that contain ANSI C and C++ codes. 

Classes and objects, unions, records, arrays, pointers, references, dynamic allocations, 

function and operator overloading, copy constructors and defaults, inheritances, virtual 

functions and polymorphism, templates, and exception handling were included also. 

1.3 Organization of the Report 

The rest of this dissertation report is organized as follows. Chapter II reviews the 

literature related to general information on program slicing and dicing techniques. The 

chapter concludes with a discussion of the advantages and disadvantages of dynamic and 

static slicing, and the procedures used to locate errors in a program using dynamic slicing 

and dicing techniques. Chapter III presents definitions and algorithms to get slices and 

dices in a C++ program. Chapter IV presents the steps involved in the design and 

implementation of C++Debug, its testing and evaluation, and the advantages and 

limitations of C++Debug. Chapter V contains a summary, conclusions, and some areas 

of future work. 

There are seven appendices: one on notation, one containing a user's manual for 

C++Debug, one containing datastructure design for C++Debug, one containing software 
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specifications, one containing testing and evaluation, one containing sample programs 

used for the computation of slicing-based metrics, and the final appendix contains sample 

source code listing of C++Debug. 



CHAPTER II 

LITERATURE REVIEW 

2.1 Introduction 

Localizing program errors is an arduous and time-consuming task, especially 

when programs written by other people are involved. Several attempts have been made 

to find ways that can enable one to locate errors more rapidly and effectively. Program 

slicing [Weiser 81, 82, and 84] [Korel 88] [Gallagher and Lyle 91] is one of several 

methods that have been used for this purpose. 

Figure 1 shows the basic idea of program slicing and dicing. Let us assume that 

Figure l(a) is a program to compute a tax fee. It is a large program with, say, 9000 lines 

of code. In fact, the actual number of statements or functions is not very important. For 

this program, let us assume we have found that the variable avg in line 8700 gives an 

incorrect result, e.g., 4.25 instead of 3.25. Because the program is too large, it is difficult 

to localize where the error is. Using program slicing technique based on variable avg, 

we can get a new program of smaller size, 15 lines in this case, which still maintains all 

aspects of the original program's behavior (Figure l(b)). Now, although the result is a 

new program of a smaller size, sometime we cannot find where the error is. Fortunately, 
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10 #include <stdio.h> 

35 int summation(int count, int data) ; 

100 int summation(int count, int data) 
101 int sum= O; 
102 for (int i = 0; i < count; i++) 
103 sum= sum+ data[i]; 
104 return (sum); 
105 } 

8000 void main (int argc, char *argv[]) { 
8001 float avg, sum; 
8002 int data[4] = {3, 5, 2, 3), count= 4; 

8004 sum= summation(count, data); 
8005 avg = sum I count+ 1; 

8700 printf(" %d %d \n", sum, avg); 

9000} 

(a) Original program 

10 #include <stdio.h> 
35 int summation(int count, int data) ; 
100 int summation(int count, int data) { 
101 int sum= O; 
102 for (int i = O; i < count; i++) 
103 sum= sum+ data[i]; 
104 return (sum); 
105 } 
8000 void main (int argc, char *argv[]) { 
8001 float avg, sum; 
8002 int data[4] = {3, 5, 2, 3), count= 4; 
8004 sum= summation(count, data); 
8700 printf(" %d %d \n", sum, avg); 
9000} 

( c) A program slice based on variable sum 

10 #include <stdio.h> 
35 int summation(int count, int data) ; 
100 int summation(int count, int data) { 
101 int sum= O; 
102 for (int i = O; i < count; i++) 
103 sum= sum+ data[i]; 
104 return (sum); 
105 } 
8000 void main (int argc, char *argv(]) { 
8001 float avg, sum; 
8002 int data[4] = {3, 5, 2, 3), count= 4; 
8004 sum= summation(count, data); 
8005 avg = sum I count + 1; 
8700 printf(" %d %d \n", sum, avg); 
9000} 

(b) A program slice based on variable avg 

8005 avg= sum I count+ 1; 

(d) A final program segment, 
which contains an error, 
after using dicing 
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in this example, variable sum in line 8700 gives the correct answer and yields the slice as 

shown in Figure l(c). To localize an error, dicing technique can be used by comparing 

both slices, where one contains no errors but the other one does. Some statements 

sliced on correct variables will then be removed from those sliced on variables with 

incorrect values. Upon completion of these steps, we get a new slice that is smaller and 

contains an error as shown in Figure l(d). Finally, it is discovered that the correct 

statement should be avg= sum/count, instead of avg = sum/count+l. 

2.2 Program Slicing 

The notion of slicing is based on the premise that instead of locating errors in the 

original program, which can be of large size, one can locate errors in a program of 

smaller size, which is sliced from the original program but still preserves part of the 

original program's behavior for a particular variable [Weiser 84]. 

Advantages of slices and slicing are based on four points [Weiser 84]. First, 

slices can be found automatically by a method used to decompose programs through 

analyzing their data flow and control flow. Second, a slice is normally smaller than the 

original program. As a consequence, when slicing at a variable of interest, the size of the 

resulting program slice is generally smaller than that of the original program. Third, 

slices can be executed independently of one another. In other words, a slice is itself an 

executable program whose behavior is identical to the specified subset of the original 

program's behavior. In other words, a slice produces a specific projection of the original 

program's behavior. 

In addition to the four points mentioned above, Weiser also mentioned two 
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intuitively desirable properties of a slice [Weiser 81]. First, a slice must be obtained from 

the original program by statement deletion. Second, once the statement deletion has been 

accomplished, the behavior of the resulting slice must correspond to the behavior of the 

original program as observed through a particular variable in the slicing criterion. 

Program slicing can be classified into two main categories: static slicing and 

dynamic slicing. These categories are discussed below. 

2.2.1 Static Slicing 

Static slicing [Weiser 81, 82, and 84] is a method defined on the basis of all 

computations of a program. It yields a program slice of generally larger size than that of 

dynamic slicing ( or, in the best case, of equal size to that of dynamic slicing), because 

static slicing often gives a slice containing statements that have no influence on the 

values of variables of interest for a particular execution [Korel and Laski 90]. Also, static 

slicing cannot treat the array elements and fields in dynamic records as individual 

variables. Finally, static slicing cannot support run-time handling. A static program slice 

is determined directly from the original source program (see Section 2.4 for examples). 

2.2.2 Dynamic Slicing 

Unlike static slicing, dynamic slicing [Korel 88] [Korel and Laski 88 and 90] is 

defined on the basis of one computation rather than all computations, and generates a 

dynamic program slice by computing from the trajectory that is a feasible path that has 

actually been executed for some input of the original source program (see Section 2.4 for 

examples). In addition, this method enables one to treat the array elements and fields in 

dynamic records as individual variables [Korel and Laski 90]. In this way, the size of the 
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resulting slice becomes generally smaller. Moreover, dynamic slicing allows one to keep 

track of run-time type binding, which is unknown at compile time but is determined until 

when the program is executed. 

2.3 Dicing 

Dicing is the process of identifying a set of statements likely to contain an error 

[Lyle 84] [Nanja 90] [Nanja and Samadzadeh 90] [Samadzadeh and Wichaipanitch 93]. 

The idea is first to compare two or more slices using program slicing techniques (see 

Section 2.4 for an example). Only one of these will slice on a variable with an incorrect 

value and the other(s) will slice on variables with correct values. One must first ascertain 

that the latter contains no errors. Some statements sliced on correct variables will then be 

removed from those sliced on the variable with incorrect values. Upon completion of 

these steps, a new slice is obtained that is smaller and contains the error. 

It should be noted that the validity of the use of dicing rests on three important 

assumptions [Weiser and Lyle 86]. First, it is necessary that testing be reliable and that 

all incorrectly computed variables be identified. Second, if the computation of a variable 

V depends on the computation of another variable w, then whenever w has an incorrect 

value, so does v. Third, it is necessary that one and only one fault exist in the program. 

The next sections provide examples of the computation of slices (static and 

dynamic) and dices. 

2.4 Examples 

Illustrated below are the comparison of the sizes of program slices generated from 
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static slicing, dynamic slicing, and dicing techniques. 

The program in Figure 2 is designed to count the number of individual integers 

falling between 1 and 5 read from the input data. Furthermore, this program computes 

the sum and average of these integers. In this example, the variable MaxDa ta is 5 and 

the array called Data contains 3, 5, 5, 2, and 2. Upon completion of program execution, 

the program should yield the results as shown in Figure 3. However, this program 

Var 
MaxData, Count 
Sum, Avg 
Data, CountNumber 

begin 

integer; 
real; 
array[l .. 10] of integer; 

/*Data= (3,5,5,2,2) */ 
/* MaxData = 5 */ 

1 read(MaxData, Data); 
2 Count := 1; 
3 Sum : = 0; 
4 while Count<= MaxData do 

begin 
/* count occurrences of number*/ 

5 if Data[Count] = 1 then 
6 CountNumber[l] := CountNumber[l] + 1; 
7 if Data[Count] = 2 then 
8 CountNumber[2] := CountNumber[2] + 1; 
9 if Data[Count] = 3 then 

10 CountNumber[3] := CountNumber[3] + 1; 
11 if Data[Count] = 4 then 
12 CountNumber[4] := CountNumber[4] + 1; 
13 if Data[Count] = 5 then 
14 CountNumber[5] .- CountNumber[5] + 1; 

/* computing summation*/ 
16 Sum.- Sum+ Data[Count]; 
17 Count :=Count+ 1; 

end; 
/* computing average*/ 

18 Avg .- Sum I (MaxData + 1); 
/* display output*/ 

19 write(CountNumber, Sum, Avg); 
end 

Figure 2. A program for counting occurrences and calculating the sum and 
average of a set of numbers 
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contains an error m line 18. Rather than Avg Sum/MaxDa ta, the program 

computes Avg : = Sum/MaxData+l), thus yielding an error (Avg= 2.8 instead of 

3.4). To localize such an error, program slicing and dicing techniques can be used. 

Figure 4 is a static program slice computed based on variable Coun tNurnber in 

line 19. The static slicing method treats array variables as a single variable regardless of 

the number of elements in the array. In contrast, if the dynamic slicing approach is used, 

array elements are treated as individual variables. As a result, the size of a program slice 

is generally reduced by using dynamic slicing techniques. As shown in Figure 5, no 

Number of each integer: 0,2,1,0, and 2, respectively 
Sum 17 
Avg= 3.4 

Figure 3. The output data of the program in Figure 2 

Begin 
1 read(MaxData, Data); 
2 Count := 1; 
4 while Count<= MaxData do 

begin 
5 if Data[Count] = 1 then 
6 CountNumber[l] := CountNumber[l] + 1; 
7 if Data[Count] = 2 then 
8 CountNumber[2] := CountNumber[2] + 1; 
9 if Data[Count] = 3 then 

10 CountNumber[3] := CountNumber[3] + 1; 
11 if Data[Count] = 4 then 
12 CountNumber[4] := CountNumber[4] + 1; 
13 if Data[Count] = 5 then 
14 CountNumber[S] := CountNumber[S] + 1; 
17 Count :=Count+ 1; 

end; 
19 write(CountNumber, Sum, Avg); 

end 

Figure 4. A static program slice computed based on variable Coun tNurnber 
in line 19 of the program in Figure 2 
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program slice results from variable CountNumber [ 1] in line 19. 

Figure 6 shows the program slice resulting from computing a dynamic slice based 

on variable CountNumber [ 2] in line 19. Obviously, the sizes of the program slices 

resulting from Coun tNumber [ 1] and Coun tNumber [ 2] are different because 

dynamic slicing treats the two array elements as two different variables whereas static 

slicing does not. 

Figures 7 and 8 depict program slices generated based on variables Sum and Avg, 

respectively, in line 19. For these variables, the static slicing method [Lyle 84] [Nanja 

90] [Nanja and Samadzadeh 90] and the dynamic slicing method [Korel and Laski 90] 

yield identical results. 

Begin 
19 write(CountNumber, Sum, Avg); 

end 

Figure 5. A dynamic program slice computed based on variable Coun tNumber [ 1 ] 
in line 19 of the program in Figure 2 

Begin 
1 read(MaxData, Data); 
2 Count := l; 
4 while Count<= MaxData do 

begin 
7 if Data[Count] = 2 then 
8 CountNumber[2] := CountNumber[2] + l; 

17 Count :=Count+ l; 
end; 

19 write(CountNumber, Sum, Avg); 
end 

Figure 6. A dynamic program slice computed based on variable Coun tNumber [ 2 ] 
in line 19 of the program in Figure 2 
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With the use of the dicing algorithm, a new program segment can be generated, as 

shown in Figure 9. This program segment contains the final erroneous line (which is line 

18). 

Begin 
1 read(MaxData, Data); 
2 Count . - 1; 
3 Sum . - 0; 
4 while Count <= MaxData do 

begin 
16 Sum:= Sum+ Data[Count]; 
17 Count :=Count+ 1; 

end; 
19 write(CountNumber, Sum, Avg); 

end 

Figure 7. A program slice computed based on variable Sum in line 19 of the 
program in Figure 2 

Begin 
1 read(MaxData, Data); 
2 Count := 1; 
3 Sum .- 0; 
4 while Count <= MaxData do 

begin 
16 Sum .- Sum + Data[Count]; 
17 Count . - Count + 1; 

end; 
18 Avg := Sum I (MaxData + 1); 
19 write(CountNumber, Sum, Avg); 

end 

Figure 8. A program slice computed based on variable Avg in line 19 of the 
program in Figure 2 

18 Avg := Sum I (MaxData + 1); 

Figure 9. A final program segment after using dicing 
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2.5 Dynamic Slicing Procedures 

2.5.1 Background 

To facilitate better understanding of program slicing, it is necessary that the 

following background [Korel and Laski 90] be presented. 

Let the flowgraph of a program P be a directed graph (N, A, s, e) and c be a 

slicing criterion, where N is the set of nodes, A is a binary relation on N (a subset of N x 

N), referred to as the set of arcs, s E N is a unique entry node, and e E N is a unique exit 

node. 

Each node in N consists of one statement: a single instruction or a control 

instruction. A single instruction can be an assignment statement, an input or output 

statement, etc. A control instruction can be such statements as an if-then-else statement 

or a while statement that are also called test instructions. 

An arc(n, m) E A corresponds to a possible transfer of control from instruction n 

to instruction m. 

A path from the entry nodes to some node k, k E N, is called a sequence <n1, n 2, 

... , nq> of instructions, such that n 1 = s, nq = k, and (ni, ni+1) E A, for all ni, 1 ~ i < q. 

If there are input data, which cause a path to be traversed during program execution, the 

path is feasible. 

A trajectory is a feasible path that has actually been executed for some input. For 

example, in Figure 10, <1, 2, 3, 4, 9, 10, 16, 17, 4, 13, 14, 16, 17, 4, 18, 19> is the 

trajectory when the program in Figure 2 is executed on input data MaxDa ta = 2, Data = 

(3, 5). A resulting trajectory can be the initial segment of an infinite path if the execution 

does not terminate in the case of an infinite loop. A trajectory is illustrated in terms of an 



var 

MaxData, Count 
Sum, Avg 

integer; 
real; 

Data, CountNumber 

begin 

array[l .. 10] of integer; 
/*Data= (3,5), and MaxData 

/* action instruction in action*/ 

11 read(MaxData, Data); 
22 Count .- l; 
33 Sum := O; 
44 Count <= MaxData 
95 Data[Count] = 3 

10 6 CountNumber[3] := CountNumber[3] + l; 
167 Sum:= Sum+ Data[Count]; 
17 8 Count :=Count+ 1; 

49 Count<= MaxData 
13 10 Data[Count] = 5 
1411 CountNumber[S] := CountNumber[S] + l; 
1612 Sum:= Sum+ Data[Count]; 
1713 Count :=Count+ 1; 

414 Count<= MaxData 
1815 Avg:= Sum I (MaxData + 1); 
1916 write(CountNumber, Sum, Avg); 

2 */ 

Trajectory T = <l,2,3,4,9,10,16,17,4,l3,14,16,l7,4,18,19> 

Figure 10. A trajectory of the program from Figure 2 on input data 
MaxData = 2, Data= (3,5) 

15 

abstract list whose elements are accessed according to their positions in it. For example, 

T(2) = 2 and T(5) = 9. A trajectory is also illustrated in terms of a pair (instruction, its 

position in the trajectory), rather than the instruction itself, so as to distinguish between 

multiple occurrences of the same instruction in the trajectory. 

For example, instruction X at position pin trajectory Tis represented by pair(X, 

p). For brevity and ease of understanding, pair(X, p) is replaced by xP and is referred 

to as an action. For example, 44 and 49 in trajectory T in Figure 10 are actions that 

involve the same instruction 4. An action xP is a test action if X is a test instruction. For 
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example, 44, 49, and 414 in trajectory Tin Figure 10 are test actions. 

Let T = <X1, X2, •.. , Xm> denote a trajectory of length m, and q be a position in T, 1 

~ q ~ m. Then the following can be obtained. 

1. Front(T, q) denotes the sublist <X1, X 2, ... , Xq>, consisting of the 

first q elements of T. 

2. Back(T, q) denotes the sublist <Xq+I, Xq+2, ... , Xm>, consisting of 

elements that follows T(q), a trajectory at position q. 

So, for all T and q the following can be obtained. 

T = Front(T, q) II Back(T, q), where II represents concatenation. 

3. DEL(T, R), where Risa predicate on the set of instructions in T, means 

a subtrajectory obtained from T by deleting from it all elements T(i) 

that satisfy R. 

2.5.2 Slicing Criterion 

A slicing criterion is the specification for a particular behavior of interest. A 

slicing criterion can be expressed as the values of some set of variables at some set of 

statements [Weiser 81]. If we let T be the trajectory of program P on input x, a slicing 

criterion of program P executed on x can be defined as a triple c = (x, Iq, V) where Iq is 

an action in T and V is a subset of the variables in P [Korel and Laski 90]. 

It is readily apparent that the slicing criterion of dynamic slicing differs from that 

of static slicing. The slicing criterion of dynamic slicing contains an input value x, 

whereas that of static slicing contains only a pair C = (I, V). This is because a change in 

the value of input x will result in a change in the trajectory, which in turn may result in a 
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change in the size of the resulting slice. That is to say, the slicing criterion of dynamic 

slicing is defined in terms of a given trajectory on a specific input x, rather than in terms 

of the set of all possible paths. In the case of static slicing, a slicing criterion is an 

instruction I in a program P, while in the case of dynamic slicing, a slicing criterion is an 

instruction I at a particular execution position q in a trajectory T. 

2.5.3 Steps Needed to Obtain a Dynamic Program Slice 

The procedure needed to obtain a dynamic program slice can be summarized in 

five steps as explained below along with examples to illustrate the process. 

1. Find a trajectory [Korel 88] [Korel and Laski 88 and 90] of the program (a trajectory 

is a feasible path traversed during program execution, see Subsection 2.5.1 for details). 

For the program in Figure 2, a trajectory is shown in Figure 10. In Figure 10, all 

instructions in the trajectory represent a pair consisting of an instruction and its position 

in the trajectory, instead of the instruction itself. In other words, X at position p in T will 

be referred to as pair(X, p) or xP, which is referred to as an action [Korel and Laski 90]. 

For instance, 44 and 49 in trajectory T in Figure 10 are actions involving the same 

instruction 4. An action xP is a test action provided that x is a test instruction [Korel and 

Laski 90]. 

2. For each line xP in the trajectory, compute U(XP), the set of variables that are used in 

xP, and also compute D(XP), the set of variables that are defined in xP [Korel and Laski 

90]. For example, in the execution trace of Figure 10 we have 

1815 Avg : = Sum I (MaxData + 1) ; 

Avg is a set of variables defined in 185, D(185). Sum and MaxData are a set of 
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variables that are used in 185, U(l 85). The sets U(XP) and D(XP) for the trajectory in 

Figure 10 are shown in Figure 11. 

Action D(XP) U(XP) 

11 MaxData, Data 

22 Count 

33 Sum 

44 Count, MaxData 

95 Data [1], Count 

106 CountNumber[3] CountNumber[3] 

167 Sum Sum, Data [1], Count 

178 Count Count 

49 Count, MaxData 

1310 Data[2], Count 

1411 CountNumber[S) CountNumber[5] 

1612 Sum Sum, Data[2], Count 

1713 Count Count 

414 Count, MaxData 

1815 Avg Sum, MaxData 

1916 CountNumber, Sum, Avg 

Figure 11. The sets D(XP) and U(XP), definition and use, for the trajectory in Figure 10 

3. Compute the DU (Definition-Use) Relation, a relation in which one action assigns a 

value to an item of data and the other action uses that value [Korel and Laski 90]. For 

example, in the execution trace of Figure 11, 22 defines the variable Count, and 44, 95, 

167, and 178 use the defined value of that variable. Let M(T) be a set of actions in a given 

trajectory T, where M(T) = { (X, p) : T(p) = X } . DU is a binary relation on M(T) defined 

bellow [Korel 88]. 



xP DU yt, 1 ~ p < t, iff there exists a variable v such that 
(1) v E U(Yt), and 
(2) xP is the last definition of v at t 
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where, the last definition xP of variable v at t is the action which last assigned a value to 

v when twas reached on trajectory T. 

For example, in the trajectory of Figure 11, 22 is the last definition of variable 

Count at the execution positions 3 through 8. The DU Relation for the trajectory in 

Figure 11 is shown in Figure 12. 

DU ( 1 1 ) 

DU(2 2 ) 

DU ( 3 3 ) 

DU ( 106 ) 

DU(l6 7 ) 

DU ( 17 8 ) 

DU(14 11 ) 

DU ( 1612 ) 

DU ( 1713 ) 

DU ( 1815 ) 

{44' 95' 167' 49' 1310' 1612' 414' 1815} 

{44, 95 ' 167 ' 17 8 } 

{ 167 } 

{ 1916} 

{ 1612} 

{49,1310,1512,1713} 

{1916} 

{1815' 1916} 

{ 414} 

{ 1916} 

Figure 12. The DU (definition-use) relation for the trajectory depicted in Figure 10 

4. Compute the TC (Test-Control) Relation, capturing the effect between test actions and 

actions that have been chosen to execute by those test actions [Karel and Laski 90]. For 

example, in the execution trace of Figure 10, the scope of test action 44 influences the 

execution of 95, 106, 167, and 178, but it does not influence the execution of 1310, 1411, 

1612, and 1713 . Let M(T) be a set of actions in a given trajectory T. TC is a binary relation 

on M(T) defined bellow [Korel and Laski 90]. 



xP TC yt, 1 ~ p < t, iff 
(1) Y is in the scope of influence of x, and 
(2) for all k, p< k < t, T(k) ct X 

where, the scope of influence is defined as follows: 

(1) if X then Bl else B2; Instruction Y is in the scope of influence of X 

iff Y is in Bl or B2. 

(2) while X do B; Instruction Y is in the scope of influence of X iff Y is 
inB. 

20 

For example, in the program of Figure 2, instructions 5, 7, 9, 11, 13, 16, and 17 

are in the scope of influence of test instruction 4, but instructions 18 and 19 are not. The 

TC Relation for the trajectory in Figure 10 is shown in Figure 13. 

5. Compute the slicing set Sc using the following definitions [Korel and Laski 90]. 

5.1 Let xP IR Y\ iff X = Y is the identity Relation IR on M(Front(T, q)). The IR 

Relation for the trajectory in Figure 10 is obtained as shown in Figure 14. 

TC (4 4 ) 

TC (4 9 ) 

TC (4 14 ) 

TC (9 5 ) 

TC(l3 10 ) 

{9 5 ,10 6 ,16 7 ,17 8 } 

{13 10 , 1411 , 1612 , 17 13 } 

Figure 13. The TC (test-control) relation for the trajectory depicted in Figure 10 

IR(4 4 ) 

IR(4 9 ) 

IR ( 4 14 ) 

Figure 14. The IR (identity relation) relation for the trajectory depicted in Figure 10 
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5.2 Let C = (x, Iq, V) be a slicing criterion and T be a trajectory on input x. To find the 

slicing set Sc, we first find the set A0 of all actions that have direct influence on V at q 

and on action Iq. A0 is defined as follows 

Ao= LD(q, V) U LT(Iq) 

where, LD( q, V) is the set of last definitions of variables in V at the execution position q, 

and LT(IP) is a set of test actions which have Test-Control influence on Iq. 

Sc can be determined iteratively as the limit of a sequence s 0, s1, ... , sn, 0 ~ n < 

q, which is defined as follows 

where Ai+1 = { XPE M(T): 1 ~p<q, 

(1) xv !l s\ and 
(2) there exists yt E si, t < q, xv z yt } 

where Z = DU U TC U IR. 

Finally, we can get the slice from the following definition. 

where skis the limit of the sequence {Si}. 

Example 1. Consider again trajectory Tin Figure 10. Using the criterion 

Cl= (x, 1916, {CountNumber[l]}), x = (MaxData, CountNumber) = (2,(3,5)), 

we have 

LD(16, {CountNumber[l]}) = {}, LT(1916) = {}, 

Ao={}, so={}, 

And finally, the dynamic slice is shown in Figure 15. 



begin 
19 write(CountNumber, Sum, Avg); 

end. 
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Figure 15. A dynamic program slice computed based on variable CountNumber[l] 
in line 19 of the program in Figure 2 

Example 2. Consider again trajectory Tin Figure 10. Using the criterion 

C2 = (x, 1916, {CountNumber[5]}), x = (MaxData, CountNumber) = (2,(3,5)), 

we have 

LD(16, {CountNumber[5]}) = {1411 }, LT(1916) = {}, 

Al= {49, 1310}, SI= {49, 1310, 1411}, 

A2 = {11,44, 178 }, S2 = {11,44, 178,49, 1310, 1411 }, 

A3 = {22 }, S3 = { 11, 22, 44, 178, 49, 1310, 1411 }, 

A4 = {}, 
Sc2= S 3 U {1916 } = {1 1,22,44, 178,49, 1310, 1411, 1916 }. 

And finally, the dynamic slice is shown in Figure 16. 

begin 
1 read(MaxData, Data); 
2 Count := l; 
4 while Count<= MaxData do 

begin 
13 if Data[Count] = 5 then 
14 CountNumber[SJ := CountNumber[SJ + l; 
17 Count :=Count+ 1; 

end; 
19 write(CountNumber, Sum, Avg); 

end. 

Figure 16. A dynamic program slice computed based on variable CountNumber[5] 
in line 19 of the program in Figure 2 



Example 3. Consider again trajectory Tin Figure 10. Using the criterion 

C3 = (x, 1916, {Sum}), x = (MaxData, CountNumber) = (2,(3,5)), we have 

LD(16, {Sum})= {1612 }, LT(1916) = {}, 

Ao= { 1612}, 

A 1 = { 11, 167, 178, 49}, 

A2 = {22, 33, 44}, 

A3 = {}, 
Sc3 = S2 U { 1916 } = { 11, 22, 33, 44, 167, 178, 49, 1612, 1916 }. 

And finally, the dynamic slice is shown in Figure 17. 

begin 
1 read(MaxData, Data); 
2 Count := l; 
3 Sum : = 0; 
4 while Count<= MaxData do 

begin 
16 Sum:= Sum+ Data[Count]; 
17 Count :=Count+ 1; 

end; 
19 write(CountNumber, Sum, Avg); 

end. 

