
INFLUENCE OF CACHES ON THE PERFORMANCE

OF INSERTION SORT

By

SUNILMEHTA

Bachelor of Engineering

University of Bombay

Bombay, India

1998

Submitted to the faculty of the
Graduate College of the

Oklahoma State University
In Partial Fulfillment of

The Requirements of
The Degree of

MASTER OF SCIENCE
May,2003

INFUENCE OF CACHES ON THE PERFORMANCE OF

INSERTION SORT

Thesis Approved:

Thesis Advisor

Dean of the Graduate College

11

PREFACE

Sorting is used in many important applications; consequently, there has been an

abundance of performance analyses of sorting algorithms. However, most previous

research does not take into account memory hierarchies present in today's computers.

Since most computers today contain cache storage, it is important to analyze sorting

methods based on their cache performance. Due to the increase in the cache miss penalty,

the relative performance results we obtain on today's machines greatly differ from the

machines often years ago. Recent research in this area has proved that caches affect the

performance of sorting algorithms, in comparison to their non-cached architectures.

Current research in this area concentrates mainly on mergesort, quicksort, heapsort and

radixsort. In this thesis the effect of caches on the performance of insertion sort is

investigated and closed form solutions for its miss rate are developed analytically.

Simulations are used to verify these analytical solutions. Finally, its traditional theoretical

complexity is compared to its cache based performance.

111

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to Dr. G. E. Hedrick, my major adviser, for

his constant inspiration and encouragement throughout my graduate study. None of this

would have been possible without his consistent advice and generous aid. I also wish to

express my sincere gratitude to Dr. J.P. Chandler and Dr. N. Park for their guidance and

support during my graduate study.

I am grateful for the help I received from many individuals. In particular, I wish

to extend my gratitude to Dr. R. Sharda and Dr. M. Weiser for their kind help.

Last, but not least, my appreciation goes to my parents, Rita Mehta and Shillander

Mehta, and my brother, Anil Mehta, for their constant love, encouragement and support.

IV

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION... 1

1.1 Sorting Algorithms.. 1

1.2 Theme of the Thesis... 2

1.3 Thesis Organization... 3

II LITERATURE REVIEW AND BASIC CONCEPTS........................ 4

2.1 BriefReview..... 4

2.2 Caches and Data Locality.. 6

2.3 Caches and Algorithm analysis.. 7

III CACHE BASED ANALYSIS OF INSERTION SORT..................... 10

3.1 Insertion Sort... 10

3.2 Cache Based Analysis of Insertion Sort.. 11

IV

4.1

4.2

4.3

3.2.1

3.2.2

3.2.3

3.2.4

Insertion Sort Source Code

Best Case Analysis

Worst Case Analysis

Average Case Analysis

SIMULATION AND COMPARATIVE GRAPHS

Simulation .. .

Graphs .. .

Observations

V

11

13

14

18

21

21

22

28

Chapter Page

V CONCLUSION AND FUTURE WORK....................................... 29

BIBLIOGRAPHY.. 30

APPENDICES.. 32

APPENDIX A- GLOSSARY.. 33

APPENDIX B- SIMULATION PROGRAM SOURCE CODE............ 34

VI

LIST OF FIGURES

Figure Page

1 RAM Model... 9

2 Memory hierarchy of Modem computers.. 9

3 Insertion Sort Source code.. 11

2 Best Case Analysis.. 13

3 Inverse Sorted Array with Data Elements.. 15

4 Worst Case Analysis (Pass Less Than Cache Size)............................... 16

5 Worst Case Analysis (Pass Greater Than Cache Size)........................... 16

6 Average Case Analysis (Pass Less Than Cache Size)............................ 19

7 Average Case Analysis (Pass Greater Than Cache Size)........................ 19

Vil

Chapter 1

Introduction

1.1 Sorting algorithms

Sorting is a fundamental task that is performed by most computers. It is used frequently

in a large variety of important applications. All spreadsheet programs contain some sort

of sorting code. Database applications used by schools, banks, and other institutions all

contain sorting code. Because of the importance of sorting in these applications, dozens

of sorting algorithms with varying complexity have been developed over the decades.

Varying in complexity, sorting algorithms fall into two basic categories -

a. Comparison based: A comparison-based algorithm orders an array by weighing

the value of one element against the value of other elements. Algorithms such as

quicksort, mergesort, heapsort, bubble sort, and insertion sort are comparison

based.

b. Non-comparison based : Alternatively, a non-comparison based algorithm sorts an

array without comparing pair-wise data elements. Radix sort is a non-comparison

based algorithm that treats the sorting elements as numbers represented in a base

M number system, and then works with individual digits ofM.

Comparison based sorting algorithms can be categorized based on their theoretical time

complexity. Slow sorting methods such as bubble sort, insertion sort, and selection sort

have a theoretical time complexity of O(N2) in average and worst case. Shellsort, which

1

is based on insertion sort, was one of the first algorithms to break the quadratic barrier.

