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PREFACE 

The dissertation has three chapters. Each chapter is a manuscript, set in 

dissertation format, written for submission to a peer-reviewed journal for publication. 

Chapter 1 and 2 summarize the results and interpretations of a 3-year study of dispersed 

soils in Oklahoma. Chapter 3 is a summary of one study in a series of studies concerning 

the hydrology, pedology, and geology of an unconfined aquifer in terrace sediments 

along Boomer Creek in Stillwater, OK. Chapter 1, Dispersion of Soils in Semiarid to 

Sub humid Areas of Oklahoma, is written for the Journal of the Soil Science Society of 

America, Chapter 2, Selected Amendments for Reducing Soil Dispersion, is written for 

the journal Soil Science, and Chapter 3, Fluctuations in Temperature and Chemistry of 

Water in an Unconfined Aquifer, is written for the Vadose Zone Journal. 

Much appreciation goes to the many people helping with this work. 

Contributions from fellow graduate students, research and soil scientists with the Natural 

Resource Conservation Service and the Oklahoma Department of Transportation, and the 

faculty and staff of several departments at Oklahoma State University made this work a 

reality. Special thanks go to Dr. Wayne Pettyjohn, my doctoral committee, Ors. Brian 

Carter, Nicholas Basta, David Engle, and Jack Vitek, and my family, especially my wife 

Carla, my daughter Bronwyn, my son Brock, and my parents Phil Jr. and Kitty, for their 

support, patience, and understanding during this endeavor. 
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CHAPTER 1 - DISPERSION IN SOILS OF SEMIARID TO SUBHUMID AREAS OF 
OKLAHOMA 
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Mechanics of Soil Dispersion 

Dispersion of soil is a global phenomena affecting use and management of many 

parcels of land. Dispersion of soils impedes establishment and maintenance of vegetative 

covers, infiltration and percolation of water into and through the soil, and results in 

excessive hardening of soils upon drying. Roadways and dams built using dispersed soil 

tend to erode, degrade, pipe, and tunnel more frequently than similar structures built on 

non-dispersed soil. 

Sumner (1995) used the term dispersive to describe soils of Australia with 

abundant sodium ions on cation exchange complexes of clays in the soil and in soil water. 

Soils classified as sodic in the U. S. resemble the dispersed soils of Australia described 

by Sumner (1995). Sumner (1995) preferred the term dispersive versus sodic to describe 

the phenomena of dispersion in soil because sodium is only partly responsible for 

dispersion of soil. Dispersion in soil is a function of the types and amounts of clay, kinds 

and amounts of exchangeable cations on cation exchange sites of clays, concentrations of 

electrolytes in soil water, mineralogy (minerals as sands, silts, clays, and cementing 

agents), particle size distribution, and amounts of organic matter in the soil (Oster et al. , 

1980; Curtin et al., 1994b ). Curtin et al. , (1994b) observed the effects of mechanical and 

physical stresses like impact of rain droplets, cultivation, treading of animals, and heavy 

equipment traffic affecting soil dispersion. The term dispersed rather than sodic 

describes soils affected by dispersion discussed in this paper following the 

recommendation of Sumner (1995). 

The amount of sodium adsorbed to cation exchange sites of soil clays and the 

concentration of electrolytes in water held by soil control the process of soil dispersion. 
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The net negative charge of soil clay attracts exchangeable sodium ions. Exchangeable 

cations, held by net negative charges of soil clays, attract electrolytes in soil water 

between clay particles. Sodium ions adsorb less tightly to cation exchange sites of clays 

than more-densely charged ions of calcium and magnesium commonly more abundant in 

non-dispersed soils. Distances between individual clay particles in soils increase when 

sufficient numbers of sodium ions adsorb to cation exchange sites of soil clays and 

electrolyte concentrations of soil waters are not large enough to minimize repulsion 

between individual clay particles. The potential for dispersion in soils containing clays 

with sufficient numbers of sodium ions adsorbed to cation exchange sites increases 

because inter-particle (van der Waal's) forces responsible for aggregating individual clay 

particles may not extend across wider spaces between clay particles caused by an 

abundance of exchangeable sodium ions (Curtin et al., 1994c). The adsorbed sodium 

ions in dispersed soils surround individual clay particles and disable aggregation of 

affected particles. 

Dispersion can occur with increases in soil SAR and decreases in concentration of 

electrolytes in water held by soils (Curtin et al., 1994c; 1995). Sufficient concentrations 

of electrolytes in soil waters deter increases in distances between clays caused by 

abundant numbers of adsorbed sodium ions (Rengasamy and Olsson, 1991; Shainberg et 

al., 1992; Lebron et al., 1994). Clays require a minimum concentration of electrolytes in 

soil water for aggregation. The potential for dispersion of soil increases when electrolyte 

concentration in soil water is less than the minimum required for aggregation. 

Properties of Soil and Soil Dispersion 

The concentrations of electrolytes in soil water necessary for aggregation of soil 
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vary in response to other properties of soils (Rengasamy and Olsson, 1991; Lebron et al., 

1994; Curtin et al., 1994c; 1995; Morshedi and Sameni, 2000). Soil properties associated 

with dispersion of soil include bulk density (Curtin et al., 1994a), % clay-sized particles 

(Curtin et al., 1994c; Morshedi and Sameni, pH (saturated paste extract) (Curtin et al., 

1994c), EC (saturated paste extract) (Curtin et al., 1995), SAR (Curtin et al., 1994a), % 

organic carbon (Barzegar et al., 1997), total charge of ions in soil water (Lebron et al., 

1994), ratio of charge of calcium ions to charge of magnesium ions in soil water (Curtin 

et al., 1994c; Seelig et al., 1990), ratio of charge of chloride ions to charge of sulfate ions 

in soil water (Frenkel and Meiri, 1985), ratio of charge of sodium ions to sum of charges 

of sodium and calcium ions in soil water (Rengasamy, 1984), liquid limit (Lebron et al., 

1994), and plasticity index (Lebron et al., 1994). Soils with abundant exchangeable 

sodium or large amounts of clay require more electrolytes in soil water to maintain 

aggregation than soils with less clay or soils with mostly exchangeable calcium and/or 

magnesium ions. Soils containing large amounts of soluble sodium salts need more 

electrolytes in soil water to aggregate. Concentration of electrolytes needed in soil water 

to maintain aggregation decreases in soil containing abundant soluble calcium and /or 

magnesium salts. Ligands in soil water of soils containing abundant organic matter and 

hydrogen ions in acidic soils maintain aggregation of soils by displacing adsorbed sodium 

from exchange sites of soil clays. 

Soils display unique sensitivities to dispersion because of the multitude of 

possible conditions resulting from interactions of different soil properties. Conditions 

associated with dispersion in some soils do not affect other soils (Curtin et al., 1994c). 

Minimum concentrations of electrolytes in soil water needed for aggregation are smaller 
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for soils containing large amounts of gypsum or calcite compared to soils containing 

large amounts of halite. Clayey soils with abundant gypsum require smaller 

concentrations of electrolytes in soil water to maintain aggregation than clayey, kaolinitic 

soils. Dispersion increases with amounts of clay in some soils (Curtin et al., 1994c; 

Morshedi and Sameni, 2000). Velasco-Molina et al. (1971) measured, under weakly 

saline, dispersive conditions, more dispersion in soils having smectite and mica as 

primary components of the clay fraction compared to soils with clay fractions containing 

mostly kaolinite. Frenkel et al. (1978) observed, under dispersive, non-saline conditions, 

dispersion in soils with mostly kaolinite in the clay fraction and less dispersion in such 

soils with acid pH compared to such soils with neutral pH. McNeal and Coleman (1966) 

measured more dispersion in soils containing mostly 2:1 clays compared to soils with 

clays of mostly kaolinite and abundant oxides of iron and aluminum. Rhoades and 

Ingverson (1969) observed more dispersion in smectite compared to vermiculite. 

Felhendler et al., (1974) measured less dispersion in soils with large SAR values (-20) 

and mainly smectite in the clay fraction when concentrations of electrolytes in soil water 

were at least 10 mmolJ}. Soils with abundant magnesium ions on cation exchange 

complexes disperse more easily than soils with mostly calcium ions on exchange 

complexes because sodium ions compete more successfully with magnesium ions for 

exchange sites (Curtin et al., 1994b; Dontsova and Norton, 2002). This process is most 

prevalent in soils with clays of mixed (Y ousaf et al., 1987), kaolinitic (Emerson and 

Smith, 1970), and illitic mineralogy (Rengasamy et al., 1984). 

In calcium-magnesium systems, ratios of 1 :2 exchangeable calcium to 

exchangeable magnesium on exchange complexes of clays produce similar amounts of 

5 



dispersion as clays with exchange complexes holding nearly all calcium ions indicating 

the presence of any calcium ions lessens the potential for soil to disperse (Curtin et al., 

1994b; Dontsova and Norton, 2002). Magnesium ions, however, can promote the 

dissolution of calcium carbonate when present, causing the release of calcium ions into 

soil water, raising the number of calcium ions available for adsorption to exchange sites, 

and decreasing the potential for soil dispersion. The presence of gypsum promotes 

aggregation in soil because dissolution of gypsum releases calcium and sulfate ions into 

soil water (Morshedi and Sameni, 2000). 

Addition of organic matter in the form of plant residues increases the stability of 

dispersed soil (Barzegar et al., 1997). The most stable soil structure occurs in soils with 

small SAR values, abundant organic matter, and clays of mixed mineralogy (Barzegar et 

al., 1997). Barzegar et al. (1997) observed increased stability without removal of sodium 

ions in soils with potential for dispersion in fields under minimum tillage. 

Engineering properties of soils, like moisture content at wilting point and field 

capacity, plastic limit, liquid limit (moisture content at which soil begins to flow like 

liquid), coefficient of linear extensibility, and dispersion index reflect physical and 

chemical conditions in soils at different ratios of soil to water (Lebron et al., 1994). 

Lebron et al., (1994) observed increased potential for erosion in soils with liquid limits 

<0.3 and plasticity indexes of <0.1. Lebron et al., (1994) suggested the best diagnostic 

tool for evaluating remediation of dispersed soil is ratio of liquid limit to moisture content 

at field capacity (0.03 MPa matric potential). Dispersion is likely in soils with liquid 

limits less than the moisture at field capacity (Lebron et al., 1994). 

Raising the pH of some soils increased dispersion in the soils (Arora and 
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Coleman, 1979; Curtin et al., 1994a). Soils susceptible to increased dispersion with 

increased pH contain significant amounts of variable charge from minerals or organic 

matter (Suarez et al., 1984). 

Differing amounts of dispersion between soils with similar concentrations of 

exchangeable sodium and electrolytes in soil water make establishment of uniform 

guidelines for identification and management of dispersed soils difficult (Curtin et al., 

1994a; 1994c ). Soil conditions responsible for dispersion vary from region to region 

because properties of soils vary from region to region. The best guidelines for 

identification and management of dispersed soils in a region result from analyses of 

dispersed soils of the region (Curtin et al., 1994c). 

The objectives of this study are: I) quantification of dispersion occurring in some 

potentially dispersed subsoil horizons from soils of Oklahoma, 2) identification of soil 

properties associated with dispersion in the horizons, and 3) establishment of diagnostic 

SAR and EC values for recognition and management of dispersed soils in Oklahoma and 

similar areas based on properties of the tested horizons. Quantification of dispersion and 

identification of properties of soil associated with dispersion for a number of soil 

horizons affected by a range of soil and environmental conditions increases the 

understanding of and ability to identify and manage dispersed soils in semiarid to 

subhumid parts of Oklahoma and other similar areas. Measurements of percent 

dispersion, SAR, EC, pH, types and amounts of clay, types and concentration of ions in 

soil water, organic matter content, and special features of soil like the presence of 

gypsum, calcium carbonate, and/or sesquioxides for more than 100 potentially dispersed 

subsoil horizons increases amount of available data concerning dispersed soils in 
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semiarid and subhumid regions. Determination of diagnostic SAR and EC values based 

on measurements of soils of the region and identification of soil properties associated 

with dispersion in soils of Oklahoma promotes improved identification, delineation, and 

management of dispersed soils in Oklahoma and other semi-arid to sub-humid areas. 

Materials and Methods 

The process of selection of soil pedons for sampling and analysis included 

examination ofU. S. Department of Agriculture (USDA)-Natural Resource Conservation 

Service (NRCS) county soil surveys for soil series affected by dispersion and areas of 

potentially dispersed soil, recommendations from Oklahoma Department of 

Transportation (ODOT) personnel and NRCS soil scientists, and preliminary 

investigation of more than 70 prospective locations. The preliminary study included 

sampling of soils with a Giddings soil probe and/or hand augers, brief field descriptions 

of sampled profiles, and laboratory analyses of saturated paste extracts from soil samples 

for pH, EC, and SAR. 

Sites selected for sampling for the primary study represent the ranges in pH, EC, 

and SAR of extracts from soils sampled for the preliminary study. The 23 soil pedons 

sampled and analyzed represent a large area of Oklahoma containing dispersed soils (Fig. 

1 ). The selected pedons are from 19 different counties. Three counties contain more 

than one sampled pedon. The sampling locations are native range and improved or 

unimproved pastures and most are on intermediate or high stream terraces. Other 

locations are either floodplains or uplands. Slopes at sampling locations are primarily 0 

to 1 percent and range to 7 percent. 

Soil pits, - 2 m deep and 2 m wide excavated with backhoes, provided access to 
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Percent of county area in dispersed soil: 

l I None 

\C) i;,.:.,;,:,.:.,:.,:.,:,i 0.1 - 0.8 

t=:=:=:=:~ 1.2- 5.0 

~ 8.4- 18.2 

'•'•'•'•'• I I I I I 
28.8 - 35.6 

~ Not measured N 
23 Location of 

sampled pedon ~km 

Figure 1. Locations of sampled pedons and areas of dispersed soils within Oklahoma according to soil surveys. 



the soil pedons selected for sampling. The sampling procedure included a detailed 

description of the soil profile (Soil Survey Division Staff, 1993) (Table 1) and retrieval of 

samples of each of the individual horizons described in the profile for laboratory 

analyses. Processing of samples for analyses included air-drying and grinding to pass a 

No. 10 soil sieve (2 mm diameter sieve openings). Paper, 4 L cartons with lids held dried 

and ground samples available for testing and free of contamination. Table 2 contains a 

list of the laboratory analyses performed on the samples. 

Division of sampled horizons into dispersion groups followed the scheme 

established by Knodel (1991). Soils <30% dispersed show no to weak dispersion, soils 

30 to 65% dispersed display moderate dispersion, and soils >65% dispersed have strong 

dispersion (Knodel, 1991). Student's t-tests comparing means of properties of soils for 

the different dispersion groups identified properties associated with dispersion in the 

soils. 

Derivation of diagnostic SAR values for dispersed soils in Oklahoma and semi­

arid and sub-humid areas with soils and climates similar to Oklahoma (mean annual soil 

temperature of 16° C) included assessments of relationships of SAR, EC, and percent 

dispersion for the tested horizons. Thirty percent or more dispersion by the Double 

Hydrometer method indicated a horizon as adversely affected by dispersion following 

recommendations of Knodel (1991) and Crouch et al., (1991). Diagnostic SAR values 

determined in this study from properties of soil horizons of the study are solutions to 

equations resulting from linear regressions of SAR versus % dispersion values of 

analyzed horizons. Derived diagnostic SAR values yield a value of 30% for dispersion 

by the regression equations. Soils less than 30% dispersed typically do not show 
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Table 1. Field descriptions of soil horizons sampled for the study 

Sample No. Horizon Depth0 Texture# Color Structure+ Special features% 
Site No. 1 - Bosville soil series, Choctaw Co., (Fine, mixed, thermic Albaguic Paleudalt) 

3 Btl 28-53 CL 7.5YR 6/6 3fSBK Fe-Mn soft bodies; siltans 
4 Bt2 53-76 Si CL 2.5Y 6/4, 2.5YR 4/8 3cPR/ lcSBK Sil tans 
5 Bty3 76-130 C 10YR6/6 3cSBK Masses of gypsum; siltans 
6 Bty4 130-168 Si CL 10YR6/6 2cPR/ lcSBK Masses of gypsums; Fe-Mn soft bodies; siltans 

7 BC 168-200 L 10YR6/6 2cPR/ lcSBK Fe-Mn soft bodies; siltans 
Site No. 2 - Dwight soil series, Pittsburg Co., (Fine, smectitic, mesic Typic Natrustoll) 

9 Bnl 17-36 Si CL 10YR4/2 3mPR Ft. redox depl. 

10 Bn2 36-64 CL lOYR 5/2 3mPR Dt. redox depl.; siltans 

11 Bt3 64-110 Si CL lOYR 3/2 lmSBK Ft. redox depl.; siltans 

..... 12 Bt4 110-140 Si CL lOYR 6/2 lmSBK Dt. redox depl. and accum. 