Figure 17. A dynamic program slice computed based on variable Sum in line 19 
of the program in Figure 2 

Example 4. Consider again trajectory Tin Figure 10. Using the criterion 

C4 = (x, 1916, {Avg}), x = (MaxData, CountNumber) = (2,(3,5)), we have 

LD(16, {Avg})= {1815 }, LT(1916) = {}, 

Ao = {1 815}, So = {1 815}, 

Al = { l 1, 1612}, SI = {11, 1612, 1815}, 

A2 = {167, 178,49 }, S2 = {11,167, 178,49, 1612, 1815 }, 

23 



A3 = {22, 33, 44}, 

A4 = {}, 

Sc4 = S 3 u { 1916 } = { 11, 22, 33, 44, 167, 178, 49, 1612, 1815, 1916 }. 

And finally, the dynamic slice is shown in Figure 18. 

begin 
1 read(MaxData, Data); 
2 Count := 1; 
3 Sum : = 0; 
4 while Count<= MaxData do 

begin 
16 Sum:= Sum+ Data[Count]; 
17 Count :=Count+ l; 

end; 
18 Avg:= Sum I (MaxData + l); 
19 write(CountNurnber, Sum, Avg); 

end. 

Figure 18. A dynamic program slice computed based on variable Avg in line 19 
of the program in Figure 2 

2.6 Dicing Procedures 
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Dicing [Lyle 84] [Nanja 90] [Nanja and Samadzadeh 90] is the process of 

identifying a set of statements likely to contain an error. A dice is determined using the 

following process. 

1. Compute the slice (Si) for the incorrectly valued output variable(s), 

which is a subset of KBI (known to be incorrect). 

2. Compute the slice (Sc) for the correctly valued output variable(s), which 

is a subset of CSF (correct so far). 

3. Compute (Si - Sc), which makes up the dice. 
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Example 5. Observe that the dynamic program slice in Example 3 is a subset of CSF, 

while the dynamic program slice in Example 4 is a subset of KBI. Consequently, using 

the definition of dicing, a dice program can be shown in Figure 19. 

18 Avg:= Sum I (MaxData + 1); 

Figure 19. The final program segment after slicing and dicing 

Once the procedure is finished, line 18 will be shown as the incorrect line. 

2.7 Problems with Slices 

Although a number of significant advantages exist with the use of program 

slicing, program slicing does have disadvantages [Weiser 84]. These disadvantages can 

be summarized as follows. First, slices can be expensive to find. Second, a program may 

contain no significant slices other than itself. Third, total independence of slices may 

result in additional complexity in each slice that could be cleaned up if simple 

dependencies could be identified among slices. Finally, the selection of variables for 

slicing and dicing could pose significant problems. However, it can be asserted that 

whenever the program to be debugged is large, program slicing could effectively be used. 



CHAPTER III 

C++ DYNAMIC SLICING AND DICING PROCEDURES 

3.1 Introduction 

A number of definitions and algorithms originally introduced by Korel and Laski 

[Korel and Laski 90] were modified, in order to compute slices in classes, objects, arrays, 

pointers, references, dynamic allocation operators, function overloading, copy 

constructors, default arguments, operator overloading, inheritance, virtual functions, 

polymorphism, templates, and exception handling of a C++ program. Those modified 

definitions plus a number of new definitions and algorithms are introduced in this 

chapter. 

3.2 Definitions 

Based on Korel and Laski's work [Korel and Laski 90], let the flow graph of a 

program P be a directed graph (N, A, s, e) and C be a slicing criterion, where N is a set 

of nodes, A is a binary relation on N (a subset of N x N) referred to as the set of arcs, s E 

N is a unique entry node, and e E N is a unique exit node. 

Each node in N consists of one statement, including a single instruction, a control 

instruction, and a function instruction. A single instruction can be, for example, an 

26 
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assignment statement or an input or output statement. A control instruction can be such 

statements as an if-then-else statement or a while statement, which are also called test 

instructions. A function instruction can be either a called or a calling function 

instruction. 

An arc(n, m) E A corresponds to a possible transfer of control from instruction n 

to instruction m. 

A path from the entry node s to some node k, k E N, is called a sequence <n1 , 

n 2, ... , nq> of instructions, such that n 1 = s, nq = k, and (ni, ni+i) E A, for all ni, 1 :'.S: i 

< q. If there are input data that cause a path to be traversed during program execution, 

the path is feasible. A feasible path that has actually been executed for some input is 

called a trajectory. 

The program in Figure 20 is designed to compute the factorial of a given number 

Num. For example, if Num = 3 the program yields the result of 6. Figure 21 shows a 

trajectory of the program in Figure 20 on input data Num = 3. 

Definition 1 

Let X be an instruction m a program and X E IN+ (the set of non-negative 

integers). Let P be the set of instruction numbers in a tested C++ program, then P = { 1, 

2, ... , n} represents a program of length n, where n is the size of the program. For 

example, the C++ program in Figure 20 is the program P = { 1, 2, ... , 25}, where 

#include <iostream> is instruction X = 1, int Fac(int N) is instruction X = 3, 

etc. 

P = {Xjforallxwithl:'.S:X:'.S:n} 



1 #include <iostream> 
2 
3 int Fac(int N); 
4 
5 int Fac(int N) { 
6 
7 
8 
9 

int F 
int I 

1; 
2; 

10 while(I <= N) 
11 F = F * I; 
12 I++; 
13 } 
14 return F; 
15 
16 
17 main() { 
18 
19 
20 
21 
22 

int Num; 

cin>>Num; 
cou t<<Fac(Num); 

23 cout<<Num; 
24 
25 } 

II function prototype 

II called function 

II main program 

I I number 

II calling function 

Figure 20. A program for computing the factorial of a number 

where n = length of the program. 

Definition 2 
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Let F name be a function, i.e., a set of instruction X's in the scope of influence of 

the function name, where all blank lines are ignored. For example, in Figure 20, FFac = 

{5, 7, 8, 10, 11, 12, 13, 14, 15} and Fmain = {17, 19, 21, 22, 23, 25}. Fname C P, and 

F name = F main if the program has one function. 

Fname = {Xifora11Xwithi:5X:5k} 

where (1) i is the starting line number of function name, i E P 

(2) k is the ending line number of function name, k E P 
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Definition 3 

Let T be a trajectory, i.e., a feasible path that has actually been executed for some 

input [Karel and Laski 90]. A trajectory of length mis denoted by a list T = <X1 , X2 , •.. , 

Xrn>, where Xis an instruction of a tested C++ program. For example, in Figure 21, <17, 

19, 21, 5, 7, 8, 10, 11, 12, 13, 10, 11, 12, 13, 14, 22, 23, 25> is the resulting trajectory 

when the program in Figure 20 is executed on input data Num = 3. 

T =<XI for all X, where X's are in a feasible path executed for some input 
andXEP > 

Action Instruction in 

main() { 

int Num; 
cin>>Num; 
int Fac(int N) 

int F = 1; 
int :i; = 2; 

17 1 

192 

213 

54 
75 
86 
10 7 

11 8 

12 9 

1310 

while(I <= N) 
F = F 
I++; 

} 

1011 

1112 
while (I 

F = F 
12 13 I++; 
1314 } 

* I; 

<= N) 

* I; 

action 

{ 

{ 

{ 

1415 return F; <-- End of Function 
22 16 cout<<Fac (Num); 
23 17 cout<<Num; 
2518 } <== End of Function 

T 
TFrnain 
TFFac 

<17,19,21,5,7,8,10,11,12,13,10,11,12,13,14,22,23,25> 
<17,19,21,22,23,25> 
<5,7,8,10,11,12,13,10,11,12,13,14> 

Figure 21. A trajectory of the program in Figure 20 on input data Num = 3 

Definition 4 

Let TF name be a function trajectory, i.e., a feasible path of a function name that 
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has actually been executed for some input. TF name is a sublist of T. If a trajectory of 

length mis denoted by T = <X1 , X2 , ... , Xrn>, then the function trajectory name is denoted 

by TFname = <Xi, Xi+l, ... , Xk>, where Xi, Xi+l, ... , Xk are a list of the instruction X's 

which are in the scope of a given function F name, where i denotes the position of entry 

node and k denotes the position of ending node of the function name, (l ::; i < k, and i < 

k::; m). For example, in Figure 21, <17, 19, 21, 22, 23, 25> is the trajectory of TFmain, 

and <5, 7, 8, 10, 11, 12, 13, 10, 11, 12, 13, 14> is the trajectory of TFFac, when the 

program in Figure 20 is executed on input data Num = 3. 

TF name = < X I for all X, where X's are in a feasible path executed for some input, 
XE Fname, and XE T> 

Definition 5 

Let action be pair(X,p), i.e., instruction X at position p, which will be replaced 

by xP for brevity and ease of understanding [Korel and Laski 90]. For example, 118 and 

11 12 in trajectory T in Figure 21 are actions that involve the same instruction 11. An 

action xP is a test action if Xis a test instruction such as while or for. For example, 107 

and 1011 in trajectory Tin Figure 21 are test actions. 

Definition 6 

Let M(T) be a set of actions in a given trajectory T, where M(T) = { xP: instruction 

X at position pin trajectory T } [Korel and Laski 90]. For example, in Figure 21, { 171, 

of actions M(T). 
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Definition 7 

Let M(TF name) be a set of actions in a given function of a given trajectory TF name, 

where M(TFname) = { xP: instruction X at position pin trajectory TFname }. M(TFname) is 

a subset of M(T). For example, in Figure 21, {1?1, 192,213, 2216, 2317,2518 } is a set of 

actions M(TFmain), and {54, 75, 86, 107, 118, 129, 1310, 1011 , 1112, 1213, 1314, 1415 } is a set 

of actions M(TFFac), 

Definition 8 

Let C be a slicing criterion, which is the specification for a particular behavior of 

interest (see Subsection 2.5.2 for more detail). A slicing criterion can be expressed as the 

values of some set of variables at some set of statements [Weiser 81]. If we let T be the 

trajectory of program P on input x, a slicing criterion of program P executed on x can be 

defined as a triple C = (x, Iq, V), where Iq is an action in T and Vis a subset of variables 

in P [Korel and Laski 90]. 

Definition 9 

Let D(XP) be the set of variables that are defined in action xP, where xP E M(T). 

For example, in the trajectory of Figure 21, 

213 cin>>Num; 

Num is a set of variables that are defined in 21 3, D(21 3) = {Num}. 

Let DF name(XP) be the set of variables that are defined in action xP, where xP E 

M(TFname). In Figure 21, since 213 E M(TFmain) and Num is a set of variables that are 

defined in function main, DFmain(213) = {Num}. 
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Definition 10 

Let U(XP) be the set of variables that are used in action xP, where xP E M(T). For 

example in the trajectory of Figure 21, 

1011 while (I<= N) { 

I and N are the set of variables that are used in 1011 , U(1011) = { I, N}. 

Let UF name(XP) be the set of variables that are used in action xP, where xP E 

M(TFname). From last example, since 1011 E M(TFFac) and I and N are the set of variables 

that are used in function Fae, UFFac(1011) = {I, N}. 

Definition 11 

Let LF name (XP) be a set of variables and C++ preprocessors that are declared as a 

local declaration in function name. For example, in the trajectory of Figure 21, 

LFFacC75) = {F}, LFFacC86) = {I}, and LFmain(192) = {Num}. There are no local C++ 

preprocessors in this example. 

Definition 12 

Let DU be a Definition-Use Relation, a relation in which one action assigns a 

value to an item of data and the other action uses that value [Korel and Laski 90]. For 

example, in the trajectory of Figure 21, 11 12 assigns a value to variable F and 1415 use 

that value. Instead of using M(T) as Korel and Laski did, M(TF name) was used in this work 

in order to compute a slice from functions or classes. 



M(TFFac) DFFac(XP) UFFac(XP) LFFac(XP) 

54 N 
75 F 

86 I 

10 7 I, N 

118 F F, I 

129 I I 

1310 

1011 I, N 
1112 F F, I 

12 13 I I 

1314 

1415 F 

Figure 22. The sets M(TFFac), DFFac(XP), UFFac(XP), and LFFac(XP) 
for the trajectory in Figure 21 

M(TFmain) DFmain(XP) UFmain(XP) LFmain(XP) 

171 

192 Nurn 

21 3 Nurn 

2216 Nurn 

23 17 Num 

2518 

Figure 23. The sets M(TFmain), DFmain(XP), UFmain(XP), and LFmain(XP) 
for the trajectory in Figure 21 
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Let M(TF name) be a set of actions in a given trajectory TF name· DUF name, a 

Definition-Use-Functionname Relation, is a binary relation on M(TFname) defined as 

follows: 



xP DUF name Y\ i =::; p < t, iff there exists a variable v 
such that (1) v E UFname (Yt), and 

(2) xP is the last definition of v at t 
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where, the last definition xP of variable v at t is the action which last assigned a value to 

v when t was reached on trajectory TF name· 

For example, in the trajectory of Figure 21, 21 3 is the last definition of variable 

Nurn at the execution positions 4 through 18. The DUFname Relation for the trajectory in 

Figure 21 is shown in Figures 24 and 25. 

Definition 13 

Let LDR be a Local-Declaration Relation, a relation in which one action declares 

a variable and the other action defines or uses that variable. For example, in the 

trajectory of Figure 21, 75 declares variable F and 118,11 12 define and 118,11 12,1415 use 

that variable. 

Let M(TFname) be a set of actions in a given trajectory TFname· LDRFname, a Local-

Declarationname Relation, is a binary relation on M(TF name) defined as follows: 

xP LDRF name Y\ i =::; p < t, iff there exists a variable v 
such that (1) v E UFname(Yt) U DFname(Yt), and 

(2) xP is the action where variable v was declared 
in trajectory TF name· 

The LDRF name Relation for the trajectory in Figure 21 is shown in Figures 26 and 27. 



DUFFac ( 118 ) 

DUFFac ( 12 9 ) 

DUFFac ( 1112 ) 

DUFFac ( 12 13 ) 

{ 1112} 

== { 1011 ' 1112 ' 12 13 } 

{ 1415} 

{} 

Figure 24. The DUFFac relation for the trajectory depicted in Figure 21 

Figure 25. The DUFrnain relation for the trajectory depicted in Figure 21 

LDRFFac ( 5 4 ) 

LDRFFac ( 7 5 ) 

LDRFFac ( 8 6 ) 

{10 7 , 1011 } 

{11 8 ,1112 ,1415 } 

{ 10 7 ' 11 8 ' 12 9 ' 1011 , 1112 ' 1213 } 

Figure 26. The LDRFFac relation for the trajectory depicted in Figure 21 

Figure 27. The LDRFrnain relation for the trajectory depicted in Figure 21 

Definition 14 

35 

Let TC be a Test-Control Relation, capturing the effect between test actions and 

actions that have been chosen to execute by these test actions [Korel and Laski 90]. For 

example in the trajectory of Figure 21, the scope of test action 107 influences the 

execution of 118, 129, and 1310, but it does not influence the execution of 1011, 11 12, and 

1213• Instead of using M(T) as Korel and Laski did, M(TFnarne) was used in this work in 

order to compute a slice from functions or classes. Let M(TF name) be a set of actions in a 
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given trajectory TF name· TCF name, a Test-Control-Functionname Relation, is a binary 

relation on M(TF name) defined as follows: 

p t . < 'ff X TCFname Y , l - p < t, 1 

(1) Y is in the scope of influence of X, and 
(2) for all k, p < k < t, T(k) -::J:. X 

where, the scope of influence is defined as follows. 

(1) if X then Bl else B2; Instruction Y is in the scope of influence of X iff Y 
is in Bl or B2. 

(2) while X do B; Instruction Y is in the scope of influence of X iff Y is in B. 
(3) do B while X; Instruction Y is in the scope of influence of X iff Y is in B. 
(4) case X do B; Instruction Y is in the scope of influence of X iff Y is in B. 
(5) for X do B; Instruction Y is in the scope of influence of X iff Y is in B. 
(6) function X do B; Instruction Y is in the scope of influence of X iff Y is in 

B. 

For example, in the trajectory of Figure 21, instructions 11, 12, and 13 are in the 

scope of influence of test instruction 10, but instructions 17, 19, 21, 5, 7, 8, 14, 22, 23, 

and 25 are not. The TCF name Test-Control-Functionname Relation for the trajectory in 

Figure 21 is shown in Figure 28. 

TCFFac{10 7) 

TCFFac{10 11) 

{11 8 ,12 9 ,13 10 } 

{ 1112 
f 1213 

I 13 14 } 

Figure 28. The TCFFac relation for the trajectory depicted in Figure 21 

Definition 15 

Let IRF name be an Identity Relation in Functionname, then XP IRF name yt, iff X = 

Y is the identity relation IRFname on M(Front(TFname, q)), where Front(TFname, q) is 
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a sublist of TFname consisting of the first q elements of TFname, where TFname = <Xi, 

Xi+l, ... , Xt, ... , Xq, ... , Xk> denotes a function trajectory, q is a position in TFname, 1 ~ i 

< t, and t < q ~ k. The IRF name Relation for the trajectory in Figure 21 is obtained as 

shown in Figure 29. 

IRFFac ( 1017 ) 

IRFFac ( 1011 ) 

Figure 29. The IRFFac relation for the trajectory depicted in Figure 21 

Definition 16 

Figure 30 presents a part of the trajectory of FuncA(int i) and FuncB(int j ), 

where called FuncA(int i) is called by calling FuncA(5) at xn+i, and called 

FuncB(int j) is called by calling FuncB(2) at x 1+1. From Figure 30, we find that T = 
i-2 xi-1 i i+l xi+2 xj xj+l xk xk+l xl xl+l xm xn xn+l < ... , X , , X , X , , ... , , , ... , , , ... , , , ... , , .... , , , 

n+2 h . . k 1 d . . xi X , ... >, w ere i<J< , <m<n an X 1s any statement ma program P, TFFuncA = < , 

i+l Xi+2 j xl+l xm xn d TF _ Xj+l Xk xk+l Xl X ' ' ... , X ' ' ... , ' ... , >, an FuncB - < ' ... , ' ' ... , >. 

Functions FuncA(int i) at xi and FuncB(int j) at xj+l are called a called function 

instruction. An action xP is a called action if X is a called function instruction. 

FuncA(5) at xn+i and FuncB(2) at x 1+1 are called calling function instructions. An 

action xP is a calling action if X is a calling function instruction. 

Called-to-Calling occurs when a slice is computed from a called action first and 

then from a calling action. For example, in Figure 31, suppose one needs to find a slice 



xi 

x1+1 

: \ . 
FuncA(int i) { ... tlllli---+------ Called function 

I 
i 

FuncB (int j) { ... ~1--i ----- Called function 

Y U + V; 

1 ...... ~ ..................... -····-···················-··--
z = FuncB(2); ... tllllt---....----- Calling function 

Xm O = Z + P; 

:. .............. _ .............................. _, ...................................... _, 
FuncA(5) ----------- Calling function 

Figure 30. A trajectory of functions A and B where function A calls function B 
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of variable u at xk. The process starts from xk (which is in the scope of influence of 

called function FuncB(int j), which is called by calling function FuncB(2) at x1+1), 

and then xj+l, x 1+1, respectively. We find that called action xj+l comes before calling 

action x1 +1 . 

Calling-to-Called occurs when a slice is computed from a calling action first and 

then from a called action. For example, in Figure 32, suppose that one needs to find a 

slice of variable z at xm. The process starts from xm, and then x 1+1 (since z is last 



FuncA(int i) { 

FuncB(int j) { 

Y = U + V; 

xi } 

x1+1 z = FuncB(2); 

0 Z + P; 

} Front (TF-~, l+l) 

} Front I TF-~, kl 

} Back(TF-,k) 

Back (TFFuncA, l+l) 

xn+l FuncA ( 5) ; 
xn+2 

Figure 31. Illustrate Called-to-Calling 

1st Step: 
Compute a slice on 
variable u at xk 
c = (x,xk, {U}) 

2nd Step: 
After finishing 
computing a slice 
in FuncB, 
computing a slice 
in FuncA will be 
started here. 
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defined at x 1+1 and used at xm) and then xj+l (since called FuncB(int j) is called by 

calling FuncB(2)), respectively. We find that calling action x1 +1 comes before called 

Modified from Korel and Laski's approach [Korel and Laski 90], let TFname = 

<Xi, Xi+l, Xi+2, ... , Xk> be a trajectory of function name, and q be a position in 

TFname, i ~ q ~ k. Then Front(TFname, q) is a sublist <Xi, Xi+l, ... , Xq> and 

Back(TFname, q) is a sublist <Xq+l, Xm+2, ... , Xk> as shown in Figures 31 and 32. All 



FuncA(int i) { I} 
xj+l FuncB ( int j) { 

Y U + V; 

xi } 

x1+1 } 
IO Z + P; 

I } } 

Z = FuncB(2); 

• ......................... --··--·········'""''''""''''''''""'"-········-··~ 
xn+l FuncA ( 5) ; 
xn+2 

1st Part of 
Front (TFFuncA,m) 

2nd Part of 
Front (TFFuncA,m) 

Back(TFFuncA,m) 

Figure 32. Illustrate Calling-to-Called 

Compute a slice on 
variable z at xm 
C = (x,Xm, {Z}) 
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Back(TFnarne, q)'s can be ignored in computing a slice. Just Front(TFnarne, q) must be 

concentrated on. 

Let A and B be two functions, where function A calls function B. Therefore, a 

slice .can be computed in two different ways as follow. 

1) Called-to-Calling 

Total sliceAB = Slicen u SliceA 

where 



(1) SliceB is a slice computed based on Front(TFB, k) and 
slicing criterion C = (x, xk, V) 

(2) SliceA is a slice computed based on Front(TFA, 1+1) and 
used variables at calling action x1 +1 , u(x1 +1). 

2) Calling-to-Called 

Total sliceAB = SliceA u TFB 

where 
(1) SliceA is a slice computed based on Front(TFA, m) and 

slicing criterion C = (x, xrn, V) 

(2) TFB is a function trajectory of function B. 
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Let Calling(XP) be a set of calling functions that are used to call a called 

function in action xP, where xP E M(T). For example in the trajectory of Figure 21, 

Calling(2i6) = {Fae}. 

Let Ca 11 ed(XP) be a set of called functions that are called by a calling function 

in action xP, where xP E M(T). For example in the trajectory of Figure 21, Called(54) = 

{Fae}. 

Let EI be a Called-to-Calling Relation between called and calling functions. Let 

M(T) be a set of actions in a given trajectory T of length m. EI is a binary relation on 

M(T) defined as follows: 

Let T = <X1, X2, ... , Xt, ... , Xrn>, 

xP EI yt, t ~ p < m, iff there exists function f 

such that (1) a called function f E Called(Yt), 

(2) a calling function f E Calling(XP), and 
(3) xP is the calling action, where the calling function f 

at p calls a called function f at t 

For example in the trajectory of Figure 21, we have 2216 EI 54, as shown in Figure 33. 
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Figure 33. The EI relation for the trajectory depicted in Figure 21 

Let IE be a Calling-to-Called Relation between called and calling functions. Let 

M(T) be a set of actions in a given trajectory T of length m. IE is a binary relation on 

M(T) defined as follows: 

Let T = <X1, X2, ... , Xt, ... , Xm>, 

xP IE yt, 1 ::; p < t, iff there exists function f 

such that (1) a calling function f E Calling(Yt), 

(2) a called function f E Called(XP), and 
(3) xP is the called action where the called function f 

at p is called by a calling function f at t 

For example in the trajectory of Figure 21, we have 54 IE 2216, as shown in Figure 34. 

Figure 34. The IE relation for the trajectory depicted in Figure 21. 

Definition 17 

To find the slicing set Sc, we first find the set AO of all actions that have direct 

influence on Vat q and on action Iq. A0 is defined as follows [Korel and Laski 90]. 

where LD( q, V) is the set of last definitions of variables in V at the execution position q, 

and LT(I~ is a set of test actions that have Test-Control influence on Iq. 
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We will find Sc iteratively, as the limit of a sequence s 0, si, ... , sn, o 5 n < q, 

which is defined as follows. 

where 

Ai+l = { XP E M(TFname): l 5p < q, 

(1) xP ~ s\ and 

(2) there exists yt E si, t < q, xP z yt} 

where Z = DU u TC U IR u LDR 

Finally, we can get the slice from the following definition. 

k Sc= S 

where skis the limit of the sequence { si} . 

Definition 18 

Let FN(q) be a string of function name such that Xq, X is in the scope of 

. fl 1 . F. 21 { 4 s 6 107 s 29 1 10 1011 1112 m uence. For examp e m 1gure , TFFac = 5 , 7 , 8 , , 11 , 1 , 3 , , , 

1213, 13 14, 1415, 1516}, then FN(8) = "Fae", because 11 is in the scope of influence of 

function name Fae. FN(l 7) = "main" for the same reason. 

Definition 19 

Let G(X) be a set of variables and precedences that are declared as a part of global 

declaration. G(X) is computed from the source program, not from a trajectory path. In 

Figure 20, G(l) = {include} and G(3) = {Fae}. 
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Definition 20 

Let VDU(FunctionName) be a set of variables that are used, UF name, and defined, 

DFname, in a given function name. For example, VDU(main) = {Num} and VDU(Fac) = 

{F, I, N} in Figure 21. 

Definition 21 

In order to find the scope of influence of each instruction, variable scope, VS, and 

control scope, CS, are used as defined bellow. 

1. Variable scope, VS, gives the information that the variables that used or defined in 

each instruction were declared at what instructions. 

Let XncL be an instruction that declared variables such as "int I ." 
I • 

Let Xnu be an instruction that used or defined the variables declared by XncL, 

where variables that are used or defined are in the scope of influence of the variables that 

are declared in XncL· For example, "I= I+ 1 ; ", which is the first I is defined and the 

second I is used both are declared by "int I . " 
I • 

Then we get VS(Xnu), a variable scope relation at Xnu, which 1s a set of 

' instructions XncL, where Xnu is in the scope of influence ofXncL· 

For example in Figure 20, we get VS { 11} = {7, 8} since variable F at Xnu = 11 

was declared in XncL = 7, and variable I at Xnu = 11 was declared in XncL = 8. The VS 

relation for the program depicted in Figure 20 is shown in Figure 36. 

2. Control scope, cs, gives information about instructions that are in the scope of 

influence of control instructions such as test statements, functions, and classes. For 
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calculation of the scope of influence of each statement, the me_ too set is used [Lyle 

84]. 

Let X be an instruction, the me_ too is a set of instructions that are in the scope 

of influence of instruction X. 

Due to the complexity of the C++ language and in order for C++Debug to be 

applicable to programs containing functions, classes, namespaces, unions, structures, and 

preprocessors (a separate first step in compilation, e.g., #include, #define, or #if), the 

me too set was modified according to the rules shown in Figure 35 and will still be 

called the control scope, cs, set. 

Based on the rules in Figure 35, Figures 36 shows an example of computing the 

cs set of a tested program that computes the factorial in Figure 20. 

To find the final slicing set F s with scope, we first find the set s 0 of all 

instructions that sliced :from the tested program P based on slicing criterion C(x,Iq,V). 

s 0 is defined as follows. 

where Sc is a slicing set defined in Definition 17. 