Even though these algorithms are very slow for sorting large arrays, each algorithm is

logically simple, so they are not useless. If an application only needs to sort moderately

large arrays, then it is satisfactory to use one of the simple slow sorting algorithms as

opposed to a faster, but more complicated sorting algorithm. For these applications, the

increase in coding time and probability of a coding mistake in using the faster sorting

algorithm is not worth the speedup in execution time.

1.2 Theme of this thesis

Sorting is used in many important applications; consequently, there has been an

abundance of performance analyses of sorting algorithms. However, most previous

research does not take into account memory hierarchies present in today's computers.

Since most computers today contain cache storage, it is important to analyze sorting

methods based on their cache performance. Due to the increase in the cache miss penalty,

the relative performance results we obtain on today's machines greatly differ from the

machines of ten years ago. Recent research in this area has proved that caches affect the

performance of sorting algorithms, in comparison to their non-cached architectures.

Current research in this area by LaMarca [5,6,7] and Ladner [6,7] concentrates mainly on

mergesort, quicksort, heapsort and radixsort. In this thesis the effect of caches on the

performance of insertion sort is investigated and closed form solutions for its miss rate

are developed analytically. Simulations are used to verify these analytical solutions. Finally,

the traditional theoretical time complexity of insertion sort is compared to its cache based

performance.

2

In this thesis we focus on insertion sort, and study the influence of cache performance on

its time complexity. Then closed form solutions for its miss rate are proposed. These

solutions are verified using simulations. We further compare its theoretical complexity

with its cache-based performance giving performance curves.

1.3 Thesis Organization

This thesis is organized in the following way: chapter II provides the literature reviews of

the basic concepts that appear in the thesis; what other people did in the area of cache

analysis of algorithms and an overview of caches and algorithm analysis. Chapter III

describes in detail the cache based analysis of Insertion sort for the best, worst and

average cases, giving closed form solutions for the number of cache misses in each case.

Chapter IV briefly describes the simulation program and gives comparative graphs.

Chapter V summarizes the effects of caches on the performance of insertion sort and

describes possible future work in this area.

3

Chapter 2

Literature Review and Basic Concepts

2.1 Brief Review

Most previous research is based on the algorithms' theoretical complexity using a non

cached architecture. The performance analysis of algorithms mostly was based on the

theory behind the algorithm. Since most computers today contain a cache, it is important

to analyze them based on their cache performance. Donald Knuth [3] has studied many

sorting algorithms in great detail. However, even though Knuth gives a complete analysis

of the different algorithms, they are all based on a non-cached computer architecture. All

of his analyses are based on the theoretical complexity of the algorithms.

As the cached computer architecture becomes common today, it becomes desirable to

analyze how a cached memory affects the performance of these sorting algorithms.

Theoretical analyses are still useful because they are the fundamental analyses that are

needed in analyzing any kind of algorithm. Even though there is an abundance of

previous research on the performance of sorting algorithms, most of the research does not

analyze how the sorting algorithms exploit caches. Since almost all of today's computers

contain a cached memory architecture, this is an area that is lacking in research. In

addition, as the increase in memory access time becomes larger than the increase in

processor cycle time, then the cache performance of an algorithm has an increasingly

larger impact on the overall performance.

4

Loop tiling, or blocking, has been used effectively to reduce cache miss rates. Preeti

Ranjan Panda et al. [9] and Monica S. Lam et al. [4] have studied the performance of

blocking algorithms in great detail. These fundamentals can be applied to various sorting

algorithms to improve their overall performance by reducing their cache miss rate.

Lately there has been an increased awareness in analyzing performance of sorting

algorithms taking into account caches and locality rather than analyses based on

traditional theoretical complexity. Current research on analyzing and reducing the cache

miss rate of algorithms is attributed to LaMarca [5,6,7]. He carried out a detailed study of

the influence of caches on sorting algorithms [5,6]. His study mainly focused on

analyzing and improving mergesort, quicksort and heapsort by reducing their cache miss

rates. He has also presented closed form solutions for the miss rates of these algorithms.

Influence of caches on heaps was studied in detail by LaMarca and Ladner[7]. Recent

research by Ying Shi and Eushiun Tran [11] has further proved that cache does affect the

performance of these sorting algorithms. Alpha sort, which is a new cache-sensitive

memory-intensive parallel sort algorithm, was studied by Chris Nyberg et al [8].

5

2.2 Caches and Data Locality

In order to speed up memory accesses, small high speed memories called caches are

placed between the processor and the main memory. Accessing the cache is typically

much faster than accessing main memory. Unfortunately, since caches are smaller than

main memory they can hold only a subset of its contents. Memory accesses first consult

the cache to see if it contains the desired data. If the data is found in the cache, the main

memory need not be consulted and the access is considered to be a cache hit. If the data is

not in the cache it is considered a miss, and the data must be loaded from main memory.

On a miss, the block containing the accessed data is loaded into the cache in the hope that

it will be used again in the future. The hit ratio is a measure of cache performance and is

the total number of hits divided by the total number of accesses.

The major design parameters of caches are:

1. Capacity: which is the total number of bytes that the cache can hold.

2. Block size: which is the number of bytes that are loaded from and written to

memory at a time.

