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CHAPTER I 

SOME BASIC PRINCIPLES OF ELECTROKINETIC CAPILLARY 

CHROMATOGRAPHY. SCOPE OF THE STUDY 

Introduction and Scope of the Study 

Capillary electrophoresis (CE) is a miniaturized separation technique that 

incorporates high voltage and the subsequent electric current as the driving force for the 

mass transport. This form of transport results in high separation efficiency and 

resolution. Furthermore, CE consumes very small sample volumes and reagents and 

utilizes automated instrumentation, which makes it a powerful tool for environmental, 

pharmaceutical, and biochemical analyses. Separation in CE is a result of the 

electrostatic attraction of the charged analytes to the respective electrode of opposite 

charge under the influence of an applied voltage. 

Modifying CE can be easily achieved by adding selectors (i.e., pseudo-stationary 

phase) into the running electrolyte buffer. In capillary electrochromatography (CEC) and 

high performance liquid chromatography (HPLC), the stationary phase is immobile, 

however, in CE the pseudo-stationary phase migrates in a direction corresponding to its 

net charge and at a different velocity than the running electrolyte. The interaction of the 

selectors, or pseudo-stationary phases (e.g., micelles, cyclodextrins, polymeric micelles, 
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etc.) with the analytes of interest alters the mobility of these analytes, and eventually· 

brings about their separation. These pseudo-stationary phases allow the separation of 

neutral molecules and enhance the separation of charged analytes. A CE separation that 

consists of a pseudo-stationary phase dissolved in an aqueous or hydro-organic running 

electrolyte is known as electrokinetic capillary chromatography (EKC). The 

incorporation of a surfactant in the running electrolyte, which forms a micelle above the 

critical micellar concentration (CMC) is a technique referred to as micellar electrokinetic 

capillary chromatography (MECC or MEKC). The use of a surfactant as a pseudo­

stationary phase without the formation of a micelle ( e.g., surfactants dissolved into high 

organic content running electrolytes) yields an electrokinetic system that is called in this 

dissertation surfactant-mediated electrokinetic capillary chromatography (SM-EKC). 

In brief, the objectives of this chapter are (i) to inform the reader about the history 

of CE, (ii) to describe the instrumentation used, (iii) to depict the basic separation 

principles involved in this technique, and (iv) to discuss the basic principles of on-column 

preconcentration approaches used in CE. Furthermore, a number of equations and 

parameters relating to our CE studies will be discussed to give a better understanding of 

the processes involved in this method. 

The scope of this dissertation encompasses the development of novel EKC 

systems for the separation of pesticidic metabolites and their derivatives at trace levels in 

real water samples (e.g., lake and tap water). This research was conducted with the aim 

that other classes of compounds could be potentially used with the methods developed in 

this dissertation. 
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Capillary electrophoresis techniques are well known for their high separation 

efficiencies, however high resolution separation for a multicomponent mixture also 

requires sufficient selectivity of the technique being employed. In other words, 

attainment of millions of theoretical plates with a given electrophoretic system is 

irrelevant for the separation of the mulitcomponent mixture if no selectivity is achieved. 

Therefore, the importance of introducing and evaluating novel CE systems of unique 

selectivities and high separation efficiencies for achieving high quality separation (i.e., 

enhanced peak capacity) is realized in this dissertation. Multicomponent mixtures are 

often encountered in chemical and biochemical real world analyses. These mixtures 

require high separation efficiency with ample selectivity, which results in high resolving 

power. Dilute samples pose another challenge, since high resolving power alone is not 

always adequate for detection. The separation methodologies incorporated must be able 

to achieve adequate limits of detection when doing trace analysis studies. The extremely 

narrow path length (i.e., small capillary diameter) for on-column detection restricts the 

sensitivity of photometric detectors usually employed in CE ( e.g., UV-visible detection). 

This shortcoming excludes most typical CE techniques for the analysis of dilute samples. 

To circumvent the detection problems in CE, this dissertation incorporates laser induced 

fluorescence (LIF) detection of pre-column derivatized solutes to help increase the 

sensitivity of the detection system. Moreover, this dissertation further addresses the 

sensitivity issue by offering on-column preconcentration approaches while also 

introducing selective separation media. 

In addition to this introductory chapter, this dissertation contains 3 other chapters 

that illustrate the derivatization, separation, detection, and trace enrichment approaches 
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developed. Chapter 2 investigates novel MEKC approaches for the separation of 

derivatized aniline pesticidic metabolites and their detection by LIF. Chapter 3 further 

elaborates on the detection of these pesticidic metabolites but incorporates a novel SM­

EKC separation with an alternate derivatization technique. The incorporation of sodium 

dioctyl sulfosuccinate (DOSS) as the surfactant allowed the use of high organic content 

to aid in the separation of the very hydrophobic derivatives. Chapter 4 describes the trace 

enrichment of phenol pesticidic metabolites and their detection before and after 

derivatization with yet another fluorescent tag. DOSS surfactant dissolved in a hydro­

organic running electrolyte was again employed to aid in the selectivity of the separation 

system involving the hydrophobic solutes. 

Historical Background and Development of Capillary Electrophoresis 

Tiselius and co-workers introduced electrophoresis in 193 7 as a separation 

method for macromolecules.such as proteins, RNA, and DNA. 1 However, casting the gel, 

staining, and destaining for the identification of separated solute zones is labor intensive 

and not very quantitative. Regardless, this method of separation set the stage for 

developing and investigating more efficient electrophoretic separation systems. A few 

years later, Strain2 introduced capillary electrochromatography (CEC) and illustrated the 

use of electroosmotic flow in chromatography. In 1967, Hjerten3 was the first to 

incorporate glass tubes of 3 mm internal diameters (i.d.) using high electric field strength 

with on-column UV detection. As interest grew, it was realized that smaller column i.d. 

would provide more efficient dissipation of heat, which results in less band broadening 
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due to Joule heating. In 1974, Vertanen4 was able to separate alkali cations with a Pyrex 

glass tube using potentiometric detection. That same year, Pretorius et al.5 demonstrated 

the first true pumping action produced from EOF for use in analytical CEC separation. 

By 1979, Mikkers et al.6 accomplished the separation and detection of inorganic and 

organic compounds with 200 µm PTFE tubing using UV and conductometric detection. 

Major accomplishments in CE had been made within five decades of its introduction, but 

inadequate separation efficiencies, large injection volumes, and poor detection sensitivity 

limited its analytical capabilities. 

In 1981, Jorgenson and Lukacs 7 rriade a major breakthrough concerning these 

drawbacks of CE. They were able to separate and identify amino acids and peptides 

using a 75 µm fused-silica capillary with on column fluorescence detection. By applying 

fluorescence detection instrumentation to a fused-silica capillary of this size, they were 

able to obtain very high sensitivity and separation efficiency. This accomplishment is 

greatly known as the start of the modern era of CE and has led to great discoveries 

involving a variety of techniques and methods now commonly employed in CE. 

Once this improved column and instrumentation technology had been proven, 

more traditional techniques involving gel electrophoresis8 and isoelectric focusing9 were 

soon adapted and investigated in the capillary format. However, in 1984 Terabe 10 and 

co-workers introduced one of the most widely used techniques in CE known as micellar 

electrokinetic chromatography (MECC or MEKC). This technique utilizes a micelle as 

the pseudo-stationary phase that causes differential partitioning of the solutes molecules 

between the mobile running electrolyte and the micelles. Once a system is tuned and 

optimized, this partitioning interaction results in a change in the net mobility of the solute 
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and ultimately results in an enhancement of the overall separation. Sodium dodecyl 

sulfate (SDS) 11. 12 is one of the most widely used anionic surfactants, which can be used 

to selectively control the separation of charged molecules as well as neutral compounds. 

A variety of other pseudo-stationary phases (e.g., cyclodextrins, 13· 14 molecular or 

polymeric micelles, 15 crown ethers, 16 etc.) have been developed to tune the selectivity of 

systems as to allow for the separation and determination of chiral compounds. 

Furthermore, a great deal of investigation has gone into inner-capillary wall 

modification17• 18 (e.g., hydrophilic coating) and the development of other stationary 

mobile phases (monolithic, 19· 20 packed silica bead columns,21 etc.) for use in CEC, which 

I 

goes above and beyond typical open tubular capillary column capabilities. The technique 

of electrophoresis was further advanced in the early 1990's with the introduction of CE 

· h" 22 23 on a m1croc 1p. · 

CE has become an extremely versatile tool used in the analytical determination of 

a wide variety of species ranging from small ions to large biomolecules. CE has been 

incorporated in the analysis of samples originating from various fields of interest 

including forensics, pharmaceuticals, environmental, biological, chiral separations, etc.24 

This powerful analytical separation technique has led to a vast number of worldwide 

meetings concerning CE and CEC, which reflect its great worth and innovation. 
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Electrokinetic Capillary Chromatography Methods 

Capillary electrophoresis instrumentation is made up of three · primary pieces of 

equipment consisting of a high voltage power supply, a detector, and a data acquisition 

system as illustrated in figure 1. The high voltage power supply is capable of delivering 

Wire 

AA 
Data acquisition system 

Fused-silica capillary 

Inlet electrolyte 
reservoir 

Detector 

Outlet electrolyte 
reservoir 

Wire 
·--------------------------------------------------------t------------

EJ ~ ~ Plexiglass box 

High voltage power supply 

Figure 1. Schematic illustration of a typical manual instrument used for CE. 
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up to 30 kV. Manual instruments are equipped with plexiglass boxes with safety 

switches that turn off the voltage upon opening to protect the user from any shock hazard. 

All automated instruments are also equipped with the same such voltage cut-off switches. 

The detection is typically carried out on-column by either a UV or fluorescence detector. 

Both manual and automated systems employ platinum electrodes to provide voltage 

transfer into the running electrolyte buffer. However, there are many advantageous 

options that are available with the automated . instruments, for example, temperature 

control, automated sample injection and sampling, and pressurization of the inlet and 

outlet ofthe capillary, which reduces bubble formation when performing CEC. 

The separation process typically takes place in a fused-silica capillary, which has 

a polyimide coating that allows more rugged use and overall flexibility. The detection 

normally takes place on-column through a "window" where the polyimide coating has 

been removed. This polyimide removal can be done by heating in a flame, electrical wire 

stripper, or by concentrated sulfuric acid heated at I 00 °C, which results in a segment of 

exposed fused silica that is UV transparent. Overall column length, typically 20 to 80 cm, 

and internal diameter, typically 10 to 100 µm, can be varied depending on the desired 

results. The desired results usually depend on the most efficient run time to produce the 

necessary separation. 

Sample Injection 

The attainment of reproducible results in CE is very dependent on the mode of 

sample injection. The two typical injection techniques used in CE are hydrodynamic and 

electrokinetic and usually depend on the configuration of the instrument. The sample 

zone length (l;n}) when using electrokinetic injection can be described by: 
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(1) 

where µep and µeo are the electrophoretic and electroosmotic mobility (described by 

equations (11) and (16) in more detail), respectively., The terms V;, f;, and L are the 

injection voltage, injection time, and capillary length, respectively. The amount of 

sample injected (w) can be represented mathematically by:25 

(2) 

where r is the radius of the capillary and C is the concentration. Combining equations (1) 

and (2) produce an equation for the amount of solute injected as a function of the 

experimental conditions represented by: 

w = (A,, + µe,JJ }zr2Jt';t;C 
L 

(3) 

Hydrodynamic injection can be further divided into three categories which are head-

space pressurization, vacuum injection, or gravity-based sample injection (i.e., 

siphoning). Manual instruments generally utilize gravity-based injection, which consists 

of elevating the sample-submerged inlet of the capillary above the outlet end of the 

capillary. The volume of sample injected (Sv0 1) using gravity-based injection can be 

mathematically expressed by:26 

S _ dg m' 4 llhf; 
I'll' - 817L 

(4) 

where d is the density of the sample solution, g is the gravitational acceleration, llh is the 

height difference between the inlet and outlet ends of the capillary, and 17 is the viscosity 

of the solution. Concentration of the sample (C) can then be included in equation (4) to 

generate an equation in terms of sample injected ( w). 
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dg1Cf' 4 !1hCt; 
w=-----

817L 
(5) 

Predominantly, the height difference as well as the time of sample elevation determines 

the amount of sample that is loaded onto the column. Electrokinetic injection is also 

utilized by manual and automated instruments and is most dependent on the ionic 

strength of the sample matrix. However, the amount of solute loaded using electrokinetic 

·. injection can be greatly affected by differences in conductivity between the sample 

matrix and running electrolyte. Furthermore, this conductivity difference can result in a 

concentration variation between the sample and the actual sample plug that is injected. 

Although this injection method can hinder analytical quantification, this phenomenon has 

been exploited as a preconcentration technique. In addition, this technique is popular 

when dealing with viscous sample matrices as well as with CEC where flow is hindered 

by the column packing material. Automated instruments are normally equipped to do 

electrokinetic injections, however hydrodynamic injections are preferred when 

permissible. Head-space pressurization or vacuum injections are the typical injection 

methods used with most automated instruments. The amount of analyte injected using 

pressure can also be calculated mathematically by introducing a term reflecting the 

pressure difference across the capillary (M): 

. tlP1C1' 4Ct; 
W=----

817L 
(6) 

The injection when using head-space pressurization is a result of the application of a low 

pressure applied to the inlet vial of the submerged capillary, whereas vacuum injection 

creates a vacuum on the outlet vial of the submerged capillary. Each technique forces 

sample matrix to be pushed or pulled, respectively, into the capillary for further· analysis. 
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Detection in CE 

Ultraviolet (UV) detection is the most popular detection method with most CE 

instruments. This is due to its inexpensive cost and versatility, as most analytes absorb in 

the UV portion of the spectrum. However, detection in CE is a major concern because of 

the very small path length of the capillary diameter. Because of this, a modification of 

path length was developed known as the Z-shaped cell, also known as the high sensitivity 

cell, in which the detection is aligned down a short portion of the long axis of the 

capillary.27· 28 However, detection along the long axis of the capillary presents a problem 

due to increased band broadening and lower efficiencies. A few years later Hewlett­

Packard introduced a modified capillary, known as the bubble cell, which is expanded 

three fold in diameter at the detection window, thus increasing the sensitivity.29 Laser­

induced fluorescence (LIF)30•34 detection is probably the second most popular form of on­

column analyte identification. This detection technique allows the detection of only the 

fluorescent analytes at a certain excitation wavelength, which proves less versatile than 

UV detection but allows for much greater sensitivity. Other less commonly used methods 

of detection include indirect detection techniques,35"38 amperometry,39· 40 and 

conductivity.41 "44 Nuclear magnetic resonance spectroscopy (NMR)45-48 and more 

importantly mass spectrometry (MS)49•53 have been integrated with CE to greatly 

improve the detection and identification power of CE. 