..... 
13 BC 140-170 SiC 10YR6/2 massive Dt. redox depl.; krotovinas; siltans 

Site No. 3 - Wing soil series, Leflore Co., (Fine, mixed, thermic Aguie Natrustalt) 

15 Btl 20-41 C 10YR4/4 2mPR I 3mSBK Dt. redox accum. 

16 Bty2 41-72 SiC 2.5Y 5/4 2mSBK Pt. redox accum.; masses of gypsum 

17 2Btk3 72-115 SICL lOYR 5/4 lcSBK Pt. redox depl; dt. redox depl.; CaC03 nodules; 
Fe-Mn concretions and soft bodies; rounded 
sandstone gravels, krotovinass 

18 2BCk 115-170 Si CL 7.5YR 6/8, N 5/0 lcSBK Varigated (2 matrix colors); CaC03 nodules; 
rounded sandstone gravels; krotovinas 

Site No. 4 - Wister soil series, Leflore Co., (Fine, mixed, thermic Vertie Natrudalt) 

21 Btl 25-55 Si CL 10YR4/3 2mSBK Ft. redox accum. 

22 Bt2 55-78 SiC 2.5Y 5/3 2mSBK Pt. redox accum. 

23 Bt3 78-105 SiC 2.5Y 5/2, 5YR 4/6 lmSBK Varigated (2 matrix colors); slickensides; rock 
fragments; 



Table 1. Field descriptions of soil horizons sampled for the study ( cont.). 

Sample No. Horizon Depth"' Texture# Color Structure+ Special features% 
Site No. 5 - Pawhuska soil series, McClain Co., (Fine, mixed, thermic Mollie Natrustalf} 

28 Bnl 23-55 CL lOYR 5/3 3cPL Sil tans 
29 Bty2 55-81 CL lOYR 4/3 lcPR Ft. redon depl.; masses of gypsum 
30 Btk3 81-120 SiC 1 OYR-2.5Y 4/4 lmPR CaC03 nodules; Fe-Mn nodules 
31 Bt4 120-150 SiC 10YR4/4 lcPR I lmSBK Ft. redox depl.; CaC03 nodule; Fe-Mn nodules 
32 BC 150-210 SiC 5YR5/8 lcPR I lmSBK Pt. redox depl. 

Site No. 6 - Lafe soil series, Seguoyah Co., (Fine-siltv, mixed, thermic Glossic Natrudalf} 
34 Btnl 12-30 SiC 10YR6/4 2cSBK Dt. redox depl and accum.; Fe-Mn nodules 

35 Bty2 30-55 SiC 2.5Y 5/6 1 cPR I 2mSBK Dt. redox depl and accum; masses of gypsum; 
Fe-Mn nodules 

36 Btky3 55-95 C lOYR 6/6 2cPR Dt. redox accum.; masses of gypsum; CaC03 - nodules; Fe-Mn nodules N 

37 BCk 95-140 C 7.5YR 6/8, 10 YR 6/1 massive Green sandstone fragments; CaC03 nodules; 
varigated (2 matrix colors) 

Site No. 7 - Carvtown soil series, Muskogee Co., (Fine, mixed, thermic Albie Natragualf} 

40 E 6-22 VFSL 10 YR 5/3 lfG 

41 Btnl 22-49 C 7.5YR3/2 2mSBK Sil tans 

42 Bt2 49-89 Si CL 10YR4/4 2mPR Dt. redox depl.; pt.redox accum.; masses of 
gypsum 

43 Bty3 89-119 SiC 7.5YR 6/8 2cPR Pt. redox depl.; masses of gypsum 

44 Bty4 119-150 SiC 10YR6/8 2cPR Pt. redox depl.; masses of gypsum 

Site No. 8 Dwight soil series, Okmulgee Co., (Fine, smectitic, mesic Typic Natrustoll) 

47 Bnl 19-61 Si CL lOYR 3/1 lmPR I 2mSBK Siltans; krotorvinas 

48 Btk2 61-105 CL 7.5YR 5/6 lcPR I lcSBK Pt. redox depl.; CaC03 concretions; krotovinas 
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Table 1. Field descriptions of soil horizons sampled for the study (cont.). 

SI H . • # + • o/c amp e No. onzon Depth Texture Color Structure Special features• 

49 Btk3 

50 BCk 

52 Btnl 
53 Btk2 
54 Btky3 

55 Btk4 

56 2BCk 

58 Btkl 
59 Btss2 
60 Btss3 
61 2Bt4 

63 Btnl 
64 Btn2 
65 Bt3 

70 Ap2 
71 Al, b 

Site No. 8 - Dwight soil series, Okmulgee Co. (cont.) 
105-152 SiC lOYR 5/3 lcPR I lmSBK Pt. redox accum.; CaC03 concretions; Fe-Mn 

nodules; krotovinas 
152-193 SiCL lOYR 4/6 lcPR Ft redox accum.; CaC03 concretions 

Site No. 9 - Doolin soil series, Cleveland Co .• (Fine, smectitic. thermic Typic Natrustoll) 
23-56 CL lOYR 2/2 2cPR I lmSBK Dt. Redox accum.; siltans; Fe-Mn nodules 
56-81 SiC lOYR 3/4 lmSBK Masses of gypsum; Fe-Mn nodules 
81-107 CL 1 OYR 4/3 1 mSBK Masses of gypsum; CaC03 nodules; Fe-Mn 

nodules 
107-160 CL 5YR 5/8 lcPR Dt. redox depl.; CaC03 nodules; Fe-Mn nodules; 

krotovinas 
160-210 SiC 2.5YR 4/6 lmSBK Pt. redox depl.; CaC03 nodules; Fe-Mn nodules; 

krotovinas 
Site No. 10 - Drummond soil series. Canadian Co .• (Fine. mixed. thermic Mollie Natrustalf) 

26-54 SiCL lOYR 3/1 2fSBK Ft. redox depl.; CaC03 soft bodies; siltanss 
54-91 SiCL lOYR 3/1 lmSBK Dt. redox accum.; slickensides 

91-117 SiC 2.5Y 4/2 lmSBK Ft. redox depl. 
117-164 SCL 2.5Y 6/3 lcPR I lcSBK Dt. redox depl.; standing water at 164 cm 
Site No. 11 - Dwight soil series. Osage Co .• (Fine. smectitic. mesic Typic Natrustoll) 
13-38 CL lOYR 3/1 3mCO I 2fSBK Ft. redox accum.; CaC03 soft bodies; siltans 
38-67 C lOYR 4/1 lcCO I 2mSBK Ft. redox accum.; limestone fragments; siltans 
67-95 SiC 2.5Y 4/3 lmSBK Dt. redoc depl.; limestone fragments 

Site No. 12- Drummond soil series, Grant Co .• (Fine. mixed. thermic Mollie Natrustalf) 
19-40 L 7.5YR 4/2 lcSBK Siltans 
40-56 SiCL 7.5YR 3/2 lcPR I lmSBK -



Table 1. Field descriptions of soil horizons sampled for the study (cont.). 

SampJ~_No_._ Horizon Depth• Texture# Color Structure+ Special features% 
Site No. 12-Drummond soil series. Grant Co. (cont.) 

72 Btyl, b 56-79 SiC 5YR4/3 lcPR I lmSBK Masses of gypsum 
73 Btk2, b 79-117 Si CL 5YR4/6 lcPR CaC03 nodules; standing water at 112 cm 
74 Btk3, b 117-148 Si CL 5YR 5/4 lcPR CaC03 nodules 

Site No. 13 - Huska soil series. Payne Co .• (Fine, mixed, thermic Mollie Natrustalt) 
77 Bnl 27-52 L 7.5YR 4/4 lcPR I lmSBK Fe-Mn softt bodies and nodules 
78 Bn2 52-84 CL 7.5YR 5/3 lcPR I 2mSBK Pt. redox accum.; Fe-Mn soft bodies and nodules 
79 Bt3 84-113 CL 5YR 5/4 lcPR I lmSBK Pt. redox accum.; Fe-Mn soft bodies and nodules 

Site No. 14 - Doolin soil series, Payne Co .• (Fine, smectitic, thermic Typic Natrustoll) 

83 Btnl 24-49 Si CL 7.5YR 3/2 lmPR Fe-Mn soft bodies and nodules 

..... 84 Btn2 49-69 CL 10YR5/4 2mSBK Ft redox accum.; Fe-Mn soft bodies and nodules 
~ 85 Btkn3 69-92 SiC lOYR 5/4 lcPR I 2mSBK Ft redox accum.; Fe-Mn soft bodies; CaC03 

nodules and soft bodies 
86 Btnyq4 92-136 Si CL 7.5YR 5/8 lcPR I lcSBK Pt .redox accum.; masses of gypsum; Fe-Mn soft 

bodies; silica soft bodies 

87 Btnq5 136-166 SCL 7.5YR 5/6 lmSBK Pt. redox depl.; silica soft bodies; sandstone 
gravels 

Site No. 15 Carvtown soil series, Tulsa Co. (Fine, mixed, thermic Albie Natragualt) 

90 Btnl 19-37 CL lOYR 3/1 2mPR Ft redox accum.; Fe-Mn soft bodies; sandstone 
fragments 

91 Btn2 37-76 C 2.5Y 4/3 2mSBK Fe-Mn soft bodies 

92 Btny3 76-100 C SY 4/4 2mSBK Masses of gypsum; CaC03 nodules 



Table 1. Field descriptions of soil horizons sampled for the study (cont.). 

Sample No. Horizcm Deoth· Texture# Color Structure+ Special features% 
Site No. 15 - Carvtown soil series, Tulsa Co. (cont.) 

93 Btn4 100-138 Si CL 5Y 5/6 2mSBK Pt redox depl.; Fe-Mn nodules and soft bodies; 
sandstone gravels 

94 Btnk5 138-172 Si CL lOYR 5/6 2mSBK Pt redox depl.; Fe-Mn nodules and soft bodies; 
sandstone gravels 

Site No. 16 - Seminole soil series, Payne Co., (Fine, mixed, thermic Typic Natrustoll) 

97 Ban 21-34 VFSL lOYR 3/3 lmPR I lmSBK -

98 Btnl 34-57 CL 10YR4/4 2rnPR Dt. redox accum. 

99 Btn2 57-97 SC 7.5YR4/4 2cSBK Dt redox accum; Fe-Mn nodules 

- 100 Btnky3 97-137 SCL 7.5YR 3/6 lcSBK Pt redox accum., masses of gypsum, Fe-Mn 
Vl 

nodules, CaC03 nodules 
Site No. 17 - Healdton soil series, Carter Co., (Fine, mixed, thermic Vertie Natragualt) 

104 Btnl 13-39 SiC 10YR2/2 3cCO Sil tans 

105 Btn2 39-56 SiC lOYR 3/2 2mSBK Sil tans 

106 Btk3 56-91 Si CL 10YR4/3 2mSBK CaC03 nodules 

107 Btk4 91-123 Si CL 10YR4/3 lmPR Pt. redox accum.; CaC03 nodules 

108 Akss, b 123-151 Si CL lOYR 3/3 2mPR Pt. redox accum.; CaC03 nodules 

109 Btkssl , b 151-186 SiC lOYR 3/3 2cPR I 2mSBK Dt. redox accum.; CaC03 nodules; slickensides 

110 Btkss2, b 186-202 SiC lOYR 3/3 2cPR I 2mSBK Dt. redox accum.; CaC03 nodules; slickensides 

Site No. 18 - Wing soil series, Jefferson Co., (Fine, mixed, thermic Aguie Natrustalt) 

113 Btnl 27-53 SCL 7.SYR 3/2 lmPR I 2mSBK Ft. redox depl.; siltans 

114 Btn2 53-77 SCL 10YR4/4 lmSBK Ft. redox accum.; siltans; Fe-Mn nodules 



Table 1. Field descriptions of soil horizons sampled for the study (cont.). 

Sample No. Horizon Depth• Ie_xturl Color Structure+ Special features% 
Site No. 18 - Wing soil series, Jefferson Co. (cont.) 

115 Btkn3 77-97 SCL lOYR 5/3 lcSBK Pt. redox depl. and accum.; CaC03 soft bodies; 
Fe-Mn nodules 

116 BC kg 97-137 FSL 5GY 6/1 lcSBK Pt. redox accum.; CaC03 soft bodies; Fe-Mn 
nodules 

Site No. 19 - Oscar soil series, Jefferson Co., (Fine-sil!Y, mixed, thermic Typic Natrustalt) 
120 Btnkyl 15-38 Si CL 7.5YR4/4 1 cPR I 2mSBK Masses of gypsum; CaC03 soft bodies; siltans 
121 Btnky2 38-78 SiC 5YR4/3 1 cPR I 2mSBK Masses of gypsum; CaC03 soft bodies and 

nodules; Fe-Mn nodules; siltans 
122 Btn3 78-110 Si CL 5YR4/4 SmPR I 2mSBK Fe-Mn nodules; siltans 

123 Btc4 110-173 Si CL 5YR4/4 lcSBK Ft. redox depl.; Fe-Mn nodules 

- Site No. 20 - Foard soil series, Comanche Co., (Fine, smectitic, thermic Vertie Natrustoll) 
0\ 

126 Btnl 10-32 CL 7.5YR 3/1 2cCO Sil tans 

127 Btnky2 32-60 CL 7.5YR 4/1 2mSBK Masses of gypsum; CaC03 soft bodies and 
nodules; siltans 

128 Btnky3 60-90 CL 7.5YR4/3 2mPR Masses of gypsum; CaC03 soft bodies and 
nodules; siltans 

129 Btnky4 90-122 C 7.5YR 4/2 lmPR Ft. redox accum.; Masses of gypsum; CaC03 soft 
bodies and nodules; siltans 

130 2BCk 122-169 CL 2.5YR4/2 2cSBK Pt. redox accum; CaC03 soft bodies and nodules; 
siltans; Fe-Mn soft bodies and nodules 

Site No. 21 - Oscar soil series, Tillman Co., (Fine, smectitic, thermic Vertie Natrustoll) 

133 Btkynl 9-25 CL 7.5YR 3/2 lcCO Masses of gypsum; CaC03 nodules; siltans 

134 Btkyn2 25-37 CL lOYR 3/1 2mSBK Masses of gypsum; CaC03 nodules 

135 Btkn3 37-57 CL 7.5YR 3/2 2mSBK CaC03 nodules; siltans; krotovinas 

136 Btkn4 57-87 SCL 7.5YR 4/4 lcSBK CaC03 nodules; krotovinas 
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Table 1. Field descriptions of soil horizons sampled for the study (cont.). 

Texture# Color De12th • Texture# Color Structure + 
Special features% 

Site No. 21 - Oscar soil series, Tillman Co. (cont.) 
137 Btkn5 87-118 Si CL 7.5YR4/4 lcPR I lcSBK CaC03 nodules; krotovinas; Fe-Mn soft bodies 
138 BCk 118-144 L lOYR 4/3 lcSBK Ft. redox accum.; CaC03 nodules; Fe-Mn soft 

bodies and nodules 
Site No. 22 - Hinkle soil series. Kiowa Co .• (Fine, smectitic, thermic Vertie Natrustalf} 

141 Btknl 18-41 CL 7.5YR 3/3 2mPR I 3mSBK Fe-Mn soft bodies; CaC03 soft bodies and 
nodules; siltans 

142 Btkyn2 41-58 CL 7.5YR 3/2 2mPR I 2mSBK Masses of gypsum; Fe-Mn nodules; CaC03 soft 
bodies and nodules; shale fragments 

143 Btkn3 58-77 C 7.5TR 332 2mPR I 2mSBK Pt. redox accum.; CaC03 nodules; Fe-Mn 
nodules 

144 Btkn4 77-107 Si CL 7.5YR 3/4 2cPR I 2mSBK Pt. redox accum; CaC03 nodules; Fe-Mn soft 
bodies; krotovinas 

145 Btkn5 107-157 CL 7.5 YR4/6 lcPR/2cSBK Fe-Mn soft bodies; CaC03 soft bodies and 
nodules; krotovinas 

146 BCk 157-200 Si CL 2.5YR4/6 lcPR I 2mSBK Fe-Mn soft bodies; CaC03 nodules; stratified; 
grains of rounded quartzite 

Site No. 23 - Hinkle soil series. Grady Co .• (Fine, smectitic, thermic Vertie Natrustalf} 
148 Btnssl 18-48 Si CL 2.5YR4/6 lmPR I 2mSBK Fe-Mn soft bodies; siltans; slickensides 
149 Btk2 48-74 Si CL 2.5YR4/6 lcPR I lcSBK Fe-Mn soft bodies; siltans; CaC03 soft bodies; 

caliche gravels at base; 
150 Ckl 74-104 SiL 2.5YR4/6 Massive (shale) CaC03 soft bodies in fissures 

•cm;# SiL- silt loam, SiCL- silty clay loam, CL-clay loam, C-clay, L- loam, SiC- silty clay, SCL- sandy clay loam, FSL­
fine sandy loam, VFSL - very fine sandy loam, SC - sandy clay; + 1 - weak, 2 - moderate, 3 - strong; f - fine, m - medium, c -
coarse; PR - prismatic, SBK - subangular blocky, CO - columnar, G - granular, PL - platy, I - parting to; % Ft - faint, Dt - distinct, Pt 
-prominent 
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Table 2. Laboratory methods used to measure properties of soil horizons analyzed in this study 

Soil Property 

Soil profile description 

pH (saturated Paste) 

pH (1: 1 soil-water by 
weight) 

Electrical conductivity 
(Saturated Paste Extract) 

Method 

Soil Survey Division Staff, 1993. Soil Survey Manual, United States Department of Agriculture (USDA) 
Handbook No. 18. USDA. 