3. Associativity: which indicates the number of different locations in the cache

where a particular block can be loaded. In an N -way set-associative cache, a

particular block can be loaded in N different cache locations. Direct-mapped

caches have an associativity of one, and can load a particular block only in a

single location. Fully associative caches are at the other extreme and can load

blocks anywhere in the cache.

6

High cache hit ratios depend on a program's stream of memory references exhibiting

locality. A program exhibits temporal locality if there is a good chance that an accessed

data item are accessed again in the near future. A program exhibits spatial locality if there

is good chance that subsequently accessed data items are located closely together in

memory.

2.3 Caches and Algorithm analysis

Since the introduction of caches, miss penalties have been increasing steadily relative to

cycle times and have grown to the point where good performance cannot be achieved

without good cache performance[5]. Unfortunately, many fundamental algorithms were

developed without considering caching. Worse still, most new algorithms being written

do not take cache performance into account. Despite the complexity that caching adds to

the programming and performance models, cache miss penalties have grown to the point

that algorithm designers can no longer ignore the interaction between caches and

algorithms.

Lamarca[5] has demonstrated the potential performance gains of cache-conscious design

in his dissertation. The performance results he obtained demonstrate that memory

optimizations significantly reduce cache misses and improve overall performance.

A drawback of designing algorithms for cache performance is that often none of the

cache parameters are available to the programmer. This raises a dilemma. A programmer

might know that it is more efficient to process the data in cache size blocks but cannot do

so when the capacity of the cache is unknown. One approach used by some is to make a

conservative assumption and rely on the cache to be some minimum size. We take an

7

approach taken by Lamarca[5], and assume that the exact cache parameters are exported

to the programmer by the system. That is, we assume that the capacity, block size,

associativity and miss penalty of the caches are known by the programmer.

This change clearly increases the complexity of the programmer's environment. Caches,

that traditionally were transparent to the programmer, are now exposed. This change also

raises portability issues. While correctness still is preserved, codes compiled for one

memory system might perform poorly if executed on a machine with a different memory

system.

Despite these drawbacks, exporting cache parameters has the potential to aid efficient

algorithm design greatly. Lamarca[5] showed in his thesis that efficient algorithms can be

made to perform even better when specific architectural characteristics are known.

The majority of researchers in the algorithm analysis community compare algorithm

performance using analyses in a unit-cost model. The RAM model, discussed in

Cormen[l] and shown also in figure 1 is used most commonly, and in this abstract

architecture all basic operations including reads and writes to memory, have unit cost.

Unit-cost models have the advantage that they are simple to understand, easy to use and

produce results that are easily compared. A serious drawback is that unit-cost models do

not adequately represent the cost of memory hierarchies present in modern computers

shown in figure 2. In the past, they may have been fair indicators of performance, but that

is no longer true.

8

It is also common for the analyses of algorithms in a specific area only to count particular

expensive operations. Analyses of searching algorithms, for example, typically count

only the number of comparisons performed. The motivation behind counting only

expensive operations is a sound one. It allows the analyses to be simplified yet retain

accuracy since the bulk of the costs are captured. The problem with this approach is that

shifts in technology can render the expensive operations inexpensive and vice versa. In

this thesis a memory reference is considered to be the most expensive operation. Thus

throughout this thesis, the theoretical complexity is assumed to be the number of memory

references (instead of the number of comparisons).

Processor Processor

. a. ...

~ .. 1 r

Main Memory Cache

A I. H

1 I,
, .,

Disk Memory

,11.

' .,
Disk

Figure 1. RAM Model Figure 2. Memory hierarchy of Modern computers

9

Chapter 3

Cache Based Analysis of Insertion Sort

3.1 Insertion Sort

Insertion sort is a simple, stable, internal sorting algorithm which sorts N elements in

O(N2) time in the worst case. It only is useful for sorting a small number of data items,

but due to its simplicity and due to the fact that it sorts "in place", it is used in various

linear sorting algorithms; such as, radix sort and bucket sort, to sort the intermediate

buckets [1]. It is also used to sort small arrays in mergesort and quicksort [1]. The basic

idea of insertion sort is also used in shellsort [10], though in a modified manner. Thus, its

analysis in terms of cache miss rate can give valuable insight into other complex

algorithms based on it or using it. Also, since it uses only constant amount of space

outside of the original array it is very efficient in terms of memory space utilization.

Insertion sort is mainly useful in sorting a relatively small number of data elements,

therefore the study of its cache miss rate is very important. Even a small number of

misses cause large miss overhead since the sorted set is small. Therefore we predict the

cache misses exactly, since even a small number of misses can affect insertion sort's

performance drastically.

10

3.2 Cache based Analysis of Insertion sort

The first look at the algorithm gives an impression that it has good data locality of

reference since it accesses the adjacent data element in the following access, which is an

indication of good spatial locality.

