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PREFACE 

A new Coalbed Methane (CBM) recovery technology has the potential to 

sequester greenhouse gas carbon dioxide at a net profit. The economic viability of this 

technology can be enhanced through better theoretical understanding of the adsorption 

behavior and developing a model capable of predicting high-pressure pure and mixture 

adsorption isotherm on heterogeneous system using accessible characterizations. 

Among the various theories that can be used for describing the adsorption of high­

pressure fluids, the Ono-Kondo (OK) lattice theory provides a viable model for this 

purpose. 

The Ono-Kondo (OK) lattice model was further developed to facilitate precise 

representations and accurate predictions for high_;pressure, supercritical adsorption 

isotherms encountered in Coalbed Methane (CBM) recovery and CO2 sequestration. 

Specifically, the parameters of the OK model were regressed to · obtain reliable 

representation of pure-gas, high-pressure adsorption on carbon adsorbents for adsorbates 

in the near-critical and supercritical regions. Following a thorough analysis, the OK 

model parameters were generalized, and the model was extended to mixture adsorption. 

Systematically-selected measurements were conducted to supplement existing 

data on high-pressure adsorption. These data were used to support the model 

development. The measurements were conducted for pure methane, nitrogen, and CO2 
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and their mixture gas adsorption on an activated carbon and on selected coals at 

temperatures of 319 Kand 328 K, and pressures to 13.8 MPa. 

The OK monolayer model appears effective in modeling pure-gas adsorption on 

carbon matrices at supercritical and near-critical regions. The model can represent 

adsorption on activated carbon and coals within their expected experimental 

uncertainties. 

The generalized model, which relates the OK model parameters to gas properties 

and accessible adsorbent characterization, can predict the adsorption isotherms on 

activated carbon with about 7% average absolute deviation or twice the expected 

experimental uncertainties. The generalized model can also predict the adsorption 

isotherms of various gases based on the adsorption isotherm of one gas on the same 

adsorbent. In addition, the generalized model appears effective in modeling pure-gas 

adsorption on wet coals when the coal moisture content is above its equilibrium value. 

However, the model parameter values in this case are affected by the presence of water. 

The OK model is capable of predicting binary and ternary gas adsorption within 

twice the experimental uncertainties, on average. Further, the total and individual 

component adsorption can be represented to within the expected experimental 

uncertainties with the use of one binary interaction parameter. 
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CHAPTER! 

INTRODUCTION 

Coalbed methane is a proven gas reserve that needs to be produced effectively. 

Coalbeds can also sequester c·arbon dioxide (CO2) for mitigation of CO2 emissions, with 

or without the attendant goal of methane gas production. The potential for large-scale 

incremental methane recovery and carbon sequestration from coal is significant. A recent 

assessment (Stevens et al., 1998) estimates that U.S. coalseams can provide an 

incremental gas resource via enhanced coalbed methane (ECBM) of 150 Tcf, and have 

the capacity to sequester 90 Gt of CO2. This capacity is sufficient to store about 15 year 

of CO2 emissions. Importantly, much of the sequestration (25-30 Gt) can be performed at 

a profit, and almost all of it can be achieved at costs of less than $5/ton. Initial results 

from an enhance coalbed methane pilot project in the San Juan and nearby basins 

revealed that this technology may be profitable at prevailing wellhead natural gas prices 

of $0.06 to $0.07/m3 ($1.75 to $2.00 /Mcf), with an estimated 8.5 Gt of CO2 

sequestration potential (Stevens et al., 1999). 

The economic viability of this technology, however, is dependent on a number of 

technical factors including coal seam thickness, adsorption isotherm (gas adsorption 

capacity), reservoir pressure, permeability, porosity, water saturation, diffusion, etc. 

Among these contributing factors, the adsorption isotherm is the most critical. 

· Specifically, accurate adsorption isotherms for CO2, methane, nitrogen and their mixtures 
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are required to develop optimized processes for enhanced methane recovery. 

Development of coalbed methane (CBM) gas production is impeded by the 

uncertainties in predicting the economics of the process. These uncertainties are largely 

attributed to incomplete understanding of the production process and lack of accurate 

prediction (simulation) methods for the phenomena involved including adsorption. 

Studies have established that the variability in the coal chemical and geometric structures 

affecting coal adsorption capacity may produce a 70% uncertainty in the predicted gas 

production rates (Wong et al., 1999). This is a clear indication that improved 

understanding of coal adsorption behavior using C021N2 injection is a critical knowledge 

gap that needs to be filled if production of the large (ECBM) gas resource (and carbon 

sequestration sink) that coals represent is to become an economic reality. 

Theoretically-based models for adsorption behavior which elucidate the effect of 

its major contributing factors are needed to develop optimal strategies for ECBM 

recovery operations. A practically useful theory should be capable of (a) handling 

different adsorbate/adsorbent systems over the whole range of operation conditions and 

(b) predicting multicomponent adsorptions based on the data for single component 

adsorptions. 

Among the theories widely used for adsorption are the Langmuir model, ideal 

adsorbed solution (IAS) theory (Myers and Prausnitz, 1965), heterogeneous ideal 

adsorbed solution (HIAS) (Myers, 1987), vacancy solution model (VSM) (Suwanayuen 

and Danner, 1980; Cochran et al., 1985), theory of volume filling micropores (TVFM) 

(Dubinin, 1966), two-dimensional equation of state model (2-D EOS) (Hoory and 

Prausnitz, 1967; Hall et al., 1994; Zhou et al, 1994; Sudibandriyo et al., 2003), and the 
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simplified local density (SLD) model (Chen et al., 1997; Fitzgerald et al., 2003). In 

general, all the models work well for low-pressure adsorption. However, for high­

pressure adsorption, where the effect of adsorbed-phase density becomes significant, the 

models that do not include this effect are inadequate. The 2-D EOS has been reported to 

be more accurate than the Langmuir or IAS for high-pressure adsorption on Fruitland 

coal (De Gance, 1992; Hall et al., 1994). The accuracy of the model, however, depends 

on the 2-D EOS used, and the less satisfactory results for mixture adsorption reveal that 

further development of the EOS mixing rules is still needed. The SLD framework has 

rriany theoretical attributes that suit the modeling demands incumbent of coalbed methane 

reservoirs. However, the model suffers from additional computational complexity 

associated with integrations across the adsorbed-phase density profile [Fitzgerald et al., 

2003]. 

In this study, we evaluate and further develop the Ono-Kondo (OK) lattice model 

to correlate high-pressure, supercritical adsorption isotherms encountered in CBM 

recovery and CO2 sequestration. In general, the OK model lies between the SID and 2-D 

EOS models in the practicality of its theory and its ease of computation and applicability. 

Specifically, the OK model: 

1. Is based on a well-developed lattice theory 

2. Describes monolayer and multilayer adsorption 

3. Describes adsorption behavior based on the physical properties of the adsorbates 

and the accessible characterization of the adsorbent 
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Application of the model to pure-gas adsorption on activated carbon has been 

demonstrated by Aranovich and Donohue (1996) and Benard and Chahine (1997 and 

2001). The results show that the model is in good agreement with the experimental data 

considered. However, the regressed model parameters obtained in their study were not 

suitable for other similar systems in the high-pressure, supercritical region. These results 

reveal that, even though the OK model has the potential to represent gas adsorption, the 

model parameters must be determined with care. This includes: (a) determination of the 

optimal number of layers used to describe the adsorbed phase for a specific system, (b) a 

general formulation that will produce reasonable estimates for each parameter, and (c) 

describing the parameters in terms of accessible adsorbate-adsorbent characteristics. 

These general formulations are important for predicting adsorption of systems beyond 

those where experimental data are available. Moreover, the temperature dependence of 

the parameters must also be evaluated. 

The goal of the proposed study is to improve the OK model capability to represent 

and predict pure and multicomponent high-pressure adsorptions on carbon adsorbents in 

the near critical and supercritical regions. The specific objectives of this study are to: 

1. Investigate multilayer adsorption on activated carbon and selected coals at near­

critical and supercritical conditions 

2. Delineate the temperature dependence of the OK model parameters 

3. Present a generalized form of the OK model parameters in terms of accessible 

adsorbate and adsorbent characteristics 

4. Extend the OK model to adsorption mixture modeling 
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Specifically, the resultant model should correlate within the experimental uncertainties 

the sorption of pure fluids, multicomponent mixtures, and individual components in a 

mixture on the adsorbents of interest and the sorption behavior over the ranges of 

temperature and pressure of interest. 

If the model is successful in correlating adsorption data within the desired level of 

uncertainty, then the model is to be developed for its corresponding predictive ability. In 

this case, the model is expected, for a specified matrix, to provide accurate predictions 

for: 

1. Sorption isotherm. at one temperature from data at another temperature 

2. Sorption behavior of various gases from data on one gas on the same matrix 

3. The multicomponent gas sorption behavior of several gases from their pure-gas 

sorption data 

Systematically-selected measurements were conducted to supplement existing 

data on high-pressure adsorption. These data were used to support the above specific 

objectives. The measurements were conducted for pure methane, nitrogen, and CO2 and 

their mixture gas adsorption on an activated carbon and on selected coals at temperatures 

of 319 Kand 328 K, and pressures to 13.8 :MPa. 

The format of this dissertation is· as follows. Chapter 2 presents a review of 

fundamental adsorption theory and thermodynamics. In Chapter 3, relevant adsorption 

models are briefly reviewed, followed by a review on adsorbent characterization. Chapter 

3 also presents· a general overview of various experimental methods and procedures for 

adsorption measurements and some adsorption data sources. Chapter 4 describes the 

experimental method and procedures used in the OSU adsorption laboratory. An outline 
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for the Ono-Kondo (OK) lattice model is given in Chapter 5, including the proposed 

extension to mixtures. Chapter 6 is devoted to the OK modeling for pure-component 

adsorption and Chapter 7 presents the OK modeling for multicomponent adsorption. 

Chapter 8 presents conclusions and recommendations. 

This study was part of an extensive research project dealing with high-pressure 

gas-adsorption modeling (Gasem, et al., 2003). As such, materials included in Chapters 3 

· and 4, as well as the adsorption database used in model development are a product of a 

collective effort involving the author, Zhejun Pan (2003), and James Fitzgerald (2003). 
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CHAPTER2 

FUNDAMENTALS OF ADSORPTION 

Phenomenon of Adsorption 

When a certain number of molecules strike continually upon a surface and stay 

there for a certain length of time before re-evaporating, the concentration of molecules at 

this surface will be higher than in the bulk of the gas (de Boer, 1968). This "condensed" 

phase is called the adsorbed phase and this phenomenon is called adsorption. The 

adsorption concept is widely applied in separation processes, gas storage, and also in 

coalbed methane recovery process. It also plays a fundamental role in reaction 

engineering. 

The nature of the adsorbing surf ace is a determining factor in adsorption. The 

molecular characterization of solid surfaces is not yet fully developed; however, current 

knowledge allows a helpful description. To be useful as an adsorbent, a solid must 

present a large surface area per unit mass. This can only be achieved with porous solids 

such as activated carbon, zeolites and aluminas, which contain many cavities or pores 

with diameters as small as a fraction of a nanometer. Details on the solid surface 

characteristics is given in Chapter 3. 

Depending upon the strength of the forces binding the adsorbate molecules to the 

surface, these adsorbate molecules may be mobile or fixed in position. In gas adsorption, 

7 



the number of molecules attracted to a solid surf ace depends on the conditions in the gas 

phase. For very low pressures, relatively few molecules are adsorbed, and only a fraction 

of the solid surface is covered. As the gas pressure increases at a given temperature, 

surface coverage increases. When the thickness of the adsorbed phase on solid surface is 

about equal to the adsorbed molecule diameter, the adsorption is said to form a 

monolayer. Further increase in pressure may result in multilayer adsorption. However, 

the complexity of the solid surface makes it possible for multilayer adsorption to occur on 

one part of a porous surface while vacant sites still remain on another part. 

The three basic types of contributions to the adsorbate-adsorbent interactions are 

dispersion, repulsion, electrostatic, and chemical bond (Yang, 2003). Chemical bonds 

lead to chemical adsorption, which is not within the scope of this work. For physical 

adsorption, the adsorbate-adsorbent potential may be described by (Yang, 2003): 

(2-1) 

where <Pv is dispersion energy, <PR is close-range repulsion energy, <P1na is induction 

energy (interaction between electric field and an induced dipole), <PFµ is interaction 

between electric field (F) and a permanent dipole (µ), <P PQ is interaction between field 

gradient ( P ) and a quadrupole moment Q. 

Fundamental Equations for Adsorption Equilibrium 

Although many adsorption theories are available in the literature, the 

thermodynamic framework is independent of any particular theoretical or empirical 

description of the adsorption behavior. For adsorption in microporous adsorbents, we can 

use the familiar framework of solution thermodynamics, with the distinction that the 
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solvent is a solid. The starting point is the fundamental differential equation for the 

energy of microporous adsorbent containing n gaseous adsorbate (Callen, 1985): 

n 

dU = TdS - PdV + LAdNi + µdm (2-1) 
i=l 

The intensive variables for this system are the temperature, T, the pressure, P, the 

chemical potentials of the adsorbates, µ;,, and the chemical potential of the solid 

adsorbent,µ. The extensive variables are the internal energy, U, entropy, S, the amount 

of each adsorbate, Ni, and the mass of solid adsorbent, m. Equation (2-1) is written for the 

condensed phase (the solid phase plus the adsorbed phase). 

This fundamental treatment is different from that which presents adsorption as a 

two-dimensional phenomenon (Pan, 2003). 

For a system containing a constant mass m of adsorbent: 

n 

dU =TdS+ LAdNi (2-2) 
i=l 

The PdV term vanishes because a constant V is assumed, and the differential equation 

governing the adsorbed phase can be written as (Myers, 2002): 

n 

dUa = TdSa + LµidN/ (2-3) 
i=l 

The differential equation for the Gibbs free energy is: 

n 

dGa =-SadT+ LAdN/ (2-4) 
i=l 

For a gas adsorption system shown in Figure.I, the total energy is given by 

(2-5) 

Differentiating Equation (2-5) results in: 
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da' = dav + das + daa 

0 
0 

0 
0 

Condensed Phase ~ 

0 0 

0 0 

(2-6) 

Gas Phase 

Adsorbed Phase (a)_ 

Solid Phase (s) 

Figurel. Gas Adsorption on Solid Material at Equilibrium 

For the bulk-gas phase (Sandler, 1998), 

(2-7) 

The pure solid is assumed to be incompressible so that V = ¥*, if= us*, and~ 

= ~*, where the asterisk refers to the clean adsorbent in vacuo. However, the pressure 

affect the enthalpy and free energy, thus HS= ns*+ PV, as= as*+ PV, and Ji=µ*+ 

PV. Further, the Gibbs free energy for the solid phase can be expressed as (Myers, 

2002): 

(2-8) 

Combining Equations (2-4) through (2-8), and minimizing G1 at constant T and P 

under the constraint N: = Nt + Nt = constant, gives: 

(2-9) 

Equation (2-9) shows that the equality of chemical potentials µt = µt corresponds to the 

equilibrium state (da' = 0). Any adsorption model used always refers to these 
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thermodynamics criteria for equilibrium; albeit, the calculation of the adsorbed-phase 

chemical potentials may be different. 

Degree of Freedom and Independent Variables 

The number of degrees of freedom from the Gibbs phase rule is 

F=n-.1Z"+2 (2-10) 

where n is the number of chemical components present and .1Z" is the number of phases. 

Since the adsorbent is one of the components (Myers, 2002), 

F=n-.1Z"+3=n-2+3=n+I (2-11) 

Thus for adsorption of one component, n=l and 

F=1+1=2 (2-12) 

Two variables, e.g., T and P or T and m (moles adsorbed), must be fixed independently to 

establish an equilibrium state. 

Relationship between Gibbs and Absolute Adsorption 

Adsorption· data may be reported in terms of Gibbs or absolute adsorption. 

Calculation for the Gibbs and absolute adsorptions. differs in the manner by which nunads 

is calculated. The Gibbs adsorption calculation, which is inferred from experimental 

measurement, neglects the volume occupied by the adsorbed phase in calculating the 

amount of unadsorbed gas (i.e., the entire void volume, Vvoid, in the following expression, 

is viewed as being available for the case of an unadsorbed gas). 

n~ = ( PVvoid ) 

ZRT cell 

(2-13) 
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This leads to a physical interpretation of Gibbs adsorption as the amount adsorbed in 

excess of the amount that would be present if the total void volume was filled with bulk 

gas. 

If Equation (2-13) is modified to account for the volume of the adsorbed phase, 

then Vvoid in Equation (2-13) is replaced by the volume occupied by the equilibrium gas, 

V8as= Vvoid - V ads, and Vadl- can be expressed as V0 d, = n :;: Ip ad, . Using these expressions, 

the following relationship can be derived between Gibbs and absolute adsorption in terms 

of the phase densities: 

(2-14) 

or nAbs = nGibbs + V p 
ads ads ads gas (2-15) 

where pis the density of the specified phase. Equation (2-15) shows that the absolute 

adsorption is always greater that the Gibbs adsorption. At low pressures (thus, low 

values of Pgas), the correction from Gibbs to absolute adsorption is negligible, but at 

higher pressures it becomes very significant. 

An important consideration in the calculation of the absolute adsorption is that it 

requires knowledge of the adsorbed phase density, Pads or Vads, which is not readily 

accessible by experimental measurement. Thus, estimates of Pads or V ads must be 

employed. Explanation of the estimates is given in the experimental section (Chapter 4). 
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Types of Adsorption 

The amount of adsorption is decided by the interactions among the gas molecules 

and the surface; thus, the nature of the various adsorbent and adsorbate will lead to 

different adsorption behavior. For example, the characteristic of the adsorbent, whether it 

is porous or not, and/or the conditions of the adsorbate, whether it is sub-critical or super­

critical, will affect the shape of the adsorption isotherms. For absolute adsorption, five 

types of adsorption isotherms are shown in Figure 2 (Brunauer, 1940). Type I is the 

Langmuir type, roughly characterized by a monotonic approach to a limiting adsorption 

that presumably corresponds to a complete monolayer. Type II is very common in the 

case of physical adsorption with multilayer formation. Type III is relatively rare and 

seems to be characterized by a heat of adsorption equal . to or less than the heat of 

liquefaction of the adsorbate. Type IV and V are considered to reflect capillary 

condensation phenomena and may show hysteresis effects. 

Type I Type III 

..-----·····-·-.......... - ... -.... . 

Type IV TypeV 

Figure 2. Five Types of Adsorption Isotherms 
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CHAPTER3 

LITERATURE REVIEW 

Adsorption Models 

Numerous theories and models have been developed to correlate pure adsorption 

data and to predict gas mixture adsorption. Among them are the extended Langmuir 

model, ideal adsorbed solution (IAS) theory, heterogeneous ideal adsorbed solution 

(HIAS), vacancy solution model (VSM), theory of volume filling micropores (TVFM), 2-

D equations of state, simplified local density (SLD) model, and Ono-Kondo (OK) lattice 

model. In this chapter, a number of relevant adsorption models are reviewed briefly, 

followed by a review for various carbon adsorbents. 

Langmuir Model 

The most basic theory in adsorption is the Langmuir theory (1918). This theory 

describes the monolayer surface adsorption on an ideal surface. As depicted in Figure 3, 

an ideal surface means that the energy fluctuations, E, on the surf ace are periodic with the 

same magnitude, and the magnitude of this fluctuation is larger than the thermal energy 

of a molecule, kT; hence, the trough of the energy fluctuation is acting as the adsorption 

site. If the distance between the two neighboring troughs is much larger than the diameter 

of the adsorbate molecule, the adsorption process is called localized and each adsorbate 

molecule will occupy only one site. 
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E 

kT t 

Figure 3. Surface Energy Fluctuation 

Although the Langmuir model can be derived from the equilibrium· 

thermodynamic point of view, the best way to describe this model is by using kinetic 

theory. 

When a molecule hits the surface, the molecule might be adsorbed or reflected, as 

shown in Figure 4. If a molecule hits a site that is already occupied by a molecule, the 

molecule will be reflected. Thus, the adsorption rate will be proportional to the fraction 

of empty sites. After a certain time, this adsorbed molecule may then evaporate. The rate 

of evaporation therefore depends on the occupied sites. Equating the rates of adsorption 

and desorption (evaporation), we cart obtain the Langmuir isotherm written in terms of 

fractional loading: 

m bP 
8=-=--

L l+bP 

e 
or bP=--

1-8 
(3-1) 

This equation will follow Henry's law at low pressure: 8 = bP, and for mixture 

adsorption, the Langmuir model takes the following form: 

L.(T )b.(T )Py. {J) _ I I I 

i -1+ LbiT )Pyj 
j 
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The parameter b is called the affinity constant or the Langmuir constant. It is a 

measure of how strongly an adsorbate molecule is attached onto a surface. This parameter 

is related to the heat of adsorption, Q, as shown in the following expression: 

b = b0 exp(JL) 
RT 

Reflection 

Adsorption 
Evaporation 

Figure 4. Schematic Diagram for the Langmuir Adsorption Mechanism 

where the pre exponential factor b0 is also temperature dependent, 

b = a 
0 kd~ .J2nMRT 

(3-3) 

(3-4) 

where ais a coefficient related to non-perfect sticking, and kdoc is the rate desorption 

constant at infinite temperature. 

The potential energy approach is used to explain how the heat of adsorption can 

be related to the intrinsic parameters of the system (solid + adsorbate) . When one 

adsorbate molecule . approaches the solid surface, it will be at an equilibrium distance 

(Figure 5). The potential energy of adsorbate-surface interaction can be approximated 

using the London equation (Masel, 1996): 

(3-5) 
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Figure 5. Adsorbate-Solid Surface Interaction (Masel, 1996) 

Comparison of the calculated heat of adsorption, using this equation, with the measured 

values of some gases on metal and graphite surface show a good agreement between the 

calculated and measured values (Masel, 1996). 

The Langmuir model can only represent Type I adsorption. However, further 

development of this theory by Brunauer, Emmett and Teller (1938) brought the capability 

of the model to represent other types of adsorption. 

The BET (Brunauer, Emmett and Teller) Model 

The Langmuir model is for monolayer coverage. However, in the adsorption of 

sub-critical adsorbates, molecules are adsorbed onto the solid surface in a layering 

process, and when the pressure is sufficiently high multiple layers are formed. The BET 

theory was first developed by Brunauer et al., in 1938, which yielded the following 

model: 

m CP 

L -(~-P)[l+(C-l)(PIPS)] 
(3-6) 

The assumptions made in developing the BET model are: 

1. The surface is homogeneous; the adsorption energy is constant over all sites. 
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2. Adsorption on a surface is localized; the adsorbed atoms or molecules are 

adsorbed at definite, localized sites. 

3. Each site accommodates only one molecule or atom. 

4. The number of layers is infinite. 

The first three assumptions are the same as the assumptions made in Langmuir model. 

The BET model can represent the adsorption isotherms from Types I to III by 

adjusting the parameters L and C in Equation (3-6). A further modification of the BET 

model was capable of representing Type N and Type V adsorption (Brunauer et al., 

1940). 

The BET model is widely used to determine the surf ace area of an adsorbent 

using measured nitrogen adsorption at 77K. 

Ideal Adsorbed Solution (IAS) Theory 

The ideal adsorbed solution (IAS) theory was introduced first by Myers and 

Prausnitz in 1965. The IAS is an adsorption analog to Raoult's Law for vapor-liquid 

equilibria. The equilibrium condition for the adsorbed phase and the gas phase is given 

by: 

(3-7) 

Ps,i ( 1r) is the equilibrium gas-phase pressure corresponding to the solution temperature 

and to the solution spreading pressure, 7t, for the adsorption of pure component i. The 

spreading pressure is defined as the difference in surface tension between a clean surface 

and a surface covered with (monomolecular) adsorbate (Yang; 2003). 

In order to apply the above mixed-gas adsorption calculation, a pure-component 

isotherm model is needed. Any pure isotherm model can be utilized in the IAS 
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calculation. Valenzuela et al. (1988) used Langmuir isotherms for several adsorption 

systems while Zhou (1994) and Hall et al. (1994) used a 2-D Equation of State model. 

Two-Dimensional Eguation-of-State Models 

The generalized 2-D EOS is analogous to the three-dimensional equation of state, 

by simply replacing pressure P with the spreading pressure, 1l, and volume, V, with the 

surf ace area, A. 

The assumptions made in the 2-D E~S model are (DeGance, 1992): 

1. The actual interfacial region is treated as an imaginary mathematical surface, with 

its own thermodynamic properties. 

2. The adsorbent is thermodynamically inert. 

3. The adsorbent possesses a temperature-invariant area, which is equally accessible 

to all adsorbates. 

4. The surface is homotattic; i.e., it is made up of many homogeneous sub-regions. 

5. The absolute adsorption definition is applied. 

In 1967, Hoory and Prausnitz used the two-dimensional analogue of van der 

Waals' to model multicomponent adsorption. A more general two-dimensional analog 

was developed later, and can be written as follows (Hall et al., 1994 and Zhou et al., 

1994): 

[ A1Z" + (X(j)
2 

2 ][1- (Pmr] = mRT 
1 + uPm + w(Pm) 

(3-8) 

A is the specific surf ace area, 1Z" is the spreading pressure, m is the specific amount 

adsorbed, and a and Pare model parameters. The model coefficients u, w, and m must be 

specified to give various forms of the 2-D equations of state. 
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Equilibrium between an adsorbed phase and a vapor phase is required to calculate 

an adsorption isotherm. The following form may be applied for a pure component: 

(3-9) 

To perform the modeling of multicomponent adsorption, Equation (3-8) combined 

with Equation (3-9) must be fitted to a single component isotherm data to obtain model 

parameter k, a, and fJ for each component. Then, for a given gas phase mole fraction at 

specific pressure and temperature, Equations (3-8) and (3-9) are solved simultaneously to 

obtain the amount of gas adsorbed, co, for each component. In this case, the appropriate 

mixing rules must be applied to calculate parameters a and fJ for the mixture, the fugacity 

coefficient in the adsorbed phase, and the fugacity in the gas phase for each component. 

The specific surf ace area, A, and the spreading pressure, 7l, are not required in the 

equilibrium calculations. The combined A7Z'can be calculated from Equation (3-8) and the 

following compressibility factor relation: 

Z = A'1Z" 
a RTco 

(3-10) 

Theory of Volume Filling of Micropores 

The theory of volume filling of micropores (TVFM) was extended from the 

Polanyi's potential theory developed by Dubinin in 1966. Dubinin assumed that, in 

micropores, the adsorbate fills the adsorption space via the mechanism of volume filling 

and hence does not form a discrete monolayer in the pores. The pure-component 

isotherms for the Dubinin-Astakhov (D-A) equation are given as follow: 

(3-11) 
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V is the adsorption volume, Vs is the micropore saturation volume corresponding to the 

saturated pressure Ps,i, while n and Eo are temperature-invariant fitting parameters. To 

extend TVFM into multicomponent adsorption, mixture equilibrium models such as IAS 

may be applied. 

