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CHAPTER I 

INTRODUCTION 

Mapping schemes between discrete multi-dimensional and discrete linear spaces are 

essential to applications that involve multi-dimensional data because the linearization 

techniques of multi-dimensional arrays or grids are needed. Typically, sample ap

plications include multi-dimensional indexing methods [Ore86, ARR+97, BRWW97, 

GG98, AE99, BKK99, LKOO], multimedia databases [SROO, BBKOl, ACE+o2], ge

ographic information systems [AM90], image processing [LZ84, VG91], similarity 

search [BBB+97, LLLOl], data structures and algorithms [BP82, ARR+97], parallel 

computation [KOR95, ZumOl], etc. 

A space-filling curve is a mapping scheme to number the points in a discrete multi

dimensional space by the integers starting from one to the total number of points in 

the space. As a result, for every point in a discrete multi-dimensional space, viewed 

equivalently as a grid, there exists a unique point corresponded in linear space (in the 

range between one and the total number of points in the multi-dimensional space), 

and vice versa. Thus, a space-filling curve provides a linear traversal in a multi

dimensional space by visiting every point exactly once so that it imposes a linear 

order for all the points. Peano (1890) constructed the first space-filling curve, and 

many other space-filling curves have been proposed thereafter by Hilbert, Moore, 

Lebesgue, Sierpinski, P6lya, etc. For a comprehensive historical development of 

classical space-filling curves, see [Sag94]. Figure 1.1 lists some examples of space

filling curves in a 4 x 4 space. 

As for a multi-dimensional applications, the mapping schemes (space-filling curves) 

serve as a pre-processing step by linearizing the multi-dimensional data, then exist

ing linear data structures and algorithms can be adopted with a few modifications 

1 
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Figure 1.1: Examples of space-filling curves in 4 x 4 space. 

to process these linearized data. For the sake of applicability, a space-filling curve 

is mostly desired to maintain locality. The reason is that, for multi-dimensional 

applications, most of the operations are on neighboring points (e.g., range queries 

in multi-dimensional databases). However, the locality will be deteriorated as the 

multi-dimensional data are mapped into linear space: nearby data may be mapped 

to far-away locations in the linear space and/ or the far-away data may be mapped 

to nearby locations in the linear space. Consequently, the locality that has been lost 

under these circumstances hurts the performances of these multi-dimensional appli

cations. Insomuch as getting better performance for these applications, we should 

adopt "good" space-filling curves that greatly maintain locality. The purpose of this 

research is to investigate locality and clustering performances of space-filling curves 

and also evaluate their applicability so as to help choosing more appropriate ones in 

practice. 

For general applicability of space-filling curves, there are two different categories 

of measures. One is the locality preservation that reflects proximity between the 

points in multi-dimensional space; that is, close-by points in multi-dimensional space 

are mapped to close-by indices in linear space, or vice versa. The other one is 

clustering performance that measures the distribution of continuous runs of points 

(clusters) over identically shaped subspaces in a multi-dimensional space, and this 

category of measures can be characterized by the average number of clusters and the 

average inter-cluster distance within a subspace. 

Among the space-filling curve families, z-order and Hilbert space-filling curves 

probably are the most popular ones but have different traits. Basically, z-order 
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space-filling curve family is relatively simple and easy to implement by interleaving 

the bits of all the coordinates. However, Hilbert space-filling curve family is not so 

straightforward even though it has a very simple structure in a 2 x 2 space. Numerous 

empirical and analytical studies of various low-dimensional space-filling curves have 

been reported (see [AM90, Jag90, Jag97, MJFS01] for details) but there is still some 

work for us to investigate furthermore in this area such as locality preservation and 

inter-clustering performances. The objectives of this research are to: 

1. investigate the locality preservations and clustering performances for different 

space-filling curves, especially on the most popular ones, z-order and Hilbert 

space-filling curve families, 

2. derive the closed-form formulas for the measures to quantify the qualities of 

z-order and Hilbert space-filling curves, and 

3. compare z-order curve family with Hilbert curve family by the derived closed

form of formulas from objective 2. 

This dissertation is organized in the following manner. Chapter II presents the 

preliminaries about space-filling curves, including their definitions and constructions. 

It also contains a brief overview of the work that has been already conducted in this 

area. Chapters III and IV study two measures of locality preservation, including the 

derivations of closed-form formulas for Hilbert and z-order space-filling curve families. 

Chapters V and VI focus on the clustering performances to develop measures by 

mean number of clusters and also by mean inter-cluster distance within a subspace. 

Chapter VII is the conclusion. 



CHAPTER II 

PRELIMINARIES AND LITERATURE REVIEW 

2.1 Definition of Space-Filling Curves and Their Features 

For a positive integer n, denote [n) = {1, 2, ... , n}. An m-dimensional (discrete) 

space-filling curve of length nm is a bijective mapping e : [nm) ----t [n)m, where mis 

a positive integer, thus providing a linear indexing/traversal or total ordering of the 

grid points in the m-dimensional grid space [nr. (For convenience, we call a point 

in them-dimensional space a grid point.) Them-dimensional grid space is said to be 

of order k if its side length n = 2k; a space-filling curve is of order k if its codomain 

is of order k. An m-dimensional space-filling curve of order k is denoted by er (i.e., 

er : [(2k)m] ----t [2k]m), and a family of m-dimensional curves of successive orders is 

denoted by C. The generation of a sequence of m-dimensional space-filling curves 

of successive orders usually follows a recursive framework ( on the dimensionality 

and order), which results in a few classical families, such as Gray-coded space-filling 

curves, Hilbert space-filling curves, and z-order space-filling curves (see, for examples, 

[ANOO, MJFSOll). 

2.1.1 Self-Similar Space-Filling Curves 

In the 2-dimensional space, a space-filling curve of order k is said to be recursive if 

the space-filling curve can be divided into four equal-sized quadrants with the same 

structure (via rotation and/or reflection) [ARR+97). 

Alber and Niedermeier [AN98, ANDO) formalize the idea and extend it for higher

dimensional spaces by defining the class of self-similar curves. The "self-similar" 

simply means that a space-filling curve er can be generated by putting together 2m 

space-filling curves c;;_1 along a particular curve with some suitable permutations 

4 
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on corners of CJ:_1 applied, recursively. Here, the suitable permutations ( denoted 

by µ) on corners of C'J:__1 are the permutations that preserve the neighborhood

relations n(i,j) on the indices i,j of the corners in C'J:__ 1 : n(i,j) = n(µ(i),µ(j)). 

For 2-dimensional space-filling curve, permutations are the operations of rotations 

and/or reflections. The space-filling curve Ci is called the "generator" for CJ:. 

Alber and Niedermeier consider all the permutations µ to explore the construction 

of Hilbert space:..filling curves and show that there is one Hilbert space-filling curve 

modulo symmetry in the 2-dimensional space and 1536 different structures in the 

3-dimensional space. 

In general, self-similar space-filling curves (recursive space-filling curves) have 

many advantages over non-self-similar Cl.itves. For instance, in the m-dimensional 

space with side length n, self-similar space-filling curves use compact recursive rep

resentation (formulas) to index all the data so that time complexity to determine the 

data is O(log(nm)); on the other hand, non-self-similar ones need to store mapping 

tables for all of the data so that the space complexity is O(nm) and time complexity 

of worst case to look up the table sequentially for data is also O(nm). Therefore, we 

will focus on the self-similar space-filling curves in our research and from now on, 

space-filling curves or curves mentioned in the following content indicate self-similar 

space-filling curves. 

2.1.2 Constructing Space-Filling Curves 

The coordinate system used in our work for m-dimensional space with side length n is 

a Cartesian coordinate system with the axes numbered 1, 2, ... , m, and the indices on 

each axis are numbered 1, 2, ... , n. Figure 2.1 demonstrates the coordinate system in 

the 2-dimensional space: the vertical direction is axis-1 and the horizontal direction 

is axis-2. When work in 2-dimensional space, we also call axis-1 x-coordinate, axis-2 

y-coordinate, clockwise rotation (+)-rotation, and counterclockwise rotation ( - )

rotation. 

For a space-filling curve C, the lowest- and highest-indexed grid points are called 
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Figure 2.1: The coordinate system for the 2-dimensional space. 

the entry and exit grid points, and denoted by 81 ( C) and 82 ( C), respectively. Since 

we are only interested in the self-similar space-filling curves, the constructions are 

therefore based on the recursive frameworks. Now, we focus on the self-similar space

filling curve er that is generated by interconnecting 2m identical cr.-1-structured 

subcurves (via suitable permutations) along a Cf-structured curve. We denote the 

2m Cr_cstructured subcurves of Cf: by Qa(C'f:'), where a E [2m), and a subcurve is 

numbered by following the linear order along the Cf-structured curve (see Figures 2.3 

and 2.6). We call the edge connecting 82(Qa(C;:i)) and 81(Qa+1(C;:i)) a connecting 

edge where a E [2m - l]. 

2.1.2.1 Constructing z-Order Curves. A z-order curve is also known as a bit

interleaving curve because it traverses the grid points along the interleaved bits of 

their coordinates. An m-dimensional z-order curve of order k is denoted by Z'f:'. To 

index the grid points for Z'J:', the steps are: (1) to subtract each coordinate by 1 for 

each grid point, (2) to interleave the binary bits resulted from Step (1) for each grid 

point, and (3) to add 1 to the results from Step (2) for each grid point. Figure 2.2 

illustrates the steps for building z-order curves: (a) the grid point coordinates on 

axis-1 and-2, (b) the binary code of each grid point (after each coordinate subtracted 

by 1), ( c) the indices of each grid point ( after the binary code added by 1), ( d) the 

z-order traversal sequence. By following the steps above, we can construct z-order 

curves of any order. Figure 2.2(e) and (f) are the results for curves of order 2 and 3, 

respectively. 

Instead of the idea by interleaving bits of coordinates to construct a z-order curve, 



(a) (b) (c) (d) 

. . . 
. . -- .. . . . .. . . . . . . . " . . . ' ' 

(e) 

7 

(f) 

Figure 2.2: Construction of z-order curves in the 2-dimensional space. (a) Space 
of order 1, (b) interleaving codes ( after subtracted by 1 on each coordinate), ( c) 
indices for the grid points, ( d) z-order curve of order 1 by connecting the grid points 
according to the indexing, (e) and (f) z-order curves of order 2 and 3, respectively. 

we can construct the curve through recursion. The first step is to create a z-order 

curve of order 1 as shown in Figures 2.2(a), (b), (c) and (d). The induction step 

is that we can build zr, by merging 2m zr,_1-structured subcurves along the Z1-

structured curve for k' = 2, 3, ... , k. Note that there are no reflection or rotation 

operations applied to the construction of z-order curves. Figure 2.3 represents the 

construction of a 2-dimensional z-order curve from 22 curves of lower order ( the 

decomposition into 22 curves of lower order, reversely). Based on the the recursive 

mechanism, we can generate a z-order curve of higher order. 

N\ 1(r 
~ ',\N 

(a) z~ (b) Z~-interconnection 

Figure 2.3: Generation of Zl in (a) from a Z;-interconnection of four ZLi-structured 
subcurves in (b). 
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Construction of a higher-dimensional z-order curve Z'f: from lower-dimensional 

z;;-1 is by the following steps: 

1. Construct a z-order curve zr-1. 

2. Add them-th dimension to current coordinate system that is of m - 1 dimen-

sions, 

3. Duplicate the curve zr-1 along them-th dimension, and let the exit grid point 

of this duplicated one inherit the connection link from the exit grid point in 

the original z;;-1 if there is one, 

4. Add an edge to connect the exit grid of the duplicating curve in Step 3 to the 

entry grid point of the duplicated one (this step complete the construction of 

Zi), 

5. Follow the construction steps for z-order curve of higher-order to build Z'f: from 

zr. 
Note that there are no reflection or rotation operations in the construction. Figure 2.4 

demonstrates the constructing steps. Basically, z-order curve traverses all the grid 

points by lexicographical order on their interleaved binary coded coordinates. We call 

a z-order curve canonical if it has the structure and orientation as the one generated 

from above steps. For example, Figure 2.2, 2.3 and 2.4(c). 

2.1.2.2 Constructing Hilbert Curves. An m-dimensional Hilbert curve of order 

k, denoted H'f:, is more complicated than a z-order curve. First, we define the 

orientation for a Hilbert curve H'f:: the direction of the entry grid point to the exit 

grid point. (This direction is parallel to one of the axes in the coordinate system.) 

We call an H'f: a-oriented if the direction of its entry grid point to exit grid point 

is parallel to the axis-a, and also call an H'f: a+-oriented (respectively, a--oriented) 

if it is a-oriented and its entry grid point has less (respectively, greater) coordinate 

value on axis-a than its exit grid point does. 
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1L 
Axis-2 

(a) 

~ 

]~~3 
Axis-2 

(b) 

~ 

j~-3 
Axis-2 

(c) 

Figure 2.4: Construction of higher dimensional z-order curve. (a) A 2-dimensional 
coordinate and a Z;; (b) adding a new dimension (axis) and then duplicating the 
Z;; (c) connecting the exit and entry grid points of the duplicating and duplicated 
Z;, respectively. 
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(d) 

10 

Figure 2.5: Construction of Hilbert curves in 2-dimensional space. (a) The indices 
for H;; (b) the traversal line for H;; ( c) H?; ( d) Hi. 

Now, we focus on the construction of 2-dimensional Hilbert curve of higher or

der Hl from H;. The construction is still built through a recursive mechanism. 

The first step is to have a 2 x 2 space and have the indices 1, 2, 3, and 4 as 

seen in Figure 2.5(a). The generator of 2-dimensional Hilbert curve Ht is shown 

in Figure 2.5(b). The induction step constructs a Hilbert curve Hi, by merging four 

Hl,-i-structured subcurves along the Hr-structured curve for k' = 2, 3, ... , k with 

(1) the first Hi,_1-structured subcurve left-right reflected and then (+~)-rotated, 

(2) the fourth Hi,_1-structured subcurve left-right reflected and then (-~)-rotated, 

and (3) the second and third ones remaining unchanged (see Figures 2.5(c) and (d)). 

Figure 2.6 shows the generation of Hf from a Hr-connection of four HLcstructured 

sub curves. 

For dimensionality greater than 2, there are many different structures of Hilbert 

curves as discussed in [AN98, ANOO]. Moon, Jagadish, Faloutsos, and Saltz [MJFS01] 

suggest a construction of a higher-dimensional Hilbert curve H'f: from a lower

dimensional one H'f:-1 through a recursive procedure: 

1. Construct a Hilbert curve H1-1. 

2. Add them-th dimension to current coordinate system that is of m - 1 dimen-

sions, 



n ____ n 
I 
I I 

:J C 
a1(Hl) ~(m) 

(a) Hf 

Q2(H~)[5]_ - - -_[QJn Q3(H~) 

a1, a2 a1 a2, 
I 

a1(Q1(Hm 
= a1(HL 1) 

I 
I 
I 
I 

(b) H;-interconnection 
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Figure 2.6: Generation of Hl in (a) from a Hr-connection of four HLi-structured 
subcurves in (b). 

3. Duplicate the curve Hf"-1 along them-th dimension, and let the exit grid point 

of this duplicated one inherit the connection link from the exit grid point in 

the original H'f:7'-1 if there is one, 

4. Add an edge to connect the exit grid point of the duplicating curve in step 3 

to the entry grid point of the duplicated one , and change the orientation of 

these two grid point points to be m+(others remain the same orientation) (this 

step complete the construction of Hi), 

5. Construct first half of Hilbert curve H'f: by putting together 2m-l H'f:.._1 along 

Hi-structured curve via suitable permutations on the 2m H'f:-rstructured grid 

points of H'f:- 1 to maintain the orientations of the grid points (subcurves) within 

H'f:, then duplicate the first half 2m H'f:.._ 1 via reflection along axis-m to build 

the rest of H'f:. 

Note that step 5 of the construction for higher dimensionality implies that an m

dimensional Hilbert curve H'f: is symmetrical along the axis-m. Figures 2.7 and 2.8 

demonstrate the constructions of Hf and Hf, respectively ( the dashed lines denote 

the new added dimension). We call an Hilbert curve canonical if it has the structure 

and orientation as the one generated from the above steps. For example, Figure 2.5, 
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2.6 and 2. 7. Numerous algorithms in programming codes for constructing higher

dimensional Hilbert curves and generating visual images in lower dimensionality are 

proposed and published in literature (see [But69, 1894, 1897, BC98, Max98, LKOl, 

RasOl] for details). 

]~ 
n _________ O 

Axis 2 

Figure 2.7: Construction of 3-dimensional Hilbert curve (Hf) from two 2-dimensional 
Hilbert curves (Hr). 

- ------

Figure 2.8: Construction of 4-dimensional Hilbert curve (Ht) from two 3-dimensional 
Hilbert curves (HI). 

2.2 Locality Preservation and Related Work 

The locality preservation of a space-filling curve family is important for the efficiency 

of many indexing schemes, data structures, and algorithms in its applications such as 

spatial correlation in multi-dimensional indexing, compression in image processing, 

and communication optimization in mesh-connected parallel computing. To analyze 

locality, we need to precisely define its measures so that these measures could be used 

in practice; good bounds (lower and upper) on the locality measure can translate into 
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good bounds on the declustering (locality loss) in one space in the presence of locality 

in the other space. 

Denote by dP the p-normed metric (Manhattan (p = 1), Euclidean (p = 2), 

and maximum metric (p = oo)). A space-filling curve C is called continuous if 

d2 (C(i), C(i + 1)) = 1 (the Euclidean metric is 1) for all i E [nm - 1]. Thus the 

traversal of a continuous space-filling curve C covering all grid points of [nr is 

Hamiltonian with unit (Euclidean) steps. (Hilbert curve is a continuous space-filling 

curve while z-order curve is not.) 

Some locality measures have been proposed and analyzed for space-filling curves 

in the literature. Perez, Kamata, and Kawaguchi [PKK92] employ an average lo

cality measure to quantify the proximity preservation of close-by points in the m

dimensional space [nr: 

"""" Ii - JI 
LPKK(C) = Lt d (C(') C( ')) for CE C, 

. "E[ mJI"<' 2 'I, l J i,J n i J 

and provide a hierarchical construction for a 2-dimensional C with good but subop

timal locality with respect to this measure. 

Mitchison and Durbin [MD86] use a more restrictive locality measure parameter

ized by q: 

LMD (C) = ,q 
Ii - Jlq for CE C 

i,jE[nm]li<j and d2(C(i),C(j))=l 

to study optimal 2-dimensional mappings for q E [O, l]. For the case q = 1, the 

optimal mapping with respect to LMD 1 is very different from that in [PKK92]. For 
. , 

the case q < 1, they prove a lower bound for arbitrary 2-dimensional curve C: 

and provide an explicit construction for 2-dimensional C with good but suboptimal 

locality. They conjecture that the space-filling curves with optimal locality (with 

respect to LMD,q with q < 1) must exhibit a "fractal" character. 
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Voorhies [Voo91] defines a heuristic locality measure, tailored to computer graph

ics applications, and the corresponding empirical results indicate that the Hilbert 

space-filling curve family outperforms other curve families. 

For measuring the proximity preservation of close-by points in the indexing space 

[nm], Gotsman and Lindenbaum [GL96] develop the following measures: 

LGL,min(C) 

Le L,max ( C) = 

mm 
i,jE[nm]li<j 

max 
i,jE[nm]li<j 

d2(C(i),C(J))m 
Ii-JI 

d2(C(i), C(J))m 
Ii-JI 

and 

for CE C. 

They demonstrate that for arbitrary m-dimensional curve C, 

LGL,min(C) 

LGL,max(C) 

O(n1-m), and 

> (2m-1)(1-!)m. 
n 

For them-dimensional Hilbert curve family {H'f: I k = 1, 2, ... }, they prove that: 

For the 2-dimensional Hilbert curve family, they obtain tight bounds: 

Alber and Niedermeier [Alb97, ANDO] generalize LGL to LAN by employing ,max ,P 

the p-normed metric dP (Manhattan distance (p = 1), Euclidean (p = 2), and maxi

mum (p = oo)), in place of the Euclidean distance d2 . They improve and extend the 

above tight bounds for the 2-dimensional Hilbert curve family to: 

6(1 - 0(2-k)) 

6(1 - 0(2-k)) 

2 3 
LAN,1(Hk)::; 95, 

2 1 < L AN,2 (Hk) ::; 62, and 

< LAN,oo(Hf)::; 6~. 
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2.3 Clustering Performance and Related Work 

Studies of clustering and inter-clustering performances for space-filling curves are 

primarily motivated by the applicability of multi-dimensional space-filling indexing 

methods [FR89, Jag90, ARR+97]. Basically, these methods are based upon an m

dimensional space-filling curve that maps an m-dimensional grid (data, processor

mesh, etc.) space onto a 1-dimensional linear space ( external storage structure). 

However, if the average number of external fetch/ seek operations, which is related 

to the clustering statistics, can be minimized, the space-filling index structure can 

therefore support more efficient query processing such as range queries. Asano, Ran

j an, Roos, Welzl, and Widmayer [ARR+97] study the optimization of range queries 

over space-filling index structures by minimizing the number of seek operations but 

not the number of block accesses. The reason is due to a tradeoff existing between 

seek time to proper block (cluster) and latency /transfer time for unnecessary blocks 

(inter-cluster gap), so good bounds on the inter-clustering statistics can translate 

into good bounds on the average tolerance of unnecessary block transfers. 

Jagadish [Jag97] and Moon, Jagadish, Faloutsos, and Saltz [MJFSOl] consider 

the number of disk accesses for a range query, mostly because the number of clusters 

within a range query is desired to be as minimum as possible. They focus on Hilbert 

curve and use the mean number of clusters of grid points within a subspace as the 

measure of the clustering performance. Jagadish [Jag97] derives exact formulas for 

the mean numbers of clusters over all rectangular 2 x 2 and 3 x 3 subgrids of an 

Hf-structural grid space. Moon, Jagadish, F~loutsos, and Saltz [MJFSOl] extend 

the work in [Jag97] to obtain the exact formula for the mean number of clusters 

over all rectangular 2q x 2q subgrids of an Bl-structural grid space. Moreover, they 

also prove that, in a sufficiently large m-dimensional Hr-structural grid space, the 

mean number of clusters over all rectilinear polyhedral queries with surface area Sm,k 

approaches ! · 8";;/ as k approaches oo. 