USDA-Natural Resources Conservation Service (NRCS) -National Soil Survey Center (NSSC), 1996. 
Soil Survey Laboratory Methods Manual, Soil Investigations Report No. 42, Version 3. Method 8C 1 b­
Reaction (pH)-Saturated Paste, p. 411. 

USDA-NRCS-NSSC, 1996. Soil Survey Laboratory Methods Manual, Soil Investigations Report No. 42, 
Version 3. Method 8Cla- Reaction (pH)-Water dilution, p.671. 

USDA-NRCS-NSSC, 1996. Soil Survey Laboratory Methods Manual, Soil Investigations Report No. 42, 
Version 3. Method 8Ala- Conductivity of Saturation Extract, p. 669. 

Sodium adsorption ratio USDA-NRCS-NSSC, 1996. Soil Survey Laboratory Methods Manual, Soil Investigations Report No. 42, 
Version 3. Method SE- Sodium-Adsorption Ratio, p. 215-216. 

Bulk density USDA-NRCS-NSSC, 1996. Soil Survey Laboratory Methods Manual, Soil Investigations Report No. 42, 
Version 3. Method 4Alb-Saran-Coated Clods-Air-Dry, p.591-594. 

Organic carbon Yeomans, J.C., and Bremner, J.M., 1988. A Rapid and Precise Method for Routine Determination of 
Organic Carbon in Soil, Communications in Soil Science and Plant Analysis, 19:1467-1476. 

Total carbon USDA-NRCS-NSSC, 1996. Soil Survey Laboratory Methods Manual, Soil Investigations Report No. 42, 
Version 3. Method 6A2c-C02 Evolution III, p.607. 

Carbonates By difference of Total carbon and Organic carbon. 
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Table 2. Laboratory methods used to measure properties of soil horizons analyzed in this study (cont.) 

Soil Property 

C 2+ Mi+ N + K+ a , g , a, 

F, er, Br", N03-, so/ 

Liquid limit, Plasticity 
index 

Dispersion 

Particle size distribution 

Exchangeable sodium 
percentage 

Cation exchange capacity 

Method 

USDA-NRCS-NSSC, 1996, 1996. Soil Survey Laboratory Methods Manual, Soil Investigations Report 
No. 42, Version 3. Methods 6Nlb, 601b, 6Plb, 6Qlb-Saturation Extraction, Atomic Absorption, p. 299-
304. 

USDA-NRCS-NSSC, 1996. Soil Survey Laboratory Methods Manual, Soil Investigations Report No. 42, 
Version 3. Methods 6Ulb, 6Kld, 6Mld,6Lld,- Saturation Extract, Chromatograph (Anion Suppressor), 
p. 287-292. 

American Society for Testing and Materials (ASTM), 1995. Standard Test Method for Liquid Limit, 
Plastic Limit, and Plasticity Index of Soils (Designation D 4318 - 93), 1995 Annual Book of ASTM 
Standards, Section 4-Construction, Volume 4.08, p. 554-564. 

ASTM, 1995. Standard Test Method for Dispersive Characteristics of Clay Soil by Double Hydrometer 
(Designation: D 4221 - 90), 1995 Annual Book of ASTM Standards, Section 4-Construction, Volume 
4.08, p. 526-528. 

USDA-NRCS-NSSC, 1996. Soil Survey Laboratory Methods Manual, Soil Investigations Report No. 42, 
Version 3. Method 3A-Particles <2mm (Pipet Method), p. 588-590. 

USDA-NRCS-NSSC, 1996. Soil Survey Laboratory Methods Manual, Soil Investigations Report No. 42, 
Version 3. Method SD- Exchangeable Sodium Percentage, p. 215-216. 

Sumner, M. E. and Miller, W. P., 1996. Cation Exchange Capacity of Soils Containing Salts, Carbonates 
or Zeolites. Methods of Soil Analysis, Part 3. Chemical Methods- SSSA Book Series 5, Chapter 40, p. 
1213-1214. 
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Table 2. Laboratory methods used to measure properties of soil horizons analyzed in this study (cont.) 

Soil Property 

Clay mineralogy 

Method 

Whittig, I. D., and Allardice, W.R., 1986. X-Ray Diffraction Techniques. Methods of Soil Analysis, Part 
Physical and Mineralogical Methods- Agronomy Monograph No. 9 (2nd Edition), Chapter 12, p. 331-
362. 



characteristics commonly attributed to dispersed soils (Knodel, 1991). 

Results and Discussion 

Properties of Dispersed Soils of Oklahoma 

Measured dispersion in the analyzed horizons ranges from O to >95%, SAR 

ranges from <1 to >85, and EC ranges from <1 to 15 dS/m (decisiemens per meter) 

(Table 3). The group of soils with no to weak dispersion (>30% dispersion) contains 31 

horizons, the moderately dispersed group of soils (30 to 65% dispersion) contains 30 

horizons, and the strongly dispersed group of soils (<65% dispersion contains 42 

horizons (Table 4). 

Soil properties associated with dispersion in the horizons include bulk density, % 

clay-sized particles, pH, EC, SAR, % organic carbon, ratio of the charge of chloride ions 

to the charge of sulfate ions in soil water, and ratio of charge of sodium ions to the sum of 

the charges of sodium and calcium ions in soil water (Table 5). The group of horizons 

with no to weak dispersion has smaller mean pH, SAR, and ratio of charge of sodium 

ions to the sum of charges of sodium and calcium ions in soil water than the groups of 

horizons with moderate or strong dispersion (Table 5). The group of moderately 

dispersed horizons has smaller mean pH, SAR, ratio of charge of sodium ions to sum of 

charges of sodium and calcium ions in soil water, and EC than the group of strongly 

dispersed horizons (Table 5). The group of strongly dispersed horizons has greater mean 

bulk density and ratio of charge of chloride ions to charge of sulfate ions in soil water 

than the groups affected by less dispersion (Table 5). The mean % clay-sized particles 

and % organic carbon for the group of strongly dispersed horizons are smaller than for 

the group of horizons with no to weak dispersion (Table 5). The means of the 3 groups 
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Table 3. Laboratory measurements of soil properties tested for effect on dispersion of sampled soils 

Sample No. Site No. Dispersion, % B.D. Clay,% PH EC SAR oc Ions 1 + + 2+ Ca:Mg C :S04 Na I (Na + Ca ) LL PI 
3 1 0.0 1.71 43.6 5.3 0.1 1.6 0.4 0.2 3.0 1.7 0.70 0.47 0.30 

35 6 0.0 1.84 42.9 8.3 12.0 11.3 0.2 25.3 0.4 0.3 0.78 0.48 0.32 

53 9 0.0 1.92 39.2 8.5 3.8 18.4 0.5 8.6 0.5 0.4 0.93 0.56 0.38 

78 13 0.2 1.80 31.1 6.3 0.2 0.9 0.3 0.4 1.6 1.2 0.47 0.35 0.19 

142 22 2.2 l.79 37.5 7.9 6.8 24.2 0.4 34.5 1.0 0.6 0.72 0.53 0.35 

44 7 2.4 l.89 41.4 6.6 8.4 9.9 0.2 30.7 0.4 0.0 0.74 0.48 0.33 

85 14 2.7 l.80 32.9 7.9 7.2 14.8 0.3 22.9 1.1 0.2 0.74 0.39 0.24 

77 13 2.9 l.79 30.6 6.5 0.2 0.5 0.7 0.6 1.5 4.0 0.36 0.41 0.24 

45 7 4.5 1.20 36.9 6.5 6.7 8.2 0.2 24.3 0.4 0.0 0.71 0.41 0.26 

21 4 5.8 1.54 72.9 6.6 0.4 3.1 1.0 0.6 1.5 3.0 0.78 0.88 0.55 

106 17 6.0 1.83 43.6 7.7 9.0 21.l 0.4 27.2 2.9 0.7 0.76 0.48 0.30 

100 16 6.3 l.87 33.0 7.8 6.8 13.8 0.2 20.7 1.2 0.2 0.74 0.38 0.21 
N 79 13 10.0 l.85 26.7 7.0 0.2 0.7 0.3 0.4 1.8 1.3 0.39 0.38 0.22 
N 

98 16 11.2 l.88 41.8 6.5 0.3 13.7 0.8 0.5 0.0 1.3 1.00 0.56 0.37 

54 9 11.5 1.94 37.8 7.9 7.9 14.1 0.3 16.2 0.6 0.2 0.78 0.49 0.31 

127 20 11.7 1.79 40.6 8.2 5.4 16.8 0.6 12.8 1.1 1.3 0.85 0.53 0.34 

22 4 11.8 1.76 68.8 6.2 0.1 4.6 0.7 0.3 0.0 1.8 0.92 0.83 0.55 

29 5 15.3 l.69 37.8 8.4 5.2 11.6 0.6 18.5 1.3 0.1 0.70 0.53 0.35 

41 7 18.7 1.53 43.9 6.4 4.4 10.0 0.9 13.4 0.2 0.0 0.88 0.53 0.33 

134 21 19.4 l.89 41.l 9.6 18.5 47.0 0.8 59.3 1.4 1.5 0.80 0.61 0.41 

128 20 19.6 1.78 44.9 8.1 5.8 14.9 0.5 15.9 1.0 0.9 0.82 0.56 0.36 

34 6 19.8 1.92 38.5 8.0 13.0 12.6 0.5 35.4 0.3 0.5 0.82 0.47 0.31 

70 12 21.9 l.62 10.3 7.7 5.5 15.0 0.5 13.6 1.1 0.8 0.82 0.27 0.70 

23 4 22.2 1.88 51.0 6.5 0.7 32.1 0.6 1.6 1.5 0.1 0.98 0.78 0.54 

130 20 22.6 l.65 45.1 8.3 11.0 30.1 0.3 27.2 1.2 2.6 0.89 0.62 0.43 

97 16 23.4 1.61 20.3 6.5 0.4 4.0 0.9 0.6 1.3 1.0 0.86 0.28 0.11 

42 7 24.6 l.79 42.5 6.7 8.2 9.9 0.7 38.l 0.3 0.0 0.76 0.45 0.29 

129 20 24.8 l.74 45.0 8.0 5.6 17.3 0.4 15.4 1.2 1.2 0.84 0.58 0.38 

55 9 27.l 2.00 40.6 8.1 5.2 2.6 0.2 14.5 1.6 0.4 0.61 0.54 0.37 

28 5 27.2 1.51 38.4 8.4 1.0 12.2 0.6 2.3 1.3 0.4 0.93 0.60 0.42 



Table 3. Laboratory measurements of soil properties tested for effect on dispersion of sampled soils (cont.) 

Sample No. Site No. Dispersion, % B.D. Clay.% mi EC SAR oc Ions 
+ + 2+ 

Ca:Mg Cl:S04 Na I (Na + Ca ) LL PI 
4 1 27.3 1.80 43.5 5.7 0.3 5.1 0.3 0.7 1.0 4.3 0.91 0.59 0.41 

43 7 30.6 1.52 41.0 6.4 8.6 10.0 0.4 64.4 0.9 0.0 0.78 0.49 0.34 

73 12 31.7 l.88 29.3 8.0 8.4 22.2 0.4 29.3 1.1 0.3 0.82 0.43 0.25 

50 8 31.8 0.86 28.8 8.8 0.8 18.6 0.1 1.5 2.0 1.4 0.98 0.44 0.28 

126 20 33.6 1.78 42.9 8.4 2.7 13.7 0.8 5.4 1.2 6.3 0.89 0.63 0.42 

5 l 35.0 1.88 32.0 5.7 0.4 4.6 0.2 0.7 1.3 4.6 0.88 0.42 0.28 

47 8 35.5 1.51 26.8 7.8 1.4 10.7 0.6 2.6 2.1 0.5 0.88 0.38 0.23 

52 9 38.0 1.71 42.l 8.0 1.7 17.4 0.7 4.0 0.8 1.2 0.99 0.63 0.45 

63 11 39.0 1.41 44.2 8.0 3.0 20.0 1.6 7.2 1.5 0.6 0.92 0.65 0.42 

30 5 39.6 1.58 37.3 8.3 3.9 18.0 0.4 12.0 0.9 0.1 0.88 0.54 0.37 

32 5 41.3 1.53 46.0 8.1 2.9 19.8 0.2 7.4 1.4 1.0 0.92 0.56 0.38 

56 9 41.8 1.85 41.3 8.3 2.8 14.2 0.1 6.3 1.1 0.7 0.88 0.53 0.37 
N 

72 12 43.6 1.72 40.2 7.7 8.5 23.2 0.5 31.5 1.1 0.2 0.83 0.56 0.37 w 
87 14 44.6 1.78 27.2 8.1 2.6 19.l 0.2 5.0 1.2 0.9 0.94 0.30 0.13 

48 8 46.2 1.15 33.6 8.6 2.0 22.8 0.3 4.3 1.7 0.4 0.95 0.51 0.36 

49 8 48.9 1.24 33.8 8.9 1.2 23.4 0.1 2.4 1.5 0.9 0.97 0.52 0.38 

9 2 49.3 1.73 32.6 7.5 0.5 4.9 0.6 1.1 2.2 2.0 0.80 0.39 0.23 

7 1 50.2 1.79 32.5 5.4 2.4 11.8 0.2 4.9 0.8 2.0 0.89 0.36 0.23 

141 22 51.0 1.78 43.0 8.4 5.9 25.0 0.6 15.6 0.6 1.7 0.93 0.60 0.42 

133 21 52.1 1.73 37.0 7.9 15.0 51.7 0.7 40.9 1.3 3.1 0.93 0.57 0.39 

105 17 52.4 1.89 49.5 7.4 5.0 24.6 0.7 12.0 2.2 5.1 0.90 0.54 0.36 

15 3 52.8 1.92 42.0 5.6 1.1 23.4 0.8 2.1 1.0 0.1 0.98 0.71 0.52 

104 17 53.4 1.82 47.6 7.4 5.6 19.5 0.9 5.4 2.8 2.8 0.92 0.51 0.34 

37 6 53 .5 l.75 39.5 8.9 3.2 35.2 0.1 8.0 0.3 0.0 0.99 0.45 0.28 

90 15 55.9 l.79 37.2 6.4 1.5 19.2 1.1 2.9 1.5 0.4 0.96 0.54 0.33 

36 6 58.0 1.93 43.4 8.7 5.4 17.3 0.1 16.7 0.2 0.0 0.94 0.51 0.35 

149 23 58.2 1.94 28.2 9.1 9.6 37.2 0.2 31.8 0.3 1.2 0.96 0.35 0.20 

99 16 61.4 1.85 40.3 7.9 1.5 15.4 0.4 3.1 1.0 0.4 0.94 0.63 0.44 

84 14 63.9 1.91 35. l 7.9 3.2 18.9 0.5 7.1 1.2 0.7 0.91 0.49 0.33 

144 22 64.l 1.84 30.8 8.5 8.4 3 1.2 0.2 2 1.2 0.5 2.7 0.94 0.44 0.28 



Table 3. Laboratory measurements of soil properties tested for effect on dispersion of sampled soils (cont.) 

Sample No. Site No. Dispersion,% B.D. Clay,% pH EC SAR oc Ions Ca:Mg Cl:S04 Na+/ (Na++ Ca2+) LL Pl 

31 5 64.7 1.72 38.2 8.2 3.8 20.8 0.2 11.5 1.0 0.3 0.88 0.54 0.38 
150 23 66.1 2.08 22.4 9.3 6.8 40.2 0.1 19.0 0.6 5.7 0.96 0.33 0.18 
86 14 66.7 1.52 37.6 7.9 4.0 20.3 0.3 8.9 1.0 0.6 0.92 0.47 0.30 
145 22 66.7 1.62 23.6 8.8 8.6 30.8 0.1 19.2 0.7 4.4 0.93 0.36 0 .20 
91 15 67.0 1.94 43.0 6.5 3.1 11.9 0.8 12.0 1.6 1.5 0.82 0.70 0.49 
107 17 67.2 2.06 43.9 7.9 5.2 26.5 0.4 11.9 3.5 2.8 0.90 0.50 0.33 
71 12 70.3 1.63 30.0 7.9 7.2 26.4 0.8 19.2 0.9 0.6 0.91 0.42 0.26 

61 IO 71.2 NA 23.3 9.4 1.8 33.5 0.3 4.1 1.3 0.6 0.98 0.47 0.29 

74 12 71.4 1.62 32.7 8.4 8.5 31.5 0.3 8.8 1.0 0.9 0.95 0.56 0.40 

143 22 72.6 1.74 34.7 8.3 8.4 29.3 0.4 24.1 0.5 2.1 0.93 0.52 0.36 

83 14 73.7 1.78 42 .6 7.4 1.6 16.3 0.8 3.2 1.0 2. 1 0.95 0.54 0.37 

64 11 74.3 NA 55.5 8.1 3.8 28.4 1.0 10.2 1.0 0.4 0.94 0.77 0.54 

93 15 74.3 1.85 40.1 8.4 4.3 31.0 0.3 10.2 1.4 0.1 0.95 0.53 0.35 
N 10 2 75.3 1.83 32.7 6.5 0.7 8.7 0.6 1.3 3.5 0.3 0.89 0.40 0.25 
.i:,. 