The Simplified Local Density (SLD) Model 

The framework of the SLD model was based on the assumption that the chemical 

potential of a fluid inside a slit at a distance z from the solid surface is the result of fluid-

fluid and fluid-solid interaction (Chen et al., 1997; Fitzgerald et al., 2003): 

µ(z) = µff (z) + µJs (z) = µbulk (3-12) 

where the chemical potential of a nonideal bulk fluid can be written in terms of fugacity:\ 

µbulk =µo +RT Zn( fbulk / fo) (3-13) 

and the chemical potential due to fluid-fluid interactions at a distance z can be written as: 

(3-14) 

where the subscript "0 " refers to a reference state. The fluid-solid chemical potential can 

be represented by: 

µ Js ( Z ) = NA { <P( Z ) + <P( L - Z ) } (3-15) 

where L is the width of the slit. 

From Equation (3-12) to (3-15), the following expression was obtained: 

f ( ) _ .r [- <P( z ) + <P( L - z )] 
ff z - J bulk exp 

kT 
(3-16) 

Peng-Robinson EOS can be used to calculate the pure-component bulk fugacity as 

suggested by Chen (1997), while a similar expression was adopted for the fugacity of the 

adsorbed phase. To calculate the adsorbed-phase fugacity, changes of density and the 
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attractive term "a" with distance z must be taken into account. The equation for a(z) 

depends on the ratio of the slit width L to the molecular diameter O"JJ. 

The fluid-solid interaction potential is defined as: 

2 (]" Js 1 (]" Js 
<P = 47Zi e a --( 

10 4 4 ) 

( z). Ps Js Js 5( z' / 0 2fr( z'+(i-l)ass 
(3-17) 

where Cfs is the fluid-solid interaction energy parameter which can be fitted to the 

experimental data, and Ps = 0.382 atom/ A 2 for carbon atoms. The distance z' is defined as 

z' = z +as/2, where O"ss = 3.35 A for a carbon atom. O"JJ is taken from available literature 

and the distance parameter of the fluid..:solid interaction O"fs is calculated as O"/s = ( O"JJ 

+O"ss)/2. 

Given the bulk fluid pressure and temperature, Equation (3-16) is used to solve 

for a "local density" p(z). The Gibbs adsorption per unit :mass of adsorbent is calculated 

as follows: 

L-uff 12 

r = A J[p(z) - Pb ]di (3-18) 
u ff 12 

To calculate the Gibbs adsorption, the surface area per unit weight of the adsorbent, A, 

and the slit width, L, must be known or regressed from experimental data. · 

Application of the SLD model to the multicomponent adsorption is possible 

through one-fluid mixing rules (Fitzgerald et al., 2003). 

The Lattice Theory of Adsorption 

An adsorption model based on the lattice theory was proposed first by Ono and 

Kondo in 1960. Aranovich et al. (1996 and 1997) and Hocker et al. (1999) recently 
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developed a more general formalism of this model, in the context of adsorption of solutes 

in liquid solutions. 

The assumptions of the OK Lattice model are: 

1. The fluid system is composed of layers of lattice cells that contain fluid molecules 

and vacancies. 

2. Molecular interactions exist only between a molecule and its nearest neighboring 

molecules. 

3. Chemical equilibrium between the adsorbed layers and the bulk is given by the 

equality of the chemical potential in each layer and bulk. 

Detail discussion of this model are given in Chapter 5. 

Literature Review on Carbon Adsorbents 

Understanding the structure of solid surfaces is very important for developing a 

better model for gas adsorption. In this study, we are only concerned with adsorption on 

the carbon adsorbents; therefore, the discussion is limited to the structure of activated 

carbon and coal. 

Activated Carbon 

Activated carbon is a powerful adsorbent because of its high ability to adsorb 

various substances both from gases and liquids. It is a processed carbon material with a 

highly developed porous structure and a large internal specific surface area. It consists 

mainly of carbon (87-97%) and also contains such elements as hydrogen, oxygen, sulfur 

and nitrogen, as well as various compounds either originating from the raw material used 

or generated during its production. The pore volume of activated carbon is usually greater 
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than 0.2 crn.3/g; sometimes it even exceeds 1.0 cm3/g. The inner specific surface area is 

generally greater than 400 m2/g but in many instances it is greater than 1000 m2/g. 

The principal properties of manufactured activated carbons depend on the type 

and properties of the raw material used. Most important raw materials are wood 

(sawdust), charcoal, peat, peat coke and coals. Coconut shells are also used to produce 

higher-surface area activated carbon. However, hard coals are currently still the greatest 

potential for the raw materials. About 60% of activated carbon production in the United 

States is based on hard coal. 

When coal is used for the production of activated carbon, the following 

processing scheme is usually applied (Jankowska, 1991): 

1. Grinding of the coal and spraying it with water 

2. Briquettting of the ground product 

3. Crushing the briquettes 

4. Sieve fractionation 

5. Oxidation to prevent swelling or baking 

6. Carbonization 

7. Activation 

The last three are very important steps, since they have a major impact on the final 

properties of the produced activated carbon. 

Oxidation is usually done in the temperature range of 150-350°C by passing an 

oxidizing gas, where the oxygen content varying within wide limits (1-50%) depending 

on the type of coal and the process used. The carbon is kept in contact with oxygen for 

about 19 hours in the case of a stationary layer, and for 30 minutes in the case of a 
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fluidized bed. Water, the excess of lower boiling fractions of the binding agent (binding 

agent such as tars are used to produce activated carbon granules) and some volatile 

matters are removed during this process. The mechanical strength of the carbonized 

granules increases due to a reduced baking of the oxidized coal and a resulting reduced 

swelling of the granules. 

The carbonization process takes place in hot steam at 500-800°C. The granules 

acquire mechanical strength in this process, and due to evolution of volatile matter, the 

material becomes richer in carbon and an initial porous structure develops. The heat 

destroys the organic matter of the initial coal as well as the binding material. The initial 

porous structure of the coal significantly changes during the thermal treatment. The coal 

passes to the plastic state and its initial porous structure is destroyed. Further heating 

produces the evolution of volatile substances from the solidified plastic mass resulting in 

the formation of a branched system of pores. The structure of the carbonization product 

consists of a system of crystallites similar to those of graphite bonded by aliphatic-type 

bonds to yield a spatial polymer. The spaces between the neighboring crystallites 

constitute the primary porous structure of the carbon. The pores of the carbonized 

granules are often filled with decomposition products and are blocked with amorphous 

carbon (Jankowska, 1991). 

The product of carbonization has a weakly developed porous structure, so without 

additional activation it cannot be used in practice as an adsorbent. The basic treatment of 

activating coal-based granules consists of their treatment with oxidizing gases (steam, 

carbon dioxide, oxygen) at elevated temperature (900-1000 °C). In the process of 

activation, carbon reacts with the oxidizing agent, and the resulting carbon dioxide 
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diffuses from the carbon surface. The amorphous carbon blocking the pore reacts in the · 

initial oxidation step, and as a result the closed pores open up and new ones are formed. 

In further oxidation, the carbon of the elementary crystallites enters into reaction due to 

which the existing pores widen. The schematic of the activated carbon structure is 

illustrated in Figure 6. Each line in this figure represents a layer of hexagonal carbon 

rings arranged similar to the ones in a crystal of graphite. Despite their structural 

similarity, some deviations exist. Figure 7 shows a comparison between the structure of 

graphite and activated carbon. The difference lies mainly in the orientations of the 

respective layers. The interlayer distance in activated carbon ranges from 0.34 to 0.35 nm 

(compared to 0.335 nm in a crystal of graphite) (Jankowska, 1991). The number of layers 

in activated carbon is also more limited (usually up to five layers) compared to the layers 

in crystal graphite. 

Figure 6. Schematic Illustration for the Structure of Activated Carbon (Jankowska, 1991) 
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Figure 7. (a) Comparison of Three-Dimensional Crystal Graphite 
and (b) the Activated Carbon Structure (Walker, 1969) 

Another major difference between the two structures is the existence of surface 

functional groups in the activated carbon surface. Surface functional groups can originate 

. from the starting material from which a particular activated carbon is produced. This is 

especially so for activated carbons produced from raw materials relatively rich in oxygen, 

such as wood, following their incomplete carbonization. In general, activated carbon 

may contain some chemically bound oxygen and a small quantity of hydrogen·combined 

with surface carbon atoms either directly or through oxygen. Figure 8 illustrates a model 

of a fragmented activated carbon surface with its functional groups. 

Figure 8. Model of a Fragment of Activated Carbon Surface (Jankowska, 1991) 

Among the activated carbon properties, the pore distribution is the most important 

one affecting its gas adsorption behavior. The volume of macropores, mesopores and 
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micropores in activated carbons are usually in the range 0.2-0.8 cm3/g, 0.1-0.5 cm3/g and 

0.2-0.6 cm3/g, respectively. The surface area of the micropores, however, might 

contribute up to 99% of the total surface area of the carbon (Kadlec et al., 1984). 

Coal Structure 

A thorough knowledge of the nature of the coal structure is a necessity for 

understanding the behavior of coal in CBM and sequestration processes. Physical and 

chemical structures of coal include (Meyers, 1982): 

1. Lithotype region of 10-2-10-1 m in size; mainly contains organic hydrocarbons 

which differ in density, reflectivity, strength, and volatiles content. 

2. Lithotype boundaries of 10-3 -10-2 m in size; mainly contains non-hydrocarbon 

elemental composition and density at least 50% more than that of the lithotype. 

3. Microscopic organic regions of 10-6 -10-4 m in size, from which the lithotypes are 

built; known as macerals whose origin is vegetable life. 

4. Pores within the organic matrix, which are of varying sizes and shapes of 10-9-10-5 

m. These pores affect the strength, density, molecular transport properties and the 

adsorption capacity of the coal. 

Figure 9a shows a scanning electron photomicrograph (SEM) of a maceral. Pore 

opening of 10-6 -10-5 m can be seen in this figure. Minerals and organic debris can often 

be seen lodged within the pores. Embedded water containing dissolved salts is also 

present. The organic matrix around the pores is composed of organic molecules linked 

and cross-linked to form polymers with possible repeating chemical structures. Minerals 

dispyrsed in the matrix can be obtained as filler material trapped within the polymeric 

system or pores (Figure 9b ). 
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Figure 9a. Scanning of a Maceral 
(Meyers, 1982) 

Figure 9b. Calcite Mineral Trapped in 
Pores (Meyers, 1982) 

The structure of coal at the molecular level of 10-9 -10-8 m consists of 

submicroscopic chemical species aggregated into crystalline and amorphous zones in 

both organic and mineral regions. This can be observed only by spectroscopic techniques 

and by analysis of chemical reactivity. From the information observed using X-ray 

diffraction for coals with carbon content of 65-95 %, the following features are observed 

(Ergun, 1959): 

1. Carbon-carbon distances similar to those of graphite, with C-C bands about 0.14 

nm in length. 

2. Interlayer distances between lamellae similar to those of graphite 0.343-0.354 nm 

for coals with carbon content of 84-94%. 

3. Poly-nuclear aromatic rings ranging from two to four condensed structures in 

coals with carbon content in the range 65-90%. 

Figure 10 shows chemical functionality in the coals as obtained using NMR 

(Nuclear Magnetic Resonance). As shown in the figure, the coal contains mainly two 

regions, namely aromatic region and aliphatic region. In both regions a variety of the 

functional groups are also observed. 
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200 150 IOO 50 0 ppm 

Figure 10. High-Resolution Solid-State Carbon Spectrum of a Whole Coal (Meyers, 1982) 

Distribution of the surface area and pore volume in pores of different sizes is an 

important parameter for gas adsorption. Table 1 shows the pore volumes in different 

diameter range for the highest (anthracite) and the lowest (lignite) rank of coal (Gan et 

al., 1972). Pore volume contained in pores > 30 nm in diameter was estimated from 

mercury porosimetry. Pore volume contained in pores in the diameter range 1.2-30 nm 

was estimated from the adsorption branch of the nitrogen isotherms using the Cranston 

and Inkey method (1957). Pore volume contained in pores < 1.2 nm in diameter was 

calculated by subtracting the total open volume accessible to helium with the volume 

obtained from both mercury porosimetry and nitrogen adsorption. The results showed 

that the higher the coal rank, the higher the percent pore volume contained in the 

micropores (IUP AC defined macropores, mesopores and micropores as pores in the 

diameter range of> 50 nm, 2-50 nm and< 2nm, respectively). These results are also in 

good agreement with the pore size distribution obtained by Medek (1977) using the CO2 

adsorption isotherm in his method. The surface area distribution given in Table 1 

indicates that the micropores play a major role for the adsorption of a small molecule. 
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The results also suggest that for the adsorption of molecules such as nitrogen ( a Nz = 0.38 

nm), methane a CH4 = 0.376 nm) and CO2 a co2 = 0.394 nm) on coal, a maximum of three 

adsorption layers is more likely. 

Table 1. Gross Open-Pore Distribution in Coals 

Anthracite Li!!Ilite 
% Volume 

>30nm 11.9 77.2 
1.2-30 nm 13.1 3.5 
<1.2nm 75.0 19.3 

%Area 
>30nm 0.4 7.3 
1.2-30 nm 1.1 1.2 
<1.2nm 98.5 91.5 

Experimental Techniques 

The aim of this section is to introduce the major experimental procedures for 

determination of adsorption isotherms. A general overview of the methods is important 

since the experimental data used in this study are obtained from various experimental 

methods and procedures. Most of the experimental apparatuses discussed in this chapter 

are designed for low-pressure gas adsorption measurements; albeit, they can be modified 

for high-pressure adsorption. The volumetric apparatus for high-pressure gas adsorption 

measurement used in our laboratory will be described separately in the next chapter. 

Volumetric Gas Adsorption 

This method calls for measuring the adsorbate gas pressure in a calibrated 

constant volume, at a set temperature. A simple volumetric gas adsorption apparatus is 

shown in Figure 11. The pressure and temperature of each dose of gas are measured and 
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the gas is allowed to enter the adsorption bulb. After adsorption equilibrium has been 

established, the amount adsorbed is calculated from the change in pressure. This 

technique can only be used to measure the gas adsorption point-by-point, which is 

referred to as a discontinuous procedure. In order to measure a complete isotherm, the 

addition of successive errors may result from the dosing device. Because of its simplicity, 

however, many researchers are still using this technique (Reich et al., 1980; Vermesse et 

al., 1996; Krooss et al., 2002). 

pressure transducer 

const~ctio'l':; 

- ~Xl:==-
adsorbate 

adsorption 
#### ,._bulb 

adsorbent 

Figure 11. Simple Volumetric Gas Adsorption 

Sometimes, the dosing device is replaced by an expansion cell, in which the 

amount of gas injected in the system is calculated after adsorption by expanding the gas 

in the adsorption cell into this expansion cell (Stacy et al., 1968; Talu and Zwiebel, 1986; 

Benard and Chahine, 1997; Zhou et al., 2000). 

Figure 12 shows a volumetric gas adsorption with reservoir and a double pressure 

measurement. One pressure transducer is used to determine the amount of adsorbate 

remaining in the reservoir, while the second is used to determine the adsorption 

equilibrium pressure and also the amount of unadsorbed gas in the central cross and the 
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adsorption bulb. This arrangement gives an integrated measurement of the amount 

adsorbed and avoids the addition of successive errors resulting from a dosing device 

(Rouquerol et al., 1999). This type of arrangement was used by Lewis (1950), Payne 

(1968), Ritter (1987), Clarkson (1997) and many other researchers. 

standard valve or -controlled leak-valve 

central cross 

adsorbate 

pressure transducers 

/ 

~ adsorbent 

Figure 12. Volumetric Gas Adsorption with Reservoir 
and Double Pressure Measurement · 

Continuous measurement is also possible with the help of a controlled leak-valve. 

In continuous measurement, the adsorbate is continuously fed on to the adsorbent, so that 

the point on the adsorption isotherm is continuously moving along the path of the 

isotherm. Here, the flow rate must be adjusted so that the system is always at · 

thermodynamic equilibrium (or "quasi-equilibrium"). 

Another type of volumetric gas adsorption is the one used by Camp and Stanley 

(1991) and Webb (1992), as shown in Figure 13. Here they use two identical bulbs 
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(reference and adsorption) and two reservoirs. The two reservoirs are filled with the 

adsorbate gas at the same pressure, before the gas adsorption measurement begins. Then, 

the leak-valve on the reference side is opened to provide the desired rate of pressure 

increase. The leak-valve above the sample is automatically adjusted to cancel any 

unbalance of Transducer 2. The pressure difference recorded by Transducer 1 provides a 

direct measurement of the amount adsorbed at a certain equilibrium pressure (provided 

by Transducer 3). The differential assembly allows one to eliminate the dead volume 

correction, provided that the dead volume of the reference side is properly adjusted by 

means of the glass beads. However, this technique requires a new calibration for any new 

type of sample. 

adsorbate 

t + 

t 
differential 
pressure 

t 
absolute 
pressure 

adsorbent 

Figure 13. Differential Volumetric Gas Adsorption 

34 



Void Volume Determination: The void volume is needed for the volumetric adsorption 

techniques to express the adsorption data in terms of the surface excess (Gibbs excess 

adsorption). Two main methods are available for evaluating this void volume. The direct 

one (which is considered to be more accurate) is by measuring the volume accessible to a 

gas that is not adsorbed at the temperature and pressure of the void volume determination 

(usually helium gas is used). This method will be described in detail in the next chapter. 

The indirect void volume method calls for simply subtracting the volume of. the empty 

bulb from the estimated volume of the sample. This volume can be obtained in two 

ways: from the theoretical density, or from pycnometric measurements (in liquid or gas) 

carried out separately . 

. Gas Flow Techniques 

In this technique, a gas flowmeter is used to determine the amount of gas 

adsorbed. The flowmeter can be of a differential type (Nelsen and Eggertsen, 1958) or a 

thermal detector (Pieters and Gates, 1984). The thermal detector provides a signal, which 

depends on the heat capacity, thermal conductivity and mass flow of the gas. This method 

is usually referred to as a "mass" flow meter method although there is no direct 

measurement of mass. This gas flow techniques can also be used for continuous or 

discontinuous procedure. 

Gas Adsorption Gravimetry 

The amount adsorbed in the gravimetric technique is directly determined from the 

increase in mass measured by a balance. A simple gravimetric method uses a spring 

balance to · determine the amount of gas adsorbed. However, in recent years spring 

balances have been largely superseded by electronic microbalances (Salem et al., 1998; 
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Vaart et al., 2000; Humayun and Tomasko, 2000; Beutekamp and Harting, 2002; Frere et 

al., 2002) as shown in Figure 14. A sensitive gravimetric technique is based on the effect 

of change of mass on the resonance frequency of a vibrating quartz crystal. In this case, 

the adsorbent must be firmly attached to the crystal (Krim and Watts, 1991). 

adsorbate 
~. _ _v--..L 

pressure 
transducer 

vacuum 

Figure 14. Gravimetric Measurement Apparatus 

As in the volumetric methods, the gravimetric methods can also be used for 

continuous or discontinuous measurements. Also, it should be noted that the direct 

measurement of mass does not eliminate the problem of dead volume ( or void volume) 

encountered in the volumetric technique. The adsorbent volume correction is now 

transformed into a buoyancy correction. 

Due to the large volume of adsorption balances in the gravimetric technique, 

some difficulties may occur in measuring the pressure change accurately. In this case, a 

considerable amount of the adsorbent must be placed on the balance pan, which usually 

has only small space. 
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A gravimetric method can also be applied simultaneously with the volumetric 

method. Dreisbach in 1999 used this technique with a magnetic suspension balance. 

Buoyancy Correction: The buoyancy correction needed in gravimetric adsorption has the 

same origin as the void volume determination in the volumetric measurement. It is due to 

the volume of the sample or, more precisely, to the adsorbed-phase volume and the 

resulting change in the apparent amount adsorbed. Both the direct and. indirect methods 

can also be used to determine this buoyancy correction. 

The following illustrates the procedure for determining the buoyancy correction. 

For the gravimetric measurements as shown by Figure 14, the recorded apparent mass 

change caused by the adsorption is: 

(3-19) 

wheremp,r is the mass on the right side pan of the balance at the equilibrium pressure P 

and the adsorption temperature T, and mo.r denotes the mass at the same temperature but 

in a vacuum. The total buoyancy consists of the following individual terms: 

(3-20) 

where subscript i refers, respectively, to the right-hand pan (r), the left-hand pan (l), the 

adsorbent (s), the absolute adsorbed amount (a), and the tare weight (w) on the left side 

pan. Mg and pg are the molar mass and the density of the adsorbate; and Vis the volume 

of the above~mentioned elements. The buoyancy of the absolute amount adsorbed, m!, 

cannot be determined, because the adsorbed-phase volume is unknown. This is the reason 

why the excess values are obtained by the gravimetric adsorption measurements. The true 

mass change (subscript tr) is given by: 
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L1Jntr = L1JnT + L1mB + L1Jn:; 

L1m 8 =L1m: +L1m:-L1m1
8 -L1m! =MgpgL1V; 

L1V = Vr + Vs - "V; - Vw 

(3-21) 

where L1m 8 can be determined by helium measurements under the assumption that 

helium is not adsorbed at the measurement temperature. Therefore, the following 

relations exist for L1m 8 : 

L1m!e = M HePHeL1V; 

L1mB = M gpgL1m!e /( M HePHe ); (3-22) 

Ltm!e = -L1mT,He 

and the Gibbs excess adsorption can be calculated by the following formula: 

(3-23) 

where mA is the amount of adsorbent. 

Chromatographic Technique 

The chromatographic technique for measuring adsorption involves a column 

packed with the adsorbent to separate the flowing species (Haydel and Kobayashi, 1967). 

The chromatographic analysis method is simple and fast in producing data but suffers 

from inherently larger errors (de Boer, 1968). 

Literature Data 

The data in the literature on gas adsorption primarily focus on two adsorbents: 

activated carbon and zeolites. Because the ultimate goal of this study is modeling of gas 

adsorption on coals, attention is paid mainly to the data on carbon adsorbents (i.e. 

· activated carbon). Experimental data for high-pressure gas adsorption on coals are scarce 
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and complicated by (a) the difficulty in characterizing the coal matrix adequately, and (b) 

assessing the effect of water (found in essentially all coalbeds) on the resulting data 

(Joubert et al., 1973; Hall et al., 1994; Levy et al., 1997). Therefore, the gas adsorption 

data on activated carbon were used to evaluate the model prior to extending the model to 

include the effects of the complex adsorbent structure of coals and/or the presence of 

water. 

The selected .literature data for gas adsorption on activated carbon are documented 

in Tables 2 and 3. The data cover a wide range of temperature, pressure and most pure 

and mixture components applicable for coalbed methane studies. These data provide a 

useful source to evaluate adsorption models for the whole range of total loading. In 

addition, the data can also be used to evaluate models capability of predicting 

multicomponent adsorption based on pure-component adsorption data. 
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System 
No .• 

1 
2 
3 

4 
5 
6 
7 
8 
9 
10 
11 
12 

13 
14 
15 
16 

17 
18 

.19 
20 

21 

. • ..•.. · Table 2. Lit~ratureData Used for Pure-Gas Adsorption Mod~ EVal~ffon .. 

Adsorbent . Adsorbent .· 
Temp •.. ·• Pressure · Surface area Adsorbate Reference ·. 

(m2/2) Range(K). Range (MPa) · 

AC, Columbia Grade L. 1152 N2 ,311-422 0.:028 - l.50 Ray (1950) . 
AC, Columbia Grade L 1152 Cfu· .. 311-422 0.026 - 1.48 . Ray (1950) 
AC, CplumbfaGrade'L .···,. ·. 1152' · C2~·. 311:. 478 0.007-1.49 Ray(1950) 
Charcoal 1157 Cfu 283 - 323 0.5-13.8 Payne (1968) · ,:.-

Charcoal 1157 ', C3Hs 293 - 333 8xlff4 - 1.35 Payne (1968) 
AC,BPL I· .988 Cfu 213 - 301 0.012-3.83 · Reich (1980) 
AC,BPL 988 C2~ . 213 - 301 7xl04 - 1.71 ·. Reich (1980) · 

.AC,BPL · 988 C2fu· 213- 301 · 7xl04 -1.70 Reich (1980)· 
AC,BPL 988 COt · 213 - 301 · 0.003-3~84 Reich {1980) . · · 
AC~ PCB-Cal~on Corp. 1150-1250 .·Cfu. 296 -480 0.27 - 6.69· ., · Ritter (1987) 
AC, PCB-Calgon Corp. 1150-1250 CO2 296-480 0.11-3.67 Ritter (1987)· 

. AC F30/470,. · Q93.5 ·. CO2 278 -328 .· 0.05-3.35 Berlier (1997) · 
Chemviron Carbon ' 

· AC Norit Rl Extra 1450 .. · N2· 298 0.03-5.98 · ··. Dreisbach (1999) 
AC Norit Rl Extra 1450 Cfu··· 298 · 0.01-5.75 . Dreisbach (l999) 

. AC Norit Rl Extra 1450 CO2 298 0.008-6.0 · Dreisbach (1999) ·. 
AC from Coconut shell· 3106 Cfu ,, 233 - 333 · 0.09-9.40 ·. Zhou (2000} 
with KOH activation . (CO2 ads.) 
AC -Calgon F-400 . 850 CO2 303 to 318 0;02-20.2 Humavun (2000) 
AC-Norit RBI 1100 Cfu 294 - 351 0.05-0.8 Vaart(2000) 
AC-Norit RB 1 1100 .CO2·· ·294-348· 0.05-' 0.8 Vaart (2000) 
AC from Coconut shell· 3106 N2 178 - 298 .0.44..., 9.19 . Zhou (2001) 
with KOH activation (CO2 ads.) ' 

ACF30/470, 993.5 N2 303 - 383 0.39-9.5 Frere (2002) 
Chemviron Carbon 
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Table 2. Literature D~ta Used for Pure-Gas Adsorption Model Evaluation {Continued) 

System Adsorbent 
.·· 

No. 
Adsorbent 

Surface area Adsorbate 
Temp. Pressure 

Reference 
(m2/'i!.) . Range (K) Range (MPa) 

22 AC F30/470; · 993.5 Cfu 303 - 383 0.44-:- 8.98 Frere {2002) 
Chemviron Carbon 

23 AC F30/470, 993.5 C3Hg 303- 383 0.05-2.20 Frere (2002) . 
Chemviron Carbon 

24 AC NoritRl 1262 N2 298 0.03-14.56 Beutekamp (2002) 
25 AC NoritRl 1262 CO2 298 0.03-6.04 Beutekamp (2002) 
26 Zeolite, Linde 13 X 525 N2 298- 348 .· 0.35-8.23 Wakasugi (1981) . 
27 Zeolite, Linde 5A -400 N2 298 -348 0.60 - 17.61 · Wakasugi (1981) 
28 Zeolite, Linde 5A -400 Cfu 298- 348 0.36-9.18 Wakasugi (1981) 

..J::,. 29 Zeolite, Linde 5A · ':"'400 CO2 298 - 348 0.03 -11. 22 · Wakasugi (1981) ...... 
30 Zeolite, Linde 5A · -400 C2liti 298- 348 0.07-5.07 Wakasugi (1981) 
31 H-Modernite, Norton .· · -300 CO2 283 -333 3xl04 - 0.29 Talu (1986) 

Co: Type Z-900H 
32 H-Modernite, Norton -300 H2S 283 - 368 4xl04 - 0.10 Talu (1986) 

Co: Type Z-900H 
33 H-Modemite, Norton -300 C3Hg · 283 - 324 2Xlff:, - 0.21 Talu (1986) 

Co: Type Z-900H 
34 ZeoliteG5 430 Cfu 283 - 303 0.13 -1.15 Berlier (1995) 
35 Zeolite G5 · 430 C2liti 283-303 0.056-1.10 ·Berlier(1995) 
36 Zeolite G5 430 C2fu 283 - 303 0.056-1.10 Berlier (1995) 
37 Zeolite13 X 383 Cfu 298 0.15-15.02 Beutekamp (2002) 
38 Zeolitel3 X 383 · C2liti 298 · ·0.14-3.95 Beutekamp {2002) 
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Table 3. Literature Data Used for Mixtute~Gas Adsorption Model Evaluation 

Adsorbent Adsorbent Temp. Pre$sure· Surface area Adsorbate Reference. 
(m2/f!.) &lnge(K) ·. Range (MPa) 

ACNorit Rl Extra · 1450 N2+CHi 298. ·0.03-6.00 Dreisbach (1999) 
ACNoritRl Extra 1450 · CHi+C02 298 0.03-6.00 Dreisbach {1999) 
AC Norit Rl ·Extra · 1450 N2+C02 298 0.03-6.00. Dreisbach (1999) 
AC Norit Rl Extra 1450 N2+·CE4+ 298 0.03-6.00 Dreisbach (1999) 

CO2 
AC,BPL 988 CHi+CzH6 301 0.13-2.01 Reich (1980) 
AC;BPL 988 CHi+Czll4 301 0..12-2.03 Reich (1980) 
AC,BPL· · · 988 .. C2a,+Czll4-· 301 0.14-1.98 Reich (1980) 
AC,BPL 988 CHi+ 301 .. 0.12 """ 2;97 . · Re1ch (1980) 

C2a,+C2Hi 



CHAPTER4 

EXPERIMENT AL :METHOD FOR IDGH-PRESSURE ADSORPTION 

Experimental Methods and Procedures 

Adsorption Measurements 

The experimental method used in the OSU adsorption laboratory is based on a 

mass balance principle, which employs precise measurements of pressures, volumes and 

temperatures. A brief description of the apparatus and procedures follows. 