In summary, the empirical and analytical studies of clustering performances of 
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various low-dimensional space-filling curves, the Hilbert curve family is relatively 

superior to other curve families in this respect. 

2.4 Other Measures 

In addition to the locality preservation and clustering performance, there are some 

other measures for space-filling curves. Mokbel and Aref [MAOl] propose a quanti

tative measure for the quality of space-filling curves by the number of "irregulari

ties" in each dimension. For an m-dimensional space-filling curve C : [nm] --+ [nr, 

an "irregularity" occurs in dimension z when two points i, j E [nm], i < j and 

Z(C(i)) > Z(C(j)) where Z(C(i)) (or Z(C(j))) denotes the coordinate of point i 

( or point j) in the dimension z. An irregularity occurs in l-th dimension if the 

space-filling curve C, as a function, reverses the inequality i < j in the z-coordinate. 

Figure 2.9 illustrates all possible scenarios for irregularity in the 2-dimensional space. 

The quantitative measure I(z, n, m) is defined as the number of irregularities in di

mension z for a space-filling curve in an m-dimensional space with side length n: 

nm j-1 

I(z,n,m) = LL Ai 
j=2 i=l 

where Ai= { ~ if Z(C(i)) > Z(C(j)), 
otherwise. 

(a) (b) (c) (d) 

Figure 2.9: Irregularity in the 2-dimensional space: arrows indicate the traversal 
order of space-filling curves. (a) No irregularity; (b) irregularity in x only; (c) irreg
ularity in y only; (d) irregularity in x and y. 

For quantifying partition in parallel computing, Hungershofer and Wierum [WieOl, 

HW02] introduce a quality coefficient ~' for two grid points i, j E [n2], where 
4 Vc(•,J) 

V0 (i,j) is the size (the number of points with indices between i and j), and Sc(i,j) 
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is the surface (perimeter for the 2-dimensional space) that is induced by the two grid 

points i and j along the space-filling curve C. They use this coefficient to quantify 

the quality of the induced partition by two grid points 1, and j in an uniform grid 

space of size n x n. Then, they extend this coefficient to quantify a space-filling curve 

by the following two formulations: 

Sc(i, j) and max , 
i,jE[n2]li<j 4\/'Vc(i, j) 

LHWmax(C) -
' 

LHW,avg(C) = 
2 n 2 j-l Sc(i, j) 

n2 (n2 - 1) ~ ~ 4\/'Vi (i j) 
J=2 i=l C ' 

By these measures, they obtain tight upper bounds for z-order curve Zl and Hilbert 

curve Hl. From the results, they conclude that z-order curve performs better than 

Hilbert curve in this respect. 

Based on the types of connecting edges among the grid points in a space-filling 

curves, Mokbel, Aref, and Kamel [MAK02] define a vector V of five parameters that 

are the percentages of different types of edges: jump, contiguity, reverse, forward, 

and still. They suggest to select an appropriate space-filling curves for an application 

via the knowledge of this vector V. 



CHAPTER III 

A NEW MEASURE FOR LOCALITY PRESERVATION 

On the measures of locality preservation for space-filling curves, our work includes: 

1. proposing a new locality measure for space-filling curves by considering the 

mean absolute index-difference for two grid points at a common distance, and 

2. closing the gaps between the upper and lower bounds for the p-normed metric 

measures L AN,p(HD. 

We present the two studies in this and next chapters, respectively. 

The new locality measure is similar to LMD,l conditional on a 1-normed distance 

of 8 between points in [nr: 

Lo(C) = li-jj. 
i,jE[nmJJi<j and d1 (C(i),C(j))=o 

The locality statistics L 0 ( C) cumulates all index-differences of point-pairs ( distances 

traversed in the sequential index space) at a common 1-normed distance 8 (local 

operation in the C-structural grid space). Note that for the three statistics: L8(C), 

L[o](C) = I::f=1 Li(C), and the mean absolute index-difference over all point-pairs at 

a common 1-normed distance 8, the knowledge of one statistics for all 8 yields the 

other two. 

The study of locality measures arises in practical contexts. In coding theory, for 

a bijection C that encodes the integer range {O, 1, ... , 2m - 1} into an m-bit binary 

code {O, l}m, the locality measure L8(C) is proportional to a selection criterion for C 

that minimizes the mean absolute change resulting from an error of exactly 8 bits (see 

[Har64)). A biological application of locality/ spatial measures is their use in modeling 

18 
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a visual nervous system that seeks maximum spatial continuity in mapping visual 

stimuli onto a 2-dimensional cortex of nerve cells (see [HW79]). 

Based on the new measure L 0 , we derive exact formulas for the Hilbert curve 

family {H'f: I k = 1, 2, ... } and z-order curve family {Z'f: I k = 1, 2, ... } form= 2 

and arbitrary o that is an integral power of 2, and m = 3 and o = 1. The exact results 

yield a constant asymptotic ratio limk-+oo ~:~~~j > 1 for the considered values of m, 

k, and 8, which suggests the superiority of z-order curve family in low dimensions 

with respect to L0 . We verify all the exact formulas (intermediate and final) with 

computer programs on m = 2, 3 and over wide ranges of values fork and 8. 

3.1 Locality Measures of 2-Dimensional Space-Filling Curve Families 

Hilbert and z-order curve are probably the most popular space-filling curves. One of 

the salient characteristics of this type of curves is their "self-similarity" ( see Chap

ter II). Let Cf denotes Hf or Zf Thus, for these two space-filling curves, the 

self-similar structural property guides us to decompose Cf into four identical CL1-

subcurves (via reflection and rotation), which are amalgamated together by an Cr
curve (see Figures 2.3, 2.6). 

3 .1.1 Approach 

Our approach to derive the exact formula for L 0 ( Cf) is described as follows. The 

space-filling curve Cf denotes Hf or Zf The recursive decomposition (in k) of Cf 
gives that: 

li-jl 
i,jE[22k]li<j and d1(C~(i),C~(.j))=o 

4Lo(Cf-1) + L D-o(Qa(Cf), Q13(Cf)), 
a,{3E{l,2,3,4}la<{3 

where b.0 (Q0 (Cf), Q13(Cl)) denotes the cumulative contribution of Ii - JI from the 

two sub curves Q a ( Cf} and Q f3 (en, that is, for all i, j E [22k] such that i < j, 

di ( Cf ( i), Cf (j)) = o, and i and j appear in ( the index ranges of) Q a ( en and Q 13 (en, 
respectively. 
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We partition the summation Ln,,BE{l,2,3,4}ln<,B Ll.s(Qa(CD, Q,a(CD) according to 

the two cases: contiguous subcurves ((a, (3) E {(1, 2), (2, 3), (3, 4), (1, 4)} for Hf, 

(a, (3) E {(l, 2), (1, 3), (2, 4), (3, 4)} for zn with four similar subcases, and diagonal 

subcurves ((a,(3) E {(1,3), (2,4)} for Hf, (a,(3) E {(1,4), (2,3)} for zn with two 

similar subcases. A common thread to the computations in the six subcases is 

to express Ll.s(Qa(CD, Q,a(CD) as summations of index-cumulations of neighboring 

geometrical structures in Qn(CD and Q,a(Cf). 

3.1.1.1 Geometrical structures (rows, columns, and diagonals). The following 

denotations illustrate the geometrical structures (rows, columns, and diagonals) in

volved in the computations. 

With respect to the canonical orientation of Cf (shown in Figure 2.6(a) for Hf, 

Figure 2.3(a) for Zf), we cover the 2-dimensional k-order grid with: 

1. 2k rows (Rk,1, Rk,2, ... , Rk,2k ), indexed from the bottom, 

2. 2k columns ( Ck,1, Ck,2, ... , Ck,2k ), indexed from the left, 

3. 2k+1 - 1 main diagonals (Dk,1, Dk,2, ... , Dk,2k = D~,2k, D~,2k_l' ... , D~,1), in

dexed from the lower-right corner, and 

4. 2k+1 - 1 auxiliary diagonals (Ak,I, Ak,2, ... , Ak,2k 

indexed from the lower-left corner. 

For a E [2k] and a grid point p E [2k]2, we denote: 

1. nk ( V, v') = I ( cn-1 ( V) - ( cn-1 ( v') I, the index-difference between two grid 

points v, v' E [2k]2. 

2. Ll(Xk,n,P) = ~vEXk,a nk(v,p), where the symbol X denotes R, C, D, D', A, or 

A' (for example, Ll(Rk,a,P) = ~vERk"' nk(v,p)). That is, Ll(Xk,n,P) cumulates 

all index-differences of all grid points in the structure Xk,n with respect to p; 

when p = 81(CD), Ll(Xk,n,P) is the index-cumulation of all grid points in Xk,n· 
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3. Xk,a = L~=l LvEXk,13 (o+l-,B)nk(v, 81(Cf)), where the symbol-pair (X, X) de

notes (R, R), (C, C), (D, D), (D', D'), (A, A), or (A', A') (for example, Rk,a = 

L~=l LvERk,/3(a + 1- ,B)nk(v, 81(Cn)); 

Nk,a = L~=l LvEXk,13 (a+l-,B), when X denotes D, D', A, or A' (independent 

of the choice); that is, Nk,a cumulates the number of index (grid point v) 

references in the summation of Xk,a ( that is, Dk,a, Di,a, Ak,a, or Ai,0 ). 

Note that when a= 0, all cumulations degenerate to 0, that is, Xk,o = Xfc, 0 = 

Nko = o. , 

4. X k,a = E~=l EvEXk,/3 fik( v, 81 (en) = E~=l !).(Xk,{,, 81 (Cf)), where the symbol

pair (X, X) denotes (R, R), (C, C), (D, D), (D', D'), (A, A), or (A', A'); 

Nk,a = E~=l EvEXk,/3 1, when the symbol X denotes D, D', A, or A' (indepen

dent of the choice); that is, N k,a cumulates the number of index (grid point v) 

references in the summation of Xk,a (that is, Dk,a, 'D'k,a, Ak,a, or A'k,a). 

Note that Xk,a = Xk,a-1 + X k,a for a E {2, 3, ... , 2k}, where the symbol X 

denotes R, C, D, D', A, or A'. 

5. wk= EvEC2 fik(v, 81(cn), which cumulates the indices of all grid points of ci 
k 

relative to 81(Cf). (For a grid point v, the membership "v E Cf" abbreviates 

"v E Cf ([22k])" .) 

Figure 3.1 illustrates the organization of a 2-dimensional grid into the row, column, 

main-diagonal, auxiliary-diagonal structures and the coverages for Vk,a, Vi,a, Ak,a, 

and Ai,a· 

For every grid point pin a canonical Cf, we have fik(p, 81(Cf)) + fik(P, 82(Cf)) = 

22k-1, and there exists a unique grid point p' such that fik(P, 81(Cf)) = fik(P', 82(Cf)). 

We say that (p, p') is a mirror pair and p' is the mirror point of p. Clearly, the mirror 

relation is reflexive: (p, p') is a mirror pair if and only if (p', p) is also a mirror pair; 

moreover, 
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Figure 3.1: (a) Organize a 2-dimensional grid [2k] 2 into the row, column, main
diagonal, and auxiliary-diagonal structures; (b) coverages of 'Dk,a and 'D~10 ; (c) cov
erages of Ak,a and Ak,a. 

We extend the notations to identify all Cl-subcurves of a structured Cf for all 

l E [k} inductively on the order. Let Q0 (Cf) denote the a-th CL1-subcurve (along 

the amalgamating Cr-curve) for all a E [22]. Then for the a-th CLcsubcurve, 

Q0 (C?), of Cl, where 2 < l ~ k and a E [22], let Q13(Q0 (C?)) denote the ,8-th 

Cl_rsubcurve of Q0 (C?) for all ,8 E (22]. We write Q~+1(C?) for Q0 (Q~(C?)) for 

all l E [k] and all positive integers q < l. For the two extreme cases: (when q = 0) 

Q~(C?) denotes Cl, and (when q = l) Q~(C?) identifies the a-th grid point in the 

C;-subcurve Q~-1(C?). Interpreting Q as a "quadrant/subcurve selector", we denote 

by Q{a,/J}(C?) the a-th or ,8-th Cl_csubcurve of a canonical Cl for all a,,8 E [22]. 

We write Q{!,~}(C?) for an iteration Q{o,/J}(Q{o,/J}(Cl)) for all l E [k] and all positive 

integers q < l. Note that the selections in { a, ,8} for the iteration are not necessarily 

identical. 

3.1.1.2 The computation of ~,s(Q0 (Cf),Q13(Cf)) for a,,8 E {1,2,3,4} with a< ,8. 

Let 8 be an arbitrary positive integral power of 2 with 1 ::; 8 < 2k. First we derive 

~,s(Q0 (Cf), Q13 (Cf)) for the case of contiguous subcurves. Without loss of generality, 

we assume that a< ,8 and Q0 (Cf) appears to the immediate left-side of Q13(Cf) for 

our discussion (see Figures 3.2 and 3.3). 
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Figure 3.2: (a) N8(v') in the absence of the connecting border (with cardinality of 
28 - 1); (b) N8(v') in the presence of the connecting border (with cardinality of 
2(8 + 1 - j) - 1). 
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24 

Figure 3.3: (a) N8(v') in the presence of both connecting and bottom borders (with 
cardinality (2(8+1-j)-1)-(8+1-j-i) = 8-j+i, provided that 8+1-j-i ~ O); 
(b) following the auxiliary diagonals X f _ 1 1, X f _ 1 2 , ... , X f _ 1 8 to enumerate all grid 
points v' with row and column coordinat~s ( i, j) 'in the bott~m boundary region of 
Qf3,8 such that 8 + 1 - j - i ~ 0. 
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Each of the two quadrants Q0 (CD and Q13(Ci) has its own bottom and top 

borders to delimit its 2k-l rows, and the border between the two quadrants is called 

the connecting border. Note that 

(v,v')EQ"' (C~) xQ13 (C~)ld1 ( v,v')=o 

so for a pair (v, v') E Qa(Ci) x Q13(CD with contribution in flo(Qa(CD, Q13(CD), 

the grid points v and v' must lie within the first 8 columns in Q0 (CD and Q13(Cf), 

respectively, from the connecting border. We index the rows and columns of a quad

rant locally around the connecting border as: rows rl., rJ, ... , r;k-i (indexed from the 

bottom in each quadrant), columns c], cJ, ... , cJ (indexed from the connecting border 

in each quadrant), where 'Y denotes a or f3 (indicating the residing quadrant Q0 (Cl) 

or Q13(Cf) for the rows and columns. Denote by Q0 ,0 (Q13,0) the 2k-l x 8 subgrid of 

Q0 (Cf) (respectively, Q13(CD) consisting of these 2k-l rows and 8 columns. 

The key idea in deriving .6.0(Q0 (Cf), Q13(Ci)) is to express hk(v, v'), where (v, v') E 

Qa,o x Q13,o, as 

and write: 

flo( Qa( ci), Q13( en) 

L (hk(v, 82(Qa(ci))) + f;,k(82(Qa(ci)), 81(Q13(CD)) 
( v,v')EQ"',o X Q13, 0 ld1 ( v,v')=o 

+ f;,k ( v'' 81 ( Q /3 ( ci)))) 

L f;,k(v, a2(Qa(ci))) 
(v,v')EQ"',o xQ13,0 ld1 (v,v')=o 

+ 

+ (3.1) 

Each of these three cumulations of index-differences requires some knowledge of the 

combinatorial structure of all the pairs (v, v') E Q0 ,0 x Q13,0 with d1(v, v') = 8. We 
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say that ( v, v') is a 8-pair and v is a 8-neighbor of v' ( and vice versa). Denote by 

N0(v') the 8-neighborhood in Q0 ,0 of v' E Q/3,o· 

By symmetry, it suffices to consider for an arbitrary grid point v' E Q/3,o, and 

determine IN0(v')I - which depends on the location of v' within Q/3,o· We partition 

Q /3,o into three regions based on the row and column indices as follows: 

1. The middle boundary region consisting of the middle rows rf for i = 8 + 1, 8 + 

2 2k-1 ,. h · ( 2k- 1-o /3) ( o /3) , ... , - u, t at 18, ui=o+l ri n uj=lcj , 

2. The bottom boundary region consisting of the bottom rows rf for i = 1, 2, ... , 8, 

that is, (ut1rf) n (uJ=1S), and 

3. The top boundary region consisting of the top rows rf for i 

1 2k-1 J. 2 2k-l h . ( 2k-l /3) ( 0 8) , - u + , ... , , t at 18 ui=2k-1-0+1ri n uj=lcj . 

For an arbitrary grid point v' E rf n cJ in the middle boundary region of Q /3,o, 

where i E { 8 + 1, 8 + 2, ... , 2k-l - 8} and j E [8], the columns of Q0 ,0 in which 

all 8-neighbors v of v' reside are df_, ~' ... , dJ+l-i of Q0 ,0 with the distribution: one 

8-neighbor in dJ+l-j and two in each of the remaining columns (see Figure 3.2(a) and 

(b)). Therefore, N 0(v') = 2(8 + 1 - j) - 1. 

For an arbitrary grid point v' E rf n S in the bottom boundary region of Q /3,o, 

where i E [8] and j E [8], in the presence of both connecting and bottom borders, 

IN0(v')I = (2(8+1-j)-1)-(8+1-j-i) = 8-j+i, provided that 8+1-j-i 2: 0. The 

second term (8 + 1- j) -i gives the number of grid points v (8-neighbors of v' in the 

absence of the bottom border) eliminated by the bottom border (see Figure 3.3(a)). 

Therefore, 

IN ( ')I _ { 8 - j + i if 8 + 1 - j - i 2: 0 
0 v - 2(8 + 1 - j) - 1 otherwise. 

Note that the condition 8 + 1 - j - i 2: 0 corresponds to the lower-left half 

of the Cfog 0-subcurve at the lower-left corner of Q/3,o· With denotations for main 

and auxiliary diagonals similar to those in Section 3.1.1, we cover the lower-left half 

of the Cfog 0-subcurve with 8 auxiliary diagonals X;;_1,1, X;;_1,2, ... , X;;_1,0, indexed 
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from the lower-left corner of the Cfog 8-subcurve (see Figure 3.3(b)). Observe that for 

a grid point v' in Qf3,<> with row and column coordinates (i, j), v' E X,;_1,r, for some 

rJ E [8] if and only if i + j = rJ + l; in this case, IN<>(v')I = (2(8 + 1- j) -1)- (8-rJ). 

For an arbitrary grid point v' E rf n cf in the top boundary region of Q (3,<>, where 

i E {2k-l - 8 + 1, 2k-l - 8 + 2, ... , 2k-l} and j E [8], that is, (u;:;!-1_<>+1rf) n 
(uj=1S), we proceed as in the case of bottom boundary region: cover the upper

left half of the C~g 8-subcurve at the upper-left cover of Q13,8 with 8 main diagonals 

Xf~1,1 , Xf~1,2 , ... , Xf~ 1,8 , indexed from the upper-left corner of the C~g 8-subcurve, 

and obtain that 

INa(v')I = { (2(8 + 1-_j) - 1) - (8 - TJ) if v' E Xf~i,r, for some rJ E [8] 
2(8 + 1- J) - 1 otherwise. 

Now, the analysis above allows the three cumulations of index-differences in 

.6.<>(Qa(Cl), Q13(Cl)) to be expanded as follows. In order to compute 

~(v,v')EQ0,,0XQ13,old1(v,v')=8 nk(v', 81(Q13(CD)), we consider for all possible v' E Q(3,8, 

which is partitioned into the middle, bottom, and top boundary regions, and deter

mine the number of index (grid point v') references in the summation - which is 

IN<>(v')I. Denote by vti a grid point v' E Q/3,<> with row and column coordinates (i,j). 

Then, 

L nk(v', 81(Q13(CD)) 
(v,v')EQ°'," xQ13,0 ld1 (v,v')=<> 

8 2k-l_8 

- L L (2(8 + 1- j) - l)nk(v;,j, 81(Q13(Cf))) (middle boundary region) 
j=l i=<>+l 

8 8 

+ L L(2(8 + 1- j) - l)nk(v;,j, 81(Q13(Cf))) 
j=l i=l 

8 

- L L (8 - rJ)nk(u, 81(Q13(Cf))) (bottom boundary region) 
r,=1 uEXA 

k-1,1) 

8 2k-l 

+ L L (2(8 + 1 - j) - l)nk(v~,i' 81(Q13 (Cf))) 
j=l i=2k- 1 -8+1 



/j 

- L L (8 - ry)nk(u, 81(Q13(C;))) (top boundary region) 
'7/=l uEXD' 

k-1,r, 

8 2k-l 

L I::(2(8 + 1 - j) - l)nk(v;,j, 81(Q13(C;))) 
j=l i=l 

/j /j 

28 

-L L (8 - ry)nk(u, 81(Q13(C;))) - L L (8 - ry)nk(u, 81(Q13(Cl))) 

/j 

- L I::(2(8 + 1- j) - l)nk(u, 81(Q13(C;))) 
j=l uEc! 