Modes of Separation 

Since the development of CE, there have been several variations of separation 

modes investigated, which focus on different chemical and physical properties of 

analytes. The various modes are: capillary zone electrophoresis (CZE), micellar 
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electrokinetic capillary chromatography (MECC or MEKC), surfactant-mediated 

electrokinetic capillary chromatography (SM-EKC), capillary gel electrophoresis (CGE), 

capillary isoelectric focusing (CIEF), and capillary isotachophoresis (CITP). 

The simplest and most common mode for separation is CZE, which consists of a 

uniform running electrolyte at constant pH. The separation is dependent on differences in 

charge-to-mass ratios of the solutes. Anionic and cationic analytes can be separated with 

this technique; however, all neutral analytes migrate with the EOF and elute at the same 

time corresponding to the dead volume. There have been a great many separations 

carried out using CZE with analytes varying from small ions to relatively large biological 

. ( · b · ) 54-~6 species e.g., viruses, actena . -

The MECC separation approach is the most versatile separation method and can 

be employed to separate ionic and neutral species. Separation in MECC is primarily 

dependent on the hydrophobic interaction of analytes with the charged micelles with 

charge-to-mass ratio playing a lesser role. Micelles can only be formed when a surfactant 

is added above its critical micellar concentration (CMC) and acts as a pseudo-stationary 

phase that allows the analyte to partition between the mobile phase and the micellar 

phase. Hydrophobic analytes interact more with the micelles while more hydrophilic 

analytes interact less. The SM-EKC separation mode behaves in the same manner, 

however the analytes interact with surfactant monomers, which are usually the result of a 

hydro-organic running electrolyte buffer that greatly increases the CMC. 

The CGE method consists of a capillary that is filled with a porous gel material 

that is non-mobile and produces no EOF. The separation occurs on the basis of size as 

the analytes electrophoretically migrate through the gel-filled capillary. The gel acts as 
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an anticonvective medium, which contributes to less band broadening and increased 

efficiencies. This method is very popular when dealing with large molecular weight 

solutes and very high theoretical plates (i.e., 30 million per meter57) have been reported. 

In CIEF, the separation is dependent on the isoelectric point (i.e., pl values) of the 

analytes. As the solutes electrophoretically migrate through the stationary pH gradient 

buffer, they become uncharged at the pH zones equaling their pl values. Once the 

analytes reach their respective zones, they become neutral which results in loss of 

electrophoretic mobility. The final mobilization step incorporates an electrolyte to induce 

mobilization of the stationary analytes past the detection window. 

Capillary isotachophoresis (CITP) incorporates electrically discontinuous buffer 

matrices, which results in the separation of the solutes based on their migrations into 

sharp zones. In short, the sample is injected between a high-mobility leading electrolyte 

and a low-mobility terminating electrolyte. The analytes concentrate into sample zones 

between the two electrolytes and migrate at equal velocity towards the detection point. 

CE Column Technologies 

Fused-silica is by far the most popular capillary material in CE due to its easy 

column fabrication, electrical resistance, optical transparency, mechanical strength, 

flexibility, and inexpensive cost. The silanol groups that make up the inner surface of the 

fused-silica are weakly acidic groups that ionize above a pH of 3 .5 resulting in charged 

silanol (i.e., deprotonated SiO-) groups, which produce the EOF phenomenon. Cationic 

analytes present a problem due to the electrostatic interaction with the inner surface of the 

capillary resulting in peak tailing or extremely large to infinite migration times. A 

variety of solutions to this problem have been investigated to effectively deal with the 
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analyses of cationic species specifically pH buffer modification (i.e., reducing pH below 

3.5) or capillary surface modification by chemical alteration58-61 or modifier addition62-64 . 

Basic Principles of Capillary Electrophoresis 

Electrophoretic Migration in the Absence of EOF 

Separation using CE involves the movement of charged species through a solution 

in the presence of an electric field. The cations travel towards the cathode, or negatively 

charged electrode, while the anions travel toward the anode, or positively charged 

electrode. In a solution, the conductivity is dependent on the concentration and size of 

the electrolyte ions, which in turn generate a current from an applied electric field. · The 

overall mobility of the charged solute is also dependent on the charge-to-mass ratio and, 

to a small extent, the size and three-dimensional shape of the analyte of interest given 

there is no electroosmotic flow (EOF). 

The electric field strength E is a function of the applied voltage V and the 

capillary length L expressed as: 

E=V 
L 

(7) 

An ion experiences a force Fe that is the product of the particle's net charge, q, and the 

electric field strength represented as: 

F.,=qxE (8) 

Positively charged ions have a positive Fe, which is a reflection of the force that is 

pushing them in the direction of the negative electrode, whereas the anions are being 
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forced in the opposite direction reflecting a negative Fe. There is another force, however 

acting on the particles known as the drag force. The drag force is opposite to that of the 

electrical force experienced and acts to slow the acceleration due to the electrical force. 

The drag force is a result of the medium interaction with the ionic particle as it migrates 

through the surrounding running electrolyte. The drag force Fc1 is directly proportional to 

the ion's electrophoretic velocity Vep, and is given by: 

F,, = -f X Vep (9) 

wherefis the translational friction coefficient. For small spherical ionic particles Stoke's 

Law can represent/ 

f = 61r17r (10) 

where viscosity of the running electrolyte is 17 and the radius of the particles migrating 

through this medium is r. As seen in equations (9) and ( 10), drag force also known as the 

frictional drag is directly proportional to the electrophoretic velocity, viscosity of the 

running electrolyte, and the radius of the particle. Given a charged particle in an 

electrolyte solution, the application of an electric field will accelerate this species to a 

limiting velocity as a result of the opposing frictional drag. A balance is achieved 

between the accelerating electrical force and the opposing frictional drag and a steady 

state velocity is attained. The sum of these two forces is equal to zero under these 

conditions and the limiting velocity, or electrophoretic velocity Vep, is achieved. This 

velocity can be derived from equations (8) and (9) and is represented as follows: 

qE 
v",,=f (11) 
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An expression for the electrophoretic mobility (µep) can be obtained from equations ( l 0) 

and (5) given the definition. The expression of this mobility is electrophoretic velocity of 

the charged particle per unit field strength as follows: 

(12) 

Assuming there is no electroosmotic flow, equation (12) reflects the dependence 

of µep on the net charge of the particle (pKa) and it's three-dimensional size and shape as 

-well as the viscosity and temperature of the medium. 

The absolute electrophoretic mobility 1-10 can be extrapolated given an infinitely 

dilute solution at a given temperature. This is a constant parameter, which is 

characteristic for a given charged species. Deviations from the absolute mobility can be 

accounted for in a correction factor, arbitrarily represented as f;. The actual 

electrophoretic mobility can then be related to the absolute electrophoretic mobility 

expressed as: 

(13) 

This correction factor in equation (13) was derived for organic anions as a function of the 

charge number z and ionic strength I of the running electrolyte as follows: 

f = exp(-0.77M) 

where the ionic strength is: 

k 

I -'" 2 - 2 L..JCZ 

16 

(14) 

(15) 



where c is the molar concentration of the ionic running electrolyte buffer. It should be 

noted that there are limitations to these equations and should be restricted to relatively 

low concentration ranges and charge numbers. Equation ( 15) should be considered 

empirical for an ionic strength in the range between 10"1 and 10-3 M. 

Electroosmotic Flow in Open Tubes 

One of the most fundamental concepts of CE is the bulk flow of the running 

electrolyte as a result of the overall surface charge on the interior of the capillary wall. 

Fused-silica capillaries are the most popular and widely used due to the well-known 

silanol (SiOH) chemistry of the inner surface of the capillary. Under slightly acidic to 

basic conditions, the inner wall of the capillary is lined with negatively charged silanol 

groups (i.e., deprotonated silanol, SiO-). As illustrated in figure 2, the negatively charged 

inner wall will attract positively charged cations to the surface and repel negative anions. 

Furthermore, the solid phase/liquid phase interface along the capillary wall will result in a 

potential gradient inside the capillary due to the charge distribution. The positively 

charged region directly contacting the inner surface of the capillary is called the compact 

region, which is tightly bound and immobile. The next region, moving away from the 

inner wall and towards the center of the capillary, is the diffuse region made up of a more 

overall positive charge. This region is the primary mobilization constituent produced 

when an electric field is applied. The cations migrate towards the negatively charged 

electrode, which produces a bulk transfer resulting in a constant electroosmotic flow. 
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Figure 2. Illustration of (a) the electric double-layer regions and (b) the electric double­
layer potential gradient as a function of the relative distance from the capillary wall. 
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The innermost region is considered the bulk solution and is electrically neutral relative to 

the other two regions. It is important to note that this process is not disregarding electro-

neutrality; however there is a heterogeneous charge distribution that is the primary reason 

for electroosmotic flow. 

Figure 2 represents the electric potential(\\') as a function of the distance from the 

inner capillary wall. The electric potential at the surface of the capillary wall (\\'o) is the 

greatest and linearly decreases out to the diffuse region. The potential at the compact-

diffuse region interface is represented as \\'ct· From the diffuse region through the bulk 

solution there is an exponential decay in the electric potential. The zeta potential (s) is 

found at the boundary of the diffuse region and the bulk solution, also known as the plane 

of sheer. It is obvious from Fig. 2 that the potential drastically decreases as you progress 

inward from the inner surface of the capillary. The zeta potential is considered 

characteristic of the movement of solution at the plane of sheer. The diffuse region of the 

electric double layer containing solvated cations is responsible for the migration of the 

bulk solution towards the negatively charged electrode. The mathematical expressions 

for the EOF in terms of velocity (veof) or mobility (µeof) are: 65 

&( 
v,or =-4 E 

. 7rl] 
(16) 

or 

&( 
µ,•of=-4 . 7rl] 

(17) 

where & is the dielectric constant. The zeta potential is dependent of the surface charge on 

the capillary wall and therefore dependent on pH. At more basic conditions the silanol 

19 



groups on the surface of the capillary wall are more deprotonated, which causes a greater 

EOF than at acidic conditions where the silanol groups are predominately protonated. 

Increased ionic strength causes compression in the electric double layer that reduces the 

zeta potential and decreases the EOF. The opposite holds true for a relative decrease in 

the ionic strength. The zeta potential is directly proportional to the surface charge density 

( p) and the thickness of the double layer ( t5) and is expressed as:66 

(18) 

or given by the Helmholtz equation:67 

(19) 

The dependence of the zeta potential on ionic strength is reflected by the thickness of the 

electric double layer§, which is inversely proportional to the Debye-Huckel parameter 

( K ). Applying modern electrolyte theory to equation ( 18) will produce the mathematical 

dependence expressed as: 

(20) 

Since the surface charge is strongly pH dependent and r; is directly proportional to the 

surface charge, the influence of pH on EOF is realized. More silanol groups are ionized 

with a more alkaline pH causing a relative increase in EOF, whereas the opposite holds 

true for a more acidic pH. In addition, r; is inversely proportional to I resulting in a 

decrease in (with increasing ionic strength, which will contribute to a decrease in EOF. 
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A beneficial characteristic of EOF is the flat flow profile generated by the 

electrical pumping action. Mechanical pumping results in · a laminar or parabolic flow 

profile as used in many other chromatographic methods. Figure 3 demonstrates the 

consequential peak shape distribution for both flow profile phenomena. 

a. Electroosmotic Flow Profile 

y 

b. Laminar Flow profile 

Figure 3. A diagram of flow profiles and their consequential peak shape. (a) EOF plug 
profile resulting from electrical driving force resulting in sharper peak shape as illustrated 
on the right. (b) Laminar plug profile seen when a mechanical pump is used resulting in a 
relatively broader peak distribution. 
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Apparent Mobility and Migration Time 

The apparent mobility (µapp) is what is actually measured in CE, and is the sum of 

the electrophoretic and electroosmotic mobilities. The µep can be measured from the 

migration time and is expressed by: 

(21) 

where l is the length of the capillary to the detector (cm), L is the total length of the 

capillary (cm), fM is the observed migration time, and V is the applied voltage. 

Furthermore, the apparent velocity (vapp) of a given solute is related to mobility and can 

be described by: 

(22) 

Likewise, the µeqf can be described as a function of the column parameters, the voltage, 

and the migration time of a neutral solute, /0 : 

(23) 

Rearrangement of equation (21) with substitution of equation (23) will give the 

mathematical expression for µep as: 

µ,.,, = µ""" _ µ,.,,,. = IL (-1 _ _!_) 
V IM I,, · 

(24) 
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The "sign" (i.e., negative or positive) of µep is dependent on the direction of ion 

movement, which corresponds to the charge of the ion. An anion will have a negative µep 

whereas a cation will have a positive value. 

Separation Efficiency 

The incorporation of a capillary with an electrically driven flow results in much 

higher separation efficiencies as compared to typical liquid chromatography (LC) 

methods. The absence of a stationary phase in CE eliminates band broadening due to 

mass transfer between the mobile phase and the stationary phase. The flat flow profile 

seen in CE is advantageous over the laminar flow profile, which leads to radial velocity 

gradients due to frictional forces between the mobile phase and the column walls. 

Dispersion due to eddy diffusion and stagnant mobile phase is unimportant in CE. 

Furthermore, any convection related dispersion from joule heating is minimal because of 

the effective dissipation of heat through the capillary walls, contrary to most other 

electrophoresis techniques (i.e., gel electrophoresis). 

The number of theoretical plates (N) in CE expresses the separation efficiency, 

which is simply shown by: 

N =(~ )' (25) 

where a is the standard deviation of the peak, given m unit length. Under ideal 

conditions the only contributor to solute-zone broadening can be considered to be 

longitudinal diffusion (along the length of the capillary). Therefore, the efficiency can be 
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correlated to molecular diffusion as m chromatography and can be described by 

Einstein's equation: 

1 2DlL 
er = 2DtAI = -­

u ,.,, V 
(26) 

where D is the diffusion coefficient of the solute. By substituting equation (26) into 

equation (25), the direct relationships of separation efficiency can be realized as: 

N _ µ,.,,VI _ µ,.,,El 
------

2DL 2D 
(27) 

Efficiency is directly proportional to field strength resulting in less dispersion at 

relatively higher voltage and shorter column length. N is inversely proportional to D 

indicating that larger molecules with lower diffusion coefficients will have higher 

efficiencies. In fact, theoretical plate counts of several million can be obtained for 

nucleotides, proteins, and other large biomolecules.68 Given a typical electropherogram, 

the theoretical plate number can be calculated from the following equation: 

N = 4(1M J2 

= 5.54(tA/ J2 

= 16(~J 2 

~ "h "h 
(28) 

where wi, w11 , and Wb are peak widths at the respective inflection point, half-height, and 

peak base. 