The experimental apparatus, shown schematically in Figure 15, has been used 

successfully in previous studies (Hall et al., 1994). The pump and cell sections of the 

apparatus are maintained in a constant temperature air bath at 318.2 K. The equilibrium 

cell has a volume of 110 cm3 and is filled with the adsorbent to be studied. The cell is 

placed under vacuum prior to gas injection. The void volume Vvoid in the equilibrium cell 

is then determined by injected known quantities of helium from a calibrated injection 

pump (Ruska Pump). Since helium is not significantly adsorbed, the void volume can be 

determined from measured values of temperature, pressure and amount of helium injected 

into the cell. Several injections made into the cell at different pressures show consistency 

in the calculated void volume. Generally, the void volume calculated from sequential 

injections varies less than 0.3 cm3 from the average value (of approximately 100 cm3) 

43 



He CH4 CO2 N2 C2 

Ruska Pump 

Terrp. 

Water Heater 
and Purrp 

Heat Exchanger 

Air Terrperature Bath 

He Gas Chromotagraph 

Air Terrperature Bath 

Figure 15. Schematic Diagram of the Experimental Apparatus 

based on at least five injections. The mass-balance equation, expressed in volumetric 

terms, is 

(4-1) 

where 1:1 Vis the volume injected from the pump, Z is the compressibility factor of helium, 

Tis the temperature, P is the pressure, subscripts "cell" and "pump" refer to conditions in 

the cell and pump sections of the apparatus, respectively, and "1" and "2" refer to 

conditions in the cell before and after injection of gas from the pump, respectively. The 

number of moles of helium dissolved in the water, n sol,He, is calculated from helium 

solubility in water data (Pray et al., 1952) and the value is zero for dry adsorbents. This 

void volume is used in subsequent measurements of adsorption, as follows. 
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The Gibbs adsorption (also known as the excess adsorption) can be calculated 

directly from experimental quantities. For pure-gas adsorption measurements, a known 

quantity, ninj, of gas (e.g., methane) is injected from the pump section into the cell 

section. Some of the injected gas will be adsorbed, and the remainder, n~!!: , will exist in 

the equilibrium bulk (gas) phase in the cell. A molar balance is used to calculate the 

amount adsorbed, n:;;bs , as 

Gibbs Gibbs 
nads = ninj - nunads - nsol (4-2) 

The amount injected can be determined from pressure, temperature and volume 

measurements of the pump section: 

(4-3) 

The amount of unadsorbed gas is calculated from conditions at equilibrium in the cell: 

nGibbs = ( PVVoid ) 
unads ZRT 

cell 

(4-4) 

The number of moles of gas dissolved in the water, nsol, is calculated from 

suitable gas solubility in water (Pray et al., 1952; King et al., 1992; Dhima et al., 1998). 

For nitrogen and methane, the amount of gas dissolved in the water is minimal. For CO2, 

about 8 % of the gas might be dissolved in the water. In Equations (4-3) and (4-4), Z is 

the compressibility of the pure gas at the applicable conditions of temperature and 

pressure. The above steps are repeated at sequentially higher pressures to yield a 

complete adsorption isotherm. The amount adsorbed is usually presented as an intensive 

quantity (mmol adsorbed I g adsorbent or mmol/g) by dividing n:;;bs by the mass of 

adsorbent in the cell. Inspection of Equations (4-2) to (4-4) reveals that the amount 
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adsorbed may be calculated in a straightforward manner from experimental 

measurements of pressures, temperatures and volumes, coupled with independent 

knowledge of the gas compressibility factors, Z (from experimental data or a suitably 

accurate equation of state). 

For mixed-gas adsorption measurements, a volumetrically prepared gas mixture 

of known composition (Zi) is injected; thus, the total amount of each component in the 

cell is known. A magnetic pump is used to circulate the fluid mixture to ensure that 

equilibrium is reached. The composition (yi) of the gas phase in the cell at equilibrium is 

determined by chromatographic analysis. A pneumatically controlled sampling valve, 

contained in· the air bath at cell temperature, sends a 20 µL sample to the gas 

chromatograph (GC) for analysis. The amount of each individual component adsorbed is 

calculated using component material balances; for component "i" in the mixture, the 

relations are 

(4-5) 

where 

(P!).V) 
niniCi> = ZRT zi 

pump 

(4-6) 

and Z is the compressibility of the feed gas mixture at pump conditions, and 

nGibbs . = (· PVVoid ) Y· 
unads(1) ZRT . . I 

cell 

(4-7) 

where Z is the compressibility of the equilibrium gas mixture at cell conditions. 

The number of moles of component i dissolved in the water, nsol(i), is calculated as in pure 

· gas adsorption, using the partial pressure of each component. 
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Relationship between Gibbs and Absolute Adsorption 

Adsorption data may also be reported in terms of absolute adsorption. 

Calculations for the Gibbs and absolute adsorption differ in the manner by which nunads is 

calculated. The Gibbs adsorption calculation, described above, neglects the volume 

occupied by the adsorbed phase in calculating the amount of unadsorbed gas (i.e., in 

Equation (4-4), the entire void volume, Vvoid, is viewed as being available to the 

unadsorbed gas). 

Following is a discussion to clarify the relationships between the Gibbs and 

absolute adsorption and to highlight the approximate nature of the calculated absolute 

adsorption. In addition, expressions are presented which facilitate calculation of the 

absolute component adsorption, n:%/cil , and the adsorbed-phase mole fraction, xfbs , in 

terms of the experimental Gibbs adsorption results. 

Pure Component Adsorption: First, consider the various volumes that can be used 

to characterize the state existing in the equilibrium cell. Using a representation that 

envisions two distinct, homogeneous fluid phases (bulk gas and adsorbed phase), the total 

system volume (excluding water) Vtotal of the experimental apparatus is the sum of the 

volumes of solid adsorbent (Vsotitl), gas (Vgas), and adsorbed-phase (Vads), as follows: 

Vtotal = Vsolid + Vgas + V ads (4-8) 

The void volume, having been determined by helium injection, is related to these 

quantities as follows: 

\Zoid = Vgas + V lUU = v;otat - ~otid (4-9) 
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Now, consider the amount of material adsorbed at equilibrium, which may be written in 

molar terms as follows: 

nads = ntotal - nunads (4-10) 

The difference in the definitions of the Gibbs and total adsorption resides in the 

manner in which nunads is related to the volume terms. As stated previously, in the Gibbs 

calculation, the volume occupied by the condensed phase is neglected in calculating 

nunads, and the amount of unadsorbed gas is calculated using the entire void volume; thus, 

Equation (4-10) becomes, using Equation (4-9) for Vvoid: 

Gibbs V 
n ads = n,otal - void p gas (4-11) 

where p denotes density. In the calculation of the absolute adsorption, nunaas is 

determined using the volume actually available to the bulk gas phase (accounting for the 

reduction of volume accessible to the gas as a result of the volume occupied by the 

adsorbed phase): 

(4-12) 

By combining Equations (4-11) and (4-12) to eliminate nrotal, the following relation 

between Gibbs and absolute adsorption is obtained: 

nGibbs =nAbs_ V p 
ads ads ads gas (4-13) 

The volurrie of the adsorbed phase may be expressed in terms of the amount adsorbed 

and the density of the adsorbed phase as: 

V Abs/ 
ads = nads Pac1s (4-14) 
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Combining Equations (4-13) and (4-14) yields: 

Gibbs V ( ) 
nat1s = ads Pa11s - Pgas (4-15) 

Equation (4"'"15) clearly illustrates the physical interpretation of the Gibbs adsorption, 

namely, the amount adsorbed in excess of that which would be present if the adsorbed 

phase volume were filled with bulk gas. Combining Equations (4-14) and (4-15) leads to: 

(4-16) 

An important consideration in the calculation of the absolute adsorption is that it 

requires knowledge of the adsorbed phase density, Pads, which is not readily accessible by 

experimental measurement. Thus, estimates of Pads are usually employed. A commonly 

used approximation is the liquid density at the atmospheric pressure boiling point, as was 

done by Arri and Yee (1992). 

Adsorption from Mixtures: For absolute adsorption, the component mole fractions 

in the adsorbed phase, xiAbs , may be calculated from the component Gibbs adsorptions; 

however, this requires some assumption regarding the density, Pads, of the adsorbed phase 

mixture. In the following discussion, Pads is approximated using the assumption of ideal 

mixing in the adsorbed phase, where the pure-component adsorbed-phase density 

estimates are used to calculate the mixture adsorbed-phase density. The component 

Gibbs adsorption (amount of component "i" in the adsorbed phase in excess of the 

amount that would be present if the bulk equilibrium gas mixture occupied the volume of 

the adsorbed phase) may be written using a component material balance as: 
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Gibbs Abs Abs V V ( Abs ) 
nadsfiJ = na,1s xi - ads Pgas Yi = a,1s Pads xi - Pgas Yi (4-17) 

. For convenience, we define a fractional component Gibbs adsorption, B;Gibbs , as 

(4-18) 

(Note that, although Equation (4-18) has the appearance of a mole fraction, the Gibbs 

adsorption is an excess quantity, not a total quantity for a specified phase; thus e, rather 

than x, is used to denote the quantity.) 

Inserting this definition into Equation ( 4-17), we obtain: 

GibbseGibbs - nAbs (xAbs -y Pgas J 
nads i - ads i i 

pads . 
(4-19) 

Combining Equation (4-16) with Equation (4-19), 

(4-20) 

Equation (4-20) reveals that xfbs and B;Gibbs become identical in the limit of low pressure 

(where Pgas becomes small). 

Inspection of Equation (4-20) reveals that all quantities on the right hand side can 

be obtained directly from experimental measurements except Pads, for which some 

approximation must be made. For binary system, if ideal mixing is used to represent Pads 

in terms of the pure component adsorbed-phase densities, we have: 

1 Xi_Abs XAbs 
--=--+-2-
p ads p ads(l) p ads(2) 

(4-21) 

where the subscripts "l" and "2" refer to pure components. Then, Equation (4-20) may 

be written as 

50 



{},Gibbs ( {},Gibbs ) ( 1 ) 
Abs _ l Abs _ 1 Pat1s(2) + Pgas Yi - 1 + Pat1s(2) 

Xi --X2 -

P +p (Y -{},Gibbs )(1- Pat1s(2) J 
ads(2) gas 1 1 p· 

. ads(l) 

(4-22) 

and the absolute component adsorption can be calculated as follows: 

Abs Abs Abs 
llads(i) = nabs Xi (4-23) 

with Equation (4-16) used to calculate the total mixture adsorption, nAbs where the . 
ads ' 

densities, Pads and Pgas, refer to mixtures of compositions xiAbs and Yi, respectively. 

Gas Compressibility Factors 

As indicated by Equations (4-3) and (4-4), accurate gas-phase compressibility (Z) 

factors are required for methane, nitrogen and carbon dioxide and their mixtures to 

properly analyze the experimental data. The compressibility factors for pure methane, 

nitrogen, and CO2 were determined from highly accurate equations of state (Angus et al., 

1978 and 1979; Span and Wagner, 1996). For void volume determination, the helium 

compressibility factor is given by (Hall, 1993) 

Z8 e =l+(0.001471-0.000004779T+0.00000000492T2 )/ P (4-24) 

where T is in Kelvins and P is in atmospheres. This expression is based on the 

experimental data from National Bureau of Standards Technical Note 631 for helium. 

A careful evaluation of the current literature led us to conclude that an adequate 

predictive capability for mixture Z factors did not exist. Therefore, we elected to use 

available pure-fluid and binary mixture data to refit the Benedict-Webb-Rubin equation 

of state (BWR BOS) and improve its accuracy significantly. In general, the new BWR 

parameters yield deviations in the Z factors of less than 0.5%. This allowed us to address 
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our compressibility factor needs for binary adsorption mixtures. Details of the BWR 

equation expressions are given elsewhere (Pan, 2003). 

Calibrations 

Calibrations were performed routinely during the course of the experiments. The 

temperature measuring devices were calibrated against a Minco platinum resistance 

reference thermometer (see Appendix A), and the pressure transducers were calibrated 

against a Ruska deadweight tester with calibration traceable to the National Institute of 

Science and Technology (see Appendix B). 

The gas chromatograph was calibrated against volumetrically prepared mixtures 

at the nominal feed-gas concentrations. The GC used for composition analysis is a 

Varian Chrompack CP-3800 with the helium carrier gas maintained at a 0.25-mIJs flow 

rate. A 10-ft Haysep D packed-column was used for CHJC02 and N/C02 systems, and 

a molecular sieve 13X column was used for the CHJN2 system; column temperature was 

80°C. A thermal conductivity detector was used for all of the binary systems studied; the . 

bath temperature was set at 100°C. The chromatographic response factor, defined as 

(Azl Ai)(yJyi) where A is the GC response area, was found to depend slightly on 

pressure; as such, the GC was calibrated for each nominal composition at pressure 

intervals of 1.4 MPa (see Appendix C for detail calibration). 

The uncertainties in the experimentally measured quantities after calibrations 

were estimated as follows: temperatures, 0.1 K; pressures, 6.9 kPa; injected gas volumes, 

0.02 cm3; gas mixture compositions, 0.002 mole fraction. 
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The OSU Adsorption Database 

Table 4 documents the OSU CBM gas adsorption database. The database 

contains the pure, binary, and ternary mixture adsorption measurements conducted at 

Oklahoma State University. Included in the database are details regarding the adsorbates, 

the adsorbent, and the corresponding temperature and pressure ranges for each system. 

Pure-gas adsorption measurements are reported for methane, nitrogen, ethane, and 

carbon dioxide on ten solid matrices comprised of wet Fruitland coal (OSU #1 and OSU 

#2), wet Lower Basin Fruitland coal (OSU #3), wet I dry Illinois #6 coal, wet Tiffany 

coal, dry Beulah Zap coal, dry Wyodak coal, dry Upper Freeport coal, dry Pocahontas 

coal, and dry activated carbon. 

Binary adsorption measurements are presented for mixtures of methane, nitrogen 

and CO2 at a series of compositions on four different matrices: Fruitland coal, Illinois #6 

coal, Tiffany coal, and activated carbon. Ternary measurements are also presented for 

methane/nitrogen/CO2 mixtures on wet, mixed Tiffany coal and on dry activated carbon. 

Tables 5 and 6 present the compositional analyses for the various solid matrices 

considered. The activated carbon used was Filtrasorb 400, 12x40 mesh, from Calgon 

Carbon company. The activated carbon was dried under vacuum at 431.5 K for two days 

before the adsorption measurements. The nitrogen BET surface area at 77 K has been 

reported by Humayun and Tomasko (2000) to be 850 m2/g. The surface area value 

provided by the supplier, however, is 998 m2/g. 

Four different wet coals were prepared for adsorption measurements. The 

Fruitland coal is from the San Juan Basin; it is a medium volatile bituminous coal. This 

recently prepared sample (OSU #2) has a slightly different composition from the one 
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Table 4. The OSU Adsorption Database 

System Temp. Pressure 
No. Adsorbent Adsorbate 

(K) 
Range 
(MPa) 

47 Dry AC-F400 N2 318 & 328 0.7-13.7 
48 Dry AC-F400 C!Li 318 & 328 0.7-13.7 
49 Dry AC-F400 CO2 318 & 328 0.7-13.7 
50 Dry AC-F400 C2~ 318 0.7-13.7 
51 Dry AC-F400 N2+C!Li 318 0.7-12.4 
52 Dry AC-F400 C!Li+C02 318 0.7-12.4 
53 Dry AC-F400 N2+C02 318 0.7-12.4 
54 Dry AC-F400 N2+C!Li+ 318 0.7-12.4 

CO2 
55 Wet Fruitland Coal . N2 319 0.7-12.4 
56 Wet Fruitland Coal C!Li 319 0.7-12.4 
57 Wet Fruitland Coal CO2 319 0.7-12.4 
58 Wet Fruitland Coal N2+C!Li 319 0.7 -12.4 
59 Wet Fruitland Coal C!Li+ CO2 319 0.7 -12.4 
60 Wet Fruitland Coal N2+C02 319 0.7-12.4 
61 Wet Illinois #6 Coal N2 319 0.7-12.4 
62 Wet Illinois #6 Coal C!Li 319 0.7-12.4 
63 Wet Illinois #6 Coal CO2 319 0.7-12.4 
64 Wet Illinois #6 Coal N2 +C!Li 319 0.7 - 12.4 
65 Wet Illinois #6 Coal C~+C02 319 0.7-12.4 
66 Wet Illinois #6 Coal N2+C02 319 0.7-12.4 
67 Wet Tiffany Coal N2 328 0.7-13.7 
68 Wet Tiffany Coal C!Li 328 0.7-13.7 
69 Wet Tiffany Coal CO2 328 0.7 - 13.7 
70 Wet Tiffany Coal N2+C!Li 328 0.7-13.7 
71 Wet Tiffany Coal C!Li+ CO2 328 0.7-13.7 
72 Wet Tiffany Coal N2+C02 328 0.7-13.7 
73 Wet Tiffany Coal N2+C!Li+ 328 0.7-13.7 

CO2 
74 Wet LB Fruitland Coal N2 319 0.7-12.4 
75 Wet LB Fruitland Coal C!Li 319 0.7-12.4 
76 Wet LB Fruitland Coal CO2 319 0.7-12.4 
77 Dry Illinois #6 Coal CO2 328 0.7 - 13.7 
78 Dry Beulah Zap Coal CO2 328 0.7-13.7 
79 Dry Wyodak Coal CO2 328 0.7-13.7 
80 Dry Upper Freeport CO2 328 0.7-13.7 

Coal 
81 Drv Pocahontas Coal CO2 328 0.7-13.7 
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VI 
VI 

Table 5. Compositional Analysis of Solid Matrices Used in this Study 

Analysis Activated Fruitland Fruitland Illinois #6 Lower Lower 
Carbon OSU#l OSU#2 Basin Basin 

Fruitland Fruitland 
OSU#3a OSU#3b 

Ultimate* 
Carbon% 88.65 68.63 66.58 71.47 38.92 40.20 
Hydrogen% 0.74 4.27 4.23 5.13 3.08 3.10 
Oxygen% 3.01 0.89 5.08 9.85 3.75 2.87 
Nitrogen% 0.40 1.57 1.47 1.46 0.87 0.89 
Sulfur% 0.73 4.19 0.72 1.27 1.73 2.14 
Ash% 6.46 20.45 21.92 10.81 51.66 50.81 

Proximate* 
Vol. Matter % 3.68 20.2 20.33 30.61 20.01 14.00 
Fixed Carbon % 89.86 59.35 57.75 55.90 28.33 35.19 
Equil. Moisture 35 2.2 2.2 3.9 4.0 4.0 
Content(%) 

* Huffman Laboratories, Inc., Golden, Colorado. 

Tiffany Tiffany 
Well#l Well 

#10 

47.78 56.75 
2.62 2.77 
6.19 5.16 
0.92 1.02 
0.57 0.52 

49.71 47.74 

15.48 15.35 
34.82 36.91 

3.8 3.7 



Table 6. Compositional Analysis of Coals from Argonne National Laboratory · 

Analysis* Beulah Wyodak Illinois #6 Upper Pocahontas 
. Zap Freeport 

Ultimate 
Carbon% 72.9 75.0 77.7 85.5 91.1 
Hydrogen% 4.83 5.35 5.00 4.70 4.44 
Oxygen% 20.3 18.0 13.5 7.5 2.5 
Sulfur% 0.80 0.63 4.83 2.32 0.66 
Ash% 9.7 8.8 15.5 13.2 4.8 

Proximate 
Moisture% 32.2 28.1 8.0 1.1 0.7 
Vol. Matter% 30.5 32.2 36.9 27. 1 18.5 
Fixed Carbon % 30.7 33.0 40.9 58.7 76.1 
Ash% 6.6 6.3 14.3 13.0 4.7 

* Analyses were provided by the Argonne National Laboratory 

used in previous measurements (OSU #1). The Lower Basin (LB) Fruitland coal is from 

the same coalbed seam as Fruitland coal, but it was taken from a different location. The 

Illinois #6 coal is a high volatile bituminous coal. Other coal samples are from BP 

Amoco Tiffany Injection Wells #1 and #10. The coal samples were ground to 200µm 

particles and moistened with water. This made the sample moisture content varies from 4 

to 15% (by weight), which is higher than the equilibrium moisture content. Equilibrium 

moisture content was determined gravimetrically by exposing dry coal to 303.1 K air at 

. 96-99% saturation. 

In addition, five types of coal samples prepared by Argonne National Laboratory 

were used to study CO2 adsorption on dry coals. The coals were dried under vacuum in 

an equilibrium cell at 353 K for 36 hours before being used in the adsorption 

measurements (Gasem et al., 2003). 
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Tables 7 a through 7f present samples data from the OSU Database for the gas 

adsorption measurements conducted at OSU. The data are presented in terms of both 

Gibbs and absolute adsorption since absolute adsorption is the quantity most familiar to 

· practitioners in CBM operations. Also for convenience, the data are reported both in SI 

and English engineering units. Complete database is available in· our report prepared for 

the US Department of Energy (Gasem et al., 2003). 

The database includes the expected experimental uncertainties for the adsorption 

measurements. The expected experimental uncertainty of the pure-gas adsorption data is 

about 3%. However, the expected uncertainties in the amount adsorbed for the mixture 

data vary with pressure and composition. In general, average uncertainties are below 5% 

for total adsorption; while, the individual-component uncertainties vary from 0.02 to 0.4 

mmol/g depending on the mixture composition. Moreover, the expected uncertainties in 

the amount of individual.:.component adsorption are significantly higher for the less­

adsorbed gas at lower molar feed concentrations (e.g., nitrogen in the 20/80 nitrogen/CO2 

system). Detail error propagation analysis is given in Appendix D. 
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Table 7. Sample Data from the OSU Database: (a). Nitrogen Adsorption on Activated 
Carbon at 318.2 K (Run 1) 

SI Units 

Adsorbed phase 
density ( cm3) 

318.2 
0.0 

0.0001003 
6.9 

307.8 
47.1 

0.725 

English Engineering Units 

Cell T (°F) 113.1 
Moisture content (%) 0.0 
Void volume (ft;:i) 0.003542 
Pump pressure (psia) 997.4 
Pump T (°F) 94.4 
Adsorbent mass (lb) 0.1038 

Pressure I 
(MP a) 

GibbsAds I 
(mmol/g) 

0.69 0.996 
1.73 1.741 
2.86 2.225 
4.10 2.566 
5.53 2.823 
6.97 2.990 
8.31 3.086 
9.66 3.155 

11.10 3.199 
12.46 3.199 
13.66 3.197 

Pressure I 
(psi a) 

GibbsAds I 
(SCF/ton) 

100.7 755.7 
250.9 1321.7 
415.4 1688.4 
594.9 1947.5 
801.9 2142.4 
1011.0 2269.3 

· 1204.6 2342.6 
1401.0 2394.4 
1609.6 2427.9 
1807.8 2427.8 
1981.2 2426.7 

Abs. Ads I cr Gibbs I cr Abs 
(mmol/g) (mmol/g) (mmol/g) 

1.006 0.056 0.057 
1.786 0.055 0.057 
2.322 0.055 0.057 
2.729 0.054 0.058 
3.070 0.054 0.059 
3.326 0.054 0.060 
3.508 0.055 0.062 
3.664 0.055 0.064 
3.804 0.056 0.067 
3.889. 0.057 0.069 
3.965 0.058 0.072 

Abs. Ads I cr Gibbs I c; Abs 
(SCF/ton) (SCF/ton) (SCF/ton) 

763.5 42.7 43.2 
1355.9 42.0 43.1 
1762.1 41.5 43.3 
2071.3 41.2 43.8 
2329.9 41.0 44.6 
2524.6 41.2 45.8 
2662.4 41.5 47.1 
2781.3 41.9 48.7 
2886.9 42.6 50.6 
2952.1 43.3 52.7 
3009.2 44.1 54.7 

Nitrogen Adsorption on Activated Carbon at 318.2 K (Run 1) 

0 4.0 
<( 

~ 
Cl) 

J; 
.I .I 

0 3.0 J; 

E 
E i: 

c E 
0 2.0 :;::; 

.I C. ... 
0 
1/J 

~ 1.0 E 

1/J .a 
:f!. 
C, 0.0 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 

Pressure, MPa 
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Table 7. Sample Data from the OSU Database: (b ). Methane Adsorption on 
Activated Carbon at 318.2 K (Run 1) 

SI Units 

CellT 

Adsorbed phase 
densit ( /cm3 

318.1 
0.0 

0.0001003 
7.2 

307.8 
47.1 

0.374 

English Engineering Units 

Cell T (°F) 113.0 
Moisture content (%) 0.0 
Void volume (ft;j) 0.003542 
Pump pressure (psia) 1047.3 
Pump T (°F) 94.4 
Adsorbent mass·(lb) 0.1038 

Pressure I 
(MP a) 
0.59 
1.33 
2.49 
3.55 
4.76 
6.25 
7.66 
8.99 
10.36 
11.85 
13.21 

Pressure I 
(psi a) 

85.0 
192.9 
361.4 
514.7 
689.7 
906.2 
1111.1 
1303.6 
1503.3 
1718.6 
1916.0 

GibbsAds I Abs. Ads I a Gibbs I a Abs 
(mmol/g) (mmol/g) (mmol/g) (mmol/g) 

1.977 1.996 0.068 0.069 
2.865 2.929 0.067 0.069 
3.549 3.703 0.066 0.069 
3.891 4.140 0.066 0.070 
4.115 4.483 0.066 0.071 
4.260 4.784 0.066 0.074 
4.294 4.974 0.066 0.076 
4.288 5.119 0.066 0.079 
4.250 5.243 0.067 0.083 
4.165 5.333 0.052 0.066 
4.079 5.409 0.054 0.072 

GibbsAds I Abs. Ads I a Gibbs I a Abs 
(SCF/ton) (SCF/ton) (SCF/ton) (SCF/ton) 

1500.4 1514.9 51.9 52.4 
2174.6 2223.2 51.1 52.3 
2693.8 2810.9 50.5 52.6 
2953.4 3142.5 50.1 53.3 
3123.6 3402.2 49.8 54.3 
3233.1 3631.0 49.8 55.9 
3259.4 3774.9 50.0 57.9 
3254.5 3885.4 50.4 60.1 
3225.5 3979.8 51.0 62.9 
3161.5 4047.8 39.4 50.5 
3096.1 4105.5 41.2 54.6 

Methane Adsorption on Activated Carbon at 318.2 K (Run 1) 
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Table 7. Sample Data from the OSU Database: (c). Carbon Dioxide Adsorption on 
Activated Carbon at 318.2 K (Run 1) 

SI Units Pressure I GibbsAds I Abs. Ads I a Gibbs I a Abs 
(MP a) (mmol/g) (mmol/g) (mmol/g) (mmol/g) 

318.1 0.50 3.531 3.561 ·o.325 0.328 
0.0 1.11 5.016 5.112 0.321 0.327 

0.0001011 1.93 5.960 6.170 0.317 0.328 
6.9 2.72 6.436 6.774 0.314 0.330 

307.8 3.99 6.912 7.504 0.310 0.336 
44.4 5.47 7.005 7.962 0.305 0.347 

6.85 6.849 8.269 0.301 0.363 · 
1.027 8.30 6.332 8.521 0.296 0.399 

9.11 5.371 8.195 0.299 0.456 
10.30 3.808 7.992 0.342 0.718 
11.58 2.995 7.901 0.331 0.874 
13.01 2.547 7.849 0.332 1.022 

English Engineering Units Pressure I Gibbs Ads l Abs. Ads l a Gibbs l a Abs · 
(psi a) (SCF/ton) (SCF/ton) (SCF/ton) (SCF/ton) , 

113.0 72.9 2680.3 2702.8 246.9 248.9 
0.0 160.4 3807.2 3880.0 243.3 248.0 

0.003570 279.5 4523.8 4682.8 240.3 248.8 
997.9 394.1 4884.9 5141.2 238.2 250.7 

94.4 579.3 5246.5 5695.8 235.0 255.1 
. 0.0979 793.7 5317.1 6043.1 231.6 263.2 

993.8 5198.7 6276.2 228.3 275.6 
1203.6 4806.3 6467.5 225.0 302.8 
1321.9 4076.3 6219.9 227.0 346.4 
1493.2 2890.1 6065.9 259.7 545.1 
1678.9 2273.2 5996.5 251.6 663.7 
1886.7 1933.2 5957.1 251.8 775.8 

Carbon Dioxide Adsorption on Activated Carbon at 318.2 K (Run 1) 
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Table 7. Sample Data from the OSU Database: ( d). Adsorption of a 60/40 Mole% Methane/Nitrogen Feed Mixture 
on Dry Activated Carbon at318.2 K · 

.§.!J!!:!i! 