120 19 75 .8 1.86 23.9 9.3 9.8 62 .6 0.3 25.0 0.5 1.7 0.98 0.34 0.21 

6 1 76.4 1.84 30.1 5.4 0.6 7.7 0.2 1.1 1.7 6.0 0.91 0.33 0.21 

146 22 77.3 1.73 23 .0 8.9 6.8 29.9 0.1 15.7 0.5 6.4 0.95 0.33 0.16 

94 15 78 .3 1.86 27.3 8.5 3.3 41.6 0.3 6.1 1.2 0.2 0.98 0.44 0.24 

18 3 78.9 1.83 43.6 8.6 1.9 26.2 0.1 4.1 0.7 0.1 0.98 0.54 0.36 

16 3 79.3 1.95 47.9 6.6 4.0 12.2 0.7 11.7 0.7 0.0 0.82 0.66 0.47 

65 11 80.7 NA 51.9 8.3 3.9 32.5 0.5 8.8 1.1 0.9 0.96 0.93 0.71 

122 19 80.7 1.99 22.2 9.6 9.6 50.9 0.1 4.7 1.0 8.7 0.99 0.35 0.22 

121 19 81.4 1.60 22.1 9.6 9.6 74.4 0.2 11.1 0.6 3.2 0.99 0.44 0.30 

13 2 81.7 1.71 46.7 7.3 0.8 12.1 0.3 1.5 2.0 2.7 0.94 0.59 0.41 

59 10 82.5 1.82 55.8 8.9 5.2 59.4 1.0 13.5 1.7 0.5 0.98 0.15 0.13 

148 23 82.8 1.90 35.3 8.7 8.4 32.2 0.2 24.4 0.3 0.4 0.95 0.40 0.25 

116 18 83.1 1.86 26.4 8.7 4.5 37.0 0.1 8.5 1.0 2.5 0.97 0.33 0.1 6 

123 19 83.1 1.92 24.4 9.4 9.4 15.8 0.2 1.7 3.0 2.4 0.96 0.31 0.1 8 

113 18 83 .6 1.92 34.0 8.2 7.0 39.8 0.5 14.6 0.6 1.9 0.97 0.40 0.25 

137 21 84.6 1.86 25.8 9.1 5.8 85.4 0.2 12.7 0.3 10.7 1.00 0.60 0.41 



Table 3. Laboratory measurements of soil properties tested for effect on dispersion of sampled soils (cont.) 

Sample No. Site No. Dispersion, % B.D. Cla~, % PH EC SAR oc Ions 
+ + 2+ 

Ca:Mg Cl:S04 Na I (Na + Ca ) LL PI 
114 18 84.7 1.97 28.1 8.5 6.8 51.1 0.2 16.5 0.6 1.4 0.98 0.43 0.29 
138 21 85.0 1.83 25.6 9.5 2.5 56.2 0.2 5.0 1.0 5.9 0.99 0.64 0.46 
17 3 85.6 1.77 45.6 7.5 3.7 30.5 0.2 8.1 0.6 0.0 0.97 0.60 0.40 

115 18 85.7 1.99 29.9 8.8 9.8 56.6 0.1 27.3 0.5 1.5 0.97 0.45 0.30 
58 10 86.2 1.79 46.6 8.8 10.2 85.4 0.9 32.0 0.8 0.4 0.98 0.11 0.09 
60 10 86.6 1.82 55.4 9.1 2.9 34.1 0.6 6.1 2.0 0.7 0.97 0.16 0.13 
11 2 87.2 1.82 37.0 6.4 0.8 11.4 0.7 1.6 2.0 0.6 0.93 0.49 0.35 

109 17 88.1 1.94 42.6 7.9 4.6 26.9 0.3 10.3 2.4 3.6 0.92 0.50 0.34 
92 15 88.9 1.91 48.0 7.3 7.2 19.4 0.5 21.6 2.3 0.0 0.80 0.63 0.43 
136 21 91.2 1.83 27.9 8.7 10.0 68.1 0.3 23.0 0.6 8.8 0.98 0.47 0.31 
12 2 91.3 1.71 41.1 7.2 0.8 10.8 0.3 1.5 1.7 3.3 0.93 0.51 0.34 

108 17 91.4 1.94 42.1 7.9 4.9 27.0 0.4 10.9 2.5 3.4 0.91 0.48 0.31 
N 
V', 135 21 95.5 1.77 27.7 8.4 14.0 72.9 0.6 38.0 0.9 5.1 0.97 0.64 0.44 

• B.D. - bulk density (glee), EC - electrical conductivity (dS/m), SAR - sodium adsorption ratio, OC - organic carbon(%), Ions - sum 
of charge of major ions in solution ( cmolc/L ), Ca:Mg - ratio of charge of calcium ions to charge of magnesium ions in solution, 
Cl:S04 - ratio of charge of chloride ions to charge of sulfate ions in solution, Na/(Na+ca) - ratio of the charge of sodium ions 
to the sum of the charge of the sodium and calcium ions in solution, LL - liquid limit, PI - plasticity index 



Table 4. Means and standard deviations (s.d.) of soil properties tested for effect on dispersion for the soils of the dispersion groups of 
the study. 

Dispersion Group B.D. Clay.% ru:I EC SAR oc Ions Ca:Mg O:S04 Na/(Na+Ca) IL PI 

Weak to no mean 1.76 40.l 7.4 5.2 13.0 0.5 15.6 1.1 1.0 0.77 0.52 0.35 
s.d 0.16 11.4 1.0 4.6 10.2 0.2 14.6 0.7 1.1 0.15 0.14 0.12 

Moderate mean 1.69 37.4 7.8 4.1 20.5 0.5 12.3 1.2 1.4 0.91 0.51 0.34 
s.d 0.25 6.3 1.0 3.4 9.4 0.3 14.4 0.6 1.6 0.05 0.10 0.08 

Strong mean 1.83 35.7 8.2 5.5 35.8 0.4 12.4 1.3 2.5 0.94 0.56 0.39 
s.d 0.13 10.3 1.0 3.3 20.9 0.3 9.0 0.8 2.7 0.05 0.27 0.25 

N • B.D. - bulk density (p/c.c ), EC - electrical cooductivity ( dS/m), SAR - sodium adsorption ratio, OC - organic carbon (%), Ions - sum 0\ 
of charge of rrajor ions in solution ( crmk/L), Ca:Mg- ratio of charge of calcium ions to charge of magnesium ions in solution, 
O:S04 - ratio of charge of chloride ions to charge of sulfute ions in solution, Na/(Na+Ca)- ratio of the charge of sodium ions 
to the sum of the charges of the sodium and calcium ions in solution, IL- liquid limit, PI - plasticity index 
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of soils are not different for total charge of ions in soil water, ratio of charge of calcium 

ions to charge of magnesium ions in soil water, liquid limit, and plasticity index {Table 

5). 

Strong dispersion affects a majority of horizons with SAR values >25 (31 of38; 

Fig. 2). Most of the tested horizons exceed the critical level for identifying dispersed soil 

suggested by Rengasamy (1984) of 0.8 for the ratio of charge of sodium ions to the sum 

of charges of sodium and calcium ions in soil water (Fig. 3). Fourteen of the 23 sampled 

pedons contain a horizon with no to weak dispersion (Table 3) and 10 of the sampled 

pedons with a horizon of no to weak dispersion contain multiple horizons with no to 

weak dispersion. Masses of gypsum occur within or in a horizon below 24 of the 31 

horizons with no to weak dispersion {Table 1 ). Nodules of calcium carbonate are 

common within a horizon of no to weak dispersion not associated with any gypsum 

(Table 1 ). Two pedons contain no gypsum or calcium carbonate (Table 1) and multiple 

horizons ofno to weak dispersion (Tables 1 and 3). Gypsum and calcium carbonate are 

recommended amendments for reducing dispersion in soil. Addition or presence of 

gypsum or calcium carbonate can reduce dispersion by increasing the number of calcium 

ions in the soil available to displace sodium ions from exchange sites on the cation 

exchange complexes of soil clays. 

The soil horizons tested in this study are similar to dispersed soils in other parts of 

the world (Sumner, 1995; Morshedi and Sameni, 2000) (Table 6). In agreement with the 

findings of Sumner ( 1995), several soil properties contribute to the dispersion displayed 

by the horizons of this study. Soil properties associated with dispersed soil horizons from 

semiarid to subhumid parts of Oklahoma include SAR, EC, pH, bulk density, percent 

28 



100 I 

' +-Sodium adsorption ratio> 25 (mostly strong dispersion) • 
90 

80 

""' 70 ... 

* 

• • • • • • • • • - I 
• • ~ • • • • • • • • • •• • • ••• Strong dispersion - . . 
• • • • -6 e 

60 -0 

£ 
<I) 

~ 
:::i 50 0 
-0 
'-' 

N C 
0 

\0 -~ 40 
<I) 
C. 

"' :,a 
~ 30 0 

20 

. - i • • I 

•• I • I 
I • •• • • -• ., 

• •: Moderate dispersion . , • • I 

r• 
• • • - • • 

• • • • • • • • - ~ • - ... ... 

10 
• Weak to no dispersion 

,_ • .. • I -

0 
• • • • ·- ·- • • -- - -

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 

Sodium adsorption ratio 

Figure 2. Dispersion in relation to sodium adsorption ratio for horizons of the study. 
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Table 6. Relationships of salinity, sodicity, and dispersion for soils from other parts of the world 

Location Description Salinity Sodicity Classification 
California (present general EC<4 ESP<lS or SAR<12 Non-saline, non-sodic 
duidelines for U.S.; Richards, 
1954) 

EC>4 ESP>lS or SAR>12 Saline-sodic 
EC<4 ESP>15 or SAR>12 sodic 

California (Lebron et al., 1994) Saline-sodic, fine, EC<2 SAR-2 to 5 dispersive 
illitic, calcareous, xeric 
soil 

Saskatchewan, Canada (Curtin et Mollisols (prairie soils) Dissolved salts SAR>20 dispersive 
w al., 1994a) (mmolJL) - 5 to ...... 

30 increases as 
% clay increases 

Saskatchewan, Canada (Curtin et Soils in Glacial till Dissolved salts SAR>lO dispersive 
al., 1994b) (mmolJL) <10 

Dissolved salts SAR>20 dispersive 
(mmolcfL) <20 

Iran (Morshedi and Sameni, 2000) Calcareous soil Dissolved salts SAR>20 dispersive 
(mmolJL) <10 

Australia (Rengasamy and Olsson, Salty ground water, EC>TEC SAR>3 Saline-sodic 

1991) clayey (threshold 
electrolyte 
concentration) 
EC<TEC SAR>3 Alkaline, neutral , or acidic 

sodic depending on pH 



clay-sized particles, percent organic carbon, concentrations of ions in soil water, and 

types of minerals in the soils. 

Dispersion and Clay Mineralogy 

Variation exists in the types and relative amounts of clay minerals in the clay 

fractions of several horizons of the study (Table 7). The set of horizons analyzed for clay 

mineralogy includes 9 horizons with no to weak dispersion, 6 moderately dispersed 

horizons, and 21 strongly dispersed horizons (Table 7). 

The amount of dispersion measured in the soils analyzed for clay mineralogy 

increased as the amount of illite in the clays increased (Table 7). Interstratified illite­

smectite, smectite, and/or vermiculite are abundant in most of the strongly dispersed 

horizons (Table 7). With a few exceptions, kaolinite in the clay fraction of tested 

horizons decreased as % dispersion increased. Greater amounts of kaolinite in soils with 

abundant vermiculite resulted in less dispersion (Table 7). Smectite mostly occurred 

interstratified with illite (Table 7). Elevated amounts of illite, smectite, and vermiculite 

also occur in moderately and strongly dispersed soil horizons in other parts of the world 

(McNeal and Coleman, 1966; Rhoades and Ingverson, 1969; Morshedi and Sameni, 

2000). 

Derivation of Diagnostic Sodium Adsorption Ratios 

Percent dispersion, pH, EC, and SAR values of moderately and strongly dispersed 

soil horizons analyzed in this study indicate an SAR> 12 (USDA, 1954) does not 

adequately identify dispersed soils in semiarid to subhurnid parts of Oklahoma. Many of 

the strongly dispersed soil horizons identified in this study have SAR values <12 (Table 

3). 
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Table 7. Relationships of dispersion and clay mineralogy for soils of this study 

·---------------------Identified Clay Minerals----------------------
Dispersion Mixed* Smectite Vermiculite Illite Kaolinite Quartz 

Sample No. Site No. Series Horizon % ------------------------Relative % • --------------------------------
Weak to no Dis12ersion 

21 4 Wister Btl 6 3 0 72 6 18 
22 4 Wister Bt2 12 0 3 46 9 40 2 
23 4 Wister Bt3 22 0 4 43 9 41 2 
28 5 Pawhuska Bnl 27 73 0 4 8 5 10 
34 6 Lafe Btnl 20 0 11 16 8 62 3 

35 6 Lafe Bty2 0 0 0 60 4 33 3 

41 7 Carytown Btnl 19 70 0 12 5 13 0 
w 85 9 Doolin Btkn3 3 74 0 14 4 7 
w 

142 22 Hinkle Btnky2 2 7 85 0 4 3 

Moderate DisQersion 

7 I Bosville BC 50 50 0 0 19 27 4 

15 3 Wing Btl 53 0 0 43 10 44 3 

36 6 Lafe Btky3 58 0 14 30 16 38 2 

37 6 Lafe BCk 53 39 0 0 13 47 1 

48 8 Dwight Btk2 46 72 0 4 6 15 3 

141 22 Hinkle Btknl 51 0 88 0 6 3 3 

Strong Dis12ersion 
6 1 Bos ville Btn4 76 60 0 0 16 20 4 

11 2 Dwight Bt3 87 82 0 0 5 10 3 

16 3 Wing Bty2 80 0 3 33 6 54 3 



Table 7. Relationships of dispersion and clay mineralogy for soils of this study 

·---------------------Identified Clay Minerals----------------------
Dispersion Mixed* Smectite Vermiculite Illite Kaolinite Quartz 

Sample No. Site No. Series Horizon % ------------------------Relative % • --------------------------------
Weak to no Dispersion 

21 4 Wister Btl 6 3 0 72 6 18 1 
22 4 Wister Bt2 12 0 3 46 9 40 2 
23 4 Wister Bt3 22 0 4 43 9 41 2 
28 5 Pawhuska Bnl 27 73 0 4 8 5 10 
34 6 Lafe Btnl 20 0 11 16 8 62 3 
35 6 Lafe Bty2 0 0 0 60 4 33 3 
41 7 Carytown Btnl 19 70 0 12 5 13 0 

(.;J 85 9 Doolin Btkn3 3 74 0 14 4 7 
.i,. 

142 22 Hinkle Btnky2 2 7 85 0 4 3 

Moderate Dispersion 
7 1 Bosville BC 50 50 0 0 19 27 4 

15 3 Wing Btl 53 0 0 43 10 44 3 

36 6 Lafe Btky3 58 0 14 30 16 38 2 

37 6 Lafe BCk 53 39 0 0 13 47 1 

48 8 Dwight Btk2 46 72 0 4 6 15 3 

141 22 Hinkle Btknl 51 0 88 0 6 3 3 

Strong Dispersion 
6 1 Bosville Btn4 76 60 0 0 16 20 4 

11 2 Dwight Bt3 87 82 0 0 5 10 3 

16 3 Wing Bty2 80 0 3 33 6 54 3 



Dispersed soils in other areas of the U.S. and the world show considerable 

variation concerning critical levels of EC and SAR (Table 6). SAR and EC values 

established for diagnosis of dispersion in soils of an area reflect the properties of soils of 

the area. Values of EC and SAR for diagnosis of dispersion in soils of semiarid to 

subhumid parts of Oklahoma derived in this study reflect the nature of the properties 

identified in this study as associated with dispersion in the soils. Effects of pH, bulk 

density, types and amounts of clay and minerals, and concentrations of ions in soil water 

contribute to derivation of SAR and EC values for diagnosis of dispersion in the soils. 