Resolution and Selectivity 

The selectivity, a, can be described as related to mobility by the expression: 

t::,.µ,.,, !::,.1-1 .. ,, 
a = --=-- = ---- (29) 

µ µ<'f' + µ<'II/ 
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Resolution (Rs) is mostly stated as: 

(30) 

where t is migration time, w is baseline peak width (in time), and CJ' is the standard 

deviation. The subscripts 1 and 2 refer to the two different solutes of interest. Separation 

in CE is primarily driven by separation efficiency (i.e., sharp solute zones) in which small 

differences in solute mobility ( <0.05% in some cases69) are usually enough for complete 

resolution. The resolution of two solutes can be described in terms of efficiency as: 

(31) 

where f'::..Jl is the difference in electrophoretic mobility and JL is the average apparent 

electrophoretic mobility of the two different adjacent zones. Furthermore, velocity or 

time-1 may be substituted for mobility to give a more simple equation when calculating 

resolution from a given electropherogram. The substitution of equation (27) into equation 

(31) yields a theoretical equation for the resolution as related to electroosmotic flow and 

is expressed as: 

(32) 

Efficiency is found to increase linearly with applied voltage, however, resolution is 

related to voltage by a square root relationship. That is to say, voltage must be 

quadrupled to double the resolution. It is obvious from equation (32) that infinite 

resolution will be achieved when Ji and Jlcof are equal and opposite; however, the 
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analysis time will also approach infinity. Therefore, the overall operational parameters 

must be optimized as to achieve an adequate resolution within a reasonable analysis time. 

Retention Factor and Resolution in MECC 

The retention factor (k') accounts for the amount of interaction of a given solute 

with the stationary phase. In the case of micelles used in CE, k' can be modified as to 

account for the presence of the micellar pseudo-stationary phase in a given running 

electrolyte. 

(33) 

The terms fR, 10 , and t111c are the retention time of the neutral solute, the time of a non-

retained neutral solute (i.e., EOF marker), and the time of the micelle respectively, as 

observed from an electropherogram. As l,,,c approaches infinity (i.e., the overall velocity 

of the micelle approaches zero), equation (33) simplifies to give the classical retention 

factor expression used in liquid chromatography. Figure 4 illustrates a typical separation 

of a two neutral solutes using MECC. The resolution between two solute zones in MECC 

. db 67 1s expresse y: 

(34) 
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Figure 4. Illustration of a double component analysis using MECC. (a) The on-column 
separation of all the components and (b) the resulting electropherogram using MECC. 

where a is the separation factor ( a = k'2/k' 1 ). The major factors contributing to the 

optimization of resolution are a and the elution range parameter, t0 /t111c. These two 
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factors can most easily be manipulated by varying the composition ( e.g., pH, ionic 

strength, organic modifier, "class I" modifier70, etc.) of the running electrolyte. This, in 

turn, will alter the hydrophobicity of the micelle, the surface charge density of the 

capillary wall, the surface charge density of the micelle surface, etc. 

As stated in equation (30), the value of resolution simplifies to give an equation 

that is applicable for all electrophoretic and chromatographic methods. 

Factors Affecting Separation Efficiency 

Equation (26) describes the calculated dispersion, however, this equation is based 

on the assumption that longitudinal (i.e., molecular) diffusion is the only contributor to 

band broadening. In fact, a number of contributors such as Joule heating (i.e., 

temperature gradients), injection plug length, and analyte interactions with the capillary 

affect the overall efficiency. These phenomena are usually minute, however, a better 

description of the overall dispersion (a\) is:69 

'J 'J ., .., ., ., .., 

(j t - = (j /Jif' - + (j /11i - + (j frmp - + (j .·Id, - + (j n,•t - + (j /:fr - (35) 

The subscripts are diffusion, injection, temperature gradients, adsorption, detection, and 

electrodispersion, respectively. The domination of any of these diffusion terms will 

invalidate equation (27), and theoretical efficiency limits will be unattainable. 

On-line Preconcentration Methods for Capillary Electrophoresis 

Basic Principles Involved in On-line Preconcentration 

A steady-state overall velocity of a charged particle is a result of the 

electrophoretic velocity of the charged particle being co- or counter-directional to the 
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EOF of the bulk solution. According to equation (11 ), the electrophoretic velocity Vep is 

directly proportional to the electric field strength, E, which was defined in equation (7). 

When considering a capillary containing two buffers that vary in resistivities (i.e., ionic 

strength) the field strengths are defined as: 71 

E - yE,, 
1-

}'X + (1- x) 
(36) 

and 

E - E,, 
' -- rx + (1- x) 

(37) 

where £0 , £ 1, and £2 are the field strengths of only buffer l or 2, the overall field strength 

of buffer l and the overall field strength of buffer 2, respectively. The term r is the ratio 

of the resistivities of the low concentration buffer to that of the high and the fraction of 

the capillary filled with low resistance buffer is denoted by x. The results of this effect 

are· unfavorable when dealing with sample injections of relatively high salt 

concentrations. These analytes will migrate slowly through the low resistance, high 

conductivity sample injection matrix until they reach the running electrolyte buffer (i.e., 

background electrolyte (BGE)) where they accelerate and, in turn, result in band 

broadening. However, the alternate scenario with a high ionic strength BGE and low 

ionic strength sample injection has proven very useful and advantageous. This 

· phenomenon is responsible for on-line sample concentration involving techniques using 

polarity switching, matrix switching, and the acid/base titration of a sample zone. 

Furthermore, practically all on-column preconcentration methods take advantage of the 

differences in velocity between high ionic and low ionic strength buffer boundaries. Due 

to this trend, a large sample volume consisting of relatively low analyte concentration can 
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be introduced into the capillary column. The overall analyte band will be gradually 

narrowed to produce a concentrated zone resulting in larger peak height. 

Field-Amplified Sample Stacking 

Field-amplified sample stacking (FASS) is based on the principle that ions travel 

at a relatively higher velocity in a low ionic strength buffer and slow down dramatically 

at the boundary of the high ionic strength buffer (Osborn et. al. 71 have written a recent 

review). Furthermore, the velocity of the analyte decreases so dramatically that a narrow 

zone of stacking occurs at the buffer interface as described in figure 5. The drawback to 

FASS is the differences in EOF caused by the two different ionic strength buffers, 

creating laminar flow, which contributes to band broadening of the sample zone. 72· 73 

Another disadvantage is the requirement of careful current monitoring up to 95 to 99% of 

the original value. This factor can contribute to reproducibility problems of peak height 

and loss .of analyte, which can adversely affect quantitative determinations. The injection 

of a high viscosity plug (i.e., ethylene glycol) prior to the injection of a water plug before 

the loading of the sample matrix has been incorporated to combat this problem. This 

modification has shown to slow the electrophoretic mobility of the analyte into the 

BGE.74• 75 Furthermore, the utilization of organic by Shihabi in the sample matrix has 

proven to increase the signal-to-noise ratio.76 Zhang has reported improvements on limit 

of detection of up to 1000 fold using such preconcentration techniques.77 
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Injector Detector 

a. 

b.+ 

Figure 5. Illustration of field enhanced injection of cationic analyte dissolved in low ionic 
strength buffer with high ionic strength BGE. (a) A water plug is hydrodynamically 
injected. (b) Application of positive potential results in fast migration of cations through 
the high field strength buffer towards the detection end of the capillary also initiating an 
EOF towards the oudet. 

Field-amplified sample stacking (FASS) has been widely incorporated in the 

analysis of DNA fragments, 78 pharmaceuticals in serum,79· 80 drugs of abuse. 81. 82 

Furthermore, these techniques have reached widespread use in protein and peptide 

analysis83 as well as environmental analysis. 84"86 Nonaqueous FASS CE methods87· 88 

have also been employed in addition to nonaqueous chiral separations.89 

Large-Volume Sample Stacking 

Large-volume sample stacking (L VSS) is another variation of FASS using anionic 

analytes. 71 The analytes are dissolved in water and hydrodynamically introduced into a 

large portion of the capillary. Negative polarity is applied first which results in an EOF 

of the bulk BGE towards the injection end of the capillary. However, the anionic analytes 

migrate at a high velocity towards the detection end of the capillary up to the high ionic 
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strength BGE. All cationic and neutral species exit the injection end of the capillary by 

either their electrophoretic mobility or the EOF. The current is monitored in a similar 

fashion as in FASS up to 95-99% of the original value at which time a positive polarity is 

applied and the EOF is reversed forcing the narrow zone towards detection. Figure 6 

illustrates the basic steps involved in the stacking process. 

This technique has been utilized in the analysis of drugs,90· 91 chemicals of 

· 92 93 d h l 94 9~ A d"fi . f l . l d l b environmental concern, · an p eno s. · · mo 1 1cat10n o t 11s met 10 1as een 

used to incorporate the detection of cationic analytes.96· 97 This variation requires the use 

of an EOF modifier ( e.g., cetyltrimethyl ammonium bromide (CT AB)) to reverse or 

suppress the EOF under negative polarity conditions. In the case of CT AB, the sample is 

initially dissolved in water and a negative polarity is applied resulting in an EOF that 

forces the sample plug out of the column. However, BGE containing CT AB is pulled into 

the capillary and coats the surface causing a reversal in the direction of the EO F. 71 

FASS Using MEKC for the Preconcentration of Neutral Analytes 

Micellar electrokinetic capillary chromatography methods for preconcentration 

were developed to improve the detectability of neutral analytes. This procedure consists 

of hydrodynamically loading a sample dissolved in a low ionic strength micellar solution 

into a capillary. A high ionic strength BGE is incorporated to create the stacking 

boundary. Negative polarity is applied which results in stacking of the anionic micelles 

towards the detection end of the plug. However, the EOF forces the flow in the direction 

of the capillary inlet. Once a current of 95-99% of its original value has been achieved, 
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Figure 6. Illustration of L VSS of anionic analyte dissolved in low ionic strength buffer 
with high ionic strength BGE. (a) Sample is hydrodynamically injected at relatively low 
concentration. (b) Application of negative potential results in fast migration of anions 
through the high field strength buffer towards the detection end of the capillary also 
initiating an EOF towards the inlet. ( c) Voltage is terminated when current has reached 
95-99% of its original value leaving a concentrated zone of analyte at the buffer 
boundary. ( d) Positive potential is then applied which results in EOF and migration of the 
narrow zone(s) towards the detector. 

the polarity is switched and the resulting EOF forces the narrow zone towards the 

end of the capillary. In this case, the anionic micelles race towards the capillary inlet and 

stack at the BGE boundary. The net EOF force is greater than the electrophoretic 

mobility of the micelles so the narrow band is then forced in the opposite direction (i.e., 

towards the detector). The parameters (e.g., pH, micelle concentration, % organic, 

injection time) involved when incorporating these techniques have been thoroughly 
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studied.98•101 Modifications of this technique incorporating an injected water plug have 

been studied to improve the overall stacking method when using reverse migrating 

micelles. 102· 103 The incorporation of high salt concentrations in the sample matrix has 

also been investigated which will have a great impact on the preconcentration of 

b. l . l l 104-106 
10 og1ca samp es. 

Sweeping Using MEKC for the Preconcentration of Neutral Analytes 

Sweeping is a preconcentration technique that incorporates micelles as the neutral 

analyte "carrier". A sample is hydrodynamically injected into the column and consists of 

the analyte and the BOE except without any surfactant. A negative potential is applied at 

low pH, which suppresses EOF. The column is then placed in buffer containing BGE 

with anionic micelles that migrate towards the detection end of the capillary. The 

analytes partition (i.e., interact) with the micelles and are swept along with them. Figure 

7 illustrates the basic configuration of the procedure. The success of this phenomenon is 

dependent on the analytes' affinity for the micelle. 71 The relationship between the length 

of the sweep zone Usweep) and the length of the injected analyte zone Uinj) is given by: 107 

(38) 

where k' is the retention factor given by equation (33). 

Sweeping methods have improved sensitivity of up to 5000 fold resulting in a 

huge increase in the use of this preconcentration technique. 107 Quirino and Terabe have 

hybridized the stacking and sweeping techniques to approach million-fold sensitivity 

increase of cations. 108 Other hybridizations and combinations of this preconcentration 

method have been utilized including liquid-liquid extractions ' 09· and anion stacking. 110 
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Figure 7. Sweeping method for preconcentration of neutral solutes ("a" and "b"), with 
anionic micelle (•). (a) The sample dissolved in low pH (i.e., suppressed EOF) BOE 
without surfactant is hydrodynamically injected into the column. (b) The capillary inlet is 
placed in the same BGE only· containing anionic micelles, which migrate towards the 
outlet of the capillary upon application of a negative potential. ( c) Sweeping is a result of 
the interaction of the solute with the micelle resulting in a narrow zones of concentrated 
analyte. 