3 

/j 

-L L (8 - ry)nk(u, 81(Q13 (C;))) 
'7/=l uEXD' 

k-1,r, 

/j 

-L L (8 - ry)nk(u, &1(Q13 (C;))). 
'7/=l uEXA 

k-1,r, 

(3.2) 

Similarly, the symmetry between Q a,8 and Q /3,8 yields an expansion for 

E(v,v')EQ,,,.xQ(j,lild1(v,v')=8 nk(v, &2(Qa(Cl))). Denote by Yf1,1, Yl? .. 1,2, ... , Yl\,8 the 

main diagonals covering the lower-right half of the C~g 8-subcurve at the lower-right 

corner of Qa(Cl), indexed from the lower-right corner of the C~g 8-subcurve, and by 

Yk~11, Yk~12, ... , Yk~I 8 the auxiliary diagonals covering the upper-right half of the 
' ' ' 

C1~g 8-subcurve at the upper-right corner of Qa(CD, indexed from the upper-right 

corner of the C~g 8-subcurve. Then, 

L nk(v, &2(Qa(C;))) 
(v,v')EQ,,, 0 xQ(j,old1 (v,v')=8 

/j 

LL (2(8 + 1 - j) - l)nk(u, &2(Qa(Cl))) 
j=l uEc'f 

/j 

-L L (8 - TJ)hk(u, &2(Qa(C;))) 
'7/=l uEYP k-1,r, 

/j 

-L L (8 - TJ)hk(u, &2(Qa(Cl))). 
'7/=l uEY:A' 

k-1,r, 

(3.3) 

For E(v v')EQ xQ Id (v v')=8 hk(&2( Qa( Cf)), &1 ( Q13( Cf))), we note that it is inde-, a,o (j,o 1 , 
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pendent of ( v, v') in the summation. It suffices to compute L(v v')EQ xQ Jd (v v')=t5 1, 
' 01,8 {3,8 1 ' 

similar to the previous two expansions: 

I: 1 
( v,v')EQa,o X Q13,0Jd1 (v,v')=8 
8 8 8 

- I: I:(2(8 + 1-j) -1) - I: I: (8 -77) - I: I: (8 -77) 
j=l uEc!. r,=1 uEXD' r,=1 uEXA 

J k-1,1) k-1,1) 

8 

2k-1 L(28 + 1 - 2j) - Nk-1,.s-1 -Nk-1,.s-1 
j=l 

2k-l8 + 2k-1(82 - 8) - 2Nk-I,8-I = 2k-182 - 2Nk-I,8-I· 

This gives that: 

I: nk(a2(Qo:(Cl)), a1(Qf3(cD)) 
(v,v')EQa,o xQ13,0Jd1 (v,v')=8 

- (2k-182 - 2Nk-1,.s-1)nk(a2(Qo:(Cl)), a1(Qf3(Cl))). (3.4) 

For the case of diagonal subcurves, we consider the computation of 

11.s(Qo:(Cl), Qf3(Cf)) for the main-diagonal subcurves Qo:(Cf) and Qf3(Cl), and let 

Qo:(Cl) be the lower-left subcurve/quadrant and Qf3(cn the upper-right one. (The 

derivation for auxiliary-diagonal subcurves is similar.) 

For a 8-pair ( v, v') E Q a: ( en x Q f3 (Cl), v and v' reside in the neighboring ( 8 -

1) x (8 -1) triangular corners of Qo:(Cl) and Qf3(cn, respectively; thus the number 

of 8-pairs in Qo:(Cf) x Qf3(Cl) is Nk-I,8-I· Figure 3.3(a) shows N.s(v') in the presence 

of both connecting and bottom borders for the case of contiguous subcurves, it also 

reveals the neighborhood of v' for this case - the eliminated "8 + 1 - j - i" grid 

points. 

We now expand 11.s(Qa(Cl), Qf3(Cl)) for main-diagonal subcurves Qo:(Cf) and 

Q (3 ( en as follows: 

'1.s(Qo:(Cl),Qf3(Cl)) 
8-1 

L L (8 -17)nk(u,82(Q1(Cl))) 
r,=l uEY.A' 

k-1,1) 



8-1 

+ L L (8 - ry)nk(u, 81(Q3(Cl))) 
7)=1 uEXA 

k-1,'1 

30 

(3.5) 

The detailed derivations for Hilbert and z-order curve families are shown in the 

following two sections. 

3.1.2 Derivation of 2-Dimensional Hilbert Curve Family 

For a 2-dimensional grid, the "orientation" of Hf uniquely determines that of Qa(Hf) 

for a= 1, 2, 3, 4, and thus only one Hf exists modulo symmetry (whereas there are 

1536 structurally different 3-dimensional Hilbert curves [ANOO]). 

In order to compute the closed-form solution for L0(Hf), we develop a suite of 

lemmas (Lemmas 3.4, 3.5, and 3.6) to compute b..0(Qa(Hf), Q13 (Hf)) for all a, (3 E 

{1, 2, 3, 4} with a < (3, in which we establish a recurrence system (in k - when 

2k > 8) of summations with a basis system of summations computed in Lemmas 3.1, 

3.2, and 3.3. Note, the notations introduced in Section 3.1.1 are applied to Hf in 

this section. 

The following three lemmas study the cumulation of indices of grid points in the 

row, column, diagonal, and auxiliary-diagonal structures of Hf. 

Lemma 3.1 The index-cumulation of a row structure of Hf is independent of its 

row-number: for all a E [2k], 

( 2 2 1 3k 1 k D.. Rk,a, 81(Hk)) = b..(Rk,a, 82(Hk)) = 2. 2 - 2. 2 (independent of a.) 

Proof. A canonical Hf is left-right reflexive. For a grid point v E Rk,a n Ck,/3, 

where a, (3 E [2k], its mirror point v' E Rk,a n Ck,2k+l-f3, and the mirror pair (v, v') 

satisfies that: 

For every a E [2k], there are 2k-l mirror pairs in the row Rk,a· Thus, 

b..(Rk,a, 81(Hl)) = L nk(v, 81(Hl)) 
vERk,a 
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(= L nk(v', 82(Hl)) = !:::..(Rk,a, 82(Hl)) (v' is the mirror point of v)) 
v'ERk,°'-

all mirror pairs (v,v') in Rk,a 

I 

Lemma 3.2 The binary representation of the column-number of a column structure 

of Hf helps compute its index-cumulation as follows: 

1. For all a E [2k-1], a recurrence for !:::..(Ck,a, 81(Hi)) is: 

For a= 1, a closed-form solution for!:::..( Ck,I, 81 (Hf)) from the recurrence above 

(ink) is: 

_3_ . 23k - ! . 2k + ~. 
2 · 7 2 7 

For those a satisfying 2q-l < a ::; 2q for some integer q E [k - 1] (that is, 

q = flog al), the recurrence above (in k) yields a recurrence: 

k 

f:::..(Ck,a, 81(Hl)) = f:::..(Cq,a, 81(H;)) + L (;4 • 2377 - ; 2 · 277 ), 
77=q+l 

where the summation is i(23k-23q)-1(2k-2q) = i.23k_l,2k_.l._. 23flogal+ 2-7 2 2•7 2 2-7 
l. 2flogal 
2 . 

2. For all a, f3 E [2k] such that a < f3 and the binary representations of a - 1 and 

f3 - 1 differ only at the i-th low-order bit, where i E {O, 1, ... , k - 1} (that is, 

( a - 1) EB (/3 - 1) = 2i, where EB denotes the binary exclusive-or operator), 

Proof. Consider a canonical Hf. 
Part 1: We construct the general recurrence (ink) for t::..(Ck,a, 81(Hf)) for arbitrary 

a E [2k-1] as follows. The column Ck,a is in the left-half of the canonical Hf, and can 
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be decomposed into the o:-th column of Q1(Hi) ((-~)-rotating and then left-right 

reflecting into a canonical HL1) and the o:-th column of Q2 (Hi), that is, the o:-th 

row of a canonical HL1 and the o:-th column of a canonical HL1, respectively. By 

noting that for all grid points v E Q2 (Hi), 

rik(v, 81(Hi)) = nk(v, 81(Q2(Hi))) + nk(81(Q2(HD), 81(Hi)) 

nk(v, 81(Q2(Hf))) + 22(k-l), 

and translating the index-cumulation of Ck,o. (in Hf) in the two HLcsubcurves, we 

have: 

- (~(Ck,o. n Q1(Hf), 81(Q1(Hi))) + 2k-1nk(81(Q1(Hf)), 81(HD)) 

+(~(Ck,o. n Q2(Hi), 81(Q2(HD)) + 2k-1nk(81(Q2(Hi)), 81(Hi))) 

(~(Rk-l,o., 81 (HL1)) + 2k-l · 0) (after (+~)-rotating and 

then left-right reflecting Q1(Hi) into a canonical HD 

+(~(C _ 8 (H2 )) + 2k-1 . 22(k-1)) k l,o., 1 k-1 

- ~(Rk-l,o., 81(HL1)) + ~(Ck-1,o., 81(HL1)) + ;3 . 23k 

( ( 2 3 3k 1 k ( (= ~ Ck-l,o., 81 Hk_1)) + 24 · 2 - 22 · 2 by Lemma 3.1)). 

Now we iterate the general recurrence· (in k) from order k to order q + 1 (where 

q = flog o: l ), which yields the recurrence (in k) for ~( Ck,o., 81 (Hf)): 

~(Ck,o., 81(HD) 

( ( 2 3 3k 1 k 
~ Ck-l,o., 81 Hk-1)) + 24 . 2 - 22 . 2 

k 

- ~(C 81(H2)) + """""' (i_ · 23'17 - _!__ · 2'17) q,o., q L...., 24 22 
'l)=q+l 

- ~(Cq,o., 81(H;)) + 2 ~ /23k - 23q) -1(2k - 2q) 

- ~(Cq,o., 81(H;)) + 2 ~ 7. 23k -1 · 2k - 2 ~ 7. 23flogo.l + 1 · 2flogo.l. 



When a = 1, the general recurrence yields a recurrence ( in k): 

k 

~(Ck,1, 81(Hf)) = ~(C1,1, 81(Hf)) + I):4 . 237/ - ;2 . 27/) 

3 3k 1 k 2 
= - · 2 - - · 2 + -. 

2 · 7 2 7 

r,=2 
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Part 2: Let a, (3 E [2k] such that a < (3 and (a - 1) EB ((3 - 1) = 2i, where i E 

{O, 1, ... , k- l }. Consider the two columns Ck,a and Ck,/3 of the canonical Hf, which 

are 2i columns apart. Denote the suffixes of the lower 2k - 2i+1 grid points of Ck,a 

and Ck,/3 by Ca and C13 , respectively (both are empty when and only when i = k-1). 

From the assumption that (a-l)EB((3-1) = 2i and the successive subcurve/quadrant 

orientations of the canonical Hf, we observe the following: 

1. The two suffixes Ca and C13 are the longest possible suffixes of Ck,a and Ck,/3, 

respectively, such that both are in the same successive subcurves/quadrants 

enumerated as in the sequence Q{1,4}(Q~2,3}(Hf)), Q{1,4}(Qh,3}(Hf)), ... , 

Q (Qk-(i+l)-1(H2)) (Wh b h C d C th . {1,4} {2,3} k . en ot a an /3 are empty, e sequence 1s 

void.) 

2. For each j E {O, 1, ... , k-i-2}, the subcurve Q{l,4}(Qh,3}(H't)) is an Hf-i-C 

subcurve (of the canonical Hf), the two segments Can Q{1,4}(Qh,3}(Hf)) and 

C13 n Q{1,4}(Qh,3}(Hf)) can be viewed as two rows in a canonical H't_i_1, as 

illustrated in Figure 3.4(a). By Lemma 3.1, the index-cumulation (of all grid 

points) of the two segments CanQ{l,4}(Qh,3}(Hf)) and C13nQ{1,4}(Qh,3}(H't)) 

are equal. 

3. The difference in the index-cumulation between the columns Ck,a and Ck,/3 

in the canonical Hf is equal to that of the corresponding columns, c: and 

C~, respectively, in the canonically oriented Hl1-1-subcurve Q{2,3}(Qt2.1}2(Hf)), 

which is denoted by Q. When zooming in on Q (see Figure 3.4(b)), we partition 

the difference in the index-cumulation of c: and C~ into the following two parts: 
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I I 

2Hl n r"il 2i+l 

:J C: 

n n fl fl 
~ C ~ C 

Ji H2 
k 

11 

2k _ 2i+l 11 
11 
11 
11 

I I 

~ t: I 
I 

11 
11 I I 

11 I I 
ck,al Ck,/31 

(a) (b) 

Figure 3.4: (a) Two columns Ck,a and Ck,/3 in a canonical Hfwith(a-l)EB(,8-1) = 2i, 
where i E {O, 1, ... , k - 1}; (b) zoom-in illustration of the prefixes of Ck,a and Ck,/3 

in the Hlt-i-subcurve. 

(a) Between the two segments C~nQ1(Q) and C~nQ4(Q) in the 2i-subcurves 

Q1(Q) and Q4(Q), respectively: 

These two segments correspond to two rows in a canonical H'f, in which 

they have equal index-cumulation with respect to 81(Hl) by Lemma 3.1. 

Therefore the difference in the index-cumulation of these two segments 

in Q is effectively LvEC~nQ4 (Q) ni+1(81(Q4(Q)), 81(Q)) = 2i(3 · 22i), since 

there are 2i grid points in C13 n Q4( Q) and ni+l (81 ( Q4(Q) ), 81 (Q)) = 3 · 2i. 

(b) Between the two segments C~nQ2(Q) and C~nQ3(Q) in the 2i-subcurves 

Q2(Q) and Q3(Q), respectively: 

The assumption on the column indices a and ,B gives that the two seg

ments/columns C~ n Q2(Q) and C~ n Q3(Q) in the canonical Q2(Q) and 

Q3 (Q), respectively, have the same column indices. Therefore the dif

ference in the index-cumulation of these two segments in Q is effectively 

2i . 22i. 

I 
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Dk 2k 
' [E]EJ - -, r - -, I I 

I I I I 

L - I - _J [JJ [SJ I I 

•- _J 
L_ L_ 

(a) (b) (c) 

Figure 3.5: (a) Mirror bijection between Ak,2k and Dk,2k in a canonical H't; (b) 
decomposition of Ak,2k into two segments in Q2(H't) and Q4 (H't); (c) viewing the 
segments as the auxiliary diagonal Ak-l,2k-1 in the two canonically oriented H'f,_1. 

Lemma 3.3 Fork 2: 1, 

Proof. Let k be an arbitrary positive integer. 

Part 1: The mirror relation yields a bijection between the grid points of Ak,2k and 

Dk,2k, as shown in Figure 3.5(a). By enumerating all mirror pairs in Ak,2k x Dk,2k, 

we have: 

~(Ak,2k, 81(H't)) + ~(Dk,2k, 81(H't)) 

L (tik(v, 81(H't)) + tik(v', 81(Hl))) 
all mirror pairs (v,v') in Ak,2k xDk,2k 

(22k - 1) 
all mirror pairs (v,v') in Ak,2k xDk,2k 

- 2k(22k - 1) = 23k - 2k. 

Part 2: The auxiliary diagonal Ak,2k in a canonical H'f, can be decomposed into two 

auxiliary-diagonal segments in Q2 (H'f,) and Q4 (H't) as shown in Figure 3.5(b) and 

( c). The segment Ak,2k n Q2 ( H't) is the auxiliary diagonal Ak-i,2k-1 in the canonically 

oriented Q2(H'f,). After ( +~)-rotating and then left-right reflecting Q4 (H'f,) into a 

canonical H'f,_1, the segment Ak,2k nQ4 (H'f,) is the auxiliary diagonal of the canonical 

H'f,_ 1 (see Figure 3.5(c)). We partition ~(Ak,2k, 81(H'f,)) into two parts: 
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From the segment Ak,2k n Q2 ( Hl): 

1. Ll(Ak-I,2k-1, 81(HL1)) and the cumulation of index-adjustment from 81(Q2(H't)) 

to 81 (Hf), which is 

and 

vEAk,2knQ2(Hf) 

Ll(Ak-I,2k-I, 81(HL1)) + 2k-l. 22(k-l)' 

2. From the segment Ak,2k n Q4(Hl): 

Ll(Ak-1,2k-1, 81(HL1)) + 2k-1(3 · 22(k-l)), similarly. 

Now we establish a recurrence (ink) for Ll(Ak,2k, 81(Hf)) as follows: 

The closed-form solution for Ll(Ak,2k, 81(Hl)) is j · 23k - j · 2k. 

if k > 1 
if k = 1. 

I 

In the following lemma, we investigate the summations resulting from restricting 

to the six subcases of Ea:,,6E{l,2,3,4}la<,6 Ll0( Qa:(H't), Q,a(H't) ). For the case of con

tiguous subcurves, the boundary rows/ columns and the boundary corners ( of main

and auxiliary-diagonals) are involved; and for the case of diagonal subcurves, the 

boundary corners ( of main- and auxiliary-diagonals) are involved. 

Lemma 3.4 For 8 that is a positive integral power of 2, and 1 ~ 8 < 2k, 

C\-1,0 + 2Ck-1,o-1 - V~-1,0-1 - Ak-1,0-1 

+Rk-I,o + 2Rk-1,o-1 - Ak-1,0-1 - Vk-1,0-1 

1 k 2 r.r +(2 "2 8 - 2JVk-1,o-1), 



and 

2((\-1,8 + 2Ck-1,8-1 - V~-1,8-1 - Ak-1,8-1) 

+(~ · 2k82 - 2Nk-1,8-1), 
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Proof. From the illustration in Section 3.1.1.2 and from Equation 3.1, we expand 

l::..15(Q0 (H'f), Q13(H'f)) into three cumulations of index-differences: 

( v, v1)EQa. (H~) X Q /3 (HVld1 ( v, v')=8 

L nk(v,82(Qo.(Hl))) 
(v,v')EQa.,oXQ13,1ild1(v,v')=8 

+ L nk(a2(Qa.(Hl)), a1(Q13(Hl))) 
( v,v')EQa.,li x Q13, 0 ld1 (v,v1 )=8 

+ 

For the case of contiguous subcurves, we compute the three cumulations of index

differences from Equations 3.2, 3.3, and 3.4 in Section 3.1.1.2. (All the notations in 

Section 3.1.1.2 applies for H't in this section.) 

Consider the case when (a,/3) = (1,4). After (+~)-rotating and then left-right 

reflecting Q4(H't) into a canonical H't-1, the structures c~, Xf~ 1,1,, and Xf_1,'T/ are 

transformed into Rk-l,2k-i+l-rJ, Dk-l,rJ' and A~_1,'T/, respectively, for all rJ E [2k-l], 

and 81(Q4(H'f)) into 81(H't-1). From Equation 3.2, 

L nk(v', 81(Q4(Hl))) 
(v,v')EQ1,li xQ4,old1 (v,v')=8 

<5 

L L (2(8 + 1 - j) - l)nk-1(u, 81(HL1)) 
j=l uERk-1,2k-l+1-j 

8 8 

- L L (8 - rJ)nk-1(u, 81(HL1)) - L L (8 - rJ)nk-1(u, 81(HL1)) 
'TJ=l uED~_ 1 ,11 'TJ=l uEA~_ 1 ,11 
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j=l uERk-1,2k-l+1-j 

'D' A' - k-1,8-1 - k-1,8-1 

2Rk-1,8-1 + Rk-1,8 - 'D~-1 8-1 - A~-1 8-1 · , , 

For L(v v')EQ x Q Id (v v')=8 rik ( v, 82 ( Q1 (Hf))), We may compute it according to , 1,8 4,8 1 , 

Equation 3.3 for (a, (3) = (1, 4). The left-right reflection symmetry gives that 

(v,v')EQ1,o X Q4,o ld1 ( v,v')=8 

Since rik(82(Q1(Hf)), 81(Q4 (Hl))) = 2 · 22(k-l) + 1, we have (according to Equa

tion 3.4): 

(2k-\52 - 2Nk-l,8-1)rik(82(Q1(Hl)), 81(Q4(HD)) 

(2k-182 - 2Nk-1,8-1)(2 · 22(k-l) + 1). 

Summing up the three expansions, we have: 

fi8(Q1(Hl), Q4(Hl)) 

L rik(v', 81(Q4(Hl))) 
(v,v')EQ1,o x Q4,0ld1 (v,v')=8 

+ L rik(v, 82(Q1(Hl))) 
( v,v')EQ1,o xQ4,0 ld1 (v,v')=8 

+(2k-lc52 - 2Nk-l,8-1)(2. 22(k-l) + 1) 

2(2Rk-1,8-1 + Rk-1,8 - 'D~-1 8-1 - A~-1 8-1) 
' ' 

+(2k-182 - 2Nk-1,8-1)(2(2k-1)2 + 1) 

- 2(Rk-1,8 + 2Rk-1,8-1 - 'D~-1,8-1 - A~-1,8-1) 

1 2k 1 k 2 A ( ) +(2 . 2 + 1)(2 . 2 () - 2JVk-1,8-1 . 
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The derivations for the other three cases: (a, /3) = (1, 2), (2, 3), and (3, 4)) are 

similar. 

For the case of diagonal subcurves, we first observe that every 8-pair ( v, v') E 

Q1(Hf) xQ3(Hn and its unique top-down reflection 8-pair (u, u') E Q2(Hf) xQ4(Hf) 

have equal contribution in its own cumulation of index-differences, which implies that 

tl8(Q1(Hf), Q3(Hn) = tl8(Q2(Hn, Q4(HD). It suffices to consider the derivation 

for tl8(Q1(Hf), Q3(HD). 

In deriving tl8(Q1(Hn, Q3(Hf)), an index-difference computation nk-1(v, 82(HL1)) 

appears. Since all our derivations and computations so far have involved 81 ( HL 1), we 

observe that in a canonical HL1 , for every rJ E [8-1], every grid point u E A~-l,ry and 

its unique left-right reflection grid point u' E D~_1,"I satisfy that nk-1(u, 82(HL1)) = 

nk-1(u', 81(HL1)). 

According to Equation 3.5, we now expand tl8(Q1(Hl), Q3(Hl)) as follows: 

tl8(Q1(Hf),Q3(Hf)) 
8-1 

- L L (8 - rJ)nk(u, 82(Q1(Hf))) 
ry=l uEY.A' 

k-1,r, 

8-1 
+ L L (8 - rJ)nk(u, 81(Q3(Hf))) 

ry=l uEXA 
k-1,r, 

+Nk-1,t5-1hk(82( Qi (Hf)), 81( Q3(Hf))) 
8-1 

- L L (8 - rJ)nk-1(u, 82(HL1)) 
ry=l uEA~-l,r, 

(after ( +i )-rotating and then left-right reflecting 

Q1(Hf) into a canonical HL1) 
8-1 

+ L L (8 - rJ)nk-1(u,81(HL1)) 

+(22Ck-i) + l)Nk-1,8-1 
8-1 

- L L (8 - rJ)nk-1(u, 81(HL1)) + (;2 · 22k + l)Nk-1,8-1 + Ak-1,8-1 
ry=l uED~-l,r, 
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= (;2 · 22k + l)Nk-1,8-1 + D~-1,8-1 + Ak-1,8-1· 

The derivation for D..c5(Q2(Hn, Q4 (H~)) are the same as described above. I 

The following two lemmas allow us to simplify the overall summation of Lc5(Hn. 