Derivation of diagnostic SAR values from study data included dividing horizons 

into groups based on EC values (Fig. 4). Weakly saline horizons have EC values <1.0 

dS/m), moderately saline horizons have EC values from 1.0 to 9.0 dS/m, and strongly 

saline soils have EC values >9.0 dS/m (Fig. 4). Correlation coefficients for regression 

equations from linear regression of SAR and % dispersion measurements of tested 

horizons tested SAR and % dispersion data for resulted omission of data for several of 

the horizons from the regression analyses. Omission of data occurred for several 

horizons of moderate salinity, with large SAR values, and much dispersion (Fig. 4) 

because nearly all cations in soil water are sodium and these soils require special 

treatment for remediation. Excessive sodium in soil water affects horizons at Soil 

Sampling Locations No. 10 (Drummond soil series, Canadian Co.), No. 17 (Healdton soil 

series (Carter Co.), No. 18 (Wing soil series, Jefferson Co.), No. 19 (Oscar soil series, 

Jefferson Co.), and No. 21 (Oscar soil series, Tillman Co.). Omission of data also 

occurred for some horizons that contain gypsum. No to weak dispersion occurs in some 

horizons with large SAR values because dissolution of gypsum helps maintain 
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Figure 4. Electrical conductivity in relation to sodium adsorption ratio for horizons of the study. 



aggregation of soil. Gypsum reduces dispersion in horizons at Soil Sampling Locations 

No. 6 (Lafe soil series, Sequoyah Co.), No. 7 (Carytown soil series, Muskogee Co.), No. 

9 (Doolin soil series, Cleveland Co.), No. 12 (Drummond soil series, Grant Co.), No. 14 

(Doolin soil series, Payne Co.), No. 16 (Seminole soil series, Payne Co., and No. 20 

(Foard soil series, Comanche Co.). 

Calculations of diagnostic SAR values for the different salinity groups utilized 

equations derived from linear regression of SAR versus % dispersion of horizons in the 

salinity groups. The diagnostic SAR values yield values of 30% dispersion from the 

regression equations (Figs. 5 and 6) (the minimum level of dispersion associated with 

adverse effects of dispersion on soil and the dividing point for soils of no to weak 

dispersion and moderately and strongly dispersed soils (Knodel, 1991)). Derived SAR 

values for identifying dispersed soils in semiarid to sub humid areas of Oklahoma are 7 .1 

to 8.8 and greater for moderately saline soils (Fig. 5) and 4.2 to 4.7 and greater for 

weakly saline soils (Fig. 6). No attempt at calculation or interpretation of a diagnostic 

SAR value for strongly saline soils occurred because the number of horizons of the study 

in the group is small and much variation is apparent in the relationships of SAR, EC, and 

% dispersion for the group of strongly saline horizons tested in this study (Fig. 4). 

Improved Diagnosis and Management of Dispersive Soils 

Dispersed soil horizons in Oklahoma have a wide range of physical and chemical 

characteristics and show much variation in measured dispersion percentages. Moderately 

and strongly dispersed horizons in Oklahoma (soil affected by >30% dispersion measured 

by the Double Hydrometer test) have greater pH, SAR, and ratios of charge of sodium 

ions to sum of charges of sodium and calcium ions in soil water compared to non-
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dispersed and weakly dispersed horizons (affected by <30% dispersion). Strongly 

dispersed horizons in Oklahoma (affected by >65 % dispersion) have greater bulk 

density, greater ratios of charge of chloride ions to charge of sulfate ions in soil water, 

and less clay and organic carbon than weakly dispersed and non-dispersed horizons. The 

presence of gypsum or calcium carbonate in horizons may affect amount of dispersion in 

the horizons. Amounts of dispersion observed in horizons from Oklahoma soils depends 

on or influences several soil properties and the term dispersed, in contrast to sodic, better 

describes horizons affected by dispersion in soils of Oklahoma. 

Sodium adsorption ratios indicating possible problems with dispersion for soils of 

Oklahoma and areas with similar soils and climates as Oklahoma are 4.5 +/- 0.3 and 

greater for weakly saline soils (EC<l dS/m) and 7.9 +/- 0.8 and greater for moderately 

saline soils (EC from 1 to 9 dS/m). Some minerals and compounds common to many 

soils of Oklahoma, like gypsum, calcium carbonate, and organic matter, alter dispersion 

and are important factors to consider in evaluating degrees of dispersion in the horizons. 

The SAR values determined in this study for recognition of dispersed soil differ from the 

value commonly used in the U.S. of 12 established for sodic soils almost a half century 

ago (USDA, 1954). Application of the diagnostic SAR values derived from properties of 

horizons tested in this study likely will indicate more areas of potentially dispersed soil. 

The diagnostic SAR values for identification of dispersed, weakly or moderately saline 

soils derived from the soils in this study are alternate references for recognition, 

management, and reclamation of dispersed soils in semiarid to subhumid regions of 

Oklahoma and areas of similar soils and climates elsewhere. 
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CHAPTER 2 - SELECTED AMENDMENTS FOR REDUCING SOIL DISPERSION 

48 



Introduction 

Highways and secondary roads transect areas affected by dispersed soils in many 

parts of Oklahoma. Incorporating of dispersed soil in roadways and support structures 

(bridge approaches, underpasses, and overpasses, for example) often results in cracking, 

piping, erosion, and subsequent failure of affected features (Shainberg, 1984; Knodel, 

1991 ; Bell and Maud, 1994 ). Physical properties of dispersed soils include slow 

infiltration and percolation of water, crusting and sealing of soil surfaces, and dense 

packing of subsoil (Oster et al. , 1995; Sumner and Naidu, 1998). Dispersive soils retard 

or prevent growth of many types of native vegetation (Tisdall and Adem, 1988). 

Dispersed soils occur in Oklahoma in areas irrigated with water containing large 

amounts of dissolved salt, used for disposal of oil field waste, and with soil parent 

materials containing large amounts of salt and sodium (Stiegler, 1986; Johnson, 1990). 

Areas of dispersed soil in Oklahoma are of irregular size and shape and at various 

topographic locations (Ryker, 1977). Parent materials of dispersed soil in Oklahoma are 

alluvium, residuum, or colluvium derived from salt-bearing Permian or Pennsylvanian 

sandstone and shale (Ryker, 1977). 

Recognizing Dispersed Soils 

Soil disperses when inter-particle forces primarily responsible for aggregation of 

soil, known as van der Waal ' s forces, cannot bind individual clay particles in a mass of 

soil. Cation exchange sites of soil clays hold sodium ions less tightly than calcium or 

magnesium ions. The positive charge of a sodium ion is weaker and not as dense as the 

positive charges of calcium or magnesium ions. Thickness of layers of ions adsorbed to 

soil clays increase if sufficient numbers of adsorbed ions are sodium ions. The increase 
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in thickness of layers of ions surrounding soil clays in a sodium-affected or dispersed soil 

increases distances between individual particles beyond effective distances of van der 

Waal"s forces. Thickened layers of ions surrounding soil clays cause dispersion of soils 

by isolating and preventing aggregation of the particles. Sufficient amounts of dissolved 

salt in water within potentially dispersed soil maintain distances between clays within 

reach of van der Waal's forces and decrease dispersion. 

Properties identifying dispersed soil include exchangeable sodium percentage 

(ESP) of the cation exchange capacity (CEC) of soils and electrical conductivity (EC) 

and sodium adsorption ratio (SAR) of water held by soils. Electrical conductivity is a 

measure of amount of salt dissolved in soil water. Sodium adsorption ratios indicate 

concentrations of sodium, calcium, and magnesium ions in soil water. Moderate to 

strong (>30%) dispersion occurs in soils with small ESP or SAR if EC of soil is also 

small. 

U. S. Dept. of Agriculture (USDA) (1954) identified potentially dispersed soils 

(also known as sodic soils) as having, 1) EC values <4 dS/m and ESP values> 15 or, 2) 

SAR values> 12. The basis for these criteria, routinely in use in the U.S. at present and 

developed nearly half a century ago (USDA, 1954), is data from a group of California 

soils. Alternative SAR, ESP, and EC values, developed from research on dispersed soils 

from other parts of the world (Lebron et al., 1994; Curtin et al., 1994a; 1994b; Morshedi 

and Sameni, 2000; Rengasamy and Olsson, 1991), identify dispersed soils also. 

Effective EC, ESP, and SAR criterion for identifying potentially dispersed soil in 

affected areas are products of research on dispersed soils in the areas of concern (Curtin 

et al., 1994a). EC and SAR values for identifying and managing dispersed soils 
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identified in this study also differ from values presented in USDA (1954). SAR and 

percent dispersion data from soil horizons tested in this study indicate moderate to strong 

soil dispersion (>30% dispersion) occurs in soils with SAR values <12. SAR and EC 

criterion for identifying dispersed soils presented in this paper are from interpretations of 

relationships of percent dispersion (measured with the double hydrometer test (ASTM, 

1995)), SAR, and EC for more than 100 subsoil horizons affected by large amounts of 

sodium, salts, and dispersion from soils within Oklahoma. 

Amending Dispersed Soil 

Ions released by dissolution of amendments applied to reduce soil dispersion 

displace sodium ions from exchange sites of soil clays in treated soils. Some materials, 

like gypsum, and hydrated lime, supply a large number of calcium ions to displace 

sodium ions from cation exchange sites of clays. Other materials, like sulfuric acid and 

acids in organic matter, dissolve calcium-containing minerals, such as calcium carbonate, 

in soils to provide calcium ions for displacing sodium ions from exchange sites of clays. 

Acidic amendments also supply hydronium ions for displacing sodium. Successful 

amendment of dispersed soil requires rainfall or irrigation to leach displaced sodium ions 

from treated soil. Some amendments, like gypsum, sulfuric acid, and organic matter, also 

increase the electrolyte concentrations and EC of soil water. 

Effectiveness of amendments in reducing SAR values of soils also depends on 

rate of water movement into and through the soils, particle size distribution, ESP, and 

depth of dispersed soil horizons (Quirk and Schofield, 1955). Selection of effective 

amendments for improvement of dispersed soils depends on properties of soils needing 

amendment, availability and cost of amendments, number of ions ( calcium, magnesium, 
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and/or hydronium) produced or provided by amendment for displacement of sodium ions 

from exchange complexes of treated soils, and time allotted for soil reclamation (Oster 

and Frenkel, 1980). 

The objectives of this study include: 1) identifying changes in SAR of selected 

dispersed soil horizons resulting from addition of amendments, 2) influences of 

properties of treated soils on effectiveness of treatments, and 3) application rates of 

amendments effectively reducing SAR values of treated soils. Criteria for evaluation of 

effectiveness of treatments is reduction of SAR values of treated soils to levels of SAR 

associated with soil not affected by excessive sodium or soils showing no to weak 

dispersion (<30% dispersion) according to present U. S. standards (SAR> 12; Richards, 

1954 ). Evaluation of effectiveness of amendments also includes comparisons with 

standards developed from the relationships of SAR, EC, and percent dispersion of soil 

horizons examined in this study (EC<l dS/m - SAR>4.5 +/- 0.3 or EC from 1 to 9 dS/m 

- SAR>7.9 +/- 0.8). 

Amending materials tested in this study contain varying amounts of calcium and 

magnesium ions for displacement of sodium ions from cation exchange complexes of 

clays in treated soils. Application of between 2 and 10 Mg/ha gypsum reduced surface 

crusting and erosion and increased infiltration of water (Emerson, 1984; Fitzpatrick, 

1984 ). Recommended application rates for gypsum are 5 to 10 Mg/ha for dispersed soils 

in Oklahoma (Stiegler and Ward, 1986; Johnson, 1990). Hydrated lime (Ca (OH) 2) is a 

dry, white powder made by adding water (- 24%) to quicklime (CaO). Addition of 

hydrated lime effectively reduced dispersion in soil and erosion of several dams on a 

small creek near Lawton, Oklahoma (Ryker, 1977). Fly ash is a residue created by coal-
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fired electric generators. Application of fly ash at a rate of 20 Mg/ha to dispersed soil in 

India resulted in reduced bulk density and increased hydraulic conductivity (Tivari et al., 

1991). Production of cement kiln dust requires mixing of limestone, clay, and sandstone 

and heating to a temperature of 1900 degrees Celsius. Application of cement kiln dust 

reduced plasticity and swelling of clays (Sayah, 1993) and increased compressive 

strength of some Pennsylvania soils (McCoy and Criner, 1971). Cement kiln dust and fly 

ash applied in this study are from the Holnam cement factory in Ada, OK, which 

produces -972 Mg of cement kiln dust a day at full production. Humate is a by-product 

of the oil refining process. Addition of humate increased organic matter content and size 

of root mass in some dispersed soils (Haynes, 1986). Addition of calcium chloride 

(CaCh+2H20) supplies calcium ions more rapidly to soil than gypsum because calcium 

chloride is more soluble than gypsum. Sulfuric acid (H2S04) dissolves limestone in soil 

causing the release of calcium ions, formation of gypsum, and removal of sodium ions 

from soils in the form of dissolved sodium sulfate. Application of sulfuric acid directly 

to the surface of a soil rapidly increased permeability and decreased ESP of near-surface 

dispersed horizons (Prater et al., 1978; Abrol et al., 1988). Leaching (transport in 

solution by percolation of water through soil profiles) of displaced sodium ions is an 

important part of the process of removing sodium ions from cation exchange complexes 

of dispersed soil horizons (Quirk and Schofield, 1955). 

Materials and Methods 

Selection of Soil Horizons for Treatment 

The soil horizons selected for treatment are from a set of 151 horizons sampled 

for a reconnaissance of potentially dispersed soil in Oklahoma (Fig. 7 and Table 8). The 
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Fig 7. Locations ofpedons containing amended horizons 



Table 8. Site and field descriptions for amended soil horizons t 
Horizon 1 Ji 28 64 65 85 86 146 

No. 
Soil grom:r!Y 
Horizon BC Btl Bnl Btn2 Bt3 Btkn3 Btnyq4 BCk 

Depth (cm) 168-200 20-41 23-55 38-67 67-95 69-92 92-136 157-200 

Color (moist 10YR6/6 10YR4/4 10YR5/3 10YR4/1 2.5Y4/3 10YR5/4 7.5YR5/8 2.5YR4/6 

Texture L C CL C SiC SiC Si CL Si CL 

Structure 2cPR 2mPR 3cPL lcCO lmSBK lcPR lcPR lcPR 

VI 
Special siltans Redox siltans VI Siltans; Red ox Redox Redox Limestone 
Features ace um limestone depl; accum; accum; nodules 

fragments; limestone limestone gypsum; 
Red ox fragments nodules siltans 
ace um. 

Soil series Bosville Wing Pawhuska Dwight Dwight Doolin Doolin Hinkle 

Soil Fine, Fine, Fine, Fine, Fine, Fine, Fine, Fine, 
classification mixed, mixed, mixed, smectitic, smectitic, smectitic, smectitic, smectitic, 

thermic thermic thermic mesic Typic mes1c thermic thermic thermic 
Albaquic Aquic Mollie Natrustoll Typic Typic Typic Vertie 
Paleudalf Natrustalf Natrustalf Natrustoll Natrustoll Natrustoll Natrustalf 

t L - loam, C - clay, CL - clay loam, SiC - silty clay, SiCL - silty clay loam; 1 - weak, 2 - moderate, 3- strong, m - medium, c -
coarse, PR - prismatic, SBK - subangular blocky, PL - platy, CO - columnar, I - parting to; Ft. - faint, Dt. - distinct, Pt. - prominent, 
redox - redoximorphic, accum. - accumulations, depl. - depletions 



study included pedons from several areas of Oklahoma affected by dispersed soils. 

Selection of pedons included identification and location of potentially dispersed soils 

from county soil surveys. Natural Resources Conservation Service (NRCS) soil scientists 

and research engineers for the Oklahoma Department of Transportation (ODOn assisted 

in the selection process. The selected pedons are from a preliminary sampling of - 70 

potential locations with a gas-powered soil probe or hand auger, and laboratory 

measurement of SAR EC, and pH of saturated paste extracts from samples of soil 

horizons in the pedons. 

Laboratory data collected on sampled horizons included measurements of pH, EC, 

SAR, Na\ ca2+, Mg2\ K\ F , er, Br", N03-, and so/- of saturated paste extracts 

(USDA-NRCS-NSSC, 1996), pH (1 :1 soil to water, by weight; USDA-NRCS-NSSC, 

1996), bulk density (USDA-NRCS-NSSC, 1996), organic carbon (Yeomans and 

Bremmer, 1988), total carbon (USDA-NRCS-NSSC, 1996), liquid limit (ASTM, 1995), 

plasticity index (ASTM, 1995), % dispersion ( double hydrometer test; ASTM, 1995), 

pinhole test class (ASTM, 1995), crumb test class (ASTM, 1995), and particle size 

distribution (USDA-NRCS-NSSC, 1996). Additional characterization of horizons 

selected for amendment included cation exchange capacity (CEC) (USDA-NRCS-NSSC, 

1996), ESP (USDA-NRCS-NSSC, 1996), and clay mineralogy (Whittig and Allardice, 

1986). 