3.2.1 Insertion Sort Source Code

void sort (double A[] , int n)

{

double temp;

inti, j;

for (i = 1; i < n; i++

{

1. temp= A[i]; // 1 reference

2. j = i - 1;

3. while (j >= 0 && A[j] >temp) // 1 reference

{

4. A[j+1] = A[j]; // 2 references

5. j--;

}

6. A[j+1] = temp; // 1 reference

}

Figure 3.

We are not concerned about the internal variables used by the algorithm. This is because

they can be represented in registers and never be written to any part of memory. This, in

11

effect, means that the internal variables do not have a memory address and thus do not

have any memory references. The main concern is the array elements we are trying to

sort.

As shown in the algorithm above we have the following memory references:

1. Line # 1 : 1 reference

2. Line# 3: 1 reference

3. Line # 4 : 2 references

4. line # 6 : 1 reference

Our first task is to determine the exact number of memory references the algorithm

makes to sort a given set of numbers.

Let us consider the following data cache model for the rest of the analysis:

Replacement Algorithm: LRU (Least Recently Used)

Cache Type : Fully associative

Cache size (number of elements cache can hold): C

Block size (number of elements in one block): B

Number of blocks in cache: R

Total number of Data elements to sort: N

Note: On a miss the entire block containing the missed element is brought into the cache.

12

3.2.2 Best Case Analysis:

Insertion sort has its best performance when the array is sorted already and it runs in

O(N) or linear time. The number of references is 3N-3, from passes P=2 to N. The

number of moves per element is zero, thus we just get only one compulsory miss per

block. This fact is shown in figure 4, in which a block size B=4, is assumed. It is

assumed, without loss of generality, that the array elements are same as their array index

since this gives a simpler view of the sorted array. Due to this, the actual data elements

have not been shown separately from the array indices.

B=4

I 1 I 2 1
3

1
4 15

1
6 I 1 1

8
1

9 I 1° I 11 , . l I · I · I · I · [N I
pLJ

Figure 4.

We start the passes from P=2, which causes a compulsory miss in element 2. Due to this

miss the whole block; i.e., elements 1 through 4 are brought into the cache, and we don't

get a miss until the 5th element. Thus, we get misses every B elements accessed until the

Nth element giving a total of IN I Bl compulsory misses. Therefore the miss rate is

approximately 1/3B.

13

3.2.3 Worst Case Analysis:

The worst case performance of insertion sort O(N2) is very poor compared to its best

case O(N). Thus we concentrate heavily on its worst case cache performance since it

would give a true idea of its data locality.

Given the above cache model the worst case analysis is based on the fact that the array is

reverse sorted, therefore each element must be brought back to index 1 from its current

position in the array at each pass. This means that in pass number P we must go back P-1

indices in the array to reach the first element.

This gives the number of references per pass as:

1 +3*(P-1)+1 .. (1)

Referring to figure 5, the first term in the above equation represents the memory

reference on line 1. The second term is the sum of all memory references on lines 3 and 4

over (P-1) moves. Finally, the last term is the memory reference on line 6.

The total number of references is the summation of (1) over all the N-1 passes (from

P=2 to P=N).

Thus we get the total number of references

N

= L)2+3*(P-1)]
P=2

14

= 2*(N-1) + 3*[N*(N+ 1)/2 -N] ... (2)

In order to find the total number of misses following two cases are considered:

Case I: N<=C

This is trivial since all the elements are in the cache there are only IN I Bl compulsory

misses which is same as the best case.

Case II: N>C

Array indices

~ 1 2 3 4 5 6 7 8 9 10 11 N

rr-> Actual data elements

100 99 98 97 95 94 93 92 91 90 89 ..

Figure 5.

Figure 5 shows a view of the reverse sorted array. For further analysis in this case only

the indices of the array are given and it will be assumed that the data contained in them is

in reverse sorted order.

Until the pass P= C, all passes cause only a total of IC I Bl compulsory misses since all

the C elements can be stored in the cache.

15

C

I 1 I 2 13 14 15 16 I 1 18 19 I 1° I 11 I · I · I · I · I · I · I N I

~ ~ 1}

P-1 moves p

Figure 6.

For all passes P>C the roll-in/roll-out of blocks leads to capacity misses.

C

l
1

l
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10 !11 !· 1· 1· 1· 1· 1· IN

1}

p:.1 moves p

Figure 7.

In the pth pass we try to place the pth element into the correct position in the array and in

the worst case it is placed in the first position.

This current element is referenced only once in that pass and then is copied into the temp

variable (which is internally a register) on line 1. Thus by the time we reference the first

16

element in the array, the current block; i.e. the block containing the ph element, becomes

the LR U block and is replaced.

This is a very undesirable replacement since all elements after P>C lead to misses,

because they are in LRU blocks and are replaced continuously. These misses are either

capacity misses due to replacement of the current block or compulsory misses. Thus all

the N-C elements that are sorted in the passes C <P < N cause misses since they will have

already been replaced.

Also. all the blocks before the current block cause misses since they are replaced just

before they are accessed again; i.e., there are LP! BJ misses for the pth pass for all

previous (i.e. blocks to the left of the current block) blocks. The total number of capacity

misses in previous blocks is the summation over all passes from C to N.