Cell T (Kl 318.2 Feed Molar Comoosition 
Moisture content (%) 0.0 Methane I 0.600 
Void volume (m~) 0.0001092 Nitroaen . I 0.400 
AC mass tal. 42.2 
Pumo T 1K1 318.2 

Pressure CH4 Gas CH4 .Ads. (mmol/g) N2 Ads. (mmol/g) Total Ads. (mmol/g) 
(MP a) mole fraction Gibbs Absolute Gibbs Absolute Gibbs Absolute s. s. cr Abs. 

0.75 0.370 1.156 · 1.164 0.491 0.504 1.647 1.668 0.054 0.054 0.024 0.025 0.075 0.076 
1.43 0.394 1.692 1.714 0.647 0.682 2.339 2.396 0.056 0.057 0.023 0.024 0.076 0.078 

· 2.70 0.424 2.318 2.380 0.763 0.848 3.081 3.227 M57 0.059 0.023 .0.025 0.074 0.078 
4.20 0.451 2.756 2.878 0.802 0.951 3.557 3.829 0.058 0.061 0.023 0.026 0.072 0.078 
5.52 0.468 3.006 3.190 0.793 1.002 3.798 4.192 0.060 0.064 0.024 0.028 0.071 .0.079 

· 6.97 0.482 3.193 3.451 0.763. 1.040 3.956. 4.491 0.063 0.068 0.027 0.032 0:072 0.082 
8.36 0.491 3.342 3.675 .0.702 1.047 4.044 4.722 0.067 0.074 0.029 0.036 0.074 0.086 .. 
9.71 0.501 3.405 3.814 0.659 1.067. 4.065 4.881 0.072 0.082 0.036 · 0.045 0.077 0.092. 

0\ I 
11.07 0.508 3.459 3.948 0.611 1.083 4.070 5.031 0.096 · 0.110 0.040 0.053 0.104 0.128 - 12.43 0.513 3.520 4.089 0.541 1.081 4.062 5.170 0.100 0.118 0.043 0.059 0.106 0.134 

English Engineering Unit 

113.0 
0.003855 

0.0930 
1gQ_ 

Pressure CH4 Gas CH4 Ads. (SCF/ton) · N2 Ads. (SCF/ton) . Total Ads. (SCF/ton) Error in C~ Ads. 

(psi a) mole fraction Gibbs Absolute Gibbs Absolute Gibbs . Absolute s. cr Abs. 

108.8 0.370 877;5 · 883.4 372.4 382.3 1249.9 1265.6 ·40.6 40.9 18.2 18.6 57.2 57.9 
207.9 0.394 1283.9 1301.0 491.0 517.3 1774.9 1818.3 42.5 43.1 17.7 18.6 57.8 ·59.2 
391.9 0.424 1759.0 1806.1 579.5 643.5· 2338.5 2449.5 43.6 44.8 17.1 18.6 56.4 59.1 
609.6 · 0.451 2091.7 2184.8 608.3 721.8 2700.0 2906.6 44.3 46.4 17.5 19.8 54.9 59.1 
800.0 0.468 2281.3 2420.9 601.7 760.7 2883.1 3181.6 45.3 48.2 18.4. 21.4 54.2 59.8 
1010.6 0.482 2423.6 2619.6 579.1 789.5 3002.7 3409.0 47.5 51.6 20.1 24.1 54.9 62.3 
1212.3 0.491 · 2536.6 . · 2789.1 532.6 794.8 3069.2 3583.8 50.5 56.0 22.2 27.4 56.1 65.6 
1408.5 0.501 2584.6 2895.0 500.5 809.9 . 3085.1 3704.9 54.9 62.4 .27.2 34.0 58.1 69.8 
1605.1 0.508 2625.7 2996.3 463.7 821.9 3089.3 3818.3 72.6 83.8 30.4 40.2 78.8 97.4 
1802.7 0.513 2671.9 3103.7 410.8 820.5 3082.7 3924.2 76.0 89.6 · 32.7 44.5 80.1 102.0 
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Table 7. Sample Data from the OSU Database: ( e ). Adsorption of a 60/40 Mole% Methane/Carbon Dioxide Feed Mixture 
on Dry Activated Carbon at 318.2 K 

fil.!!ni! 

CellT 318.2 Feed Molar Comp0sition 
0.0 Methane I 0.600 

0.0001090 Carbon Dioxide I 0.400 
42.4 

PumpT 318.2 

Pressure CH4 Gas CH4 Ads. (mmol/g) CO2 Ads. (mmol/g) Total Ads. (mmol/g) 
(MP a) mole fraction Gibbs Absolute Gibbs Absolute Gibbs Absolute a Gibbs a Abs. a Gibbs a Abs. a Gibbs a Abs; 

0.68 0.777 1.475 1.500 1.182 1.189 2.657 2.689 0.083 0.085 0.067 0.067 0.150 0.151 
1.42 o.n5 1.938 2.009 1.705 1.726 3.642 3.735 0.080 0.083 0.071 0.072 0.150 0.154 
2.n 0.766 2.240 2.418 2.275 2.329 4.515 4.748 · 0.074 0.080 0.075 o.on 0.145 0.153 
4.17 0.755 2.306 2.614 2.667 2.766 4.972 5.380 0.069 o.on 0.078 0.082 0.140 0,152 
5.56 0.744 2.267 2.717 2.949 3.103 5.216 5.820 0.066 0.078 0.082 0.087 0.137 0.153 
6.95 0.727 2.215 2.810 3.099 3.323 5.315 6.132 0.065 0.081 0.086 0.093 . 0.136 0.157 
8.30 0;120 2.063 2.810 3.252 3.543 5.315 6.353 0.072 0.093 0.097 0.108 0.137 0.164 
9.66 0.707 1.946 2.848 3.310 3.683 5.256 6.531 0.091 0.126 0.135 0.154 0.197 0.245 

I 11.04 0.700 1.788 2.859 3.3n 3.838 5.165 6.697 0.091 0.135 0.143 0.167. 0:198 0.257 
12.41 0.688 1.674 .2.908 3.344 3.903 5.017 6.811 0.093 0.146 0.149 0.180 0.200 0.272 

English Engineering Unit 

0.0038493 
0,0935 

~ 
11~ 

Pressure CH4 Gas CH4 Ads. (SCF/ton) CO2 Ads. (SCF/ton) Total Ads. (SCF/ton) Error in CH4 Ads. 

(psi a) mole fraction Gibbs Absolute Gibbs Absolute Gibbs Absolute s. a C::iibbs a Abs. a C::iibbs a Abs. 

99.2 0.777 1119.8 1138.4 897.0 902.4 2016.8 2040.7 63.3. 64.3 50.8 51.1 113.5 114.9 
206.6 o.n5 1470.6 1524.8 .1294.0 1309.7 2764.6 2834.6 61.0 63.3 53.8 54.5 113.7 116.6 
401.2 0.766 1700.1 1835.6 1726.7 1768.0 3426.7 3603.6 56.1 60.5 56.9 58.4 110.2 115.9 
604.8 0.755 1749.9 1984.0 2024.0 2099.8 3n3.9 4083.7 52.1 58.8 59.4 61.9 106.3 115.1 
806.5 0.744 1720.9 2062.3 2238.0 2355.2 3958.9 . 4417.5 49.8 59.0 62.5 66.2 104.2 116.3 
1007.5 0.727 1681.4 2132.5 2352.5 2521.9 4033.9 4654.4 49.4 61.4 65.0 70.5 103.5 119.5 
1204.2 0.720. 1565.9 2133.1 2468.0 2689.0 4033.9 4822.1 54.4 70.3 73.4 82.0 104.1 124.5 
1400.6 0.707 14n.4 2161.9 2512.0 2795.1 3989.3 4957.0 68.7 95.6 102.7 116.5 149.9 186.3 
1601.4 0.700 1356.9 2170.3 . 2563.4 2912.7 3920.3 5082.9 69.3 102.3 108.5 126.6 150.5 195.2 
1800.4 .0.688 1270.4 2207.2 2537.8 2962.3 3808.2 5169.5 70.9 111.0 112.8 136.2 152.0 206.5 



Table 7. Sample Data from the OSU Database: (f). Adsorption of a 60/40 Mole% Nitrogen/Carbon Dioxide Feed Mixture 
on Dry Activated Carbon at 318.2 K · · 

SI Unit 

CellT K 318.2 Feed Molar Composition 
% 0.0 Nitroaen I 0.581 

0.0001044 Carbon Dioxide I 0.419 
AC mass 51.1 
Pum T 318.2 

Pressure N2 Gas N2 Ads. (mmol/g) CO2 Ads. (mmol/g) · Total Ads. (mmol/g) 
(MPa) mole fraction Gibbs Absolute Gibbs Absolute Gibbs Absolute CJ Gibbs CJ Abs. CJ Gibbs CJ Abs. CJ ~ibbS CJ Abs. 

0.90 0.888 0.808 0.831 0.949 0.952 1.757 1.783 0.055 0.056 0.064 0.064 0.115 0.116 
1.54 0.880 1.042 1.095 1.365 1.373 2.407 2.468 0.053 0.056 0.068 0.068 0.116 0.119 
2.74 0.872 1.234 1.363 1.957 1.976 3.191 · 3.339 0.049 0.053 0.073 0.073 0.112 0.118 
4.26 0.866 1.265 1.511 2.543 2.581 3.808 4.092 0.046 0.053 0.078 0.080 0.109 0.117 
5.56 0.853 1.222 1.578 2.926 2.987 4;148 4.564 0.046 0.054 0.081 0.084 0.105 . 0.116 
6.96 0.843 1.121 1.603 3.278 3.368 4.399 4.970 0.047 0.058 0.087 0.091 0.104 0.118 
8.31 0.831 1.011 1.618 3.552 3.675 4.563 5.293 0.066 0.080 0.103 0.111 0.106 0.123 
9.67 0.817 0.897 1.631 3.766 3.930 4.663 5.562 0.073 0.096 0.143 0.154 0.157 0.187 

0\ I 11.12 0.808 0.740 1.616 3.988 4.197. 4.728 5.813 0.077 0.104 0.151 0.165 0.156 0.192 
w 12.54 0.795 0.603 1.615 4.137 4.397 4.740 6.012 0.080 0.111 0.157 0.175 0.156 0.198 

Engllsh Engineering Unit 

113.0 
0.003688 

0.1127 
113.0 

Pressure N2 Gas N2 Ads. (SCF/ton) CO2 Ads. (SCF/ton) Total Ads. (SCF/ton) Error in N2 Ads. 

(psia) mole fraction Gibbs Absolute Gibbs Absolute Gibbs Absolute s. CJ Gibbs CJ Abs. CJ Gibbs CJ Abs. 

130.2 0.888 613.2 630.5 720.3 722.5 1333.5 1352.9 41.5 42.6 48.3 48.5 87.1 88.4 
223.4 0.880 790.6 831.4 1036.2 1041.8 1826.8 1873.2 40.2 42.1 51.5 51.8 87.7 90.0 
397.0 0.872 936.4 1034.3 1485.6 1499.9 2422.0 2534.2 37.1 40.5 55.1 55.8 85.4 89.3 
617.2 0.866 960.3 1146.9 1930.0 1958.9 2890.3 3105.7 35.0 40.2 59.2 60.5 82.4 88.6 
806.7 0.853 927.6 1197.4 2220.5 2266.9 3148.1 3464.3 34.7 41.2 61.8 63.9 79.9 87.9 
1010.1 0.843 851.0 1216.6 2487.7 2556.0 3338.7 3772.5 35.9 44.0 66.0 69.1 79.1 89.4 
1205.1 0.831 767.3 1227.9 2695.7 2789.6 3463.0 4017.4 50.2 61.1 78.1 84.2 80.2 93.1 
1402.2 0.817 681.2 1238.2 2858.2 2983.0 3539.4 4221.2 55.4 72.7 108.5 116.7 119.0 142.0 
1612.6 0.808 561.3 1226.5 3027.0 3185.5 3588.3 4412.0 58.5 78.7 114.3 125.0 118.4 145.7 
1818.2 0.795 457.8 1225.6 3140.0 3337.5 3597.8 4563.1 61.0 84.3 119.1 132.5 118.5 150.4 



CHAPTERS 

ONO.,KONDO LATTICE MODEL FOR ADSORPTION 

Lattice Model 

An adsorption model based on the lattice theory was proposed first by Ono and 

Kondo in 1960. The more general formalism was recently developed further by Donohue 

and coworkers for the adsorption of solutes irt liquid solutions (Aranovich et al., 1996 and 

1997; Hocker et al., 1999). In the lattice model, the fluid system is assumed to be 

composed of layers of lattice cells that contain fluid molecules and vacancies. A 

configuration of molecules in a mixture fluid in its equilibrium state can be represented 

by a square lattice, which is shown in Figure 16. In this condition, the total number of 

n 

lattice cell sites, M = L N; , is constant. Ni is the particle numbers, including the empty 
i 

cell sites. Here Nn represents the number of "holes" or empty cells present in the system. 

The shaded cells in Figure 16 are the primary nearest-neighbor cells around a cell filled 

with molecule j. Two more primary nearest-neighbor cells are on top of and under 

molecule j. These primary nearest-neighbor cells may be filled by other species i, or just 

an empty cell. 

The configurational Helmholtz free energy for the system above, according to 

statistical thermodynamics, is defined as: 

A=-kTlnQ (5-1) 
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0 0 
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0 0 0 
~ 

0 Cl . . ,, (]) _(ij 0 
~ 0 

0 0 0 
0 0 

Figure 16. Fluid Mixture on a Square Lattice 

with Q is the configurational partition function. A general form of this function for a 

mixture was derived by Hocker (1999): 

n -( z0 ! 2)N1e1;f kT [ Z M n n 1/ T ] 

Q=M!ITe exp--0-"'"'Lt .. x .x . r('F . +'P .. )d(l!T) . N I 8k L.i L, I} I } y I} JI 
I i" I } , 0 

(5-2) 

which leads to the following expression for the free energy: 

The lattice coordination number, zo, represents the number of primary nearest-neighbor 

cells in the lattice system. The interaction energy between molecule i and j is expressed 

by EiJ· Note that zo11uf8 is the interchange energy, i.e., the amount of energy that 

accompanies the exchange of molecule i (from a lattice completely filled with i's) with a 

molecule j (from a lattice completely filled with j), where 11iJ = 2 cu - (£ii + £_jj). The 

correlation coefficient, 1]11, is the ratio of the probability for having a molecule i around 

an arbitrary molecule j , to the probability of molecule i occupies the lattice cell, Xi= N/M. 

Thus, this number represents the deviations of a non-random mixture from its random 

limit for which 1]11 is unity. 
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Molecules Adsorbed on a Surface 

Figure 17 shows the configuration of the molecules adsorbed on a surface. To 

calculate the free energy of the molecules in the first adsorbed layer, we should include 

the contributions resulting from interactions between adsorbed molecules and the surface, 

and between adsorbed and bulk molecules. The contribution resulting from interactions 

between all the adsorbed molecules of the first layer on the surface can be written as: 

n 

Alst-s = L N; Bis (5-4) 

where Bis is the interaction energy between molecule i and the solid surface. The 

contribution resulting from interactions between the adsorbed molecules and the bulk 

molecules (or the second layer of the adsorbed molecules) is given by: 

n n 

Alst-b = LL N; xj,2nd8ij (5-5) 
; j 

Combining Equations (5-3), (5-4) and (5-5) results to the following expression for the 

configurational free energy of the adsorbed layer: 

n n n n 

Alst = IN; ( i C;; +B;s )+ LL N; xj,2nd8ij +kTIN; lnx; 
; j ; 

(5-6) 

where z1 is the parallel coordination number representing the number of primary nearest-

neighbor cells in the parallel direction (or in one layer). 

Figure 17. Configuration of Molecules 
Adsorbed on an Adsorbent Surface 
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Pure Random Multilayer Adsorption 

Figure 18 presents the pictorial of multilayer pure-component adsorption; only 

three layers are presented in this figure. Beyond the adsorption phase is the bulk phase in 

which its cells are randomly filled by the gas molecules as presented in Figure 16. 

0 0 
Bulle Phase, µb 

3rd Layer Ads, µ, 

2°d Layer Ads, µ2 

1st Layer Ads, µ 1 

Figure 18. Pure Multilayer Adsorption 

The chemical equilibrium between the adsorbed layers and the bulk is conditioned 

on the equality of component chemical potential in each layer and the bulk phase, 

(5-7) 

The chemical potential in each layer is defined as 

µ,~(:i,LN 
' ' n 

(5-8) 

Equation (5-3) is used to calculate the free energy for the bulk fluid, while Equation (5-6) 

is used to calculate the free energy for the first adsorbed layer. The empty lattice cell is 

treated as a second component in pure-gas adsorption modeling. Therefore, if Ni is the 

number of molecule in a specific layer and Nn is the number of empty cells in that layer, 

then Nn = M - Ni, or Xn = 1- Xi, The chemical potential expressions for the bulk and the 

first adsorbed layer can be written as: 
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[ e.. ( xb )] µb =kT z0 - 11 xb +Zn --
kT 1-xb 

(5-9) 

and 

(5-10) 

For a molecule which resides in the tth layer (above the first layer), its free energy 

depends on the interaction energy with its neighboring molecules in the same layer and 

the molecules in the adjacent layer. Therefore, for a random distribution, .the free energy 

of the tth layer becomes: 

(5-11) 

The chemical potential expression for the tth adsorbed layer of pure component is 

[
e.. (. x, ). ] µ 1 =kT - 11 {z1x1 +(x1_ 1 +x,+i)}+ln --
kT 1-x, 

(5-12) 

The coordination number, zo, appears in Equations (5-3) and (5-9) is related to the 

parallel coordination number, z1, as zo = z1 + 2. 

Chemical potential equality between the tth adsorbed layer and the bulk phase · 

results in the following equilibrium equation: 

(5-13) 

for t = 2,3, ... m, number ~f layer. The chemical potential equality between the 1st 

adsorbed layer and the bulk phase results in: 

(5-14) 
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Pure Random Monolayer Adsorption 

Figure 19 represents the configuration of the pure-gas molecules in the lattice 

cells for random monolayer adsorption. In this approach, we assume that adsorption 

occurs only on the adsorbent surface. Above this adsorbed layer resides the gas phase. 

Only one equilibrium equation is applied in this case, which is: 

0 0 
0 0 

0 0 Bulk Phase, µb 

0 0 
0 

Adsorbed Phase, µ 1 

Figure 19. Pure Monolayer Adsorption 

Benard and Chahine' s Approach 

Benard and Chahine (1997) assume that the adsorption process is directly mapped 

on the two parallel hexagonal graphite planes. Figure 20a shows the adsorbed molecules 

inside the slit, and Figure 20b shows the adsorbed molecules positioned among the 

carbon atoms of the graphite planes. In this approach, the equilibrium equation becomes: 

where z1 = 6 and zo = 8 for the hexagonal lattice cell. 
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Figure 20(a). Monolayer Adsorption on Graphite Slit 

Figure 20(b ). Adsorbed Molecules Positioned among the Carbon Atoms 
of the Graphite Planes 

Note that for &i = 0, Equation (5-16) becomes equivalent to the Langmuir adsorption 

isotherm: 

xb exp( - £is I kT) 
x ads = 

1 + xb exp( £is I kT) 
(5-17) 

Adsorption Working Equations and the Calculation Algorithm 

According to the lattice theory, the Gibbs excess adsorption is defined as 

m 

r . = C. '\'"" (x. - X· b) 
I I L..i 1,1 I , 

(5-18) 
1=1 

where Xi,t is the fraction of adsorbed molecules i that occupy the lattice cells at layer t 

( = Ni.I /M1), and Xi, b is the fraction of gas molecules i occupying the same number lattice 

cells as those at layer t (=Ni.~M1). This fractional coverage can also be expressed as 

Xi,1 = Pi.t I Pi.me and Xi,b = Pi.b, I Pi.me, where Pi,t is the adsorbed density of component i at 

layer t, Pi,b is the adsorbed density of component i at the gas phase, and Pi.me is the 
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adsorbed density of component i at the maximum capacity. The prefactor Ci represents 

the maximum capacity of the adorbent. For pure adsorption inside the slit, according to 

the approach by Benard and Chahine, the number of layers, m, is equal to two, and 

Equation (5-18) becomes: 

(5-19) 

Here, the pre-factor C may be assumed to be a parameter taking into account the fraction 

of the active pores of the adsorbent and other structural properties of the adsorbent. 

Cf Pmc in Equation (5-19) represents the specific adsorbed-phase volume for the 

adsorbate-adsorbent system, and the absolute adsorption can be expressed as: 

nAbs = 2Cpads I Pmc (5-20) 

Equation (5-16) is used for monolayer adsorption equilibrium, and together with 

Equation (5-19) they can be used to correlate the experimental Gibbs adsorption isotherm 

to obtain four parameters, i.e., e;,/k, e;,/k, Pmc and C. Figures 21 and 22 show the 

algorithms for monolayer and multilayer pure isotherm adsorption calculations. First, 

Equation (5-16), or Equations (5-13) and (5-14) for multilayer adsorption, is used to 

solve for Xads using the Newton-Raphson method for a given initial guess of e;,/k and Bi/k, 

The amount of adsorption is then calculated using Equation (5-19) for a given initial 

guess of Pmc and C. The four parameters are optimized using the objective function: 

npts 

L ( ( ~.catc - ~ ) I ai J2 , where Gt is the expected uncertainty for point i. The Marquardt 
i 

method is used to regress the experimental adsorption data and generate the optimum 

model parameters. 

71 



Start 

MARQ 

No 

Enter, T, P 

Fi ... npts, Oi 
/Jb,i· • • (BWR­

EOS) 

Estimate 
Ei/k, &/k, 
Pmc, C 

Calculate 
&/kT, &/kT 
and 
For i =1, npts: 
Xb,i = /Jb,if/Jmc 

For i =1, npts: 
Solve Eq. (5-16), using Newton-Raphson 
to obtain Xads,i 

For i = 1, npts: 
Fi.calc = 2C (xads,i - Xb,i) 

npts 

Lff I';,calc - I'; )/ O'i J2 
i 

minimum? 

Yes 

Print 

Figure 21. Algorithm for Pure-Isotherm Monolayer Adsorption 
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EOS) 
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Calculate 
&/kT, E;/kT 
and 
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For i =1, npts: 
Solve Eq. (5-13) & (5-14), using· 
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npts 

L(( ~.calc - ~)/(Yi )2 
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minimum? 

Yes 

Print 

Figure 22. Algorithm for Pure-Isotherm Multilayer Adsorption 
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Multicomponent Adsorption 

For a random binary mixed gas containing component A and B, the chemical 

potential for each component in the bulk can be derived using Equation (5-3) with lf/ij = 

1//ji = 1 as follows: 

(5-21) 

Subscript n represents the empty cells. Further; since dij = 2 Bij- (Bii + 6.i.i), so AAA= ABB= 

Ann = 0, and because there is no interaction energy between a molecule and an empty cell 

and between the empty cells, then AAn = AnA = -cAA and ABn = AnB = -CBB· Also cAB = cBA 

implies that AAB = ABA· Thus, Equation (5-21) can be simplified to: 

(5-22) 

Noting that Xi= N/M and Xn = 1- XA - XB, this equation can be written as: 

(5-23) 

or 
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The chemical potential for each component in the bulk can be determined using the 

definition on Equation (5-8): 

(5-25) 

which leads to 

[ eAA eAB ( XA,b J] µA,b = kT zo(-xA,b +-xB,b )+Zn . . 
kT kT 1-xAb -xBb 

' ' 

(5-26) 

and 

µB,b = kT[zor-eB_B xB,b +-eAB_xA,b )+ln(--x_B-'--,b--J] 
kT kT 1-xA,b -xB,b 

(5-27) 

Subscript b represents the bulk properties. 