The horizons selected for amending are from pedons across Oklahoma (Fig. 7 and 

Table 8). Redoximorphic features, siltans (pockets of illuviated sand grains, released 

from dispersed soil, in soil pore spaces), and secondary precipitates of lime and gypsum 

occur within the horizons (Table 8). Selected horizons (Table 9) are slightly alkaline to 
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Table 9. Dispersive characteristics of amended soil horizons t 

Horizon No. Horizon Depth (cm) Dispersion(%) SAR ESP EC 

7 BC 168-200 50.2 11.8 19.7 2.4 

15 Btl 20-41 52.8 23.4 35.0 1.0 

28 Bnl 23-55 27.2 12.2 13.2 1.0 

64 Btn2 38-67 74.3 28.4 42.1 3.8 

65 Bt3 67-95 80.7 32.5 ND 3.9 

85 Btkn3 69-92 2.7 14.8 ND 7.2 

86 Btnyq4 92-136 66.7 21.3 ND 4.0 

146 BCk 157-200 77.3 29.9 34.7 6.8 

t SAR - sodium adsorption ratio; ESP - exchangeable sodium percentage; EC - electrical 
conductivity, decisiemens per meter 
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alkaline, moderately saline, and show moderate to strong dispersion (> 30% dispersion by 

the double hydrometer test ( except Horizon Nos. 28 and 85)). Selection of soils for 

amending occurred before the completion of percent dispersion measurements and 

Horizon Nos. 28 and 85, although selected for amending, are weakly dispersed. 

Amendments for Reducing SAR in Soils 

Amendments examined included gypsum, hydrated lime, fly ash, cement kiln 

dust, humate, calcium chloride, and sulfuric acid (Table 10). ODOT requested testing of 

samples of cement kiln dust, fly ash, and hydrated lime because abundant, inexpensive 

quantities of the materials are available for use by the department and the materials 

contain significant amounts of calcium (Table 10). Testing of gypsum, calcium chloride, 

humate, and sulfuric acid indicated these materials reduce soil SAR values and dispersion 

(Emerson, 1984; Haynes, 1986; Prater et al., 1978) 

Procedure to Evaluate Ability of Amendments to Reduce SAR of Soils 

The laboratory procedure followed to evaluate the ability of the 

amendments/treatments to reduce SAR values of dispersed soils included: 1) addition of 

correct quantity of amendment to - 250 g of soil, 2) preparation of saturated pastes from 

soil-amendment mixtures, 3) overnight equilibration of pastes, 4) extraction of soil water 

from pastes with a baroid press, 4) measurement of pH and EC of extracts, 5) 

measurements of concentrations of cations in extracts using an atomic absorption (AA) 

spectrophotometer, and 6) calculation of SAR from concentrations of cations in the 

extracts. 

Calculation of soil-specific rates of application (Table 11) required measurement 

of CEC and ESP of the selected horizons. ESP measurements enabled calculations of 
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Table 10. Compositions of amendments tested for ability to lower SAR values of dispersed soils. 

Element/Com~ound/ CKDt Fly ash Gm sum Hydrated I:Iumate Calcium chloride Sulfuric acid 
Pronel1Y lime 

% 
Silica (Si02) 15.1 39.9 NA NA NA NA 

Aluminum oxide 3.9 16.7 NA NA 13.4 NA NA 
(Alz03) 

Iron oxide (Fe203) 2.0 5.8 NA NA NA Trace NA 
Calcium oxide (CaO) 48.4 24.3 NA NA 5.9 NA NA 

Hydrated lime NA NA NA 98.0 NA NA NA 
(Ca(OH)2) 

Calcium chloride NA NA NA NA NA 74.9 NA 
(CaCh) 

Calcium sulfate NA NA 88.0 NA NA NA NA 
(CaS04) 

Magnesium oxide 1.4 4.6 NA 0.1 1.5 Trace NA 
Vl (MgO) \0 

Sulfur oxide (S03) 4.5 3.3 NA NA 3.0 NA NA 
Sulfate (S0/1) NA NA 70.5 NA NA NA 98.0 
Physical state solid solid solid solid solid solid liquid 

Mode of action Provide Provide Provide Provide Dissolve Provide Ca2+ Dissolve Ca2+ -bearing 
Ca2+ Ca2+ Ca2+ Ca2+ Ca2+ -bearing minerals 

minerals 
Supplier= ODOT+ ODOT Garden ODOT Petroleum Chemical supply store Chemical supply store 

supply distributor 
store 

1 CKD - cement kiln dust 
+ODOT - Oklahoma Department of Transportation 



Table 11. Effects of treatments on sodium adsorption ratio, electrical conductivity, and pH of amended horizons. 

Treatment Horizon No.# SAR EC (dS/m) ill 

Gypsum l st leaching• 5 teachings* l st leaching· 5 teachings* l st leaching• 5 teachings* 

site specific® 
(4.9 Mg/ha-f-s) 28 16.8 ND 5.1 ND 7.8 N D 
(2.2 Mg/ha-f-s) 64 26.4 ND 3.6 ND 8.9 ND 
(7 .4 M g/ha-f-s) 85 14.4 ND 6.6 ND 7.9 ND 
(7.7 Mg/ha-f-s) 146 21. l ND 5 .1 ND 7.8 ND 

11.2 Mg/ha 7 l 0.2 6.4 4.2 3.2 7.3 6.7 

O'I 
28 10.5 7.2 4.1 2.7 7.9 7.5 

0 64 24.8 16.5 6.0 3 .8 7.9 7.5 
85 14.8 7.4 5.9 3 .8 7.7 7 .2 

146 25. l 8.9 8.0 3.8 7.7 7.2 

22.4 Mg/ha 7 l 0.1 6.3 4.5 2.4 7.2 7.2 

28 9 .8 6.2 4.1 3.4 7.7 7.2 

64 28.1 12.4 6.4 4 .2 7.7 6 .8 

85 13.9 8.0 6.4 3.8 7 .8 7 .3 

146 24.5 8.4 7.4 4.0 7.7 7.3 

224 Mg/ha 
7 9.9 3.2 4.1 2.8 7.8 8.4 

28 6.8 ND 4.5 ND 8.1 ND 

64 23.9 ND 12.0 ND 8.4 ND 

85 12.6 ND 6.6 ND 7.9 ND 

146 17 .9 ND 7.8 ND 6.8 ND 

11.2 Mg/ha+ H 2S0/ 
7 7.7 4.9 4.8 3.0 6.5 7.4 



Table 11. Effects of treatments on sodium adsorption ratio, electrical conductivity, and pH of amended horizons (cont.) . 

Treatme_n1 Horizon No. # SAR EC (dS/m) till. 

Gypsum (cont.) 1st leaching• 5 leach in gs* 1st leaching· 5 leach in gs* 1st leaching· 5 teachings* 

U.2 Mg/ha+ H 2S0/ 
15 11.8 6.0 4.8 1.8 7.4 6 .5 

Hydrated lime 

site-specific ® 
(3.5 Mg/ha-f-s) 28 8 .7 ND 1.0 ND 8.4 ND 

O'I (1.6 Mg/ha-f-s) 65 24.2 ND 3 .5 ND 7.9 ND - (5.4 Mg/ha-f-s) 86 15.7 ND 4.8 ND 7.5 ND 

(5.6 Mg/ha-f-s) 146 27 .7 ND 6.0 ND 7.8 ND 

11 .2 Mg/ha 
7 21.6 6.6 2.6 1.0 10.5 11.3 

28 25.3 6.1 1.0 0.9 7.9 7.2 

65 32 .1 12.7 3 .4 2.2 9.9 7.5 

86 51.6 11.7 3.5 1.6 10.0 7.2 

146 60.3 9.2 7.0 2.0 10 .7 7.6 

22.4 Mg/ha 
7 18.2 3.4 3 .1 2.2 11.7 7.5 

28 15.2 10.8 1.2 0 .8 11.3 9 .2 

65 35.9 23.0 2.2 1.8 10.8 8.4 

86 53 .2 11.5 1.5 1.0 11.1 8.6 

146 80.4 11.5 2.5 1.0 10.7 9.8 



Table 11. Effects of treatments on sodium adsorption ratio, electrical conductivity, and pH of amended horizons (cont.). 

Treatment Horizon No. SAR EC (dS/m) IUi 

Hydrated lime (cont.) 1st leaching • 5 leachings* 1st leaching • 5 leach in gs* 1st leaching• 5 leach in gs* 

224 Mg/ha 
7 12.9 5.3 6.4 5.1 12.3 12.8 

28 10.5 ND 6.8 ND 12.7 N D 
65 24.0 ND 10.8 ND 12.9 N D 
86 17 .8 ND 9.8 ND 12 .9 N D 
146 37 .7 ND 11.0 ND 12.8 N D 

11.2 Mg/ha+ H 2SO/ 
O'I 
N 7 11.1 9 .6 3.0 0.8 10.4 7.7 

15 18.4 10.6 2.2 0.8 7.7 7.2 

Fly ash 

site-specific® 

(11.0 Mg/ha-f-s) 28 9.3 ND 1.2 ND 7.2 ND 

(5.1 Mg/ha-f-s) 65 19.9 ND 3.6 ND 7.5 ND 

(16.8 Mg/ha-f-s) 86 14.4 ND 5.8 ND 7.8 ND 

(17.5 Mg/ha-f-s) 146 21.8 ND 6.4 ND 7.9 ND 

11.2 Mg/ha 
7 12.0 13 .1 3.1 1.2 7.8 8.7 

28 23.0 13 .3 1.5 0.9 8.2 7.6 

65 27.4 25.0 3.0 2.3 8.1 8.3 

146 29 .6 25.4 6.0 1.7 8.0 8.0 



Table 11. Effects of treatments on sodium adsorption ratio, electrical conductivity, and pH of amended horizons (cont.). 

Treatment Horizon No. SAR EC (dS/m) Q.Ji 

Fly ash (cont.) 1st leaching• 5 leach in gs* 1st leaching· 5 leach in gs* 1st leaching• 5 leach in gs* 

22.4 Mg/ha 
7 15 .7 6.6 3 .0 1.5 7.9 7 .4 

28 14 .6 15.5 1.2 1.0 7.4 7 .7 
65 22 .9 15 .6 3.0 2.3 7.9 7.3 
86 11.8 10.5 3.6 2 .0 7.5 7 .4 
146 22.6 20 .1 5.5 2.4 7.4 7 .7 

O'I 224 Mg/ha \.;.) 

7 19.3 12.1 3.0 1.2 10.2 10.2 

28 10.1 ND 2.3 ND 10.9 N D 

65 26 .0 ND 4.3 ND 10.7 N D 

86 13 .9 ND 4.2 ND 10.8 N D 

146 34.0 ND 6.4 ND 11.5 N D 

11.2 Mg/ha+ H 2SO/ 
7 6 .3 5.4 3.0 1.0 6.4 7 .8 

15 15 .7 11.3 2.2 1.1 8.0 7 .1 

22.4 Mg/ha+H 2S0/ 
7 8.8 6.7 3.2 1.0 6 .7 8 .1 



Table 11. Effects of treatments on sodium adsorption ratio, electrical conductivity, and pH of amended horizons (cont.). 

TreaJm e_nt Horizon .NQ,. SAR EC (dS /m) Iili. 

1st leaching• 5 teachings* 1st leaching• 5 teachings* 1st leaching• 5 teachings* 

Cement kiln dust 

site-specific® 
(4.1 Mg/ha-f-s) 28 7.0 ND 2 .6 ND 7.5 ND 
(1.9 Mg/ha-f-s) 64 19.2 ND 4 .1 ND 7.6 ND 
(6.2 M g/ha-f-s) 85 11.8 ND 5.8 ND 7 .1 ND 
(6.5 Mg/ha-f-s) 146 15 .5 ND 6.8 ND 7 .1 ND 

O'I 
11.2 Mg/ha ~ 

7 13 .2 9.6 3 .1 1.7 6.9 7.5 

28 12 .1 16.8 2.6 l.4 8.8 9.3 

64 27.6 22. l 4.1 3 .0 7.6 7.6 

85 13 .9 9.2 5.8 2 .6 7.7 7 .1 

146 18.7 18 .4 6.8 l.2 7.9 7.8 

224 Mg/ha 
7 9.8 6.1 4.5 1.8 12.6 12.0 

28 16 .2 ND 4 .2 ND 11.7 ND 
64 15.0 ND 5.0 ND 12. l ND 
85 22 .9 ND 5.0 ND 12.7 ND 
146 3 3 .1 ND 6.5 ND 12.5 ND 

11.2 Mg/ha+ H2SO / 
7 8.9 5.3 4 .0 1.0 8.0 7.7 

15 I 1.1 7.4 3.5 l.4 8.0 7.4 
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Table 11. Effects of treatments on sodium adsorption ratio, electrical conductivity, and pH of am ended horizons (cont.). 

Treatment 

Cement kiln dust (cont.) 

22.4 Mg/ha+H 2SO/ 

Hum ate 

11.2 Mg/ha 

22.4 Mg/ha 

11.2 Mg/ha+ H 2SO/ 

22.4 Mg/ha+H 2S0/ 

Horizon No. 

7 

7 
28 
65 
86 
146 

7 
28 
65 
86 
146 

7 
15 

7 

SAR EC (dS/m) ill 

1st leaching• 5 leachings* 1st leaching• 5 teachings* 1st leaching· 5 leach in gs* 

8.6 

17.0 
8.4 

33 .2 
20.7 
30.1 

16.7 
15.8 
19.8 
13 .7 
34.9 

12.2 
13 .0 

9.6 

5.8 

15 .3 
l O .1 
20.7 
16.7 
27.2 

l 0.0 
9.9 
15.5 
I 0.9 
12. I 

8.3 
5.9 

7.3 

4.2 

2 .0 
1.5 
3.2 
3.5 
6.0 

3.0 
4.1 
5.0 
6.6 
8.2 

2 .5 
2 .0 

3.0 

1.0 

1.2 
1.0 
2.5 
2.0 
2.3 

1.2 
2.6 
4.0 
4.0 
4.5 

1.0 
0.8 

1.0 

6.8 

6 .5 
7.9 
8.3 
7.8 
8.1 

7.5 
8.9 
7.8 
8.0 
8.2 

7.7 
7.8 

7 .1 

7 .5 

7.6 
8.2 
8.0 
7.5 
8.0 

7.6 
8.2 
7.5 
7 .6 
7.6 

7.4 
7 .1 

7 .1 



Table 11. Effects of treatments on sodium adsorption ratio, electrical conductivity, and pH of am ended horizons (cont.) . 

TreatmenJ Horizon No. SAR EC (dS/m) ill 

Hum ate 1st leaching • 5 leachings* 1st leaching • 5 teachings* 1st leaching • 5 leach_in_gs * 

11.2 Mg/ha 
7 17.0 15.3 2.0 1.2 6.5 7.6 

28 8.4 10 .1 1.5 1.0 7.9 8.2 
65 33 .2 20.7 3.2 2.5 8.3 8.0 
86 20 .7 16.7 3.5 2.0 7.8 7.5 
146 30 .1 27.2 6.0 2.3 8.1 8.0 

O'I 22.4 Mg/ha 
O'I 

7 16 .7 10.0 3.0 1.2 7.5 7.6 
28 15 .8 9.9 4.1 2.6 8.9 8.2 

65 19.8 15 .5 5.0 4.0 7.8 7.5 

86 13 .7 10.9 6.6 4.0 8.0 7.6 

146 34.9 12.1 8.2 4.5 8.2 7.6 

11.2 Mg/ha+ H 2S0/ 
7 12 .2 8.3 2.5 1.0 7.7 7.4 

15 13.0 5.9 2.0 0.8 7.8 7 .1 

22.4 Mg/ha+H 2S0/ 
7 9.6 7.3 3.0 1.0 7 .1 7 .1 

15 28 .2 10.3 3.5 1.4 8.0 7.4 

Calcium chloride 

11.2 Mg/ha 7 13.2 3.5 15 .0 2 .0 6.8 6.6 



0\ 
-...,l 

Table 11. Effects of treatments on sodium adsorption ratio, electrical conductivity, and pH of amended horizons (cont.). 

Treatment Horizon No. SAR EC (dS/m) ill. 

Calcium chloride (cont.) 1st leaching • 5 leachings* 1st leaching • 5 leachings* 1st leaching • 

LL2 Mg/ha (cont.) 
15 22.8 9 .1 14 .0 3.3 7.7 
28 11.9 6.4 14.0 4.0 7.8 
65 28.6 18.9 13 .0 4.0 7.8 
86 14 .7 9.8 13.0 1.6 7.2 

146 20.7 14.7 15.0 2.6 7.4 

Sulfuric acid (-12M) 

125.000 L/ha 
7 15.9 25.7 3.0 1.5 7.0 

15 74.9 20.0 2.5 1.0 7.2 
28 29.5 14.2 5.8 3.5 7.7 
65 71.4 66.3 4.0 2.7 8.8 
146 68.0 51.4 9.0 2.0 8.6 

•After first and fifth saturation/extraction, respectively 

#Untreated SAR, EC, and pH: Horizon No. 7 - 11.8, 2.4 dS/m, and 7 .0; Horizon No. 15 - 23.4, I.I dS/m, and 
6.1; Horizon 28 - 12.2, 1.0 dS/m, and 8.4; Horizon 64 - 28.4, 3.8 dS/m, and 8.2; Horizon 65 - 32.5, 3.9 dS/m, 
and 8.4; Horizon 85 - 14.8, 7.2 dS/m, and 7.5; Horizon 86 - 21.3, 4 .0 dS/m, 7.6; Horizon 146 - 29.9, 6.8 dS/m, 
and 7 .8 

5 leachings* 

7 .1 
7.2 
7.6 
7.0 
7.2 

6.8 
6.6 
7.4 
8.3 
7.5 

&also termed site-specific; addition of amendment required to supply equivalents of Ca2+ ions equal to equivalents of Na+ 
ions measured on cation exchange complex of soil 

+addition of amount of H 2 S0 4 equivalent to -25,000 L/ha and amendment 



numbers of equivalents of sodium on cation exchange complexes of clays in the horizons. 