Lemma 3.5 For all integers q with O::; q::; k, 

1 Wk = 1 . 24k - l. 22k 
' 2 2 ' 

1. Each of the pairs: (Dk,2q, Ak,2q) and (D'k,2q, A'k,2q) are related via Nk,2q as 

follows: 

and 

Proof. let q be an arbitrary integer with O ::; q ::; k. 

Part 1: wk= ~vEHi fik(v, 81(Hn) = ~7)E[22k](17 -1) = ! . 24k - ! . 22k. 

Part 2: For the symbol X denoting D, D', A, or A' (main or auxiliary diagonals), 

the number of grid points in Xk,/3, where f3 E [2k], is /3. Therefore, 

2q 2q 

N k,2q = L L 1 = L j3 = ~ · 22q + ~ · 2q. 
/3=1 vEXk,f3 /3=1 

Part 3: Lemma 3.1 says that for all /3 E [2k], b..(Rk,/3, 81(Hn) = b..(Rk,/3, 82(Hn) = 

! . 23k - ! . 2k (independent of /3). Therefore, 
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2q 2q 

nk,2q - L L nk(v, 81(Hn) = L 1:).(Rk,/3, 81(Hf)) 
/3=1 vERk,f3 /3=1 

2 1 3k 1 k - 2ql:).(Rk,1,81(Hk))(= 2q(2 · 2 - 2 · 2 )). 

Part 4: Lemma 3.2 (part 2) says that for all o:, (3 E [2k] with o: < (3 and (o: - 1) EB 

((3-1) = 2i, where i E {O, 1, ... , k- l }, 1:).( Ck,/3, 81 (HD) = 1:).( Ck,a, 81 (Hl)) + 22 · 23\ 

hence for all rJ E [2q-l], 

We establish a recurrence (in q) for Ck,2q as follows: 

2q 

l\2q = I:1:).(ck,11,81(Hf)) 

2q-l 2q 

- L 1:).(Ck,71, 81(Hf)) + L 1:).(Ck,71, 81(Hf)) 

2q 

- l\2q-l + I: 1:).(ck,71, 81(Hn) 

2q-l 

- C\,2q-l + L 1:).(Ck,2q-1+71, 81(Hl)) 
71=1 
2q-l 

- c\,2q-l + L(i:).(Ck,71, 81(Hn) + 22 . 23(q-l)) 
71=1 

2c\,2q-l + 2q-1 . 22+3(q-l) 

- 4 2 - 2C k 2q-1 + 2 q- . 
' 

Iterating the recurrence in descending q (to 0), we have: 

Part 5: In a canonical Hl, for all o: E [2k], the "structures" Ak,2k and A'k,2k cover 

the lower-left and upper-right corners of o: auxiliary diagonals, respectively (see Fig

ure 3.l(c)); and the coverages of Ak,2k and A\,2k have a common auxiliary diagonal 
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(c) 

Figure 3.6: Coverages and decompositions of auxiliary and main diagonal structures 
in a canonical Hr (a) and (b) for Ak,2k ; ( C) for'D\ ,2k . 

Ak,2k ( = A~,2k). Therefore, 

2k 2k 

Ak,2k +A'k,2k = L6(Ak,13 ,a1(H;)) + L6(A~,13 ,a1(H;)) 
/3=1 /3=1 

2k-1 2k 

L .6.(Ak,/3, 81(Hf)) + 6(Ak,2k, 81(Hf)) + L 6(A~, f3, 81(Hf)) 
/3=1 /3= 1 

'""" 2 2 - 2 L...t nk(v, 81(Hk)) + 6(Ak,2k, 81(Hk)) =Wk+ 6(Ak,2k, 81(Hk)) . 

Part 6: The structure Ak,2k covers the lower-left half of a canonical Hf We decom

pose its coverage into three parts as shown in Figure 3.6(a): Q1(HD , the lower-left 

half of Q2 (HD, and the lower-left half of Q 4 (HD. Accordingly, we partition Ak,2k 

into three parts (see Figure 3.6(b)): 

1. From Q1(HD: the index-cumulation of all grid points in Q1(HD is Wk-l, 

2. From the lower-left half of Q2(HD (covered by Ak- l,2k-1 ): the index-cumulation 

of the lower-left half of Q2 ( HD with respect to 81 ( Q2 (HD) and the cumulation 

of index-adjustment from 81(Q2(HD) to 81(HD; that is , Ak- l,2k-1 +Nk-l ,2k-1 · 

22(k- l) and 
) 

3. From the lower-left half of Q4 (HD (covered by A'k- l,2k-1, after (+~)-rotating 

and then left-right reflecting Q4 (HD and its lower-left half into a canonical 

HL 1 and its upper-left half, respectively): A'k- l,2k-1 and the cumulation of 
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index-adjustment from 81(Q4(Hn) to 81(Hn; that is, A\_1,2k-1 +Nk-1,2k-1 · 

(3. 22(k-l)). 

2k 

Ak,2k = L L nk(v, 81(HD) 
/3=1 vEAk,.B 

2k 
nk(v, 81(Hl)) + L 

2k-l 

nk(v, 81(Hl)) + L 

/3=1 vEAk,2k-1+,anQ2(HV 

("v E Ak,2k-i+/3 n Q2(Hl)" is equivalent to "v E Ak-1,/3 in a canonical HL1") 

/3=1 vEAk,2k-1+,anQ4(Hl) 

("v E Ak,2k-i+/3 n Q4(Hl)" is equivalent to "v E A~_1,13in a canonical HLi") 
2k-l 

- Wk-1 + L. L (nk-1(v, 81(HL1)) + 22(k-l)) 
/3=1 vEAk-1,.B 

2k-l 
+ L L (nk-1(v, 81(HL1)) + 3. 22(k-l)) 

/3=1 vEA~-l,.B 

- - - 2(k 1) - Tr 2(k 1) Wk-1 + (Ak-1,2k-1 +Nk-1,2k-1 · 2 - ) + (A'k-1,2k-1 +1v k-1,2k-1 · (3 · 2 - )) 

- - - 2k"T7' 
wk-1 + Ak-12k-l + A'k-12k-l + 2 1v k-12k-l ' ' , 

(by part 5). 

Part 7: We prove the equality 'Dk,2q + Ak,2q = (22k - l)Nk,2q, and the proof of the 

equality 'D'k,2q + A'k,2q = (22k - l)Nk,2q is similar. We proceed as in the proof of 
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Lemma 3.3 (part 1), by considering the mirror bijection between the grid points of 

Ak,/3 and Dk,/3 for all (3 E [2k]: 

29 29 

'Dk,29 + Ak,29 = L L nk(v, 81(Hl)) + L L nk(v, 81(Hl)) 
/3=1 vEDk,(3 /3=1 vEAk,(3 

/3=1 all mirror pairs (v,v')EDk,(3 xAk,(3 

(22k - 1) 
/3=1 all mirror pairs (v,v')EDk,f3XAk,f3 

/3=1 all mirror pairs (v,v')EDk,(3 xAk,(3 

Part 8: If q = 1, then the desired equality is obviously true. Consider that q < k. The 

structure 'D' k,29 covers the upper-left corner of 2q main diagonals in a canonical Hf. 

In fact, 'D'k,29 is the upper-left half of Q~-q(Hf), which is an H;-subcurve canonically 

oriented at the upper-left corner of the Hf (see Figure 3.6(c)). Therefore, 

29 

'D'k,29 = L L nk(v, 81(Hl)) 
/3=1 vED~,(3 

29 

L L (nk(v, 81(Q~-q(Hf))) + nk(81(Q~-q(HD), 81(Hl))) 
/3=1 vED~,f3 

29 k-1 2q 29 k-1 

- L L (nq(v, 81(H;)) + L 2211) = L L nq(v, 81(H;)) + L L L 2211 
/3=1 vED' q,(3 11=q /3=1 vED' q,(3 

Computations of various ,li,29 are similar to those for X k,2q. 

Lemma 3.6 For all integers q with O:::; q:::; k, 

1. Nk 29 = ...!... · 23q + l . 22q + l . 2q · 
, 2·3 2 3 ' 

/3=1 vED' 11=q 9,(3 

I 
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3 C = _L . 23k+2q + _3_ . 23k+q - ...!.. • 2k+2q - ...!.. • 2k+q + _1:._ . 25q + l . 24q + _l_ . 2q · k,2q 22.7 22.7 22 22 3.5.7 7 3.5 ' 

4. Each of the pairs: (Vk,2q, Ak,2q) and (V~,2q, A~,2q)) are related via Nk,2q as 

follows: 

5. 

{ 
0 

Ak 2k = 4 
' 7 5k 3 4k 5 3k 1 2k 23 k 

22.32.5 . 2 + 24 . 2 + 22.32 . 2 - 22 • 2 - 32.5 . 2 

7. 

Proof. Let q be an arbitrary integer with O ~ q ~ k. 

if k = 0 
if k = 1 

otherwise, 

if k = 0 
if k = 1 

otherwise, 

Part 1: Similar to the proof of Lemma 3.5 (part 2). For the symbol X denoting D, 

D', A, or A', the number of grid points in Xk,/3, where ;BE [2k], is /3. Therefore, 

2q 2q 1 1 1 
Nk,2q = L L (2q + 1- /3) = L(2q + 1- /3)/3 = 2. 3. 2 3q + 2. 2 2q + 3. 2q. 

/3=1 vEXk,(3 /3=1 

Part 2: Similar to the proof of Lemma 3.5 (part 3). Lemma 3.1 says that for all 

/3 E [2k], !J.(Rk,/3, 81(Hn) = !J.(Rk,/3, 82(Hn) = ! · 2 3k - ! · 2k (independent of /3). 

Therefore, 

nk,2q 
2g 2q 

- L L (2q + 1 - /3)nk(v, 81(Hf)) = L((2q + 1 - /3) L nk(v, 81(Hf))) 
/3=1 vERk,f3 /3=1 vERk,f3 

2q 2g 

L(2q + 1 - ;B)!J.(Rk,/3, 81(Hf)) = !J.(Rk,1, 81(Hf)) L(2q + 1 - /3) 
/3=1 /3=1 

2g 

- !J.(Rk,1,81(Hf))Lf3-
/3=1 
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Part 3: We first express Ck,2q in terms of Ck,2q (computed in Lemma 3.5 (part 4) 

and Lemma 3.2 (part 1)) and L~:1 f]l:l(Ck,13, 81(Hl)): 

2q 2q 

- L L (2q + 1 - f])fik(v, 81(Hi)) = L((2q + 1 - /3) L fik(v, 81(Hi))) 
,B=l 

~ ~ 

- L(2q + 1 - {3)!:l(Ck,,B, 81(Hl)) = L((2q + l)l:l(Ck,,B, 81(Hl)) - {3!:l(Ck,,B, 81(Hl))) 
,8=1 ,B=l 

2q 2q 

- (2q + 1) Lt:i(ck,,a,B1(Hl)) - Lf3t:i(ck,,a,a1(Hl)) 
,B=l ,8=1 

2q 

- (2q + 1 )C\,2q - L {3!:l( Ck,,B, 81 (Hf)). 
,8=1 

Let Uk,2q denote L~:1f3!:l(Ck,,B,a1(Hn), so Uk,20 = l:l(Ck,l,al(Hl)), which is 

computed in Lemma 3.2 (part 1). We establish a recurrence (in q) for Uk, 2q, similar 

to that for Ck,2q in the proof of Lemma 3.5 (part 4), as follows: 

Uk,2q 
2q 2q-l 2q 

- Lf3t:i(ck,,a,B1(Hi)) = Lf3t:i(ck,,a,B1(Hl)) + L f3!:l(Ck,,a,a1(Hi)) 
,8=1 ,8=1 ,8=2q-l+l 

2q-l 

- uk,2q-1 + L(2q-1 + f3)!:l(Ck,2q-1+,a, B1(Hf)) 
,B=l 
2q-l 

- Uk,2q-1 + L(2q-l + /3)(!:l(Ck,,B, 81(Hf)) + 22 · 23(q-l)) by Lemma 3.2 (part 2) 
,B=l 

2q-l 2q-l 2q-l 

Uk,2q-l + 2q-l L l:l(Ck,,B, 81(Hi)) + L {3!:l(Ck,,B, 81(Hi)) + L(2q-l + /3)23q-l 
,8=1 ,8=1 ,8=1 

- 2uk,2q-l + 2q-1ck,2q-l + 3 . 25q-4 + 24q-3. 

With Ck,2q-1 and Uk,20 = l:l(Ck,1, 81(Hn) computed in Lemma 3.5 (part 4) and 

Lemma 3.2 (part 1), the closed-form solution for Uk, 2q is: 

_3_. 23k+2q +-3-. 23k+q - 2_. 2k+2q - 2_. 2k+q + 2. 11 . 25q + ! . 24q - _1_. 2q. 
22 . 7 22 . 7 22 22 3 . 5 . 7 7 3 . 5 
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[O·····. ~--··, []·····. ' . . . . ' . . . . . ' . : . : : : 

~ LS] ~~ 
(b) (c) 

Figure 3.7: (a) Coverage of A k,2k in a canonical Hl; (b) decomposition of Ak,2k into 
four triangular halves; (c) rotating and then reflecting Q1(Hl) and Q4 (Ht) into two 
canonical HL i-subcurves. 

Now, 

Ck,2q = (2q + l)C\,2q - Uk,2q 

_3_ . 23k+2q + _3_. 2 3k+q - ]_. 2k+2q - ]_. 2k+q + 23 . 25q 
22 . 7 22 . 7 22 22 3 . 5 . 7 

+ ~ . 24q + _1_ . 2q . 
7 3 .5 

Part 4: Similar to the proof of Lemma 3.5 (part 7): 

/3= 1 a ll mirror pairs (v ,v')EDk, f3 XAk, /3 

2q 

/3= 1 a ll mirror pairs (v ,v')EDk ,/3 xAk ,/3 

(2q + 1 -/3)(22k - 1) = (22k - l)Nk ,2q . 

Part 5: We proceed as in the proof of Lemma 3.5 (part 6). The structure A k,2k 

covers the lower-left half of a canonical Hf We decompose its coverages into four 

parts (non-empty when k ~ 2) as shown in Figure 3.7(a) and (b): the lower-left half 

of Q1(Ht) , the upper-right half of Q1(Ht) without the auxiliary diagonal Ak,2k(= 

A~.2k), the lower-left half of Q2(Ht) , and the lower-left half of Q4(Ht). Accordingly, 

we partition A k, 2k into four parts (see Figure 3.7(c)) as follows. In the notation, 
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Ak,a = I:~=l I:vEAk,13 (a + 1 - /3)nk(v, 81(HD), we associate the weight a+ 1 - /3 

with Ak,,6 in the summation. 

1. From the lower-left half of Q1(H'f) - consisting of auxiliary diagonals Ak,,6 

with weights 2k + 1 - /3 for /3 = 1, 2, ... , 2k-l (indexed from the lower-left 

corner of Q1 ( H'f)): 

After (-~)-rotating and then left-right reflecting Q1(H'f) into a canonical HL1, 

we can see that these weighted auxiliary diagonals are transformed into aux

iliary diagonals Ak-l,,6 with weights 2k + 1 - /3 for /3 = 1, 2, ... , 2k-l (indexed 

from the lower-left corner of the canonical HL1). Its contribution in Ak,2k is: 

.B=l vEAk,13nQ1(HD 

2k-l 

L 
.6=1 vEAk,t3nQ1 (H~) 

2k-l 

+L 
.B=l vEAk,13nQ1(HD 

2k-l 

- L L (2k-l + l -/3)nk-l(v,81(HL1)) 
,6=1 vEAk-1,/3 

2k-l 

+2k-l L L nk-1(v, 81(HLi)) 
,6=1 vEAk-1,/3 

k 1-- Ak-1 2k-1 + 2 - Ak-1 2k-1. ' , 

2. For the upper-right half of Q1(H'f) without the auxiliary diagonal Ak,2k -

consisting of auxiliary-diagonal segments Ak,,6 n Q1 ( H'f) with weights 2k + 1- /3 

for f3 = 2k-l + 1, 2k-l + 2, ... , 2k - 1 (indexed towards the upper-right corner 

of Q1 (H'f)): 

After (-~)-rotating and then left-right reflecting Q1(H'f) into a canonical HL1, 

we can see that these weighted auxiliary-diagonal segments are transformed 

into auxiliary diagonals A~-l,,6 with weights /3 + 1 for /3 = 1, 2, ... , 2k-l - 1 
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(indexed from the upper-right corner of the canonical HL1). Its contribution 

'"Y=l vEAk 2k-I+ nQ1(Hi) , "I 

( change of summation index: (3 = 2k-l + 1 ) 

/3=1 vEAk,2k-I +/3nQ1 (Hi) 

2k-l_1 

L L ((3 + l)lik-1(v, 81(HL1)) (in the canonical H£-1) 
/3=1 vEA~-l,/3 

L L ((3 + l)nk-1(v, 81(HL1)) 
/3=1 vEA~-l,/3 

(I: L (2k-l + 2)nk-1(v, 81(HL1)) 
/3=1 vEA~-l,/3 

- L L (2k-l + 1- (J)nk-l(v, 81(HL1))) 
/3=1 vEA~-l,/3 

-(2k-l + l)~(A~-1,2k-l, 81(HL1)) 

(2k-l + 2)A'k-1,2k-l - A~-1,2k-l - (2k-l + l)~(A~-1,2k-1, 81(HL1)). 

3. From the lower-left half of the canonically oriented HLi-subcurve Q2(HD -

consisting of auxiliary-diagonal segments Ak,/3 n Q2 (Hf) with weights 2k + 1 - (3 

for (3 = 2k-l + 1, 2k-l + 2, ... , 2k - 1 (indexed from the lower-left corner of 

Q2(Hf)): 

Including the cumulation of index-adjustment from EJi(Q2(Hf)) to 81(Hf), its 



contribution in Ak,2k is : 

,8=2k- 1+1 vEAk,13nQ2(HD 

+ rik(81(Q2(Hi)), 81(Hi))) 

,=1 vEAk,2k-l+-PQ2(HD 

(change of summation index: f3 = 2k-l + 1 ) 

,8=1 vEAk, 2k-l +/3nQ2 (H~) 

2k-l 

L L (2k-l + 1 - /3)nk-1(v, 81(HL1)) 
,8=1 vEAk-l,/3 

+ L L (2k-l + i - /3)22(k-1) 
,8=1 vEAk-l,/3 

Ak-1,2k-l + 22(k-l) Nk-1,2k-l. 
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4. From the lower-left half of Q4 (H'f;) - consisting of auxiliary-diagonal segments 

Ak,,B n Q4(Hi) with weights 2k + 1 - /3 for /3 = 2k-l + 1, 2k-l + 2, ... , 2k - 1 

( indexed from the lower-left corner of Q 4 ( H'j;)): 

After ( +2J)-rotating and then left-right reflecting Q4 (Hi) into a canonical HL1 , 

we can see that these weighted auxiliary-diagonal segments are transformed 

into auxiliary diagonals A~-l,,B with weights 2k-l + 1 - /3 (indexed from the 

upper-right corner of the canonical HL1). Including the cumulation of index

adjustment from 81 ( Q 4 ( H'j;)) to 81 (Hi), its contribution in Ak,2k is: 



,=1 vEAk,2k-1+,,nQ4(HD 

( change of summation index: (3 = 2k-l + 1 ) 

L L (2k-l + 1 - (3)nk-1(v, 81(HL1)) 
,8=1 vEA~-l,/3 

2k-l 
+ I: I: (2k-l + 1 - /3)(3. 22(k-l)) 

,8=1 vEA~-l,/3 

A~_1,2k-1 + 3 · 22(k-l) Nk-1,2k-1. 
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With the four contributions, we establish a recurrence (ink 2: 2) for Ak,2k as follows: 

k-1-
Ak,2k = (Ak-1,2k-1 + 2 Ak-1,2k-1) 

+((2k-l + 2)A'k-1,2k-l - A~-1,2k-l - (2k-l + l)~(A~-1,2k-1, 81(HL1))) 

+(Ak-1,2k-l + 22(k-l) Nk-I,2k-l) 

+(A~_1,2k-1 + 3 · 22(k-i) Nk-i,2k-1) 

- 2Ak-1,2k-1 + 2k-i Ak-1,2k-1 + (2k-i + 2)A' k-1,2k-1 + 22k Nk-i,2k-1 

-(2k-l + l)~(A~-1,2k-1, 81(HL1)). 

Note that A~_12k-i is identical to Ak-i,2k-1, and Lemma 3.3 (part 2), Lemma 3.5 , 

(parts 1, 2, 5, and 6), and Lemma 3.6 (part 1) are used to obtain exact formulas for 

Ak-l,2k-1, A' k-l,2k-1, Nk-I,2k-1, and ~(A~_1,2k-1, 81 (HL1)) in above recurrence. 

For k < 2, we compute Ak 2k directly, and the recurrence for Ak 2k is: , , 

which yields the desired closed-form solution for Ak,2k. 



52 

(a) (b) 

Figure 3.8: Two possible orientations of an H;-subcurve for computing Ak,2q: (a) a 
canonical H;; (b) an H;-subcurve that can be reflected (with respect to the main 
diagonal) into a canonical H;. 

Part 6: The coverage of Ak,2q in a canonical Hf is an H;-subcurve at the lower-left 

corner of the Hf with two possible orientations as shown in Figure 3.8: (1) a canoni

cally oriented H;, or (2) an H;-subcurve that can be (-~)-rotated and then left-right 

reflected into a canonically H; ( equivalently, a reflection with respect to the main di

agonal joining the lower-left and upper-right corners of the H;-subcurve). Thus, for 

computing Ak,2q for both possibly oriented H;-subcurves, the two sequences of aux

iliary diagonals with associated weights are equal ( via the reflection with respect to 

the main diagonal), and the two entry grid points are identical. Hence, Ak,2q = Aq,2q. 