We will find F s iteratively, as the limit of a sequence F 0, F1, ... , Fn, O :::; i < n, n 

= length of program P, which is defined as follows. 

where 

si+i = { x E P : 1:::; x < n, n = length of program P, 

(1) X ~ Fi, and 

(2) there exists Y E Fi, X E Z(Y) } 



1. For any straight-line instruction, the cs set must contain: 

1.1 Instruction of which it is in the scope of influence 

2. For any control instruction, the CS set must contain: 

2.1 Instruction of which it is in the scope of influence 

2.2 Instruction representing the beginning of the scope of 

influence 

2.3 Instruction representing the end of the scope of influence 

3. In case of functions, the cs set of that instruction must contain 

3.1 Instruction of which it is in the scope of influence 

3.2 Instruction representing the beginning of the scope of 

influence 

3.3 Instruction representing the end of the scope of influence 

4. In case of classes, structures, unions, and namespaces, the cs 

set of that instruction must contain 

4.1 Instruction representing the beginning of the scope of 

influence 

4.2 Instruction representing the end of the scope of influence 

Figure 35. Rules for computing the CS (control scope) set 

where z = VS u CS 

Finally, we can get the final slice with scope from the following definition. 

where Fk is the limit of the sequence { Fi } . 
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Instruction (X) Prototype Called Calling D-set U-set DCL-set VS-set CS-set 

1 #include <iostream> include 
2 
3 int Fac(int N); Fac(2) N(l) 
4 
5 int Fac(int N) { Fac(2) N(3) 3 15 
6 
7 int F = 1; F(4) 5 
8 int I= 2; I(5) 5 

:!:'i 9 
10 while ( I <= N) { N(3), I(5) 5, 8 5, 13 
11 F = F * I; F(4) F(4), I(5) 7, 8 10 
12 I++; I (5) I(5) 8 10 
13 } 10 
14 return F; F(4) 7 5 
15} 5 
16 
17 main() { main(6) 25 
18 
19 int Num; Num(7) 17 
20 
21 cin>>Num; Num(7) cin(8) 19 17 
22 cout<<Fac (Num) ; Fae (10) Num(7), cout(9) 19 17 
23 cout<<Num; cout(9), Num(7) 19 17 
24 
25} 17 

Figure 36. The Prototype, Called, Calling, D, U, DCL, VS, and CS sets for the program depicted in Figure 20 



3.3 Algorithms 

3.3.1 Algorithm for Computing a Slice 
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Figure 37 presents the algorithm designed and implemented for C++Debug. The 

algorithm is separated into 4 parts: Datastructures, Initialize, PASS I, and PASS II. The 

Datastructures part is shown in Figure 38. The Initialize part is used to initialize 

variables, files, etc., when the program starts. 

The objectives of PASS I are to create databases and to create a trajectory T. All 

computations in PASS I are determined based on a source code program. The databases 

are used to collect the necessary information used in PASS II such as Symbol Table, List 

of Reserved Words, List of Basic Types, Types, Identifiers Information, Scope of Influent, 

etc. The trajectory T is created by a tool named cpptrace (for more detail see 

Subsection 4.3.1). 

PASS II uses the information in each database and the trajectory T from PASS I 

to compute a set of slices. First, a slicing criterion comprising of a set of variables V and 

position q is entered. After that, each slice of each variable in set V at position q is 

computed one by one. The process starts with finding a slice inside the function where 

position q is at, until finished. Then the algorithm goes to its calling function and starts 

to find a slice in this calling function again. The process is repeated until the final slice 

of the calling function named main() is computed. Clearly, the slice of each variable in 

the set V is computed based on all functions that related to each variable in the set V 

starting from the function where position q is at, its calling function, ... , and end at 

function main(). Compute_scope_of_influence(C) makes the final slice 

completed by adding some statements that may govern each statement in the slice. 



Datastructures II see Figure 38 

Begin 

Initialize(); II initialize files, variables, etc.; 

II PASS I 
II compute from source code program P 

Create_Information_Database(P); // see Appendix C 

II compute trajectory code T 
// see Definition 3 

T = gen_T(P); 
II by using tool named cpptrace 
II see Subsection4.3.1 

II PASS II 
II compute slices from trajectory T 

I= 1; 

C = Read_Criterion(); 

while (C. V =I= "Exit" ) { 
S[OJ = {}; 

while (C.q ~ 1 and C.q 

STEP I: 

// slicing criterion at position q 
// on a set of variables V 
// see Definition 8 

II to check not exit the program 
II clear temporary slice storage 

~ MaxTraj) { // Is C. q a valid number 
II in the trajectory T? 

II compute slice in called function 
S [OJ = S [OJ u Compute_Slice_in_Function_Name(C); 

STEP II: 

} 

if (FN(C.q)) 
then 

break; 
else 

"main" ) // check called-to-calling function 
I/ finish computing a slice for each variable 
II then break the loop 

xP EI yt ; yt E s [ o ] // get a new position of its calling function 
C. q = xP //see Definition 16 

STEP III: I/ add scope of influent to complete each slice 
Add_Scope_of_Influent(S[OJ) Slice [IJ 

I++ 
C = Read_Criterion(); // get a new slicing criterion at 

// position q on a new variables V 
} 

II finally we get each Slice [I] for each variable V [I] 
II at a specific position q's 

end 

Figure 3 7. Algorithm to compute a set of slices 
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Constants 

MaxLine 

MaxTraj 

VarLength= 

N 

Types 

X 

Action 

X 

q 

} 

Maximum linenumbers of a source code 

Maximum linenumber of a trajectory 

Maximum number of variables per instruction 

Maximumnumber of slices 

1 .. MaxLine 

1 .. MaxLine 

1 .. MaxTraj 

II an instruction in a program, see Definition 1 

II instruction X at position q, see Definition 2 

Variable= string 

SliceCriterion, LastDef { 

I I variable name is a string of characters 

I I slicing criterion, see Definition 8, 

q l .. MaxTraj II and last defmition, see Defmition 16 

II variable Vat position q in a trajectory V : set [Variable] 

} 

Variables 
p 

Fname 

T 

TFname 

MT 

MTFname 

C 

DFname 

UFname 

LFname 

DUFname 

LDRFname 

TCFname 

IRFname 

A 

s 
LD 

LT 

vs 
cs 
Slice 

Dice 

set [X] II a source program, see Definition 1 

set [X] II a function, see Definition 2 

list [X] II a trajectory, see Defmition 3 
list [X] II a function trajectory, see Definition 4 

set [Action] II a set of Action in trajectory T, see Definition 6 

set [Action] II a set of Action in trajectory T, see Definition 6 

SliceCriterion 

set [Variable] 

set[Variable] 

set[variable] 

I I a slice criterion, see Defmition 8 

II defined variables, see Definition 9 

II used variable, see Defmition 10 

I I local var & pre declaration , see Definition 11 

set [action] II Definition-Use-FunctionName-Relation, see Def. 12 

set [action] II Local-Declaration-FunctionName-Relation, see Def. 13 

set [action] II Test-Control-FunctionName-Relation, see Definition 14 

set [action] II Identity-Relation-FunctinName, see Defmition 15 

array [1. .N] of set [Action] II see Defmition 16 

array [ 1. . N] of set [Action] II see Definition 16 

LastDef II a set oflast defmition, see Defmition 16 

set [Action] II a set oftest actions, see Defmition 16 

set [Xl II Variable-Scope, see Defmition 21 

set [XJ II Control-Scope, see Definition 21 

array [l .. N] of set [X] II Slices, see Definition 17 

set [XJ II a final dice, see Section 3.6 

Figure 38. Slicing data structures 
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Step 1.1: II function to compute a slice without its scope of influence 

Compute_Slice_in_Function_Name(SliceCriterion C) { 

name 

TFname 

DFname 

UFname 

DUFname 

TCFname 

IRFname 

FN ( C . q) ; I I get function name, see Definition 18 

SubT(LF(C)); II compute a sublist function trajectory, see Definition 4 

ComputeDFname(TFname); II compute defined var., see Definition 9 

ComputeUFname(TFname); II compute used var., see Definition 10 

ComputeDUFname(TFname); II compute defined used rel., see Def. 12 

ComputeTCFname(TFname); II compute test control rel., see Def. 14 

ComputeIRFname(TFname); II compute identity rel., see Definition 15 

LDRFname = ComputeLDRFname(TFname); II compute local declaration rel., 

I I see Definition 13 

Step 1.2: I I compute a slice in a function name, see Definition 17 

S = ComputeSlice(DUFname, TCFname, IRFname, LDRFname, C); 

Step 1. 3 : II see Definition 16 

if (XP IE yt; yt E S) II check Calling-to-Called function 

name = FN (p) I I get calling function name 

S = S u TFname II where IE, a Calling-to-Called function, is an element of S 

return (S); 

Figure 39. Algorithm to compute a slice of each function 

II function to compute the scope of influence ofa slice 

Add Scope of Influent(array [1 .. n] of set [action] S) { - - -

s = Var_Control_Scope (S); II Add scope of influence to a slice, 
II see Definition 21 

return S; 

Figure 40. Function to compute the scope of influence of a slice 
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3.4 Examples: How to Compute a Slice of a Program Containing Functions 

There are three examples in this section: an example of slicing a program based 

on variable Num (which is in the function main), an example of slicing a program based 

on the calling function F ac (in the case of Calling-to-Called function), and an example of 

slicing a program based on the calling function I (in the case of Called-to-Calling 

function). 

Example 1. This example shows how to compute a slice based on variable Num, which is 

in the function main. Consider trajectory Tin Figure 21. Using the criterion C = (x, 

23 17, {Num}), we have x = (Num) = (3). 

The step-by-step trace of the algorithm in Figure 37 follows. 

· Step 1: 

Compute s[O] = S [O] u Compute_Slice_in_Function_Name(C) 

Step 1.1: II start from Compute_Slice_in_Function_Name(C) 

FN(C.q) = FN (17) = "main" 

II therefore compute slice in function "main" 

compute TF main= { 1 ?1, 192, 21 3, 2i16, 23 17, 2518 } II as shown in Figure 21 

compute DFmain, UFmain II as shown in Figure 23 

I I as shown in Figure 25 compute DUF main 

compute TCF main 

compute I RF main 

compute LDRF main 

Step 1.2: 

= {} I I as shown in Definition 13 

= {} II as shown in Definition 15 

= {} II as shown in Figure 27 
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Compute S = ComputeSlice( DUFmain, TCFmain, IRFmain, LDRFmain, C) 

Since C = (x, 2317, {Num}) // given 

LD(l7, {Num}) = {21 3}, LT(23 17) = {1?1}, Iq = 23 17 

A0 = {1?1 21 3 23 17 } s 0 = {1?1 21 3 23 17} 
' ' ' ' ' ' 

A 1 = { 192} , S 1 = { 1 ?1, 192, 21 3, 23 17}, 

A 2 = {}, S2 = {1?1, 192,21 3,2317}. 

Step 1.3: Check Calling-to-Called functions 

No. 

Finally, we get S[O] = s[O] u Sc= {1?1, 192,21 3, 23 17}. 

Step 2: Check for more Called-to-Calling functions 

since FN(l 7) = "main" then.no more calling functions and break. 

Step 3: Add scope of influence 

Slice[l] =Add_Scope_of_Influence(S[O]) 

Let F0 = So= S[O] = {17, 19, 21, 23}, 

Fo = { 17, 19, 21, 23}, 

F1 = {1, 25}, 

F2 = {}, 

s 0 = {17, 19, 21, 23}, 

S1 = {l, 17, 19, 21, 23, 25}, 

s 2 = {l, 17, 19, 21, 23, 25}, 

Slice[l] = S2 = {1, 17, 19, 21, 23, 25}. 

And finally, the dynamic slice is shown in Figure 41. 

Example 2. This example shows how to compute a slice based on the calling function 

Fae (in case of Calling-to-Called function). Consider trajectory Tin Figure 21. Using 



1 #include <iostream> 
17 main() { 
19 int Num; 
21 
23 
25} 

cin>>Num; 
COUt<<Num; 

II main program 
II number 

II calling function 

Figure 41. A dynamic program slice computed based on variable Num in line 23 
of the program in Figure 20 

the criterion C = (x, 2216, {Fae}), we have x = (Num) = (3). 

The step-by-step trace of the algorithm in Figure 37 follows. 

Step 1: 

Compute S[O] = S [O] u Compute Slice in Function Name(C) - - - -

Step 1.1: II start from Compute_Slice_in_Function_Name(C) 

FN(C.q) = FN (16) = "main" 

II therefore compute slice in function "main" 
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{ 1 2 3 16 17 18} II h · · compute TFmain = 17 , 19 , 21 , 22 , 23 , 25 ass own m Figure 21 

compute DFmain, UFmain II as shown in Figure 23 

compute DUF main I I as shown in Figure 25 

compute TCF main = {} II as shown in Definition 14 

compute I RF main = {} II as shown in Definition 15 

compute LDRF main = {} II as shown in Figure 27 

Step 1.2: 

Compute S = ComputeSlice( DUFmain, TCFmain, IRFmain, LDRFmain, C) 

Since C = (x, 2216, {Fae}) II given 



LD(l6, {Fae})={}, LT(2i16) = {1?1}, Iq = 2i16 

S1 = {1 ?1 192 21 3 2i16} 
' ' ' ' 

S =S2 ={1?1192 213 2i16} 
C ' ' ' ' 

Step 1.3: Check Calling-to-Called functions 

Yes, because 

FN(4) = "Fae" 

TF = <54 75 86 107 118 129 1310 1011 11 12 1213 1314 1415 > Fae , , , , , , , , , , , , 

Finally, we get S[O] = s[O] u Sc 

Step 2: Check for more Called-to-Calling functions 

since FN(l 6) = "main" then no more calling functions and break. 

Step 3: Add scope ofinfluence 

Slice[l] = Add_ Seope_of _Influenee(S[O]) 

Let F0 = So= S[O] 

F0 = {5, 7, 8, 10, 11, 12, 13, 14, 17, 19, 21, 22}, 

s 0 = {5, 7, 8, 10, 11, 12, 13, 14, 17, 19, 21, 22}, 

F1 = {l, 3, 15, 25}, 

S1 = {1, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 25}, 

F2= {}, 
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S2 = {l, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 25}, 

Slice[l] = S2 = {1, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 25}. 

And finally, the dynamic slice is shown in Figure 42. 

1 #include <iostream> 
3 int Fac(int N); II function prototype 
5 int Fac(int N) { II called function 
7 int F = l; 
8 int I = 2; 

10 while(I <= N) 
11 F = F * I; 
12 I++; 
13 
14 return F; 
15 } 
17 main() { II main program 
19 int Num; II number 
21 cin>>Num; 
22 cout<<Fac(Num); II calling function 
25 

Figure 42. A dynamic program slice computed based on variable Fae in line 22 
of the program in Figure 20 
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Example 3. This example shows how to compute a slice based on the calling function I 

(in case of Called-to-Calling function). Consider trajectory T in Figure 21. Using the 

criterion C = (x, 86, {I}), we have x = (Num) = (3). 

The step-by-step trace of the algorithm in Figure 37 follows. 

Step 1: 

Compute S[O] = S [OJ u Compute_Sliee_in_Funetion_Name(C) 

Step 1.1: // start from Compute_Sliee in_Funetion_Name(C) 

FN(C.q) = FN (6) = "Fae" 



II therefore compute slice in function "Fae" 

compute TF Fae 

compute DFFac I UFFac 

compute DUFFac 

I I as shown in Figure 21 

I I as shown in Figure 22 

I I as shown in Figure 24 

compute TCFFac = {} II as shown in Definition 14 

compute IRFFac = {} II as shown in Definition 15 

compute LDRF Fae = {} I I as shown in Figure 26 

Step 1.2: 

Compute S = ComputeSliee( DUFFac, TCFFac, IRFFac, LDRFFac, C) 

Since C = (x, 86, {I}) II given· 

LD(6, {I})={}, LT(86) = {54}, Iq = 86 

A0 = {54, 86}, 

Al={}, 

Sc= S1 = {54, 86}. 

Step 1.3: Check Calling-to-Called functions 

No. 

Finally, we get S[O] = S[O] u Sc= {54, 86}. 

Step 2: Check for more Called-to-Calling functions 

since FN(6) = "Fae", there is more calling functions 

since 2216 EI 54, then C. q = 16; Go to Step 1 

Step 1: 

Compute S[O] = S [O] u Compute_Sliee_in_Funetion_Name(C) 

Step 1.1: II start from Compute_Sliee_in_Funetion_Name(C) 
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FN(C.q) = FN (16) = "main" 

II therefore compute slice in function "main" 

{ 171 192 21 3 2216 2317 2518 } II h . F" 21 compute TF main = , , , , , as s own m 1gure 

compute DF main, UF main I I as shown in Figure 23 

compute DUF main I I as shown in Figure 25 

compute TCFmain = {} II as shown in Definition 14 

compute IRFmain = {} II as shown in Definition 15 

compute LDRF main = {} I I as shown in Figure 26 

Step 1.2: 

Compute S = ComputeSlice( DUFmain, TCFmain, IRFmain, LDRFmain, C) 

Since C = (x, 2i16, {Fae}) II given 

LD(16, {Fac})={},LT(2i16)= {1?1}, Iq= 2i16 

8 1 = {1?1, 192,213, 2i16}, 

8 2 ={1?1192 21 3 2316} 
' ' ' ' 

Step 1.3: Check Calling-to-Called functions 

No. 

Finally, we get S[O] = s[O] u Sc= {21 3, 54, 86, 2216}. 

Step 2: Check for more Called-to-Calling functions 

since FN(16) = "main", no more calling functions and break. 

Step 3: Add scope of influence 

Slice[l] =Add Scope of Influence(S[O]) - - -



LetF0 =s0 =S[0] = {5,8, 17, 19,21,22}, 

Fo= {5, 8, 17, 19, 21, 22}, 

s0 = {5,8, 17, 19,21,22}, 

F 1 = {l, 3, 15, 25}, 

S 1 = {l, 3, 5, 8, 15, 17, 19, 21, 22, 25}, 

F2={}, 

s2 = {l, 3, 5, 8, 15, 17, 19, 21, 22, 25}, 

Slice[l] = S2 = {1, 3, 5, 8, 15, 17, 19, 21, 22, 25}. 

And finally, the dynamic slice is shown in Figure 43. 

1 #include <iostream> 
3 int Fac(int N); 
5 int Fac(int N) { 
8 int I= 2; 

15 
17 main() 
19 int Num; 
21 cin>>Num; 
22 COUt<<Fac(Num); 
25 

II function prototype 
II called function 

II main program 
II number 

II calling function 

Figure 43. A dynamic program slice computed based on variable I in line 8 
of the program in Figure 20 

3.5 A Slice with Classes, Structures, and Unions 
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A class contains members, variables, and functions. Each slice of the member 

functions is computed in the same way as a normal function mentioned in Section 3.4. 

After a slice of a member function is computed, the rest of the slice code in the class is 

determined by variable scope vs and control scope CS. The VS and CS sets are the key 

to obtaining a slice program of a program with classes. A slice of a program with 
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Structures and Unions is computed the same way as a slice of a program with classes, 

since all have the same grammar structures. 

The program in Figure 44 computes the sum and average of integers. In this 

example, variable Max is 4 and the array called Num contains 10.0, 20.0, 15.0, and 5.0. 

Upon completion of program execution, the program should yield one results as 12.5. 

However, this program contains an error in line 24. Rather than return Sum () /Max, 

the program computes return Sum () / (Max+l), thus yielding an error (Avg= 10.0 

instead of 12.5). To localize such an error, program slicing and dicing techniques can be 

used. The trajectory of the program in Figure 44 is shown in Figure 45. 

1: #include <iostream> 
2: 
3: class Compute { 
4: private: 
5: int Max; 
6: float Num[4]; 
7: 
8: public: 
9: Compute(int M, float *N) { 

10: Max= M; 
11: cout<<"allocate mem"<<endl; 
12: for(int I=O; I<Max; ++I) 

13: 
14: 
15: 

Num[I] = N[I); 

16: float Sum(void) { 
17: float Tsum = O; 
18: for(int I=O; I<Max; ++I) 

Tsum = Tsum + Num[I]; 

return Tsum; 

float Avg(void) { 
return Sum()/(Max + l); 

} 

19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: }; 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 

main () { 

} 

int Max= 4; 
float Num[4] = {10.0, 
Compute A(Max, Num); 
cout<<A.Sum()<<endl; 
cout<<A.Avg()<<endl; 

20.0, 15.0, 5.0}; 

Figure 44. A program for calculating the sum and average of a set of numbers 



28 1 main() { 
292 int Max= 4; 
303 float Num[4] = {10.0, 20.0, 15.0, 5.0}; 

94 Compute (int M, ·float *N) { 
105 Max= M; allocate mem 
116 coutcc"allocate mem"ccendl; 
127 for(int I=O; IcMax; ++I) 

Num[O] = N[O]; 
12 8 for(int I=O; IcMax; ++I) 

Num[l] = N[l]; 
12 9 for(int I=O; IcMax; ++I) 

Num[2] = N[2]; 
12 10 for(int I=O; IcMax; ++I) 

Num [3] = N [3 l ; 

3112 Compute A(Max, Num); 

1613 float Sum (void) { 
1714 float Tsum = O; 
1815 for(int I=O; IcMax; ++I) 

Tsum = Tsum + Num[O]; 
1816 for(int I=O; IcMax; ++I) 

Tsum = Tsum + Num[l]; 
1817 for (int I=O; IcMax; ++I) 

Tsum = Tsum + Num[2]; 
1818 for(int I=O; IcMax; ++I) 

Tsum = Tsum + Num[3]; 
2019 return Tsum; 50 

32 20 coutccA.Sum() ccendl; 

2321 float Avg(void) { 
24 22 return Sum()/(Max + 1); 

1623 float Sum (void) { 
1 7 24 float Tsum = O; 
1825 for (int I=O; IcMax; ++I) 

Tsum = Tsum + Num[O]; 
1826 for(int I=O; IcMax; ++I) 

Tsum = Tsum + Num[l]; 
1827 for (int I=O; IcMax; ++I) 

Tsum = Tsum + Num[2]; 
1828 for(int I=O; IcMax; ++I) 

Tsum = Tsum + Num[3]; 
20 29 return Tsum; 10 

33 30 coutccA.Avg()ccendl; 
3431 

T 

TFMain 

TFcompute 

TFsum(l) 

TFsum(2) 

TFAvg 

Figure 45. The trajectory of the program from Figure 44 on input data 
Max= 4, Num = (10.0, 20.0, 15.0, 5.0) 
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Instruction (X) Prototype Called Calling D-set U-set DCL-set VS-set 

1: #include <iostream> include 
2: 
3: class Compute { Compute(Ol) 
4: private: 
5: int Max; Max(02) 
6: float Num[ 4]; Num(03) 
7: 
8: public: 
9: Compute(int M, float *N) { Compute(Ol) M(04) N(05) 
10: Max=M; Max(02) M(04) 5,9 
11: cout<<"allocate mem"<<endl; cout(07) endl(08) 
12: for(int 1=0; l<Max; ++I) Num(03) Max(02) N(05) 1(09) 5,6,9 

Num[I] = N[I]; 1(09) 1(09) 
13: 
14: } 
15: 
16: float Sum(void) { Sum(lO) 
17: float Tsum = O; Tsum(ll) 
18: for(int 1=0; l<Max; ++I) Tsum(ll) Max(02) Num(03) 1(12) 5,6,17 

Tsum = Tsum + Num[I]; 1(12) Tsum(l 1) 1(12) 
19: 
20: return Tsum; Tsum(l 1) 17 
21: } 
22: 
23: float Avg(void) { Avg(13) 
24: return Sum()/(Max + 1); Sum(lO) Max(02) 5 
25: } 
26: }; 
27: 
28: main() { main(14) 
29: int Max = 4; Max(15) 
30: float Num[4] = { 10.0, 20.0, 15.0, 5.0}; Num(16) 
31: Compute A(Max, Num); Compute(Ol) Max(15) Num(16) A (17) 9,29,30 
32: cout<<A.Sum()<<endl; Sum(19) cout(07) endl(08) A(17) 31 
33: cout<<A.Avg()<<endl; Avg(20) cout(07) endl(08) A(17) 31 
34:} 

Figure 46. The Prototype, Called, Calling, D, U, DCL, VS, and CS sets for the program depicted in Figure 44 

CS-set 

26 

3 
3 

3,14 
9 
9 
9 
9 

9 

3,21 
16 
16 

16 
16 

3,25 
23 
23 
3 
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28 
28 
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28 
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DUFMain {} 
TCFMain {} 
IRFMain {} 

LDFMain (292) 
LDFMain (30 3 ) 

Figure 47. The DUFMain, TCFMain LDFMain, and IRFMain relations that are called 
by 3220 for the trajectory depicted in Figure 45 

DUFcompute (10 5) 
DUFcompute (12 7) 

TCFcompute 

LDFcompute (94 ) 

IRFcompute (12 7) 
IRFcompute (12 8) 
IRFcompute (12 9) 
IRFcompute (12 10 ) 

{128 I 129 I 1210} 

{127,12 9,12 10 } 
{127,12 8, 12 10 } 
{127,12 8 I 12 9} 

Figure 48. The DUFcompute, TCFcompute LDFcompute, and IRFcompute relations 
that are called by 3220 for the trajectory depicted in Figure 45 

DUFsum ( 1815 ) 
DUFsum ( 1816 ) 
DUFsum ( 1817 ) 
DUFsum ( 1818 ) 

TCFsum 

{ 1816} 
{1817} 
{1818} 
{ 2 019} 

{} 

IRFsum (18 15 ) 
IRFsum (18 16 ) 
IRFsum(l8 17 ) 
IRFsum ( 1818 ) 

{1815 I 1816 I 18171 1818 I 2019} 

{ 1816 I 1817 I 1818} 
{1815, 1817, 1818} 
{ 1815 I 1816 I 1818} 
{ 1815 I 1816 I 1817} 

Figure 49. The DUFsum, TCFsum, LDFsum, and IRFsum relations that are called by 
3220 for the trajectory depicted in Figure 45 

DUFsum ( 1825 ) 
DUFsum (18 26 ) 
DUFsum (18 27 ) 
DUFsum ( 1828 ) 

TCFsum 

{ 18 26} 
{ 1827} 
{ 1828} 
{ 2 029} 

{ } 

IRFsum ( 1825 ) 
IRFsum (18 26 ) 
IRFsum (18 27 ) 
I RF sum ( 1828 ) 

{ 1825, 1826, 1827, 1828, 2029} 

{ 1826 I 1827 I 1828} 
{ 1825 I 1827 I 1828} 
{1825 I 1826 I 1828} 
{ 1825 I 1826 I 1827} 

Figure 50. The DUFsum, TCFsum LDFsum, and IRFsum relations that are called by 
2422 for the trajectory depicted in Figure 45 
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DUFAvg 

TCFAvg 

IRFAvg 

{} 
{} 
{} 

Figure 51. The DUF Avg, TCF Avg, and IRF Avg relations for the trajectory 
depicted in Figure 45 

64 

Example 4. Consider trajectory Tin Figure 45. Using the criterion C = (x, 3330, {Avg}), 

we have x = (Max, Num) = (3, (10.0, 20.0, 15.0, 5.0)). 