Calculations of amounts of amendment to apply on a site-specific basis included amounts 

of calcium-supplying compounds in the amendments and the concentrations of calcium in 

the calcium-supplying compounds. Site-specific rates of application supplied the number 

of equivalents of calcium equal to the number of equivalents of sodium on cation 

exchange complexes of clays in the selected horizons. 

Rates of application tested were soil-specific (gypsum, hydrated lime, fly ash, and 

cement kiln dust), 11.2 (gypsum, hydrated lime, fly ash, cement kiln dust, hum.ate, and 

calcium chloride), 22.4 (gypsum, hydrated lime, fly ash, cement kiln dust, and hum.ate), 

and 224 (gypsum, hydrated lime, fly ash, and cement kiln dust) Mg/ha. Other treatments 

tested were combinations of gypsum, (11.2 Mg/ha), hydrated lime (11.2 Mg/ha), fly ash 

(11.2 and 22.4 Mg/ha), cement kiln dust (11.2 and 22.4 Mg/ha), and hum.ate (11.2 and 

22.4 Mg/ha) with sulfuric acid (- 130,000 liters acid/ha) and addition of sulfuric acid 

alone at a rate of 650,000 liters acid/ha. Evaluation of reduction in SAR of dispersed 

soils by amendment included 107 different soil/amendment treatments (Table 11) and 

more than 400 saturated paste saturation/equilibrations. Twenty-two treatments included 

addition of fly ash or a combination of fly ash and sulfuric acid (Table 11; 8 different 

horizons treated), 21 treatments included addition of gypsum or a combination of gypsum 

and sulfuric acid (Table 11 ; 6 different horizons treated), 21 treatments included addition 

of hydrated lime or a combination of hydrated lime and sulfuric acid (Table 11 ; 8 

different horizons treated), 17 treatments included addition of cement kiln dust or a 

combination of cement kiln dust and sulfuric acid (Table 11; 8 different horizons treated), 

14 treatments included addition of humate (Table 11 ; 6 different horizons treated), 6 
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treatments included addition of calcium chloride (Table 11 ; 6 different horizons treated), 

and 6 treatments included addition of sulfuric acid alone (Table 11; 6 different horizons 

treated). 

Evaluations of effects of leaching on ability of treatments to reduce SAR values in 

amended horizons included repeated preparations of saturated pastes, equilibrations, 

extractions of soil water, and measurements of properties of extracts subsequent to initial 

amendment of the soils. No evaluations ofleaching occurred on site-specific or 224 

Mg/ha ( except for Horizon 7) treatments. The other treatments received five successive 

saturation/extractions after addition of amendment for evaluation of the influence of 

leaching on the ability of amendments/treatments to lower SAR values. Seventy-five of 

the 105 treatments evaluated the influence of leaching on the ability of amendments to 

reduce SAR values of dispersed soils by multiple saturation/extractions after addition of 

amendments (Table 11 ). 

Criteria for evaluation of the effectiveness of treatments are reduction of SAR 

values of amended horizons below values established for identifying dispersed soil 

(either the present U.S. standard (USDA, 1954) or the standards developed from the 

properties of the soil horizons tested for this study). Measurement of SAR is less time­

consuming and less expensive compared to measurement of ESP. Correlation exists 

between SAR and ESP of selected horizons (Fig. 8). 

Knodel (1991) identified 30% (measured by the double hydrometer test) as the 

upper limit for dispersion in soil with little or no expression of the adverse properties 

common to dispersed soil. In the U.S., an SAR of 12 identifies dispersed soil (USDA, 

1954). Linear regression of SAR and percent dispersion data for the horizons sampled 
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Figure 8. Relationships between SAR and ESP for selected soil horizons (diamonds, USDA, 1954; squares - this study) 
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for reconnaissance of potentially dispersed soil in Oklahoma enabled interpretation of 

critical SAR values associated with moderate and strong dispersion (> 30% dispersion). 

Sodium adsorption ratios for identifying potentially dispersed soils in Oklahoma derived 

from regression data are 4.5 +/- 0.3 for weakly saline soils (EC<l dS/m) and 7.9 +/- 0.8 

for moderately saline soils (EC from 1 to 9 dS/m) (Figs. 9 and 10, respectively). 

Results and Discussion 

Effects of Amendments and Leaching on SAR of Dispersive Soils 

Addition of amendment reduced SAR values of the first paste extract after 

treatment in 64% (68 of 107) of the treatments. Amendments lowered SAR values of 

initial paste extracts after treatments below 12 in 22% (24 of 107) and below 7.9 in <4% 

( 4 of 107) of the treatments. 

Addition of fly ash lowered SAR values of initial paste extracts after treatment 

below 12 in 5 treatments and below 7.9 in 1 treatment (Table 11). Addition of gypsum 

lowered SAR values of initial extracts below 12 in 8 treatments and below 7.9 in 2 

treatments (Table 11). Addition of hydrated lime lowered SAR values of initial extracts 

below 12 in 3 treatments and below 7.9 in none of the treatments (Table 11). Addition of 

cement kiln dust lowered SAR values of initial extracts below 12 in 5 treatments and 

below 7.9 in 1 treatment (Table 11). Addition ofhumate lowered SAR values of initial 

extracts below 12 in 2 treatments and below 7.9 in none of the treatments (Table 11). 

Addition of calcium chloride lowered SAR values of initial extracts below 12 in 1 

treatment and below 7.9 in none of the treatments (Table 11). Addition of sulfuric acid 

alone did not lower SAR values of initial extracts below 12 or 7.9 in any of the treatments 

(Table 11). 
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Addition of amendments followed by leaching lowered SAR values after 

treatment in 87% (65 of75) of the treatments (Table 11). Addition of amendments 

followed by leaching reduced SAR values below 12 in 61% (46 of75) and below 7.9 in 

31 % (23 of 75) of the treatments (Table 11 ). Reduced SAR values in the leaching 

experiments indicate removal of sodium ions from the soil by leaching (Figs. 11 through 

17 and Table 11). 

Effects of Amendments and Leaching on EC and pH of Dispersed Soils 

Addition of amendments increased EC values of initial paste extracts after 

treatment above untreated values for the soils in 68% (73 of 107) of the experiments 

(Table 11 ). Addition of amendments with leaching resulted in increased EC values of 

extracts from the fifth saturation/equilibration after treatment above untreated values for 

the soils in 23% (17 of75) of the leached experiments (Table 11). Elevated EC values of 

the initial paste extracts after treatment indicate dissolution of the amendments and 

reduced EC values of extracts from the fifth equilibration/extraction after treatment 

indicate removal of electrolytes from the soils by leaching (Table 11 ). Addition of 

calcium chloride at a rate of 11.2 Mg/ha caused the largest increase in EC values of initial 

extracts after treatment (Table 11) and largest reduction in EC values accompanied 

addition of hydrated lime at a rate of22.4 Mg/ha and leaching (Table 11). 

Addition of amendments increased pH values of initial paste extracts after 

treatment above untreated soil values in 58% (62 of 107) of the treatments (Table 11). 

Addition of hydrated lime, fly ash, and cement kiln dust at a rate of 224 Mg/ha caused the 

largest increases in pH (Table 11 ). Addition of amendments with leaching decreased pH 

values of extracts from the fifth saturation/equilibration below untreated soil values in 
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Figure 11. Effects of gypsum (11.2 Mg/ha) on sodium adsorption ratios of amended soils 
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Figure 12. Effects of hydrated lime (11.2 Mg/ha) on sodium adsorption ratios of amended soils 
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Figure 13. Effects of fly ash (11.2 Mg/ha) on sodium adsorption ratios of amended soils 

36 

32 

28 

24 
.9 

20 ~ 
c:: 
0 

'-C 
16 fr 

0 
r/l 

-g 
12 S 

·= "O 
8 ~ 

4 

~ --+-0 

Horizon 146 



-....) 
00 

SAR goal- 12 (USDA, 1954), 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

SAR goal - 7.9 (this study) \ 

. r 1 -r---
"O bl) (JJ 

(I) c:: bl) 
"O ·- c:: c:: ..c= ·-(I) () ..c= 
~ ~ ~ ca - (I) 

c:: - -::, 1./j 

Horizon 7 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

Horizon 28 Horizon 64 Horizon 85 

Figure 14. Effects of cement kiln dust ( 11.2 Mg/ha) on sodium adsorption ratios of amended soils 
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Figure 15. Effects ofhumate (11.2 Mg/ha) on sodium adsorption ratios of amended soils 
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Figure 16. Effects of calcium chloride (11.2 Mg/ha) on sodium adsorption ratios of amended soils. 
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Figure 17. Effects of sulfuric acid (130,000 Lilia) on sodium adsorption ratios of amended soils 
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55% ( 41 of 75) of the leaching experiments (Table 11 ). Addition of gypsum, calcium 

chloride, and sulfuric acid caused the largest reduction in pH (Table 11 ). 

Soil Factors Affecting Ability of Amendments to Reduce SAR Values 

The ability of amendments to lower SAR values of treated horizons below 

standard values varied from horizon to horizon (Figs. 11 through 17 and Table 11 ). 

Treatments decreased the SAR value of Horizon No. 7 below 12 in 65% (30 of 46) of the 

treatments involving Horizon No. 7 (Table 11) but never lowered SAR values of Horizon 

Nos. 64 or 65 below 12 (Table 11). Treatments decreased SAR values below 12 in 70 

treatments (Table 11) and SAR values of Horizon Nos. 7, 15, and 28 dropped below 12 in 

80% (56 of 70) of those treatments (Table 11). Treatments lowered SAR values below 

7.9 in 27 treatments (Table 11) and SAR values of Horizon Nos. 7, 15, and 28 dropped 

below 12 in all but one of those treatments (Table 11). 

Differences in reduction of SAR values of soils by the same treatment for 

horizons indicate properties of soil affect ability of treatments to lower SAR values (Figs. 

11 through 17). Horizon Nos. 7, 15, and 28 show less measured dispersion, have smaller 

SAR values, contain less soluble salt (reflected in EC values and total charge of ions in 

soil water), and hold fewer sodium ions in soil water than the other treated horizons in 

most cases (Table 12). Horizon Nos. 64 and 65 contain more clay-sized particles and 

have higher EC and SAR values than the other treated horizons (Table 12). 

Effective Treatments for Reducing SAR Values of Dispersed Soil 

Assuming reduction of SAR values below standard values for identifying 

dispersed soil indicates reduction in dispersion, than effective treatments lower SAR 

values of horizons below standard SAR values for identifying dispersed soil. Many more 
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Table 12. Other properties of treated horizons affecting ability of amendments to reduce sodium adsorption ratios 

Horizon No. B.D. Clay,% Jill oc Ions Ca:Mg Cl:S04 er 

7 1.79 32.5 5.4 0.2 4.9 0.8 2.0 1.97 
15 1.92 42.0 5.6 0.8 2.1 1.0 0.1 1.07 
28 1.51 38.4 8.4 0.6 2.3 1.3 0.4 1.02 
64 NA 55.5 8.1 1.0 10.2 1.0 0.4 4.60 
65 NA 51.9 8.3 0.5 8.8 1.1 0.9 4.12 
85 1.80 32.9 7.9 0.3 22.9 1.1 0.2 7.11 
86 1.52 37.6 7.9 0.3 8.9 1.0 0.6 3.74 
146 1.73 23.0 8.9 0.1 15.7 0.5 6.4 6.70 

00 
I.;.) 

• B.D. - bulk density (glee), OC - organic carbon(%), Ions - sum of charge of major ions in soil water (cmolc/L), 
Ca:Mg - ratio of charge of calcium ions to charge of magnesium ions in soil water, Cl:S04 - ratio of charge 
of chloride ions to charge of sulfate ions in soil water, Na/(Na+Ca) - ratio of the charge of sodium ions 

to the sum of the charge of the sodium and calcium ions in soil water, er -sum of charge of chloride ions in 
soil water ( cmolc/L) 



treatments lowered SAR values below 12 compared to treatments lowering SAR values 

below 7.9. Most of the treatments lowering SAR values below 7.9 included leaching 

(Figs. 11 through 17 and Table 11 ). All of the materials tested lowered the SAR values 

of a treated horizon below a standard value except for concentrated sulfuric acid by itself 

(Table 11 ). Nearly all treatments tested failed to lower SAR values of strongly dispersed 

soils below standard SAR values for identifying dispersed soil (Table 11 ). Gypsum 

reduced SAR values below standard values in the greatest number of treatments (Table 

11). Some treatments lowering SAR values below 12 or 7.9 raised pH values of soils 

above tolerable levels for many kinds of soil microorganisms and higher plants (hydrated 

lime, fly ash, and cement kiln dust) (Table 11 ). 

Conclusions 

Treatments reduced SAR values below standard values in moderately saline soils 

with weak to moderate dispersion ( <65% measured dispersion) having EC values near the 

lower limit for moderate salinity (1.0 dS/m). Treatments did not reduce SAR values 

below standard values in moderately saline horizons with strong dispersion (>65% 

measured dispersion) having EC values well above the lower limit for moderate salinity. 

Strongly dispersed, moderately saline soil horizons require treatments with larger 

application rates or multiple treatments at the rates tested in this study. Strong dispersion, 

large amounts of soluble salt, and large numbers of sodium ions in soil water affects the 

ability of amendments to reduce SAR values of soils. Recommended treatments for 

remediation of dispersed soil should reduce SAR values of affected soils below standard 

SAR values determined in this study ( 4.5 +/- 0.3 for soils with EC values <1.0 dS/m and 

7.9 +/- 0.8 for soils with EC values between 1.0 and 9.0 dS/m). Recommended materials 
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for reducing SAR values of dispersed soils are gypsum and hydrated lime at rates of 11.2 

and 22.4 Mg/ha because these treatments proved most successful in reducing SAR values 

of amended soils. 
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CHAPTER 3 - FLUCTUATIONS OF TEMPERATURE AND CHEMISTRY OF 
WATER WITH RAINFALL IN AN UNCONFINED AQUIFER 
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Evaluation of the chemistry and purity of water in aquifers requires analyses of 

samples of the water. Samples of water from aquifers most often are taken from sample 

wells set into the aquifers. Water in the form of precipitation mixes with water residing 

in aquifers prior to rainfall events and changes the chemistry and purity of the 

groundwater. Samples of groundwater taken in close proximity temporally to a rainfall 

event may not accurately represent the chemistry of the groundwater (Noriega, 1997; 

Ketelle and Davies, 1999). Erroneous conclusions associated with sampling of 

groundwater too soon after a rainfall include, 1) an unidentified source of contaminant 

exists because the level of contaminant in samples of water from the aquifer is greater 

than ever before, or, 2) remediation of an aquifer is complete because no more 

contaminant exists or the concentration of contaminant is below some predetermined 

level in samples of water from the aquifer. 

Time-based sampling schedules (random, daily, weekly, monthly, quarterly, or 

yearly) ignore effects of recent rainfall events on groundwater chemistry. Rainfall also 

changes temperatures within an aquifer (Noriega, 1997; Ketelle and Davies, 1999). 

Thermocouples attached to dataloggers monitor and record temperature changes within 

aquifers. Analyses of samples of water from aquifers indicate chemistry of water in 

aquifers at the times of sampling. Knowledge of temporal relationships of rainfall­

induced changes in chemistry of water in aquifers and changes in temperature within 

aquifer materials increases the likelihood of retrieving water samples representative of 

the typical state of water in the aquifers. The main objectives of this study were, 1) 

monitoring temperatures of materials in an unconfined aquifer at several depths, 2) 

monitoring chemistry of water in the same unconfined aquifer during and following 
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rainfall events and 3) identifying temporal relationships of temperatures within the 

aquifer materials and chemistry of water in the aquifer in relation to precipitation to 

assess the potential for monitoring of soil temperatures as a tool for use in groundwater 

remediation, particularly for improvements in timing of sampling of aquifer water for 

samples representative of typical chemistry of water in an aquifer. 

The unconfined aquifer tested is part of an alluvial deposit along Boomer Creek in 

Payne Co., OK (Figs. 18 and 19). The site and aquifer tested in this study are part of a 

series ofhydrologic and geologic research projects started and continuing since mid-

1980. Studies completed concerning the aquifer examined effects of changing hydrologic 

and geologic conditions on the chemistry of water in the aquifer (Hoyle, 1987; 

Froneberger, 1987; Melby, 1986), variations in the chemistry of water in the aquifer 

water with depth and over time (Ross, 1987), rates of recharge of the aquifer using tracers 

(Zietlow, 1995; Everett, 1995), and variations in temperatures in the aquifer with depth 

and over an annual cycle (Poyer, 1996). Pettyjohn (1994) discusses much of the work 

previously completed at the site. 