Conclusions 

Chapter I has outlined the scope of this dissertation and presented some. of the 

basic principles relevant to the research involved in the chapters to come. In addition, this 

chapter demonstrates the high resolving power of CE, which can be readily exploited in 
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the separation and quantitation of a wide variety of species. Furthermore, the physical 

instrumentation, separation methods, and detection approaches have been overviewed to 

reveal the adaptability and versatility of the CE techniques. 
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CHAPTER II 

MICELLAR ELECTROKINETIC CAPILLARY CHROMATOGRAPHY OF ANILINE 

PESTICIDIC METABOLITES DERIV A TIZED WITH FLUORESCEIN 

ISOTHIOCY ANA TE AND THEIR DETECTION IN REAL 

WORLD WATER AT LOW LEVELS BY LASER-

INDUCED FLUORESCENCE* 

Introduction 

Capillary electrophoresis is increasingly employed in the separation and detection 

of pesticides. 1. 2 However, its application to the separation of the transformation products 

of pesticides (or metabolites) is rather scarce.3•6 This is despite the fact that most 

pesticides undergo transformation in the environment through various degradation 

processes including hydrolysis, photolysis, oxidation, biodegradation, etc. producing the 

so-called metabolites. Most often the metabolites are highly resistant in water and soils, 

and therefore their residues as well as their mobility or sorption in soils are very 

important problems. Furthermore, the metabolites of pesticides are even more toxic than 

their parent compounds. 7· 8 This explains the initiative of the National Pesticides Survey, 

in a joint project between EPA's Office of Drinking Water and the Office of Pesticide 

Programs to include many pesticides and their metabolites in their monitoring programs.9-

10 This report is concerned with the CE of anilines, which are widespread environmental 

pollutants, owing to their relatively high water solubilities. i 1. 12 They can be present in the 

* The content of this Chapter has been published in Electrophoresis, 2001, 22, 2312-
2319. 
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aquatic environment as a result of industrial discharges from industrial processes using 

substituted anilines as reagents for the synthesis of pharmaceuticals and dyes. 13 As shown 

in Table 1, they also occur as the metabolites of widely used pesticides such as 

phenylureas, carbamates and anilides. 13 Anilines are more toxic than the parent pesticides. 

Thus far, and to the best of our knowledge, little work has been done on the CE of 

anilines 14" 16 and virtually no sensitive detection schemes have been reported yet. 

Therefore, it is the aim of this article to describe a precolumn derivatization scheme based 

on the fluorescent labeling of anilines with fluorescein isothiocyanate (FITC) and their 

subsequent separation by CE with laser-induced fluorescence (LIF) detection. The CE 

separation system of the FITC-aniline derivatives described in the present work is based 

on micellar electrokinetic capillary chromatography (MECC) with glycosidic surfactants 

in the presence of borate electrolytes, thus leading to the formation of in situ charged 

micelles. In situ charged micelles, which were introduced and characterized recently in 

our laboratories, refer to micelles consisting of glycosidic surfactants complexed with 

borate anions. 11·22 In situ charged micelles allow the manipulation of the migration time 

window and in turn resolution and peak capacity with the pH and amount of borate in the 

running electrolyte. 

Experimental 

Instrument 

A Beckman P/ACE system 5510 (Fullerton, CA, USA) was used for all 

experiments. It was equipped with a Beckman Laser Module 488, which consists of a 3 

mW, 488 nm air-cooled argon-ion laser. A Beckman diode array detector was used for 

UV absorbance detection. Pl ACE station software was used for data acquisition. An 

emission band-pass filter of 520 nm ± 2 nm, purchased from Corion (Holliston, MA, 

USA) was used for the LIF detection of the FITC derivatives. The experiments were 
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TABLE 1. 

STRUCTURES, ABBREVIATIONS, pKa VALUES AND PARENT PESTICIDES OF 
THE ANILINES. PU, PHENYLUREA HERBICIDES; CAR, CARBAMA TE 

INSECTICIDES; ANI, ANILIDE PESTICIDES 

Structure Name Abbreviation 

Aniline AN 

NH1 

A . 3-Methylaniline 

VcH 3 

3-MeAN 

~I~ y 4-Chloroaniline 4-CIAN 

Cl 

4-Bromoaniline 4-BrAN 

Br 

4.703 

4.60b 
4.66c 

4.71a 
4.69b 
4.91c 

Parent pesticides 

Fenuron (PU) Propham (CAR) 

H H 
~NYO~Nyo, 
~oVo 

Phenmedipham (CAR) 

3.52a HC~ 
3.98b ~cy 

C H 
4.06 ON N I~ y' 

Cl O O 
Buturon (PU) Monuron (PU) 

F 
H H H I 

~NYN 0NYN'? 
Cl~ 0 0 F Cl~ 0 

3.883 

3.58c 
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Ditlubenzuron (PU) Monolinuron (PU) 

Br-0-NH / ,r-N, 
0 o-

Metobromuron (PU) 



TABLE I. CONTINUED 

Structure Name 

NHJ 

A 3-Chloroaniline 

Vc1 
NH2 Q 3-Chloro-

4-methylaniline 
Cl 

CH3 . 

Abbreviation pKa 

3-CIAN 3.523 

3.46b 
3.94c 

3-Cl-4-MeAN 4.05a 

0 4-lsopropylaniline 4-lsPrAN 

CH 
/ ' H3C CH3 

NHJ 
3,4-DiCIAN 3.33c 

Parent pesticides 

H 

Q'N/(°Y 
Cl 

Chlorpropham (CAR) 

H I 

,,Q(lN' 
Cl 

Chlortoluron (PU) 

0 I 

)-0- 'J,--N 
NH \ 
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pKa values are taken from: a) Ref. [32]; b) Ref. [33]; c) Ref. [34]; d) Ref. [32] 

carried out using fused-silica capillaries obtained from Polymicro Technologies (Phoenix, 

AZ, USA). The dimensions of the capillaries were 50 cm to the detection window and 57 

cm total length, with 50 µm internal diameter and 365 µm outer diameter. In all 

experiments, the temperature was held constant at 20 °C by the instrument's 
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thermostating system. Samples were pressure-injected at 0.034 bar (i.e., 3.5 kPa) for 

various lengths of time. Between runs, the capillary was rinsed with distilled water, 1.0 M 

KOH, distilled water, and running electrolyte for 2, 6, 4, and 3 min, respectively. 

Reagents and Materials 

The following anilines, 4-chloroaniline (4-ClAN, 98% purity), 4-bromoaniline (4-

BrAN, 97% purity), 3,4-dichloroaniline (3,4-DiClAN, 98% purity), 3-chloroaniline (3-

ClAN, 99% purity), 3-chloro-4-methylaniline (3-Cl-4-MeAN, >99% purity) and 4-

isopropylaniline (4-IsPrAN, 99% purity) were purchased from Aldrich (Milwaukee, WI). 

3-Methylaniline (3-MeAN, >99% purity) was purchased from Fluka (Ronkonkoma, NY, 

USA), and aniline (AN, >99% purity) was obtained from Fisher (Fairlawn, NJ, USA) 

along with the HPLC grade acetone and boric acid. For structures, abbreviations, pKa 

values and the parent pesticides of anilines, see Table 1. The derivatizing agent FITC 

(90% purity by HPLC) was purchased from Sigma (St. Louis, MO, USA). Sodium 

hydroxide and potassium hydroxide were purchased from EM Science (Cherry Hill, NJ, 

USA). Monobasic sodium phosphate was obtained from Mallinckrodt (Paris, KY, USA). 

The surfactants n-octyl-P-D-glucoside (OG) and n-nonyl-P-D-glucoside (NG) were 

purchased from Anatrace (Maumee, OH, USA). 

Precolumn Derivatization 

The aniline pesticidic metabolites were tagged with FITC as follows. The analytes 

were first dissolved in HPLC grade acetone at a concentration of 1.0 x 10-2 M. An aliquot 

of this solution was then diluted to a final concentration of 1.0 x 10-4 M with 20 mM 

borate dissolved in deionized water, pH 9.5. 40 µL of 2.5 x 10-3 M FITC dissolved in 

HPLC grade acetone were then added to a 960 µL aliquot of the 1.0 x 10-4 M analyte in 

an amber vial. This brings it up to a 1: 1 mole ratio for analyte to FITC in the reaction 

mixture. The reaction was stirred overnight (at least 9 hrs) at room temperature. These 
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samples were subsequently diluted and used for sample injections for the 

electropherograms generated under the various operating conditions. This derivatization 

was also used for determining the LOD by successive dilution. Fresh derivatives were 

prepared weekly due to the formation of side and degradation products. 

The precolumn derivatization of the anilines with FITC at the LOD was carried 

out using three different water systems including tap water, lake water, and deionized 

water. The aniline pesticidic metabolites (AN, 3-MeAN and 3-ClAN) were initially made 

up to be 1 x 1 ff2 M in acetone. The tap water and the lake water were filtered through 0.2 

µm filters, from Scientific Resources (Eatontown, NJ, USA), before using them to 

prepare the 20 mM sodium borate at pH of 9.5. These solutions were then used for the 

final dilution of the 1 x 10-2 M analytes to 8.9 x 10-9 M. 1.2 µL of 2.5 x 10-3 M FITC 

dissolved in acetone was then pipetted into a 999 µL aliquot of the 8. 9 x 10-9 M analytes 

in an amber vial to achieve 100: 1 mole ratio of FITC to solute in the reaction mixture. 

The reaction proceeded overnight at room temperature with constant stirring. 

Results and Discussion 

Derivatized and underivatized anilines were separated by capillary electrophoresis 

over a wide range of conditions in order to determine the optimal conditions for 

separation and detection. As native species (i.e., underivatized anilines), the anilines are 

weak bases, which eventually electrophorese and separate at low pH as protonated 

species by capillary zone electrophoresis (CZE). However, the most challenging part of 

their CE is their detection at low levels. This required their derivatization with a 

fluorescent tags such as FITC. The FITC derivatives were then separated by MECC 

using in situ charged glycosidic surfactants complexed with borate anions under various 

conditions including pH, borate concentration and surfactant concentration. The two 

glycosidic surfactants utilized were OG and NG. 
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CZE of U nderivatized Anilines 

Figure I is a typical electropherogram of underivatized anilines obtained by CZE 

with a running electrolyte of 50 mM sodium phosphate, pH 2.5, at an applied voltage of 

3.5 

3.0 
6 

2.5 4 - 3 I 8 

~ sl1 

< I 
7 

= 2.0 2 -~ e 
0 
M 

-< 
1.5 

j I 'I 

9 10 11 12 13 14 
Tirne (min) 

Figure I. Electropherogram of underivatized anilines. Conditions: capillary column, 50 
cm I 57 cm x 50 µm i.d.; running electrolyte, 50 mM phosphate, pH 2.5; voltage, 18 kV; 
column temperature, 20 °C. Underivatized analytes: I, AN; 2, 3-MeAN; 3, 4-ClAN; 4, 4-
BrAN; 5, 3-ClAN; 6, 3-Cl-4-MeAN; 7, 4-IsPrAN; 8, 3,4-DiClAN. 
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18 kV. These anilines are weak bases with pKa values in the range 3.33 to 5.0, see Table 

1. At pH 2.5, they exist at different degrees of protonation with AN (pKa = 4.60-4.70), 3-

MeAN (pKa = 4.69-4.91) and 4-IsPrAN (pKa = 5.0) almost fully protonated. Also, at pH 

2.5 the electroosmotic flow (EOF) is negligible since the silanol groups of the fused-silica 

surface are fully protonated. As expected, the anilines migrated in the order of decreasing 

charge-to-mass ratio with the highest AN migrating first and the lowest 3,4-DiClAN 

migrating last. Although they are well separated, the limit of detection (LOO) of these 

analytes is quite high (- 1 o-5 M) in the UV at 200 nm, see Table 2. Thus, precolumn 

derivatization is needed to allow their detection at low levels. 

TABLE 2. 

LOD OF SOME REPRESENTATIVE UNDERIVATIZED ANILINES BY UV AT 200 
nm AND OF THEIR FITC DERIVATIVES BY LIF DETECTION. 

Solute 
LOD (M) 

Underivatized solutes FITC derivatized solutes 
(UV detection) (LIF detection) 

3-MeAN 2.0 X 10·5 8.7 X 10·10 

3-Cl-4MeAN 8.0 X 10·6 3.1 X 10·10 

4-IsPrAN 4.0 X 10·5 4.2 X l0-10 

3-ClAN 9.0 X 10·6 4.4 X l0-10 

3,4-DiClAN l.Oxl0-5 3.9 X 10·10 
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FITC Derivatization-Percent Conversion, Limits of Detection and Derivatization of 
Trace Amounts in Real Waters 

Figure 2 illustrates the reaction scheme for the FITC derivatization of anilines, 

which involves the formation of a stable thiourea bond between the isothiocyanate group 

of the FITC tag and the amino group of the aniline analyte.23 The FITC derivatization 

was performed at four different mole ratios of tag to analyte, namely 1: 1, 3: L 7: 1 and 

10: 1 in order to examine the % analyte conversion as a function of excess tag in the 

s,?c 
~N r 

FITC 

OH 

+ R-NH2 

Aniline 

0 

R-HN......._ /NH 
C 

OH 

~ FITC-aniline 

Figure 2. FITC derivatization of an amine such as an aniline. 

reaction mixture. The results obtained are presented in Fig. 3 for five different and 

representative anilines, namely 3-MeAN, 3-ClAN, 3-Cl-4-MeAN, 4-IsPrAN and 3,4-

DiClAN. As expected, the higher the mole ratio the larger the% conversion. While the 

alkyl substituted anilines (e.g., 4-IsPrAN and 3-MeAN) approached complete conversion 

at 10: 1 mole ratio, the halogen substituted anilines lagged behind in terms of % 

conversion, and especially the disubstituted 3,4-DiClAN. This may be explained by the 
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Figure 3. Plots of the percent conversion of analyte to the FITC derivative. 
Conditions as in Fig. 1. Analytes: 2, FITC-3-MeAN; 5, FITC-3-ClAN; 6, FITC-3-Cl-
4-MeAN; 7, FITC-4-IsPrAN; 8, FITC 3,4-DiClAN. 

inductive electron-withdrawing effect of chlorine, which is caused by its relatively high 

electronegativity. This inductive effect makes the nitrogen less nucleophilic and 

consequently less reactive toward electrophiles.24 On the other hand, alkyl groups are 

classified as activating groups because of their electron repelling effect, which makes the 

nitrogen of aniline more nucleophilic thus promoting electrophilic attack. 24 This trend is 

substantiated by the behavior of 3-Cl-4-MeAN, which shows a lesser conversion than the 

alkyl substituted anilines (e.g., 3-MeAN, 4-IsPrAN) but a higher conversion than the 

strictly halogenated aniline (i.e., 3,4-DiClAN). The % conversion of a given aniline 

solute to its FITC derivative was determined by CZE analysis (as in the preceding 
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section) of two aliquots of the given aniline at the same solute concentration where one of 

the underivatized aliquot to the peak area of the analyte obtained on the electropherogram 

of the derivatized aliquot permitted the determination of the % of remaining 

underivatized analyte and in turn the % conversion. 