The step-by-step trace of the algorithm in Figure 37 follows. 

Step 1: 

Compute S[O] = S [OJ u Compute_Slice_in_Function_Name(C) 

Step 1.1: II start from Compute_Slice_in_Function_Name(C) 

FN(C.q) = FN (30) = "main" 

II therefore compute slice in function "main" 

compute TF main II as shown in Figure 47 

compute LDF main II as shown in Figure 47 

compute DUF main II as shown in Figure 47 

compute TCF main = {} II as shown in Definition 47 

compute I RF main = {} II as shown in Definition 47 

compute LDRF main = {} II as shown in Definition 47 

Step 1.2: 

Compute S = ComputeSlice( DUFmain, TCFmain, IRFmain, LDRFmain, C) 

Since C = (x, 3330, {Avg}) II given 



LD(30, {Avg})={}, LT(3330) = {281}, Iq = 3330 

Al= {3112}, 

A 2 = {292, 303}, 

Step 1.3: Check Calling-to-Called functions 

Yes, since {2321 } IE {3330}, and {94} IE {31 12}, 

FN(4) = "Compute", and FN(21) ="Avg", 

Sc= Sc U TFcompute U TFAvg, 

94 05 1·16 1 7 1 8 9 10 11 TFcompute = < , 1 , , 2 , 2 , 12 , 12 , 14 >, 

2 21 22 TFAvg = < 3 , 24 >, 

Sc = {281,292,303, 94, 105, 116, 127, 128, 129, Ii1°, 1411 , 31 12, 

2321, 2422, 3330}, 

FN(23) = "Sum", 

Sc= Sc U TFsum, 

TF = < 1623 1724 1825 1826 1821 182s 2029 > 
Sum , , , , , , , 

Finally, we get S[O] = S[O] u Sc 

Step 2: Check for more Called-to-Calling functions 

since FN(30) = "main" then no more calling functions and break. 
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Step 3: Add scope of influence 

Slice[l] =Add_ Scope_ of_ Inf 1 uence(s[O]) 

Let F0 = So = S[O] 

F0 = {9, 10, 11, 12, 14, 16, 17,18,20,23,24,28,29,30,31,33} 

s0 = {9, 10, 11, 12, 14, 16, 17, 18, 20, 23, 24, 28, 29, 30, 31, 33}, 

F 1 = {l, 3, 5, 6, 21, 25, 34}, 

8 1 ={1,3,5,6,9, 10, 11, 12, 14, 16,17,18,20,21,23,24,25,28,29,30, 

31, 33, 34}, 

F2 = {26}, 

8 2 = {l, 3, 5, 6, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 

30, 31, 33, 34}, 

F3= {}, 

8 3 = {l, 3, 5, 6, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 

30, 31, 33, 34}, 

Slice[l] = s3 = {1, 3, 5, 6, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 

26,28,29,30,31,33,34}. 

And finally, the dynamic slice is shown in Figure 52. 
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Example 5. Consider trajectory Tin Figure 45. Using the criterion C = (x, 3220, {Sum}), 

we have x = (Max, Num) = (3, (10.0, 20.0, 15.0, 5.0)). 

The step-by-step trace of the algorithm in Figure 37 follows. 

Step 1: 

Compute S[O] = S [O] u Compute Slice in Function Name(C) - - - -



1: #include <iostream> 
3: class Compute { 
4: private: 
5: int Max; 
6: float Num[4]; 
8: public: 
9: Compute(int M, float *N) { 

10: Max = M; 
11: cout<<"allocate mem"<<endl; 
12: for(int I=O; I<Max; ++I) 

Num[I] = N[I]; 
14: } 
16: float Sum(void) '{ 
17: float Tsum = O; 
18: for(int I=O; I<Max; ++I) 

Tsum = Tsum + Num[I]; 
20: return Tsum; 
21: 
23: float Avg(void) { 
24: return Sum()/(Max + 1); 
25: 
26: } ; 
28: main () 
29: int Max= 4; 
30: float Num[4] = {10.0, 20.0, 15.0, 5.0}; 
31: Compute A(Max, Num); 
33: cout<<A.Avg()<<endl; 
34: 

Figure 52. A dynamic program slice computed based on variable Avg in line 33 
of the program in Figure 44 

Step 1.1: II start from Compute Slice in Function Name(c) - - - -

FN(C.q) = FN (20) = "main" 

II therefore compute slice in function "main" 

compute TF main I I as shown in Figure 4 7 

compute LDF main I I as shown in Figure 4 7 

compute DUF main II as shown in Figure 47 

compute TCFmain = {} II as shown in Definition 47 

compute I RF main = {} II as shown in Definition 47 
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compute LDRFmain = {} // as shown in Definition 47 

Step 1.2: 

Compute S = ComputeSlice( DUFmain, TCFmain, IRFmain, LDRFmain, C) 

Since C = (x, 3220, {Sum}) // given 

LD(20, {Avg})={}, LT(3220) = {281}, Iq = 3220 

A0= {281, 3220}, 

Al= {3112}, 

A 2 = {292,303}, 

A 3 = {}, 

s0 = {281, 3220}, 

8 1 = {281, 31 12, 1613, 3220}, 

8 2 = {281,292,303, 31 12, 3220}, 

83 = {281, 292, 303, 31 12, 3220}, 

Sc= 8 3 = {281,292,303, 31 12, 3220}. 

Step 1.3: Check Calling-to-Called functions 

Yes, since {94} IE {31 12}, and {1613 } IE {3220}, 

FN(4) = "Compute", and FN(l3) ="Sum", 

Sc= Sc U TFcompute U TFsum, 

4 05 1 6 1 7 8 129 210 1 11 TFcompute = < 9 , 1 , 1 , 2 , 12 , , 1 , 4 >, 

TF = < 1623 1724 1825 1826 1821 1828 2029 > 
Sum , , , , , , , 

Sc = {281,292,303, 94, 105, 116, 127, 128, 129, ll1°, 1411, 31 12, 

1623, 1724, 1825, 1826, 1827, 1828, 2029, 3l2o}, 

Finally, we get s[O] = s[O] u Sc 

= {28 1,292,303, 94,105,11 6,127,128, 129, 1210, 1411 , 31 12, 

1623, 1724, 1825, 1826, 1827, 1828, 2029, 3220}. 

Step 2: Check for more Called-to-Calling functions 

since FN(20) = "main" then no more calling function and break 

Step 3: Add scope of influence 

Slice[l] = Add_Scope _of_ Inf 1 uence(S[O]) 

Let F0 = So= S[O] 



F0 = {9, 10, 11, 12, 14, 16, 17, 18,20,28,29,30,31,32} 

s0 = {9, 10, 11, 12, 14, 16, 17, 18,20,28,29,30,31,32}, 

F1 = {l, 3, 5, 6, 21, 34}, 

8 1 = {1, 3, 5, 6, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 28, 29, 30, 31, 32, 34}, 

F2 = {26}, 

8 2 = {1, 3, 5, 6, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 26, 28, 29, 30, 31, 32, 34}, 

F3 = {}, 

8 3 = {1, 3, 5, 6, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 26, 28, 29, 30, 31, 32, 34}, 

Slice[l] = 8 3 = {1, 3, 5, 6, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 26, 28, 29, 30, 
31, 32, 34}. 

And finally, the dynamic slice is shown in Figure 53. 

1: #include <iostream> 
3: class Compute { 
4: private: 
5: int Max; 
6: float Num[4]; 
B: public: 
9: Compute(int M, float *N) { 

10: Max= M; 
11: cout<<"allocate mem"<<endl; 
12: for(int I=O; I<Max; ++I) 

Num[I] = N[I); 
14: } 
16: float Sum(void) { 
17: float Tsum = O; 
18: for(int I=O; I<Max; ++I) 

Tsum = Tsum + Num[I]; 
20: return Tsum; 
21: } 
26: } ; 
28: main () 
29: int Max= 4; 
30: float Num[4] = {10.0, 20.0, 15.0, 5.0}; 
31: Compute A(Max, Num); 
32: cout<<A.Sum()<<endl; 
34: 

Figure 53. A dynamic program slice computed based on variable Sum in line 32 
of the program in Figure 44 
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3.6 Problems and Situations in C++ That 
Were Taken into Account in the Design 
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There are eight major problems and situations in C++ that were taken into account 

in the design of C++Debug. They are discussed bellow. 

1. Problems and situations with classes and objects such as classes, structures, unions, 

anonymous unions, friend functions, friend classes, inline functions, defining inline 

functions within a class, parameterized constructors, static class members, static data 

members, static member functions, the scope resolution operator, nested classes, local 

classes, passing objects to functions, returning objects, and object assignment. 

2. Problems and situations with arrays, pointers, references, and the dynamic allocation 

operators such as arrays of objects, uninitialized arrays, pointers to objects, type checking 

C++ pointers, the this pointer, pointers to derived types, pointers to class members, 

reference parameters, passing references to objects, returning references, independent 

references, references to derived types, restrictions to references, dynamic allocation 

operators (i.e., the new operator in C++ ), initializing allocated memory, allocating arrays, 

allocating objects, the nothrow alternative, and the placement forms of new and 

delete. 

3. Problems and situations with function overloading, copy constructors, and default 

arguments such as function overloading, overloading constructor functions, overloading a 

constructor to gain flexibility, initialized and uninitialized objects, copy constructors, 

finding the address of an overloaded function, the overload anachronism, default 

function arguments, default arguments vs. overloading, using default arguments 

correctly, and function overloading and ambiguity. 
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4. Problems and situations with operator overloading such as operator overloading using 

a friend function, using a friend to overload ++ or --, friend operator functions adding 

flexibility, overloading new and delete, overloading new and delete for arrays, 

overloading the no throw version of new and delete, overloading some special 

operators, overloading [], overloading ( ), overloading ->, and overloading the comma 

operator. 

5. Problems and situations with inheritance such as base-class access control, inheritance 

and protected members, protected base-class inheritance, inheriting multiple base classes, 

constructors, destructors, inheritance, passing parameters to base-class constructors, 

granting access, and virtual base classes. 

6. Problems and situations with virtual functions and polymorphism such as virtual 

functions, calling a virtual function through a base class reference, the inherited virtual 

attribute, hierarchical virtual functions, pure virtual functions abstract classes, and late 

binding. 

7. Problems and situations with templates such as generic functions, a function with two 

generic types, explicitly overloading a generic function, overloading a function template, 

using standard parameters with template functions, generic function restrictions, applying 

generic functions, a generic sort, compacting an array, generic classes, a generic array 

class, using non-type arguments with generic classes, using default arguments with 

template classes, explicit class specializations, and the typename and export 

keywords. 

8. Problems and situations with exception handling such as exception handling 

fundamentals, catching class types, using multiple catch statements, handling derived-



72 

class exceptions, exception handling captions, catching all exceptions, restricting 

exceptions, rethrowing an exception, terminate() and unexpected(), the 

uncaught_exception() function, and the exception and bad_exception 

classes. 

3. 7 Dicing Procedures 

Dicing [Lyle 84] [Nanja 90] is the process of identifying a set of statements likely 

to contain an error. A dice is determined as follows: 

1 Compute the slice (Si) for the incorrectly valued output variable(s), 
which is a subset ofKBI (known to be incorrect). 

2 Compute the slice (Sc) for the correctly valued output variables(s), 
which is a subset of CSP (correct so far). 

3 Compute (Si - Sc), which makes up the dice. 

Example 6. Observe that a dynamic program slice in Example 4 is a subset ofKBI, while 

a dynamic program slice in Example 5 is a subset of CSP. Consequently, using the 

definition of dicing, a dice program can be shown as follows 

23: float Avg(void) { 
24: return Sum()/(Max + 1); 
25: 

Figure 54. The final program segment after slicing and dicing 

Once the procedure is finished, line 24 will be shown as the incorrect line. 



CHAPTER IV 

C++DEBUG 

4.1 Introduction 

C++Debug is an interactive debugging tool designed to function as a utility 

program of the UNIX system. C++Debug was developed based on slicing and dicing 

techniques. In order for C++Debug to be more powerful, dynamic slicing rather than 

static slicing was chosen for implementation. C++Debug was designed in a way to allow 

ease and convenience on the part of the user. Using C++Debug, the user can interact 

directly with the computer in locating errors in a program. Menus are provided to allow 

the user to select any one of a number of functions (Slice, Dice, Help, etc.) supported by 

C++Debug. 

To produce the C++Debug tool, three activities of a software process are 

introduced: software specification, software development, and software validation. Some 

parts of the waterfall approach are used to take those three activities and represent them 

as separate process phases: requirements specifications, software design, implementation, 

testing, and valuation. In order to make C++Debug a good piece of software, essential 

attributes such as maintainability, dependability, efficiency, and usability were 

considered. 
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4.2 Software specification 

According to Sommerville [Sommerville 01], the intention of this phase is to 

establish what services are required from C++Debug and the constraints on C++Debug' s 

operation and development. The requirements document of C++Debug is shown in 

Appendix D. 

4.3 Software Design and Implementation 

In order to convert the C++Debug software specification, mentioned above in 

Section 4.2, into an executable system, architectural design, abstract specification, 

interface design, component design, datastructure design, and algorithm design were 

carried out [Sommerville 01]. However, because of the limitation of the size of this 

dissertation, only a few parts are introduced in the following subsections. 

4.3.1 C++Debug Block Diagram 

C++Debug is comprised of four parts: Cpptrace, Database, Slicer, and Dicer (as 

shown in Figure 55). 

1. Cpptrace was designed as a tool allowing one to follow the execution of a C++ 

program, statement-by-statement. Cpptrace reads the C++ source program in a file, 

inserts statements to print the text of each executable statement and the values of all 

variables referenced or modified, and writes the modified program to generate two major 

parts: 1. a trajectory of the program and 2. some databases, where a trajectory is a 

feasible path that has actually been executed for some input and the databases are a list of 

reserved words, a list of basic types, identifier information, types, symbol tables, and 
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a specification file containing regular expressions for pattern matching and generates a C 

or C++ routine that performs lexical analysis [Flex 01]. This routine reads a stream of 

characters and matches sequences that identify tokens. Bison reads a specification file 

that codifies the grammar of a language and generates a parsing routine [Bison 00]. This 

routine groups tokens into meaningful sequences and invokes action routines to act upon 

them. C++ grammar from Stroustrup's textbook was used in this implementation 

[Stroustrup 97]. 

2. Database stores ordered sets of data such as a list of reserved words, a list of basic 

types, identifier information, types, symbol tables, and scope of influence, etc. All data 

are created by Cpptrace as a database. The D and U ordered sets of data are computed 

from the trajectory path. This database is used by Slicer to compute a program slice(s). 

3. Slicer was created by using the algorithms in Figure 37. The number of program slices 

is dependent on the slicing criterion. 

4. Dicer was created by using the techniques mentioned in Section 3.6. 

4.3.2 Datastructures 

The datastructures of a source program, functions, a trajectory, sets such as D, u 

DU, DCL, etc. were implemented based on datastructures shown in Figure 38. 

4.3.3 Symbol Tables 

Symbol tables were designed by following the concepts of symbol tables that are 

used in cool, the Classroom Object-Oriented Language [Cool 94]. cool is a small 

language designed for use in an undergraduate compiler course project at the University 

of California at Berkley [Cool 94]. The key is two functions: enterscope () and 
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exi tscope (). Function enters cope () makes the table point to a new scope 

whose parent is the scope it pointed to previously, while function exits cope () makes 

the table point to the parent scope. 

4.4 Testing and Evaluation 

4.4.1 Introduction 

After C++Debug was implemented, the testing process was applied to verify that 

each unit met its specification (unit testing) and to ensure that the software requirements 

had been met (integration and system testing) [Sommerville 01]. Testing is the primary 

means for showing that the implementation has the requisite functionality and other non­

functional properties [McDermid 93]. 

4.4.2 Testing 

Each problem and situation in Section 4.2 was tested independently upon 

completion of the tool. C++Debug was also tested on non-trivial programs containing 

several problems and situations identified. For more information see Appendix E. 

4.4.3 Evaluation 

C++Debug was evaluated by a number of graduate students at the Computer 

Science of Oklahoma State University. They used C++Debug to locate errors in their 

programs. For more information see Appendix E. 

4.5 Limitations 

C++Debug has some limitations as listed bellow. 
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1. Limitation of OS : UNIX 

2. Limitation of language: GNU G++ 

3. Limitations of algorithm: worst-case O(N2V), average-case O(N log N), best-case 

O(N), where N is the #LOC of the trajectory part, and Vis the maximum number of 

variables in each line in a debugged program. 

4. In the current implementation, limitation of #LOC of the executable part: 1,000. 

4.6 Program Documentation 

The main purpose of program documentation is to communicate with other people 

about a finished program [Hedrick 75]. In this study, program documentation for 

C++Debug was prepared in two parts. The first part involves comments internal to the 

program. The second part is an auxiliary paper accompanying the program that is 

included in Chapter III on Software Design. Furthermore, a user's manual was prepared 

for the convenience of the users of C++Debug. 

4.7 System Evolution 

System evolution describes the system base, anticipated change due to hardware 

and software evolution, and the changing user needs [Sommerville 01]. 

1. System Base 

C++Debug is a slicing and dicing based debugging tool for C++ which runs under 

UNIX on the SUN machine in the Computer Science Department at OSU. 

2. Anticipated Change Due to Hardware Evolution 
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C++Debug is designed to be a portable tool. It is a machine independent tool. It 

can run on every hardware with a UNIX run-time support. However, C++Debug should 

be provided on PC as well. 

3. Anticipated Change Due to Software Evolution 

In case of ANSI C++ is updated e.g., if new functions or instructions are added, 

C++Debug must be updated too. 

4. Changing User Needs 

C++Debug was designed by using menus in a way to allow ease and convenience 

on the part of the user. C++Debug should be provided in a windowing environment as 

well. 

4.8 Slicing-Based Metrics 

Program slicing is applied to two main areas [Weiser 81]. First, program slicing 

is used for debugging and maintenance purposes. This is due to the fact that the size of a 

resulting slice is relatively smaller than the original program in general, thus making it 

easier to locate errors or to modify the program at the stage of program maintenance. 

Second, program slicing is used to obtain slicing based program metrics. It allows the 

analysis of the structure of the program. Weiser proposed three slicing-based program 

metrics. 

1. Coverage compares the length of slices to the length of the 
entire program. Coverage might be expressed as the ratio of 
mean slice length to program length. A low coverage value, 
indicating a long program with many short slices, may indicate 
a program which has several distinct conceptual purposes. 

ii. Overlap is a measure of how many statements in a slice are 
found only in that slice. This could be computed as the mean 



of the ratios of non-unique to unique statements in each slice. 
A high overlap might indicate very interdependent code. 

iii. Clustering reveals the degree to which slices are reflected in 
the original code layout. It could be expressed as the mean of 
the ratio of statements formerly adjacent to total statements in 
each slice. A low cluster value indicates slices intertwined like 
spaghetti, while a high cluster value indicates slices physically 
reflected in the code by statement grouping. 

80 

In order to compare the output obtained using C++Debug (which is dynamic 

slicing based) with the output obtained using C-Sdicer (which is static slicing based), the 

test programs must be the same ones as used in Nanja's study in testing C-Sdicer [Nanja 

90]. These test programs are listed in Appendix F. The number of output variables and 

the size of each program is shown in Table I. 

The results obtained from C-Sdicer and C++Debug are shown in Tables II and III, 

respectively. 

TABLE I 
DESCRIPTION OF THE FIVE TEST PROGRAMS 

Metric Pl P2 P3 P4 PS 

Size (# of lines) 120 35 56 67 58 

# of output 

variables 26 3 3 10 1 

(Source: [Nanja 90]) 



TABLE II 
SLICING-BASED METRICS OBTAINED FROM C-SDICER 

FOR THE FIVE TEST PROGRAMS 

Metric Pl P2 P3 P4 

Coverage 0.86 0.77 0.57 0.75 

Overlap 0 4.42 10.13 0 

Clustering 0.66 0.64 0.87 0.65 

(Source: [Nanja 90]) 

TABLE III 
SLICING-BASED METRICS OBTAINED FROM C++DEBUG 

FOR THE FIVE TEST PROGRAMS 

Metric Pl P2 P3 P4 

Coverage 0.26 0.48 0.58 0.35 

Overlap 52.33 3.60 14.60 57.00 

Clustering 0.06 0.44 0.30 0 .11 
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CHAPTER V 

SUMMARY, CONCLUSIONS, AND FUTURE WORK 

5.1 Summary 

Chapter I discusses the necessity of using debugging tools in locating and 

correcting the errors contained in programs. Included in this chapter are the purposes of 

the study as well as the organization of the study. 

Chapter II describes the general knowledge on program slicing and dicing 

techniques. The chapter concludes with a discussion of both advantages and 

disadvantages of dynamic slicing and static slicing, and the procedures used to locate 

errors in a program using dynamic slicing and dicing techniques. 

Chapter III presents the definitions, the algorithms, and the approaches used to 

compute a program slice and a program segment after dicing. Some examples were 

shown as well. 

Chapter IV presents the steps involved in producing the C++Debug tool. The 

C++Debug block diagram, the results of the experiment, slicing-based metrics, testing 

and evaluation, documents, and the advantages and limitations of C++Debug were 

presents also. 
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5.2 Conclusions 

C++Debug was designed to allow ease and convenience on the part of the user. 

Using C++Debug, a user can interact directly with the computer in locating errors in a 

certain program. For convenience, the program provides menus to allow the user to 

select any one of the functions contained therein. Based on the results of the 

experimentation, C++Debug could generate a new slicing program that is of smaller size 

than the original source program. The new slicing program still preserves part of the 

program's original behavior for a specific input. In addition, C++Debug can be used as a 

tool like ctrace under UNIX. C++Debug can work on both C and C++. 

By using the -g option, C++Debug supports the generation of grammar 

derivation trees. A users can study how the parser checks the syntax of a program. By 

using the -i option, all information about C++Debug can be displayed. One who is 

interesting in the dynamic slicing area can use the information provided by C++Debug, 

such as D, U, DU, symbol tables, etc., to investigate the process of slicing, dicing, or 

compiling in general. 

5.3 Future Work 

Based on the initial experiments with C++Debug, we found that improvements 

and additions can be made to C++Debug in the following aspects. 

5.3.1 Improvements 

The size of C++Debug after compiling by an optimized compiler is 2,088,720 

bytes. It appears that it should be smaller if some algorithms and memory uses are 
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managed better. Time and space complexities are dependent on the size of the trajectory 

(and not necessarily the size of the source code). To avoid running out of disk space 

(which is needed to store the trajectory path), the user must know how far the trajectory 

must go and how much disks space is required. It would be better if C++Debug can 

automatically check and tell the user about the sufficiency of the disk space. And it 

should also estimate the time that C++Debug is going to take to obtain the slices and the 

dices. 

5.3.2 Additions 

Instead of just menus, some windows should be supported so that a user can view 

the source code, the trajectory path, the program slice, etc. on the screen. Using a mouse 

can help a user probably better than using the keyboard in selecting which function to 

use, or selecting the variables and positions required to compute a slice. 

5 .3 .3 Future Work 

For a tested C++ program that has pointers, global variables, and static 

declarations in classes, the algorithm that was used to implement C++Debug yields an 

output slice larger than it should be (however, it still gives the correct output and its size 

is smaller than the original source program). Some lines that should be eliminated are not 

eliminated. If a better algorithm to manage pointers, global variables, and static 

declarations in classes is implemented, the size of the resulting slice will be smaller. 

It will be desirable if C++Debug can be made a multi-user-tool. However, in the 

current implementation, since C++Debug saves specific files in a local directory, it 

cannot be used in the multi-user mode. 
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Because of the complexities of the C++ symbol table and the time constraint, the 

current version of C++Debug cannot treat array elements and fields in dynamic records 

as individual variables. 
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APPENDIX A 

GLOSSARY 

Action: An action, e.g., an instruction X at position p in a trajectory T, sometimes 
represented as the pair(X,p). For example, 44 and 49 in trajectory Tin 
Figure 10 are actions that involve the same instruction 4. See also 
trajectory. 

Back(T,q): Denotes the sublist <Xq+l, ... , Xm> of T, consisting of elements that follows 
T(q), a trajectory at position q. Where T = <X1 , X2 , ... , Xm> denotes a 
trajectory of length m, and q is a position in T, 1 < q < m. See also 
trajectory, Front(T,q) and Del(T,R). 

Bug: An error in a computer program that may be either a syntax error or a logical 
error. 

Called action: An action xP is a called action if X is a called function instruction. 

Called-to-Calling: Occurred when a slice is computed from a called action first and then 
a calling action. 

Calling action: An action xP is a calling action if X is a calling function instruction. 

Calling-to-Called: Occurred when a slice is computed from a calling action first and then 
a called action. 

D(XP): The set of variables that are defined in action xP. For example, in the 
execution trace of Figure 10, 1815 Avg := Sum/(MaxData + 1); Avg is a 
set of variables that are defined in 1815 , D(l815). See also trajectory, U(XP), 
DU(XP), IR(XP), and TC(XP). 

Debugging: A process to locate and correct errors or bugs. Debugging differs from 
testing in that testing is used to determine whether a program is working 
properly, whereas debugging localizes and corrects the errors. 
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DEL(T,R): A subtrajectory obtained from T by deleting from it all elements T(i) that 
satisfy R. Where T = <X1 , X2 , ... , Xm> denotes a trajectory of length rn, and q 
is a position in T, 1 < q < rn. Where R is a predicate on the set of 
instructions in T. See also trajectory, Front(T,q), and Back(T,R). 

DF name(XP): A set of variables that are defined in action xP; where xP E M(TF name). 

Dicing: 

DUFname: 

The process of identifying a set of statements prone to contain an error. 

Definition-Use Relation, a binary relation on M(T) in which one action 
assigns a value to an item of data and the other action uses that value. For 
example, in the execution trace of Figure 10, 22 assigns a value to variable 
Count and 44, 95, 167, and 178 use that value. See also trajectory, M(T), 
D(XP), U(XP), IR(XP), and TC(XP). 

A Definition-Use-Functionname Relation, is a binary relation on M(TFname). 

DV(V, TF name): A function that return a set of line numbers, where Vis set of variables. 

Dynamic Slicing: A slicing method defined on the basis of a computation rather than all 
computations. It generates a dynamic program slice by computing from the 
executable part of the original source program. See also program slicing 
and static slicing. 

EI: 

Fname: 

A Called-to-Calling Relation between 2 functions, xP IE yt, iff both are in 
a Called-to-Calling situation, where xP is a calling action and yt is a called 
action. 

A function, a set of instruction X's which is in the scope of influence of 
function name. 

Feasible Path: Let a flowgraph of program P be a directed graph and C = (N, A, s, e) be 
a slicing criterion where: 

1. N is a set of nodes, 
2. A is a binary relation on N (a subset of N x N), referred to as a set of 

arcs, 
3. s E N is a unique entry node, and 
4. e E N is a unique exit node. 

A node in N is referred to as an instruction, including a single instruction 
and a control instruction. A single instruction includes, for example, an 
assignment statement, an input or output statement, etc. A control 
instruction includes such statements as if-then-else or while statements, 
which are called test instructions. An arc(n,rn) E A corresponds to a 
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possible transfer of control from instruction n to instruction m. A path :from 
entry node s to some node k when k E N is called a sequence <n1, n 2, ..• , 

nq> of instructions, such that n1 = s, nq = k and (ni,ni+1) E A, for all ni, 1 
< i < q. If there is input data, which causes the path to be traversed during 
program execution, the path is called feasible. 