Thus total misses in the previous blocks are

N

Il(P-1)/Bj
P~C+I

Total misses are the sum of all the misses discussed above,

N

jC!Bl+N-C+ Il(P-1)/Bj. .. (3)
P~C+I

The first term is the compulsory misses until the pass P=C since the pth element moves

(P-1) indices back and all the accessed elements can be stored in the cache.

The second term indicates the fact that after P=C every element causes a miss.

17

The third term is for misses in the blocks to the left of the current block.

Contrary to one's first impression about locality, the cascade affect of replacing the

current block destroys the locality of reference of the algorithm, and it keeps generating

cache misses from passes P=C through and including P= N.

Note that if both C and B are chosen to be powers of 2, as has been done by LaMarca

[5,6,7], the first term reduces to C/B and equation (3) reduces to

N

N-(C/ B)(B-1)+ ~J(P-1)/ Bj .. (3a)
P:C+I

IfN>>C then the miss rate is approximately 1/3B.

3.2.4 Average Case analysis:

The average case can be analyzed in a way similar to the worst case analysis except that

the number of moves for the pth pass is (P-1)/3 instead of P-1 as in the worst case. This

means that we expect an element to move one-third the way back in the array on an

average.

Thus the total number of references per pass is

1 +3*(P-1)/3 + l 11 •• (4)

and the total number of references in the average case are:

N

= ~)2+(P-1)]
P:2

18

=2*(N-1) + [N*(N+ 1)/2 -NJ (5)

In order to find the total number of misses following two cases are considered

Case I : N<=3C

Since each element only moves one-third way back we get just f N /(3 * B) l compulsory

misses.

3*C

I 1 I 2 13 14 15 16 I 1 18 19 I 1° I 11 I · I · I · I · I · I · l N

--D

(P-1)/3 moves P

Figure 8.

Case II: N>3C

3*C

11 12 13 14 15 [6 17 18 19 110 111 I · I · I · I · I · I · I N

----D

(P-1)/3 moves p

Figure 9.

19

With the same argument as the worst case analysis the total number of misses in the

average case are expected to be:

N

j3*C!Bl+N-3*C+ Il(P-1)/(3*B)j .. (6)
P=3*C+J

The first term is the compulsory misses until the P=3*C pass is reached since it will

move only one-third the distance back, and all the accessed elements can be stored in the

cache.

The second term indicates the fact that after P=3*C every element causes a miss.

The third term is for cache misses in the blocks to the left of the current block.

Again if both C and Bare chosen to be powers of 2, the first term reduces to 3*C/B and

equation (6) reduces to

N

N-3*C/ B(B-l)+ Il(P-1)/(3* B)j. .. (6a)
P=3*C+l

As in the best and worst cases described above ifN>>C then the miss rate is again 1/3B
approximately.

20

Chapter 4

Simulation and Comp.arative Graphs

4.1 Simulation

A simulation program was written to analyze the cache performance of insertion sort. The

listing of the program is given in the Appendix.

The general idea of the simulation is given below:

~ The Simulation checks all the instructions that reference the array indices; i.e.,

lines 1,3,4 and 6, incrementing the number of references for each pass.

~ Each reference is time stamped so that the most recent reference time is recorded.

~ For each of these references, the simulation it checks if they are a hit or miss.

~ On a miss the number of misses are incremented and the whole block containing

the missed index is brought into cache and time stamped.

~ LRU is used for block replacement. This is done by checking the time stamps of

the blocks and finding the block with the oldest time stamp.

21

4.2 Graphs

All the graphs assume the fo llowing cache parameters:

Cache size C = 512 words, Block size B= 8 words, Miss penalty = 100 cycles (According
to Lamarca[5] cache miss penalty is 100-1 20 cycles.)

4.2.1 Best Case Graphs

1. Cache Based VS Theoretical Time (#of memory references) Complexity

Theoretical VS Cache Based PerformCi'--"--".......,.__-----1
-+-Theoretical

4500 ...,.......,.........._ __ .,.......__,...........,_ _______ ...,...... _ __, ~---___ Cac_h_e_b_a_s_ed___,

4000 ;----------------:a-------i

~ 3500 ;--------------=---------i
>< -
~ {l3000
e° ~2500 4--------~.,c=...- --------l ,,
8 § 2000 -!--------------,-----------, e ~1500 +-----=--~------------1
j:: 1000

500 -1----7"=----------------,
o ~ =~~===~::!:==~-~

0 10000 20000 30000 40000

Number Of sorted Elements

Theoretical VS Cache Based Performance

4500 .,........,.-----~------...-.-~~ _,..........,..,.. ______ --,

4000 -1----~----------~
~ 3500 -+------------------
-~ 3000 +-------------
} 2500 +------------i

8 2000 +--------
E 1500
j:: 1000 -+--------

500 +----

0 +----""""
0 5000 10000 15000 20000 25000 30000

Number Of sorted Elements

22

o Theoretical

• Cache based

2. Cache Miss Rate

Cache Miss Rate

4.4
•

4.35
Q) ...
co

0:: 4.3 "
1/)
1/)

~ 4.25 • ~ 0

4.2

4.15 ~
c,

,'

0 5000 10000 15000 20000 25000 30000 35000

Number of Sorted Elements

3. Number Of Cache Misses

Number of Misses

4000

3500
1/)
Q) 3000 1/)

.!!!
2500 ~ -0 2000 ...