Part 7: Following the proof of part 5, we partition the coverage of Vk,2k into four 

parts (non-empty when k 2: 2), and obtain: 

(Vk-1,2k-1) 

+(2k-1V'k-1,2k-1 + V~_1,2k-1 + 2k-1(Nk-i,2k-1 · 22(k-1)) +Nk-i,2k-1 · 22(k-1)) 

+((2k-1 + 2)vk-1,2k-l - vk-1,2k-1 - !:i(Dk-1,2k-1, 81(HL1))(2k-1 + 1) 

+((2k-i + 2)Jv\-1,2k-1 - Nk-i,2k-1 - 2k-1(2k-i + 1))22(k-1)) 

+(V~_1,2k-1 + Nk-1,2k-1 · 2 · 22(k-1)). 

This gives a recurrence (in k 2: 2) for V~ 2k as follows: , 

2V' + 2k-1V 1 + (2k-l + 2)V k-1 2k-l 
+ ((2 · 23k-3 + 2 · 22k-2)Nk-i,2k-1 + 2 · 22(k-1)Nk-1,2k-1 
- (24k-4 + 23k-3) - !:i(Dk-1,2k-1, 81(HL1))(2k-l + 1) 

4 
0 

if k 2: 2 
if k = 1 
if k = 0, 
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which yields the desired closed-form solution for D~,2k. 

Part 8: Following the proof of Lemma 3.5 (part 8), the coverage of D~,2q is the upper

left half of Q~-q(Hn, which is an H~-subcurve canonically oriented at the upper-left 

corner of a canonical H'f (see Figure 3.6(c)). The cumulation of index-adjustment 

involves the summation of nk(81 (Q~-q(H'f)), 81 (H'f)), which cumulates the traversals 

through all the intermediate subcurves Q1(Q1(Hn) for all T/ E {O, 1, ... , k - q - 1}. 

Thus, 
q 

D' - ,.r ~ 221/ D' - 1 (22k 22q) "r D' k,2q - JV k,2q L....t + q,2q - 3 - JV k,2q + q,2q · 

7J=k-l 

With Lemmas 3.1 to 3.6, we obtain the closed-form formulas for L5(Hn. 

Theorem 3.1 For 8 E [2k] that is an integral power of 2, 

L5(Hf) = 

1Z. . 23k - _§_ • 22k - ~ 
2•7 2·3 3.7 

fl.. 23k+2log8 _ 23 ·3·52 -7(k-log8)+5·7-383 . 22k+3log8 
2•7 24 .33 .5.7 

if 8 = 1 

+ 2·3·5(k-log8)-1 . 22k+log8 
22.33 

_ 22 -41 . 25log8 _ 2 . 23log8 _ 2 . 2Iog8 otherwise. 
33 .5.7 33 3.5 

I 

Proof. Let 8 E [2k] that is an integral power of 2. Lemma 3.4 gives a recurrence (in 

k) for L5(Hn for all 8 E [2k-l] that is an integral power of 2. It suffices to determine 

the basis for the recurrence for all 8. 

For the extreme case when 8 = 1, the basis for the recurrence (ink) for L1(Hn 

occurs when k = 1; and L1(Hr) = 6. The recurrence in Lemma 3.4 (for 8 = 1) with 

the basis gives the desired closed-form solution for L1(H'f). 

For the general case when 8 2: 2, the basis for the recurrence (in k) for L5(H'f) 

occurs when k = log 8, for which the recursive decomposition (in k) halts and we 

compute L5(H1~g 8) based on, in a canonical H1~g 8: 

li-jl = nlog 8 ( V, V 1) • 

The summation above requires the knowledge of 6-neighborhood structures in a 

canonical H1~g 8 and the distribution of n10 g 8 ( v, v') for a 0-pair ( v, v') E H1~g 8 x H1~g 8 . 
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', IQI 6/D\V\ 
. - . -~- .. - -: . ·,· .. - - ... ·.· - . - -.- ... -.- - - - . :', :o: :6:o:v 

: : : : r:: 'I ~:<:o::::: {::: I4. {¢: . . ., o· . ',6 . . . ' . . . 
: : : ' : : : 

V :Di ,6: I IQI // 
.. 0 .. ·:_--;,.,--:_· .... --:-0----:-- ~/- ... 

Ll : :/ : : f<: -: ::: : : . _:_ ... : :oI?I:::::::::: : :0 /: :.: . ' / ' . . 
: : / : 

: : ', :o: : . . ,. . . . ---·:· ... ·:· -.. ·:· T -.... r~ ~ ·:'c:~:Y:- .... 

-····:···-·:-···-:-·-······y·-->~·-:-o··--. . . . . ,, ··r ... T. -. Ti .. iii T .. · r .... > ~. 
(a) (b) 

Figure 3.9: (a) Examples of N£(v) for a grid point v in the deleted lower-left half of 
a canonical H1!g8 ; (b) examples of Nf (v) for a grid point v in the deleted lower-right 
half of a canonical H1!gJ· (Note: the geometrical shape identifies the b-neighboring 
relation.) 

For a grid point v in a canonical Hf with sufficient large k, its b-neighborhood 

of cardinality 4b, in the absence of any border /boundary, forms a square ( ( + ~f)

rotated) centered at v and composed of two main-diagonal and two auxiliary-diagonal 

segments (in which all grid points are at a 1-normed distance of b from v). With 

k = log b, in the presence of four boundaries of H1!g 8, the "squared complete b

neighborhood" is truncated by the boundaries. The b-neighborhood of v is the 

truncated/incomplete square composed of at most two segments from adjacent main 

and auxiliary diagonals - which are two diagonals ( one main and one auxiliary 

diagonals) in the canonical H1!g8. The b-neighborhood of v degenerates to a single 

main or auxiliary diagonal of H1!g 8 when and only when v is a corner grid point of 

H1!gJ· Figure 3.9 depicts some example b-neighborhoods in a canonical H1!gJ· 

In a canonical Hf, a deleted triangular half (lower-left, lower-right, etc.) is the 

corresponding triangular half without the main/ auxiliary diagonal. In our derivation 

for L1og8(H1!g8) below, for a grid point v E H1!g8, we consider the contribution 

in L1og8(H1!g 8) of a b-pair (v, v') from two possible sources: (1) Case of auxiliary 

diagonals: all b-neighbors v' of v from an auxiliary diagonal of H1!g 8 , denoted by 

N£(v) (see Figure 3.9 (a)), and (2) Case of main diagonals: those from a main 
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diagonal of Hl~g O' denoted by Nn V) ( see Figure 3. 9 (b)). ( As mentioned above, 

when vis a corner grid point of H1~go, the sources degenerate to one diagonal.) The 

two derivations are similar, and we focus our discussion on the case of auxiliary 

diagonals. We observe the following 8-neighboring relation between two auxiliary 

diagonals in H1~g 8 . 

For every grid point v in the deleted lower-left half of the canonical H1~go, that 

is, v E A1ogo,a for some a E [8 -1), we have NHv)=Aiogo,,B with a+ /3 = 8. Similarly 

for every grid point v' in the deleted upper-right half of the canonical H1~go, that is, 

v' E Aiogo,,B for some /3 E [8 - 1), we have NHv')=A1ogo,a with a+ /3 = 8. 

After addressing the 8-neighborhood structures, we consider the organization 

of h10 g0(v, v') for all 8-pairs (v, v') for the summation in expanding L0(H1~go) = 

~v,v'EH/;,goldi(v,v')=o h1ogo(v, v') for the case of auxiliary diagonals. First we write 

that: 

and need to determine the algebraic sign of h10 g o ( v, 81 ( Hfog 8)) - h1og o ( v', 81 ( H1~g 8)). 

We observe the following two cases based on the location of a grid point v in the 

quadrants of the canonical H1!go· 

1. For every grid point v E A1ogo,a n (U~=l Q'l/(H1~go)), where a E [8 - 1), we have 

h10 g O ( v, 81 ( H1~g O)) < h10 g O ( v', 81 ( Hfog O)) for all v' E NH v), and 

2. For every grid point v E A1ogo,a n Q4(H1!g 0), where a E { ! + 1, ! + 2, ... , 8 -1 }, 

we have h1ogo(v, 81(H1~g 8)) > h1ogo(v', 81(H1~g 8)) for all v' E NHv). 

This suggests that we decompose the contribution in L10g O ( H1!g 8) of all 8-pairs ( v, v') 

from the case of auxiliary diagonals into four parts of index-cumulations: 

1. The index-cumulation of all grid points v in the deleted lower-left half of 

Q4(Hfogo): 

8-1 

L 



~-1 

L L (~ - 0o)n1ogo(v, 81(H,!go)) 
o:=l vEAlogo,n+ 1nQ4(H~go) 

~-1 

L L (~ - 0o)n1ogJ(V, 81(Q4(H,!go))) 
o:=l vEA10g o,a+1 nQ4(Hf0 g 0) 

~-1 

+ L L (~ - 0o)n1ogo(81(Q4(H,!go)),ch (H,!go)) 
o:=l vEA10go,a+1nQ4(H~go) 

~-1 

~ ~ c5 2 ) ~ ~ (2 - 0o)h1ogJ-1(v, 81(H1ogJ-1) 
o:=1 vEA;og o-1,a 

(after (-~ )-rotating and then left-right reflecting Q4(H1!go) 

into a canonical Hfogo-1) 
Q_l 

c5 2 c5 
+3(2) 2 L L (2 - a) 

o:=l vEA;og o-1,ac 
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2. The index-cumulation of all c5-neighbors v' E NH v) for all grid points v in the 

deleted lower-left half of Q4(H1~g 8): 

~-1 

L L (~ - (3)n1ogo(v', 81(H1!go)) 
,6=1 v' EA;0 g o,/3 

A' o = A' o - A' o = A' o - A' o + 2(i) 2 N: o . logJ, 2 -1 logJ, 2 logJ, 2 logJ-1, 2 logJ-1, 2 2 logJ-1, 2 -1 

3. The index-cumulation of all c5-neighbors v' E NHv) for all grid points v in 

the deleted lower-left half of H1~gJ and not in the deleted lower-left half of 

Q4(H1~g 0 ): 

J-1 
L L (c5 - (3)n1ogo(v', 81(H1!go)) 
,6=1 v' EA log o,/3 
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%-1 

- L L (~ - f3)n1og8(v', 81(H1~g8)) 
/3=1 v' EA;og 8,,B 

%-1 

A(og8,8-l - L L ((5 - f3)n1og8(v', 81(H1~g8))) 
/3=1 v' EA(0 g o,{:J 

(Note: A(0 g 8,8 = A(og8,8-1 + A'1og8,8) 
- - 6 2 

A(og8,8 - A'1og8,8 - (A;0 g8- 1,% - A'1og8-1,% + 2(2) iViog8-1,%-1)-

4. The index-cumulation of all grid points v in the deleted lower-left half of H 1~g 8 

and not in the deleted lower-left half of Q4 (H1~g 8): 

8-1 
L L (5 - a)n1og8(v, 81(Hfog8)) 
a=l vEA1og 8,a 

a=!+l vEA1og8,anQ4(H1~g 8) 

8-1 
A1og8,8-l - L L (5 - a)n1og8(v, 81(H1~g8)) 

a=!+l vEA1ogo,anQ4(H1~g8) 

- - 62 
- A1og8,8 - A1og8,8 - (A;0 g8_1,% - A'1og8-1,{ + 3(2) iViog8-1,{-1)-

By combining the four index-cumulations obtained above, we have the contribution 

in L10g 8 ( H1~g 8) of all 5-pairs ( v, v') from the case of auxiliary diagonals: 

A(og8,8 - A 11og8,8 - (A1og8,8 - A1og8,8) 

I -, ( () )2 ~ ( ) 
+2(Alog8-1,% - A log8-1,{ + 3 2 JV1og8-l,{-1 

I -, () 2 
-2(Alog8-1,% - A log8-1,% + 2(2) Mog8-1,%-1) 

I -, - ()2 
A1og8,8 - A1og8,8 - A 1og8,8 + A1og8,8 + 2( 2) iViog8-1,!-1 · 

Following a similar strategy, the contribution in L10 g 8 ( H1~g 8) of all 5-pairs ( v, v') 

from the case of main diagonals is: 



58 

These two contributions are combined into the basis: 

- - 02 
Aiogt5,t5 - A1og8,8 - A'1og8,8 + A1og8,8 + 2(2) Jv'iogt5-1,!-1 

I - -, 02 
+V1og8,8 - Vlogt5,t5 - V1og8,8 + 1) logt5,t5 + 2(2) Jv'iogt5-1,!-1 

37 85 __ 1 _83 __ 2_8. 
24 • 3 . 5 22 • 3 3 . 5 

The recurrence in Lemma 3.4 (for arbitrary 8) with the basis give the desired 

closed-form solution for L,5(Hn. I 

3.1.3 Derivation of 2-Dimensional z-Order Curve Family 

For a 2-dimensional z-order curve Zl indexing the grid [2k] 2 , with a canonical ori

entation shown in Figure 2.3(a), we denote by 81(Zl) and 82(Zf) the entry and 

exit, respectively, grid point in [2k] 2 (with respect to the canonical orientation). 

Figure 2.3(b) depicts the decomposition of Zl and the 81:- and 82-labels of four ZLc 
subcurves. In this section, we are going to derive the exact formula for L8(Zf) as 

follows (similar to the derivations of L,5(Hn). The recursive decomposition (ink) of 

zi is 

Ii-JI 

o:,,BE{ 1,2,3,4 }/o:<,B 

Note, the notations introduced in Section 3.1.1 are for Zf in this section. 

We study the following three lemmas for the cumulation of indices of grid points 

in the row, column, diagonal, and auxiliary-diagonal structures of Zf 

Lemma 3. 7 The binary representation of the row-number of a row structure of Zf 

helps compute its index-cumulation as follows: 

1. For all a E [2k-l], a recurrence for f:l.(Rk,o:, 81(zn) is: 
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For CY= 1, a closed-form solution for 6(Rk,1, 81(zn) from the recurrence above 

(ink) is: 

! . 23k - ! . 2k. 
3 3 

For those CY satisfying 2q-l < CY ::; 2q for some integer q E [k - 1] (that is, 

q = flog CY l), the recurrence above (in k) yields a recurrence: 

k 

ll(Rk,c,, 81(Zf)) = 2k-qll(Rq,a., 81(Z;)) + L 2k-77 (;2 . 2377 ), 
ry=q+l 

where the summation is !(23k - 2k+2q) = ! . 23k - ! . 2k+2Pogc,l. 

2. For all CY, /3 E [2k] such that CY < /3 and the binary representations of a - 1 and 

/3 - 1 differ only at the i-th low-order bit, where i E {O, 1, ... , k - 1} (that is, 

( CY - 1) E9 (/3 - 1) = 2i, where E9 denotes the binary exclusive-or operator), 

Proof. Consider a canonical Zf. 

Part 1: We construct the general recurrence (ink) for ll(Rk,c,, 31(Zn) for arbitrary 

CY E [2k-l] as follows. The row Rk,c, is in the lower-half of the canonical Zf, and can 

be decomposed into the a-th row of Q1(Zi) (a canonical ZL1) and the a-th row of 

Q3(zn (a canonical ZL1). By noting that for all grid points V E Q3(zn, 

fik(v, 81(Zf)) = fik(v, 81(Q3(ZD)) + fik(81(Q3(Zf)), 81(Zl)) 

= fik( v, 81 ( Q3(Zf))) + 2 · 22(k-1), 

and translating the index-cumulation of Rk,c, (in zn in the two ZLi-subcurves, we 

have: 

ll(Rk,c,, 81 (Zf)) 

L fik(v, 81(ZD) 



+(6(Rk,a n Q3(Zl), 81(Q3(Zl))) + 2k-lnk(81(Q3(Zl)), 81(Zl))) 

(6(Rk-l,a, 81(ZL1)) + 2k-l. 0) 

+(6(R _ 8 (Z2 )) + 2k-l . 2. 22(k-1l) k l,a, 1 k-1 

2 1 3k 
26(Rk-1,a, 81(Zk_1)) + 22 · 2 · 
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Now we iterate the general recurrence (in k) from order k to order q + 1 (where 

q = flogcxl), which yields the recurrence (ink) for 6(Rk,a,81(Zn): 

6(Rk,a,81(Zl)) = 26(Rk-1,a,01(ZL1)) + ;2 · 23k 

26(R 8 (Z2)) + ~ 2k-r,(J:_ · 23r,) = 2-6(R 8 (Z2)) + !(23k - 2k+2q) 
q,a, 1 q ~ 22 q,a, 1 q 3 

r,=q+l 

26(R 8 (Z2)) + ! . 23k _ ! . 2k+2flogal. 
q,a, 1 q 3 3 

When ex= 1, the general recurrence yields a recurrence (ink): 

Part 2: A z-order curve is a bit-interleave curve: the index of a grid point is assigned 

with the number that interleaves the bits of its coordinates (by starting the first bit 

of y-coordinate ( axis-1)). Let 0:, f3 E [2k] such that ex < f3 and ( ex - 1) EB (/3 - 1) = i, 

where i E {O, 1, ... , k - 1}. Consider the two rows Rk,a and Rk,/3 of the canonical 

Zl, which are 2i rows apart. For points v E Rk,a, v' E Rk,/3 and v, v' are in the 

same column, the index difference of these two points is 22i _ The reason is that 

the index in binary format for a point is the binary digits of y-coordinate inter

leaved with that of x-coordinate, and the i-th binary digit of y-coordinate becomes 

the 2i-th binary digit of the index. For a row, there are 2k points, so the cumu

lation of index differences between the points in Rk,a and Rk,/3 is 2k · 22i; that is 

I 

Lemma 3.8 The binary representation of the column-number of a column structure 

of Zl helps compute its index-cumulation as follows: 
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1. For all o: E [2k-lL a recurrence for 6.(Ck,a., i:\(Zf)) is: 

For o: = 1, a closed-form solution for 6.(Ck,l, 81(Zf)) from the recurrence above 

(ink} is: 

_1_. 23k - _1_. 2k. 
2 · 3 2 · 3 

For those a satisfying 2q-l < a ::; 2q for some integer q E [ k - 1] (that is, 

q = 1log al), the recurrence above (ink) yields a recurrence: 

k 

6.(Ck,a., 81(Zl)) = 2k-q6.(Cq,a., 81(Z;)) + L 2k-11 (;3 . 2317 ), 
1)=q+l 

where the summation is ...1..(23k - 2k+2q) = ...1... 23k - ...1.. . 2k+2Poga.l. 2-3 2-3 2-3 

2. For all a, /3 E [2k] such that a < /3 and the binary representations of o: - 1 and 

/3 - 1 differ only at the i-th low-order bit1 where i E {O, 1, ... , k - 1} (that is, 

(a - 1) EB (/3 - 1) = 2\ where EB denotes the binary exclusive-or operator), 

Proof. Consider a canonical Zf. 

Part l: We construct the general recurrence (ink) for 6.(Ck,a., 81(Zl)) for arbitrary 

a E [2k-l] as follows. The column Ck,a. is in the left-half of the canonical Zf, and 

can be decomposed into the a-th column of Q 1 ( Zf) ( a canonical ZL 1) and the o:-th 

column of Q2(Zl) (a canonical ZL1). By noting that for all grid points v E Q2 (Zf), 

and translating the index-cumulation of Ck,a. (in Zf) in the two ZLi-subcurves, we 

have: 



+(~(Ck,a n Q2(Zl), 81(Q2(Zl))) + 2k-lnk(81(Q2(Zl)), 81(Zl))) 

(~(Ck-1,a, 81(ZL1)) + 2k-l · 0) + (~(Ck-1,a, 81(ZL1)) + 2k-l · 22(k-l)) 

2 1 3k 
2~(Ck-1,a, 81(Zk_1)) + 23 · 2 · 
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Now we iterate the general recurrence (in k) from order k to order q + 1 (where 

q= flogal), which yields the recurrence (ink) for ~(Ck,a,81(zn): 

~(Ck,a, 81(Zl)) = 2~(Ck-1,a, 81(ZL1)) + ; 3 · 23k 

k 

- 2~(Cq,a, 81(Z;)) + L 2k-17(;3 • 2317) 
17=q+l 

2~(C a (Z2)) + _1_(23k - 2k+2q) 
q,a, 1 q 2. 3 

2 A(C a (Z2)) + _1_. 23k - _1_. 2k+2flogal. 
- L..l. q,a, 1 q 2 · 3 2 · 3 

When a= 1, the general recurrence yields a recurrence (ink): 

Part 2: Similar to the proof in Lemma 3. 7 (part 2), Let a, f3 E [2k] such that 

a < f3 and (a - 1) EB (/3 - 1) = 2i, where i E {O, 1, ... , k - 1}. Consider the 

two columns Ck,a and Ck,/3 of the canonical Zl, which are 2i columns apart. For 

points v E Ck,a and v' E Ck,/3 and v, v' are in the same row, the index difference 

of these two points is 22i+ 1. The reason is that the index in binary format for a 

point is the binary digits of y-coordinate interleaved with that of x-coordinate and 

started by y-coordinate. Therefore, i-th binary digit of x-coordinate becomes the 

2i + 1-st binary digit of the index. For a column, there are 2k points, so the cumu

lation of index differences between the points in Ck,a and Ck,/3 is 2k · 22i+1; that is 

I 

Lemma 3.9 For k ~ 1, 

~(Ak,2k, 81(zn) = ~(Dk,2k, 81(zn) = ! · 23k - ! · 2k. 