A function name such thatxq, Xis in the scope of influence. 

Front(T,q): The sublist <X1, X2 , ••• , Xq> of T, consisting of the first q elements of T, 
where T = <X1, X2 , ••• , Xm> denotes a trajectory of length m, and q is a 
position in T, 1 < q < m. See also trajectory, Back(T,q), and DEL(T,R). 

G(X): A set of variables and precedences that are declared as a global declaration. 

IE: A Calling-to-Called Relation between 2 functions, xP IE Y\ iffboth are in 
a Calling-to-Called situation, where xP is a called action and yt is a calling 
action. 

I RF name: 

Let xP IR Y\ iff X = Y is the Identity Relation IR on M(Front(T,q)). See 
also trajectory, M(T), D(XP), u(xP), DU(XP), TC(XP), and Front(T,q). 

An Identity Relation in Functionname, XP IRFname Y\ iff X = Y is the identity 
relation IRFname on M(Front(TFname,q)). 

Last Definition: Last definition xP of variable vat t is the action which has last assigned 
a value to v when tis reached on trajectory T. See also trajectory. 

LF name(XP): A set of variables and C++ precedences that are declared as a local 
declaration in function name. 

M(T): A set of actions in a given trajectory T, where M(T) = { (X,p) : T(p) = X }. 
See also trajectory. 

M(TF name): A set of actions in a given function of a given trajectory TF name, where 
M(TF name) = { XP : instruction X at position p in trajectory TF name } . 
M(TFname) is a subset ofM(T). 

P: A set of instruction X's, in a C++ tested program. 

Preprocessor: A separate first step in compilation, e.g., #include, #define, or #if. 

Program Slicing: A segment of a program that is separated and identified based on the 
premise that instead of localizing errors in the original program, which can 
be of large size, one can locate such errors in a program of smaller size 
which is sliced from the original program but still preserves part of the 



92 

original program's behavior for a particular input or relative to a particular 
variable. 

Slicing Criterion: The specification that a behavior of interest of a program can be 
expressed as the values of some set of the variables at some set of 
statements. 

Static Slicing: A method defined on the basis of all computations and used for 
generating a static program slices. The computations of static slices are 
done directly from the original source program. See also program slicing 
and dynamic slicing. 

T(p): The abstract list of a trajectory T whose elements are accessed at position p, 
e.g., for Tin Figure 10, T(3) = 3, T(5) = 9, etc. See also trajectory. 

TCFname: 

Test-Control Relation, a binary relation on M(T), capturing the effect 
between test actions and actions that have been chosen to execute by those 
test actions. For example, in the execution trace of Figure 10, the scope of 
the test action 44 influences the execution of 95, 106, 167, and 178, but 
it does not influence the execution of 1310, 1411, 1612, and 1713• See also 
trajectory, M(T), D(XP), U(XP), DU(XP), and IR(XP). 

A Test-Control-Functionname Relation, is a binary relation on M(TFname). 

Test Action: An action xP is a test action if Xis a test instruction. See also trajectory. 

Test Instruction Statements: A control instruction such as an if-then-else or a while 
statement. 

TF name: A function trajectory, a feasible path of a function name that has actually 
been executed for some input. TF name is a sublist of T. 

Trajectory: A feasible path that has actually been executed for some input. For 
example, <1,2,3,4,9,10,16,17,4,13,14,16,17,4,18,19> is the trajectory 
when the program in Figure 1 is executed on the input data MaxDa ta = 2, 
Data = (3,5). A trajectory will be illustrated in terms of a pair (instruction, 
its position in the trajectory) rather than the instruction itself so as to 
distinguish between multiple occurrences of the same instruction in the 
trajectory. For example, instruction X at position pin Twill be represented 
by the pair (X, p ). For ease of understanding, the pair (X, p) will be 
replaced by xP and will be referred to as an action. For example, 44 and 49 

in trajectory T in Figure 10 are actions that involves the same instruction 4. 
See also feasible path. 
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The set of variables that are used in xP. For example, in the execution trace 
of Figure 10, 1815 Avg:= Sum/(MaxData + I); Sum andMaxData are 
a set of variables that are used in 1815 , U(18 15). See also trajectory, D(XP), 
DU(XP), IR(XP), and TC(XP). 

UF nameCXP): A set of variables that are used in action xP; where xP E M(TF name)-

VDU(FunctionName): A set of variables that are used, UFname, and defined, DFname, in the 
given function name. 

VS(XDu): 

x: 

A variable scope relation at XDu, be a set of instructions XDcL, where Xnu is in 
the scope of influence of XDcL· 

An instruction in a program and XE IN+. See also program P. 

An instruction that declared variables such as "int I;". 

An instruction that used or defined the variables that declared by XDcL, 
where variables that used or defined are in the scope of influence of 
variables that declared in XDcL· 

xP: An action, e.g., an instruction X at position p in a trajectory T, sometimes 
represented as the pair(X,p). For example, 44 and 49 in trajectory Tin 
Figure 10 are actions that involve the same instruction 4. See also 
trajectory. 

yt: An action, instruction Y at position tin a trajectory T. See also xP. 



APPENDIX B 

USER'S MANUAL FOR C++DEBUG 

B.1 Introduction 

C++Debug is a slicing and dicing based debugging tool for ANSI C++ that runs 

under the UNIX or Linux operating system. It has been designed in a way to provide 

ease and convenience to the user. Using C++Debug, the user can interact with the 

computer in locating errors in a program. For convenience of the user, the menu shown 

in Figure 56 allows the user to select any of the available functions. 

B.2 C++Debug's Commands 

At a UNIX prompt, C++Debug is invoked by typing the following command: 

$C++Debug [prog_name] 

where $ is a UNIX Bourne shell prompt and prog_name, the optional parameter, is the 

name of the program to be loaded into the C++Debug environment. Once this command 

is executed, C++Debug will return to the help menu so that additional commands can be 

executed. 
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***************************************** 
* C++Debug * 
* A slicing and dicing * 
* based debugging tool * 
* version 1.31 * 
* 04/10/03 * 
***************************************** 

S (lice) 
D (ice) 
V (iew) 
T (rajectory) 
R (un) 

L (evel) 

E (ditor) 

produces slice(s) 
produces dice(s) 
display source program 
displays trajectory path 
a program slice to check output 

select level of slice 
( now set to level 1) 

select editors 'VI' or 'EMACS' 
( now set to use 'EMACS' ) 

Q (uit) 
invokes UNIX command interpreter 
quit from C++Debug environment 

C++Debug> 

Figure 56. Help menu and prompt 
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The following commands are available within the C++Debug environment. They 

are explained in the order that they appear in the C++Debug menu. 

Sor 
Slice 

Dor 
Dice 

Produces a slice of the program currently resident within the C++Debug 
environment with the variables supplied to it as its arguments. 

Example: 
C++Debug>S line_num varl [var2 ... ] 

C++Debug>Slice line_num varl [var2 ... J 

where line_num is a valid line number in the program and varl, 
var2 are variables in the program. This command requires a line 
number and at least one variable to produce a slice. 

Produces a dice, given a set of variables and a line number. 

Example: 
C++Debug>D line_num varl [var2 . .. ] / var3 [var4 . .. ] 

C++Debug>Dice line_num varl [var2 . .. ] / var3 [var4 . .. J 



Vor 
View 

Tor 
Trajectory 

Ror 
Run 

Lor 
Level 

Eor 
Editor 

Q or 
Quit 
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where line_num is a valid line number in the program and varl, 
var2, var3, and var4 are variables in the program. This command 
requires a line number and at least two variables to be supplied, separated 
bya I-

Views or displays the source program resident within the C++Debug 
environment on the display unit. VI or EMACS is used to view the 
source program. One can select to uses VI or EMACS by using E or 
Editor. 

Displays the trajectory path or the execution trace of the source program 
resident within the C++Debug environment on the display unit. 

Compiles and run the slice program currently resident within the 
C++Debug environment with the G++ compiler (to compare the slice 
output with the original program output). 

In level 1: 

C++Debug can work with any size source program. C++Debug will use 
some harddisk space (about 1 K-byte) to keep track of information. 
Level 1 yields an output slice larger than level 2. 

In level 2: 

Level 2 allows the user to get a program slice smaller than Level 1. The 
limitation is that C++Debug will use more of your space than Level 1 in 
order to keep track of the trajectory path. 

Selects editor from VI, EMACS, or EMACS for windows. 

Invokes a UNIX command. 
Example: 
C++Debug>!ls -1 

C++Debug>!who 

Exits from the C++Debug environment to the UNIX system. 
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B.3 Tutorial 

In order to make it easier to understand, this tutorial walks the user through 

C++Debug step by step. The tutorial guide you from the basic commands, such as view 

manual or version, to the more complicated commands such as Slice or Dice. 

B.3.1 A Step-by-Step Guide 

1. At the UNIX prompt, type C++Debug. You will see the following message: 

$ C++Debug 

usage: C++Debug [-mvg] [-lnnnn] [file] 

-m Display manual Ex. $C++Debug -m 
-v Display version Ex. $C++Debug -v 
-g Display grammar Ex. $C++Debug -g filename.cpp 
-t Display trajectory Ex. $C++Debug -t filename.cpp 
-1 Check nnnn consecutively executed statements for looping 

by default nnnn = 10 Ex. $C++Debug -140 filename.cpp 

2. Type 

$ C++Debug -m 

C++Debug' s user's manual should be display on the screen. 

3. Type 

$ C++Debug -v 

C++Debug' s version should be display on the screen. 

4. Type 

$ C++Debug -g Testl.cpp 

For a grammar, you will see the tree corresponding to the derivation of program 

Testl. cpp (see Subsection B.3.2.1). The tree is up side down (the root is at the 

bottom). 
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Display on the screen Should look like 

...... Program: 
compound_statement declaration _seq 
...... 

declaration_seq: 
declaration: declaration _seq declaration 
function _definition 

declaration: 
declaration _seq: function - definition 
declaration _seq declaration 

.... 
Program: compound_statement 
declaration _seq .... 

Or, it can be represented graphically as follow: 

This area is left for someone who is interested and would like to translate a 

derivation tree from the text mode to graphical representation (a directed graph). 

5. Type 

$ C++Debug -t Testl.cpp 

The trajectory path that allows you to follow the execution of a C++ program, 

statement by statement, will show on the screen as follows: 
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P . . Line number 
os1t1on 't ~oftheprogram 

Jl,31Jmain () { 
J2,32J int Max= 4; 
J3,33J float Num[4] = {10.0, 20.0, 15.0, 5.0}; 

Input/Output 

1 
J4,11J Compute(int M, float *N) { 
J5,12J Max= M; allocate mem 

Figure 57. The trajectory path 

where 1, 2, 3, ... are positions and 31, 32, 33, 11, 12, ... are line numbers of program 

Testl. cpp. The input and/or output of the program will be shown after';'. 

Now you can keep track of your program as to what line numbers are running. 

6. Let's try program Test2. cpp (see Subsection B.3.2.2). with multiple loops, type 

$ C++Debug -110 Test2.cpp 

Be careful, -110 is letter ell and one zero. 

Compare it with: 

$ C++Debug -1100 Test2.cpp 

Now you have some idea about C++Debug and how it works as a cpptrace 

tool, and what a trajectory is. However, locating errors in a trajectory still 

requires work. C++Debug can help users to find errors. Please follow the examples to 

gain facility in using the tool. 

Next, let's try program slicing. 

7. Type 

$ C++Debug Testl.cpp 
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The screen should display the menu shown in Figure 56. 

8. Type 

C++Debug> s 21 Tsum 

That means you are going to slice a program based on variable Tsum at line 21. The new 

program (which is smaller than the original) will be shown in the editor mode (by 

selecting between VI and EMACS). 

Using slicing, one obtains a new program of generally smaller size that still 

maintains all aspects of the original program's behavior with respect to the criterion 

variable. 

Now, let's try another line number: 

C++Debug> s 32 Max 

That means you are going to slice a program based on variable Max at line 32. The new 

program (which is smaller than the original) will be shown. 

Now, let's try another line number: 

C++Debug> s 10 public 

You will get an empty slice, because that line has not been executed. 

Tip: To select 'Line' and 'Variable', one must be careful. One must 
make sure that the line will be executed. 

For example, 

10: if( a> 100) 
11: cout<<"greater than 100"<<endl; 
12: else 
13: cout<<"less than or equal 100"<<endl; 

Assume that a = 150. 
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In this case, suppose that you select line 13, you will get an empty slice, because line 13 

has not been executed. 

Let's slice program Testl. cpp based on variable Sum and Avg by first typing 

C++Debug> s 35 Sum 

you should get a slice program based on variable Sum at line 35, and by typing 

C++Debug> s 36 Avg 

you should get a slice program based on variable Avg at line 36. 

9. Dice 

Now you know to slice a program. 

Now, let's try 'Dice'. 

Dicing technique is used to compare two or more slices resulting from the program 

slicing technique in order to identify the set of statements that are likely to contain an 

error. 

In the previous examples, Avg gives an incorrect output. The correct output of 

Avg must be 

(10.0 + 20.0 + 15.0 + 5.0) I 4 = 12.5 

However, Sum gives the correct output of 50. Therefore you can locate the error 

in the program by using the dicing technique. 

C++Debug> d 36 Avg 35 Sum 

where 36 Avg is a slice at line 36 based on variable Avg (which gave an incorrect 

result) and 35 Sum is a slice at line 35 based on variable Sum (which gave a correct 

result). 

You should get the following output: 



25: float Avg(void) 
26: return Sum()/(Max + 1); 
36: cout<<A.Avg()<<endl; 

You know that line 25 and line 36 are correct ( obviously). So we have line 26 left. 

We find that line 26 should be 

26: return Sum()/(Max); II which is correct 

instead of 

26: return Sum()/(Max + 1); 

There exists an extra ' + 1 ' , which is incorrect. 

B.3.2 Source Code Listing 

B.3.2.1 Testl.cpp 

/**************************************** 

* 
* A program for calculating the sum 
* and average of a set of numbers. 

* 

* 
* 
* 
* 

****************************************/ 
#include <iostream> 
using namespace std; 

class Compute 

} ; 

private: 
int Max; 
float Num[4]; 

public: 
Compute(int M, float *N) { 
Max= M; 
cout<<"allocate mem"<<endl; 
for(int I=O; I<Max; ++I) 
Num[I] = N[I]; 

float Sum(void) { 
float Tsum = 0; 
for(int I=O; I<Max; ++I) 

Tsum = Tsum + Num[I]; 
return Tsum; 

float Avg(void) { 
return Sum()/(Max + 1); 

main () { 
int Max= 4; 
float Num[4] = {10.0, 20.0, 15.0, 5.0); 
Compute A(Max, Num); 
cout<<A.Sum()<<endl; 
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cout<<A.Avg()<<endl; 

B.3.2.2 Test2.cpp 

/**************************************** 

* * 
* 
* 

A program for loops testing * 
* 

****************************************/ 
#include <iostream> 
using namespace std; 

int main (void) 

for(int i 
for(int 
} 

l; i<=lOO; i++) { 
j = l; j<=lOO; j++) 
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APPENDIX C 

DATASTRUCTURE DESIGN FOR C++DBUG 

BASED ON DYNAMIC PROGRAMSLICING AND DICING 

C. l Introduction 

In order to design datastructures for C++Debug, the grammar that appears in C++ 

Programming Language Third Edition written by Bjarne Stroustrup, the creator of C++, 

has been used in this design. The design was started from basic functions and expanded 

to pointers, structures, functions, and classes. 

C.2 Types and Declarations 

C.2.1 Types 

Every name (identifier) in a C++ program has a type associated with it. The type 

determines what operations can be applied to the name and how such operations are 

interpreted. In this design, the data structure of Types used to store all built-in and user-

defined types used in the program is shown in Figure 58. 

InsertTypes(ID) is used to manage database in Figure 60, which includes all of these 
six functions: 

InsertBasicType(ID) is used to insert basic types into the list such as bool, char, 
int, double, void, unsigned, long, short, etc. 

InsertClassName(ID) is used to insert class names into the list. 
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enum Groups= { Basic, Structure, Class, Template, TypeDef }; 
struct Types { 

char Type[TYPELENGTH]; 
char Group[Groups]; 

Figure 58. Data structure of Types 

1 #include <assert.h> 
2 #include <stdlib.h> 
3 #include <iostream.h> 

4 typedef int Item; 

5 class ItemArray { 
6 friend class Itemiterator; 
7 int size; 
8 Item* array; 
9 public: 

10 ItemArray(int elms) : size(elms) 
11 { 
12 assert(elms>O); 
13 array= new Item[elms]; 
14 assert(array!=NULL); 
15 } 
16 -ItemArray() { 
17 delete []array; 
18 size=O; 
19 array=NULL; 
20 }; 
21 }; 
22 class Itemiterator { 
23 int index; 
24 ItemArray* obj; 
25 public: Itemiterator(ItemArray& i) :obj(&i), 

index ( 0 ) {} ; 
2 6 Item* operator () () { 
27 if (index< obj->size) 
28 return &obj->array[index++]; 
29 else 
30 return NULL; 
31 }; 
32 }; 
33 main() { 
34 ItemArray a(lOO); 
35 Itemiterator p(a); 
36 Item* ptr; 
37 Item i(O); 
38 while ((ptr=p()) != NULL) 
39 *ptr=i++; 
40 // The same without ptr 
41 Itemiterator check(a), use (a); 
42 while (check() != NULL) 
43 cout << *use() << '\n'; 
44 return O; 
45 } 

Figure 59. AC++ program that uses iterators 
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InsertStructureName(ID) is used to insert structure names into the list. 
InsertEnumName(ID) is used to insert enumeration names into the list. 
InsertTemplateName(ID) is used to insert template names into the list. 
InsertTypeDefName(ID) is used to insert type definition names into the list. 
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For example, all types of the program in Figure 59 can be stored in the database 

as shown in Figure 61. 

Type Group 

bool Basic 
char Basic 
unsigned Basic 
long Basic 
short Basic 
int Basic 
float Basic 
double Basic 
void Basic 
List of Enum Names Enum 
List of Structure Names Structure 
List of Class Names Class 
List of Template Names Template 
List of TypeDef Names Type Def 

Figure 60. Show the database of Types used in C++ 

Type Group 

int Basic 
Item TypeDef 
ItemArray Class 
Itemlterator Class 

Figure 61. Show how the database stores Types of the program in Figure 59 



107 

C.2.2 Declarations 

Before a name (identifier) can be used in a C++ program, it must be declared. 

That is, its type must be specified to inform the compiler to what kind of entity the name 

refers. The data structure of Declarations is used to store all variables declared in 

the program with their characteristic and scopes. It is designed as shown in Figure 62. 

For example, for the program in Figure 59, all variables can be stored in the database as 

shown in Figure 63. 

struct Declarations { 
char VariableName [VARIABLELENGTH]; 
char Type[TYPELENGTH]; 
bool Array; 
bool Pointer; 
bool Reference; 
bool Const; 
bool Function; 
bool Argument; 
int ScopeStart; 
int ScopeEnd; 

Figure 62. Data structure of Declarations 

Variable Type Array Poin- Refer- Const Fune- Argu- Scope Scope 
Name ter ence tion ment Start 

Size int F F F F F F 7 
Array Item F T F F F F 8 
Elms int F F F F F T 10 
Index int F F F F F F 23 
Obj ItemArray F T F F F F 24 
I ItemArray F F T F F T 25 
Operator Item F T F F T F 1 
A ItemArray F F F F F F 34 
p ItemArray F F F F F F 35 
Ptr Item F F F F F F 36 
I Item F F F F F F 37 

Figure 63. Show how the database stores Declarations of the program 
in Figure 59 

End 

21 
21 
15 
32 
32 
25 
45 
45 
45 
45 
45 
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Where the elements in the field named Type is one of the elements contained in 

the field named Type in Figure 58. Field named Array, Pointer, Reference, 

Const, Function, and Argument are used to specify the kinds of each variable in 

the field of VariableName. Function InsertDeclaration(ID) is used to insert 

the variables into the database as shown in Figure 63. Function InsertTypes(ID) in 

Section C.2.1 is called to store all built-in and user-defined types also. 

Function ScopeStart(ID) and ScopeEnd(ID) are used to determined the 

scope of each variable name. See Section C.2.3 for more information. 

C.2.3 Scope 

A declaration introduces a name into a scope; that is, a name can be used only in a 

specific part of the program text. Figure 64 shows the example of the scopes. Function 

ScopeStart(ID) and ScopeEnd(ID) are used to determined the scope of each 

identifier and store it in the database as shown in Figure 63. 

int x; II global x 
void f(x) 

int x; II local x hides global x 
X 1; II assign to local x 
{ 

int x; II hides first local x 
X = 2. 

' II assign to second local x 

X 3; II assign to first local x 
} 

int * p &x; II take address of global x 

Figure 64. Scopes of variable x as a global, local, and second local 
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C.2.4 Typedef 

A declaration prefixed by the keyword typedef declares a new name for the type 

rather than a new variable of the given type. The data structure of Typedef is used to 

store the real types of the types defined by typedef statement. Its data structure is shown 

in Figure 65. The field named Type in Figure 65 is related to the field named Type in 

Figure 58. For example, the part of the program in Figure 66 can be stored in the 

database as shown in Figure 67. 

struct Typedef { 

} 

char Type[TYPELENGTH]; 
char RealType[TYPELENGTH]; 

Figure 65. Data structure of Typedef 

typedef 
typedef 
typedef 
typedef 
Pchar 
char 

short 
int 
long 
char* 
Pl, P2; 
P3 = Pl; 

intl6; 
int32; 
int64; 
Pchar; 

Figure 66. A program segment that uses typedef 

Type Real Type 

Pchar char* 
int16 short 
int32 int 
int64 long 

Figure 67. Show how the database stores Typedef defined by typedef in Figure 66 
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C.3 Pointers, Arrays, Constant, References, and Structures 

C.3.1 Pointers 

For a type T, T* is the type pointer to T. That is, a variable of type T* can hold 

the address of an object of type T. The data structure named Pointers is used to store 

the variables pointed to. The field named VariableName in Figure 68 is related to the 

field VariableName in Figure 62. The function named InsertPointerName(ID) 

is used to manage Figure 70. For example, the part of the program in Figure 69 can be 

stored in the database as shown in Figure 70. 

struct Pointers { 
char VariableName[VARIABLELENGTH]; 
char PointTo[VARIABLELENGTH]; 
int NoOfStars; 

Figure 68. Data structure of Pointers 

1 int * pi; II point to int 
2 char ** ppc; II point to pointer to char 
3 int * ap[15]; II array of 15 pointers to ints 
4 int (*fp) (char*); II pointer to function taking a 

II char * argument; return an int 
5 int * f (char *) ; 
6 char C = \ a I ; 

7 char *p &c; II p holds the address of C 

8 char c2 = *p; II c2 -- 'a' 

Figure 69. A program segment that uses pointers 

Note: We do not care prefixed '*' and '&' of variables p and c, because their 

characteristic was stored in Figure 70. 



VariableN ame PointTo NoOfStars 

pi NULL 1 
ppc NULL 2 
ap NULL 1 
fp NULL 1 
f NULL 1 
p &c 1 

Figure 70. Show how the database stores Pointers of the part of the program in 
Figure 69 

Line Number Def(n) Ref(n) 

6 c -
7 p C 

8 c2 p 

Figure 71. Show how the database stores Def(n) and Ref(n) of the part of the 
program in Figure 69 

C.3.2 Arrays 
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For a type T, T[Size] is the type array of size elements of type T. The elements 

are indexed from Oto size-I. The data structure named Arrays is used to store all array 

variables' dimensions. The field named VariableName in Figure 72 is related to the 

field named VariableName in Figure 62. The function InsertArrayName(ID) is 

used to manage Figure 74. 

Struct Arrays { 

} 

char VariableName[VARIABLELENGTH]; 
char Dimension[DIMENSIONLENGTH]; 

Figure 72. Data structure of Arrays 



float 
char 

v[3]; II 1 Dimension and size 
a[32] [10]; II 2 dimension and size 

3 
32x10 

Figure 73. A program segment that uses arrays 

VariableName Dimension 

V [ 3 ] 
a [32] [10] 

Figure 74. Show the data base of Arrays used by the part of the program 
in Figure 73 

C.3.3 Pointers into Arrays 
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In C++, pointers and arrays are closely related. The name of array can be used as 

a pointer to its initial element. Therefore, all variables of these types will be managed by 

the mixing of Pointers in Section C.3.1 and Arrays in Section C.3.2. 

1 int V [] = {1,2,3,4}; 
2 int * pl v; II pointer to initial element 

II (implicit conversion) 
3 int * p2 &v [ 0 l ; II pointer to initial element 
4 int * p3 &v [ 4] ; II pointer to one beyond last element 

Figure 75. A program segment that uses pointers into arrays 

V ariableN ame PointTo NoOfStars 

pl V 1 
p2 &v[ OJ 1 
p3 &v[4] 1 

Figure 76. Show how the database uses function InsertPointerName(ID) 
in Section C.3.1 to store variables of the part of the program in 
Figure 75 
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V ariableN ame Dimention 

V [4] 

Figure 77. Show how the database uses function InsertArrayName(ID) 
in Section C.3.2 to store variables of the part 
of the program in Figure 75 

Line Number Def(n) Ref(n) 

1 V -
2 pl V 

3 p2 v[O] 
4 p3 v[4] 

•' 

Figure 78. Show how the database stores Def(n) and Ref(n) of the part of the 
program in Figure 75 

C.3.4 Constant 

C++ offers the concept of a user-defined constant, a constant, to express the 

notation that a value doesn't change directly. The datastructure named Declarations 

in Section C.2.2 1s used to manage by using the function named 

InsertDeclaration(ID), while the data structure named Pointers in Section 

C.3.1 used to manage their pointers. 

1 const int model = 90; 
2 const int x; 
3 const char * pc 9; 
4 char *strcpy(char *p, const char *q) II cannot modify *q 
5 int V [] = {l,2,3,4}; 
6 const int c3 = my_f93); 

Figure 79. A program segment that uses const 
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Variable Type Array Poin- Refer- Const Fune- Argu- Scope Scope 
Name ter Ence tion ment Start End 

model int F F F T F F 1 6 
X int F F F T F F 2 6 
pc char F T F T F F 3 6 
strcpy char F T F T T F 4 6 
V int T F F T F F 5 6 
c3 int F F F T F F 6 6 
p char F T F F F T 4 6 
q char F T F T F T 4 6 

Figure 80. Show how the database stores constant declared in Figure 79 

For example, from the part of the program in Figure 79, all variables can be stored 

in the data base as shown in Figure 80, all pointers are stored in the database as shown in 

Figure 80, and their Def (n) and Ref (n) can be determined as shown in Figure 82. 