Reports of research concerning temporal relationships of changes in temperature 

and chemistry of water in aquifers with regards to rainfall events are lacking (Wayne 

Pettyjohn, personal communication, 2000). Similar kinds of studies from other areas 

include changes in temperature of aquifer materials with depth over a long time span in 

an aquifer (Heath and Trainer, 1981 ), effects of precipitation on chemistry of spring 

waters (Noriega, 1997; Ketelle and Davies, 1999), variability in chemistry of geothermal 

waters (Murray, 1996; Mayo and Loucks, 1995), and variability in chemistry of water in 

mines (Younger, 1995). Detailed studies of temporal relationships of changes in 
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temperatures within aquifers, changes in chemistry of water in aquifers, and precipitation 

events are non-existent or not available. 

Monitoring of Temperatures and Chemistry of Water within the Aquifer 

A set of thermocouples at depths of 10, 25, 50, 75, 100,150,200,300,400,500 

cm, and in the air connected to a data logger monitored and recorded hourly temperatures 

within the aquifer and in the air at the study site (Fig. 20). Sampling of wells for 

analyses of chemistry of water in the aquifer began when rainfall event intensity 

exceeded 2.5 cm/day according to the on-site tipping bucket rain gauge (Fig. 20). Two 

separate clusters of water wells provided samples of water from the aquifer (Fig. 20). 

One cluster of wells is -1 m from the set of thermocouples (Fig. 20). The other cluster of 

wells occurs on another area of the study site and about 25 m from the set of 

thermocouples (Fig. 20). Each well cluster contains five wells, slotted at approximately 

258, 315, 375, and 435 cm and between 258 and 435 cm, respectively. The schedule for 

sampling of wells for each qualifying precipitation event was approximately 7, 17, 25, 

32, 40, 48, 54, 65, 75, 85, 105, and 120 hours after rainfall reached 2.5 cm within a 24-

hour period. Each sampling period produced 10 samples of water from the aquifer (1 

from each well) unless depth to the water table dropped below the slotted interval of a 

well or wells. Analyses performed on water samples were measurements of 

concentrations of P-, er Br", N03-, and SO/-by ion chromatography (USDA, NRCS, 

NSSC, 1991 ). Measurements of chemistry of water in the aquifer and temperatures 

within the aquifer also occurred between qualifying rainfall events. 

Measured concentration of an ion in a water sample from a well not within the 

95% confidence interval based on measurements of the ion made on water from the well 
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sampled between rainfall events indicated affect of rainfall on the chemistry of the water 

in the aquifer. Sampling occurred for the qualifying rainfall events occurring over a 

several month span to assess variations associated with different amounts of precipitation 

and time of year. The extent and duration of significant changes in temperature of the 

aquifer or chemistry of water in the aquifer in response to the sampled rainfall events 

enabled evaluation of temporal relationships of fluctuations in temperature in the aquifer 

temperatures and chemistry of water in the aquifer after significant rainfalls. The total 

number of water samples tested was -1000. The number of measurements of soil 

temperature made was much greater and significantly less labor-intensive. 

Response of Aquifer Temperatures and Chemistry of Aquifer Water to Rainfall 

Sampling of aquifer water occurred after three qualifying rainfalls (>2.5 cm rain 

in 24-hour period). Dates of Rainfall events sampled were September 21, January 30, 

and March 8. Each rainfall event provided data on chemistry of the water in the aquifer 

for several time intervals (Table 13). Sampling for analyses of chemistry of water in the 

aquifer between qualifying rainfalls occurred on January 28, February 10, and February 

26. 

Evaluations of effects of rainfall on the chemistry of the water in the aquifer are 

from confidence intervals (95%) (Table 14) for the ions measured on water taken from 

the wells between rainfall events. Measurements below or above calculated confidence 

intervals for any ion indicated an influence of the rainfall on the chemistry of the water in 

the aquifer (Table 14). Concentrations ofF·, er, N03·, and so/· deviated from 

confidence intervals most often with concentrations of B{ deviating from confidence 

intervals in only three samples. The sample wells had similar numbers of observations 
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Table 13. Sampling intervals for measured rainfall events. 

Rainfall event 1 (September 21, 1998) - Depth to water table - 3 .5 m 

7, 35, 43, 55, 62, 68, 79, 87, 97, and 105 hours after event exceeded 2.5 cm 

Rainfall event 2 (January 30, 1999)-Depth to water table-2 m 

7, 17, 30, 35, 43, 55, 66, 108, and 127 hours after event exceeded 2.5 cm 

Rainfall event 3 (March 8, 1999) - Depth to water table - 2 m 

7, 17, 30, 37, 43, 48, and 54 hours after event exceeded 2.5 cm 
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Table 14. Concentrations of ions in water from sample wells (mmol) within 95% confidence interval determined from analyses of 
ions in water in wells between rainfall events 

Well p- er B{ NOi so 2: -1 
mmol 

Al 0.007-0.009 0.205-0.307 0.001-0.003 0.164-0.192 0.047-0.051 

A2 0.011-0.045 0.466-0.521 0.003-0.005 0.062-0.082 0.048-0.054 

A3 0.010-0.012 0.307-0.601 0.001-0.003 0.201-0.211 0.047-0.049 

A4 0.014-0.022 0.511-0.779 0.003-0.005 0.088-0.178 0.071-0.073 

A5 0.023-0.057 0.464-0.582 0.003-0.005 0.076-0.112 0.066-0.068 

\0 DI 0.020-0.022 2.001-2.181 0.003-0.005 0.072-0.080 0.123-0.125 
....J 

D2 0.017-0.019 1.837-2.041 0.003-0.005 0.014-0.056 0.106-0.110 

D3 0.019-0.021 1.326-1.384) 0.003-0.005 0.057-0.091 0 .106-0 .112 

D4 0.016-0.024 1.642-1.680 0.003-0.007 0.008-0.012 0.059-0.121 

D5 0.020-0.022 1.533-1.639 0.003-0.005 0.090-0.118 0.101-0-103) 



deviating from confidence intervals. Concentrations of ions in samples of water taken in 

conjunction with Rainfall event 1 deviated from confidence intervals for P-(wells A4, 

D4, and D5), Cr (wells A4, A5, D4, D5), N03- (well A5, D4, and D5), and SO/ (wells 

A4, A5, and D5) for nearly all sampling intervals, including the final interval at 105 

hours after rainfall exceeded 2.5 cm in 24 hours. Similar results occurred for samples 

taken in conjunction with Rainfall event 2 for concentrations of er ( wells A 1, A2, D 1 

and D4), N03"(wells Al, A2, A3, DI , and D4), and SO/ (well A3, A4, and Dl). 

Samples taken in conjunction with Rainfall event 3 deviated from confidence intervals 

for concentrations of er (wells A2, A4, A5, D3, D4, and D5), N03-(wells Al, A2, A3, 

A5, DI, and D4), and SO/ (well Al, A5, Dl , D2, D3, and D5). Concentrations of ions 

in samples of water from the aquifer taken for the final sampling interval of each of the 

Rainfall events deviated from confidence intervals (Figs. 21 through 24). 

Temperature changes in the aquifer near the land surface in response to Rainfall 

event 1 were abrupt and intense (Fig. 25). Response of temperature at 10 cm to the 

rainfall nearly began with the rainfall (Fig. 25). The maximum declination of 

temperature at 10 cm in response to Rainfall event 1 was nearly 4°C about 35 hours after 

rainfall reached 2.5 cm (Fig. 25). Temperature at 25 cm also dropped immediately in 

response to Rainfall event 1 and maximum declination in temperature was -2.5° C about 

45 hours after rainfall reached 2.5 cm (Fig. 25). Temperatures in the aquifer at 10 and 25 

cm showed response to diurnal fluctuations in air temperature after temperature drops at 

those depths reached a maximum (Fig. 25). Changes in temperature at 50 cm and deeper 

in the aquifer lagged behind and were less intense compared to changes observed near the 

land surface (Figs. 25 and 26). Temperatures at 50 cm did not respond immediately to 
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Rainfall event 1 and the maximum declination in temperature at 50 cm was slightly more 

than 1 °C about 55 hours after rainfall reached 2.5 cm (Fig. 25). Maximum decreases in 

temperature at 75 and 100 cm were <1 °C about 65 hours after rainfall reached 2.5 cm 

(Fig. 25). Responses of temperatures in the upper part of the aquifer lasted -90 hours 

(Fig. 25). Changes in temperature in the aquifer below 100 cm in response to Rainfall 

event 1 were difficult to identify (Fig. 26). 

Rainfall event 2 affected the aquifer to a depth of at least 300 cm (Fig. 27). 

Temperatures to 150 cm in the aquifer responded to Rainfall event 2 soon after the 

rainfall reached 2.5 cm (Fig. 27). Responses at 200 and 300 cm in the aquifer started-12 

hours after responses began higher in the aquifer (Fig. 27). Rainfall event 2 affected 

temperatures the greatest at depths of 100 and 150 cm with maximum declinations of 

-2.5° C occurring -15 hours after the start of the event (Fig. 27). Maximum declinations 

observed at other depths in the aquifer were between 1 and 2° C (Fig. 27) and duration of 

the effects of Rainfall event 2 on the temperatures in the aquifer was -24 hours at most of 

the observed depths (Fig. 27). Decrease in temperature at 300 cm in the aquifer reached a 

maximum of <1 ° C about 20 hours after rainfall in event 2 reached 2.5 cm (Fig. 27). 

Rainfall event 3 affected temperatures to at least 150 cm deep in the aquifer (Fig. 

28). Observed effects of Rainfall event 3 on temperature in the aquifer did not last long 

(Fig. 28). Responses at all observed depths started - 8 hours after Rainfall event 3 

reached 2.5 cm (Fig. 28). Maximum decrease in temperature in the aquifer in response to 

Rainfall event 3 of - 1 ° C occurred at 100 cm and lasted -4 hours (Fig. 28). 
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Conclusions 

Rainfall events affected the chemistry of the water in the aquifer and temperatures 

within the aquifer. Temperature changes in the aquifer lasted from four to -100 hours, 

depending on the rainfall event. Dry soil conditions, associated with greater depth to the 

water table (3 .5 m deep), extended the duration of the effect of the rainfall on the 

temperatures of the aquifer (Rainfall event 1 ). Under moister soil conditions, associated 

with an elevated water table (2 m deep), the amount of rain in the event affected depth, 

duration, and degree of temperature changes in the aquifer associated with the rainfall 

(Rainfall events 2 vs. Rainfall event 3). The increased rainfall associated with Rainfall 

event 2 (-4 cm) caused maximum temperature declinations in the aquifer to be larger, 

affected temperatures deeper in the aquifer, and affected temperatures for a longer period 

of time compared to the amount from Rainfall event 3 (2.5 cm). Concentrations of ions 

in samples of water taken from the aquifer during the final sampling interval for each 

Rainfall event (105, 127, and 54 hours after precipitation exceeded 2.5 cm in a 24 hour 

period for Rainfall events 1, 2, and 3, respectively) deviated from 95% confidence 

intervals. 

Results of this study indicate monitoring of temperatures within aquifers could 

benefit evaluation and cleanup of contaminated, unconfined aquifers. Rainfalls 

exceeding 2.5 cm in a 24-hour period cause changes in temperature with depth within the 

aquifer used in this study. Rainfalls of such intensity affect chemistry of the water in the 

aquifer for longer durations than effects of the rainfall on temperatures within the aquifer. 

Guidelines for sampling of unconfined aquifers after rainfalls based on temperatures 
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within the aquifers result in less misinterpretation of chemistry of water in aquifers and 

improved identification and remediation of contaminated, unconfined aquifers. 
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APPENDIX A-ABSTRACT FOR CHAPTER 1- DISPERSION IN SOILS OF 
SEMIARID AND SUBHUMID AREAS OF OKLAHOMA 

Dispersion of 103 tested horizons ranges from O to 96 %. Comparisons of properties of 

31 not-to-weakly-dispersed ( <30% dispersion by the double hydrometer method), 30 

moderately dispersed (30 to 65% dispersion), and, 42 strongly dispersed (>65% 

dispersion) horizons indicate multiple influences on dispersion. Many soil properties, 

including bulk density, sodium adsorption ratio (SAR), electrical conductivity (EC), pH, 

% clay, % organic matter, ratio of the charge of chloride ions to charge of sulfate ions in 

soil water, and ratio of charge of sodium ions to sum of the charges of sodium and 

calcium ions in soil water influence amounts of dispersion occurring in the soils. 

Dispersion increased as the amount of illite in the clay fraction increased in the soils. 

Critical or threshold sodium adsorption ratios for identification of dispersed soils 

calculated from EC, SAR, and% dispersion data are 4.5 for weakly saline (EC<l dS/m) 

and 7 .9 for moderately saline (EC from 1 to 9 dS/m) soils. Diagnostic SAR values 

identified are alternatives to existing diagnostic values for identification and management 

of dispersed soil in semi-arid and sub-humid regions. 
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APPENDIX B-ABSTRACT FOR CHAPTER 2-SELECTED AMENDMENTS FOR 
REDUCING SOIL DISPERSION 

Dispersion of soil causes deterioration and failure of bridges, dams, and roads. 

Dispersion occurs in soils containing clays with cation exchange complexes affected by 

sodium ions. Sodium adsorption ratios (SAR values) of saturated paste extracts of soils 

identify soils affected by sodium. Amendments can reduce soil dispersion and SAR. 

Addition of gypsum, hydrated lime, cement kiln dust, fly ash, calcium chloride, sulfuric 

acid, and humate to dispersed soil horizons from profiles across Oklahoma enabled 

analyses of the effectiveness of the amendments in lowering SAR values of dispersed 

soils. Amended horizons have SAR values between 7.7 and 32.5, electrical conductivity 

(EC) between 0.6 and 6.8 dS/m, and amounts of dispersion (measured by the double 

hydrometer method) between 3 and 81 %. Measurements of SAR and EC of saturated 

paste extracts from addition of amendments to -250 g of soil, mixing, and overnight 

equilibration of the pastes reveal the effectiveness of the amendments. Criterion for the 

evaluation of amendments are: 1) diagnostic SAR values determined from SAR. EC, and 

% dispersion of subsoil horizons of the study and 2) a standard diagnostic SAR value 

(12) for soils in the U.S. Diagnostic SAR values (remediation goals) developed from 

properties of subsoils sampled for the study are 4.5 for weakly saline (EC<l .O dS/m) and 

7.9 for moderately saline (EC 1.0 to 9.0 dS/m) horizons. Treatments with fly ash (11.2 

and 22.4 Mg/ha), gypsum (11.2, 22.4, and 224 Mg/ha), hydrated lime (11.2, 22.4, and 

224 Mg/ha), cement kiln dust (11.2, 22.4, and 224 Mg/ha), humate (11.2 and 22.4 

Mg/ha), and calcium chloride (11.2 Mg/ha) successfully reduced SAR values of extracts 

from several treated horizons below the U.S. standard diagnostic SAR value. A large 
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decrease occurred in the number of treatment/horizon combinations with SAR values 

below standard diagnostic values developed from subsoil horizons of the study (fly ash-

3, gypsum - 9, hydrated lime -4, cement kiln dust- 4, humate - 2, and calcium chloride 

-2 of a total possible 105 combinations). Amendments lowered SAR values of soils 

with EC values - 1.0 dS/m affected by weak and moderate dispersion (20 to 65 % by the 

double hydrometer method) most successfully. Treatment success diminished much in 

moderately saline soils affected by strong dispersion. Results of the study indicate 

greater application rates and/or multiple treatments at common tested rates are necessary 

for successful remediation of moderately saline soils affected by strong dispersion. 
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APPENDIX C-ABSTRACT FOR CHAPTER 3- FLUCTUATIONS OF 
TEMPERATURE AND CHEMISTRY OF WATER WITH RAINFALL IN AN 

UNCONFINED AQUIFER 

Identification and remediation of contaminated, unconfined aquifers will continue to be a 

world problem. Monitoring of temperatures of aquifer materials is simple and not time-

consuming using thermocouples and dataloggers. Collection of large amounts of 

temperature data is inexpensive. This study evaluated relationships of fluctuation in 

temperature of aquifer materials and chemistry of water in the aquifer after significant 

rainfalls (>2.5 cm in 24 hours). Collection of temperature data was by thermocouples at 

10 depths between 10 and 500 cm and a datalogger. Ten sample wells, slotted between 2 

and 5 m supplied samples of water from the aquifer for analyses. Chemical 

characteristics of the water measured by ion chromatography included concentrations of 

F, er Br-, N03-, and so/-. Results from three separate rainfalls showed response of 

temperature of aquifer materials to the rainfalls. Rainfalls affected temperatures as deep 

as 300 cm. Duration of responses lasted between 4 and 100 hours. Lags in temperatures 

in response to rainfall occurred with depth in the aquifer. Concentrations of ions in 

samples of water from the aquifer fell outside 95% confidence intervals for the ions more 

than 100 hours after rainfall exceeded 2.5 cm. Guidelines for sampling of aquifers 

developed using temperature data from aquifer materials result in fewer analytical 

misinterpretations of water chemistry and improved identification and remediation of 

unconfined aquifers. 
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