Proof. A canonical Zl can be ( +1r)-rotated (left-right reflected and then top-down 
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reflected) to get a same Zl structure with indices reversed. Thus, for a grid point 

v E Rk,a. n Ck,a., where a E [2kJ, its mirror point v' E Rk,2k+I-a. n Ck,2k+i-m and the 

mirror pair ( v, v') satisfies that: 

In addition, Dk,2k = {vlv E Rk,a. n Ck,a. where a E [2k]} = (Dk,2k n Q1(Zl)) U 

(Dk, 2k n Q4(Zl)), and there are 2k-l mirror pairs (v, v') in the main diagonal Dk,2k 

(let v E (Dk,2k n Q1(Zl)) and v' E (Dk,2k n Q4 (Zl))). Thus, 

~(Dk,2k,01(Zl)) = L nk(v,81(Zl)) 
vEDk,2k 

(= L nk(v', 82(Zf)) = ~(Dk,2k, 82(Zf)) (v' is the mirror point of v)) 
v'EDk,2k 

all the mirror pairs (v,v') in Dk, 2k 

2k-l(22k _ 1) = ! . 23k _ ! . 2k. 
2 2 

Similarly, for a grid point v E Rk,a. n Ck,2k+i-m where a E [2k], its mirror point 

v' E Rk,2k+1-a. n Ck,a., and Ak,2k = { vlv E Rk,a. n Ck,2k+1-a where a E [2k]} = 

(Ak,2k n Q2(Zr)) U (Ak,2k n Q3(Zl}), 

~(Ak,2k, 81(Zf)) = L nk(v, 81(Zf)) 
vEAk,2k 

(= L nk(v',82(Zf)) = ~(Ak,2k,82(ZD) (v' is the mirror point of v)) 
v'EAk, 2k 

L (nk(v, 81(Zf)) + nk(v', 81(Zf))) 
all mirror pairs (v,v') in Ak, 2k 

I 

Now we partition the summation I:a,,6E{l,2,3,4}1a<,6 ~8 ( Q a (Zr)' Q ,6 ( zn) accord

ing to the two cases: (a, /3) E {(1, 2), (1, 3), (2, 4), (3, 4)} (four subcases of contigu

ous curves), and (a,/3) E {(1,4),(2,3)} (two subcases of diagonal subcurves). The 
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summations resulting from restricting to these four subcases are investigated in the 

following lemma. 

Lemma 3.10 For 15 that is a positive integral power of 2) and 1 :s; 15 < 2\ 

.6.5 ( Q 1 ( zf) , Q 4 ( zf) ) 

2(C\-1,8 + 2Ck-1,8-1 - V~-1,8-1 - Ak-1,8-1) 

1 2k 1 k 2 Ar +(- • 2 + 1)(- • 2 l5 - 2JVk-l 8-l) 
22 2 ' ' 

2(Rk-1,8 + 2Rk-1,8-1 - Ak-1,8-1 - Vk-1,8-1) 

1 k 2 Ar +(2 "2 l5 - 2JVk-1,8-1), 

1 2k ,\( 
(-. 2 + l)JVk-18-1 + 2Ak-18-1, 2 , , 

and 

Proof. Similar to the proof in Lemma 3.4 for Hilbert curve family (from the illustra

tion in Section 3.1.1.2 and Equations 3.2, 3.3 and 3.4) except that z-order curve has 

no rotation or reflection for the subcurves and it has different distances between sub-

curves. We expand .6.8(Qa(Hn, Q13 (Hn) into three cumulations of index-differences: 

( v,v')EQu (Z~) X Q13 (Z~) ld1 ( v,v')=8 

L nk(v, 82(Qa(Zf))) 
(v,v')EQu,8 xQ13,0 ld1 (v,v')=8 

+ L nk(82(Qa(Zf)), 81(Q13(ZD)) 
(v,v')EQa,8 xQ13, 0ld1 (v,v')=8 

+ L nk(v', 81(Q13(Zf))). 
(v,v')EQu,o xQ13, 0 ld1 (v,v')=8 

First we derive .6.6(Qa(zn, Q13(Zn) for the case of contiguous subcurves ((a, (3) E 

{(1, 2), (1, 3), (2, 4), (3, 4)} ). We compute the three cumulations of index-differences 
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from Equations 3.2, 3.3, and 3.4 by the derivations in Section 3.1.1.2. (All the 

notations for Cf in Section 3.1.1.2 applies for Zf in this section.) 

Consider the case when (a, /3) = (1, 3). Because the subcurves Q1(Zn and 

Q3(Zf) are all canonical z-order curves ZL1, the structures c~, Xf~ 1,rJ, and Xf_1,'f/ 

for I':cv,v')EQ1,8XQ3,8ld1(v,v')=6 nk(v', 81(Q3(Zf))) are transformed into ck-1,'f/, D~-l,rJ' 

and Ak-1,'f/, respectively, for all 'r/ E [2k-l], and 81(Q3(zn) into 81(ZL1)- From 

Equation 3.2, 

L nk(v', 81(Q3(Zi))) 
(v,v')EQ1,8 XQ3,old1 (v,v')=6 

,5 

L L (2(5 + 1 - j) - l)nk-1(u, 81(ZL1)) 
j=l uECk-1,j 

,5 ,5 

- L L (6 -77)nk-1(u,81(ZL1)) - L L (6 -ry)nk-1(u,81(ZL1)) 
rJ=l uED~-l,'I 

'5-1 ,5 

2 L L (5 - j)nk-1(u, 81(ZL1)) + L L nk-1(u, 81(ZL1)) 
j=l uECk-1,j 

-D~-1 6-1 - Ak-1,6-1 , 

- 2Ck-1,8-1 + Ck-1,0 - V~-1,0-1 - Ak-1,6-1· 

We may compute I':cv,v')EQ1,8XQ3,8ld1(v,v')=6 nk(v, 82(Q1(zn)) according to the ob

tained expansion for (ex, /3) = ( 1, 3). The reflection symmetry (left-right and then 

top-down reflection) gives that 

(v,v')EQ1,8 x Q3, 0 ld1 (v,v')=6 ( v,v')EQ1,8 x Q3, 0 ld1 ( v,v')=6 

Since nk(82(Q1(Zf)), 81(Q3(zn)) = 22Ck-l) + 1, we have: 

L nk(82(Q1(zi)), 81(Q3(zi))) 
( v,v')EQ1,8 x Q3,0 ld1 ( v,v')=6 

(2k-152 - 2Nk-1,6-1)nk(82(Q1(zi)), 81(Q3(zi))) 

(2k-152 - 2Nk-1,6-1)(22Ck-1l + 1). 

Summing up the three expansions, we have: 
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( v,v')EQ1,5 X Q3, 0 ld1 ( v,v')=8 

+(2k-\52 - 2Nk-1,8-i)(22(k-i) + 1) 

2(2Ck-1,8-1 + C\-1,8 - 'D~_1,8_1 - Ak-1,8-i) + (2k-\52 - 2Nk-1,8-1)((2k-1)2 + 1) 

- I 1 2k 1 k 2 Ar 
2(Ck-1,8 + 2Ck-1,8-1 - 'Dk-1,8-1 - Ak-1,8-1) + (22 . 2 + 1)(2. 2 8 - 2JVk-l,8-1), 

The derivations for the other three cases: (a,/3) = (1,2), (2,4), or (3,4) are 

similar to this one. 

For the case of diagonal subcurves, we first consider the main-diagonal subcurves 

/l5(Q1(zn, Q4(Zn). Because the subcurves Q1(zn and Q3(zn are all canonical 

z-order curves ZL1, the structures Y/~:'.1,T/ and Xf_1,T/ are transformed into A~-l,T/ 

and Ak-1,T/, respectively, for all rt E [2k-l], and 81(Q4(Zn) into 81(ZL1), According 

to Equation 3.5, 

Ll5( Q1 (Zl), Q4(Zl)) 
8-1 
L L (8 -r,)nk(u,82(Q1(Zl))) 
T7=l uEY:A' 

k-l,71 

8-1 
+ L L (8 - r,)nk(u, 81(Q4(Zl))) + Nk-1,8-lnk(82(Q1(ZD), 81(Q4(ZD)) 

T7=l uEXA 
k-1,T/ 

8-1 
L L (8 - r,)nk-1(u, 81(ZL1)) 

8-1 
+ L L (8 - r,)nk-1(u, 82(ZL1)) + (2. 22(k-l) + l)Nk-1,8-l 

T7=l uEA~-l,T/ 

8-1 

L L (8 - r,)nk-1(u, 81(ZL1)) 

8-1 
+ L L (8 - r,)nk-1(u, 81(ZL1)) 

(after (+1r)-rotating Q1(Zl) into a canonical ZL1) 

+(2 · 22(k-i) + l)Nk-1,8-1 

1 2k Ar 
( 2. 2 + l)JVk-1,8-1 + 2Ak-1,8-1· 
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The derivation for [}.,, ( Q2 ( zi), Q3 ( zn) is similar. I 

The following two lemmas allow us to simplify the overall summation of L,, ( zi). 
Lemma 3.11 For all integers q with O::; q ::; k, 

1. wk = ! . 24k - ! . 22k ' 

N 1 2 1 2. k,2q = 2 · 2 q + 2 · 2q, 

6 Ak 2k = l . 24k + 1.. . 23k - 1.. . 22k - l . 2k 
. , 7 22 22 7 ' 

8 'D'k 2k = .l . 24k + 1.. . 23k - 1.. . 22k - .l . 2k and . , 2· 7 22 22 2-7 ' 

Proof. Let q be an arbitrary integer with O ::; q ::; k. 

Part 1: wk= I:vEZi rik(v, 81(zi)) = I:11E[22k]('T7 - 1) = ! . 24k - ! . 22k. 

Part 2: For the symbol X denoting D, D', A, or A' (main or auxiliary diagonals), 

the number of grid points in Xk,/3, where /3 E [2k], is /3. Therefore, 

2q 2q 

N k,2q = L L 1 = L /3 = t . 22q + t . 2q. 
/3=1 vEXk,(3 /3=1 

Part 3: Lemma 3.7 (part 2) says that for all n,/3 E [2k} with a,,< /3 and (a - 1) EB 

(/3- 1) = 2\ where i E {O, 1, ... , k - 1}, [}.(Rk,/3, 81(Zn) = [}.(Rk,a, 81(zn) + 2k+2\ 

hence for all 77 E [ 2q- l], 



We establish a recurrence (in q) for Rk,2q as follows: 

2q 

Rk,2q = L ~(Rk,17, 81(Zf)) 
77=1 

2q-l 2q 

L ~(Rk,17, 81(Zf)) + L ~(Rk,17, 81(Zf)) 

2q 

Rk,2q-l + L ~(Rk,17,81(Zf)) 

2q-l 

- Rk,2q-l + L ~(Rk,2q-l+17, 81(Zf)) 
77=1 

2q-l 

Rk,2q-l + L(~(Rk;17, 81(Zf)) + 2k+2(q-l)) 

77=1 

2Rk,2q-1 + 2q-l · 2H2(q-l) 

2Rk,2q-1 + 2k+3q-3 . 

Iterating the recurrence in descending q ( to O), we have: 

q 

Rk,2q = 2qRk,20 + L 2q-17 . 2k+377- 3 = 2q~(Rk,1, 81(ZD) + 2 ~ 3 (2k+3q - 2k+q). 
77=1 
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Part 4: Lemma 3.8 (part 2) says that for all a, f3 E [2k] with a < /3 and (a - 1) E9 

(,8-1) = 2i, where i E {O, 1, ... , k-1}, ~(Ck,/3, 81(Zf)) = ~(Ck,a, 81(Zf)) +2· 2H2\ 

hence for all rJ E [2q-1J, 

We establish a recurrence (in q) for Ck,2q as follows: 

2q 

Ck,2q = L ~(Ck,17, 81(Zf)) 

2q-l 2q 

L ~(Ck,17, 81(Zf)) + L ~(Ck,17, 81(Zf)) 
77=1 

2q 

Ck,2q-l + L ~(Ck,17, 81(Zf)) 
77=2q-1+1 



(a) 

Lil .. . . . . . . . . . 
. .. ' - -~- .. ' .. . 

-~-: .. •.: ... . . . . 
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',~ .. : ... i ... : ... . 

(b) 

. . . . . . . .. - -.-- -- .. . 

\ : : : 
\ : : : .... ··,· .... . . . . . . . . . . . . . 
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(c) 

Figure 3.10: Coverages and decompositions of auxiliary and main diagonal structures 
in a canonical Zl: (a) and (b) for Ak,2k; ( c) for1J' k,2k . 

2q- l 

C\2q- l + L .6.( Ck,2q-1+1J, 81 ( Zl)) 
7)=1 

2q-l 

C\,2q- l + L(.6.(Ck,1) , 81(Zl) ) + 2 . 2k+2(q- l)) 
7)= 1 

2(\ 2q-l + 2q- l . 2 . 2k+2(q- l) 
' 

2c- + 2k+3q-2 k,2q-l · 

Iterating the recurrence in descending q (to 0) , we have: 

q 

C\,2q = 2qck,20 + L 2q-7J · 2k+31J-2 = 2q.6.(Ck,1,81(Zl)) + }(2k+3q - 2k+q). 

7)= 1 

Part 5: This proof is same as the proof in Lemma 3.5 (part 5). 

Part 6: Similar to the proof in Lemma 3.5 (part 6) without any rotation or reflection 

operations. The structure Ak,2k covers the lower-left half of a canonical Zf We 

decompose its coverage into three parts as shown in Figure 3.lO(a): Q1(zn, the 

lower-left half of Q2 (Zl) , and the lower-left half of Q3 (Zn. Accordingly, we partition 

A k,2k into t hree parts (see Figure 3.lO(b)) : 

1. From Q1(zn: the index-cumulation of all grid points in Q1(zn is w k- 1, 

2. From the lower-left half of Q2 ( zn ( covered by A k- i ,2k- 1) : the index-cumulation 

of the lower-left half of Q2 ( zn with respect to 81 ( Q2 ( zn) and the cumulation 
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of index-adjustment from 81(Q2(zn) to 81(zn; that is, Ak-1,2k-] +Nk-l,2k-I. 

22(k-l) and 
' 

3. From the lower-left half of Q3(zn: Ak-1,2k-I and the cumulation of index

adjustment from 81 ( Q3(Zf)) to 81 (Zn; that is, Ak-l,2k-I +Nk-1,2k-l '(2-22(k-l)). 

Thus, 

2k 

Ak,2k = L L hk(v, 81(Zl)) 

2k 

hk(v, 81(Zl)) + L 

2k-l 

hk(v, 81(ZD) + L 

/3=1 vEAk, 2k-I+/3nQ2(ZD 

(" A Q (Z2 )" . . 1 t t " A . . 1 Z2 ") v E k,2k-I+f3 n 2 k 1s eqmva en o v E k-l,/3 m a canomca k-l 

/3=1 vEAk,2k-I +/3nQ3(Zl) 

("v E Ak,2k-I+f3 n Q3(Zl)" is equivalent to "v E Ak-l,/3 in a canonical ZLi") 

+ L L (hk-1(v, 81(ZL1)) + 2 · 22(k-l)) 
/3=1 vEAk-I,/3 

- - - 2(k 1) - - 2(k 1) 
wk-1 + (Ak-1,2k-I +Nk-1,2k-I. 2 - ) + (Ak-1,2k-I +Nk-1,2k-I. (2. 2 - )) 

- - 2k 2T7' 
2Ak-l,2k-I + Wk-l + 3 . 2 - JV k-1,2k-]. 



Now we establish a recurrence ( in k) for Ak,2k as follows: 

A k = 2Ak-1,2k-1 + Wk-1 + 3 · 2 - Nk-l,2k-1 { 
- - ~2-

k,2 3 

Th 1 d f f A . 1 24k 1 23k 1 22k 1 2k e c ose - orm o k 2k 1s - · + - · - - · - - · , 7 22 22 7 . 

Part 7: Similar to part 5. 

if k > 1 
ifk=l. 
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Part 8: similar to part 6. The structure 1)' k, 2k covers the upper-left half of a canonical 

Zf. We decompose its coverage into three parts: Q2(ZD, upper-left half of Q1 (zn, 

and the upper-left half of Q 4 ( zn. 

2k 

1)'k,2k = L L nk(v, 81(Zf)) 
,6=1 vEAk,/3 

2k 

nk(v, 81 (Zf)) + L 

2k-l 

Wk_1 + 22(k-1) . 22(k-1) + ~ ~ 1" ( a (Z2)) 
- ~ ~ Ilk v, 1 k 

,6=1 vEAk,2k-1+/3nQ4(Zi) 

Wk-l + 22(k-1) . 22(k-1) 

,6=1 vED' k 1 nQ1 (Zk2) 
k,2 - +/3 

,6=1 vEAk,2k-1+/3nQ1 (zi) 

(" D' Q (Z2 )" . . 1 t t " D' . . 1 Z2 ") v E k,2k-1+,a n 1 k 1s eqmva en o v E k-l,,6 m a canomca k-l 

,6=1 vED' k 1 nQ4(ZV 
k,2 - +/3 

( " D' n Q ( z2)" · · 1 t t " D' · · 1 z2 " ) v E k,2k-1+,3 4 k 1s eqmva en o v E k-l,,6 m a canomca k-l 

2k-l 

- wk-l + 22(k-l). 22(k-l) + L L nk-1(v, 81(ZL1)) 

,6=1 vED~-l,/3 
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2k-l 

+ L L (nk-1(v, 81(ZL1)) + 3. 22(k-l)) 

,6=1 vED~-l,/3 

Wk-1 + 2 2(k-l) · 2 2(k-l) + (D' k-i, 2k-1) + (D' k-1,2k-1 + N k-i, 2k-1 · (3 · 2 2(k-l))) 

2D\_1,2k-1 + 2 2(k-l) · 2 2Ck-i) + Wk-1 + 3 · 2 2k-2Nk-l,2k-1. 

Now we establish a recurrence ( in k) for D\2k as follows: 

D' k - ' ' 
- { 2D\_12k-1 + 22Ck-i) · 22(k-i) + Wk-1 + 3 · 2 2k-2Nk_12k-1 

k,2 - 4 

Th 1 d C f D' . 3 24k 1 23k 1 22k 3 2k e c ose -1orm o k 2k 1s - · + - · - - · - - · . , 2-7 22 22 2-7 

if k > 1 
if k = 1. 

Part 9: If q = 1, then the desired equality is obviously true. Consider that q < k. 

The structure D\,2q covers the upper-left corner of 2q main diagonals in a canon

ical Zf. Similar to Lemma 3.5 (part 8), D\,2q is the upper-left half of Q~-q(ZD, 

which is an z;-subcurve canonically oriented at the upper-left corner of the Zl (see 

Figure 3.10 ( c)). Therefore, 

2q 

D'k,2q = L L nk(v, 81(Zi)) 
,6=1 vED~,/3 

2q 

L L (nk(v, 81(Q~-q(zi))) + nk(81(Q~-q(ZD), 81(zi))) 
,6=1 vED~,/3 

2q k-1 2q 2q k-1 
L L (nq(v,81(Z;)) + I::2211 ) = L L nq(v,81(Z;)) + L L I::2211 

,6=1 vED' q,/3 1)=q ,6=1 vED' q,/3 
2q 

D'q,2q + i(22k - 2 2q) L L 1 = i(22k - 22q)Nk,2q + D'q,2q. 
,6=1 vED~,/3 

Computations of various Xk, 2q are similar to those for X k, 2q. 

Lemma 3.12 For all integers q with O ::; q ::; k, 

1. Nk 2q = ..1_ · 23q + l . 2 2q + l . 2q 
, 2-3 2 3 ' 

,6=1 vED' 1J=q q,/3 

I 

2 R = ..1_ • 23k+2q + ..1_ . 23k+q + ..1_ . 2k+4q + _1_ . 2 k+3q _ _!_ • 2k+2q _ ..L . 2k+q . k,2q 2-3 2-3 3.7 22.3 22 2-7 ' 
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3 c q = _1_. 23k+2q + _1_. 23k+q + -1_. 2k+4q + _.1_. 2k+3q _ 1.... 2k+2q __ 5_. 2k+q 
· k,2 22.3 22.3 3.7 2-3 22 22.7 ; 

4. Each of the pairs: ('Dk,2q, V~,2q) and (Ak,2q, A~,2q)) are related via Nk,2q as 

follows: 

5. 

{ 
0 

Ak 2k = 3 
, _5 _ . 25k + 1 . 24k + _1_ . 23k - _!L . 22k - _5 _ . 2k 

23.3.7 7 22.3 23 -7 22.3.7 

7. 

{ 
0 

v~ 2k = 5 
, _!.!.__ • 25k + ...L . 24k + _1_ . 23k - _ll_ . 22k - _!.!.__ • 2k 

23.3.7 2·7 22-3 23 -7 22.3.7 

Proof. Let q be an arbitrary integer with O :S q :S k. 

if k = 0 
if k = 1 
otherwise, 

if k = 0 
if k = 1 
otherwise, 

Part 1: Similar to the proof of Lemma 3.5 (part 2). For the symbol X denoting D, 

D', A, or A', the number of grid points in Xk,/3, where (3 E [2k], is (3. Therefore, 

2q 2q 1 1 1 
Nk,2q = L L (2q + 1 - (3) = I)2q + 1 - (3)(3 = 2. 3 . 23q + 2. 22q + 3. 2q. 

/3=1 vEXk,f3 /3=1 

Part 2: We first express Rk,2q in terms of Rk,2q (computed in Lemma 3.11 (part 3) 
2q 2 

and Lemma 3.7 (part 1)) and Lf3=l (3!:l(Rk,/3, 81(Zk)): 

2q 

Rk,2q = L L (2q + 1 - (3)nk(v, 81(Zf)) 

2q 2q 

I:((2q + 1- (3) L nk(v, 81(Zf))) = I:(2q + 1 - (3)!:l(Rk,/3, 81(Zf)) 
/3=1 vERk,f3 /3=1 

L((2q + l)fl(Rk,/3, 81(Zf)) - (3!:l(Rk,/3, 81(Zf))) 
/3=1 

2q 2q 

(2q + 1) L fl(Rk,(3, 81 (Zf)) - L (3!:l(Rk,/3, 81 (Zf)) 
/3=1 /3=1 



2q 

(2q + l)Rk,2q - L (3/::).(Rk,(3, 81(Zl)). 
f3=1 
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Let Uk,2q denote "'£;:1(3/::).(Rk,(3,81(Zf)), so Uk, 2o = /::).(Rk,1,81(Z£)), which is 

computed in Lemma 3.7 (part 1). We establish a recurrence (in q) for Uk, 2q, similar 

to that for Rk,2q in the proof of Lemma 3.11 (part 3), as follows: 

~ ~-1 ~ 

Lf3/::).(Rk,(3, 81(Zl)) = L (3/::).(Rk,(3, 81(Zl)) + L (3/::).(Rk,(3, 81(Zl)) 
/3=1 (3=1 f3=2q-l+l 

2q-l 

Uk,2q-1 + L(2q-l + (3)/::).(Rk,2q-1+13, 81(Zl)) 
/3=1 
2q-l 

Uk,2q-1 + L(2q-l + (3)(f:j_(Rk,f3, 81(Zl)) + 2k+2(q-1)) 
/3=1 

(by Lemma 3. 7 (part 2)) 
2q-l 2q-l 

uk,2q-l + 2q-1 L f:j_(Rk,(3, 81(Zl)) + L (3/::).(Rk,(3, 81(Zl)) 
(3=1 /3=1 

2q-l 
+ I: (2q-l + (3)2k+2q-2 

/3=1 
2uk,2q-l + 2q-1nk,2q-l + 3. 2k+4q-s + 2k+3q-4 _ 

With Rk,2q-1 and Uk,2o = /::).(Rk,l, 81(Z£)) computed in Lemma 3.11 (part 3) and 

Lemma 3.7 (part 1), the closed-form solution for Uk, 2q is: 

_1_ . 23k+2q + _1_ . 23k+q + 5 . 2k+4q + _1 _ . 2k+3q - _!_ . 2k+2q - ~ . 2k+q. 