V ariableN ame PointTo NoOfStars 

pc 9 1 
strcpy NULL 1 

Figure 81. Show how the database uses function InsertPointerName(ID) in 
section C.3.1 to variables of the part of the program in Figure 79 

Line Number Def(n) Ref(n) 

1 model -
2 pc -
3 c3 my_f 

Figure 82. Show how the database stores Def (n) and Ref (n) of the part of the 
program in Figure 79 
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C.3.5 References 

A reference is an alternative name for an object. The main use of references is for 

specifying arguments and returns values for functions in general and for overloaded 

operators in particular. The notation x& means reference to X. In this design we will 

see a reference variable as copied variable as shown in Figure 85 which is managed by 

the function named InsertReferenceName(ID). 

structure References 
char VariableName [VARIABLELENGTH]; 
char ReferenceTo [VARIABLELENGTH]; 

Figure 83. Data structure of References 

1 int i l; 
2 int &r i; II X and i now refer to 
3 int X r; II X 1; 
4 r 2; II i = 2; 

the 

Figure 84. A program segment that uses references 

same 

VariableN ame Reference To 

r 

int 

Figure 85. Show how the database uses function InsertReferenceName(ID) 
to store variables of the part of the program in Figure 84 

C.3.6 Pointer to Void 

A pointer of any type of object can be assigned to a variable of type void*, a 

void* can be assigned to another void*, void*s can be compared for equality and 
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inequality, and a void* can be explicitly converted to another type. In this design, 

functions named InsertDeclarationNarne(ID) in Section C.3.2 and 

InsertPointerNarne(ID) in Section C.3.1 are used to manage their variables. 

void f (int* pi) 
{ 

} 

void* pv = pi; 
*pv; 
pv++; 
int* pi2 = static_cast<int*>(pv); 
double* pdl pv; 
double* pd2 = pi; 

Figure 86. A program segment that uses pointer to void 

C.3.7 Structures 

An array is an aggregate of elements of the same type. A struct is an aggregate 

of elements of (nearly) arbitrary types. In this design, the data structure of 

Structures used to store all structures defined in the program is shown in Figure 88. 

Functions InsertStructureNarne(ID) and InsertDeclaration(ID) in section 

C.2.2 are used to manage as shown in Figure 90. 

V ariableN ame PointTo NoOfStars 

pi NULL 1 
pv pi 1 
pi2 static_cast 1 
pdl pv 1 
pd2 pi 1 

Figure 87. Show how the database uses function InsertPointerNarne(ID) 
in section C.3.1 to store variables of the part of the program 
in Figure 86 



struct Structures { 
char StructureName [VARIABLELENGTH]; 
Declarations* Elements [MAXELEMENTS]; II See Figure 62 

} 

Figure 88. Data structure of Structures 

struct address { 

char * name; 
long int number; 
char * street; 
char * town; 
char state[2]; 
int zip; 

} ; 

II to be defined later struct List; 
struct Link { 

Link* pre; 

} ; 

Link* sue; 
Link* member_of; 

struct List { 
Link* head; 

} ; 

Figure 89. A program segment that uses structures 

C.4 Operators 
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The function named Def(n) is used to determine the set of variables whose 

values may be defined at line number n, while the function named Ref(n) is used to 

determine the set of variables whose values may be referenced at line number n, as 

shown in Figure 91. 
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Structure Elements 
Name 

address 
Link 
List 

Variable Type Array Poin- Refer- Const Fune- Argu- Scope Scope 
Name ter ence tion ment Start End 

name char F T F F F F - -
number long F F F F F F - -
street char F T F F F F - -
town char F T F F F F - -
state char T F F F F F - -
zip int F F F F F F - -

Variable Type Array Poin- Refer- Const Fune- Argu- Scope Scope 
Name ter ence tion ment Start End 

pre Link F T F F F F - -
sue Link F T F F F F - -
member_of Link F T F F F F - -

Variable Type Array Poin- Refer- Const Fune- Argu- Scope Scope 
Name ter ence tion ment Start End 

head Link F T F F F F - -

Figure 90. Show how the database stores Structures of the part of the program 
in Figure 89 



Description Grammar Statement Def(n) Ref(n) 
post increment lvalue ++ I++ I I 
post decrement lvalue -- d-- d d 
size of object sizeof (expr) a= sizeof(int) a sizeof 
pre increment ++ lvalue ++I I I 
pre decrement -- value --d d d 
complement -expr t=-e t e 
not ! expr t= !e t e 
unary minus - expr t = -e t e 
unary plus +expr t= +e t e 
address of & lvalue &t=e t e 
dereference *expr *t=e t e 
create( allocate) new [type] t = new [Type] t e, Type 
multiply expr * expr t =el* e2 t el,e2 
divide expr I expr t = el I e2 t el,e2 
modulo (remainder) expr % expr t=el % e2 t el,e2 
add (plus) expr+ expr t= el+ e2 t el, e2 
subtract (minus) expr-expr t = el - e2 t el,e2 

shift left expr << expr t= el<< e2 t, el e2 
shift right expr>> expr t =el>> e2 t, el e2 

less than expr< expr b =el< e2 b el, e2 
less than or equal expr<= expr b= el<= e2 b el,e2 
greather than expr > expr b =el> e2 b el,e2 
greather than or equal expr>= expr b = el >=e2 b el,e2 

equal expr== expr b=el =e2 b el,e2 
not equal expr != expr b = el != e2 b el,e2 
bitwise AND expr&expr b = el & e2 b el,e2 
bitwise exclusive OR expr" expr b =el" e2 b el,e2 
bitwise inclusive OR expr I expr b = el I e2 b el,e2 

logical AND expr&&expr b=bl && b2 b bl, b2 
logical inclusive OR expr II expr b = bl II b2 b bl, b2 
simple assig nment lvalue = expr t=e t e 
multiply and assign lvalue *= expr t *= e t t, e 
divide and assign lvalue /= expr ti= e t t, e 
modulo and assign lvalue %= expr t%=e t t, e 
add and assign lvalue += expr t+=e t t, e 
subtract and assign lvalue -= expr t-= e t t, e 
shift left and assign lvalue <<= expr t<<=e t t, e 
shift right and assign lvalue >>= expr t>>=e t t, e 
AND and assign lvalue &= expr t&=e t t, e 
inclusive OR and assign lvalue I= expr t I= e t t, e 
exclusive OR and assign lvalue "= expr t "= e t t, e 

Figure 91. Show how to determine the set of variables by using functions 
Def(n) and Ref (n) 
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APPENDIX D 

SOFfW ARE SPECIFICATION 

D .1 Introduction 

The main purpose of software specification is used to define the functionality of 

C++Debug and constraints on its operation, plan the system development process, 

develop validation tests for the system, and help understand the system and the 

relationships between its parts. 

D.2 General Description 

C++Debug is an interactive debugging tool designed to function as a utility 

program of the UNIX system. C++Debug is developed based on slicing and dicing 

techniques. In order for C++Debug to be more powerful, dynamic slicing rather than 

static slicing is chosen for implementation. C++Debug was designed in a way to allow 

ease and convenience on part of the user. Using C++Debug, the user can interact directly 

with the computer in locating errors in a program. Menus are provided to allow the user 

to select any one of a number of functions (Slice, Dice, Help, etc.) supported by 

C++Debug. 
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D.3 Specific Requirements 

Functional and non-functional requirements are introduced in this part. 

Functional requirements provide how the system react to particular inputs, behave in 

particular situations, and explicitly state what the system should not do [Sommerville 01]. 

Non-functional requirements are about constraints such as timing constraints, constraints 

on the development process, standards, etc. 

D.3.1 Functional Requirements 

Function requirements describe services provided for the user by using natural 

language with cross-references to requirement specifications [Sommerville 94]. 

4.2.0 General 

4.2.0.1 Name 
C++Debug 

Rational: 
C++Debug is a slicing and dicing based debugging tool for C++. 

4.2.0.2 Purpose 
This project develops an interactive debugging tool, called C++Debug, 
for debugging a C++ language program. 

Rational: 
C++Debug is designed to function as a utility program of the UNIX 
system and is developed based on slicing and dicing techniques. 

4.2.0.3 Hardware and Software 
C++Debug runs under UNIX machine. 

Rational: 
The SUN machine locates on the second floor of the Computer Science 
Building. 

4.2.1. Program Slicing 

4.2.1.1 ANSI C++ 
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Can be used with every command and every instruction of ANSI C++ 
based on UNIX environment. 

Rational: 
C++Debug has to generate a program slice for every user program that 
uses ANSI C++ based on UNIX environment to implement the program. 

4.2.1.2 Automatic 
Program slices can be found automatically by a method used to 
decompose programs through analyzing their data flow and control flow. 

Rational: 
C++Debug automatically generates program slices. 

4.2.1.3 Eighty percent of A program slice must be smaller size than that of the 
original program. 

Rational: 
This is because there always at least one slice, that is, program itself As 
a consequence, when slicing at a variable of interest, the size of the 
resulting program slice is generally smaller than that of the original 
program. 

4.2.1.4 Property Consistency 
Program slice can be executed independently of one another. 

Rational: 
The smaller size of the program slice is a C++ program that still 
maintains all aspects of the original program behavior with respect to the 
criterion variable. 

4.2.1.5 Produces Exactly one projection 
Each slice produces exactly one projection of the original program's 
behavior. 

Rational: 
The smaller size of the program slice must still maintain all aspects of the 
original program behavior with respect to the criterion variable. 

4.2.1.6 Reduction 
The slice must have been obtained from the original program by 
statement deletion. 

Rational: 
The idea of a program slicing is to focus on the statements that have 
something to do with a variable of interest ( criterion variable), with those 
statements that are unrelated being omitted. 

4.2.3. Dynamic Slicing 

4.2.3.1 Computation 
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C++Debug generates a dynamic program slice by computing from the 
trajectory of the original source program. 

Rational: 
Contradict with static slicing, which generates a static program slice 
directly from the original source program. 

4.2.3.2 Arrays and Fields 
C++Debug treats array elements and fields m dynamic records as 
individual variables. 

Rational: 
Dynamic slicing characteristics [Korel 90]. 

4.2.3.3 Size Comparing with Static Slicing 
Dynamic slicing yields a program slice of generally smaller size than that 
of static slicing, or in the worst case, of equal size to that of static slicing. 

Rational: 
The runtime handling of arrays and pointer variables helps to reduce the 
size of the slice. 

4.2.3.4 # lines of executable path of the original source program at least 5,000 
lines of the executable path of the original codes can be computed by 
C++Debug. 

Rational: 

4.2.4. Dicing 

To make sure that it can work with for any small run-time programs, 
medium run-time programs and any run-time modules. 

4.2.4. l Computation of a Variable 
If the computation of a variable, V, depends on the computation of 
another variable, W, then when ever W has an incorrect value, so does V. 

Rational: 
From dicing characteristics [Lyle 84]. 

4.2.4.2 Using the dicing technique, C++Debug can then be used to compare two 
or more slices resulting from the program slicing technique to identify the 
set of statements that are likely to contain an error. 

Rational: 
From dicing characteristics [Lyle 84]. 

4.2.5 Time Complexity 

4.2.5.1 Dynamic Slicing 
Time to compute the program slice is less than 2 minutes at 5,000 lines of 
the executable path of the original codes. 



124 

Rational: 
Protected from infinite loops. 

4.2.5.2 Static Slicing 
Time to compute the program slice is less than 2 minutes at 5,000 lines of 
the original codes. 

Rational: 
Protected from infinite loops. 

4.2.5.3 Dicing 
For two variables and 1000 lines of program slices the time to find the 
error line is less than 30 seconds. 

Rational: 
Users cannot wait for a long time. 

4.2.6 Space Complexity 

4.2.6.1 Size of the machine code. 
After compiled, the total size of machine code is not more than 100 k­
byte. 

Rational: 
Comparing with the other debugger e.g. SDB, DBX etc. 

4.2.6.2 Memory Space 
While executing, C++Debug can use the total memory in the system e.g. 
stack, heap, code etc., not more than 1 m-byte. 

Rational: 
If C++Debug uses a small primary and secondary storage, it can be used 
on a small machine. 

4.2.7 Single-user and Multi-user 
C++Debug can be used for both single-user and multi-user modes. 

Rational: 

4.2.8 GUI 

C++Debug has been designed to have no critical section, shared memory 
and shared process, but it was designed to run independently like a UNIX 
utility command. 

Gill's menus are provided by C++Debug to allow the users to select any 
one of the functions of slice, dice, help, etc. 

Rational: 
To make system user-friendly. 

4.2.9 Software Metrics 
Following by Cyclomatic complexity theory 



125 

D.3.2 Non-function Requirements 

5.2.1 User futerface 

Although GUI's menus are provided by C++Debug to allow the user to select any 

one of the functions i.e. slice, dice, help, etc., for other function we cannot specify 

one. However, C++Debug must be designed to user-friendly. 

5.2.2 System Cost 

fu order to compete with other debugger tools in the market, the pnce of 

C++Debug at full functions should not more than 49$. So the total cost of 

C++Debug project should not more than 10,000 dollars. 

5.2.3 Software Size 

Although a large program can be run in UNIX environment, however, the size of 

C++Debug should not be more than 100 k-byte. The reason is that average size of 

other debuggers e.g. DBX, SDB are not more than 1 OOk bytes. 

5 .2.4 Reliability 

After delivering C++Debug to the customer, the number of errors must exist not 

more than 3 times a month. And the existing errors must be corrected in 1 week 

since it has been found. 



APPENDIX E 

TESTING AND EVALUATION 

E.1 Introduction 

C++Debug was designed to function as a utility program of the UNIX system and 

was developed based on slicing and dicing techniques. After C++Debug was 

implemented, testing was conducted to ensure that each unit met its specification (unit 

testing), and to ensure that the software requirements had been met integration and 

system testing was done. Testing is the primary means for showing that the 

implementation has the requisite functionality and satisfies other non-functional 

properties [McDermid 93]. Testing and other forms of verification and validation are 

important at all stages of the software development process. In order to know how 

C++Debug can be used to enhance the debugging process, evaluation was introduced. 

E.2 Testing 

E.2.1 Black and White Testing 

Black and white testing was used to test C++Debug. In black-box testing, the 

internal structure and behavior of a system is not considered when the test data is selected 
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[McDermid 93]. Acceptance testing is the testing of a software system to ensure that it 

meets user requirements (see Appendix D). At this stage the test data is chosen by a 

careful reading of the requirements specification. In white-box testing, (e.g., unit 

testing), the internal structure and behavior of a system is considered when the test data is 

selected. Here a program unit (subroutine, procedure) of C++Debug was exercised with 

data, with the aim of ensuring that the code inside the unit implemented its specification. 

In this form of testing, a major aim is to ensure that a certain proportion of the software 

structure are exercised, a typical target being the execution of about 85% of the branches 

and 100% of all the statement in a program unit [McDermid 93]. The test data sets have 

to be developed to maximize the proportion of structural elements being exercised. To 

do this, the internal structure of a unit has to be examined. 

E.2.2 Testing and The Software Life Cycle 

During the various phases of the software life cycle, C++Debug was tested as 

follows. 

E.2.2.1 Testing and Requirements Analysis 

The major development activities that take place during this phase are the 

elicitation and clarification of requirements and the subsequent construction of the system 

specification [McDermid 93]. The major testing activity that occurs during this phase is 

the derivation of the verification requirements. The C++Debug requirements are listed in 

Appendix D. During the latter stages of C++Debug development, their requirements 

were converted into system validation tests and acceptance tests. Their tests determine 

whether a system meets its requirements. For example, 



7 .8 When the slice-criterion command is typed with a correct 
variable name and with a valid trajectory number, the program 
slice will be generated and stored in the file named 
"_cpptrace_slice.dat". 

This leads to a number of tests as follows: 

1. If there exists an invalid variable name, an error message will be 
displayed. 

2. If there exists an invalid trajectory number, an error message will 
be displayed. 

3. If there is no slice, a prompt message "No Slice" will be 
displayed, otherwise the program slice will be stored in the file 
named "_cpptrace_slice.dat". 

E.2.2.2 Testing and System Design 
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There are a number of activities during system or architecture design that are 

relevant to testing [McDermid 93]. First the verification requirements were expanded so 

that they would correspond more closely to the individual tests. 

A second testing-related activity, which should occur during this phase, is to 

develop the test coverage matrix. This is a matrix, which relates the expanded 

verification requirements to the modules, which implement the requirements. 

A third activity is the development of the integration test strategy. This involves 

specifying the order in which the program µnits are to be added to the system, which is 

being built. A bottom-up strategy, instead of a top-down strategy, was used to test 

C++Debug, because it is easier to detect flaws that occur toward the bottom of a design. 

For example, using the verification requirement in previous example, we will have the 

following situation. 

The number of tests will be expanded as follows: 



V 7 .8/1 When the slice-criterion command is typed, with a user 
identification A, the error message will be displayed on 
the originating console. 

V 7.8/2 When the slice-criterion command is typed, with a user 
identification B, the error message will be displayed on 
the originating console. 

V 7 .8/3 When the slice-criterion command is typed with a user 
identification which does not match a user currently 
logged on, the error message will be displayed on the 
originating console. 

E.2.2.3 Testing and Detailed Design 
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The main testing activity that occurs during this phase is the construction of 

C++Debug test procedures. A test procedure is a detailed step-by-step set of instructions 

[McDermid 93]. A test procedure contains details of the software configuration used, the 

hardware configuration, the location of the job control language commands necessary for 

carrying out the test, the files containing test data, the expected outcomes of the tasks, 

and the location of the files that contain the test outcome. For example, 

bool UsedVariable( Type Var) 

executed the function UsedVariable with parameter Var with type Type. If variable 

Var is a "used" set, then return true, otherwise return false. 

E.2.2.4 Testing and Programming 

The primary activity in this phase is programming or coding the individual units 

or modules [McDermid 93]. Work may also be carried out on producing test harnesses or 

stubs. The second activity is the testing of the program units after they have been 

programmed. The aim of unit testing is to check that a program unit matches the 

specification produced for it during C++Debug system design. Unit testing is a structural 

testing activity, the aim being to ensure some degree of test thoroughness with respect to 
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some measure of structural coverage. A typical measure is that the test data generated 

should ensure that 100% of the statements in a unit are executed [McDermid 93]. 

Although this is a common metric, it is beginniging to be regarded as inadequate, and the 

better metric of 100% statement coverage and 85% branch coverage is being gradually 

adopted in industry. For example, Figure 92 shows the template of function used 

variable and its path. We must make sure that every path in the program is tested. 

bool UsedVariable( Type Var) { 
int .... ; 

}; 

if( ... ){ 
while( ... ) { 

} ; 
} else { 

}; 

if( ... ){ 

} else { 

}; Path 

Figure 92. Part of function UsedVariable and its path 

E.2.2.5 Testing and Integration 

Testing during the integration phase will follow the plan set out in the system or 

architecture design [McDermid 93]. The primary aim of testing at this stage is to verify 

the design, but a subsidiary aim is to begin to verify the requirements. 
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After coding and testing, individually, tested program unit are produced. These 

units are then progressively integrated according to the agreed strategy, e.g., top-down or 

bottom-up. A number of specific facets of the design are tested, leading up to the testing 

of the full design and requirements functions. For example, in C++Debug, module 

coupling and cohesion, as depicted in Figure 93, was tested. 

User 

Runtime 
file 

DU 

Lex& 
Yacc 

TU 

Reserved 
words 

ME TOO 

Symbol 
table 

Document 
file 

Figure 93. C++Debug block diagram 

E.2.2.6 System and Acceptance Testing 

Execute 
file 

In contrast to unit testing, system and acceptance testing are black-box activities 

[McDermid 93]. System testing is the process of executing the test procedures associated 
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with the verification tests. Acceptance testing is the process of executing the test 

procedures associated with a subset of the verification requirements that are agreed on by 

both the customer and the developer as being an adequate representation of the user 

requirements. The major difference between system and acceptance testing is the fact 

that the former takes place in a simulated environment. For example, in C++Debug all 

modules in Figure 93 were tested as a system. 

E.2.2.7 Testing and Maintenance 

The last testing activity associated with the software life cycle is regression 

testing. This occurs during maintenance after a system has been modified [McDermid 

93]. Therefore, this kind of test will be not applied to C++Debug. Regression testing is 

the execution of a series of tests to check that a modification, applied during 

maintenance, has not affected the code corresponding to those function of the system 

which should be unaffected by the maintenance modification that had been carried out. 

E.2.3 Testing Techniques 

The aim of this section is to show that the various techniques, which can be used 

to support the testing activities described in the previous section, were used to test 

C++Debug. 

E.2.3.1 Random Testing 

Random testing is a technique that is applicable for unit testing as a useful adjunct 

to other testing techniques [McDermid 93]. It involves identifying the input data space 

for a program unit and randomly generating test data from inside that space. In the case 

of C++Debug, a number of C++ programs were used for testing. 
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E.2.3.2 Structural Testing 

Structural testing involves testing a software system so that some structural metric 

or a particular path is traversed [McDermid 93]. In the case of C++Debug, every path of 

the control statements was tested. 

E.2.3.3 Assertion Testing 

An assertion is a predicate that relates the value of variables in a program and 

describes a condition that must be true during the execution of a program unit or a 

program [McDermid 93]. In the case of C++Debug, for example, 

Dice_A_B = = Slice_A & Slice_B 

represents a relation that must hold between the three variables used in the condition. 

Such conditions can be inserted by hand or by mean of software tools. 

E.2.3.4 Grammar-Based Testing 

Grammar-based testing is based on describing the data set to be used in a test by 

means of some grammar formalism [McDermid 93]. In the case of C++Debug, for 

example from Figure 93, the C++ grammars, which implemented in the "Lex & Yacc" 

block, were tested. 

E.2.3.5 Functional Testing 

Functional testing involves checking the functions of a computer system by 

means of examining either the system specification or the system design [McDermid 93]. 

In the case of C++Debug, for example, all functions in Appendices C and D were tested. 
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E.3 Evaluation 

E.3.1 Introduction 

C++Debug was evaluated based on Lyle [Lyle 84] and Gallagher's [Gallagher 90] 

approach by training several Computer Sciences graduate students at Oklahoma State 

University in its operation and by collecting data on how the students used C++Debug to 

locate faults in C++ programs. The main objective of the evaluation was how can 

C++Debug be used to enhance the debugging process and localize errors. 

E.3.2 Evaluation Procedure 

The debugging process was studied by allowing each student to debug one 

program with and without C++Debug. There were four steps as listed below. 

E.3 .2.1 Step I: Familiarization 

Let each student answer a questionnaire covering background information (see 

Subsection E.3.2.4), read an overview of the evaluation, and finally read the manual on 

how to use C++Debug (see Appendix B). 

E.3.2.2 Step II: First Treatment 

Let each student debug C++ programs without using the C++Debug tool. Each 

student can use other tools such as DBX, GDB, etc. 

E.3.2.3 Step III: Second Treatment 

In this step, the C++ programs in step II were debugged by using the C++Debug 

tool. 
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E.3.2.4 Step IV: Subject Remarks 

All information from Step I, Step II, and Step ill were collected and analyzed 

based on Lyle's [Lyle 84] approach to find out: 

1. Is C++Debug useful? 
2. Are there some negative and positive comments? 
3. What do they like about C++Debug? 
4. What don't they like about C++Debug? 

The students involved in the evaluation of C++Debug were asked to fill out a 

questionnaire based on Lyle's [Lyle 84] approach as follows. 

Questionnaire 

(1) How long have you been programming (Years/Months)? 
(2) How many CS, (Computer Science), classes in your BS/BA? 
(3) How many CS classes taken so far in grad school? 
(4) How many other CS classes have you taken? 
(5) Which programming languages are you familiar with? Familiar 

means you used the language for at least a semester's work. 
(6) On a scale from Oto 10, how familiar are you with C++? 

where 
0 = I've never used C++ 
2 = I know some C++ 
5 = I know C++ about average 
7 = I am comfortable with C++ 

10 = I know C++ well 

0 2 4 6 8 10 
+---+---+---+---+---+---+---+---+---+---+ 
(put a check mark on the scale) 

(7) On the same scale from O to 10, how familiar are you with the 
VI or EMACS text editor? 

0 2 4 6 8 10 
+---+---+---+---+---+---+---+---+---+---+ 
(put a check mark on the scale) 

(8) Do you know about program slicing? 
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The subjects involved in the evaluation of C++Debug were ten graduate students 

at the Computer Science Department of Oklahoma State University. The student 

responses to the questions are summarized in Table IV and V. The number of changes 

made to the tested programs by each student, and the number of slices each student 

computed are shown in Table VI. And finally, edit times, compile times, and execution 

times are presented in Tables VII and VIII. 

TABLE IV 

BACKGROUND SUMMARY 

Variable N mean sd min max median 

time_programming 10 8.1 3.0 3.0 13.0 8.5 

n_bs_classes 10 7.4 5.8 0.0 15.0 8.5 

n_ms_classes 10 10.2 2.5 6.0 15.0 9.5 

n_other_classes 10 1.6 1.8 0.0 4.0 1.0 

n_languages 10 7.9 2.2 4.0 12.0 8.0 

skill_C++ 10 7.1 2.5 2.0 10.0 8.0 

skill_ vi_or_emacs 10 7.8 2.9 1.0 10.0 9.0 

TABLE V 

LANGUAGE FREQUENCY 

Language Number of Subjects 

Assembler 3 

C 9 

C++ 7 

Java 6 

Lisp 2 

Pascal 3 
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TABLE VI 

SLICES AND PROGRAM CHANGES 

Subject Slices Changes 

1 4 3 

2 * 2 

3 * 3 

4 1 3 

5 * 2 

6 * 3 

7 4 3 

8 8 7 

9 3 5 

10 * 3 

* not slicing 

TABLE VII 

TIME MEASURES FOR DEBUGGING BY USING THE TOOL 

N mean sd mm max median 

Edit user time 10 832 397 352 1177 782 

Edit system time 10 437 184 194 486 412 

Compile user time 10 15490 2822 11882 16957 14510 

Compile system time 10 4664 842 3872 5543 4602 

Execute user time 10 580 223 391 774 460 

Execute system time 10 845 212 618 1021 757 

E.3.3 Comments on C++Debug 

Seven of the ten subjects reported that in the slicing mode C++Debug was very 

useful. In the dicing mode, four subjects reported that C++Debug can help them to locate 

errors in a program. Five subjects felt surprised that C++Debug could eliminate 
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irrelevant statements. Three subjects said that in the -t mode the trajectory path 

generated by C++Debug worked like the cpptrace tool in C, in an effective and useful 

manner. 

TABLE VIII 

TIME MEASURES FOR DEBUGGING WITHOUT USING THE TOOL 

Name N mean sd mm max median 

Edit user time 10 1224 1012 371 2501 902 

Edit system time 10 713 633 286 1522 411 

Compile user time 10 12501 492 11903 12833 12532 

Compile system time 10 3962 557 3255 4482 3921 

Execute user time 10 588 113 464 621 521 

Execute system time 10 730 248 492 919 627 

On the negative side, one subject felt that C++Debug was not more powerful than 

other debugging tools like GDB. Two subjects mentioned that the dicing process is quite 

complicated because of the process of selecting the appropriate slicing criteria (variables 

and positions for dicing). One subject mentioned that in the -g mode, C++Debug 

generated derivation tree that were too long, and that it was difficult to understand all of 

them. 