The chemical potential of the adsorbed component in a slit of adsorbent can be 

derived using Equation (5-6) (with the same assumption as in the bulk phase) as follows: 

A1s, = { N A,1A i 8 AA + 8 As ) + N B,isl i 8 BB + 8 Bs )} 

+NA,lstxA,2ndeAA +NA,lstxB,2ndeAB +NB,lstxA,2ndeBA +NB,lstxB,2ndeBB 

+ kT(N A,lst lnxA,lst + N B,lst lnxB,lst + Nn,lst lnxn,lst) 

Z1M1st [{ 2 ( · )} 2 + 8AB - 8AA +BBB XAlstXBlst -8AAXAlst +8AAXA1st +8AAXAlstXBlst 2 ' ' ' ' ' ' 

-8BBXB,lst + 8BBXi,lst + 8BBXB,lstXA,lst] 

= (N A,lsteAs + N B,lsteBs) + N A,lstxA,2ndeAA + N A,lstXB;2ndeAB 

· + N B,lstxA,2ndeBA + N B,lstxB,2ndeBB 

+ kT(N A,lst lnxA,lst + N B,lst li:J.xB,lst + N n,lst Inxn,lst) 

Z1M 1st (· 2 2 2 ) + 8AAXAlst + 8ABXAlstXBlst +eBBXBlst . 2 . . ' . (5-28) 

or 
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+ XB,lstXA,2mleBA + XB,lstXB,2ndeBB 

+ kT[(xA,lst ln X A,lst + XB,lst lnxB,lst + (1- XA,lst - XB,lst) ln(l- X A,lst - XB,lst)] 

(5-29) 

The chemical potential for each component in the adsorbed phase can be determined 

using the definition on Equation (5-8): 

(5-30) 

and noting that Xi,Jst = Xi.2nd (we will use symbol Xi only) leads to: 

µA ads= kT[-eA_s +-eAA_XA +-eAB_XB + zi(-eAA_XA +-eAB_XB )+ln(--x=A--J] 
· · kT kT kT kT kT 1- x A - x 8 . 

(5-31) 

and 

[ e e e e e ( x J] µ = kT _!l!_+_!!!!_x +~x + z (_!!!!_x +~x )+Zn 8 

B,ads kT kT B kT A 1 kT B kT A 1- X - X 
A B 

(5-32) 

The equality of the chemical potential in the adsorbed and the bulk phases for each 

component leads to the following equilibrium equations for the binary mixed-gas 

adsorption: 

(5-33) 
and 

(5-34) 

A general equilibrium equation for monolayer, random mixed-gas adsorption was 

derived to obtain the following expression: 
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n 

x.(l-" X "b) 
I L..J J, n C 

j=l " ij r/ ] eis ln n + L..J-H z1 +l)xj -z0 xj,b +-=0 
(l - '°' ) j=l kT kT 

X;,b L..JXJ 

(5-35) 

J=l 

A geometric combination rule is used to evaluate the _interaction energy between 

molecule i and j; i.e., eij = (l + Cij )~eue ii . Here, a regressed binary interaction 

parameter Cij was introduced to account for unlike molecular interactions, which deviate 

from the geometric mean relation. 

The Gibbs excess adsorption for each component is calculated using the following 

expression: 

(5-36) 

The fractional coverage in the bulk phase, x;,b can be obtained from the following 

equation: 

X = YiPb 
i,b p 

me 

(5-37) 

where, the bulk density, /Jb, is calculated using the Benedict-Webb-Rubin (BWR) 

equation of state (Pan, 2003). Since little information is known about the mixture 

adsorbed-phase density, the maximum density, Pmc, is estimated using the following ideal 

mixing rules: 

1 XAbs XAbs 
--=-A-+_B_ (5-38) 
Pmc Pmc,A Pmc,B 

The absolute adsorbed phase mole fractions, x1bs and x;bs are used in this equation. 
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A correction factor is introduced to calculate the Gibbs adsorption for each 

component, considering that the maximum capacity of a component may be different for 

pure and mixture adsorption. In this case, Equation (5-36) is modified as: 

(5-39) 

The correction factor is calculated using the following empirical expression: 

n n 

C "" Abs AbsE corr = L.,L.,xi xi ij (5-40) 
i j 

An additional regressed binary interaction parameter, Eif, is introduced in this 

expression, in which Eu = E ii = 1. 

Iteration Function Method (IFM) 

In general, the Gibbs excess adsorption can be calculated using a model if the 

pressure, temperature and the equilibrium composition in the gas phase are lmown. In 

our previous study (Sudibandriyo et al., 2003), the equilibrium mole fraction in the gas 

phase is obtained from the adsorption measurements. Even though the gas composition 

obtained from the experiment is adequate to calculate the individual Gibbs excess 

adsorption, errors in the gas composition measurement can worsen the model 

representation. Moreover, using the experimental gas compositions can only permit 

Gibbs adsorption calculations at the conditions where the experimental measurements are · 

available. In addition, in coalbed methane production simulation, the overall. gas· 

composition information is more readily obtained than the equilibrium gas composition. 

To overcome these problems, an iteration function method, which is similar to flash 

calculation in vapor-liquid equilibrium, is used to determine the adsorption equilibrium 
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gas mole fractions for given pressure, temperature, feed composition and specific void 

volume (void volume per unit amount of adsorbent) of the system. 

If Zi represents the mole fraction of each component (i) in the feed, then by a 

molar balance, we can express Zi in terms of the other experimentally accessible variables 

as: 

(5-41) 

Figure 23 shows the JFM algorithm to calculate the binary adsorption isotherm 

using parameters obtained from the pure adsorption. The component Gibbs adsorption is 

first calculated using the OK model of Equations (5-35) and (5-36). The solution, 

however, is contingent on equilibrium mole fractions, Yi, as they are needed to calculate 

the gas density using the BWR EOS and to calculate the fractional coverage in the bulk 

phase, xi,b, as defined in Equation (5-37): The gas mole fractions were initialized with the 

available experimental values to speed the calculation (although a:ny reasonable initial 

values could be used). 

The next step is to evaluate Equation (5-41) for each component. If Equation (5-

41) is not satisfied for each component, then a new set of equilibrium mole fractions is 

used to calculate the next trial adsorbed amount. The procedure is· repeated until 

Equation (5-41) is satisfied. The Newton-Raphson's method with numerical derivatives 

is used to solve Equation (5-41). 
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For j component and i ... npts: 
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· For i =1, npts: 
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Figure 23. Algorithm for Multicomponent Gas Adsorption Using the Iteration Function Method 
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CHAPTER6 

MODELING OF PURE-GAS ADSORPTION 

In this Chapter, the correlative capability of the Ono-Kondo (OK) model is 

evaluated: Model parameters were regressed to obtain precise representations for pure­

gas, high-pressure adsorption on carbon adsorbents involving adsorbates in the near 

critical and supercritical regions. Also, generalized model parameters were developed 

which can predict the adsorption equilibrium to within twice the expected experimental 

uncertainties. 

Extending the mathematical models to describe adsorption behavior on coals is 

complicated by (a) the difficulty in characterizing the coal matrix adequately and (b) 

assessing the effect of water (found in essentially all coalbeds) on the adsorption 

behavior. As a result, we decided to perform initial studies (a) on a more readily 

characterized carbon matrix and (b) in the absence of water. This led to our choice of dry 

activated carbon. Our rationale is that useful models should be expected to fit data on 

activated carbon prior to extending them to include the effects of the complex adsorbent 

structure of coals and/or the presence of water. 

To apply the OK model, the number of layers must be specified. Therefore, before 

performing model parameter evaluations, we determined the number of layers required to 

best describe the systems considered. The multilayer and monolayer adsorption models 

were compared, and the appropriate model was used for the rest of the study. 

81 



Determination of the Number of Layers 

As described in the previous chapter, the OK lattice model can be· applied to 

monolayer or multilayer adsorption. We used selected experimental data to evaluate the 

number layers required to adequately represent the systems considered. Specifically, our 

measurements at 318 K for pure adsorption of nitrogen, methane and CO2 on activated 

carbon were used to represent adsorption in the supercritical region; the CO2 adsorption 

data on activated carbon conducted by Humayun (2000) at 304 K were used to represent 

the adsorption in the near-critical region; and our CO2 adsorption data on dry coal 

(Illinois #6) were used to represent an adsorbent with a wide pore-size distribution. 

The modeling of monolayer and multilayer gas adsorption was done according to 

the algorithms described in Chapter 5. Table 8 presents a summary of our model 

evaluation results for the monolayer and three-layer models we used to correlate the 

selected data. The model parameters, given in Table 8, were determined by minimizing 

the sum of squares of weighted absolute deviations in the calculated adsorption, w, for 

the pure gas of interest. The quality of the fit, expressed in terms of absolute average 

percentage deviation (%AAD) and weighted average absolute deviations (WAAD), is 

also given in Table 8 for both the monolayer and multilayer models. Figures 24 and 25 

illustrate the quality of representation produced by the models. Both models show 

excellent representation within the expected experimental uncertainties; as such, 

comparable representation is observed for the monolayer and multilayer models. The 

results suggest that the simpler monolayer model is appropriate for the systems 

considered. The results are not surprising, considering that the adsorption of small 

molecules occurs mostly in the micropore structure (Gan et al., 1972; Medek et al., 1977; 
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Benard and Chahine, 1977). Perhaps because the size of the micropores is only several 

times the diameter of the molecules and the phase conditions are removed from the 

critical region, monolayer adsorption is adequate. 

In conclusion, the monolayer model appears effective in modeling pure-gas 

adsorption on carbon matrices. Therefore, this approach was used for further evaluation. 

Table 8. Comparison of Monolayer and Multilayer Modeling Results for Selected 
Systems 

AC 
Dry Illinois AC (OSU, 2002) (Humayun, 

Model Parameters 2000), #6 Coal 

Nitrogen Methane CO2 CO2 CO2 

Monolayer Model 
Eislk (K) -1032 -1385 -1690 . -1610 -1170 
Eii/k (K) 41 64 82 100 60 
Pmc (glee) 0.67 0.34 0.98 0.98 0.95 
C (mmol/g) 2.72 3.26 4.53 5.27 1.19 
NPTS 22 18 52 28 11 
%AAD 0.3 0.6 2.8 4.3 2.9 
WAAD 0.3 0.6 0.9 0.8 0.7 

Three-layer Model 
Eislk (K) -1020 -1380 -1650 -1570 -1160 

Eii/k (K) 50 64 82 110 70 
Pmc (glee) 0.67 0.40 1.02 0.99 0.98 
C (mmol/g) 2.81 3.20 4.58 5.45 1.23 
NPTS 22 18 52 28 11 
%AAD 0.3 0.6 3.4 4.3 3.0 
WAAD 0.3 0.7 1.0 0.8 0.6 

83 



00 
~ 

8.0 
0 
c( 7.0 
P} -· 0 6.0 
E 
E 5.0 .. 
C 
0 4.0 ·-.... a. 
r.. 
0 3.0 u, 

"C 
<( 2.0 
u, 

.Q 

.Q 1.0 ·-C) 

0.0 
0.0 2.0 4.0 6.0 

• C02at304 K 
o CO2 at318 K 

<> CH4at318K 

A N2at318K 

--OK I\Jbnolayer 

• • • OK Three-layer 

8.0 10.0 12.0 14.0 16.0 18.0 20.0 

Pressure, ·MPa 

Figure 24. Comparison of Monolayer and Three-Layer OK Model Representations of Pure-Gas Adsorption on 
Activated Carbon 



00 
Vl 

2.0 - Illinois '116 Coal C'G I 0 0 

o, 1.6 0 i OK 11,tmolayer 

1$: • . . - - OK Three-layer 
E 
E 1.2 .. 
C 
0 ·-..... e- · 0.8 
0 
,n 

"'CS 
<C 

0.4 ,n 
.Cl 
.Cl ·-C, 0.0 _____________________ ..,. 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 

Pressure, MPa 

Figure 25. Comparison ofMonolayer and Three-Layer OK Model Representations ofPU:re CO2 Adsorption on 
Illinois #6 Coal 



Modeling of Pure-Gas Adsorption on Activated Carbon (AC) 

The Maximum Adsorbed-Phase Density Estimate 

The OK model has four parameters: Pmc, £j/k, £jsfk and C. To reduce the number 

of regressed parameters in the model, the maximum adsorbed-phase density, Pmc, is 

usually estimated independently. A commonly used approximation is the liquid density 

at the normal boiling point, as was done by Arri and Yee (1992). However, examination 

of the results.from the OK model reveals that the adsorbed-phase densities generated by 

the OK model, as presented in Table 9, are less than the boiling point estimates and are 

closer to the reciprocal van der Waals co-volume estimates. Moreover, the adsorbed­

phase densities generated by the OK model and the reciprocal van der Waals co-volume 

.estimates are also close to the "graphical estimates" based on the Gibbs adsorption 

definition: I' = V atLr (pad< - p ca.s ) , as illustrated by Figure 26. Vadl- is the adsorbed-phase 

volume and Pad\' and Peas are the density of the adsorbed phase and the gas phase, 

respectively. As shown in the figure for CO2, if the absolute adsorption, V adl-Padl-, 

becomes constant at high pressures, then the Gibbs adsorption should show a linear 

decrease with increasing Pc~· Extrapolation of this linear relation yields an x-axis 

intercept where Pads =Pcas=Pmc· Figure 26 indicates that Pad\' = 22.5 mol/L or 1.02 g/cm3• 

Use of this technique requires sufficient data in the linear (high pressure) region beyond 

the maximum in the Gibbs adsorption; thus, an estimate is shown in Table 9 only for 

carbon dioxide. For the other adsorbates, the available data do not extend to the linear 

region. 
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Table 9. Adsorbed-Phase Densities Estimated by Different Methods 

Method 
Adsorbed-Phase Density (g/cm3) 

Ono-Kondo model 
Zhou-Gasem-Robinson (ZGR) BOS 
Liquid density estimate 
Solid density estimate 
Reciprocal van der Waals covolume 
Graphical estimate from the Gibbs adsorption 

9.0 

8.0 Linear Region 

"" 7.0 

~6.0 
Oc 
E 
~ 5.0 
C 
0 8 !4.0 
i 
~·3.0 
0 .c 
.c 
c, 2.0 

1.0 

0.0 
0 5 10 15 

Gas Density, mol/L 

Methane Nitrogen 

0.345 0.673 
0.345 0.839 
0.421 0.808 

0.374 0.725 

20 25 

Figure 26. Graphical Method for Estimating Adsorbed-Phase·Density: 
CO2 Adsorption on Activated Carbon at 318.2 K 

CO2 

0.977 
0.982 

1.18 
1.03 
1.02 

In our. recent publication on the simplified local density (SLD) modeling 

(Fitzgerald et al., 2003), a theoretical explanation was offered for why the adsorbed-

phase densities are close to the equation of state (BOS) reciprocal co-volumes. The SLD 

model can show that, at high pressures, the adsorbed-phase density approaches the 

reciprocal co-volume. 
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The Fluid-Fluid Energy Parameter Estimate 

In the present work, the fluid-fluid energy parameter, e;,/k, was estimated to be 

proportional to the Lennard-Jones well depth energy parameter. For the Lennard-Jones 

12-6 potential, the pair-wise interaction between two molecules separated by a distance r 

is given by 

. (6-1) 

where </J( r) is the potential energy, t* is the well depth of the potential, and er is the 

collision diameter, which is defined as the distance at which the potential energy is zero. 

If the adsorbed molecules are randomly distributed, the total energy of interaction 

between a molecule and all the surrounding molecules is: 

·s N 6n 2 N U1 = </J(r )-2mdr = --B*u -
u A 5 A 

(6-2) 

where N is the number of molecules on the surf ace and A is the surface area. The total 

energy due to the molecular interaction is then simply (Do, 1998): 

N 3n 2 N 2 

U =-U =--e*U -
T 2 1 5 A 

(6-3) 

In OK model, the total energy due to molecular interactions is expressed in terms of the 

coordination number and the fractional coverage. Equating the two total energy 

expressions, for zo = 8 (hexagonal configuration), results in 

Z0 3,r 2 N'I Ur =-NB .. =4Ne .. = --B*u 2 II II . 5 A 
(6-4) 

or 
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3n 2 N 
£ .. =-£*a -

11 20 A 
(6-5) 

When the spherical particles are closely packed, the fraction occupied by those particles 

is 0.907 (Do, 1998), and we write: 

7Z" a2 
-N-=0.907 
4 A 

(6-6) 

Here, a is the distance between the two particles at the minimum energy potential, 

a= (2)116 a. Combining Equation (6-5) and (6-6) results in the following estimate for 

the fluid-fluid energy parameter in the OK model: 

£ii =0.432£* (6-7) · 

The fluid-fluid energy parameters obtained for the gas adsorptions on activated 

carbon shown in Table 8 are reasonably close to the ones obtained from the above 

expression; for example, the regressed value of &/k for CO2 is 82 K compared to the 84.3 

K value estimated using Equation (6-7). Further, the value of the calculated Gibbs excess 

adsorption is not highly sensitive to small deviations in &/k obtained from Equation (6-

7); for example, a ten percent deviation in &/k can still produce reasonable values of the 

Gibbs excess adsorption. We also observed that the fluid-fluid energy parameters are 

positive values, which represents a repulsive energy potential. These results confirm the 

observations of Benard and Chahine (1997) and also agree with molecular simulation 

results obtained recently by Aranovich (2001). This phenomenon is similar to the 

negative values obtained for parameter a in two-dimensional equation of state (Zhou, 

1994) and is not totally unexpected in light of the fact that surface forces are significant 

in the adsorbed phases. The effect of solid surface potential on adsorbed molecules may 

89 



affect the molecular energy at conditions such that the interaction between them becomes 

repulsive. 

Because the lattice model was also assumed for the gas phase, the positive fluid­

fluid energy parameter is also repulsive in the gas phase, which might be unreasonable. 

The use of an accurate equation of state to calculate. the chemical potential in the gas 

phase might be more appropriate; this approach is planned for a future study. 

Two-Parameter OK Model 

The adsorbed-phase density and the fluid-fluid energy parameters can be 

estimated from the reciprocal van der Waals co-volume and from a proportional relation 

to the well depth of the Lennard-Jones 12-6 potential, respectively. For further 

generalization, the above estimates were applied for modeling of (a) selected gas 

adsorption on activated carbon and zeolites reported in the literature and (b) our gas 

adsorption· measurements on activated carbon. fu this case, the fluid-solid energy 

parameter, Bi/k, was regressed for each system and the parameter C was regressed for 

each adsorption isotherm. Because no detailed information was given on uncertainties in 

the selected literature experimental data, the percentage average deviation of the Gibbs 

excess adsorption (% AAD) was used as the objective function to determine the two 

model parameters. 

Table 10 presents the results of our model representation of the above selected 

data. Overall, for 2242 data points, the OK model with two regressed parameters (one 

common 8jsfk for each system, and individual C for each isotherm) represents the data 

with about 3.6% AAD. However, some significantly larger . errors were observed, 
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Table 10. Results of Two-Parameter OK Model for Pure-Gas Adsorption 

Adsorbent Parameters 
System 

Adsorbent Surface Gas NPTS T(K) -EiJk C %AAD RMSE Reference 
No. Area (mmoVg) 

(m:'/2) 
(K) (mmoVg) 

310.9 3.071 
AC, 338.7 2.947 

1 Columbia 1152 N2 36 366.5 . 1090 2.724 3.1 0.015 Ray (1950) 
GradeL 394.3 . 2.583 

422.0 2.756 
310.9 3.692 

AC,. 338.7 3.546 
2 Columbia 1152 CHi 45 366.5 1410 3.217 2.6 0.049 Ray (1950) 

'° GradeL 394.3 2.847 - 422.0 · 2.737 
310.9 3.574 
338.7 3.147 

AC, 366.5 2.865 
3 · Columbia 1152 . C28<i 58 394.3 2190 2.706 4.4 0.145 Ray (1950) 

GradeL 422.0 2.434 
449.8 2.381 
477.6 2.159 
283.2 · 5.037 
293.2 4.834 

4 Charcoal 1157 CHi 55 303.2 1330 4.710 1.2 0.051 Payne (1968) 
313.2 4.521 
323.2 4.332 
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Table 10. Results of Two-Parameter OK Model for Pure-Gas Adsorption (Continued) 

Adsorbent Parameters 

Adsorbent Surface Gas NPTS T(K) -Eis/k C %AAD RMSE Reference 
Area (mmoVg) 

. (m2/g) (K) (mmoVg) 

293.2 3.774 
303.2 3.662 

Charcoal 1157 C31fs 52 313.2 2490 3.592 6.7 0.200 Payne (1968) 
· 323.2 3.486 

333;2 3.375 
212.7 4.515 

AC,BPL 988 c~ 72 260.2 1320 3.880 3.1 0.112 Reich (1980) 
301.4 3.279 
212.7 9.753 

AC,BPL 988 CO2 60 260.2 1520 6.344 4.9 0.325 Reich (1980) 
301.4 5.110 
212.7 4.090 

AC,BPL 988 Cill6 49 260.2 2000 3.588 6.3 0.318 Reich (1980) 
301.4 3.157 
212.7 4.387 

AC,BPL 988 C2~ 52 260.2 1935 3.758 4.5 0.234 Reich (1980) 
301.4 3.281 

AC, PCB-
296 3.994 

1150-1250 c~ 22 373 1380 3.191 3.2 0.066 Ritter (1987) 
Calgon 480 2.547 

AC,PCB-
296 6.123 

1150-1250 CO2 12 373 1600 4.170 4.6 0.230 Ritter (1987) 
Calgon 480 2.910 
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Table 10. Results of Two-Parameter OK Model for Pure-Gas Adsorption (Continued) 

Adsorbent Parameters 

Adsorbent Surface Gas NPTS T(K) -EiJk . C %AAD RMSE Reference 
Area (mmol/g) 
(m2/g) (K) (mmol/g) 

278 5.741 
288 5.620 

AC, F30/470 298 5.341 
Chemviron 993.5 CO2 164 303 1625 5.326 1.2 0.138 Berlier (1997) 
Carbon 308 5.143 

318 4.808 
328 4.598 

AC, NoritRl 
1450 N2 10 298 1050 3.409 3.3 0.021 Dreisbach (1999) 

Extra 
AC, NoritRl 

1450 C!Li 12 298 1390 4.335 3.3 0.124 Dreisbach (1999) 
Extra 
AC, Norit Rl 

1450 CO2 12 298 1600 6.773 9.5 0.267 Dreisbach (1999) 
Extra 

233 11.650 
253 11.221 

AC, Coconut 3106 
C!Li 122 

273 
1140 

10.578 
3.0 0.237 Zhou (2000) 

Shell 293 9.926 
313 9.301 
333 8.647 

303.6 4.847 

AC, Calgon 
305.2 4.843 

850 CO2 116 309.2 1700 4.667 8.8 0.306 Humayun (2000) 
F-400 

313.2 4.530 
318.2 4.443 
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Table 10. Results of Two-Parameter OK Model for Pure-Gas Adsorption (Continued) 

Adsorbent Parameters 

Adsorbent Surface Gas NPTS T(K) -Eislk C %AAD RMSE Reference 
Area (mmol/g) 
(m2/2) 

(K) (mmol/g) 

304.9 3.731 
AC, Norit 

1100 c~ 64 
311.4 

1480 
3.171 

1.5 0.030 Vaart (2000) 
RBl 331.3 3.024 

350.5 2.875 
305.2 5.839 

AC, Norit 
1100 CO2 64 

311.2 
1655 

4.788 
1.7 0.060 Vaart (2000) 

RBl 329.5 4.301 
348.3 3.884 
178 11.026 
198 10.664 

AC, Coconut 3106 
218 9.823 

N2 71 233 880 9.000 1.5 0.162 Zhou (2001) 
Shell · 258 8.537 

278 7.703 
298 7.424 
303 2.617 
323 2.457 

ACF30/470 993.5 N2 116 343 1135 2.284 2.0 0.044 Frere (2002) 
363 2.134 
383 2.008 
303 3.625 
323 3.420 

AC F30/470 993.5 c~ 122 343 1395 3.207 2.2 0.094 Frere (2002) 
362 2.987 
383 2.809 
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Table 10. Results of Two-Parameter OK Model for Pure-Gas Adsorption (Continued). 

Adsorbent Parameters 

Adsorbent Surface Gas NPTS T(K) -Eis/k C %AAD 
RMSE Reference 

Area · (mmol/g) 
(m2/f!.) (K) (mmol/g) 

303 3.045 
323 2.877 

AC F30/470 993.5 C3Hg 102 343 2550 2.802 2.3 0.173 Frere (2002) 
363 2.654 
383 2.487 

AC NoritRl 1262 N2 31 298 1070 3.655 1.5 0.035 Beutekamp (2002) 
AC NoritRl 1262 CO2 29 298 1500 7.513 3.6 0.269 Beutekamp (2002) 

Zeolite, 
298 1.627 

525 N2 24 323 1185 1.480 2.2 0.042 Wakasugi (1981) 
Linde 13X 

348 1.329 

Zeolite, 
298 1.525 

-400 N2 27 323 1310 1.403 1.3 0.032 Wakasugi (1981) 
Linde 5A 348 1.284 

Zeolite, 
298 1.559 

-400 c~ 28 323 1600 1.449 2.7 0.048 Wakasugi (1981) 
Linde5A 348 1.336 

Zeolite, 
298 2.136 

-400 CO2 41 323 2500 2.060 5.6 0.317 Wakasugi (1981) 
Linde5A 

348 1.990 

Zeolite, 
298 1.158 

-400 Cill6 27 323 2600 1.098 2.1 0.051 Wakasugi (1981) 
Linde5A 

348 1.023 

H-Modemite, 
283 1.634 

-300 CO2 93 303 4600 1.548 11.2 0.090 Talu (1986) 
Z-900H 

323 1.434 
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Table 10. Results of Two-Parameter OK Model for Pure-Gas Adsorption (Continued) 

Adsorbent Parameters 

Adsorbent Surface Gas NPTS T(K) -ewk C %AAD 
RMSE 

Reference 
Area (mmol/g) 

(m2/~) (K) (mmol/g) 

283 2.108 
H-Modernite, 

-300 H2S 69 
303 

3550 
1.998 

2.2 0.032 Talu (1986) 
Z-900H 338 1.847 

368 1.734 

H-Modernite, 
283 0.618 

-300 C3Hs 92 303 3150 0.603 7.2 0.045 Talu (1986) 
Z-900H 

324 0.562 

Zeolite 05 430 Cl4 51 
283 

1200 
· 3.352 

3.9 0.055 Berlier (1995) 
303 3.100 

Zeolite 05 430 C2Hti 40 
283 

2525 
1.699 

1.3 0.044 Berlier (1995) 
303 1.620 

Zeolite 05 430 Czl4 34 283 
2630 

1.923 
1.1 0.048 Berlier (1995) 

303 1.798 
. Zeolite 13X · 383 CI4 12 298 1500 1.699 9.8 0.131 Beutekamp (2002) 

Zeolite 13X 383 C2Hti 11 298 2380 1.575 2.1 0.062· Beutekamp (2002) 
AC, Calgon 

850-998 N2 22 318.2 1060 2.577 0.4 0.012 osu (2001) 
F-400 
AC, Calgon 

850-998 Cl4 40 318.2 1385 3.164 1.4 0.064 osu (2001) 
F-400 
AC, Calgon 850-998 CO2 

52. 318.2 
1710 

4.500· 4.4 0.222 osu (2001) 
F-400 10 328.2 4.259 3.8 0.206 
AC, Calgon 

850-998 C2Hti 21 318.2 2135 2;835 6.4 0.153 osu (2001) 
F-400 

Overall 2242 3.6 



especially for the CO2 and propane isotherms. These larger errors are partly due to the 

high uncertainty in the CO2 and propane bulk density calculation. Also, the percentage 

deviation is exaggerated when the Gibbs excess adsorption becomes exceedingly small; 

i.e. at lower pressures, at high temperatures, or at nearly full coverage adsorption at 

higher pressures. For the OSU adsorption data set (Systems 47-50), the OK model is 

capable on average of representing the data within their experimental uncertainties. 