2 · 3 2 · 3 2 · 3 · 7 22 · 3 22 7 

Now, 

Rk,2q = (2q + l)Rk,2q - Uk,2q 

_1_ . 23k+2q + _1_ . 23k+q + _1_ . 2k+4q + _1 _ . 2k+3q - _!_ . 2k+2q 
2 . 3 2 . 3 3 . 7 22 . 3 22 

__ 3_. 2k+q_ 

2-7 

Part 3: We first express Ck,2q in terms of C\,2q (computed in Lemma 3.11 (part 4) 



2q 

ck,2q = L L (2q + 1 - fJ)nk(v,EJi(Zt)) 

2q 

= L((2q + 1 - /3) L nk(v, 81(Zf))) 
/3=1 vECk,/3 

2q 

L(2q + 1 - f3)!:1(Ck,f3, 81(Zt)) 
/3=1 

2q 
= L((2q + 1)!:1(Ck,/3, 81(Zf)) - f3!:1(Ck,/3, 81(ZD)) 

/3=1 
2q 2q 

(2q + 1) I:1:1(ck,,a,81(Zf))- Lf3!:1(ck,,a,a1(Zf)) 
/3=1 /3=1 

2q 

(2q + 1)Z\2q - Lf3!:1(ck,,a,a1(Zf)). 
/3=1 
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Let Uk,2q denote r.1:1 f3!:1(Ck,/3, 81(Zf)), so Uk,20 = !:1(Ck,1, 81(zn), which is 

computed in Lemma 3.8 (part 1). We establish a recurrence (in q) for Uk,2q, similar 

to that for C\2q in the proof of Lemma 3.11 (part 4), as follows: 

Uk,2q 
2q 2q-l 2q 

L f3!:1(Ck,/3, 81(Zf)) = L f3/:1(Ck,/3, 81(Zf)) + L f3!:1(Ck,/3, 81(Zf)) 
/3=1 /3=1 /3=2q-l+l 

2q-l 

Uk,2q-1 + L(2q-l + /3)!:1(Ck,2q-1+13, 81(Zf)) 
/3=1 
2q-l 

Uk,2q-1 + L(2q-l + /3)(!:1(Ck,f3, 81(Zf)) + 2 · 2k+2(q-1)) 
/3=1 

(by Lemma 3.8 (part 2)) 
2q-l 2q-l 

Uk,2q-1 + 2q-l L !:1(Ck,/3, 81(Zf)) + L f3!:1(Ck,f3, 81(Zf)) 
/3=1 /3=1 

2q-l 
+ I: (2q-l + /3)2k+2q-l 

/3=1 
2uk,2q-l + 2q-1c\,2q-l + 3 . 2k+4q-4 + 2k+3q-3 . 
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With Ck,2q-1 and Uk, 2o = 6.(Ck,1,81(zi)) computed in Lemma 3.11 (part 4) and 

Lemma 3.8 (part 1), the closed-form solution for Uk, 2q is: 

_l_. 23k+2q + _l_. 23k+q + _5_. 2k+4q + _l_. 2k+3q - 2._. 2k+2q - ~. 2k+q. 
22 . 3 22 . 3 3 . 7 2 . 3 22 22 . 7 

Now, 

Ck,2q = (2q + l)C\,2q - Uk,2q 

_l _ . 23k+2q + _1 _ . 23k+q + _2_ . 2k+4q + _1_ . 2k+3q - 2._ . 2k+2q 
22 . 3 22 . 3 3 . 7 2 . 3 22 

__ 5_. 2k+q 
22 • 7 . 

Part 4: Similar to the proof of Lemma 3.11 (part 5): for every point v E Ak,a and 

its mirror point v' E A~,°'' nk( v, 81 (Zt)) + nk( v', 81 (Zt)) = 22k - 1. 

Ak,2q + A~,2q 
2q 2q 

L L (2q + 1 - !J)nk(v, 81(Zl)) + L L (2q + 1 - ,8)nk(v, 81(Zl)) 
/3=1 vEA~,,B 

/3=1 all mirror pairs (v,v 1 )EAk,,aXA~,,8 

(2q + 1 - ,8)(22k - 1) = (22k - l)Nk,2q. 
/3=1 all mirror pairs (v,v')EAk,,axA~,,8 

Similarly, we can derive Vk,2q + V~, 2q = (22k - l)Nk,2q 

Part 5: We proceed as in the proof of Lemmas 3.11 (part 6) and 3.6 (part 5). 

The structure Ak,2k covers the lower-left half of a canonical zr We decompose 

its coverage into four parts (non-empty when k 2: 2) as shown in Figure 3.ll(a) 

and (b): the lower-left half of Q1(Zt), the upper-right half of Q1(Zl) without the 

auxiliary diagonal Ak,2k ( = A~,2k), the lower-left half of Q2(Zl), and the lower-left half 

of Q3 (Zt). Accordingly, we partition Ak,2k into four parts (see Figure 3.ll(b)) as 

follows. In the notation, Ak,a = I::;=l I:vEAk,,a (a+ 1 - ,8)nk( v, 81 (Zl) ), we associate 

the weight a + 1 - ,8 with Ak,/3 in the summation. 
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1. From the lower-left half of Q1(Zf): 

2. For the upper-right half of Q1 ( Zf) without the auxiliary diagonal Ak,2k: 

')'=1 vEAk,2k-l+-PQ1(Zi) 

(change of summation index: (3 = 2k-l + 1') 

(in a canonical ZL 1) 

,13=1 vEA~-l,/3 

L L ((3 + l)nk-1(v, 81(ZL1)) 
/3=1 vEA~-l,/3 

(L L (2k-l + 2)nk-1(v, 81(ZL1)) 
,13=1 vEA~-l,/3 



78 

2k-l 

- L L (2k-l + 1 - f3)nk-1(v, 81(ZL1))) 
,6=1 vEA~-l,/3 

-(2k-l + l)6(A~-1,2k-1, 81(ZL1)) 

(2k-l + 2)A'k-1,2k-1 - A~-1,2k-l - (2k-l + l)6(A~-1,2k-l, 81(ZL1)). 

3. From the lower-left half of the canonically oriented ZL1-subcurve Q2(ZD -

consisting of auxiliary-diagonal segments Ak,,a n Q2 ( ZD with weights 2k + 1 - /3 

for f3 = 2k-l + 1, 2k-l + 2, ... , 2k - 1 (indexed from the lower-left corner of 

Q2(Zf)): 

Including the cumulation of index-adjustment from 81 ( Q2 ( zn) to 81 ( zn' its 

contribution in Ak,2k is : 

')'=1 vEAk 2k-l+ nQ2(ZD , 'Y 

(change of summation index: f3 = 2k-l + 'Y) 

,6=1 vEAk, 2k-l+/3nQ2(Z);) 

2k-l 

L L (2k-l + 1 - f3)nk-1(v, 81(ZL1)) 
,6=1 vEAk-1,/3 

+ I: I: (2k-l + 1 - /3)22(k-l) 

,6=1 vEAk-1,/3 

Ak-1 2k-1 + 22(k-l) Nk-l 2k-1. , , 

4. From the lower-left half of Q3 (Zf) - consisting of auxiliary-diagonal segments 

Ak,,6 n Q3(ZD with weights 2k + 1 - f3 for f3 = 2k-l + 1, 2k-l + 2, ... , 2k - 1 
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(indexed from the lower-left corner of Q3 (Zn): 

Including the cumulation of index-adjustment from 81(Q3 (Zi)) to 81(Zf), its 

contribution in Ak,2k is: 

'Y=l vEAk 2k-1+ nQ3(Z~) , 'Y 

(change of summation index: f3 = 2k-l + "Y) 

,B=l vEAk, 2k-I+,anQ3(Z~) 

2k-l 

L L (2k-l + 1- /3)nk-1(v, 81(ZL1)) 
,B=l vEAk-1,,B 

+ I: I: (2k-l + i - /3)(2. 22(k-l)) 

,B=l vEAk-1,,B 

- Ak-i 2k-1 + 2 · 22Ck-i) Nk-i 2k-1. , , 

With the four contributions, we establish a recurrence (in k 2: 2) for Ak,2k as follows: 

k 1-
(Ak-l,2k-l + 2 - Ak-i,2k-1) 

+((2k-l + 2)A'k-1,2k-l -A~-1,2k-l - (2k-l + l)~(Ak-1,2k-1,81(ZL1))) 

+(Ak-1,2k-1 + 22Ck-i) Nk-i,2k-1) 

+(Ak-i,2k-1 + 2 · 22(k-i) Nk-i,2k-1) 

3Ak-1,2k-1 - A~_1,2k-1 + 2k-i Ak-1,2k-1 + (2k-i + 2)A'k-1,2k-1 

+3. 22(k-l)Nk-1,2k-l - (2k-l + l)~(Ak-1,2k-1, 81(ZL1)). 



, I 

:'-_ I : ... 
, ·. I 

.. , I',. 
I·.: 

• ·.:I·; 
I 

(a) 
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[]. : · .. : . ·.: 
~[SJ 

(b) 

Figure 3.11: (a) Coverage of Ak,2k in a canonical Zl; (b) decomposition of Ak,2k into 
four triangular halves. 

Note that Lemma 3.9 (part 2), Lemma 3.11 (part 6) , and Lemma 3.12 (part 1) are 

used to obtain exact formulas for L'.}.(Ak-i,2k-1, 81(ZL1)) , A k-i,2k-1, and Nk-i,2k-1 in 

above recurrence. 

For k < 2, we compute Ak 2k directly, and the recurrence for Ak 2k is: , , 

I 3Ak- i,2k- 1 - A~_1,2k- 1 + 2k- i Ak- i ,2k - 1 + (2k- i + 2)A' k- i,2k- 1 

A k - + 3. 22k-2Nk-1,2k-l - (2k-l + l)L'.}.(Ak- 1,2k-1, 81(ZL1)) 
k,2 - 3 

0 

which yields the desired closed-form solution for A k,2k . 

if k > 1 
if k = 1 
if k = 0, 

Part 6: The coverage of Ak,2q in a canonical Zl is a canonical Z;-subcurve at the 

lower-left corner of the Zl , and this sub-curve has the same entry point as Zl does. 

Thus, A k,2q = Aq,2q . 

Part 7: Following the proof of part 5, we partition the coverage of 'Dk,2k into four 

parts (non-empty when k 2:: 2) , and obtain: 

(2k- l'D' V' 2k- l("T7' 22(k- l)) Ar 22(k- l)) + k- 1,2k- 1 + k- 1,2k- 1 + J V k- 1,2k- 1 . + JV k- 1,2k-1 . 

+((2k- l + 2)'Dk- 1,2k- l - 'Dk- 1,2k- l - L'.}.(Dk- 1,2k-1, 81(ZL1))(2k- l + 1) 

+ ((2k- l + 2)Nk- 1,2k- l - N k - 1,2k- I - 2k- 1(2k- l + l))22(k- l)) 

+('D~- 1,2k- l + Nk- 1,2k- I . 3. 22(k- l)). 



This gives a recurrence (in k ~ 2) for 'D~,2k as follows: 

5 
0 

+ ((2. 23k-3 + 2 · 22k-2)Nk-1,2k-1 
+ 3 . 22(k-1) Nk-1,2k-1 - (24k-4 + 23k-3) 

- ~(Dk-1,2k-1, 81(ZL1))(2k-l + 1) 

which yields the desired closed-form solution for 'D~,2k. 

if k ~ 2 
if k = 1 
if k = 0, 
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Part 8: Following the proof of Lemma 3.11 (part 9), the coverage of 'D~ 2q is the , 

upper-left half of Q~-q(Zf), which is an ZJ-subcurve canonically oriented at the 

upper-left corner of a canonical zf The cumulation of index-adjustment involves 

the summation of nk(81(Q~-q(zi)), 81(zi)), which cumulates the traversals through 

all the intermediate subcurves Q1(Q](zi)) for all TJ E {O, 1, ... , k - q- l}. Thus, 

q 

'D' _ H ~ 2211 'D' _ 1 (22k 22q) ~ r V' 
k,2q - .IV k,2q ~ + q,2q - 3 - .IV k,2q + q,2q · 

17=k-l 

Theorem 3.2 For 8 E [2k] that is an integral power of 2, 

23k - 2k 

23k+2log8 _ (2(k - log8) + 1949 )22k+3log8 32 2s.33.7 
+ ( ;2 ( k - log 8) + 2/33 )22k+log 8 

+ __JjL . 22k _ 22 . 2k+4log8 _ 1 . 2k+Iog8 

if 8 = 1 

22.3.7 7 7 
+ J.:§_ . 2s Jog 8 _ 22 . 23 log 8 + -1_ . 22 Iog 8 otherwise. 

33.7 33 3.7 

I 

Proof. Let 8 E [2k] that is an integral power of 2. Lemma 3.10 gives a recurrence 

(in k) for L8(zi) for all 8 E [2k-l] that is an integral power of 2. It suffices to 

determine the basis for the recurrence for all 8. 

In the extreme case when 8 = 1, the basis for the recurrence (in k) for L1(zi) 

occurs when k = l; and L1(Zr) = 6. The recurrence in Lemma 3.10 (for 8 = 1) with 

the basis gives the desired closed-form solution for £ 1 ( zi). 
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In the general case when o 2: 2, the basis for the recurrence ( in k) for L8 ( Zf) 

occurs when k = logo, for which the recursive decomposition (ink) halts and we 

compute L6(Zfog 8 ) based on, in a canonical Z1~g 8 : 

Ii- JI 
i,jE[82Jli<j and d1(Zf0 g 8(i),Z1~g8(j))=8 

z:= fhog8(v, v'). 
v,v' EZf0 g 8id1 (v,v1 )=8 

The summation above requires the knowledge of b-neighborhood structures in a 

canonical Z1~gJ and the distribution of fi10 g6(v, v') for ab-pair (v, v') E Z1~gJ x Z1~g 8, 

which is similar to the analysis in the proof of Theorem 3.1. The b-neighborhood 

structures shown in Figure 3.9 is also applied to a canonical Z1~gJ· 

Same as in the proof of Theorem 3.1, for the case of auxiliary diagonals, we 

consider the organization of fi10g 8 ( v, v') for all b-pairs ( v, v') for the summation in 

expanding L 6(Z1~g 8 ) = :Z::v v'EZ2 Id (v v')=J fi10 g6(v, v'). First we write that: 
' logo 1 ' 

and need to determine the algebraic sign of fi1og 8 ( v, 81 ( Z1~g 8 )) - fi1og 8 ( v', 81 ( Z1~g 8)). 

We observe that for every grid point v E A1og8,a:, where a E [o - 1], we have 

fi1og8(v,81(Zfog 8)) < fi1og8(v',81(Z1~g 8)) for all v' E N£(v). This observation indi

cates that in L10g 8 ( Z1~g 8) of all b-pairs ( v, v') from the case of auxiliary diagonals: 

Alog8,8-1 - A1og8,8-l· 

For the contribution in L10 g 6(Z1~g 8) of all b-pairs (v, v') from the case of main 

diagonals, we observe the following two cases based on the location of a grid point v 

in the quadrants of the canonical Z1~gJ· 

1. For grid point V E D1og8,a:n(u~=3Q7)(Z1~g8)) and for all v' E NH V )n(u~=l Q7)(zn ), 

where a E [o - 1], we have fi1og8(v, 81(Z1~g 8)) > fi1og8(v', 81(Z1~g 8)), 

2. For grid point v E D1og8,c, n Q3 (Z1~g 8) and for all v' E N£(v) n Q4 (Zf), where 

a E [~ - 1], we have fi1og8(v, 81(Z1~g 8)) < fi1og8(v', 81(Z1~g 8)), and 
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3. For every grid point v E D1ogo,a n Q1(Z1!go) and for all v' E N:s(v), where 

a E { ! + 1, ! + 2, ... , 8 - 1}, we have n10g O ( v, 81 ( Z~g O)) < n1og o ( v', 81 ( Z1!g O)) • 

This suggests that we decompose the contribution in L10g0(Z1!g 0) of all 8-pairs (v, v') 

in the case of main diagonals into six parts of index-cumulations: 

1. The index-cumulation of all grid points v in the deleted lower-right half of 

Q1(Z~g 0): 

0-1 

L 
a=!+l vED1ogo,anQ1(Z~go) 

!-1 

L L (~ - a)n1ogo(v, 81(Z~go)) 
a=l vEDlogo,a+frnQ1(Zf;,g 0) 

!-1 
~ ~ 8 ( 2 - L Lt (2 - a)n1ogo v, 81(Q1(Z1og 0))) 

a=l vED10g o,a+ fr nQ1 (Zf;,g 0) 

!-1 
~ ~ 8 2 L Lt (2 - a)n1ogo-1(v, 81(Z10g0_ 1)) 
a=l vEDJogo-1,<> 

'Dlogo-1,!-1 

- vlogc5-1 §. - vlogc5-1 §_. 
'2 '2 

2. The index-cumulation of all 8-neighbors v' E N:s(v) for all grid points v in the 

deleted lower-right half of Q1 ( Z1!g 8): 

3. The index-cumulation of all grid points v in the deleted lower-right half of 

Q3(Z1!g0) and their 8-neighbors v' E N:s(v) n Q4(Z~g 0 ): 

!-1 

L L (~ - a)n1ogo(v, 81(Z1!go)) 
a=l vED10 g o,a 
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4. The index-cumulation of all 8-neighbors v' E N:s(v) n Q4 (Z1!g 8) for the grid 

points v in the deleted lower-right half of Q3 (Z1!g8): 

8-1 

L 
,6=!+1 v'ED(ogo,/3nQ4(ZD 

!-1 

L L (~ - /3)'fi1og8(v', 81(Z~g8)) 
,6=1 v'ED1 8 nQ4(Zl) 

log o,/3+ 2 

!-1 

L L (~ - /3)('fi1og8(v', 81(Q4(Z1!g8))) 

,6=1 v1ED1 8 nQ4(ZD 
log o,/3+ 2 

I ~( (())2 V o + JV, o • 3 · -log8-1, 2 -1 log8-1, 2 -l 2 

I -, ~( (())2 
- vlog8-1,! - V log8-1,! + JV1og8-l,!-1. 3. 2 . 

5. The index-cumulation of all 8-neighbors v' E N:s(v) n (U~=1Q1,(zn) for all grid 

points v in the deleted lower-right half of Z1!g 8 and not in the deleted lower

right half of Q1(Z1!g 8): 

8-1 

L L (8 - /3)'fi1og8(v', 81(Z1!g8)) 

,6=1 v' ED{0 g o,/3 

!-1 

- L L (~ - /3)'fi1og8(v', 81(Z~g8)) 

,6=1 v 1 ED{0 g o,/3 

,6=!+1 v1 ED(0 go,/3nQ4(ZD 

D' (V' V' ) log8,8-1 - log8,! - log8,! 



-(V~ogo-1,! - V'togo-1,% + 3(1)2J\fiogo-1,!-1) 

(see parts 2, 4 above) 

- Vfog oo - 1)' Iog oo - ( 1)1' • 8 - 1)' !og o -~:) 
' ' ogu,2 '2 

-(V~ogo-1,% - V'togo-1,% + 3(1)2J\fiogo-1,!-1). 
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6. The index-cumulation of all grid points v in the deleted lower-right half of 

Zlgo and not in the deleted lower-right half of Q1(Z1~go) and not in the deleted 

lower-right half of Q3(Zi) that their 8-neighbors v' E N:s(v) n Q4(zn: 

8-1 
L L (8 - a)n1ogo(v, 81(Z!go)) 
a=l vED1og 8,a 

a=!+l vED1ago,anQ1(Z1~go) 

1-1 
2 () 

- L L (2 - a)n1ogo(v, 81(Z1!go)) 
a=l vED10 g o,a 

By combining the six index-cumulations obtained above, we have the contribution 

in L10 g0(Z!g 0) of all 8-pairs ( v, v') in the case of auxiliary diagonals: 

(V{ogo,! - V'!ogo,!) + (V{ogo-1,% - V'!ogo-1,! + 3(~)2 J\liog8-1,!-1) 

+(V1ogoo - V1ogoo - (V1ogo-11 - V1og8-11) - (V1ogo 1 - V1og8 ~)) 
' ' '2 '2 '2 '2 
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These two contributions are combined into the basis: 

Lo(Z1!g8) = (Afog8,8 - A 11og8,8) - (A1og8,8 - A1og8,8) 

+D1og88 -1J1og8 8 - 2(1Jlog8-1 §. -1Jlog8-1 §.) - 2(1Jlog8 §. -1Jlog8 §.) 
' ' '2 '2 '2 '2 

-(1J{og8 8 - 1)'Iog88) + 2(1)1' < 8 - 1)'!og8 §.) 
' ' ogo,2 '2 

+2(1J~og8-1,! -1J'!og8-1,! + 3(~)2.N;og8-1,!-1). 