APPENDIX F 

SAMPLE PROGRAMS USED FOR THE COMPUTATION 

OF SLICING-BASED METRICS 

The sample programs shown below were used for the computation of slicing-

based metrics (see Section 4.8 for more detail). In order to compare the output obtained 

from C++Debug (which is based on dynamic slicing) with C-Sdicer (which is based on 

static slicing), the test programs must be the same as the ones used in Nanja's study in 

testing C-Sdicer [Nanja 90]. These test programs are provided bellow. 

/*********************************************************** 
* TEST PROGRAM 1 * 
* This program reads a file of text, echoes the text and* 
* computes some statistics on lines, letters, words, and * 
* sentences. * 
***********************************************************/ 
#include <stdio.h> 
#include <string.h> 
#include <ctype.h> 
#define BIG 16384 
#define MAX_CHAR 80 
#define MAX_LINE 100 
#define TRUE 1 
#define FALSE 0 
main() 
{ 

char ll[MAX_CHAR] [MAX_LINE]; 
char l[MAX_CHAR + l]; 
char c, fname[20]; 
int let, word, i, j; 
int nl,ncl,tnlet,tnw,tnl,tns,nlettw,nlettl,nwtl,nwts; 
int mlettw,mlettl,mwtl,mwts,aletpw,aletpl,awpl,awps; 
int xlettw,xlettl,xwts,xwtl,qlettw,qlettl,qwtl,qwts; 
float sletpw,sletpl,swpl,swps; 
FILE *infile; 
nl = O; 
printf("\nEnter filename:"); 
gets ( fname) ; 
infile = fopen(fname, "r"); 

139 



if (infile == NULL) { 
printf("%s does not exist --- program aborted ... ",fname); 
exit(l); 

} 

while (fgets(ll[nl],MAX_CHAR,infile) != NULL) { 
printf("%s",ll[nl]); 
++nl; 

tnl = nl; 
nwts = O; 
mlettw = mlettl = mwts = BIG; 
mwtl = qlettw = qlettl = qwtl = qwts = xlettw O; 
xlettl = xwts = tnlet = tnw =tns = O; 
ncl = MAX_CHAR + l; 
for( i = O; i < tnl; ++i) { 

strcpy(l,ll[i]); 
nwtl = nlettl O; 
word= FALSE; 
for ( j = 0; j < strlen ( 11 [ i] ) ; ++j) { 

C = ll[i] [j]; 
if (isalpha (c)) 

let= TRUE; 
++nlettl; 

if (let && !word) 
++nwtl; 
++nwts; 
nlettw = O; 
word= TRUE; 

if (let && word) 
++nlettw; 

if(!let && word) 
word= FALSE; 
++tnw; 
if(nlettw < mlettw) 

mlettw nlettw; 
if(nlettw > xlettw) 

xlettw nlettw; 
qlettw += nlettw * nlettw; 

} 

if(let) 
++tnlet; 

if((c == '.' I I c 
++tns; 
++nlettl; 
if (nwts < mwts) 

mwts = nwts; 
if(nwts > mwts) 

xwts = nwts; 

'?' 11 C 

qwts += nwts * nwts; 
nwts = O; 

if(nlettl < mlettl) 
mlettl = nlettl; 

if(nlettl > xlettl) 
xlettl = nlettl; 

qlettl += nlettl * nlettl; 
nlettl = O; 
if (nwtl < mwtl) 

mwtl = nwtl; 
if (nwtl > xwtl) 

xwtl = nwtl; 
qwtl += nwtl * nwtl; 
nwtl = O; 

if (tnw != 0) 
aletpw = tnlet I tnw; 
if(tnw != 1) 

' ! ' ) && ( j ! = 0 ) ) { 

sletpw = sqrt((float) (qlettw - tnlet*tnlet/tnw) 
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} 

I (float) (tnw - 1)); 

if (tnw != 0) 
aletpl = tnlet/tnl; 
if (tnl != 1) 

sletpl = sqrt((sqrt) (qlettl - tnl * tnl/tnl) 
I (sqrt) (tnl - 1)); 

if ( tnl ! = 0 ) { 
awpl tnw I tnl; 
if (tnl ! = 1) 

swpl sqrt((float) (qwtl tnw*tnw/tns) 
I (float) (tnl -1)); 

if (tns ! = OJ 
awps 
if(tnl 

swps 

tnw/tns; 
!= 1) 

sqrt((float) (qwts - tnw*tnw/tns) 
I (float) (tns - 1)); 

printf ( "\nrnin %d %d %d %d" ,rnlettw,mlettl,mwtl,mwts); 
printf("\nrnax %d %d %d %d",xlettw,xlettl,xwtl,xwts); 
printf("\navg %d %d %d %d",aletpw,aletpl,awpl,awps); 
printf("\nssq %d %d %d %d",qlettw,qlettl,qwtl,qwts); 
printf("\nstd %d %d %d %d",sletpw,sletpl,swpl,swps); 
printf("\n\n letters words lines sentences"); 
printf("\n %d %d %d %d", tnlet,tnw,tnl,tns); 

Program 1 (Pl) Source: [Nanja 90] 

/***************~******************************************* 

* TEST PROGRAM 2 
* This program inputs and echoes back integers, 
* beginning a new output line at each point where a comma 
* appears in the input. Each line is labeled, and at the 
* end of each output line, total of all integers on that 
* line is displayed. The input must itself consist of 
* only one line. Any characters other than digits and 
* commars are ignored, except as delimiters for the 
* numbers. The new line is used to detect the end of the 
* line. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

***********************************************************! 
#include <stdio.h> 
main ( ) 

char character, last_char; 
int line_total, next_line, current_nurnber; 
line_total = O; 
next_line = 2; 
current_nurnber O; 
last_char = O; 
printf ( "Type a line of integers, 

with a comma everywhere\n"); 
printf("the line is to split. Any other characters\n"); 
printf ( "are ignored: \n\n"); 
scanf("%c", &character); 
printf("Line 1> "); 
while (character!= '\n') 

if(character == ', ') { 
if(last_char >= '0' && last_char <= '9') { 

line_total += current_nurnber; 
current_nurnber = O; 

printf(" < total: %d\nLine %d>" 
line_total, next_line); 

line_total = O; 
next_line++; 
else { 

141 



if(character >= '0' && character<= '9') { 
current_nurnber 

else { 

current_nurnber * 10 
+ character - '0'; 

if(last_char >= '0' && last_char <= '9') 
line_total += current_nurnber; 
current_nurnber = O; 

last_char = character; 
scanf ( "%c", &character) ; 

printf ( "< total: %d\n", line_total); 

Program 2 (P2) Source: [Nanja 90) 

/*********************************************************** 
TEST PROGRAM 3 * 

* Program to print histogram of word lengths. * 
***********************************************************/ 
*include <stdio.h> 
*define MAXSIZE 32 
*define WIDTH 50 
main(argc,argv) 
int argc; 
char * argv [ ] ; 
{ 

int i,n,maxlen,maxcount,tick; 
long lengths[MAXSIZE], total; 
char buffer[BUFSIZ], *gets(}; 
for(i = 0; i < MAXSIZE; i++) { 

lengths[i] = O; 

maxlen = O; 
while(gets(buffer) != (char*) NULL) { 

n = strlen(buffer); 
if(n >= MAXSIZE) { 

lengths[O]++; 

else { 
lengths[n]++; 
if (n > maxlen} 

maxlen = n; 

maxcount = 0; 
for(i = 0; i <= maxlen; i++) { 

if(lengths[i] > maxcount) { 
maxcount = lengths[i]; 

} 

printf ("length\ t I"); 
for( i = O; i <= WIDTH; i++} { 

printf ( " - "} ; 

printf (" I count\n"}; 
tick= (maxcount + (WIDTH - 1)) I WIDTH; 
total= O; 
if ( lengths [ 0] } { 

n = lengths[O] I tick; 
printf(''%5d+\tl%*s%*s%6d\n",i,n+l,"*", 

(WIDTH - n + l},"l",lengths[O]}; 
total+= lengths[O]; 

for(i maxlen; i > O; i--} 
n = lengths[i] I tick; 
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} 

} 

printf ( "%5d+\ t I %*s%*s%6d\n", i, n+l, "*", 
(WIDTH - n + ll,"l",lengths[OJ); 

total+= lengths[i]; 

printf ( "TOTAL\t I"); 
for(i = O; i <= WIDTH; i++) { 

printf ( "-"); 
} 

printf (" I %6d\n", total); 
exit(O); 

Program 3 (P3) Source: [Nanja 90] 

/*********************************************************** 
* TEST PROGRAM 4 * 
* Program to generate multiple coin toss samples. * 
***********************************************************/ 
#include <stdio.h> 
#define MAX_RAND 2000 
#define MODULUS 327681 
#define SEMI_MOD (MODULUS %2) 
main() 
{ 

int index,start,nr_trials,nr_iter; 
int head,tail,h_lead,t_lead,iter,curr_seed; 
int multl,mult2,incrl,incr2; 
double ratio, lead_sum, side_sum; 
double d_vals[MAX_RAND]; 

head= tail= h lead= t_lead O; 
lead_sum = side_sum = 0.0; 
printf("\n Starting seed?"); 
scanf ( • %d" , &curr_seed) ; 
printf("\n Sample size?"); 
scanf ( "%d", &nr_trials) ; 
printf("\n Number of samples to generate?"); 
scanf ( "%d" ,&nr_iter); 
printf("\n First multiplier?"); 
scanf ( "%d", &multl); 
printf("\n First increment?"); 
scanf ( "%d" , &incrl) ; 
printf("\n Second multiplier?"); 
scanf ( "%d", &mult2); 
printf("\n Second increment?"); 
scanf ( "%d • , &incr2) ; 
printf ( "Starting seed = %d\n\n", curr_seed); 
printf ( "generating random values ........ \n"); 
for(iter = O; iter < nr_iter; iter++) { 

head = O; 
tail = O; 
h_lead = O; 
t_lead = O; 
for( index= 0; index< nr_trials; index++) { 

if(curr_seed >= SEMI_MOD) 
start (multl * curr_seed + incrl) % MODULUS; 

else 
start (mult2 * curr_seed + incr2) % MODULUS; 

if (start) 
head++; 

else 
tail++; 

if (head > tail) 
h_lead++; 
else if(tail > head) 

t_lead++; 

printf ( "%3d heads; %3d tails;• ,head, tail); 
printf ( "H leads = %3d; T leads = %3d", h_lead, t_lead); 
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if(h_lead > t_lead) 
ratio (double) h_lead I (h_lead + t_lead); 

else 
ratio (double) t_lead I (h_lead + t_lead); 

d_vals[iter] = ratio; 
lead_sum += ratio; 
if (head > tail) 

side_sum += (double) head I nr_trials; 
else 

side_sum += (double) tail I nr_trials; 
printf("ratio = %.4lf\n",ratio); 

printf ( "\n DONE \n") ; 
printf("side_sum == %.4lf; mean side lead== %.4lf\n", 

side_sum,side_sum I nr_iter); 
printf("lead_sum == %.4lf; mean lead== %.4lf\n", 

lead_sum,lead_sum I nr_iter); 

Program 4 (P4) Source: [Nanja 90) 

/*********************************************************** 
* TEST PROGRAM 5 * 
* Program to compute correlation coefficients. * 
***********************************************************/ 
#include <stdio.h> 
#define MAX_VALS 50 
#define MAX_STR 100 
main() 
{ 

float c_vals[MAX_VALS]; 
float d_vals[MAX_VALS]; 
float suml,sum2,varl,var2; 
float coeff,co_vari,numer,denom; 
int index ,nl,n2; 
char *null_str = ""; 
char info[MAX_STR]; 

printf (" Enter values for group 1. \n") ; 
printf("?"); 
gets (info) ; 
index = O; 
while( strcmp(info, null_str) != 0) { 

c_vals[index] = atoi(info); 
++index; 
printf("?"); 
gets (info); 

nl = index; 
printf (" Enter values for group 2. \n") ; 
printf ("?") ; 
gets (info); 
index= O; 
while( strcmp(info, null_str) != 0) { 

d_vals[index] = atoi(info); 
++index; 
printf("?"); 
gets (info) ; 

n2 = index; 
if (nl = n2) 

suml = 0.0; 
for(index = O; index< nl; index++) 

suml += c_vals[index]; 
sum2 = 0.0; 
for(index = O; index< nl; index++) 

sum2 += c_vals[index]; 
co_vari = 0.0; 
for(index = O; index< nl; index++) 
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co_vari += c_vals[index] * d_vals[index]; 
numer = co_vari - (suml * sum2); 
varl = 0.0; 
for (index= O; index< nl; index++) 

varl += c_vals[index] * c_vals[index]; 
for (index= O; index< nl; index++) 

var2 += d_vals[index] * d_vals[index]; 
denom = (varl - suml * sum2) * (var2 - sum2 * sum2); 
denom = sqrt(denom); 
if ( denom ! = 0) 

coeff = numer I denom; 
printf("r == %7.31lf\n",coeff); 

} 

else 
printf ("Arrays must be the same size. \n •); 

Program 5 (PS) Source: [Nanja 90] 
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APPENDIX G 

SAMPLE C++DEBUG SOURCE CODE LISTING 

C++Debug is comprised of 24 files. The following files contain code written in 

the C++ programming language. Some sample code segments are shown as well. 

Makefile II used to compile the programs 

CDbug_Global . h II used to declare all global constants and variables 

main. h II start the program 
main.cpp II 

Menu. h II manage the menu 
Menu.cpp II 

CPPtrace. h II create 'cpptrace' file 
CPPtrace. cpp II 

SourceLine. h II store all information of each line such as program line, sets, i.e., D, U, DU, 
SourceLine. cpp II etc. 

Symbol Table. h II keep track of all variables, constants, types, classes, templates, etc. 
Symbol Table. cpp II 

LexYaccinitialize. h II initialize some variables before using 'Lex' and 'Yacc' 

Token. h II defines 'Token' 

1.1 II generate 'Lexer' to scan the string 

y. y II generate 'Parser' to analyze C++ grammar 

Parser. h II determine D-set, U-set, function prototype, called functions, 
Parser. cpp II calling functions 

Utilities. cpp II contains utility functions that are used to create C++Debug 
Utilities.h ll 

Slice. h II to compute a slice 
Slice.cpp ll 

Dice. h II to compute a dice 
Dice. cpp II 
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/******************************************************************************** 
* * 
* C++DEBUG * 
* * 
* C++Debug is a slicing and dicing based debugging tool for ANSI C++ that * 
* runs under the UNIX or Linux operating system. It has been designed in a way* 
* to provide ease and convenience on the part of the user. Using C++Debug, * 
* the user can interact with the computer in locating errors in a program. For * 
* convenience of the user, menu is introduced that allows the user to * 
* select any one of the available functions. * 
* * 
********************************************************************************/ 
#include "main.h" 

main(int argc, char *argv[]) { 

FLAGINFO = false; II Do not display C++Debug information 
II Global initialize 

Maininitialize(); 

CDbugMenu Menu; 

if ( ( argc<2) I I ( argc>4)) { 
II 'C++Debug' manual 

C.cpptrace_usage(); 
else { 
if (argv[ll [OJ == ' - ') 

switch ( argv[ll [ll ) 
case 'm': system( "page lclwinaltooll _C++Debug_manual_l_3_1 \n"); 

exit(O); 
break; 

case 'v': system("page lclwinaltooll_C++Debug_version_l_3_1"); 
exit (0); 
break; 

case 'g': if(argc == 2) { II display grammar 
printf ( "#H# Filename not found\n"); 
C.cpptrace_usage(); 

P.TRACE_ON = true; II display grammar 

II set cpptrace not to print trace file 
FILE* OU; 
ou = fopen ( "_cpptrace_breakpoint. dat", •w•) ; 
fprintf(ou, "0"); 

P.Parsing(argv[2]); 

fclose (ou); 
exit (0); 
break; 

case 't': if(argc == 2) { II display trajectory 
printf ( "#### Filename not found\n"); 
C.cpptrace_usage(); 

P.TRACE_ON = false; II off grammar 
II to set flag show on screen in cpptrace file 

if( ! P.CheckFileNotFound("_cpptrace_breakpoint.dat")) 
system(" rm _cpptrace_breakpoint.dat "); 

P.Parsing(argv[2]); 
system( "g++ -o _cpptrace __ cpptrace_.cpp"); 
system( "_cpptrace_"); 
system ( "rm _cpptrace_ *" ) ; 
exit(O); 
break; 

case 'l': if(argc == 2) { II set# of loops in loop statements 
printf("#### Filename not found\n"); 

147 



default: 

if{argc == 4) { 

c.cpptrace_usage{); 
) 

argv[lJ [OJ = '0'; 
argv[lJ [lJ = '0'; 
if (C.NNNN<O) 

C.NNNN G_NNNN; 

II clear variable for lnnnn 
II clear variable for lnnnn 

else { 
C.NNNN atoi{argv[lJ); 

P.TRACE_ON = false; II off grammar 
II to set flag show on screen in cpptrace file 

if ( ! P. CheckFileNotFound { "_cpptrace_breakpoint. dat") ) 
system{" rm _cpptrace_breakpoint.dat "); 

P.Parsing(argv[2J); 
system{ •g++ -o _cpptrace __ cpptrace_. cpp"); 
system{• _cpptrace_"); 
system ("rm _cpptrace_*") ; 
exit (0); 
break; 

II 'C++Debug' manual 
C.cpptrace_usage{); 
break; 

if{{argv[2J [OJ == '-') && {argv[2J [lJ == '1') ) { 
argv[2] [OJ = '0'; II clear variable for lnnnn 
argv[2J [lJ = '0'; II clear variable for lnnnn 
C.NNNN = atoi{argv[2J); 
if{C.NNNN<O) C.NNNN = G_NNNN; 

else { 
printf { "#### Filename not found\n") ; 

II 'C++Debug' manual 
C.cpptrace_usage{); 

II argv[lJ = FileName 
Menu.MainMenu{argv[l]); 

void Maininitialize() 

II main program initialize 

II# of loop to show 
II set default to G_NNNN 

C.NNNN = G_NNNN; 
II set default not to show grammar 

P.TRACE_ON = false; 

II use EMACS by default 
P.VI = false; 

P.EMACS_WIN false; II no windows 

II use Level 1 by default 
P.LEVEL2 = false; 

strcpy{P.LIBRARY, "-lGLU -lGL -lXll -lm -lglut -lXext -lXi -lXmu" ); 

P.Flaginfo = false; 

#include " CDbug_Global.h " 
#include <iostream> 
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#include <fstream> 
#include <string> 
#include <vector> 
#include <map> 
using namespace std; 

II ***************************************************************** 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

Class Name: 

Description: 

Data: 
- LineNo 
- Size 

Methods: 

MapSingle 

Create one dimension arrays 

Arrays of type T_Elm 
size of arrays of LineNo 

- T_LineNo GetSize(void) return Size of arrays 
- PutDat(LineNo, Dat) Put data, Dat, at line LineNo 
- GetDat(LineNo) Get data, Dat, at line LineNo 
- ReadFile(FileName) Read data from file into an array 
- Print() Print data in the arrays on the screen 

***************************************************************** 

template <class 
class MapSingle 

protected: 

T_LineNo, class T_Elm> 
{ 

} ; 

T_Elm *LineNo; 
T_LineNo Size; 

public: 

II create one dimension arrays of size Size 

MapSingle(const T_LineNo &Sizein) : Size(Sizein) {LineNo = new T_Elm[Size+l);}; 
T_LineNo GetSize(void) { return Size; } 
void PutDat(const T_LineNo &line_no, const T_Elm &v) {LineNo[line_no) = v;}; 
T_Elm GetDat(const T_LineNo &line_no) { return LineNo[line_no); } 
int ReadFile(char *FileName); 
void Print(void); 

-MapSingle() { delete [) LineNo; }; II destructor 

template <class T_LineNo, class T_Elm> 
int MapSingle <T_LineNo, T_Elm> 

::ReadFile(char *FileName) { II read data from file and put it 
II into the arrays. 

ifstream in(FileName); I I file name 
if(!in) { 

cout<<"### Cannot open "<<FileName<<" input file.\n"; 
return 1; 

T_LineNo i 1; T_Elm temp; 

in>>temp; 
while((!in.eof()) && (i<Size)) 

LineNo[i++J = temp; 
in>>temp; 

in.close(); 

template <class T_LineNo, class T_Elm> 
void MapSingle<T_LineNo, T_Elm> 

II read until EOF and< Size 

::Print(void) { II show data in the arrays on the screen 

for(T_LineNo i=l; i<Size; i++) 
cout<<i<<"l"<<LineNo[i)<<endl; 
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II ***************************************************************** 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

Class Name: Map Pair 

Description: Create arrays of type MAP, Standard Template Library 

Data: 
- LineNo 
- Size 

Methods: 

Type MAP supported by Standard Template Library 
Size of dynamic arrays 

- GetSize(void) return Size of arrays 
- PutPair(line_no, vl, v2) put data vl, v2 at line_no 
- GetPair(line_no, vl) return data v2 at line_no with key vl 
- Find(line_no, vl) return TRUE if find vl at line_no 
- LineUnion(LineNol, LineNo2) Set union between LineNo 1 and 2 
- ReadFile(FileName) read data from file and put in the arrays 
- PrintLine(line_no) print data at line_no 
- PrintVar(void) print pure data in the MAP 
- PrintSet(Act) print data including Action set 
- Addr(line_no) return address of LineNo[line_no] 

***************************************************************** 

template <class T_LineNo, class T_Elml> 
class MapSingle; 

template <class T_LineNo, class T_Elml, class T_Elm2> 
class MapPair { 

protected: 
map <T_Elml, T_Elm2> *LineNo; 
T_LineNo Size; 

public: 
MapPair(const T_LineNo &Size); 

II create arrays of map pairs 
II size of arrays 

T_Elm2 GetSize(void) { return Size; }; 
void PutPair(const T_LineNo &line_no, const T_Elml &vl, const T_Elm2 &v2); 
T_Elm2 GetPair(const T_LineNo &line_no, const T_Elml &vl); 
bool Find(const T_LineNo &line_no, const T_Elml &vl); 
void LineUnion(const T_LineNo &LineNol, const T_LineNo &LineNo2); 
int ReadFile(char *FileName); 
void PrintLine(const T_LineNo &line_no); 
void PrintVar(void); 
void PrintSet(MapSingle <T_LineNo, T_Elml> &Act); 
map <T_Elml, T_Elm2> Addr(const T_LineNo &line_no) 

-MapPair(){delete []LineNo;}; II destructor 
} ; 

template< class T_LineNo, class T_Elml, class T_Elm2> 
MapPair<T_LineNo, T_Elml, T_Elm2> 

::MapPair(const T_LineNo &Sizein) 

Size= Sizein; 
LineNo = new map <T_Elml, T_Elm2> [Size+l]; 

template< class T_LineNo, class T_Elml, class T_Elm2> 
void MapPair< T_LineNo, T_Elml, T_Elm2> 

return LineNo[line_no];}; 

::PutPair(const T_LineNo &line_no, const T_Elml &vl, const T_Elm2 &v2) { 

LineNo[line_no].insert(pair< T_Elml, T_Elm2>(vl, v2)); 

template< class T_LineNo, class T_Elml, class T_Elm2> 
T_Elm2 MapPair< T_LineNo, T_Elml, T_Elm2> 

::GetPair(const T_LineNo &line_no, const T_Elml &vl) 

map<T_Elml, T_Elm2>::iterator p; 

p = LineNo[line_no].find(vl); 
if(p!= LineNo[line_no].end()) return p->second; II if found 
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else return ( 0) ; II if cannot find 

template< class T_LineNo, class T_Elml, class T_Elm2> 
bool MapPair< T_LineNo, T_Elml, T_Elm2> 

::Find(const T_LineNo &line_no, const T_Elml &vl) { 

map<T_Elml, T_Elm2>::iterator p; 

p = LineNo[line_no].find(vl); 
if(p!= LineNo[line_no].end()) 
else return false; 

return true; II if found 
II if cannot find 

template< class T_LineNo, class T_Elml, class T_Elm2> 
void MapPair<T_LineNo, T_Elml, T_Elm2> 

:: LineUnion(const T_LineNo &LineNol, const T_LineNo &LineNo2) { 

map<T_Elml, T_Elm2>::iterator p; II set Union between two lines 
II and store in the first line 

p = LineNo[LineNo2].begin(); 

while(p != LineNo[LineNo2].end()) 
PutPair(LineNol, p->first,p->second); 
p++; 

template< class T_LineNo, class T_Elml, class T_Elm2> 
void MapPair< T_LineNo, T_Elml, T_Elm2> 

::PrintLine(const T_LineNo &iine_no) { 

map<T_Elml, T_Elm2>::iterator p; II print data at line_no 

p = LineNo[line_no] .begin(); 
cout<<"Line No. "<<line_no<<": "; 
while(p != LineNo[line_no].end()) 

cout<<" I "<<p->first<<", "<<p->second<<" I "; 
p++; 

cout<<endl; 

template< class T_LineNo, class T_Elml, class T_Elm2> 
void MapPair< T_LineNo, T_Elml, T_Elm2> 

::PrintVar(void) { 

for(T_LineNo i = O; i<Size; i++) II print all data 
PrintLine(i); 

cout<<endl; 

template <class T_LineNo, class T_Elml, class T_Elm2> 
int MapPair<T_LineNo, T_Elml, T_Elm2> 

::ReadFile(char *FileName) { 

ifstream in(FileName); II D data input 
if( !in) { 

cout<<"### Cannot open "<<FileName<<" input file.\n"; 
return l; 

T_Elml line, dat; II read data from file and put in the map_pair 

in>>line; 
while((!in.eof()) && (line< Size)) { II read until EOF and< Size 

in>>dat; 
while((!in.eof()) && (dat != 0)) { II read until EOF and< Size 

PutPair(line,dat,0); 
in>>dat; 
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in>>line; 

in.close(); 

template< class T_LineNo, class T_Elml, class T_Elm2> 
void MapPair< T_LineNo, T_Elml, T_Elm2> 

::PrintSet(MapSingle <T_LineNo, T_Elml> &Act) { 

map<T_Elml, T_Elm2>::iterator p; II print data with vl 
II v2 = trajectory 

for(T_LineNo i = O; i<Size; i++l { 
p = LineNo[i].begin(); 
cout<<"Line No. 11 <<i<<": "; 
while(p != LineNo[i].end()) 

cout<<" I "<<Act. GetDat (p->first) <<", • <<p->first<<" I "; 
p++; 

cout<<endl; 

cout<<endl; 

line number 

II***************************************************************** 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

Class Name: Action 

Description: A trajectory will be illustrated in terms of 
a pair(instruction, its position in the trajectory), rather 
than the instruction itself, so as to distinguish between 
multiple occurrences of the same instruction in the trajectory. 
For example, instruction X at position Pin Twill be represented 
by pair(x,p). For ease of understanding, pair(x,p) will 
be replaced by Xp, and will be refered to as an action. 

Data: 
- Act Arrays of data class MapSingle 

Methods: 
Action(Size) create object Act size Size 

- void PrintAction() print action sets 

***************************************************************** 

template <class T_LineNo, class T_Elm> 
class MapSingle; 

template <class T_LineNo, class T_Elm> 
class Action { 

protected: II data 
MapSingle <T_LineNo, T_Elm> Act; II class of one dimension arrays 

public: I I method 
Action(const T_LineNo &Size) : Act(Size) {}; II create object Act size Size 
void PrintAction(void) { II print action sets 

cout<<endl<<"<<< Action Set >>>"<<endl; 
Act.Print(); 

} ; 

II***************************************************************** 
II 
II 
II 
II 
II 
II 
II 
II 
II 

Class Name: Control 

Description: Test Action, an action Xp is a test action if X 
is a test instruction. Where Test Instruction statement is 
a control instruction such as an if-then-else or a 
while statement. 