Figure 27 shows the percentage deviation plot for the OK model representation of 

the adsorption data on activated carbon. About 90% of the data can be represented by the 

model within 8.4 % .AAD. As mentioned above, the large percentage deviations occurred 

mainly when the Gibbs excess adsorption values are small at relatively low pressures. 

Figure 28 illustrates the OK model representation of System 15 (CO2 on Norit Rl Extra 

activated carbon), where the percentage deviations are large (9.5 % AAD). As shown in 

· the figure, the model can actually represent the experimental data reasonably well at 

pressure above 0.5 MPa. The nitrogen and methane adsorption on the same activated 

carbon are also shown in the figure for comparison. 

Figure 29 illustrates the OK model representation of a system with significant 

temperature range. As shown in this figure, the model is capable of describing the 

temperature variation. 

Basis for Parameter Generalization 

Based on our preliminary evaluation of the regressed parameter C presented in 

Table 10, it appears that, for a given adsorbate at fixed temperature, the value of C 

increases .as the surface area of the adsorbent increases. This suggests that the maximum 
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adsorption capacity, C, can be divided into two contributions; i.e. the contribution from 

the adsorbent characteristics, represented by surface area (A, m2/g), and the contribution .· 

from the adsorbate characteristic(s) .. In this study, we proposed the following simple . 

.. relation for the maximum adsorption capacity, C: 

C(T) = ACa(T) 
2 

(6-8) 

Ca is the surface adsorbed-phase density (mmol/m2), with its value depending only on the 

adsorbate. 

C is also temperature dependent. As reported in Table 10, the value of C 

increases as temperature decreases. This· temperature dependence · of the maximum 

adsorption capacity is not uncommon, based on the previous studies. Benard and 

Chahine (1997; 2001) reported the temperature dependence of C, and they proposed an 

empirical temperature relation for C. Similarly, Do (1998) asserted that the maximum 

adsorption capacity in the Langmuir model was a function of temperature. He described 

this temperature dependence as due to the thermal expansion of the adsorbed phase. 

Because of its theoretical basis, we adopted Do's approach and used the following 

thermal expansion expression for evaluating the surf ace adsorbed-phase density: 

(6-9) 

Integrating Equation (6-9) and combining with Equation (6-8) results in: 

ln(l/ C) = 8I' - [lnCa,o + 8I'0 + ln( A/2)] (6-10) 

where T0 (K) is chosen at the normal boiling point of the adsorbate (triple point for CO2), 

T (K) is the absolute temperature, Ca, 0 is the maximum surface adsorbed-phase density at 

T0 , and &is the thermal expansion coefficient of the adsorbed phase. 
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For a given system, Equation (6-10) yields a linear correlation if ln(l!C) is plotted 

against temperature, T. Figure 30 presents.the correlation between ln(l!C) obtained from 

Table 10 for gas adsorption on BPL activated carbon (Reich, 1980) and temperature, T. 
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Figure 30. Temperature Dependence of the Maximum Adsorption Capacity, C, 
(Reich, 1980) 

The linear relationship shown in this figure suggests that Equation (6-10) provides a good 

representation of the temperature dependence of the maximum adsorption capacity, C. 

The values of Ca,o and <5 depend only on the adsorbate; therefore, a linear 

correlation should also be obtained if C is plotted against A at constant temperature. 

Figure 31 presents the plots of parameter C obtained in Table 10 against the surface area, 

A. The values of the surface areas, in most cases, were reported by the investigators. In 

a few cases, however, they were obtained from the information provided by the adsorbent 
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Figure 31. Correlation of the Maximum Adsorption Capacity, C, with Surface Area 
at Constant Temperature 

production company or estimated from the literature. Although the accuracy of the 

reported surface areas is questionable, Figure 31 still shows a reasonable linear 

correlation between the parameter C and the surface area, A. This . observation further 

supports the assumption made in Equation (6-8). 

The fluid-solid energy parameter, Bjjk, was generalized based on the interaction 

of a single molecule with a single lattice plane. If z is the distance between the adsorbate 

molecule i and the lattice carbon plane, the potential energy can be written as: 

· * 2 1 O';c · 1 Uic 
<P,_,,,,. = 4,rp,e.,u,c -k~) --l-~) . [ . w '] (6-11) 

The potential energy has a minimum at a depth given by: 

(6-12) 
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where Pc = 0.382 atom/ A 2 is the area density of carbon atoms in a graphite plane. The 

adsorbate-carbon collision diameter is estimated as O';c = f ( <7;; + a cc ) . The adsorbate-

carbon well depth potential is estimated as &~ = ~ &~B~c . 

Generalization of the model parameters was performed by evaluating Ca,o, <5 and 

* Bee of the systems studied. All other physical properties of the adsorbate and carbon 

atom used are listed in Table 11. Five case studies described in Table 12 were explored. 

For each case, 1520 independent adsorption data points were employed. These data 

include all the activated carbon systems shown in Table 10, excluding systems that have 

only one adsorption isotherm. These systems were used later to validate the generalized 

model. 

In Case 1, all the parameters, Ca,o, <5 and B~c, were optimized simultaneously; · 

while the surface area was taken from information provided in the literature. Table 13 

shows the parameters obtained in Case 1. The regressed solid-solid energy parameter, 

B~c I k , varied from 38 to 43 K. 

For all components studied, except CO2, the mean thermal expansion coefficient 

of the adsorbed phase, t5, was approximately 0.0024 K-1. This value is close to the 0.0025 

K-1 value estimated by Wakasugi (1981) for all components. However, the regressed <5 

for CO2 is much higher (0.0039 K1). 

The maximum surface adsorbed-phase density at T0 (normal boiling point), Ca,o, 

obtained in Case 1 was correlated with the diameter of the adsorbed molecules. Figure 32 

shows a linear correlation between Ca,o and the reciprocal square of the molecule 

diameter. This finding is not unexpected since for a close-packed hard sphere molecule, 
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Table· 11. Physical Properties of the Adsorbates a and Active Sites 

Adsorbate MW 

H2 2.02 
N2 28.01 

H2S 34.08 
CO2· 44.01 
c~ 16.04 
C2~ 28.05 
C2liti 30.07 
C3Hs 44.10 

i- C4H10 58.12 
C 

O(Zeolite) 

a Reid (1987) 
b. Triple point temperature 
c Steele (1974) 
dMellot (1996) 

Pc 
(MPa) 

1.31 . 
3.40 
8.96 
7.38. 
4.60 
5.04 
4.87 
4.25 
3.65 

Reciprocal 

Tc(K) Normal Boiling van der Waals er 
Point (K) co-volume (x10-10 m) 

(mol/L) 
33.19 20.4 38.16 2.827 
126.20 77.3 25.89 3.798 
373.53 212.8 23.08 3.623 
304.21 216.6 D 23.34 3.941 
190.56 111.7 23.37 3.758 
282.34 169.4 17.39 4.163 
305.32 184.6 15.41 4.443 
369.83 231.1 11.07 5.118 
408.14 261.4 8.60 5.278 

3.4c 
3.04a 

t*lk (K) 

59.7 
71.4 
301.1 
195.2 
148.6 
224.7 
215.7 
237.1 
330.1 

28c 
139.96a 



Table 12. Description of the Cases Studied in Model Generalization 

Case No Description 

Based on reported surface area, A 
1 Ca,o and 8 are regressed for specific adsorbate 

teelk is regressed for specific activated carbon 

Based on reported surf ace area, A 
Generalized Ca,o and 8: 

For CO2: Ca,o = 0.0142 mmol/m2; 8 = 0.0039 (K-1) 

2 For other component: 
Ca,o = 0.102/cr + 0.0034; cr in A 
8 = 0.0024 (K1) 

teelk (K) is obtained from Case 1 (varied from 38 to 43) 

Based on reported surface area, A 
Generalized Ca,o and 8: 

For CO2: Cao= 0.0142 mmol/m2; 8 = 0.0039 (K-1) 

3 For other component: 
Ca,o = 0.102/cr2 + 0.0034; crin A 
8 = 0.0025 (K-1) 

tee /k (K) = 40 

Surface area, A, is regressed 
Generalized Ca,o and 8: 

For CO2: Cao= 0.0142 mmol/m2; · 8 = 0.0039 (K-1) 

4 For other component: 
Ca,o = 0.102/cr2 + 0.0034; 

0 

cr in A 
8 = 0.0023 (K-1) 

teelk (K) is obtained from Case 1 (varied from 38 to 43) 

' 

Surface area, A, is regressed 
Generalized Ca,o and 8: 

2 For CO2: Ca,o = 0.0142 mmol/m ; 8 = 0.0039 (K1) 

5 For other component: 
Ca,o = 0.102/cr2 + 0.0034; 

0 

cr in A 
8 = 0.0023 (K-1) 

tee /k (K) = 40 
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Table 13. Parameters Used in Case 1 of Model Generalization 

Component Ca,o (mmol/m2) 6 (K"1) Ecclk (K) 

N2 0.0105 0.0024 
CH.i 0.0106 0.0024 
C2H.i 0.00945 0.0024 
C2~ 0.00831 0.0024 
C3lig 0.00735 0.0024 
CO2 0.0142 0.0039 
Activated 

38-43 
Carbon 

0.012 -------------------

0.011 

"'e 0.01 
=== 0 

~ Q.009 

-.. 
cJ 0.008 

0.007 

y = 0.1019x + 0.0034 

R2= 0.99 

0.006 -f------------------.-, 
0.03 0.04 0.05 0.06 0.07 0.08 

Figure 32. Variation of the Maximum Surface Adsorbed-Phase Density, Ca,o, 
with the Diameter of the Molecules, cr 
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the surface density will be equal to Ji; Nava 2 , where Nav is the Avogadro's number. 

However, Ca,o is much higher for CO2, and it does not follow the observed linear trend 

for the other adsorbates. 

In Case 2, the general linear correlation for. Ca, 0 obtained in Case 1 was applied. A 

constant 8 obtained in Case 1 was also used in Case 2. As shown in Table 12, the overall 

percentage deviations obtained in Case 1 is practically the same as for Case 2. The 

overall percentage deviations did ·not change significantly (about 7% AAD) when the 

solid-solid energy parameter, e~c I k was set constant at 40 Kin Case 3. 

Slightly better results were obtained when the surface area was regressed, as in 

Case 4 (6.4 %AAD). In this case, the regressed surface area deviated up to 8% from the 

reported surface area. Moreover, as shown in Case 5, using the regressed surface area 

and a constant solid-solid energy parameter, e~c I k = 40 K, the model can predict the 

adsorption isotherms with an AAD of 7%. 

Figure 33 shows the percentage deviation plot for the generalized OK model 

prediction of the adsorption data on activated carbon. About 90% of the data can be 

predicted by the generalized model within 14.5 % AAD. Figure 34 illustrates .the 

comparison of generalized (Case 5) and two-parameter OK model representation of 

methane adsorption on activated carbon (System 22). As illustrated in the figure, the 

generalized model can predict the adsorption isotherms about twice the error of the two­

parameter OK model. The results of the five cases above suggest that the gas adsorption 

can be predicted using the generalized OK model with the average deviation of about 7% 

AAD. 
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Several gas adsorption systems were subsequently used to validate this 

generalized OK model. Figure 35 shows the generalized OK model prediction of our gas 

adsorption measurements on activated carbon at 318.2 K. A surface area of 920 m2/g and 

the solid.:.solid energy parameter, e~c I k , of 39 K, were obtained from the best fit to the 

CO2 adsorption data. Using this information and the generalized Ca,o and 8, the 

adsorption isotherms for the other three gases were then predicted. A similar prediction 

procedure was applied for the other systems, confirming that the gas adsorption on 

activated carbon can be predicted using the generalized OK model with about 7% AAD 

or about twice the error of the two-parameter OK model. 

Modeling of Pure-Gas Adsorption on Coals 

Two-Parameter OK Model for Pure-Gas Adsorption on Coals 

Similar to our treatment of pure-gas adsorption on activated carbon, we modeled 

pure-gas adsorption on coals using the adsorbed-phase density and the fluid-fluid energy 

parameters estimated from the reciprocal van der Waals co-volume and from the 

Lennard-Jones 12-6 potential, respectively. Our gas adsorption measurements on several 

coals were used to evaluate the fluid-solid energy parameter, e;,/k, and the parameter C in 

the OK model. The weighted average deviation of the Gibbs excess adsorption (W AAD) 

was used as the objective function to determine the two model parameters. 

Table 14 presents the results of our model representation of the above selected 

data. Overall, for 308 data points, the OK model with two regressed parameters can 

represent the data within the expected experimental uncertainties, which corresponds to 

3.3% AAD. Specifically, the two-parameter OK model representation of gas adsorption 
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Table 14. Results of Two-Parameter OK Model for Pure-Gas Adsorption on Coals 

''· 

System Parameters RMSE No. Adsorbent Adsorbate NPTS T(K) -EiJk C %AAD WAAD (mmol/g). 
• < (K) (mmol/g) 

55a Wet Fruitland Coal #1 N2 20 319.3 610 0.572 1.3 0.005 0.2 
56a Wet Fruitland Coal #1 c~ 20 319.3 990 0.650 0.8 0.004 0.2 
57a Wet Fruitland Coal #1 CO2 14 319.3 1340 0.853 5.1 0.091 0.5 
55b Wet Fruitland Coal #2 N2 20 319.3 575 0.495 1.8 0.004 0.2 
56b Wet Fruitland Coal #2 c~ 20 319.3 960 0.663 0.8 0.005 0.4 
57b Wet Fruitland Coal #2 CO2 20 319.3 1280 0.887 6.7 0.087. 0.7 
61 Wet Illinois #6 Coal N2 20 319.3 450 0.331 2.4 0.002 0.2 
62 Wet Illinois #6 Coal c~ 20 319.3 780 0.468 1.7 0.005 0.3 -- 63 Wet Illinois #6 Coal CO2 20 319.3 1100 0.735 3.2 0.033 0.5 

vJ 67 Wet Tiffany Coal N2 21 327.5 530 0.287 3.3 0.003 0.4 
68 Wet Tiffany Coal c~ 22 327.5 930 0.356 3.4 0.012 0.6 
69 Wet Tiffany Coal CO2 16 327.5 1385. 0.433 4.2 0.022· 0.6 
74 Wet LB Fruitland Coal N2 16 319.3 530 0.213 4.3 0.004 0.4 
75 Wet LB Fruitland Coal c~ 16 319.3 815 0.327 2.6 0.007 0.5 
76 Wet LB Fruitland Coal CO2 29 319.3 1300 0.354 5.4 0.023 0.6 
77 · Dry Illinois #6 Coal CO2 11 328 1250 1.204 5.1 0.067 0.9 
78 Dry Beulah Zap Coal CO2 22 328 1375 1.3540 3.3 0.071 0.5 
79 Dry Wyodak Coal CO2 11 328 1270 1.5039 2;9 0.064 0.5 
80 Dry Upper Freeport CO2 11 328 1480 0.6768 2.2 0.026 i 0.4. 

Coal 
81 Dry Pocahontash Coal· CO2 11 328 1540 0.7979 1.8 0.023 0.3 

· Overall 360 3.1 0.5 



on wet Fruitland coal gives comparable results to three-parameter models such as LRC 

and 2-D BOS used by Zhou (1994). 

Model Generalization for Pure-Gas Adsorption on Coals 

The same approach used for activated carbon was used to determine the parameter 

C in the gas adsorption model on coals. Specifically, we used a generalized Ca,o and 8 

obtained from the modeling on activated carbon. The surface area of the coals, however, 

was regressed from the experimental adsorption data, since the surface area is very 

specific to the coal samples and is also dependent on the wetness of the coals studied. 

The fluid-solid energy parameter, &/k, for adsorption on coals, as shown in Table 

14, is much lower than that on activated carbon. This lower value might be attributed to 

the mean position of a molecule in the structure of the coals and the presence of water. 

Figure 36 illustrates the molecule positions in the slit of the activated carbon and coals. 

In activated carbon, the distance between a molecule and surface plane, z, is 

approximately equal to the collision diameter of the two atoms, i.e. z = Otc, Due to Wider 

slit length of the coals (Gan, 1972), the distance between a molecule and surface plane of 

the coal might be slightly higher than Otc- Therefore, the fluid-solid energy for pure 

adsorption on coals was calculated according to Equation (6-11) instead of Equation (6-

12). Furthermore, the chemical structure of the coal is much more complex than that of 

activated carbon. The wetness of the coal might also affect the regressed overall fluid-

solid energy. Therefore, we proposed a modification of Equation (6-11): 

(6-13) 
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Figure 36. Molecule Positions in the Slit of the Activated Carbon and Coal 

A correction, ?1 was introduced to take into account for the effect of adsorbent chemical 

structure on the adsorbate. This value is close to zero for adsorption on activated carbon, 

and was generalized based on the chemical composition of the coals. A moisture 

correction effect, (f)c, was calculated as a function of the ash-free coal not occupied by 

equilibrium moisture content. This value of (f)c is available experimentally. A more 

rigorous way to handle the water effect would be to use a multicomponent model by 

treating the water as an additional adsorbed component. In our current stage of study, 

however, such a model is still under development. For simplicity, therefore, the 

correction above was introduced in this study. 

In summary, the model generalization for gas adsorption on coals was performed 

in the following sequence: 
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1. Parameter C was calculated using Equation (6-7), where generalized Ca,o and Oas 

shown in Table 12, Case 2, were applied. The surface area, A, was optimized for 

each coal. 

2. The fluid-solid energy parameter, &/k, was calculated using Equation (6-10), 

where the distance between a molecule and surface plane, z, was optimized for 

each coal, and the correction ,1 was optimized for a specific adsorbate-coal 

system. The solid-solid energy parameter, e~c I k , was set 40 K. 

3. The correction ti was generalized by the following contribution method: 

(6-14) 

where Rvc is the ratio of the volatile to the fixed carbon contents (on dry basis) 

and xo, XH, XN and xs are the oxygen, hydrogen, nitrogen and sulfur contents in the 

coals (on dry basis), respectively. 

Many researchers have tried to correlate the gas adsorption capacity in terms of 

the carbon content or the ratio of the volatile-to-the-fixed carbon content and the oxygen 

content (Moffat and Weale, 1955, Toda et al., 1970, Joubert et al., 1974, Levy et al., 

- 1997, Mccutcheon et al., 2003). Their hypothesis is that the chemical contents of the 

coal may produce specific available surface area of the coal. However, the chemical 

contents also reflect the types of functional group attached in carbon matrices, which 

affect the fluid-solid interaction energy. We do not evaluate the chemical contents effect 

on the surface area, and the surface area is regressed in this study. However, we used an 
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. empirical correlation shown by Equation (6-14) to account .for the effect of chemical 

contents on the fluid-solid interaction energy. 

Our pure-gas adsorption data on activated carbon, Fruitland coal, Lower Basin 

(LB) Fruitland coal and Illinois #6 coal were employed to evaluate the correction 

function in Equation (6-14). Because of the limited available data, only three factors in 

Equation (6-14) were considered in the evaluation, i.e. the ratio of the volatile-to-the­

fixed carbon contents, the oxygen content and the hydrogen content (the coefficients c 

and dare assumed zero). Regression results yielded the coefficients in Equation (6-14) 

as: a= 0.141, b = 0, e = 0.075 for CO2; a= 0, b = 0.166, e = 0.033 for methane; and all 

coefficients are zero for nitrogen. 

Tables 15 and 16 show the parameters used in the generalized OK model for pure­

gas adsorption on wet and dry coals. The generalized OK model can represent the data 

with about 5.3% AAD and 3.0% AAD for gas adsorption on wet coals and dry coals, 

respectively. Figures 37-40 show the comparison of the two-parameter OK model 

representations and generalized OK model predictions for gas adsorption on wet coals 

(Figure 37-36) and CO2 adsorption on dry coals (Figure 40). As shown in the figures, the 

generalized model can predict the data almost as well as the two-parameter model does. 

Larger deviations, however, are obtained for the CO2 adsorption in the region above 8 

MPa. The low-sorbing nature of coal and the high uncertainties of the CO2 bulk density 

may have amplified the deviations in this region. The possibility of coal swelling when 

CO2 is adsorbed at high pressure might also contribute to this large deviation. 

Pure-gas adsorption on Tiffany coal at 327 .6 K . was used to ·Validate the 

generalized OK model. Figure 41 shows the generalized OK model prediction of our gas 
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Table 15. Summary Results for Generalized OK Modeling of Pure-Gas Adsorption 
on Wet Coals 

Model Parameters Pure-Gas Adsorbed 

Methane Nitrogen CO2 

Wet Fruitland Coal ( 'Pc=0.97) 

A (mz/g) 194 
z 1.296 (Jic 

NPTS 20 20 20 
%AAD 3.2 4.8 8.5 

RMSE (mmol/g) 0.019 0.013 0.087 

Wet Illinois #6 Coal (<pc=0.97) 

A(m2/g) 150 
z 1.448 (Jic 

NPTS 20 20 20 
%AAD 2.6 4.4 3.5 

RMSE (mmol/g) 0.008 0.004 0.037 

Wet LB Fruitland ( <pc=0.95) 

A (m2/g) 77 
z 1.296 (Jic 

NPTS 16 16 29 
%AAD 4.9 6.4 8.3 

RMSE (mmol/g) 0.019 0.007 0.036 

Table 16. Summary Results for Generalized OK Modeling of CO2 Adsorption 
on Dry Coals 

Model Beulah Wyodak Illinois #6 Upper Pocahontas 
Parameters Zap Freeport 

A (m2/g) 298 332 251 149 177 
z 1.657 (Jic 1.653 (Jic 1.530 (Jic 1.277 (Jic 1.163 (Jic 

NPTS 22 11 11 11 11 
%AAD 3.3 2.9 4.4 2.5 1.8 

RMSE (mmol/g) 0.068 0.058 0.062 0.025 0.024 
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Figure 37. OK Model Representations of Nitrogen Adsorption on Wet Coals at 319. 3 K 
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Figure 38. OK Model Representations of Methane Adsorption on Wet Coals at 319. 3 K 
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adsorption measurements on Tiffany coal. The surface area, A=lOO tn.2/g, and the 

distance between a molecule and surface plane, z = l.290tc, are obtained from the best fit 

for the CO2 adsorption; Then, using this information and the generalized Ca.a, 

6 and ?1, the nitrogen and methane gas adsorption isotherms.were predicted. As shown in 

this figure, the gas adsorption on coal can be predicted using the generalized OK model 

within the expected experimental uncertainties. 

Application of the generalized model to our recent CO2 adsorption on wet Illinois 

#6 Argonne Coal, however, gave marginal results. About 11 % AAD was obtained using 

this generalized model. Specifically, the generalized model over-predicted the fluid-solid 

energy parameter, which resulted in high estimates for the predicted Gibbs adsorption at 

lower pressures. These results suggest that the water effect on the fluid-solid energy 

parameter is more complicated than that shown in Equation (6-14). As stated earlier, the 

adsorption on the wet substrate should be treated as a multicomponent adsorption, where 

water is an adsorbed component. Further study on the modeling of water effect on 

adsorption is needed. To support such study, additional data for other adsorbates 

(methane and nitrogen) on wet coals at water contents less than equilibrium moisture 

value are needed. In addition, the measurement of pure-water adsorption on the dry coals 

might be needed. 

Summary 

We have shown in this study that the OK monolayer model appears effective in 

modeling pure-gas adsorption on carbon matrices. On average, the OK model with two 

regressed parameters (one common Bilk for each system, and individual C for each 
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isotherm) can represent the adsorption on activated carbon with about 3.6% AAD. 

Specifically, for the OSU adsorption data set, the two-parameter OK model is capable on 

average of representing the data within their experimental uncertainties. The adsorbed­

phase density and the fluid-fluid energy parameters in the OK model can be estimated 

from the reciprocal van der Waals co-volume and from a proportional relation to the well 

depth of the Lennard-Jones 12-6 potential, respectively. 

Generalization of the model parameters was performed using adsorbent surface 

area and adsorbates physical properties. The results show that the generalized OK model 

can predict the adsorption isotherms on activated carbon with about 7% AAD or twice 

the deviation of the two-parameter OK model. Moreover, the model can also predict 

other gases adsorption isotherms based on the parameters (surface area and the solid-solid 

energy, c~c I k) obtained from one gas at given temperature. 

The generalized OK model also appears effective for pure-gas adsorption on wet 

coals when the moisture content in the coal. is above its equilibrium moisture content 

(EMC). The model parameters in this condition, however, are affected by the presence of 

water. Moreover, the generalized model was unable to predict the adsorption on wet 

coal, which has moisture content less than its EMC. These results suggest that the water 

effect on the fluid-solid energy parameter is more complicated than that shown in the 

generalized model. Furthermore, the adsorption on the wet substrate should be treated as 

a multicomponent adsorption, where water is recognized as one of the adsorbed 

components. Further study on the modeling of water effect on adsorption, however, 

needs additional data for other adsorbates (methane and nitrogen) on dry coals and wet 

coals with water contents less than their equilibrium moisture value. 

125 



CHAPTER 7 

MODELING OF MULTICOMPONENT GAS ADSORPTION 

The results shown in Chapter 6 have indicated that the Ono-Kondo (OK) lattice 

model has the capability to represent high-pressure, pure-gas adsorption data. Based on 

these results, the OK framework is extended to mixture predictions. Specifically, we 

have: 

1. Evaluated the predictive capability, where the OK model parameters obtained 

from pure-gas adsorption are used to predict gas mixture adsorption for selected 

multicomponentadsorption systems. 

2. Evaluated the predictive capability of the model, where binary interaction 

parameters (BIP) are used to examine the model representation of the mixture 

data. 

The model development/evaluation was conducted using our newly-acquired data and 

data from the literature. 

As in the modeling of pure-gas adsorption, we first performed studies on dry 

activated carbon matrices, followed by studies on wet coals. Data in the literature on 

high-pressure mult1component gas adsorption, however, are not as plentiful as for pure 

fluids. Thus, the following mixture adsorption data on activated carbon were selected for 

the model evaluation: 
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1. Mixture adsorption of methane, nitrogen and CO2 on Calgon F-400 activated 

carbon at 318.2 K (OSU, 2002). 

2. Mixture adsorption of methane, nitrogen and CO2 on Norit Rl-Extra activated 

carbon at 298 K (Dreisbach et al., 1999). 

3. Mixture adsorption of methane, ethane, and ethylene on BPL activated carbon at 

301.4 K (Reich et al., 1980). 

A few experimental studies have examined high-pressure multicomponent gas 
' 

adsorption on coals (Arri et al., 1992; DeGance, 1992; Harpalani and Pariti, 1993; 

Greaves et al., 1993; Clarkson and Bustin; 2000). Limited information, however, was 

given on the experimental data in most of those references. Therefore, we decided to use 

only OSU mixture adsorption measurements on various wet coals for model evaluation. 

Modeling Mixed-Gas Adsorption on Dry Activated Carbon 

Methane. Nitrogen and CO2, Mixture Adsorption on Calgon F-400 (OSU Data) 

Our measurements on pure and mixture adsorption of methane, nitrogen and CO2 

on activated carbon at 318.2 Kand pressures to 13.6 MPa were used to evaluate the OK 

modeling capability. · The experimental data are given in a recent publication 

(Sudibandriyo et al., 2003) and also documented in a DOE Report (Gasem et al., 2002). 