Q) 1500 ..c
E

1000 :,
z

500

0

0 5000 . 10000 15000 . 20000 25000 30000 35000

Number of Elements Sorted

23

4.2.2 Worst case

1. Cache Based VS Theoretical Time Complexity

Cache Based Vs Theoretical Performance

f 800000 -,---------- --..,....-.-...,_.,.,.,.........,.,
~ 700000
;:: 600000 -+-----------------! ~----~

-+-Theoretical

---Cache Based

~ 500000 -1------~------------1
~ 400000 -+------- - -~----
E 300000 -i---~~~~----~~~---1

8 200000 ~---- ~
a, 100000 +----,.,e:-----:::::;;,e.....-,,::==---=----------1 t o..-.-.:::;;;:,~~:::::::::::-~~-,-~~~

0 10000 20000 30000 40000

Number of sorted elements

Cache based Vs Theoretical Perfomance

-~ 7000 -1--------------
0 :=. 6000 +--------------
>,
~ 5000 -+------------~
><
~ 4000 +------------

§ 3000 ->---------~
'; 2000 +---------

! 1000 -+--------- ---

0 +-----.......... =
R> <:) R> <:) R><:) R><:) R><:) R> <:)

~<;:'.) "<:)<;:'.) "~<;:'.) ri,? <'v~<;:S ":J<:)<;:S

Number of sorted elements

24

D Theoretical

• Cache based

2. Cache Miss Rate

Cache miss rate

4.5

4

3.5 -~ 3 0 -
r
f •

• '
G.) 2.5
ca
I,.

2 1/)

....
....

1/)
1.5 .E

1

"'
"

• -

0.5

0 ..
0 5000 1 0000 15000 20000 25000 30000 35000

N

3. Number Of Cache Misses

Ill
"ti
(I) ...

"ti
C:

Ill
:::,

(I) ::c
Ill
Ill ·e -0
0 z

600000

500000

400000

300000

200000

100000

0

-100000

No. of Misses

5000 10000 15000 20000 25000 30000 35 00

N

25

4.2.3. Average case Graphs

1. Cache Based VS Theoretical Time Complexity

Cache based vs Theoretical Complexity

_ 700000 ~~-~~-~-~-~-~-...,.
~ 600000 -+-------------------....
:: 500000 -·x 400000 -+---------~----
Q)

-+- Theoretical

~ 300000 -----------r-------; - Cache based
8 200000 -+-_____ __,._ _______ _,

E 100000 -+--------------- -
;:: o L_a:::::::...~~=t::~~::_ _ _J

0 10000 20000 30000 40000

Numberof elements sorted

Cache based vs Theoretical Complexity

! 600000 ---------------
....
;: 500000 -·x 400000 +-----------
Q)

.

~ 300000 --+--------~---

8 200000 +----------
Q)

E 100000 -1--------

0 -1---- --..-
5000 1 0000 15000 20000 25000 30000

Numberof elements sorted

26

D Theoretical

• Cache based

2. Cache Miss Rate

Cache Miss Rate

4.4
~

4.35
Cl) ...
co

0::: 4.3
.. '

C/1
C/1

~ 4.25 •
~ 0

4.2

~
,.

4.15

0 5000 10000 15000 20000 25000 30000 35000

Number of Sorted Elements

3.Number of Cache Misses

Number of misses

~ 30000000 +-~~~~~~--'-~~~--::,..--~~~~~---1

Ill
.!!?
:!: 20000000 +-~~~~~~~---,~~~~~~~~----!

Number of elements sorted

27

5. Observations:

The following observations can made from the above graphs:

• There is a remarkable difference between the cached and non-cached performance

of insertion sort and this difference increases as the number of sorted element's

mcreases.

• The miss rate saturates to a constant level (=1/3b approx.)and is inversely

proportional to the cache block size as the number of elements sorted increase.

• The number of misses increase linearly in the best case while both in the Average

and Worst case it is a quadratic curve.

28

Chapter 5

Conclusion and Future Work

The main aim of this thesis is to analyze the cache based performance of insertion sort

and compare its cache based performance with its theoretical complexity. Closed form

solutions are developed for the number of cache misses and verified using simulations.

Finally, comparative graphs are plotted to visualize the behavior of insertion sort in the

presence of caches.

From the above analysis and graphs, it can be concluded that cache heavily affects the

performance of insertion sort. The main conclusion that can be drawn from this work is

that the influence of caching needs to be taken into account in the design and analysis of

algorithms.

Future work in this area can be divided broadly into two parts. First is to make

modifications to insertion sort in order to improve its cache behavior. This would involve

locating the parts of the algorithm that cause the bulk of cache misses and improving on

them. Second is to extend the above analysis to various other algorithms. These

algorithms could either be ones that are based on insertion sort, such as shellsort, or

variants of algorithms, like quicksort and mergesort, which use insertion sort.