Data: 
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II 
II 

- Crt Arrays of type MapSingle 

II Methodes: 
II 
II 
II 
II 

- Control(Size) 
- Printcontrol () 

create object Crt size Size 
print control sets 

***************************************************************** 

template <class T_LineNo, class T_Elm> 
class MapSingle; 

template <class T_LineNo, class T_Elrn> 
class Control { 

protected: II data 
MapSingle <T_LineNo, T_Elrn> Ctr; 

public: 
II class of one dimension arrays 

II method 

} ; 

Control(const T_LineNo &Size) 
void PrintControl(void) { 

: Ctr(Size) {}; II create object Crt size Size 
II print control sets 

cout<<endl<<"<<< 
Ctr.Print(); 

Test-Control Set >>>"<<endl; 

II ***************************************************************** 
II 
II 
II 
II 
II 
II 
II 
II 

Class Name: MapSingle 
- PutDat(LineNo, Dat) 
- GetDat(LineNo) 
- ReadFile(FileName) 
- Print() 

Single Arrays 
Put data, Dat, 
Get data, Dat, 
Read data from 

at line LineNo 
at line LineNo 
file 

Print data in the arrays 

***************************************************************** 

template <class T_LineNo> 
class ActionSize { 

private: 

} ; 

T_LineNo ActSize; 
public: 

ActionSize(T_LineNo Size) { ActSize = Size; }; 
T_LineNo GetActionSize(void) { return ActSize; }; 

II***************************************************************** 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

Class Name: Dset 

Description: D(Xp) Define, the set of variables that are 
defined in action Xp. 

Data: 
- D Defined sets, Arrays of data typ MapPair 

Methods: 
- Dset(Size) create D with class MapPair of size Size 
- PrintD() Print D set 

***************************************************************** 

template <class T_LineNo, class T_Elml, class T_Elrn2> 
class MapPair; 

template <class T_LineNo, class T_Elml, class T_Elrn2> 
class Dset { 

} ; 

protected: 
MapPair <T_LineNo, T_Elml, T_Elrn2> D; 

public: 
Dset(const T_LineNo &Size): D(Size) {}; 
void PrintD(void); 

template< class T_LineNo, class T_Elml, class T_Elrn2> 
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void Dset< T_LineNo, T_Elml, T_Elrn2> 
: : PrintD {void) { 

cout<<endl<<"<<< · D sets >>>"<<endl; 
D.PrintVar{); 

II ***************************************************************** 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

Class Name: Uset 

Description: U{Xp) The set of variables that are used in Xp. 

Data: 
- u a data of class MapPair 

Methods: 
- Uset{Size) 
- PrintU{) 

Create U of size Size 
Print u sets 

***************************************************************** 

template <class T_LineNo, class T_Elrnl, class T_Elm2> 
class MapPair; 

template <class T_LineNo, class T_Elrnl, class T_Elrn2> 
class Uset { 

} ; 

protected: 
MapPair <T_Elml, T_Elml, T_Elrn2> U; 

public: 
Uset{const T_LineNo &Size): U{Size) { }; 
void PrintU{void); 

template< class T_LineNo, class T_Elml, class T_Elm2> 
void Uset< T_LineNo, T_Elml, T_Elrn2> 

::PrintU{void) { 

cout<<endl<<"<<< U sets >>>"<<endl; 
u. PrintVar {) ; 

II ***************************************************************** 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

Class Name: DUset 

Based classes: 
- Dset D{Xp) Define, 

in action Xp. 
- Uset U{Xp) The set 

the set of variables that are defined 

of variables that are used in Xp. 
source line number from a trajectory - Action Used to find 

Description: DU{Xp) Definition-Use Relation, a binary relation 
on M{T) in which one action assigns a value to an item of data 
and the other action uses that value. 

Data: 
- DU Data of class MapPair 

Methods: 
- DUset{Size) 
- ComputeDU {) 

PrintDU{) 

Create DU of size= Size 
Compute DU set from Dset and Uset by using 
[Karel 90) Alg. Time Complexity O(NA2) 
Print DU sets 

***************************************************************** 

template <class T_LineNo, class T_Elrnl, class T_Elm2> 
class MapPair; 
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template <class T_LineNo, class T_Elml> 
class Action; 

template <class T_LineNo, class T_Elml, class T_Elm2> 
class Dset; 

template <class T_LineNo, class T_Elml, class T_Elm2> 
class Uset; 

template <class T_LineNo, class T_Elml, class T_Elm2> 
class DUset : virtual public Action <T_LineNo, T_Elml>, 

public Dset <T_LineNo, T_Elml, T_Elm2>, 
public Uset <T_LineNo, T_Elml, T_Elm2> { 

protected: 
MapPair <T_LineNo, T_Elml, T_Elm2> DU; 

public: 
DUset(const T_LineNo &Size) : DU(Size), Action(Size}, Dset(Size}, Uset(Size} {}; 
void ComputeDU(void); 
void PrintDU(void}; 

} ; 

template <class T_LineNo, class T_Elml, class T_Elm2> 
void DUset <T_LineNo, T_Elml, T_Elm2> 

: :PrintDU(void) { 

cout<<"<<< DU sets >>>"<<endl; 
DU.PrintSet(Act}; 

template< class T_LineNo, class T_Elml, class T_Elm2> 
void DUset< T_LineNo, T_Elml, T_Elm2> 

::ComputeDU{void} { 

map<T_Elml, T_Elm2>::iterator p; 
map<T_Elml, T_Elm2> x; 

T_LineNo Size DU.GetSize(); 

l; i<Size; i++) for{T_LineNo i 
x D.Addr{i); 
p = x.begin{); 

II read all D sets at line i 

while(p != x.end()) 
for(T_LineNo j = i+l; j<Size; j++) { 

if(U.Find{j,p->first)) II if find v in Uset at line j 
DU.PutPair{i,j, p->first); II put v in Uset 

if(D.Find{j,p->first)} 
break; 

p++; 

II break if vis re-defined 

II ***************************************************************** 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

Class name: TCset 

Based classes: 
- Action Used to find a source line number from a trajectory 
- Control Used to find which line is a test-action such as 

if, while, switch, etc. 

Description: Test-Control relation, a binary relation on M(T}, 
captures the effect between test actions and actions that have 
to be chosen to execute by these test actions. 

Data: 
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II 
II 

- TC Data of class MapPair 

II Methods: 
II 
II 
II 
II 
II 
II 

TCset(Size) Create TC of size= Size 
- ComputeTC(void) Compute TC relation set by using [Korel 90] 

Alg. Time complexity= O(NA2) 
- PrintTC() Print all IR sets 

***************************************************************** 

template <class T_LineNo, class T_Elrnl> 
class Action; 

template <class T_LineNo, class T_Elml> 
class Control; 

template <class T_LineNo, class T_Elrnl, class T_Elrn2> 
class MapPair; 

template <class T_LineNo, class T_Elrnl, class T_Elrn2> 
class TCset: virtual public Action <T_LineNo, T_Elrn2>, 

virtual public Control <T_LineNo, T_Elrn2> 
protected: 

MapPair <T_LineNo, T_Elml, T_Elrn2> TC; 
public: 

TCset(const T_LineNo &Size) : TC(Size), Action(Size), Control(Size) {}; 
void ComputeTC(void); 
void PrintTC(void); 

} ; 

template <class T_LineNo, class T_Elml, class T_Elrn2> 
void TCset <T_LineNo, T_Elml, T_Elrn2> 

::PrintTC(void) { 

cout<<"<<< TC sets >>>"<<endl; 
TC.PrintSet(Act); 

template< class T_LineNo, class T_Elrnl, class T_Elm2> 
void TCset< T_LineNo, T_Elml, T_Elrn2> 

::ComputeTC(void) { 

T_LineNo 
T_Elrn2 
T_Elml 

j' k; 
Dat; 
Size TC.GetSize(); 

for(T_LineNo i l; i<Size; i++) 
if(Ctr.GetDat(i) != 0) II looking for the test action line 

Dat = Act.GetDat(i); 

j = i+l; 
while ( (Dat 

j++; 

II if found, then looking for another that identity 
!= Act.GetDat(j)) && (j<Size)) { 

if(j<Size) { II if founnd, then put lines between them into TC sets 
for(k = i+l; k<j; k++) 

TC.PutPair(i,k, Act.GetDat(k)); 

II***************************************************************** 
II 
II 
II 
II 
II 
II 
II 

Class Name: IRset 

Based class: 
- Action Used to find a source line number from a trajectory 
- Control Used to find which line is a test-control such as 

if, while, switch, etc. 
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II 
II Description: Let Xp IR Yt, iff X Y is the identity relation 
II IR on M(Front(T,q)). 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

Data: 
- IR Data of class MapPair 

Methods: 
IRset(Size) Create IR of size= Size 

- ComputeIR(void) Compute IR relation set by using [Korel 90] 
Alg. Time complexity= O(NA2) 

- PrintIR() Print all IR sets 

***************************************************************** 

template <class T_LineNo, class T_Elml> 
class Action; 

template <class T_LineNo, class T_Elml> 
class Control; 

template <class T_LineNo, class T_Elml, class T_Elm2> 
class MapPair; 

template <class T_LineNo, class T_Elml, class T_Elm2> 
class IRset: virtual public Action <T_LineNo, T_Elm2>, 

virtual public Control <T_LineNo, T_Elm2> 
protected: 

MapPair <T_LineNo, T_Elml, T_Elm2> IR; 
public: 

IRset(const T_LineNo &Size) IR(Size), Action(Size), Control(Size) {}; 
void ComputeIR(void); 
void PrintIR(void); 

} ; 

template <class T_LineNo, class T_Elml, class T_Elm2> 
void IRset <T_LineNo, T_Elml, T_Elm2> 

::PrintIR(void) { II print all IR sets 

cout<<"<<< IR sets >>>"<<endl; 
IR.PrintSet(Act); 

template< class T_LineNo, class T_Elml, class T_Elm2> 
void IRset< T_LineNo, T_Elml, T_Elm2> 

::ComputeIR(void) { 

T_LineNo j; 
T_Elm2 Dat; 
T_Elml Size IR.GetSize(); 

for(T_LineNo i l; i<Size; i++) 
if(Ctr.GetDat(i) != 0) { II looking for line that is a test-control 

Dat = Act.GetDat(i); II such as if, while, switch, etc. 

j = i+l; II looking for a test-control line 
while((Dat != Act.GetDat(j)) && (j<Size)) { 

j++; II if line i is a test control, then looking for 
II another line that identity 

if(j<Size) II found the line 
IR.PutPair(i,j, Dat); II put line that identity for the i-j 
IR.PutPair(j,i, Dat); II put line that identity for the j-i 

II ***************************************************************** 
II 
II Class Name: Zset 

157 



II 
II Based classes: 
II - Action Used to find a source line nUillber from a trajectory 
II - Control Used to find which line is a test-control such as 

if, while, switch, etc. 
- DUset DU(Xp) Definition-Use Relation 
- IRset Let Xp IR Yt, iff X = Y is the identity relation 

IR on M(Front(T,q)). 
- TCset Test-Control relation 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

Description: A Union set ofDUset, TCset, and IRset. 

Data: 
- z Data of class MapPair 

Methods: 
Zset(Size) 

- Computez () 

- Printz () 

Create DU of size= Size 
Time complexity O(NA2) 
Compute z sets from DUset, 
Time Complexity O(NA2) 
Printz sets 

IRset, and TCset. 

***************************************************************** 

template <class T_LineNo, class T_Elml, class T_Elm2> 
class MapPair; 

template <class T_LineNo, class T_Elml> 
class Action; 

template <class T_LineNo, class T_Elml> 
class Control; 

template <class T_LineNo, class T_Elml, class T_Elm2> 
class DUset; 

template <class T_LineNo, class T_Elml, class T_Elm2> 
class IRset; 

template <class T_LineNo, class T_Elml, class T_Elm2> 
class Zset: virtual public Action <T_LineNo, T_Elml>, 

virtual public Control <T_LineNo, T_Elml>, 
public DUset <T_LineNo, T_Elml, T_Elm2>, 
public TCset <T_LineNo, T_Elml, T_Elm2>, 
public IRset <T_LineNo, T_Elml, T_Elm2> { 

} ; 

protected: 
MapPair <T_LineNo, T_Elml, T_Elm2> Z; 

public: 
II create arrays of Z set 

Zset(const T_LineNo &Size) : Z(Size), Action(Size), Control(Size), 

void 
void 

DUset(Size), IRset(Size), TCset(Size) {} ; 
Computez (void) ; 
Printz (void) ; 

template< class T_LineNo, class T_Elml, class T_Elm2> 
void zset< T_LineNo, T_Elml, T_Elm2> 

: : Printz (void) { 

cout<<"<<< z sets >>>"<<endl; 
Z.PrintSet(Act); 

template< class T_LineNo, class T_Elml, class T_Elm2> 
void Zset< T_LineNo, T_Elml, T_Elm2> 

::ComputeZ(void) { 

map<T_Elml, T_Elm2>::iterator pDU; 
map<T_Elml, T_Elm2> xDU; 

map<T_Elml, T_Elm2>::iterator pIR; 
map<T_Elml, T_Elm2> xIR; 

II point to DU sets 

II point to IR sets 
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map<T_Elml, T_Elm2>::iterator pTC; 
map<T_Elml, T_Elm2> xTC; 

II point to TC sets 

for(T_LineNo i = 1; i<Z.GetSize(); i++) { 

xDU = DU.Addr(i); II put all DU sets into Z sets 
pDU = xDU.begin(); 
while(pDU != xDU.end()) { 

Z.PutPair(i,pDU->first,pDU->second); 
pDU++; 

xIR = IR.Addr(i); II put all IR sets into z sets 
pIR = xIR.begin(); 
while(pIR != xIR.end()) { 

Z.PutPair{i,pIR->first,pIR->second); 
pIR++; 

xTC = TC.Addr(i); II put all TC sets into z sets 
pTC = xTC.begin(); 
while(pTC != xTC.end()) { 

Z.PutPair(i,pTC->first,pTC->second); 
pTC++; 

II ***************************************************************** 
II 
II Class Name: SliceCriterion 
II 
II Description: The specification that the behavior of interest can be 
II expressed as the values of a set of the variables at a subset of 
II the statements. 
II 
II ***************************************************************** 

template <class T_LineNo, class T_Elml> 
class SliceCriterion { 

} ; 

private: 
T_LineNo q; 
T_Elml v; 

public: 
SliceCriterion{void) { q = O; v = O; ); 
SliceCriterion(const T_LineNo &Q, const T_Elml &V) { q 
void PutQ{const T_Elml &Q} { q = Q; }; 
void PutV(const T_Elml &V) { v = V; }; 
T_Elml GetQ(void) { return q; }; 
T_Elml GetV(void) { return v; }; 

Q; V 

II***************************************************************** 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

Class name: SliceSet 

Based class: 
- Action Used to find a source line number from a trajectory 

Description: Based on the premise that instead of localizing 
errors in the original program, which can be of a large size, 
one can locate such errors in a program of smaller size which 
is sliced from the original program but still preserves part 
of the original program's behavior for a particular input or 
relative to a particular variable. 

Data: 
- SN 
- Slice 

A number of a current program slice 
Set of program slices 

V; } ; 
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II 
II Methods: 
II 
II 
II 
II 
II 
II 
II 

- SliceSet(Size) 
- PutSN(v) 
- GetSN(void) 
- GetFinalSlice() 
- PrintSlice () 

Create object Slice of class MapPair. 
Set value of SN 
return SN 
Transfar slice from SO to SN 
Print slice sets 

***************************************************************** 

template <class T_LineNo, class T_Elml> 
class Action; 

template <class T_LineNo, class T_Elml> 
class SliceCriterion; 

template <class T_LineNo, class T_Elml, class T_Elm2> 
class SliceSet: virtual public Action <T_LineNo, T_Elml> 

protected: 
T_LineNo SN; 
MapPair <T_LineNo, T_Elml, T_Elm2> Slice; 

public: 

} ; 

SliceSet(const T_LineNo &Size) : Slice(Size), Action(Size), SN(l) {}; 
void PutSN(const T_LineNo &v) {SN= v; }; 
T_LineNo GetSN(void) { return SN; }; 
void 
void 

PrintSlice(void); 
GetFinalSlice(void); 

template< class T_LineNo, class T_Elml, class T_Elm2> 
void SliceSet< T_LineNo, T_Elml, T_Elm2> 

::GetFinalSlice(void) { 

map<T_Elml, T_Elm2>::iterator p; 
map<T_Elml, T_Elm2> x; 
T_LineNo Size= Slice.GetSize(); 

x Slice.Addr(O); 
p x. begin () ; 

while(p != x.end()) II transfer slice from SO to SN 
Slice.PutPair(SN,Act.GetDat(p->first),p->first); 
p++; 

SN++; 
if(SN >= Size) SN 1; 

template <class T_LineNo, class T_Elml, class T_Elm2> 
void SliceSet< T_LineNo, T_Elml, T_Elm2> 

::PrintSlice(void) { 
cout<<"<<< Slice >>>"<<endl; 
Slice.PrintVar(); 

II***************************************************************** 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

Class name: ComputeSliceSet 

Based classes: 
- Action Used to find a source line number from a trajectory 

Control Used to find which line is a test-control such as 
if, while, switch, etc. 

- z class A union set of DUset, IRset and TCset 
- SliceSet Sets of slice programs. 
- Dice class, Sets of pieaces of programs 

Description: Compute a slice set based on [Korel 90] Alg. 

Data: 
- A 

Time complexity 

A set of all actions 
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II 
II 

- s A set of all slices 

II Methods: 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

ComputeSliceSet(Sizein) Create A, S of size Size 
Time complexity= O(N) 

- LastD(Crit) Compute Last-Defined with Slice criterion, Crit 
Time complexity= O(N) 

- LastT(Crit) Compute Test-Control 
Time complexity= O(N) 

- ComputeAOSO(Crit) Compute AO and SO 
- ComputeAc(line_no, Crit) Compute Ac, c = {1,2,3, ... ,} 

Time complexity= O(N) 
- ComputeSc(LineNo) Compute Sc, c = {1,2,3, ... ,} 
- ComputeSlice(Crit) Compute a program slice 

Time complexity= O(N) 
- PrintLastD_T(Crit) Print Last Defined and Test-Control 
- PrintA(void) Print A sets 
- PrintS(void) Print S sets 
- TestProgramSlice() To check that program slice working 

properly with the sample data 

***************************************************************** 

template <class T_LineNo, class T_Elml> 
class Action; 

template <class T_LineNo, class T_Elml> 
class Control; 

template <class T_LineNo, class T_Elml, class T_Elm2> 
class Zset; 

template <class T_LineNo, class T_Elml, class T_Elm2> 
class SliceSet; 

template <class T_LineNo, class T_Elml, class T_Elm2> 
class ComputeSliceSet: virtual public Action <T_LineNo, T_Elml>, 

virtual public Control <T_LineNo, T_Elml>, 
public Zset <T_LineNo, T_Elml, T_Elm2>, 
public SliceSet <T_LineNo, T_Elml, T_Elm2> 

private: 
MapPair <T_LineNo, T_Elml, T_Elm2> A; 
MapPair <T_LineNo, T_Elml, T_Elm2> S; 

public: 
ComputeSliceSet(const T_LineNo &Sizein); 
void PrintA(void); 
void PrintS(void); 

II create arrays of A 
II create arrays of S 

void PrintLastD_T(SliceCriterion <T_LineNo, T_Elml> &Crit); 
T_Elm2 LastD(SliceCriterion <T_LineNo, T_Elml> &Crit); 
T_Elm2 LastT(SliceCriterion <T_LineNo, T_Elml> &Crit); 
void ComputeAOSO(SliceCriterion <T_LineNo, T_Elml> &Crit); 

sets 
sets 

bool ComputeAc(const T_LineNo &LineNo, SliceCriterion <T_LineNo, T_Elm2> &Crit); 
void ComputeSc(const T_LineNo &LineNo); 
void ComputeSlice(SliceCriterion <T_LineNo, T_Elml> &Crit); 
void TestProgramSlice(void); 

} ; 

template< class T_LineNo, class T_Elml, class T_Elm2> 
ComputeSliceSet<T_LineNo, T_Elml, T_Elm2> 

::ComputeSliceSet(const T_LineNo &Size): A(Size), S(Size), 
Action(Size), 
Control(Size), 
Zset(Size), 
SliceSet(Size) { }; 

template< class T_LineNo, class T_Elml, class T_Elm2> 
void ComputeSliceSet< T_LineNo, T_Elml, T_Elm2> 

::PrintLastD_T(SliceCriterion <T_LineNo, T_Elml> &Crit) 

cout<<"Slice Criterion at V = "<<Crit.GetV()<<", Q = "<<Crit.GetQ()<<endl<<endl; 
cout<<"Last Def = "<<LastD(Crit)<<endl; 
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cout<<"Last Test "<<LastT(Crit)<<endl<<endl; 

template< class T_LineNo, class T_Elml, class T_Elm2> 
void ComputeSliceSet< T_LineNo, T_Elml, T_Elm2> 

: :PrintA(void) { 

cout<<"<<< A sets >>>"<<endl; 
A. PrintSet (Act) ; 

template< class T_LineNo, class T_Elml, class T_Elm2> 
void ComputeSliceSet< T_LineNo, T_Elml, T_Elm2> 

: : Prints (void) { 

cout<<"<<< S sets >>>"<<endl; 
S.PrintSet(Act); 

template< class T_LineNo, class T_Elml, class T_Elm2> 
T_Elm2 ComputeSliceSet< T_LineNo, T_Elml, T_Elm2> 

::LastD(SliceCriterion <T_LineNo, T_Elml> &Crit) { 

T_Elml V Crit.GetV(); 
T_LineNo i Crit.GetQ() l; 

while(i > 0) { II looking for v, last defined in Dset 
if(D.Find(i,v) == true) 

return i; 
i--; 

return O; II if cannot find 

template< class T_LineNo, class T_Elml, class T_Elm2> 
T_Elm2 ComputeSliceSet< T_LineNo, T_Elml, T_Elm2> 

::LastT(SliceCriterion <T_LineNo, T_Elml> &Crit) { 

T_Elml v Crit.GetV(); 
T_LineNo i Crit.GetQ() - l; 

while(i > 0) II looking for its scope 
if(TC.Find(i,v) == true) 

return i; 
i--; 

return O; II if cannot find 

template< class T_LineNo, class T_Elml, class T_Elm2> 
bool ComputeSliceSet<T_LineNo, T_Elml, T_Elm2> 

:: ComputeAc(const T_LineNo &LineNo, SliceCriterion <T_LineNo, T_Elm2> &Crit) { 

T_LineNo Line; 
Line= LineNo - l; 

II Slice Nurober 0, compute slice in this nurober 
II and translate it later into the nurober SN 

map<T_Elml, T_Elm2>::iterator p; 

T_LineNo sn O; 

map<T_Elml, T_Elm2> x; 

bool FlagDone = true; 

X S.Addr(Line); 
p x.begin(); 

while(p != x.end() ) { 
for(T_LineNo i = Crit.GetQ(); i>O; i--) { 

if (Z.Find(i,p->first)) { 
if ( !Slice.Find(sn, i)) { 

Slice.PutPair(sn, i,0); 
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A.PutPair(LineNo, i,O}; 
FlagDone = false; 

p++; II if there is a new set, compute A(c+l} 

return FlagDone; II nothing change in Ac set, end compute 

template< class T_LineNo, class T_Elml, class T_Elm2> 
void ComputeSliceSet<T_LineNo, T_Elml, T_Elm2> 

:: ComputeSc(const T_LineNo &LineNo} { 

T_LineNo Line; 

if((Line = LineNo - 1) < 0) 
cout<<"### Error in compute SI"<<endl; 

map<T_Elml, T_Elm2>::iterator p; 
map<T_Elml, T_Elm2> x; 

X S.Addr(Line}; 
p x.begin(}; 

II Sc= S(c-1) + Ac 
while(p != x.end(}} II combine with S(c-1) 

S.PutPair(LineNo, p->first,p->second}; 
p++; 

x A.Addr(LineNo}; 
p x.begin(}; 

while(p != x.end(}} II combine with Ac 
S.PutPair(LineNo, p->first,p->second}; 
p++; 

template< class T_LineNo, class T_Elml, class T_Elm2> 
void ComputeSliceSet< T_LineNo, T_Elml, T_Elm2> 

::ComputeAOSO (SliceCriterion <T_LineNo, T_Elml> &Crit} 

T_Elml v = Crit.GetV(}; 
T_LineNo line_no = Crit.GetQ(}; 

T_LineNo LD = LastD(Crit}; 

A.PutPair(O, LD, 0}; 
S.PutPair(O, LD, O}; 
Slice.PutPair(O, LD, 0}; 

II compute AO and SO 

T_LineNo LT= LastT(Crit}; 

if (LT} { 
A.PutPair(O, LT, O}; 
S.PutPair(O, LT, O}; 
Slice.PutPair(O, LT, O}; 

II and then put them into AO and SO sets 

II put Last Test-Control, if has 
II put them into AO and SO sets 

template< class T_LineNo, class T_Elml, class T_Elm2> 
void ComputeSliceSet< T_LineNo, T_Elml, T_Elm2> 

::ComputeSlice(SliceCriterion <T_LineNo, T_Elml> &Crit} 

T_LineNo Size= A.GetSize(}; 

ComputeAOSO(Crit}; 

T_LineNo i = 1; II compute Ac, Sc, where c 
while((i<Size} && (!ComputeAc(i,Crit}}} { 

{1,2,3, ... ,} 
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Compu tesc ( i ) ; 
i++; 

Slice.PutPair(O,Crit.GetQ(),0); 

template< class T_LineNo, class T_Elml, class T_Elm2> 
void ComputeSliceSet< T_LineNo, T_Elml, T_Elm2> 

::TestProgramSlice(void) { 

Act.ReadFile("action.dat"); II test action sets 
PrintAction(); 

Ctr.ReadFile("control.dat"); II test control sets 
PrintControl(); 

D.ReadFile ( "D.dat"); 
PrintD(); 

U.ReadFile( "U.dat"); 
PrintU(); 

Compu teDU ( ) ; 
PrintDU(); 

ComputeIR(); 
PrintIR(); 

ComputeTC(); 
PrintTC(); 

ComputeZ(); 
Printz(); 

II test D sets 

II test Usets 

II test DU sets 

II test IR sets 

II test TC sets 

II test z sets 

II assign Slice criterion 
SliceCriterion <NUMTYPE, NUMTYPE> Crit(15, 2); 

II test compute slice ComputeSlice(Crit); 
PrintLastD_T(Crit); 
PrintA(); 

II check data, lats define, Test-Control 

Prints(); 
PrintSlice(); 
GetFinalSlice(); 
PrintSlice(); 

II 
II 
II 
II 
II 

check data, Ac sets 
check data, Sc sets 
check slice at line 0 
move slice from line 0 to line SN 
check slice at line SN 
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