The measurement of percent conversion was essential for the determination of the 

exact LOD of the FITC-aniline derivatives. As can be seen in Table 2, the FITC 

derivatization allowed the sensitive LIF detection of anilines and yielded LODs in the 1 o-

1 O M level. The LOO values were measured from successive dilution of a derivatization 

reaction involving 1: 1 mole ratio of tag to analyte. The concentration of analytes in the 

most diluted reaction mixture were 1.0 x 10-9, 2.0 x 10-9, 1.0 x 10-9, 2.5 x l0-9 and 2.8 x 

lQ-9 M for 4-IsPrAN, 3-MeAN, 3-Cl-4-MeAN, 3-ClAN and 3,4-DiClAN, respectively. 

The LOOs reported in Table 2 were obtained by multiplying the analyte concentration in 

the most dilute mixture by the % conversion. The LOOs correspond roughly to 5 orders 

of magnitude lower than in the UV of underivatized anilines. The LOD was 

approximated when a signal-to-noise ratio of 3 to 1 was achieved. LIF detection lowered 

the LOO by 20,000 fold for 3,4-DiClAN to as much as 95,000 fold for 4-IsPrAN. 

Our interest was to demonstrate the feasibility of derivatization at trace levels, 

namely at the LOO. In addition, our interest was also to be able to perform the 

derivatization at the LOO level in real water such as tap and lake water. As stated above 

the LOO as reported directly to the concentration of underivatized analytes was on the 

order of 1.0 to 2.8 x 1 o-9 M. By spiking the various waters with three different anilines at 

8.9 x 10-9 M, which is about 3 times more concentrated than the LOD, the derivatization 

was readily achieved when the mole ratio of FITC to analyte was set at 100: 1, see Fig. 4. 

For details of the derivatization at very near the LOD (i.e., 8.9 x 1 o-9 M in underivatized 

analyte) in deionized water, and in real water, see experimental section. It should be 

mentioned that using a very large excess of FITC (100 times more than the analyte) when 

derivatizing at the LOO concentration level, the amount of FITC degradation and side 
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Figure 4. Electropherograms ofFITC derivatization of 3 anilines at 8.9 x 10-9 Min deionized water (a), tap water (b) 
and lake water (c) matrices. Running electrolyte, 400 mM borate titrated to pH 9.0 with sodium hydroxide containing 
40 mM OG; applied voltage, 25 kV. Other conditions as in Fig. I. Analytes: I, FITC-AN; 2, FITC-3-MeAN; 5, 

FITC-3-CIAN. 



products increased, see Fig. 4. Lau and co-workers describe the possible degradation and 

side products for FITC derivatization. 15 It should be mentioned that the purity of FITC is 

90% by HPLC as certified by the supplier. In other words, some of the peaks in the 

electropherograms shown in Fig. 4 could be simply those of the impurities of the FlTC 

tag. The major peak in Fig. 4 eluting at ca. 13. 7 to 13 .8 min is that of excess FITC. The 

derivatization in deionized water produced the strongest signal for FITC-3-MeAN and for 

FITC-AN (Fig. 4a). The derivatization done in tap water gave the overall strongest signal 

from 3-ClAN (Fig. 4b). The derivatization did prove to be successful at 8.9 x I0-9 M 

with the lake water matrix, however the signal exhibited by FITC-3-ClAN was relatively 

weak (Fig. 4c ). As shown in Fig. 4, the derivatization can be achieved directly in real 

water without extensive sample clean up. The real water samples were only cleaned from 

microparticles by filtration through 0.2 µm filters. The tap and lake water gave more or 

less the same blank signal as that of deionized water. 

MECC of FITC Derivatives 

In a recent article by He et al. 26 on the precolumn derivatization of peptides with 

FITC and subsequent separation by capillary electrochromatography in a microfabricated 

system, it was reported that FITC-peptide derivatives yielded higher fluorescence at 

alkaline pH than at acidic pH. This finding provided the rationale to evaluate the in situ 

charged micelles, which are based on the complexation of glycosidic surfactants with 

borate at alkaline pH, in the separation of FITC-aniline derivatives. As stated in the 

introduction, in situ charged micelles were recently introduced from our laborator/ 1-2 1. n. 

28 , and proved useful in the MECC of a wide range of species.19-' 1 

Figure 5 shows the separation of the FITC-aniline derivatives at alkaline pH in the 

presence or absence of OG. The electropherogram in Fig. Sa was obtained with a running 
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Figure 5. Electropherograms of FITC tagged anilines. Running electrolytes, 300 mM 
boric acid titrated with NaOH to pH 10.0 (a) and containing 25 mM OG in (b) 30 mM 
OG in (c) and 40 mM OG in (d); applied voltage, 25 kV. Other conditions as in Fig. 1. 
Analytes: 1, FITC-AN; 2, FITC-3-MeAN; 3, FITC-4-ClAN; 4, FITC-4-BrAN; 5, FITC-
3-CIAN; 6, FITC-3-Cl-4-MeAN; 7, FITC-4-IsPrAN; 8, FITC-3,4-DiCIAN. 

electrolyte consisting of 300 mM sodium borate, pH 10.0, while the electropherograms in 

Fig. 5b, c and d were obtained with electrolytes consisting again of 300 mM sodium 
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borate, pH 10.0, but at 3 different OG concentrations. In the absence of OG (Fig. Sa), the 

FITC-aniline derivatives eluted in the order of alkyl substituted anilines, aniline and 

halogen substituted anilines, indicating that the dissociation of the weak phenolic acid 

group of the FITC moiety increases in the order of alkyl substituted anilines < aniline < 

halogen substituted anilines. This order of phenolic group ionization can be attributed to 

the induction effect of halogens. In fact, 3,4-DiClAN eluted last. Upon adding 25 mM 

OG to the running electrolyte (Fig. Sb), a significant change in the migration order was 

observed and an improvement in the overall separation was obtained. This is despite the 

fact that 25 mM OG is about the critical micellar concentration (CMC) of the surfactant 

in pure water, and therefore the amount of micellized surfactant concentration is 

negligible. This may indicate that the monomeric OG-borate complex associated with the 

various FITC-aniline derivatives. The migration order of the FITC-anilines in the 

presence of OG-borate surfactant is the result of the interplay of nonpolar association and 

electrostatic repulsion between analyte and surfactant molecules of same electric charges. 

Increasing the OG concentration to 30 and 40 mM as in Fig. Sc and 5d brought about the 

realization of MECC separation systems, and further change in migration order was 

observed. As can be seen in Fig. 5, increasing the OG concentration from 25 to 30 mM 

brought about dramatic changes in selectivity ( compare Fig. Sb to Sc) and this selectivity 

did not undergo significant change as the OG concentration was increased from 30 to 40 

mM ( compare Fig. Sc to 5d). 

Similar trends were observed with the NG surfactant, see Fig. 6. At 8 mM NG in 

the running electrolyte, which is very near the surfactant's CMC (CMC = 6.5 mM in pure 

water), the migration profile of the FITC derivatives was very close to that obtained with 

25 mM OG with a noticeable difference in the migration time: the derivatives migrate 

faster in the presence of NG than OG. At 8 mM NG, the micellized surfactant 

concentration is about 1.5 mM while at 25 mM OG, the micellized surfactant 

concentration is negligible. The presence of 1.5 mM surfactant in the form of NG-borate 
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Figure 6. Electropherograms of FITC tagged anilines. Running electrolytes, 300 mM 
boric acid titrated with NaOH to pH 10.0 and containing 8 mM NG in (a) and 15 mM NG 
in (b); applied voltage, 25 kV. Other conditions as in Fig. 1 and peak assignments as in 
Fig. 5. 

micelles may explain the faster migration obtained with 8 mM NG. Increasing the NG 

concentration from 8 to 15 mM resulted in dramatic change in the selectivity as when the 

OG surfactant concentration was increased from 25 to 40 mM, and the migration profile 

at 15 mM NG was about the same as that obtained with 40 mM OG. But, again the 

derivatives migrate faster with NG than with OG indicating stronger interaction with the 

NG-borate micelle than with the OG-borate micelle despite the fact that the micellized 

surfactant concentration with 40 mM OG is 15 mM versus 8.5 mM in the case of 15 mM 

NG. This may be attributed to the presence of one extra methylene group in the alkyl tail 

of NG. 
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Figure 7. Electropherograms of FITC tagged anilines. Running electrolytes, 400 mM 
boric acid titrated with NaOH to pH 10.0 in (a) and pH 9.0 in (b) and containing 40 mM 
OG; applied voltage, 25 kV. Other conditions as in Fig. I and peak assignments as in 
Fig. S. 

Increasing the borate concentration at constant OG concentration and constant pH 

resulted only in a longer migration time for the FITC-aniline derivatives (compare Fig. 5d 

to Fig. 7a) without causing a significant change in selectivity. This is because at elevated 

borate concentration the surface charge density of the 00-borate micelle increases due to 

increasing 00-borate complexation. Also, increasing the borate concentration 

corresponds to increasing the ionic strength thus causing an increase in the electrolyte 

viscosity and a decrease in the thickness of the electric double layer with a net result of 

decreasing the EOF. On the other hand, decreasing the pH of the running electrolyte 

resulted in faster migration time for the FITC derivatives with dramatic change in 

selectivity ( compare Fig. 7a to Fig. 7b) as manifested by changes in migration order of 
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the FITC-aniline derivatives. As expected, decreasing the pH yields a decrease in the 

OG-borate complex formation and in turn the surface charge density of the in situ 

charged micelle. Also, the weak phenolic acid group of the FITC-aniline derivatives 

may be less dissociated at pH 9.0 than at pH I 0.0. The two combined effects would 

explain the speeding of the migration as the pH is decreased. Furthermore, these two 

effects explain the change in the migration order as a result of change in the degree of 

association/repulsion between solutes and OG-borate micelles as the pH was changed. 

In all cases, AN-FITC seems to be the least interactive with the micelle, thus migrating 

slower than those interacting strongly with the micelle such as 3,4-0iClAN-FITC, 4-

IsPrAN-FITC and 3-Cl-4-MeAN-FITC. 

Conclusioris 

We have demonstrated the FITC precolumn derivatization of aniline pesticidic 

metabolites in deionized and real waters at the LOO concentration level. Besides 

filtration from microparticles, the derivatization in real waters spiked with trace amounts 

of anilines did not require extensive sample clean-up. The fluorescent signals of the 

FITC derivatives were not affected by possible interferents in the water samples due to 

the selectivity of the precolumn derivatization and the LIF detection. The matrices of the 

waters used in this study (i.e., tap and lake water) showed minor effects on the extent of 

solute derivatization with FITC at the LOO level. These results are encouraging and 

should be regarded as a solid precedent for other precolumn derivatization in real waters 

and subsequent separation and detection by CE-LIF. The in situ charged micelles used in 

the CE separation of the FITC-aniline derivatives yielded unique selectivity and afforded 

the sensitive detection at alkaline pH. 
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CHAPTER III 

SURFACTANT-MEDIATED ELECTROKINETIC CAPILLARY 

CHROMATOGRAPHY OF ANILINE PESTICIDIC METABOLITES 

DERIVATIZED WITH 9-FLUORENYLMETHYL 

CHLOROFORMATE AND THEIR DETECTION 

BY LASER-INDUCED FLUORESCENCE* 

Introduction 

Amino compounds such as anilines can be converted to fluorescent derivatives 

through a variety of precolumn derivatization reactions; for recent reviews on the 

derivatization of amino compounds for CE analysis see References 1 and 2. In order to 

complement our contribution to the CE analysis of anilines, which are very important 

environmental pollutants (see preceding chapter, Ref. 3), it was imperative to consider 

another fluorescent tag that will confer the anilines different characteristics in terms of 

separation and detection by CE. In the preceding chapter, the anilines were derivatized 

with fluorescein isothiocyanate (FITC), which converted the analytes into acidic 

compounds, thus allowing their separation over a wide range of electrolyte composition 

by capillary zone electrophoresis (CZE) as well as by micellar electrokinetic capillary 

chromatography (MECC). In addition, the FITC-anilines were readily detected by laser-

* The content of this Chapter has been published in Electrophoresis, 2001, 22, 2320-
2326. 
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induced fluorescence (LIF) at the 1 Q-1 O M level when excited with an argon ion laser at 

488 run. However, the FITC derivatization requires relatively long reaction time and 

yields degradation and side products.4 In the present chapter, the anilines were 

derivatized with 9-fluorenylmethyl chloroformate (FMOC) to yield the fluorescent 

FMOC-anilines. The advantages of FMOC derivatization include very short reaction 

time (1 min or less), high yield (i.e., reaction goes to near completion) and simplicity. 1•2•5•6 

These features should promote automation and consequently facilitate the analysis of a 

large number of samples in reasonably short time. In addition, the FMOC derivatization 

yields neutral derivatives of relatively strong hydrophobic characters, which should allow 

the use of hydro-organic electrolyte systems and in turn different selectivity. In fact, and 

as will be shown below, the FMOC-anilines derivatives were best electrophoresed when a 

surfactant-mediated electrokinetic capillary chromatography (SM-EKC) system was used. 

The SM-EKC system is based on sodium dioctyl sulfosuccinate (DOSS)/acetonitrile 

(ACN) mixtures in buffered electrolytes originally introduced by Shi and Fritz in 1995 

for the separation of neutral polyaromatic compounds.7 This SM-EKC system was further 

characterized with alkylphenylketone homologous series as typical models of neutral 

solutes. 

Description of the Surfactant-Mediated Electrokinetic 
Capillary Chromatography System 

The SM-EKC system illustrated in Fig. la consists of electrolytes based on the 

DOSS surfactant at various ACN content (see Fig. 1 b for structure of DOSS). The 

accurate chemical name of DOSS is in fact sodium di-2-ethylhexyl sulfosuccinate. At the 

ACN concentration used in this study (20% or greater), it is well established that micelle 

formation is inhibited and consequently the DOSS surfactant dissoives primarily as 

monomers.8 The inhibitory effect of ACN on micellization is based on the reduction 
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Figure 1. (a) Schematic illustration of the separation principles in the SM-EKC system 
under investigation. (b) Structure of the DOSS surfactant. 

of the dielectric constant of the aqueous phase by the organic solvent which would cause 

increased mutual repulsion of the ionic heads in the micelle, thus opposing micellization. 