The binary mixture adsorption includes methane/CO2, nitrogen/CO2, and 

methane/nitrogen at nominal molar feed gas compositions of 20, 40, 60 and 80% with a 

specific void volume ranging from 2.04-2.57 cm3/g. Adsorption isotherms were also 

measured for a single methane/nitrogen/CO2 ternary mixture at the nominal molar feed 

composition of 10/40/50 with a specific void volume of 2.10 cm3/g. 
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Because adsorption calculations are very sensitive to inaccuracies in experimental 

mole fraction, in general, using the "iteration function method" (IFM) to predict the gas 

composition, gives better results than using the experimental gas compositions. 

Therefore, in this study, we only present the results based on the iteration function 

method. The sum of squares of weighted absolute errors in the calculated adsorption was 

selected for the objective function to determine the binary interaction parameters. 

Evaluation of the pure adsorption is reported in Chapter 6, and the OK model 

parameters used to fit the pure adsorption data are given in that chapter. 

Table 17 presents the results of the OK model predictions for binary mixture 

adsorption on dry activated carbon. The results are based solely on parameters from fits 

to pure component data ( Cv=O). On average, the OK model can predict the binary 

adsorption data with about 1.6 times the expected experimental uncertainties. The OK 

model can predict the total and the more-adsorbed component adsorptions within 7.5% 

. AAD. Although the RMSE is small, the percentage deviation for the lesser-adsorbed 

component adsorptions is large as the Gibbs excess adsorption becomes exceedingly 

small. For example, in the nitrogen/CO2 system, 81 % AAD and 0.20 mmol/g RMSE 

were obtained for nitrogen adsorption, compared to 7.5% AAD and 0.33 mmol/g RMSE 

for total adsorption in the same system. However, worse results were generally obtained 

for the predictions of the lesser-adsorbed component adsorptions, as indicated by larger 

W AAD (up to 3.5 for nitrogen adsorption in nitrogen/CO2 system). 

Here, we evaluate the capability of the generalized pure-adsorption model 

described in the previous chapter. to · predict mixture adsorption. Accordingly, pure­

adsorption model parameters based on the generalized model were used for mixture 
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Table 17. OK Model Predictions of Binary Mixture Adsorption on Dry Activated 
Carbon at 318.2 K (OSU, 2002) 

Systems NPTS %AAD 
RMSE 

WAAD 
(mmoU2) 

Based on Parameters from the Pure-Adsorption Model 

CH4-N2 
Methane 40 2.5 0.080 LO 
Nitrogen 40 11.7 0.064 1.7 
Total 40 0.7 0.029 0.3 

CH4-C02 
Methane 40 17.8 0.132 2.1 
CO2 40 4.1 0.113 1.0 
Total 40 4.0 0.206 1.1 

N2-C02 
Nitrogen 40 81.1 0.199 3.5 
CO2 40 4.6 0.152 1.2 
Total 40 7.5 0.335 2.4 

. Based on Generalized Pure-Adsorption Model 

CH4-N2 
Methane 40 3.3 0.096 1.2 
Nitrogen 40 6.9 0.070 1.5 
Total 40 2.9 0.098 1.2 

CH4-C02 
Methane 40 18.7 0.126 1.9 
CO2 40 3.1 0.130 0.8 
Total 40 1.5 0.087 0.4 

N2-C02 
Nitrogen 40 71.0 0.164 2.6 
CO2 40 3.8 0.127 1.0 
Total 40 5.6 0.277 1.8 
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adsorption predictions. The results presented in Table 17 show that slightly better 

predictions are obtained than those based on the pure-adsorption model regressions. On 

average, the generalized OK model can predict the binary adsorption data with about 1.4 

times the experimental uncertainties. However, using the generalized pure-component 

parameters results in poor predictions for the pure-component adsorption (up to three 

times the experimental uncertainties for methane adsorption). 

Figures 42 and 43 show the OK model predictions of the individual component 

adsorption of methane/CO2 system. As shown in these figures, · on average, the OK 

model can predict the binary mixture adsorptions within twice the experimental 

uncertainties. In addition, the model can also predict a maximum in the Gibbs adsorption 

as experimentally observed for the lesser-adsorbed component. 

Table 18 presents the OK model representation of binary mixture adsorption 

based on only one binary interaction parameter, Cij, in the fluid-fluid energy parameter, 

&ij. Significant improvement has been obtained, especially for the nitrogen component 

adsorption in the nitrogen/CO2 system; specifically, a reduction in WAAD from 3.5 to 

0.6 is observed with the use of one binary interaction parameter. On average, the OK· 

model can represent the binary adsorption data with about 0.8 times the experimental 

uncertainties with the maximum error obtained for representing the CO2 component 

adsorption in the nitrogen/CO2 mixture, which yielded 1.4 times the expected 

experimental uncertainties. 
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Table 18. OK Model Representations of Binary Mixture Adsorption on Dry 
Activated Carbon at 318.2 K (OSU, 2002) 

Systems NPTS %AAD 
RMSE 

WAAD Cii Eii (mmoVg) 

Based on One Regressed Parameter (Cij) 

CH4-N2 
Methane 40 2.8 0.073 1.1 0.198 1.0 
Nitrogen 40 5.0 0.032 0.7 
Total 40 1.8 0.065 0.8 

CH4-C02 
Methane 40 4.8 0.047 0.4 0.335 1.0 
CO2 40 2.7 0.147 0.7 
Total 40 2.2 0.152 0.6 

N2-C02 
Nitrogen 40 8.2, 0.045 0.6 0.658 1.0 
CO2 40 4.4 0.255 1.4 

Total 40 4.1 0.262 1.4 

Based on Two Regressed Parameters 

· Cll4-N2 
Methane 40 1.5 0.036 0.6 0.351 1.078 
Nitrogen 40 2.0 0.020 0.5 
Total 40 0.7 0.033 0.3 

CH4-C02 
Methane 40 4.2 0.033 0.4 0.280 0.956 
CO2 40 2.1 0.101 0.5 

Total 40 1.7 0.107 0.5 

N2-C02 
Nitrogen 40 17.6 0.044 0.7 0.446 0.871 
CO2 40 2.3 0.130 0.7 

Total 40 2.6 0.162 0.8 
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The binary interaction parameters obtained, however, are relatively large (qj = 
0.658, 0.335 and 0.198 for nitrogen/CO2, methane/CO2 and methane/nitrogen system, 

respectively). This is, at least in part, due to influence of the quadrupole moment of the 

CO2 affected by the fluid-solid interaction energy. Exact calculations of this effect are 

complicated, but it appears that the nitrogen/CO2 system shows more non-ideality than 

the other systems. Other reasons for the large CiJ include the inadequacy of the 

mixing/combining rules applied in OK model to predict binary adsorption. 

The relatively large values of CiJ also suggest that the correlative burden of the 

binary adsorption modeling has mainly rested on the correction in the fluid-fluid 

interaction energy. In future studies, application of the surface heterogeneity through the 

fluid-solid energy distribution should be considered, while the chemical potential in the 

gas phase should be calculated using an accurate equation of state. 

Table 18 also presents the results when two binary interaction parameters are 

regressed to represent the binary mixture adsorption. As presented in Table 18, on 

average, the deviation obtained is about 0.5 times the experimental uncertainties. The 

second binary interaction parameters, EiJ, for methane/CO2 and methane/nitrogen system 

are close to the nominal one; for nitrogen/CO2 system, however, significant correction is 

needed (EiJ=0.871). 

Figures 42 and 43 also show the OK representations of the individual component 

adsorption of methane/CO2 system. For completeness, pure-substance adsorption is 

included in each figure. As shown in these figures, the OK model can represent the 

binary mixture adsorptions very well within the experimental uncertainties, as indicated 

by the error bars in the figures. 
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Figure 44 presents an example for a comparison between the gas compositions 

obtained from experimental measurements and the ones obtained from the IFM 

calculations. The figure shows that the gas compositions obtained from IFM calculations 

produce an excellent fit to the experimental values. Slight deviations, however, occur at 

lower pressures. This might be due to a modeling deficiency or an experimental error, 

where the equilibrium condition may have not been reached in the earlier stages of 

adsorption even though the system had been allowed 24 hours to reach equilibrium. 

Table 19 presents the model predictions for the ternary mixture adsorption on dry 

activated carbon at 318.2 K. The predictions based on pure adsorption parameters 

produce deviations of about 1.8 times the experimental uncertainties, on average. Larger 

deviations are seen for the lesser-adsorbed component adsorption; i.e. nitrogen (about 

three times the experimental uncertainties). Table 19 also presents the component 

adsorption predictions of the ternary mixture based on the pure and the binary interaction 

parameters (BIP) obtained from binary adsorption data. As expected, the use of binary 

interaction parameters not only reduces the calculated deviations for the binary systems, 

but also improves the predictions for the component ternary adsorption. The prediction 

based on pure and binary adsorption parameters produce errors of about 0.8 and 0.7 times 

the experimental uncertainties when using one and two binary interaction parameters, 

respectively. The slight difference from the two results indicates that using only one 

binary interaction parameter may be sufficient to represent the mixture adsorption. 
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Table 19. OK Model Predictions of Ternary Mixture Adsorption on Dry Activated 
Carbon at 318.2 K 

Systems. NPTS %AAD 
RMSE 

WAAD 
(mmol/2) 

Based on Parameters from the Pure-Adsorption Model 

Methane 11 8.9 0.040 0.7 
Nitrogen 11 540 0.201 3.3 
CO2 11 3.1 0.107 0.9 
Total 11 6.8 0.335 2.2 

Based on Generalized Pure-Adsorption Model 

Methane 11 11.4 0.054 0.9 
Nitrogen 11 474 0.158 2.3 
CO2 11 1.7 0.077 0.5 
Total 11 4.9 0.275 1.6 

Based on Pure and One Binary Interaction Parameter (Cj) 

Methane 11 2.6 0.012 0.2 
Nitrogen 11 37.6 0.022 0.4 
CO2 11 4.3 0.290 1.2 
Total 11 4.2 0.299 1.3 

Based on Pure and Two Binary Interaction Parameters 

Methane 11 4.2 0.017 0.5 
Nitrogen 11 121 0.052 0.9 
CO2 11 2.5 0.139 0.7 
Total 11 3.2 0.177 0.9 

Figures 45 shows the OK model predictions for the ternary mixture adsorption on 

activated carbon, based on pure-component data and with two binary interaction 

parameters from the binary adsorption data. As shown in the figure, the OK model can 

predict all the ternary mixture adsorptions well and within the experimental uncertainties 

(represented by the error bars in the figures) when the binary interaction parameters are 

included. 
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Methane, Nitrogen and CO_i Mixture Adsorption on Norit RI-Extra {Dreisbach, 1999) 

The measurements from other investigators were used to validate the mixture 

adsorption model. Pure and mixture adsorption of methane, nitrogen and CO2 on Norit 

RI-Extra activated carbon at 298 K (Dreisbach, 1999) were used to evaluate the OK 

modeling capability. Because no detailed information was given on the uncertainties of 

the experimental data selected, the percentage average error of the Gibbs excess 

adsorption (%AAD) was used for the objective function to determine the model 

parameters. Evaluation of the pure adsorption has been conducted in the previous 

chapter, where the OK model parameters used to fit the pure adsorption data were 

reported. 

Also, because no detailed information was given on the feed composition and the 

specific void volume of the system, the IFM procedure cannot be employed in the 

modeling effort. In this case, the gas-phase equilibrium mole fractions obtained from the 

adsorption measurements were smoothed using a regressed logarithmic function, before 

they were used to calculate the individual Gibbs excess adsorption. 

Table 20 presents the prediction of binary mixture adsorption on dry Norit RI­

Extra activated carbon at 298 K based on pure component parameters. As presented in 

the table, the OK model can predict the total adsorption data within 6% AAD (about 0.4 

mmol/g in RMSE). However, the prediction for individual component adsorption 

produces only mediocre results (12 to 139% AAD or 0.18 to 0.57 mmol/g in RMSE). 

These unsatisfactory prediction results are, in part, due to the large uncertainties in the · 

equilibrium mole fractions in the gas phase data obtained from the adsorption 

measurements. Not unexpectedly, the worst predictions are for the nitrogen adsorption in 
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Table 20. OK Model Predictions of Binary Mixture Adsorption on Dry 
Activated Carbon at 298 K (Dreisbach, 1999) 

Systems NPTS %AAD RMSE (mmol/g) 

Based on Two-Parameter Pure-Adsorption Model 

CH4-N2 

Methane 24 12.2 0.352 
Nitrogen 24 22.3 0.181 
Total 24 4.3 0.197 

CH4-C02 

Methane 24 13.4 0.207 
CO2 24 18.8 0.569 
Total 24 5.8 0.487 

N2-C02 

Nitrogen 24 139 0.317 
CO2 24 7.6 0.483 
Total 24 6.0 0.364 

Based on Generalized Pure-Adsorption Model 

CH4-N2 

Methane 24 7.4 0.240 
Nitrogen 24 12.8 0.113 
Total 24 4.6 0.192 

CH4-C02 

Methane 24 10.2 0.319 
CO2 24 31.3 0.571 
Total 24 8.3 0.584 

N2-C02 

Nitrogen 24 38.2 0.100 
CO2 24 13.2 0.597 
Total 24 11.9 0.609 

140 



nitrogen/CO2 system (139% AAD). For this system, the RMSE of the nitrogen 

adsorption is 0.32 rnrnol/g, which is actually smaller than the RMSE of the total 

adsorption (0.36 rnrnol/g) with only 6% AAD. The higher %AAD in nitrogen adsorption 

is mainly due to its lower adsorption in this mixture. 

Using the parameters based on the generalized pure-adsorption model improves 

the individual adsorption predictions, especially the nitrogen adsorption in nitrogen/CO2 

system (38% AAD). As in the case of OSU data, however, using these generalized pure 

component parameters results in unsatisfactory predictions for the pure-component 

adsorption. 

Table 21 presents the OK model representation of binary mixture adsorption 

based on only one binary interaction parameter, Cij, in the fluid-fluid energy parameter, 

Bij. Significant improvement from the predictive case · has been obtained. The total 

adsorption can be represented within 6.4% AAD and the individual component 

adsorption can be represented with deviations from 5.7 to 17.8% AAD. 

Table 21 also presents the results when two binary interaction parameters are 

applied to represent the binary mixture adsorption. As presented in Table 21, only slight 

improvement is obtained compared to the results obtained by using only one binary 

interaction parameter. The total adsorption can be represented with AAD from 3 to 5% 

and the individual component adsorption can be represented from 6 to 17% AAD. 

Table 22 presents the model prediction results for the ternary mixture adsorption 

on dry Norit Rl-Extra activated carbon. The total adsorption can be predicted based on 

pure adsorption parameters to within 12% AAD. The OK model can predict the more­

adsorbed component adsorptions within 18% AAD. The percentage deviations for the 
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Table 21. OK Model Representations of Binary Mixture Adsorption on Dry 
Activated Carbon at 298 K (Dreisbach, 1999) 

Systems NPTS. %AAD RMSE (mmoVg) Cv Eii 

Based on One Regressed Parameter (Cv) 

CH4-N2 
Methane 24 14.8 0.345 0.610 1.0 
Nitrogen 24 5.8 0.119 
Total 24 6.4 0.291 

CII4-C02 
Methane 24 6.8 0.182 0.294 1.0 
CO2 24 10.1 0.451 
Total 24 6.2 0.540 

N2-C02 
Nitrogen 24 17.8 0.087 0.832 1.0 
CO2 24 5.7 0.344 
Total 24 4.8 0.327 

Based on Two Regressed Parameters 

CH4-N2 
Methane 24 11.0 0.214 0.665 1.197 
Nitrogen 24 8.2 0.204 
Total 24 2.9 0.100 

CH4-C02 
Methane 24 3.7 0.097 0.319 1.206 
CO2 24 9.4 0.257 
Total 24 4.8 0.276 

N2-C02 
Nitrogen 24 17.2 0.079 0.832 0.971 
CO2 24 5.9 0.363 
Total 24 4.9 0.342 
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Table 22. OK Model Predictions of Ternary Mixture Adsorption on Dry Activated 
Carbon at 298 K (Dreisbach, 1999) 

Systems NPTS %AAD RMSE (mmol/g) 

Based on Parameters from the Pure-Adsorption Model 

Methane 40 13.4 0.514 
Nitrogen 40 45.0 0.446 
CO2 40 12.5 0.261 
Total 40 8.7 0.794 

Based on Pure and One Binary Interaction Parameter (Cij) 

Methane 40 17.2 0.661 
Nitrogen 40 48.5 0.5 
CO2 40 14.2 0.34 
Total 40 11.9 1.09 

Based on Pure and Two Binary Interaction Parameters 

Methane 40 17.9 0.638 
Nitrogen 40 47.2 0.473 
CO2 40 14.9 0.393 
Total 40 9.1 0.731 

lesser-adsorbed component adsorptions, however, are large as the Gibbs excess 

adsorption becomes very small. Application of the binary interaction parameters does 

not appear to improve the predictions for this adsorption system. In fact, about the same 

magnitude of deviations were also obtained by Dreisbach (1999) for ternary adsorption 

predictions using a dual-site Langmuir model. 

Inaccuracy in experimental gas mole fractions may have contributed to the larger 

deviations in the mixture adsorption predictions. In his study, Dreisbach used two 

different methods to obtain the bulk-phase compositions. For binary adsorption, he used 

an equation of state to infer both the bulk-phase composition and density from P-T 
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measurements and system volume calibrations, while for ternary adsorption he used a gas 

chromatograph to measure the bulk-phase composition. 

Methane, Ethane, and Ethylene Mixture Adsorption (Reich, 1980) 

Zhou (1994) used data for methane, ethane, and ethylene on activated carbon at 

30L4 K (Reich et al., 1980) for model comparisons. For the same reason, the OK model 

was also used to represent those data and compared with the modeling results obtained by 

Zhou. 

Because no detailed information was given on the uncertainties of the 

experimental data selected, the percentage average absolute error of the adsorption 

(%AAD) was used for the objective function to determine the model parameters. Also, 

because no detailed information was given on the specific void volume of the system, the 

IFM calculation procedure could not be employed in the modeling effort. The feed 

compositions are the same as the gas-phase equilibrium mole fractions in their adsorption 

measurements. These experimental equilibrium· gas mole fractions were used to calculate 

the individual Gibbs excess adsorption. 

Table 23 presents the comparison of model predictions and representations for 

mixture adsorption of methane, ethane and ethylene on dry BPL activated carbon at 301.4 

K. As exhibited in the table, on average, the OK model predicts the total and more­

adsorbed component adsorption very well (with 4% AAD). The model, however, is 

unable to provide good estimates for the lesser-adsorbed component (up to 35% AAD). 

For individual adsorption, the OK model prediction gives better results compared to the 

Langmuir model and gives results comparable to the 2-D BOS model. In addition, for 

total adsorption predictions, the OK model has better performance than the 
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Table 23. Comparison of Model Predictions and Representations for CH4, C2H6 and C2~ Mixture Adsorption 
on Dry Activated Carbon at 301.4 K (Reich, 1980) 

%AAD RMSE (mmol/g) 
Systems 

NPTS 2-D 
Lang- 2-D 

EOS OK 
OK OK 

OK 
OK OK 

muir EOS 
(Cii) 

(Cu) (Cu &Eu) (Cu) (Cu & Eu) 

CH4-C2H6 

Methane 14 36.7 39.8 19.5 35.2 23.8 23.7 0.329 0.169 0.168 
Ethane 14 4.4 2.4 2.3 3.8 2.5 2.4 0.142 0.086 0.084 
Total 14 5.8 7.2 3.5 4.5 2.3 2.2 0.226 0.125 0.153 

CH4-C2~ 

Methane 15 28.9 33.9 8.8 29.9 15.2 14.0 0.297 0.110 0.104 
Ethylene 15 5.4 2.9 3.3 3.8 3.2 1.9 0.148 0.113 0.088 
Total 15 5.8 6.3 2.7 3.1 2.8 2.2 0.172 0.126 0.141 

C2H6-C2H4 

Ethane 12 5.2 4.6 5.0 4.3 5.1 4.1 0.099 0.110 0.084 
Ethylene 12 8.3 6.8 5.7 5.7 5.0 3.3 0.187 0.185 0.116 
Total 12 6.4 5.6 5.1 3.8 3.3 1.3 0.193 0.176 0.080 

C~-C2H6-C2~ 

Methane 14 59.3 51.2 33.5 52.2 39.1 38.1 0.486 0.303 0.285 
Ethane 14 3.7 3.5 4.8 5.6 4.7 5.4 0.122 0.093 0.102 
Ethylene 14 4.9 4.4 5.5 4.9 4.9 5.5 0.133 0.154 0.131 
Total 14 9.5 8.4 5.5 5.7 3.9 3.9 0.420 0.334 0.287 

* The results presented in the third to fifth columns are taken from Zhou (1994). 



other models (on average, the %AAD are 3.8, 6.0, and 6.4 for the OK, Langmuir and 

EOS-S model, respectively). 

As other models do, the OK model can also predict the ethane/ethylene 

adsorptions very well, within 6% AAD. Pure ethane and ethylene have very similar 

adsorption on activated carbon. Therefore, the adsorbed phase is expected to form an 

ideal mixture. 

The use of optimum interaction parameters significantly improves the predictions 

of methane adsorption in the binary and ternary systems. The average deviations for 

methane adsorption were reduced from 35.2% to 23.8% for methane/ethane and from 

33.9% to 15.2% for methane/ethylene. For the ternary system, using the binary 

interaction parameter obtained from binary data, the OK model reduced average 

deviations in predicting the amount of methane adsorbed from 52.2 % to 39.1 %. 

However, application of the second binary in!eraction parameters (Eij) in these systems 

does not improve the mixture adsorption representations. 

The binary interaction parameters for the OK model are reported in Table 24. 

Interestingly, negative values of Cij were also obtained for these systems, as was the case 

of interaction parameters obtained by Zhou using a two-dimensional equation of state 

model (2-D EOS). As expected, only small Cij (= -0.037) was obtained for the ethane/ 

ethylene system. 

Figures 46 and 47 show the OK model predictions and representations of the 

methane/ethane mixture adsorption on dry BPL activated carbon. For completeness, pure 

adsorption is also included in each figure. As shown in the figures, using the binary 

interaction parameters improves the model in representing the methane adsorption data. 
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However, the model always underestimates the methane adsorption in the 

methane/ethane and methane/ethylene systems, especially at higher pressures. 

Table 24. Binary Interaction Parameters Used in OK Model for CRt, C211t, and 
C2Rt Mixture Adsorption on Dry AC at 301.4 K (Reich, 1980) 

Systems Cii Eii 

One Binary Interaction Parameter 

C~-C28<i -0.569 -

C~-C~ -0.550 -

C28<i-C2~ -0.037 -

Two Binary Interaction Parameters 

C~-C28<i -0.577 0.972 

C~-C~ -0.642 0.890 

C28<i-C2~ -0.037 1.088 

Modeling of Mixed-Gas Adsorption on Coals 

Data Employed 

Pure and binary mixture adsorption of methane, nitrogen and CO2 on wet 

Fruitland coal at 319.3 K and pressures to 12.4 MPa have been measured at OSU as 

documented by Hall (1993). The mixture data include methane/CO2, nitrogen/CO2, and 

methane/nitrogen adsorption isotherms at nominal molar feed gas compositions of 20, 40, 

60 and 80% with a specific void volume ranging from 1.22-1.29 cm3/g and moisture 

content ranging from 8% to 14%. 
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The adsorption data on Fruitland coal reported by Hall were reanalyzed from 

primary PVTy measurements since the Redlich-Kwong (RK) equation of state was used 

to determine the gas compressibility factors. The RK predictions are inadequate in this 

near-critical portion of the CO2 phase diagram. Therefore, in the present data-reduction 

calculations, the raw measurements were reprocessed using highly-precise equations of 

state (Span and Wagner, 1996; Pan, 2003) to obtain the Gibbs excess adsorptions, which 

were used for this model evaluation. 

The adsorption of pure and binary mixture adsorption of methane, nitrogen and 

CO2 on wet Illinois #6 at 319.3 Kand pressures to 12.4 MPa have been measured at OSU 

and documented in a DOE Report (Gasem et al., 2001). The mixture data include 

methane/CO2, nitrogen/CO2, and methane/nitrogen adsorption isotherms at nominal 

molar feed gas compositions of 20, 40, 60 and 80% with a specific void volume ranging 

from 1.00-1.69 cm3/g and moisture content ranging from 5% to 23%. · 

The low-adsorptive nature of the Illinois #6 coal makes the adsorption 

measurement very sensitive to the bulk-gas composition measurement, especially for the 

methane/CO2, nitrogen/CO2 systems. In this case, the gas-phase equilibrium mole 

fractions obtained from the adsorption measurements were smoothed using a regressed 

logarithmic function for methane/CO2 system and using IFM procedure for the nitrogen 

/CO2 system. The smoothed gas-phase equilibrium mole fractions were then used to 

reprocess the data-reduction calculations for the earlier reported data (Gasem et al., 2001) 

to obtain Gibbs excess adsorption isotherms. 

Adsorption isotherms were measured at OSU for the methane/nitrogen, 

methane/CO2 and nitrogen/CO2 binary mixtures on wet, mixed Tiffany coal at 327 .6 K 
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and pressures to 13.8 MPa. The coal sample was from an equal-mass mixture of coals 

from BP Amoco Tiffany Injection Wells #1 and #10. These measurements were 

conducted for a single molar feed composition for each mixture with specific void 

volume about 0.89 cm3/g and moisture content about 11 %. Adsorption isotherms were 

also ineasured for a single methane/nitrogen/CO2 ternary mixture on wet, mixed Tiffany 

coal at 327.6 Kand pressures to 13.8 MPa. The nominal molar feed composition was 

10/40/50 with specific void volume of 0.89 cm3/g and moisture content of 10%. The 

adsorption data for those measurements were documented in a DOE report (Gasem et al., 

2000) and also in a topical report (Gasem et al., 2002). 

Results 

The IFM procedure was used for the model evaluation, and the sum of squares of 

weighted absolute errors in the calculated adsorption was selected for the objective 

function to determine the binary interaction parameters. 

The model evaluation for the pure adsorptions and the corresponding OK model 

parameters, are presented in Chapter 6. 

Tables 25-27 present the results of the OK model adsorption predictions for the 

binary mixtures on the selected wet coals. On average, the OK model can predict the· 

binary adsorption data within twice the expected experimental uncertainties. However, 

high W AAD of 4.5 was observed for methane adsorption in the methane/CO2 adsorption 

on wet Tiffany coal. It appears that the model underestimates the methane adsorption in 

this system, especially at higher pressures. 

The OK model can predict the total and the more-adsorbed component 

adsorptions within 17% AAD. However, the percentage deviation for the lesser-adsorbed 
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component adsorptions is large as the Gibbs excess adsorption becomes exceedingly 

small. For example, the %AAD of the nitrogen adsorption in the nitrogen/CO2 

adsorption on wet Tiffany coal reaches 156, although the RMSE is only 0.015 mmol/g. 

Tables 25 and 26 also present the results when the paramet~rs based on a 

generalized pure-adsorption model were used to predict the mixture adsorption. 

Comparable statistical results to the case without generalization were obtained. 