29

Bibliography

[1] Cormen, Thomas H., Charles E. Leiserson, Ronald L. Riverst, "Introduction to
Algorithms", MIT Press, MA and McGraw-Hill Book company, NY, 1998.

[2] Hennesey, J. and D. Patterson, "Computer Architecture A Quantitative Approach".
Morgan Kaufman Publishers, Inc., San Mateo, CA, 1996.

[3] Knuth, D., "The Art of Computer Programming: Volume 3: Sorting and Searching",
Addison-Wesley, Third Edition, Reading, MA, 1998. ·

[4] Lam, Monica S., E. Rothberg, and M. Wolf, "The Cache Performance and
Optimizations of Blocked Algorithms", In Proceedings of the 4th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS IV), (Santa Clara, CA, 8,.11 April 1991). SIGPLAN Notices, Volume
26, Number 1, pp. 63-74, 1991.

[5] LaMarca, A., "Caches and Algorithms", Ph.D. Dissertation, University of
Washington, Seattle, 1996.

[6] LaMarca A. and R.E. Ladner, "The Influence of Caches on the Performance of
Sorting", Journal of Algorithms Volume 31, pp. 66-104, 1999.

[7] LaMarca A. and R.E. Ladner, "The Influence of caches on performance of heaps",
ACM Journal of Experimental Algorithmics (on-line journal), Volume J, Number 4,
1996.

[8] Nyberg, Chris, Tom Barclay, Zarka Cvetanovic, Jim Gray, Dave Lomet, "AlphaSort:
A Cache-Sensitive Parallel External Sort", VLDB Journal, Volume 4, Number 4, pp.
603-627, 1995.

[9] Panda, Preeti R., Hiroshi Nakamura, Nikil D. Dutt, Alexandro Nicolau, "Augmenting
Loop Tiling with Data Alignment for Improved Cache Performance", IEEE Transactions
on Computers, Volume 48, Number 2, pp.142-149, February 1999.

[10] Sedgewick, Robert, "Analysis of Shellsort and Related Algorithms", Proceedings of
the Fourth Annual European Symposium on Algorithms - ESA'96", Lecture Notes in
Computer Science 1136, Barcelona, Spain, September 1996.

[11] Shi, Ying and Eushiun Tran, "Performance Analysis of Sorting Algorithms", Term
Paper for Advanced Computer Architecture, Carnegie Mellon University Pittsburgh,
Pennsylvania, March 1999.

30

[12] Weiss, Mark A., "Data Structures and Algorithm Analysis in C", Second Edition,
Addison-Wesley, 1997.

31

Appendices

32

APPENDIX A

Glossary of Terms

Cache: In order to speed up memory accesses, small high speed memories called caches

are placed between the processor and the main memory. Accessing the cache is typically

much faster than accessing main memory

Fully Associative Cache: This type of cache can load blocks anywhere in the cache.

Internal Sorting: Internal Sorting means that the entire data structure to be sorted can be

held in the computer's main memory [12].

In-place Sorting: In-place means that the amount of storage space we need for our data

during the execution of the algorithm is constant [1].

Least Recently Used: A Replacement algorithm in which the cache block that was least

recently used is replaced.

Miss rate: This is the ratio of the number of cache misses to the total number of memory

references.

Stable Sorting: A sorting algorithm is stable if the elements with equal keys are left in

the same order as they occur in the input [1].

33

APPENDIXB

Simulation Program Source Code

/***
Simulation Program for analyzing the Cache Based Performance of Insertion Sort and
compare the simulated results with the ones Developed theoretically .
This simulation compares the theoretical results obtained for the worst case performance
of insertion sort with the simulated results of the same. It was observed that the
theoretically obtained closed form solutions exactly matched the simulated results.

***/

#include <fstream.h>
#include <string.h>
#include<iomanip.h>
#include<stdio.h>
#include<math.h>
#include <ctype.h>

II Total number of elements
const long N =2000;
II block size
const long B=4 ;
II# of blocks
const long R=l28

IIC=B*R = 512

long temp, A[N];
long last_ref[R] ;
long cache[R] [B];
long clock =0 ;
long miss_no=O;

I**

This funtion returns if the reference passed to it was a
hit or miss

*********I

34

bool miss(long ref)
{

//check all blocks to find ref

for(int i=O ; i<R; i++)
{
if(cache[i] [O]==B*int (ref/B)) // check first element

in block
return false ; //hit , assumes that the ref is ther

if one elem of its block is ther
}
return true; // miss

}
/**

This function returns the Block number of the address
passed to it

*********/
long get_block(int address)
{

for(int r=O ; r<R; r++)
{

for(int b = 0 ; b < B; b++)

}
}

{

}

if (cache [r] [b] ==address)
return r; // find block

/**

This function returns the LRU block

*********/
long LRU ()
{
long min=
long lru =0

for(int
{

last_ref[O]
; // block num of lru

i =1 ; i<R; i++)

if(last ref[i] < min)
{

lru =i ;
min=last_ref[i]