The FMOC-anilines are quite hydrophobic compounds of low water solubility requiring 

such electrolyte systems to allow their separation by capillary electrophoresis. While the 

organic modifier is to permit the solubilization of the FMOC-anilines, the DOSS is to 

associate with these solutes and to impart them with the charge necessary for their 

differential migration and eventually separation. This is shown in the following equation: 

(1) 
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where µeff,ep is the effective electrophoretic mobility of the solute and fc is the mole 

fraction of DOSS-solute complex whose electrophoretic mobility is µep,c· The neutral 

FMOC-aniline ( or any other neutral solute) will acquire the electrophoretic mobility of 

the complex when fc approaches 1, i.e., when the solute associates intimately with the 

DOSS surfactant. Thus, the stronger the association of the solute with the DOSS 

surfactant the higher the effective electrophoretic mobility of the solute and vice versa. 

The DOSS surfactant belongs to the branched type of surfactants where the polar 

head group occupies a central position in the hydrophobic chain which in this case is 

made up of two 2-ethylhexyl branches, see Fig. 1 b. In general, the critical micellar 

concentration (CMC) of a branched surfactant is higher than the CMC of an unbranched 

surfactant (i.e., all carbon atoms are in the same tail) having the same number of carbon 

atoms.8 In fact, in pure water, DOSS has a relatively high CMC of 2.5 mM at room 

temperature9 when compared to the CMC of sodium hexadecyl sulfonate (C16H33S03· 

Na+), which is 0.7 mM in pure water at 50 °C.8 The DOSS surfactant yielded cloudy 

solutions when dissolved in aqueous electrolyte solutions such as the ones used in the 

present study (i.e., 8 mM sodium borate, pH 8.5) at concentrations higher than 2.5 mM. 

Thus was the necessity of adding an organic modifier, e.g., ACN to allow the inclusion in 

the running electrolyte of a useful DOSS concentration for achieving the separation of 

FM QC-anilines. 

Materials and Methods 

Reagents and Materials 

See Chapter II for the model aniline analyte purchases (see Table 1 of Chapter I 

for structures). The alkyl phenyl ketones, acetophenone, propiophenone, butyrophenone, 

valerophenone, hexanophenone and heptanophenone were also purchased from Aldrich. 

The DOSS was also purchased from Aldrich. HPLC grade ACN and boric acid were 

obtained from Fisher (Fairlawn, NJ, USA). The derivatizing agent FMOC was purchased 
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from Sigma Chemical Co. (St. Louis, MO, USA). Sodium hydroxide, potassium 

hydroxide, and sodium borate were obtained from EM Science (Cherry Hill, NJ, USA). 

CE Instruments 

For UV absorbance detection instrumentation see Chapter II. Between runs, the 

capillary was rinsed with distilled water, 1.0 M KOH, distilled water, and running 

electrolyte for 4, 6, 4, and 3 min, respectively. LIF measurements were performed in Dr. 

H. Issaq laboratories at NCI-Frederick Cancer Research and Development Center, 

Frederick, MD, USA. LIF excitation was provided by a solid-state UV laser operating at 

266 nm (NanoUV-266, Uniphase, San Jose, CA, USA). A 5 mm diameter best-form 

lens was used to focus the laser beam onto the separation capillary. Fluorescence was 

collected at a 90° angle from the excitation beam with a UV-grade, 1 OX microscope 

objective (Carl Zeiss, Thomwood, NY, USA). The collected emission was detected by a 

photomultiplier tube (PMT, Oriol, Stratford, CT, USA). A 310 nm-band pass filter was 

used to reduce fluorescence background. The PMT current was monitored by a 

picoammeter (Keithley, Cleveland, Ohio, USA) and its voltage output was displayed on a 

PC computer via an AID interfacing module (Beckman Instruments, Fullerton, CA, 

USA). CE was performed with a Crystal 310 CE module (A TI/Unicam, Boston, MA, 

USA). Separation was carried out at room temperature and 18 kV with 50 µm x 60 cm 

(57 cm to detector) fused-silica capillary (Polymicro Technologies, Phoenix, AZ, USA). 

Samples were injected by pressure (30 mbar) for 6 s. The separation buffer consisted of 

50 mM DOSS, 8 mM sodium borate (pH 8.5) and 40% ACN (v/v) for the LIF study. 

Precolumn Derivatization 

The aniline pesticidic metabolites were tagged by dissolving the analytes at a 

concentration of 1.0 x 10-2 M in HPLC grade ACN. A 150 µL aliquot of each of these 

analyte solutions was then pipetted into 350 µL of ACN and 500 µL of 10 mM FMOC 

also dissolved in ACN. This brought the final concentration of analyte to 1.5 mM and the 
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derivatizing agent to 5 mM. After brief stirring for a few minutes, these samples were 

subsequently diluted and used for further sample injections for the electropherograms 

generated under the various operating conditions. This derivatization was also used for 

determining the LOD by successive dilution. 

FMOC derivatization in lake water spiked with anilines (namely, AN, 3-MeAN 

and 3-ClAN) at a concentration at the level of the UV absorbance limit of detection was 

carried out as follows. Lake water was first buffered with 5 mM sodium borate, pH 9.5. 

The buffered water was then mixed with ACN at 1: 1 ratio (v/v) to allow the dissolution 

of FMOC at relatively large excess in the reaction mixture and consequently secure the 

rapid derivatization of the dilute analytes. The water/ACN (1:1 v/v) was spiked with 

anilines at 5.0 x 10-6 M by diluting a 50 µL aliquot of 1.0 x 10-2 M analytes dissolved in 

HPLC grade ACN in a 100 mL volumetric flask with the lake water/ACN (1:1). A 1-mL 

sample of this spiked water solution was then pipetted into an amber vial to which 60 µl 

of 50 mM FMOC were then added. This brings the final concentration of each analyte to 

4. 7 x 10-6 M and the mole ratio of tag to analyte to 100 to 1. This large FMOC excess 

was necessary to promote the reaction of tag with the given analyte to form the 

corresponding FMOC derivative. 

Results and Discussion 

MECC of FMOC-anilines 

As a starting point in separating the neutral FMOC-anilines, the in situ charged 

micellar system based on glycosidic surfactant-borate complex, which was described in 

the preceding chapter for the separation of FITC-anilines,3 was first evaluated in the 

separation of FMOC-anilines. The OG-borate micellar system did not resolve the 

FMOC-anilines and the analytes coeluted toward the migration time of the micelle. This 

fact excluded any attempt to evaluating SDS in separating the FMOC-anilines. 

Previously, we have shown that the in situ OG-borate micelle provided more equitable 
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partitioning of solutes between the aqueous phase and the micellar phase than that 

encountered with the traditional SDS micellar system. 10 

Unlike the FITC-aniline derivatives (see preceding chapter), the FMOC-aniline 

analytes are neutral compounds of relatively strong hydrophobic character, thus requiring 

the incorporation of charged monomeric hydrophobic selectors in the running electrolyte 

to bring about their differential migration in CE. In fact, and as will be shown below, the 

FMOC-anilines were separated by SM-EKC, namely in the presence of DOSS and ACN 

as the organic modifier (see Description of the SM-EKC System, pp 65-67). The amount 

of DOSS and % ACN were varied in order to determine the optimum separation 

conditions. 

Evaluation of the DOSS/ ACN Electrolyte Systems 

The SM-EKC system under investigation was characterized at various DOSS 

concentration and ACN content with the FMOC-anilines as well as with alkyl phenyl 

ketone homologous series as typical models of neutral solutes. At a given surfactant 

concentration, e.g., at 25, 30, 35 or 45 mM DOSS, increasing the% ACN in the running '" 

electrolyte in the range studied decreased the magnitude of EOF, see Fig. 2a. Also, at a 

fixed % ACN in the running electrolyte, increasing the surfactant concentration yielded a 

decrease in the magnitude of the EOF. This is illustrated in Fig 2 b. These findings 

corroborate those reported earlier by Shi and Fritz. 7 While increasing the organic modifier 

content of the running electrolyte brings about a decrease in its dielectric constant, 

increasing the DOSS concentration yields an increase in electrolyte's viscosity and ionic 

strength. Thus, the net result of increasing the organic content or DOSS concentration in 

the running electrolyte is a decrease in the magnitude of EOF. Therefore, these two 

components are the major players in terms of manipulating speed and quality of 

separation with the DOSS/ ACN electrolyte systems. 
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As pointed out earlier (Description of SM-EKC System, pp 65-67), neutral solutes 

acquire an electrophoretic mobility, the so-called effective electrophoretic mobility, due 

to its association with the charged surfactant. At a given surfactant concentration, 

increasing the % ACN in the running electrolyte yielded a decrease in the effective 

electrophoretic mobility of each solute, see Fig 3a. This is due to decreasing solute­

surfactant association and in turnfc, see eq 1. On the other hand, at a given% ACN in 

the running electrolyte, increasing the DOSS concentration resulted in increasing the 

effective electrophoretic mobility of the solute as a result of increasing fc, see Fig 3b and 

eqn 1. 

Figure 4 illustrates the electropherograms of FMOC-anilines and alkyl phenyl 

ketones obtained with 35 mM DOSS and 40, 30 or 25% (v/v) ACN. At 40% (v/v) ACN, 

the FMOC derivatives of 4-ClAN, 4-BrAN and 4-IsPrAN coeluted, and the analysis time 

was below 26 min, see Fig. 4a. Decreasing the ACN content to 30 and 25% allowed the 

separation of FMOC-4-IsPrAN from the FMOC derivatives of 4-ClAN and 4-BrAN 

which still coalesced into a single peak. This is at the expense of a slightly longer analysis 

time of about 31 and 33 min at 30 and 25% (v/v) ACN, respectively. Although at 

constant DOSS concentration, the EOF increases with decreasing% ACN in the running 

electrolyte, the solute-DOSS association increases thus leading to a higher effective 

electrophoretic mobility of the solute, which then explains the increase in analysis time at 

lower % ACN in the running electrolyte. In all cases and as expected, the order of elution 

(i.e., selectivity) of FMOC-anilines with the DOSS/ACN electrolyte systems is 

significantly different from that observed for the FITC-anilines with OG-borate micellar 

systems. 

Figure 5 shows the electropherograms of FMOC-anilines and alkyl phenyl 

ketones at 30% ACN (v/v) and 25, 30 or 45 mM DOSS in the running electrolyte. 

Increasing the DOSS concentration from 25 to 45 mM did not bring about the separation 
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of FMOC-4-ClAN and FMOC-4-BrAN but increased the analysis time substantially by 

almost three fold, see Fig. 5. 

FMOC Derivatization-Percent Conversion, Limits of Detection and Derivatization of 
Anilines at Low Concentrations in Lake Water 

As with secondary and primary amino compounds, i 1.1.2 the derivatization of 

anilines with FMOC yields stable carbamates. Other important properties of the FMOC­

aniline derivatives are their relatively much higher UV absorbance and short labeling 

time when compared to FITC-aniline derivatives. In fact, FITC-anilines exhibited· no 

absorbance signal in the UV even when injected from 10-2 M samples. As described in 

the Experimental, the FMOC derivatization was performed at a 3: 1 mole ratio of tag to 

analyte, and the conversion was found to be highly quantitative at greater than 98%. The 

percent conversion of a given aniline solute to its FMOC derivative was determined by 

CZE as described in the case of FITC-anilines in the preceding chapter' using a running 

electrolyte of 50 mM sodium phosphate, pH 2.5, and an applied voltage of 18 kV. 

As can be seen in Table 1, the FMOC derivatization of anilines allowed a more 

sensitive UV absorbance detection of the analytes and yielded LO D's in the 1 Q-6 M level 

which is about 5 to 25 folds lower than the LOD's of underivatized anilines. The LOD 

achieved by LIF detection varied from 2.2 x 1 O· 7 M for FMOC-3-Cl-4-MeAN to as low 

as 5.7 x 10-s M for FMOC-AN. The LOD's obtained by LIF are about 330- to 2700-fold 

lower than the LOD's obtained by UV for underivatized anilines. In all cases, the LOD 

was approximated when a signal-to-noise ratio of 3 to 1 was achieved. As reported in 

Table 1, the LOD of FMOC-anilines by UV absorbance detection at 214 nm was on the 

order of 1 Q-6 M as was obtained by successive dilution. By spiking the lake water with 

three different anilines (AN, 3-MeAN and 3-ClAN) at 4.7 x 10-6 M, which is about three 

times more concentrated than the LOD, the derivatization was readily achieved when the 

mole ratio of FMOC to analyte was set at 100: 1, see Fig. 6. For details of the 

derivatization at very near the LOD (i.e., 4.7 x 10-6 M analyte) in lake water, see the 
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TABLE 1. 

LIMIT OF DETECTION OF DERIV ATIZED AND UNDERIV ATIZED 
ANILINES BY UV ABSORBANCE AND LIF 

LOD (M) of 
underivatized anilines 

Solute UVat200 run 

AN NM 

3-MeAN 2.0 X 10-5 

3-Cl-4-MeAN 8.0 X 10-6 

4-IsPrAN 4.0 X 10-5 

3-ClAN 9.0 X lQ-6 

3,4-DiClAN 1.0 X lQ-5 

NM = Not measured 

LOD (M) ofFMOC-anilines 

UVat214 run LIF 

NM 5.7 X lQ-8 

1.1 X lQ-6 7.4 X lQ-8 

1.0 X lQ-6 2.2 X lQ-7 

1.6x 10-6 NM 

1.7 X lQ-6 2.7 X lQ-7 

1.2 X lQ-6 4.9 X lQ-7 

experimental section. As shown in Fig. 6, the derivatization can be achieved directly in 

real world water matrices without extensive sample clean-up. The lake water sample was 

only cleaned from microparticles by filtration through 0.2 µm filters. Returning to Table 

1, the LOD of FMOC-anilines by LIF was on the order of Io-7 to 1 o-8 M. Similar to the 

UV absorbance results, the FMOC derivatization was also readily achieved at near LOD 

( ~ 5 x IQ-7 M). 

77 



3 

2 

1 

-~ 
< 
= 0 -:! ... 
< 

-1 

-2 

-3 

a 

8 10 

Excess FMOC 

12 

8 9 

14 16 18 
Time (min) 

10 

20 22 

Figure 6. (a) Electropherograms of FMOC derivatization of 3 anilines at 4.7 x 10-6 Min 
lake water matrix, (b) blank. Electrolyte: 35 mM DOSS in 8 mM sodium borate, pH 8.5, 
at 40% (v/v) ACN; applied voltage, 25 kV; column temperature, 20 °C. Other conditions 
as in Fig. 2. Analytes: 8, FMOC-AN; 9, FMOC-3-MeAN; 10, FMOC-3-ClAN. 