Tables 28-30 present the OK model representation of binary mixture adsorption 

using binary interaction parameters. Significant improvement has been obtained, 

especially for the lesser-adsorbed component adsorptions. For example, a reduction in 

W AAD from 4.5 to 1.0 is observed for methane component adsorption in the 

methane/CO2 adsorption on wet Tiffany coal with the use of one binary interaction 

parameter, Cij. Also, a reduction from 152 to 67 %AAD is observed for nitrogen 

component adsorption in nitrogen/CO2 adsorption on wet Fruitland coal. On average, the 

OK model can represent the binary adsorption on wet coals data with about 0.8 times the 

expected experimental uncertainties. Better representations were further obtained when 

two binary interaction parameters were applied, as indicated by a W AAD of about 0.5. 

The binary interaction parameters obtained from the adsorption on Fruitland coal 

are similar in order to those obtained from the adsorption on dry activated carbon, i.e., Cij 

= 0.438, 0.126 and 0.099 for nitrogen/CO2, methane/CO2 and methane/nitrogen system, 

respectively. But the binary interaction parameters obtained from the adsorption on 

Illinois #6 and Tiffany coals do not show similar trend to those obtained from the 

adsorption on dry activated carbon. 
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Table 25. OK Model Predictions of Binary Mixture Adsorption on Wet Fruitland 
Coal at 319.3 K (OSU, 2000) 

Systems NPTS %AAD RMSE 
WAAD 

(mmol/~) 

Based on Two-Parameter Pure-Adsorption Model 

CH4-N2 
Methane 40 3.1 0.014 0.3 
Nitrogen 40 16.4 0.019 0.9 
Total 40 5.1 0.023 0.6 

CH4-C02 
Methane 40 8.9 0.012 0.5 
CO2 40 5.7 .0.036 0.8 

Total 40 4.7 0.040· 0.7 

N2-C02 
Nitrogen 40 152 0.026 1.0 
CO2 40 7.1 0.059 0.9 
Total 40 11.3 0.078 1.2 

Based on the Generalized Pure-Adsorption Model 

CH4-N2 
Methane 40 3.1 0.012 0.3 
Nitrogen 40 29.4 ·0.023 1.5 
Total 40 4.0 0.016 0.4 

CH4-C02 
Methane 40 29.5 0.036 1.3 
CO2 40 9.5 0.049 1.2 
Total 40 4.2 0.034 0.6 

N2-C02 
Nitrogen 40 130 0.016 0.6 
CO2 40 6.2 0.045 0.6 

Total 40 5.9 0.053 0.6 
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Table 26. OK Model Predictions of Binary Mixture Adsorption on Wet Illinois #6 
Coal at 319.3 K (OSU, 2001) 

Systems NPTS %AAD 
RMSE 

WAAD (mmoUg) 

Based on Two-Parameter Pure-Adsorption Model 

CH4-N2 
Methane 40 12.6 0.018 1.0 
Nitrogen 40 85.2 0.013 0.8 
Total 40 13.5 0.030 1.2 

CH4-C02 
Methane 40 · 17.6 0.017 1.1 
CO2 40 9.8 0.054 1.2 

Total 40 8.7 0.058 1.3 

N2-C02 
Nitrogen 40 44.3 0.004 0.5 
CO2 40 9.5 . 0.045 1.6 
Total 40 7.6 0.042 1.3 

Based on the Generalized Pure-Adsorption Model 

CH4-N2 
Methane 40 26.5 0.039 2.0 
Nitrogen 40 31.9 0.005 0.6 
Total 40 16.8 0.038 1.5 

CH4-C02 
Methane 40 21.2 0.021 1.5 
CO2 40 8.3 0.045 1.0 
Total 40 8.0 0.053 1.2 

N2-C02 
Nitrogen 40 207 0.018 1.6 
CO2 40 11.9 0.054 1.9 
Total 40 6.8 0.036 1.1 
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Table 27. OK Model Predictions of Binary Mixture Adsorption on Wet Tiffany 
. Coal at 327.6 K (OSU, 2002) 

Systems NPTS %AAD 
RMSE 

WAAD 
(mmol/fi) 

CH4-N2 
Methane 11 6.9 0.018 1.0 
Nitrogen 11 5.3 0.003 0.3 
Total 11 6.5 0.020 1.0 

CH4-C02 
Methane 11 45.7 0.055 4.5 
CO2 11 16.9 0.072 2.5 
Total 11 . 3.5 0.020 0.6 

N2-C02 
Nitrogen 11 156 0.015 1.5 
CO2 11 7.8 0.049 1.0 
Total 11 5.9 0.036 0.9 
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Table 28. OK Model Representations of Binary Mixture Adsorption on Wet 
Fruitland Coal at 319.3 K (OSU, 2000) 

Systems NPTS %AAD 
RMSE 

WAAD Cij Eij (mmoVg) 

Based on One Regressed Parameter (Cij) 

CH4-N2 
Methane 40 3.1 0.015 0.3 0.099 1.0 
Nitrogen 40 17.7 0.018 1.0 
Total 40 4.6 0.020 0.5 

CH4-C02 
Methane 40 8.8 0.013 0.4 0.126 1.0 
CO2 40 5.6 0.040 0.7 
Total 40 3.8 0.035 0.6 

N2-C02 
Nitrogen 40 67.1 0.014 0.6 0.438 1.0 
CO2 40 8.1 0.073 1.0 
Total 40 9.9 0.073 1.1 

Based on Two Regressed Parameters 

. CH4-N2 
Methane 40 3.4 0.011 0.3 -0.241 0.825 
Nitrogen 40 10.5 0.012 0.6 
Total 40 1.7 0.011 0.2 

CH4-C02 
Methane 40 7.8 0.017 0.5 0.012 0.891 
CO2 40 2.7 0.017 0.3 
Total 40 2.1 0.018 0.3 

N2-C02 
Nitrogen 40 82.3 0.010 0.4 0.152 0.681 
CO2 40 4.3 0.034 0.5 
Total 40 3.5 0.035 0.4 
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Table 29. OK Model Representations of Binary Mixture Adsorption on Wet Illinois 
#6 Coal at 319.3 K (OSU, 2001) 

Systems NPTS %AAD 
RMSE 

WAAD Cii Eii (mmol/g) 

Based on One Regressed Parameter (Cij) 

CI14-N2 
Methane 40 11.1 0.021 0.9 1.094 1.0 
Nitrogen 40 27.3 0.005 0.5 
Total 40 9.4 0.023 0.8 

CH4-C02 
Methane 40 18.7 0.015 0.9 0.180 1.0 
CO2 40 10.4 0.060 1.2 

Total 40 8.0 0.055 1.1 

N2-C02 
Nitrogen 40 34.1 0.003 0.4 -0.306 1.0 
CO2 40 9.2 0.040 1.5 
Total 40 8.3 0.042 1.4 

Based on Two Regressed Parameters 

CH4-N2 
Methane 40 3.2 0.006 0.2 0.403 0.740 
Nitrogen 40 54.5 0.007 0.6 
Total 40 4.2 0.010 0.4 

CH4-C02 
Methane 40 12.0 0.010 0.6 -0.104 0.799 
CO2 40 7.9 0.034 0.9 

Total 40 5.7 0.032 0.8 

N2-C02 
Nitrogen 40 86.0 0.006 0.5 -0.618 0.715 
CO2 40 1.3 0.009 0.2 
Total 40 1.4 0.010 0.2 
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Table 30. OK Model Representations of Binary Mixture Adsorption on Wet 
Tiffany Coal at 327.6 K (OSU, 2002) 

Systems NPTS %AAD 
RMSE 

WAAD Cii Eii (mmol/g) 

Based.on One Regressed Parameter (Cij) 

CH4-N2 
Methane 11 7.0 0.019 1.0 -0.364 1.0 
Nitrogen 11 8.1 0.004 0.4 
Total 11 5.0 0.016 0.8 

CH4-C02 
Methane 11 12.5 0.021 1.0 -0.692 1.0 
CO2 11 12.9 0.049 2.0 
Total 11 7.0 0.030 1.2 

N2-C02 
Nitrogen 11 52.5 0.005 0.5 -1.239 1.0 
CO2 11 6.0 0.036 0.8 

Total 11 5.1 0.031 0.7 

Based on Two Regressed Parameters 

CH4-N2 
Methane 11 2.7 0.005 0.2 0.108 1.179 
Nitrogen 11 6.6 0.003 0.3 
Total 11 2.6 0.006 0.4 

CH4-C02 
Methane 11 8.9 0.015 0.7 -1.074 0.764 
CO2 11 4.4 0.017 0.7 
Total 11 1.8 0.007 0.4 

N2-C02 
Nitrogen 11 53.1 0.005 0.5 -1.230 1.036 
CO2 11 6.1 0.037 0.8 
Total 11 5.2 0.032 0.7 
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The second binary interaction parameters, Eij, for most of the systems are less 

than the values obtained from the adsorption on dry activated carbon. This indicates that 

the model without interaction parameters overestimates the individual component 

adsorption on the wet coals. The chemical structure of the coal and the presence of water 

in the coal affect the predictive capability of the model. Further, separating the two 

factors affecting the mixture adsorption modeling would require additional data, 

especially mixture adsorption data on dry coals. 

Figure 48 shows an example of the OK predictions and representations for the 

binary mixture adsorption on wet coal. For completeness, the corresponding pure-

substance adsorption isotherms are included in the figure. As shown in· the figure, the 

OK model can represent all the binary mixture adsorptions within the experimental 

uncertainties (represented by the error bars in the figures) when two binary interaction 

parameters are used. 

Table 31 presents the model predictions for the ternary mixture adsorption on wet 

Tiffany coal. For the total adsorption in this system, the OK model can predict data 

within the expected experimental uncertainties (within 8.5% AAD). The predictions 

based on pure-adsorption parameters produce deviations about 1.5 times the expected 
' 

experimental uncertainties, on average. The larger deviations are exhibited by the lesser-

adsorbed component adsorption; i.e., nitrogen (about 2.6 times the experimental 

uncertainties). The ternary mixture adsorption predictions based on the pure and the 

binary interaction parameters (BIP) obtained from binary adsorption data were also 

presented in Table 31. As in the case for adsorption on dry activated carbon, the use of 

binary interaction parameters not only reduces the observed deviations for the bina:ry 
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systems, but they also improve the predictions for the ternary adsorption systems. On 

average, the use of both one and two binary interaction parameters in the model can 

predict the ternary adsorption within the expected experimental uncertainties. 

Table 31. OK Model Predictions of Ternary Mixture Adsorption on Wet Tiffany 
Coal at 327.6 K 

Systems NPTS %AAD 
RMSE 

WAAD 
(mmoV2) 

Based on Parameters from Pure-Adsorption Model 

Methane 11 34.0 0.010 0.7 
Nitrogen 11 85.8 0.037 2.6 
CO2 11 19.3 0.073 2.1 

Total 11 5.1 0.028 0.6 

Based on Pure and One Binary Interaction Parameters (Cij) 

Methane 11 7.0 0.002 0.1 
Nitrogen 11 40.7 0.017 1.2 
CO2 11 15.3 0.051 1.6 
Total 11 8.5 0.034 1.0 

Based on Pure and Two Binary Interaction Parameters 

Methane 11 29.2 0.010 0.6 
Nitrogen 11 48.4 0.021 1.4 
CO2 11 13.1 0.042 1.4 
Total 11 7.5 0.030 0.9 

Figure 49 shows the OK model predictions for the ternary mixture adsorption on 

wet Tiffany coal, based on pure-component data and with two binary interaction 

parameters from the binary adsorption data. As shown in the figure, the OK model can 

predict almost all total and individual component adsorptions in the ternary mixture 

system within the experimental uncertainties when the binary interaction parameters are 

included. 
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Summary 

The OK model can be used to predict individual component adsorption in the 

binary and ternary system within twice the experimental uncertainties, on average. In 

general, the model can also predict the total adsorption in the binary system within the 

expected experimental uncertainties. Worse results were generally obtained for the 

predictions of the lesser-adsorbed component adsorptions, as indicated by larger W AAD 

(3.5 for nitrogen adsorption in the nitrogen/CO2 adsorption on activated carbon, and 4.5 

for methane adsorption in the methane/CO2 adsorption on wet Tiffany coal). 

The predictions of the binary adsorption on the dry activated carbon systems 

based on the generalized pure-adsorption model produced slightly better results than 

those based on the correlative pure-adsorption model. In the wet coal systems, 

comparable results were obtained for both cases. 

In general, the use of one binary interaction parameter, Cij, significantly improved 

the binary mixture adsorption representation. Specifically, the lesser-adsorbed 

components can be represented to within the expected experimental uncertainties with the 

use of Cij. Better representations were further obtained when two binary interaction 

parameters ( Cij and Eij) were applied, as indicated by a W AAD of about 0.5. 

Relatively large values of Cij in some system suggests that the correlative burden 

of the binary adsorption modeling has mainly rested on correcting values for the fluid­

fluid interaction energy. Application of the surface heterogeneity, such as the fluid-solid 

energy distribution, and application of an accurate equation of state with adequate mixing 

rules to calculate the chemical potential in the gas phase, should be considered in future 

studies. 
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The second binary interaction parameter, Eij, for most of the wet coal systems are 

less than the values obtained from the adsorption on dry activated carbon. This indicates 

that the model without interaction parameters overestimates the individual component 

adsorptions on the wet coals. The chemical structure of the coal and the presence of 

water in the coal affect the predictive capability of the model. Further, separating the two 

factors affecting the mixture adsorption modeling would require additional data, 

especially mixture adsorption data on dry coals. 

Comparison of the OK model to the other models in mixture adsorption on BPL 

activated carbon (Reich, 1980) shows that the OK model produced better predictions, for . 

individual adsorption, compared to Langmuir model and gave comparable results to the 

2-D EOS model. For the total adsorption predictions, the OK model has a better 

performance than the other models. 
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CHAPTERS 

CONCLUSIONS AND RECOMENDATIONS 

This study was an investigation of the efficacy of the Ono-Kondo (OK) lattice 

inodel for correlating and predicting high-pressure, supercritical adsorption isotherms 

encountered in CBM recovery and CO2 sequestration. Specifically, the parameters of the 

Ono-Kondo (OK) model were evaluated to obtain precise representation of pure-gas, 

high-pressure adsorption on carbon adsorbents for adsorbates in the near critical and 

supercritical regions. Generalized model parameters determined by accessible adsorbate 

and adsorbent characterizations were developed, and the model was extended to mixture 

adsorption. Following are specific conclusions and recommendations based on this work. 

Conclusions 

Pure-Gas Adsorption Modeling 

1. The OK monolayer model appears effective in modeling gas adsorption on carbon 

matrices at supercritical and near critical region. 

2. On average, the OK model with two regressed parameters for each system can 

correlate pure adsorption isotherms within the expected experimental 

uncertainties (3.6% AAD). 
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3. The generalized OK model predicts the adsorption on activated carbon with 8% 

AAD or twice the error of the two-parameter OK model. 

4. A high potential exists for developing a priori predictive model using fully­

generalized parameters that provides reasonably accurate predictions (within 

twice the experimental uncertainties) for the adsorption isotherms of various gases 

based on the adsorption isotherm of one gas on the same matrix. This includes 

the prediction of a maximum in the pure component excess adsorption at high 

pressures. 

Mixed-Gas Adsorption Modeling 

The OK model: 

5. Correlates the total and individual component adsorption in the binary systems 

within the expected experimental uncertainties. 

6. · Predicts total adsorption for the binary systems studied within the expected 

experimental uncertainties. 

7. Predicts individual component adsorption in the binary systems within twice the 

expected experimental uncertainties. 

8. Predicts the total and individual component adsorption in the ternary systems 

within the expected experimental uncertainties, if the information obtained from 

binary adsorption is utilized. 

9. Produces better prediction, for individual component adsorption, than the 

Langmuir model and gives comparable results to the 2-D EOS model. 
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Recommendations 

To fully exploit the potential of the OK model, the following developments are 

needed: 

1. Develop improved mixing/combining rules, and apply an accurate equation of 

. state to calculate the chemical potential of the gas phase. 

2. Develop a more rigorous approach to account for the effect of water on CBM 

adsorption systems. 

3. Include the effect of the surface heterogeneity by using descriptions, which 

include fluid-solid energy and/or pore size distributions. 
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APPENDIX A 

TEMPERATURE CALIBRATION 

The temperature of the equilibrium cell section was measured using an RTD 

digital thermometer, model 2180A, manufactured by Fluke. The platinum probe was 

inserted inside a hole in an aluminum block; which was attached to the surf ace of the 

equilibrium cell. The pump section temperature was measured using a thermocouple 

mounted to the inside of the Ruska injection pump. In addition, the pump section 

temperature was also monitored by three other thermocouples attached on the surf ace and 

surrounding of the injection pump. 

Calibrations were performed routinely during the course of the experiments. The 

temperature measuring devices were calibrated against a Minco platinum resistance 

reference thermometer model RT 88078. Table Al presents an example of the 

calibration results conducted on July 2002. Figures Al and A2 present linear fit of the 

reading cell and pump section temperatures to the Minco reference thermometer. Results 

showed root-mean-square errors (RMSE) of the fit to be 0.02°F and 0.07°F for the 

equilibrium cell and pump thermocouples, respectively. 
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Table Al. Temperature Calibration Results 

Points 
Minco Reference Cell Section Pump Section 

No. 
Temperature Temperature Temperature 

(°F) (°F) (OF) 

1 32.20 32.15 33.00 
2 50.36 50.30 51.00 
3 70.40 70.30 70.95 
4 90.42 90.35 91.10 
5 110.48 110.40 110.90 
6 120.53 120.50 120.90 
7 125.50 125.45 125.80 
8 127.49 127.45 127.80 
.9 128.50 128.50 128.75 
10 129.51 129.50 129.75 
11 130.01 130.00 · 130.20 
12 130.52 130.50 130.70 
13 130.89 130.90 131.10 
14 131.30 131.30 131.45 
15 131.49 131.50 131.65 
16 131.71 131.70 131.85 
17 132.12 132.10 132.30 
18 132.49 132.50 132.70 
19 133.00 133.00 133.20 
20 133.50 133.50 133.75 
21 134.51 134.50 134.70 

178 



140.0 -------------------u. 
0 

g, 120.0 

"C 
ca 

· a> 100.0 
a: 
Q) 

:i 80.0 -ca ... 
(1' 
a. 60.0 
E 
{!!. _ 40.0 
G) 
0 

y = 1.0007x - 0.1122 

R2 = 1.0000 

20.0 ------------------
20.0 40.0 60.0 80.0 100.0 120.0 140.0 

Standard Minco Reading, °F 

Figure Al. Temperature Calibration for Equilibrium Cell Temperature Measurement 

LL 140.0 -------------------
0 

~ 

g, 120.0 
"C 
ca 
~ 100.0 
Q) ... 
::I °«i 80.0 ... 
Q) 
a. 
E 

{!!. 
a. 
E 
::I 

60.0 

40.0 

y = 0.9939x + 1.0226 

R2 = 1.0000 

a. 20.0 -,..---.,.....--.,.....--.,.....--.,.....--.,.....----1 
20.0 40.0 60.0 80.0 100.0 120.0 140.0 

Standard Minco Reading, °F 

Figure A2. Temperature Calibration for Pump Temperature Measurement 

179 



APPENDIXB 

PRESSURE CALIBRATION 

180 



APPENDIXB 

PRESSURE CALIBRATION 

The pressures measured by Super TJE transducers were calibrated against a 

Ruska deadweight tester with calibration traceable to the National Institute of Science 

and Technology. Calibrations were performed routinely during the course of the 

experiments. The pump and cell section pressure transducers were calibrated at pressures 

from zero to 1800 psia at intervals of about 100 psia. The results were used to construct 

pressure calibration plots similar to the one illustrated in Figure B 1. Deviations between 

standard dead weight pressure and the transducer pressure were plotted as a function of 

transducer pressure. The pressure calibration data were fit to a second order polynomial 

in pressure using a least-squares method. Results showed root-mean-square errors 

(RMSE) of the fit to be 0.1 psia. The pressure calibration regression coefficients were 

entered into the data reduction software routines to make the appropriate pressure 

corrections. 
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APPENDIXC 

GAS CHROMATOGRAPH CALIBRATION 

For mixture adsorption, at equilibrium, a 20µL sample in the cell-section loop 

was transferred to the gas chromatograph for analysis. The GC used for composition 

analysis was a Varian Chrompack CP-3800 with the helium carrier gas maintained at a 

0.25-mUs flow rate. A 10-ft Haysep D packed-column was used for CHJC02, Nz!'C02 

and CHJCOzl'N2 systems, and a molecular sieve 13X column was used for the CHJN2 

system; column temperature was 80°C. A thermal conductivity detector was used for all 

of the binary systems studied; its bath temperature was set at 100°C. 

The gas chromatograph was calibrated against volumetrically-prepared mixtures 

at the nominal feed-gas concentrations. The chromatographic response factor, defined as 

( Az I A,_)( yJ y2 ) where A is the GC response percentage area, was found to depend 

slightly on pressure; as such, the GC was calibrated for each nominal composition at 

pressure intervals.of 1.4 MPa (200 psi). 

Table Cl presents the GC calibration fit for the binary systems used.Pin the GC 

calibration equation is pressure in psia, and the relative response factors were defined as 

follows: 

for methane/nitrogen system (Cl) 

for methane/CO2 system (C2) 

184 



for nitrogen/CO2 system. (C3) 

Table Cl. GC Calibration Fit for Binary Mixtures 

Binary System GC Calibration Equation 

Methane/Nitrogen 
RF1 = -l.5243xl0-5 P+0.31162yN2 -0.67741y!2 

+ 48.643 yt· + 0.823605 
2 

Methane/CO2 
RF2 = (-2.6972 y~02 + 4.2595 Yco2 )xl0-8 P 2 

+ (1.0987 y~02 -0.89272 Yco2 -0.38)x10-4 P+ 0.791 
. 3 2 

Nitrogen/CO2 
RF2 =(-5.0551Yco2 +0.07028Yca2 -0.025695Yco2 + 

0.00640681 )xl0-2 P-0.00060852 Yco2 + 0.92786 

By knowing the GC response percentage area at a given pressure, the composition of the 

gas mixture can be determined, using the equations given in Table Cl. Results showed 

the average deviations of the gas mole fraction determined by the calibration fit were less 

than 0.001 with the maximum deviation of 0.003. 

Figure C 1 shows the example of the GC calibration results for the methane/CO2 

binary system. The error bars in the figure represent the estimated uncertainties in 

determining RF from several samples taken. 

For the ternary mixture, the GC response percentage areas of methane and CO2 in 

the ternary mixture were normalized and the values were used to obtain the gas 

composition ( y~H. and y~02 ) using methane/CO2 calibration. Similarly, the GC response 

percentage areas of nitrogen and CO2 in the ternary mixture were normalized and the 

values were used to obtain the gas composition ( y~2 and y~02 ) using nitrogen-CO2 
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calibration. The ternary gas compositions were then calculated with the following 

equation: 

(C4) 

(CS) 

and 

(C6) 

Using the above method, the ternary gas compositions can be determined within 0.004 

deviations. 
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APPENDIXD 

ERROR ANALYSIS 

Pure Component Adsorption 

The Gibbs excess adsorption in units of mg mole/g adsorbent was calculated as 

follows: 

Gibbs 1000 nads n =----
L 

(Dl) 

where L is the amount of activated carbon loaded in the cell [g] and nads is the Gibbs 

excess adsorption obtained from the experiment according to Equation (4). 

Therefore, the uncertainty in calculating the Gibbs excess adsorption is 

determined by: 

. 2 (an Gibbs J2 
2 . (an Gibbs J2 

2 
a nGibbs = a a nods + a a L 

nads · L 
(D2) 

or 

2 -(1000)2 
2 . (lOOOnads J2 

2 aaibb,- -- an+ 2 aL 
n L ads L 

(D3) 

where a L was estimated to be 0; 1 g, and nads was calculated as: 

(D4) 

an .. is dependent on the uncertainty of determining the density of the gas in the pump, PP 
mJ 

and the uncertainty of the gas volume injected. 
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(D5) 

where V1and Vi are the final and initial volume in the pump. 

The uncertainty of injected gas volumes, av, is estimated to be equal to 0.02 cm3, 

and a Pp is calculated as follow: 

Pp= (PIZRT)P (D6)· 

which leads to 

2 (app J·2 
2 ·(app J2 

2 (app J2 
2 . (J' = -·- (J' + -- (J' + -- (J' 

Pp ar r aP p az 2 
. P T T~ 

(D7) 

Therefore 

2 · 2(( 1 caz I ar) p )
2 

2 ( 1 caz I aP)r J2 
2 ( 1 )2 

2 J (J' =p -+ (J' + -- (J' + - (J' 
Pp T z T p z p z z 

(D8) 

where Oz is the accuracy of the compressibility factor model used. O'r andap are 

estimated to be 0.1 Kand 6.9 kPa respectively. 

Using similar technique a in Equation (D4) can also be deriveded resulting 
~~ . 

· the following expression: 

2 ·c )2 2 c )2 2 
(J'unads = Pceu O'vvoid + vvoid (J' Pc.ii (D9) 

The void volume is measured several times within the range of the operating 

pressure. Generally, each void volume measured is less than 0.3 cm3 removed from the 

average void volume taken over at least five injections. So, O'v. . was estimated to be 0.3 
.. ,d 

cm3. 
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Equation (D8) can also be used to calculate the uncertainty of the gas density in 

the cell, a,, . 
f'cell 

For adsorption on a dry matrix, CJ' n,., is equal to zero, and for adsorption on a wet 

matrix, the accuracy of the model for calculating the gas solubility in water is estimated 

to be 5 % of the amount of gas absorbed in water. 

Error Estimates for Absolute Adsorption 

Relation between Gibbs and absolute adsorption is expressed as: 

nGibbs 
nAbs =--

l-.L 
Pa 

(DlO) 

Therefore, the uncertainty in calculating the absolute adsorption can be expressed as: 

1 nAbs 
(J'2 _ -- . (J' 2 + (J'2 ( )2 J2 
.= - 1-:. ( .- ) (( P. -p) ' 

(Dll) 

Multicomponent Adsorption 

The uncertainty of component Gibbs excess adsorption is calculated as follow: 

n Gibbs = XGibbs n Gibbs 
1 1 tot (D12) 

Therefore 

(D13) 

The same method as used for pure-component adsorption is employed to determine 

an</:"'. The only difference is in the method used to calculate a P. For the 

multicomponent case, the compressibility factor, Z, also depends on the gas composition. 

Therefore Equation (D8) becomes: 
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2 _ 2[(1 (az1ar)P.yJ 2 
2 (1 (az1aP)T.yJ 2 

2 (<az1ay)T.PJ 2 
2 (1) 2 

2 ] aP -P -+ aT+ -- O'p+ ay+ - O'z 
r T Z P Z Z Z 

(Dl4) 

Equation (D14) can be applied for both the pump side and the cell side. The uncertainty 

of the Z value, a z , calculated by the BWR equation of state (Pan, 2003) is estimated 

about 0.5% of the Z value. 

The a~ibbs is calculated as follow: 
1 

(D15) 

Therefore 

(D16) 

a Y is the uncertainty in determinating the gas composition, which is equal to the 

accuracy of the gas chromatograph calibration used (=0.002 mole fraction). az is the 

uncertainty of the feed composition, which depends on the accuracy of the injection 

method. Normally, the value is relatively small (=0.00015 mol fraction). 
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