35

}

}

}
return lru

/*********************~************************************
This Function inserts the array index in cache, actually

a full block

**/

void insert(int address, long & block_no)
{

block_no =LRU() ; // returns lru block
//only putting address since just a simulation

int add =B* int(address/B) ; // first address of the
block in array

for(int i=O ; i< B; i++) // put whole block in
{

cache[block_no] [i] = add+i ; // putting in all
address in the block in the cache

}

}

void main ()
{

case

for(int r=O ; r<R; r++)
{ last ref [r] = -1 ;

for(int b = O ; b < B; b++)
{

cache [r] [b] = -1 / / empty cache
}

}

long k, block_no, ref=O;
// put distinct numbers in reverse order for worst

for(k=O k++)

36

A[N-k-1) = k

inti, j;
/*********Insertion Sort*************/

for i = 1; i <N; i++)
{

temp= A[i] ;// 1 refrence
ref++;
if(miss(i)}
{

insert(i ,block_no) ; // this will insert
whole block of sixe B

last ref[block_no] =clock; //put in the
reference

reference

miss no++;

}
else

last_ref[get_block(i)] = clock

clock++;
j = 1 - 1;

//put in the

while j >= O &&A[j] >temp) //1 refernce
{
/*********************/

ref++ ;
if (miss (j))
{

insert(j, block_no) ; // this will insert
whole block of size B

last_ref[block_no] =clock; //put in the
reference

miss no++

}
else

last_ref[get_block(j)] = clock
reference

clock++
/*********************/

A[j+l] A[j]; // 2 references

37

//put in the

/*********************/
ref+=2 ;
if (miss (j +1))
{

insert(j+l, block no) ; // this will insert
whole block of sixe B

last_ref[block_no] =clock; //put in the
reference

reference

miss no++;

}
else
last ref[get_block(j+l)] = clock

clock++ ;
/*****~***************/

if(miss(j))
{

//put in the

insert(j , block_no) ; // this will insert
whole block of sixe B

last_ref[block_no] =clock; //put in the
reference

miss no++;

}
else

last_ref[get_block(j)] =clock; //put in the
reference

}

clock++ ;
/*********************/

j--;

A[j+l] = temp; // 1 reference same as above
/*********************/
ref++ ;

if (miss (j +1))
{

insert(j+l , block_no) ; // this will insert
whole block of sixe B

last_ref[block_no] =clock; //put in the
reference

miss no++

38

}
else
last_ref[get_block(j+l)] =clock, //put in the

reference
clock++;
/*********************/

}

/*********Insertion Sort Code Ends here*************/

// Results

long C=B*R , nc= long(N-C >0? N-C :0) , ncb =
ceil(nc/B);

double REF= 2*(N-1) + 3*(N*(N+l)/2 - (N)) ;
if (N>C)
{

long X= (N>C? (l.O*C)/B : (l.O*N)/B) ;
long y = x + (N-C) ; // const part when N>C
cout<<"\n Const Part="<< y << endl;
long sum= O ;
for(int p=C; p<N ;p++)
{

sum+=int(p/B) ;

}
cout<<"\n Expected# of refs :"<<REF;
cout<<"\n Expected number of misses :"<< y+sum;

cout<<"\n Expected miss rate :"<<100*(1.0*(y+sum))/REF;
}

else
{

}

cout<<"\n Expected# of refs :"<<REF;
cout<<"\n Expected number of misses :"<<
ceil((l.O*N)/B) ;
cout<<"\n Expected miss rate :"<< 100*
double(ceil((l.O*N)/B)) /REF; //(N*N) ;

cout<<"\n\n Actual# of refs : "<<ref

39

cout<<"\n Actual number of misses :"<< miss no;
cout<<"\n Actual miss rate :"<<100*
(miss_no*l.0)/ref<<endl ;

}

40

VITA ~

SUNILMEHTA

Candidate for the Degree of

Master of Science

Thesis: INFLUENCE OF CACHES ON THE PERFORMANCE OF INSERTION SORT

Major Field: Computer Science

Biographical:

Education: Graduated from AEJC High School, Bombay, India in June 1994;
received Bachelor of Engineering degree in Mechanical Engineering from
University of Bombay, Bombay, India in May, 1998. Completed the requirements
for the Master of Science degree with a major in Computer Science at Oklahoma
State University in May 2003.

Experience: Software Engineer, Mahindra British Telecom, Bombay, India,
August, 1998 to July, 1999; Teaching Assistant, Department of Mechanical
Engineering, Oklahoma State University, August, 1999 to May, 2000; Computer
Scientist, Computer Aided Technology Transfer (CATT) Lab., Oklahoma State
University, May, 2000 to May, 2002; Software Developer, Intern, Seagate
Technology, Oklahoma City, May, 2002 to August, 2002; Computer Scientist,
Computer Aided Technology Transfer (CATT) Lab., Oklahoma State University,
August, 2002 to December 2002.