Conclusions 

The derivatization of aniline pesticidic metabolites with FMOC was readily 

achieved in real water (e.g., lake water) at near LOD without extensive sample clean-up 

requiring only the removal of microparticles by microfiltration of the water. This was 

facilitated by the selectivity of the FMOC labeling. Furthermore, SM-EKC utilizing 

DOSS/ ACN electrolyte systems proved once more to be very useful in the separation of 
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hydrophobic compounds such as the FMOC-anilines. Hydrophobic compounds are very 

difficult to separate in plain aqueous MECC due to their strong association with the 

micelles. 
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CHAPTER IV 

CAPILLARY ELECTROPHORESIS OF DERIVATIZED AND UNDERIVATIZED 

PHENOL PESTICIDIC METABOLITES. PRECONCENTRA TION AND LASER­

INDUCED FLUORESCENCE DETECTION OF DILUTE SAMPLES 

Introduction 

This chapter is concerned with the CE separation of some substituted phenols, and 

more specifically the phenol pesticidic metabolites shown in Table I, which lists typical 

parent pesticides for the phenols under investigation. The analysis of substituted phenols 

is of importance to environmental regulatory agencies as these materials pose significant 

human and environmental hazards. Some of these phenols, e.g., phenol (ph), 2-

chlorophenol (2-Clph), 2,4-dichlorophenol (2,4-DiClph), 2,4,5-trichlorophenol (2,4,5-

TriClph) and pentachlorophenol (PentaClph), are on the United States Environmental 

Protection Agency (USEPA) list of priority pollutants I because they are highly toxic even 

at low concentrations. 

Gas chromatography · (GC)2-4 and to a larger extent high performance liquid 

chromatography (HPLC)4°7 have found wide use in the analyses of phenols in water. 

Usually, the analysis of phenols by GC is complicated by the polarity of some of these 

solutes and their low vapor pressure, thus necessitating sample derivatization to enhance 

.* The content of this Chapter will be published in J Sep. Sci., 2002, 25, (In Press). 
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TABLE 1. 

STRUCTURES, ABBREVIATIONS, pKa VALUES AND PARENT 
HERBICIDES OF THE PHENOLS 

Structure Name Abbreviation pKa Parent Herbicides 

OH 

6 Phenol ph 9.99 0-\H-CH, 
I 

H02C 

2-Phenoxypropionic acid 

OH 

&Cl Qoc~-CH, 2-chlorophenol 2-Clph 8.55 
# Cl C02H 

2-(2-chlorophenoxy)propionic acid 

OH 

0 3-chlorophenol 3-Clph 9.10 P-\H-CH, 
Cl Cl H02C 

2-(3-chlorophenoxy)propionic acid 

OH 

4-chlorophenol 4-Clph 9.43 c1-0-o~H-CH, 
I 

H02C 

Cl 
2-( 4-chlorophenoxy)propionic acid 

OH OCH2CO~ 

Cl Cl 

2,4-dichlrophenol 2,4-DiClph 7.85 

Cl Cl 

(2,4-dichlorophenoxy)acetic acid (2,4-D 
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TABLE I CONTINUED 

Structure Name Abbreviation pKa Parent Herbicides 

OH 

Cl 
2.4,5-trichlorophenol 2,4,5-TriClph 7 .3 7 

Cl 

CI-Q-OCH,CO,H 
Cl 

Cl 

OH 

Cl Cl 

Cl 
(2,4,5-trichlorophenoxy)acetic acid (2,4,5-T) 

Cl Cl 

Pentachlorophenol PentaClph 4.50 O*OCH,CO,H 
Cl 

Cl 

OH 

~ 
~ 

Cl 

f:l~C, ... CH3 
OH CH 

~b u 

1-Napthol 

2-lsopropoxyphenol 

2,2-dimethyl-2,3-
dihydrobenzo[b] 
furan-7-ol 

pKa are from Refs [1, 36] 

Nap 9.30 

2-Isopropoxyph ** 

Di hydro ** 

Cl Cl 

(Pentach lorophenoxy )acetic acid 

c60CONHCH3 

# 

Carbary I 

Baygon 

~;\~ 
vJCH3 

Bendiocarb 

**No pKa values were found in the literature for these two phenols. However, it is 

safe to state that they are relatively much weaker acids than the other listed phenols 
because they migrated first in CZE 
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volatility and detectability. This is usually a time consuming process requiring extensive 

sample preparation and manipulation with possible sample loss. HPLC methods are 

usually based on reversed-phase chromatography with either isocratic or gradient elution. 

Although HPLC has been shown to provide relatively low limit of detection in the range 

1 to 20 ng injected onto the column with post-column derivatization,5 the inherent limited 

resolving power of HPLC imposes extensive optimization which often involves complex 

procedures or numerous experiments, especially gradient elution. 

More recently, capillary electrophoresis (CE) has been applied for the analysis of 

phenols of environmental interest. I. 8-16 The recent interest in CE is not surprising since 

CE offers high resolving power and unique selectivity, which make CE a good alternative 

tool for phenols that are not directly amenable to GC or are not separated by HPLC. 

However, most of the CE studies involving phenols have either used standard phenols as 

model solutes to evaluate fundamental retention and migration issues as well as system 

evaluation in micellar electrokinetic capillary chromatography (MECC).1. 8· 12- 14· 17 and in 

capillary zone electrophoresis (CZE). 18 The main reason for which most studies 

demonstrated standard phenol separations and not real samples is the limited sensitivity 

of UV detectors(> mg/L, i.e., - 10-4 to I0-5 M). To use CE for the analysis of phenols in 

real waters in which pollutants exist at µg/L levels (i.e., l 0-8 to l 0-9 M levels), improved 

detection systems and sample enrichment methods should be implemented. Thus far, 

only a few attempts have addressed the detection of phenol pesticidic metabolites in real 

water at low levels.9• 11 • 15· 19 In these investigations, the reported limits of detection 

(LOD) were 2.2 x 1 o-7 to 2.8 x 1 o-s M by UV absorbance detection at 214 nm in CZE 

using an off-line solid phase extraction step,9 10-6 to 10-7 M range in CZE using indirect 

laser-induced fluorescence detection (LIF) in the presence of l mM fluorescein as the 

fluorescing background electrolyte, and about l o-6 M for p-chlorophenol using an on­

column amperometric detection after CZE separation. 15 While amperometric detection 
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provides one to two orders of magnitude decrease in LOO as compared to that in UV, 

electrochemical (EC) detection is rather tedious requiring sophisticated instrumental set­

ups which involve electrical decoupling of the CE and the EC electrode and physical 

alignment of the EC electrode with the capillary inlet to ensure optimum and 

reproducible measurements.20 Also, indirect LIF detection, which ensures 1 to 2 orders 

of magnitude lower LOO than UV absorbance detection, has some drawbacks such as (i) 

predominance of interferences (i.e., absence of specificity) due to the fact that the 

detection results from the fluorescing property of the background electrolyte and not the 

optical property of the analyte and (ii) compromising between optimum peak resolution 

and satisfactory detection sensitivity.21 Although off-line preconcentration such as solid­

phase extraction prior to CE separation usually enrich samples by at least a 1000 fold 

thus allowing the detection of dilute samples,22 on-line preconcentration is usually 

preferred because the later does not lead to sample loss. 

The originality of the present chapter resides in three aspects: (i) implementation of 

field-amplified sample stacking (FASS) for on-column pre-concentration of dilute phenol 

samples to allow trace analysis of underivatized phenols in the UV, (ii) introduction of a 

pre-column derivatization with a fluorescent tag to facilitate the detection of phenols by 

LIF after CEC separation and (iii) the evaluation of surfactant mediated electrokinetic 

capillary chromatography (SM-EKC). 

Materials and Methods 

Reagents and Materials 

The aromatic phenols (for structures see Table 1 ), 4-chlorophenol ( 4-Clph, 99+% 

purity), 3-chlorophenol (3-Clph, 98% purity), 2-chlorophenol (2-Clph, 99+% purity), 2,4-

dichlorophenol (2,4-DiClph, 99% purity), 2,4,5-trichlorophenol (2,4,5-TriClph, >98% 
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purity), 2-isopropoxyphenol (2-Ispropoxyph, 97% purity), pentachlorophenol (PentaClph, 

98% purity) and 2,2-dimethyl-2,3:-dihydrobenzo[b]furan-7-ol (Dihydro, 99% purity) were 

purchased from Aldrich (Milwaukee, WI, U.S.A.). Phenol (ph, >95% purity) was 

obtained from J.T. Baker (Phillipsburg, NJ, U.S.A.) and 1-Napthol (Nap, >95% purity) 

was purchased from Eastman (Rochester, NY, U.S.A.) HPLC grade acetonitrile (ACN) 

was obtained from Fisher (Fairlawn, NJ, U.S.A.). The derivatizing agent carbazole-9-N-

acetic acid (CRA) was prepared in our laboratory23 according to the previous procedures 

(Fig. la).24 4-Dimethylaminopyridine (DMAP) and 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide (EDAC) were purchased from Sigma (St. Louis, MO) Sodium hydroxide, 

potassium hydroxide, and sodium borate were purchased from EM Science (Cherry Hill, 

NJ, U.S.A.). The surfactant DOSS was also purchased from Aldrich. Structure of the 

surfactant, DOSS, is shown in Fig. 1, Chapter 3. 

H 
I 

3) Cf-ON BrCH2COOC2Hs 
DMF. KOH 

. ,.. 
Heat@ I00°C 

for 20 min Carbazole 

b) 
CH2COOH 
I 

CH2COOC2Hs 
I 
N N·-h 4MKOH,.. 

~ Adjust pH to2.0 
with 2 M HCI 

CH2COOR 
I 

0::0 0::0 + ROH 
DMAP. EDAC .... 

-= Phenols --
CRA Phenol-CRA esters 

+ H20 

Figure 1. Reaction scheme for the synthesis of (a) CRA and the derivatization scheme 
for the synthesis of the (b) CRA-phenol derivatives. 
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CE Instruments 

A Beckman P/ACE system 5510 (Fullerton, CA, U.S.A.) was used for all 

experiments. It was equipped with an Omnichrome (Chino, CA, U.S.A.) Model 3056-

8M He-Cd laser multimode, 8 mW at 325 nm and a data handling system comprised of 

an IBM personal computer and P/ ACE station software. A Beckman diode array detector 

was used for all UV detection. P/ACE station software was used for data acquisition. An 

emission band-pass filter of 380 nm ± 2 nm, purchased from Corion (Holliston, MA, 

U.S.A.) was used for the LIF detection of the CRA derivatives. The experiments were 

carried out using fused-silica capillaries obtained from Polymicro Technologies (Phoenix, 

AZ, U.S.A.). The dimensions of the capillaries were 50 cm to the detection window and 

57 cm total length, with 50 µm internal diameter and 365 µm outer diameter. In all 

experiments, the temperature was held constant at 25 °C by the instrument's 

thermostating system. Samples were pressure-injected at 0.034 bar (i.e., 3.5 kPa) for 

various lengths of time. When using a surfactant containing running buffer, the capillary 

was rinsed between runs with buffer without surfactant, distilled water, 1.0 M KOH, 

distilled water, buffer without surfactant and running buffer for 1, 1, 3, 1, and 3 min, 

respectively. When using borate-running buffer, the capillary was rinsed between runs 

with 1.0 M KOH for 5 minutes at the beginning of the day and was simply rinsed with 

running buffer between runs. 
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Procedures 

Precolumn Derivatization 

Enough of the aromatic phenol pesticidic metabolites were weighed out into a 2 

dram amber vial to make a final concentration of 1.00 x 10-2 M in 1.00 mL of "solvent". 

500 µL of ACN was pipeted along with 200 mL of 0.5 M DMAP, 100 ~LL of 0.65 M 

EDAC and 200 µL of 0.25 M CRA. A small amount of heat was necessary to help 

dissolve the CRA and EDAC stock solutions. This brought the final concentration of 

analyte to 10 mM and the derivatizing agent to 50 mM. As described in the literature, the 

DMAP was used as a base catalyst and the EDAC was used to promote coupling.25 The 

reaction was left stirring overnight at 60 °C in a dri-bath while stirring. These samples 

were subsequently diluted and used further for sample injections for the 

electropherograms generated under the various operating conditions. This derivatization 

was also used for determining the LOD by successive dilution. Fresh derivatives were 

prepared bi-weekly to prevent degradation of the derivatives. 

Results and Discussion 

CE of Underivatized Phenols 

CZE 

As native species (i.e., underivatized phenols), the phenols are weak acids (see 

Table l for pKa), which eventually electrophorese and separate at moderately high pH as 
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Figure 2. Electropherograms of the underivatized analytes using CZE. Conditions: capillary column, 50 cm I 57 
cm x 50 µm; voltage, 25 kV; column temperature, 25 °c. Running electrolyte consists of (a) 85 mM sodium 
borate, pH 9.5, and (b) 20 mM sodium borate, pH 10.5. Underivatized analytes: 1, 2-Isopropoxyph; 2, Dihydro; 
3, Phenol; 4, Naphthol; 5, 4-Clph; 6, 3-Clph; 7, 2-Clph; 8, 2,4-DiClph; 9, 2,4,5-TriClph; 10, PentaClph. 



deprotonated species by CZE. 16· 19· 26 In fact, Fig. 2 shows typical electropherograms of 

underivatized phenols obtained using two simple borate buffer systems at alkaline pH. 

The separation is based on the differences in charge-to-mass ratio and is easily explained 

with the most acidic and lower molecular mass phenols being migrated the slowest. The 

observed migration of phenol ahead of naphthol is also consistent considering the fact the 

pKa of phenol is 9.99 as compared to naphthol whose pKa is 9.30, thus giving naphthol a 

higher charge-to-mass ratio. This is because the electroosmotic flow (EOF) is counter­

directional to the electrophoretic mobility of the solutes. The 85 mM sodium borate (pH 

9.5) yielded better separation than the 20 mM sodium borate (pH 10.5) for the phenol 

compounds with the more chlorinated (more acidic) phenols, which migrated the slowest 

(Figure 2a). The less acidic phenols (i.e., early migrating solutes) can be separated more 

easily with an increase in pH, which in turn increases the ionization of the given phenols 

as shown in Figure 2b. 

SM-EKC 

Since they are relatively hydrophobic compounds, the native phenols can also be 

separated using SM-EKC, which uses differences in hydrophobicity as the driving force 

for selectivity. Figure 3 shows electropherograms of the underivatized phenols 

incorporating a surfactant electrolyte system consisting of DOSS and ACN buffered with 

sodium borate. As expected the more hydrophobic phenols are more retained by the 

DOSS. Although differences in hydrophobicity drive the separation, the charge-to-mass 

ratio also plays a role in the amount of retention. Figure 3a shows an electropherogram 

of the 10 compounds using 30 mM DOSS with 8 mM sodium borate, pH 8.5, containing 
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30% ACN (v/v). The less acidic phenols, e.g., 2-Isopropoxyph, Dihydro, and Nap, were 

not resolved under these conditions however the selectivity was easily adjusted by 

decreasing the organic content by 10% ( v /v) as shown in figure 3 b. Decreasing the 

organic content allowed for an increased interaction of the more hydrophobic phenols 

with the DOSS surfactant, which resolved the three previously co-eluting analytes. 

PentaClph, which was shouldering TriClph, was also more retained and was totally 

resolved under these conditions. 

Limits of Detection of Underivatized Phenols 

The LOD's for the native phenols were determined at 200 and 254 nm using a run 

buffer of 85 mM borate, pH 9.5, and the results are summarized in Table 2. As can be 

seen in Table 2, for a few compounds, e.g., 2,4-DiClph, 2,4,5-TriClph, PentaClph and 

Nap, the LOO is lower at 200 nm than at 254 nm by a factor of 4 to 8, while for the rest 

of the phenols ( except for 4-Clph) the LOO is about the same at both wavelengths. In 

most cases, it may be more convenient to use 254 nm to avoid baseline noise due to 

absorbance of running electrolyte components such as organic solvents and surfactants. 

Although they are well separated, the limit of detection is quite high (-10-5 M) using UV 

absorbance detection at either wavelength. Thus, the initial need for a quick and efficient 

pre-column derivatization to allow their detection at low levels. 
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TABLE 2. 

LIMITS OF DETECTION OF UNDERIV A TIZED PHENOLS IN THE UV 

LOD (M) of Underivatized Phenols 

Phenols UV at 200 nm UV at 254 nm UV "Stacking" 214 nm 

ph 4.8 X 10-5 3.6 X 10-4 2.3 X 10-8 

2-Clph 1.2 X 10-5 1.1 X 10-5 2.8xl0-8 

3-Clph 1.9 X 10-5 1.9 X 10-5 5.4 X 10-8 

4-Clph 6.0xl0-5 3.8 X 10-5 4.1 X 10-8 

2,4-DiClph 1.2 X 10-5 4.7 X 10-5 3.3 X 10-9 

2,4,5-TriClph 2.1 X 10-5 3.5 X 10-5 7.7 X 10-9 

PentaClph 1.3 X 10-5 4.7 X 10-5 2.2 X 10-8 

Nap 1.0 X 10·5 8.1 X 10-5 5.0 X 10-8 

2-Isopropoxyph 2.0 X 10·5 2.1 X 10-5 1.4 X 10·7 

Dihydro 1.3 X 10·5 1.2 X 10-5 6.5 X 10-8 

CE of Derivatized Phenols 

CRA Derivatization - Percent Conversion and Limits of Detection 

Figure 1 b illustrates the reaction scheme for the CRA derivatization of phenols, 

which involves the formation of an ester bond between the carboxyl group of the CRA 

and the hydroxyl group of the phenol analyte. The CRA derivatization was performed at 

a 5: 1 mole ratio of tag to analyte, see experimental section. The percent conversion was 

found to be anywhere from 27.3 % for the more chlorinated phenols (e.g., 2,4,5-TriClph) 

up to 95.1 % for the nonchlorinated phenols such as Dihydro. Higher mole ratios of CRA 
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to analyte ( e.g., 50: 1) were tried to help increase the percent convers10n of the 

derivatization, however, this only seemed to produce more interfering side products with 

no significant increase in the amount of derivatized phenols. The percent conversion of a 

given phenol solute to its CRA derivative was determined by CZE analysis according to 

. d . h h l d . . . 27 28 Ch 2 d "' our previous proce ure wit ot er preco umn envat1zat1ons, · see apters an -'· 

Briefly, it involves the CZE analysis of two aliquots of the given phenol at the same 

solute concentration where one aliquot consisted of the underivatized solute while the 

other aliquot was derivatized with CRA. The comparison of the peak area of the analyte 

obtained on the electropherogram of the derivatized aliquot permitted the determination 

of the percent of remaining underivatized analyte and in turn the percent conversion. 

The measurement of percent conversion was necessary for the determination of 

the exact LOD of the CRA-phenol derivatives. The LOD values were measured from 

successive dilution of a derivatization reaction involving the 5: I mole ratio of tag to 

analyte with an overnight reaction time. The LOD was approximated when a signal-to-

noise ratio of 3 to 1 was achieved. As can be seen in Table 3, the CRA derivatization 

allowed a slightly more sensitive UV absorbance detection of phenols and yielded LO D's 

in the low I o-6 M to mid 10-5 M level. For the majority of CRA-phenols, this was 

approximately 1 order of magnitude increase in sensitivity. However, 2,4-DiClph 

showed no improvement in sensitivity and the LOO for CRA derivatives of the more 

chlorinated· phenols could not be determined due to the large amount of interfering side 

product peaks, and the relatively low percent conversion. 

The LOD achieved by LIF varied from 1.9 x I 0-5 M for CRA-2,4-DiClph to as 

low as 7.7 x 10-9 M for CRA-Dihydro. The LIF improved the sensitivity about 100 fold 
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for most of the CRA phenols, but the polychlorinated CRA derivatives such as 2,4-

DiClph gained very minute improvement. Again, the CRA-2,4,5-TriClph and CRA­

PentaClph could not be determined due to their relatively low percent conversion to CRA 

derivatives and to the large amount of CRA side products which were also fluorescent 

and caused much interference at higher concentrations of analyte. In addition, the 

apparent reason for the higher or unattainable LOD's of these polychlorinated phenol 

· derivatives is the fact that halogen substitution on aromatic ring leads, in general, to a 

decrease in fluorescence intensity. 29 Halogen substitution is thought to increase the 

probability for intersystem crossing to the triplet state.29 

SM-EKC of CRA derivatives 

Since the CRA-phenols are neutral derivatives, it was necessary to analyze them 

by SM-EKC. Figure 4 is an electropherogram of 8 of the 10 CRA-phenol derivatives 

obtained by LIF detection with an electrolyte system composed of 35 mM DOSS, 8 mM 

sodium borate, pH 8.5, containing 35% ACN (v/v). In this mode of separation, i.e., SM­

EKC, the neutral CRA-derivatized phenols eluted in the order of increasing hydrophobic 

character as opposed to the mixed order of elution (i.e., according to solute hydrophobic 

character and its and charge-to-mass ratio) when underivatized, compare Fig. 4 to Fig. 3. 

As expected, CRA-ph was the first derivative to 'elute since it is less hydrophobic and 

interacts the least with the very hydrophobic DOSS surfactant. CRA-2-Isopropoxyph, 

CRA-Dihydro, and CRA-2-Clph all co-eluted under a variety of surfactant concentrations 

and percent organic in the mobile phase while keeping the amount of electrolyte at 8 mM 

sodium borate and the pH at 8.5 throughout all experiments. For instance, using the most 
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Figure 4. Separation of 6 of the CRA-phenol derivatives. Running electrolyte consists of 
35 mM DOSS with 8 mM sodium borate, pH 8.5, in 35% ACN v/v. Same conditions as 
in Fig. 2. 

hydrophobic conditions, which consisted of an electrolyte system of 40 mM DOSS with 

30% ACN, resulted simply in increasing the overall retention as expected due to the 

increased amount of analyte-surfactant interaction without improving the resolution 

among the three analytes CRA-2-Isopropoxyph, CRA-Dihydro, and CRA-2-Clph. Also, 

using an electrolyte system of 35 mM DOSS consisting of a binary mixture of organic 

solvents composed of 25% (v/v) ACN and 5% (v/v) methanol in the aim of inducing 

more interaction without decreasing the solubility of the 35 mM DOSS yielded a slightly 

longer analysis time but still provided no selectivity for the three unresolved phenol 

derivatives. An electrolyte composition of 35 mM DOSS, 8 mM sodium borate, pH 8.5, 
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TABLE 3. 

LIMITS OF DETECTION AND PERCENT CONVERSION OF DERIVATIZED 
CRA-PHENOLS IN THE UV AND LIF 

LOO (M) of Derivatized 

Phenols 

Phenols % Conversion UV at 254 nm LIF 

ph 52.3 3.8 X 10"6 1. 8--;-i o·8 

2-Clph 59.4 8.3 X 10-6 3.8 X 10"8 

3-Clph 53.2 5.6 X 10"6 6.9 X 10"8 

4-Clph 66.3 9.9 X 10"6 6.6x 10-8 

2,4-DiClph 44.2 4.6 X } 0"5 1.9 X 10"5 

2,4,5-TriClph 27.3 * * 
PentaClph 28.5 * * 
Nap 81.5 3.0 X 10"5 1.1 X 10"7 

2-Isopropoxyph 88.9 4.9 X 10"6 2.0 X } 0-8 

Dihydro 95.1 2.3 X 10"6 7.7 X 10"9 

* See discussion in text 

with 35% ACN (v/v) showed the best overall separation and was used for the LOO 

determinations using LIF, and the results are listed in Table 3. As expected, the order of 

elution of the mono-chlorinated phenols was CRA-2-Clph, CRA-4-Clph and CRA-3-

Clph, respectively, which corroborate that obtained in RPC for positional isomers,30 a 

fact that indicates that the mechanism of retention of neutral solutes in SM-EKC is based 

primarily on nonpolar interactions. CRA-Nap was the next to elute and CRA-2,4-DiClph 
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was the last detectable derivative under these conditions. CRA-TriClph and CRA-

PentaClph were not able to be determined due to the large amount of interfering side 

products as mentioned earlier and due to the decreased LIF properties, which correlate to 

the chloride substituents. Thus, the need for a better method for detection of these 

polychlorinated compounds under UV absorbance conditions. 

On-column Pre-concentration of Underivatized Phenols by FASS. Detection of Trace 
Amounts of Phenols in Real Waters 

Field-amplified sample stacking was incorporated for its ability to pre-concentrate 

anionic analytes. 31 "34 The analytes were hydrodynamically introduced into the column up 

to the detection window (50-cm) at a concentration several orders of magnitude lower 

than the measured analytical LOD. The analyte's solvent buffer consisted of 0.1 mM 

sodium borate, pH 10.5. A running electrolyte consisting of 20 mM sodium borate, pH 

10.5, was then introduced at the inlet and outlet positions of the capillary. A negative 

polarity of 25 kV was applied and was discontinued when approximately 97% of the 

normal running electrolyte current was achieved. A positive polarity of 30 kV was then 

applied for the purpose of the separation. Figure 5 shows typical electropherograms of 6 

of the FASS stacked phenols using deionized water as the sample matrix. Figure Sa 

incorporated a stacking solvent of deionized water with no background electrolyte (BGE) 

and a separation electrolyte of 20 mM sodium borate, pH 10.5. However, the peaks were 

slightly broader than in Fig. Sb, which used a BGE of deionized water buffered with 0.1 

mM sodium borate, pH 10.5, and the same separation electrolyte as that in Fig. Sa. This 

is most probably accounted for by the more basic stacking electrolyte ionizing the 

analytes to a much larger extent, thus focusing the analytes into narrower zones. The 
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order of elution correlated to the analytical separation run under the same conditions (see 

Fig. 2b ). Most of the extra peaks in the sample run were accounted for after running the 

blank, however, there were a few peaks that were not present in the blank. According to 

the literature on this topic,35 it is apparent that "ghost" peaks are common with this 

process along with baseline shifts usually due to slight differences in the BOE stacking 

electrolyte and the running electrolyte of higher ionic strength. 

The hydrodynamically loaded analyte concentration varied from 4 x 10-8 M to 7.5 x 

1 o-8 M (see Fig. 5). The overall "LOO" obtained using this preconcentration method was 

improved by approximately 1000 fold (-1 o-8 M) from the normal analytically determined 

LOD's. This is approximately the same magnitude as determining these compounds with 

LIF, however very good LOO values for the polychlorinated phenols are now able to be 

determined. 

Figure 6 shows a typical electropherogram of the same 6 compounds using tap 

water buffered with 0.1 mM sodium borate, pH 10.5, as the BOE. The running 

electrolyte was altered to 30 mM sodium borate to incorporate a larger difference in ionic 

strength, and thus a larger difference in conductivity of the running electrolyte to sample 

BOE. The concentrations of 4-Clph, 3-Clph, and 2-Clph were lowered from 7 .5 x 1 o-8 M 

to 4 x 1 o-8 M to see if the LOO could be achieved using a more realistic sample matrix 

(i.e., tap water). The peaks were broader than in the case of stacking in buffered 

deionized water, most likely due to more ion competition in the tap water matrix. The 

three peaks were approximately the LOO (3 to 1 signal-to-noise ratio) as determined 

using deionized water and definitely correlated to the same elution pattern. The overall 
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migration times were a fraction longer most probably due to a coating effect of any heavy 

metal cations in the tap water on the walls of the capillary. 
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Figure 6. Electropherogram of the same 6 analytes using tap water. Running electrolyte 
consists of 30 mM sodium borate (pH;,,10.5) with a stacking BGE of 0.1 mM sodium 
borate, pH 10.5, in tap water. A voltage of 30 kV was used for the separation. Other 
conditions are the same as in Fig. 2. Molarity of loaded analytes: Dihydro, 4.0 x 1 o·8 M; 
4-Clph, 4.0 x 10-8 M; 3-Clph, 4.0 x 10"8 M; 2-Clph 4.0 x 10"8 M; 2,4,5-TriClph, 7 .5 x 10-8 

M; PentaClph, 5 x I 0-8 M. 
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Conclusions 

We have shown that CE is a powerful microcolumn separation approach for the 

analysis of pesticidic phenol metabolites at low levels. With the exception of 

polychlorinated phenols derivatized with a fluorescent tag, LIF detection provides the 

sensitivity required for the direct analysis of dilute samples of substituted phenols. UV 

absorbance detection combined with FASS of dilute samples of phenols helped to 

overcome the shortcoming of LIF as far as the detection of polychlorinated phenols is 

concerned .. Furthermore, both CZE at alkaline pH and SM-EKC provided the selectivity 

required for the separation of closely related phenols while SM-EKC proved useful for 

the separation of CRA derivatized phenols. 
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