The recurrence in Lemma 3.10 (for arbitrary 8) with the basis give the desired 

closed-form solution for Lc5(zn. I 

3.2 Locality Measures of 3-Dimensional Space-Filling Curve Families 

For measures Lc5 in the case of dimensionality 3, we derive the exact formulas for the 

canonical Hilbert and z-order curve families for 8 = 1. The canonical Hilbert and z

order curve are shown in Figures 3.12 and 3.13 (see Chapter II for the constructions). 

For these types of 3-dimensional self-similar curves, the self-similar structural prop

erty guides us to decompose Cf into eight identical CLi-subcurves (via reflection 

and/or rotation), which are amalgamated together by an Cf-curve. Following the lin

ear order along this Cf-curve, the eight CL1-subcurves are { Q0 (C2)la = 1, 2, ... , 8}. 

The directions of rotations about axes are shown in Figure 3.14: arrow denotes ( + )
rotation and its reverse denotes (-)-rotation. 

3.2.1 Approach 

The recursive decomposition (in k) of Cf gives that 

Ii-JI 
i,jE[23k]li<j and d1 (Cf (i),Cf (j))=8 

a,,BE{l,2,3,4,5,6, 7,8}la<,6 

where D.c5(Q0 (C2), Q,a(C2)) denotes the cumulative contribution of Ii - JI from the 

two subcurves Q0 (C2) and Q,a(C2), that is, for all i,J E [23k] such that i < J, 
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(a) (b) (c) 

Figure 3.12: Canonical 3-dimensional Hilbert curves. (a) Coordinate system; (b) 
canonical Hf; ( c) canonical HJ. 

axis-I axis-3 

L 
axis-2 

(a) 

., 

N 
., ., ., 

{b) 

N 

(c) 

Figure 3.13: Canonical 3-dimensional z-order curves. (a) Coordinate system; (b) 
canonical Zr; ( C) canonical zJ. 

~t;~ axis-3 

~axis-2 
(a) 

vi 
axis-3 

(b) 
axis-1 

(c) 

Figure 3.14: Demonstration for (+)-rotations about axes (arrows represent ( + )
rotations about axes) in 3-dimensional space. (a) All the (+)-rotations about axes; 
(b) (+)-rotation about axis-2 viewed from different direction; ( c) (+)-rotation about 
axis-3 viewed from different direction. 
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(a) (b) (c) (d) 

Figure 3.15: Structures of planes in 3-dimensional space: (a) Coordinate system and 
· 3 3 ( ) (12) ( ) (13) ( ) (23) two space-fillmg curves: H 1 , Z1 ; b Pk a ; c Pk a ; b Pk a . 

' ' ' 

d1(Cl(i), Ci(j)) = 8, and i andj appear in (the index ranges of) Qa(Cf) and Qr,(C2), 

respectively. 

With respect to the canonical orientation of Ci shown in Figure 3.15(a), we cover 

the 3-dimensional k-order grid with: 

1. 2k planes (P~\2\ P~~;), ... , P~~:2), indexed by the coordinate of axis-3 (i.e., 

P?;) = { vlv E [2k]3 and the coordinate in axis-3 by v is a}) (see Figure 3.15(b) ), 

2. 2k planes (P~\3), P?;), ... , P?:2), indexed by the coordinate of axis-2 (i.e., 

P?;) = { vJv E [2k]3 and the coordinate in axis-2 by vis a}) (see Figure 3.15(c)), 

3. 2k planes (P~~1
3), P~~;), ... , P?:2), indexed by the coordinate of axis-1 (i.e., 

P~~;) = {vlv E [2k]3 and the coordinate in axis-1 by vis a}) (seeFigure3.15(d)). 

For a E [2k] and a grid point p E [2k}3 , we denote: 

1. nk(v,v') = J(c2)-1 (v) - (C2)-1(v')I, the index-difference between two grid 

points v, v' E [2k)3. 

2. b.(Xk,a,P) = LvEXk,°' rik(v,p), where the symbol Xk,a denotes P?;), P?;), or 

PP3) (for example, .6.(P?;),p) = LvEP~~1) rik(v,p)). That is, b.(Xk,a,P) cumu

lates all index-differences of all grid points in the structure Xk,a with respect 

top; when p = 81(C2), .6.(Xk,a,P) is the index-cumulation of all grid points in 
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3.2.2 Derivation of 3-Dimensional Hilbert Curve Family 

In this section, we work on 3-dimensional Hilbert curve, and Cf in Section 3.2.1 

is replaced by Hf now. Since we consider the 3-dimensional Hilbert curve that its 

quadrants 5,6,7,8 are the reflection of quadrants 4,3,2,1, respectively (see Chapter II), 

the mirror pairs for 3-dimensional space are defined with respect to the axis-3: for p 

in a canonical Hf, we have nk(P, 81(Hf)) + nk(P, 82(H2)) = 23k - 1, and there exists 

a unique grid point p' (of same coordinates in axis-1 and axis-2 in H2) such that 

nk(P, 81(H2)) = nk(P', 82(Hf)). 

The following three lemmas study the cumulation of indices of grid points in the 

planes of Hf. 

Lemma 3.13 The index-cumulation for the planes of Hf: 

fl(P?;),81(Hf)) - fl(P?;),82(H~)) = fl(P~~;),81(H~)) = fl(P~~;),82(H~)) 

- ! . 25k - ! . 22k 
2 2 ' 

2. For the planes P?;), where a E [2k], 

fl(Pc12) 8 (H3)) + !l(P(12) 8 (H3)) = 22k(23k - 1) k,o. , 1 k k,2k+l-a' 1 k ' 

and 

3. For the planes PP;), where a E [2k], 
' 

Proof. Note that a canonical Hf is inside-outside symmetric (with respect to 

axis-3). 
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Part 1: For a grid point v E P?;) n P?Jl n P1~), where a, (3, "I E [2k], its mirror point 

1 0 (13) 0 (23) p(12) d h · · ( ') · fi h 
V E rk,cx n rk,/3 n k,2k+l-1'' an t e mirror pair v, V sat1s es t at: 

For every a E [2k], there are 22k-l mirror pairs in the plane PP;). Thus, , 

.6.(Pt;) ,[Ji(Hf)) = L lik(v, 81(Hf)) 
vEPf~a 

(= L lik(v', 82(Hf)) = .6.(Pt!), 82(Hf)) (v'is the mirror point of v)) 
v'EPf,~ 

all mirror pairs (v,v') in pk(l 3 ) 
,a 

(= 
all mirror pairs (v,v') in P~~!) 

- 22k-1(23k - 1) = ~. 25k - ~. 22k_ 
2 2 

Similarly, for points in P?;), the mirror pairs are in the same plane, so they have , 

the same cumulation of index differences. That is, 

.6.(P.(13) a (H3)) k,cx , 1 k - .6.(P1~;),a2(Hf)) = .6.(P1~;),a1(H2)) = .6.(P1~;l,a2(Hf)) 

- ~ . 25k - ~ . 22k 
2 2 ' 

Part 2: Pt;) and P2:2+1-cx are reflective planes (inside-outside symmetric with re

spect to axis-3). So, for every point v E P,k(l:), its mirror point v' E p(12l ,~ k,2k+l-cx' 

.6.(Pt;), 81(H2)) + .6.(P~W+l-cx' 81(Hf)) 

L lik(v, 81(Hf)) + L lik(v', 81(Hf)) 
vEP<12) 

k,a 

all mirror pairs (v,v')EPk<12) xP<12k) 
,O! k,2 +1-a 
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. . . 
e-;-e : e-;-e . . . 

·····,·····,·····,····· 

L:. e-:-eill: . . .. ··,·····,·· .. . . 
. . . . . . ·····,·····,·· ••,•• .. 

e-;-e : : 

(a) (b) 

Figure 3.16: The plane structure for P~\2l in a canonical Hf (a) The structure for 

P~\2l; (b) the structures of underlying q~adrants for P~\2l. , , 

Part 3: Pt:) and P~\22+1-a are reflective planes (inside-outside symmetric with re-

) S f P (12) . . • t / p(12) d spect to axis-3 . o, or every point v E k,a , its mirror porn v E k,2k+1-aan 

nk(v, &1(HD) = nk(v', &2(H2)). Thus, 

~(P(12) 0 (H3)) 
k,a , 1 k 

L nk(v,&1(HD) = 
vEP< 12l 

k,oc 

I 

In computing L1(Hi), the points involved in the point-pairs across quadrants are 

in the exterior planes of the quadrants that these exterior planes neighbor to each 

other. We call these exterior planes the boundary planes. 

L r;, . l H3 "(P(12) ~ (H3)) 3.5 25k i 22k 23 p f emma 3.14 ror a canonica kJ u k,l , u 1 k = 2.31 · - 2 · + 31 . roo . 

Figure 3.16(a) shows the exterior plane Pt2), and Figure 3.16(b) illustrates the 

structures of the underlying quadrants. We see that the plane of the first quadrant is 

the structure of Pt3£, 1 , those of the second and the third quadrants are the structures 

of P~~3{ 1, and that of the fourth quadrant is the structure of Pt2] 1. Thus, we can , , 

decompose the exterior plane into exterior planes of four quadrants Qa(Hi), where 
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a E [4], and the cumulation of index-adjustment from ch(Q(Y_(H2)) to 81(Hl). We 

establish a recurrence ( in k) for t::. ( Pi\2), 81 ( Hl)) as follows: 

+ 
vEPC12lnQ3(H3) k,1 k 

+ 

+ 

+ (nk( v, 81 ( Q4(Hf))) + nk( 81 ( Q4(Hf) ), 81 (Hf))) 

L nk-1(v, 81(HL1)) + 0. 22(k-l). 23(k-l) 

vEPt3l_ 1 

(after (-i )-rotating Q1 (Hf) about axis-1 and then 

(-i )-rotating it about axis-2 into a canonical Hr_1) 

+ L nk-1(v, 81(HL1)) + 1. 22(k-l). 23(k-l) 

E p(23) 
V k-1,1 

(after ( +i )-rotating Q2(H2) about axis-1 and then 

. ( +i )-rotating it about axis-3 into a canonical Hr_1) 

+ L nk-1(v, 81(HL1)) + 2. 22(k-l). 23(k-1) 

vEPC23l 
k-1,1 

(after ( +i )-rotating Q3(Hl) about axis-1 and then 

7r ( +2 )rotating it about axis-3 into a canonical Hr_1) 

+ L nk-1(v, 81(HL1)) + 3. 22(k-1). 23(k-1) 

E p(12) 
V k-1,1 
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(after ( +1r)-rotating Q4 (Hf) into a canonical Hf-1) 

(~(?(13) 0 (H3 )) + O. 22(k-1) . 23(k-1)) k-1,1, 1 k-1 

+(~(?(23) 0 (H3 )) + 2 . 22(k-1) . 23(k-1)) k-1,1, 1 k-1 

+(~(Pt21,1, 81(HL1)) + 3. 22(k-l). 23(k-1)) 

~(P(12) 8 (H3 )) + 3(!. 2s(k-1) _ ! . 22(k-1)) + 6 . 2s(k-1) 
k-1,1, 1 k-1 2 2 

~(?(12) 0 (H3 )) + 15 . 2s(k-1) _ ~. 22(k-1). 
k-1,1, 1 k-1 2 2 

Iterating the recurrence in descending k (to 1) with ~(Pf?l,81(Hr)) = 6, we have: 

k-1 
~(?(12) 0 (H3)) + ~( 15 . 2s,,, _ ~ . 22,,,) 

1,1 ' 1 1 6 2 2 
r,=1 

- ~ . 25k - ! . 22k + 23 . 
2 · 31 2 31 

I 

Now we partition the summation ~a,/3E[S]la</3 ~1(Qa.(Hf), Q13(Ht)) according to 

the three cases: (1) for a, f3 E {1, 2, 3, 4}, contiguous subcurves (a+l - f3 (mod 4)) 

with four similar subcases, (2) for a, f3 E {5, 6, 7, 8}, contiguous subcurves (a+ 

1 _ f3 (mod 4)) with four similar subcases (in which ~ 1(Qa.(Hf), Q13 (Ht)) is same 

as the corresponding subcase of the contiguous subcurves in case (1) because of 

reflective (inside~outside symmetric with respect to axis-3) structures), and (3) for 

a, f3 E {1, 2, 3, 4, 5, 6, 7, 8}, reflective (inside-outside symmetric with respect to axis-

3) subcurves (a+ f3 = 9) with four similar subcases. 

Lemma 3.15 For a canonical H2, 

~1(Q1(Hf), Q4(Hf)) = ~1(Qs(Hf), Qs(Hf)) 

~(P(23) 8 (H3 )) + ~(P(13) 8 (H3 )) + 22k-2(2 . 23(k-1) + l) k-1,2k-l, 2 k-1 k-l,2k-l l 1 k-1 

2(1 · 25(k-1) _ t. 22(k-1)) + 22k-2(2 . 23(k-1) + l), 



and 

b.(P~~2l, 2k-1, ch(HL1)) + b.(Pt3{,1, 81 (HL1)) + 22k-2(1) 

- (b.(Pt21,1' 81(HL1))) + (1 · 25(k-l) -1 · 22(k-l)) + (22k-2), 

b.1(Q2(Hf), Q3(Hk)) = b.1(QB(Hk), Q1(Hf)) 

b.(Pt2/2k-l1 82(HL1)) + b.(Pt2l,1, 81(HL1)) + 22k-2(l) 

2b.(P(12) 8 (H3 )) + (22k-2) k-1,1, 1 k-1 , 

b.1(Q3(Hk), Q4(Hf)) = b.1(Q5(Hf), QB(Hf)) 

b.(Pt3i,1, 82(HL1)) + b.(Pi~Y1, 81 (HL1)) + 22k-2(1) 

2(1 · 25(k-l) -1 · 22(k-1)) + (22k-2), 

b.1(Q1(Hf),Qs(Hf)) 

b.(P(13) 8 (H3 )) + b.(P(13) 8 (H3 )) + 22k-2(6 . 23(k-1) + l) k-1,2k-l, 2 k-1 k-1,2k-1, 1 k-1 

- 2(1 · 25(k-1) -1 · 22(k-1)) + 22k-2(6. 23(k-1) + 1), 

b.1(Q2(Hf),Q1(Hf)) 

b.(P(23) 8 (H3 )) + b.(P(23) 8 (H3 )) + 22k-2(4 . 23(k-1) + l) k-1,2k-l 1 2 k-1 k-l,2k-l, 1 k-1 

2(1 · 25(k-1) - t. 22(k-1)) + 22k-2(4. 23(k-l) + 1), 

b.1(Q3(Hf),QB(Hf)) 

b.(P(23) 8 (H3 )) + b.(P(23) 8 (H3 )) + 22k-2(2 . 23(k-1) + l) k-1,2k-l, 2 k-1 k-1,2k-1, 1 k-1 

2(1 · 25(k-1) -1 · 22(k-l)) + 22k-2(2. 23(k-1) + 1), 

b.1(Q4(Hf),Q5(Hf)) 

- b.(Pt2/2k-ll 82(HL1)) + b.(Pt:l,1, 81(HL1)) + 22k-2(1) 

- 2b.(Pt2l,1, 81(HL1)) + 22k-2. 
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Proof. The derivations are straightforward. The point-pairs across quadrants 

involved in computing £ 1 (Ht) are in the boundary planes. So, the cumulation of 

the index differences for Ll1(Qa(HD, Q13(Ht)), where a < (3, is the cumulations of 

index differences for points in the boundary plane of Qa(Ht) respect to 82(Qa(Hf)), 

those for points in the boundary plane of Q13 (Hf) respect to 81 (Q13(HD), and those 

between 82( Qa(Ht)) and 81 (Q13(Ht)). For Ll1 (Q1 (Hf), Q4(Ht)), 

+ 

v'EP< 13l nQ4(H3 ) k,2k-l+1 k 

(after (-i )-rotating Q1 (Hi) about axis-1 and then 

7r (-2 )rotating it about axis-2 into a canonical H2_1) 

+ L nk-1(v', 81(HL1)) 
v'EP(l3 ) k-1,2k-l 

(after ( +1r)-rotating Q4(H2) into a canonical H2_1) 

+ I: (2. 23(k-1) + 1) 

vEP<23l k-1,2k-l 

Ll(P(23) a (H3 )) + Ll(P(13) 8 (H3 )) + 22k-2(2 . 23(k-1) + 1) k-1,2k-1, 2 k-1 k-1,2k-l) 1 k-1 

2( ! . 25(k-1) - ! . 22(k-l)) + 22k-2(2. 23(k-1) + 1). 
2 2 

Derivations for other cases are similar. 

Theorem 3.3 For a 3-dimensional Hilbert curve family, 

3 67 5k 11 3k 26 
L1(Hk) = -- · 2 - - · 2 - --. 

2-31 2·7 7-31 

I 



Proof. For a 3-dimensional Hilbert curve family, 

Ii-JI 
i,j E[23k] li<jandd1 (Hf ( i) ,Hf (j) )=8 

L'.}..,( Qa(H2), Q13(Hf) ). 
a,/3E{l,2,3,4,5,6,7,8}la</3 

By Lemma 3.15, for 8 = 1, the cumulation of index differences: 

L1(Hf) 
a,/3E{l,2,3,4,5,6, 7,8}la</3 

8L1(HL1) 

+2(2( ! . 25(k-1) _ ! , 22(k-1)) + 22k-2(2 . 23(k-1) + l)) 
2 2 

+ 2(L'.}.(P(12) 8 (H3 )) + (! . 2s(k-1) _ ! . 22(k-1)) + (22k-2)) k-1,1, 1 k-1 2 2 

+2(2L'.}.(Pt21,1, 81(HL1)) + (22k-2)) 

+2(2( ! . 25(k-1) - ! . 22(k-l)) + (22k-2)) 
2 2 

+(2(!. 25(k-1) _ ! . 22(k-1)) + 22k-2(6. 23(k-1) + 1)) 
2 2 

+(2( ! . 25(k-1) - ! . 22(k-1)) + 22k-2( 4 . 23(k-1) + 1)) 
2 2 

+(2( ! . 25(k-1) _ ! . 22(k-1)) + 22k-2(2. 23(k-1) + 1)) 
2 2 

+(2L'.}.(Pt21,1, 81(HL1)) + (22k-2)) 

- 8L1(HL1) + 8L'.}.(Pt2l,1, 81(HL1)) + 16(~. 25(k-l) - ~. 22(k-l)) 

+(16. 23(k-1) + 12)(22k-2) 

3 201 5k 64 
8L1(Hk-1) + 248. 2 + 31 · 

We establish a recurrence (ink) for L1(H2) as follows: 

L (H3) = 1 k-1 24s · + 31 1 > { 8L (H3 ) + 201 25k 64 "f k 1 
1 k 28 if k = 1, 

which yields the desired closed-form solution for L 1(H2). 

96 

I 



97 

3.2.3 Derivation of 3-Dimensional z-Order Curve Family 

In this section, we focus on 3-dimensional z-order curve, and the notations for Cf in 

Section 3.2.1 is now for Zf Since we consider the 3-dimensional space, the mirror 

pairs for z-order curve are described as follow: for p with coordinate (a, /3, 'Y) in 

a canonical Z2, we have nk(P, 81(Z2)) + nk(P, 82(Z2)) = 23k - 1, and there exists a 

unique grid point p' (with coordinate (2k+ 1-')', 2k+ 1-/3, 2k+ 1-a) in Zf such that 

nk(P, 81(Z2)) = nk(P', 82 (Z2)). (See constructing z-order in Chapter II for details.) 

The following three lemmas study the cumulation of indices of grid points in the 

planes of zt. 
Lemma 3.16 The index-cumulation for the planes of Zf: 

D h 1 p(12) p(13) d p(23) h [2k] 1. r or t e p anes k 0/. , k 0/. , an k 0/. , w ere a E , , , ' 

and 

fl(Pt;), 81(Zf)) + fl(P?:2+1-0!.' 81(Zf)) 

fl(Pt!), 81(Zf)) + fl(P?:2+1-0!.' 81(Zf)) 

- fl(P~~:), 81(Zf)) + fl(P~~:2+1-0!.' 81(Zf)) 

22k(23k - 1), 

/l(P,(12) a (Z3)) k,O!. , 1 k 

fl(P~~),81(Z2)) -

/l(P(23) 8 (Z3)) -
k,Oi. , 1 k 

fl(P?:2+1-0!.' 82(Zf)) 

fl(Piw+l-0!.' 82(Zf)) 

fl(P?232+l-O!.' 82(Zf)). 

Proof. Note that a canonical Zf is inside-outside symmetric ( with respect to axis-3 

via +7r-rotation about axis-3). 
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Part 1: Planes Pt;) and PiW+i-a (after +1r-rotated about axis-3) are reflective 

1 S c . p(12) . . . , p(12) 'le ( 8 (z3)) panes. o, 1or every pomt v E k,a , its m1rror pomt v E k,2k+l-o' Hk v, 1 k + 

nk(v', 81(Z2)) = 23k - 1. Thus, 

.6.(Pt;), 81 (Z2)) + .6.(P2:2+1-a' 81 (Z2)) 

L nk(v, 81(Zf)) + L nk(v', 81(Z2)) 

all mirror pairs (v,v')EP~12) xP<12l 
,a: k,2 +1-et 

22k(23k - 1) = 25k - 22k_ 

Similarly, Planes Pt;) and P2:2+i-a (after +1r-rotated along axis-2) are reflec

tive planes, planes Pl~;) and Pi~:2+l-a (after +1r-rotated along axis-1) are reflective 

planes. Thus, 

.6.(Pt;), 81(Zf)) + .6.(P2:2+1-a' 81 (Z2)). 

.6. (Pl~;), 81 ( zt)) + .6. ( Pi~:2+1-a, 81 ( Zl)) -

22k(23k - 1) = 25k - 22\ 

22k(23k - 1) = 25k - 22k_ 

Part 2: Pt;) and Pi~222+1-o (after +1r-rotated about axis-3) are reflective planes. 

So, for every point v E Pl~)' its mirror point v' E P2:2+1_0 and nk(v, 81(Z2)) = 

nk(v', 82(Zf)). Thus, 

.6.(P(12) 8 (Z3)) k,a , 1 k 

L hk(v, 81(Z2)) = 

vEP<12) 
k,o, 

.6.(PiW+l-a' 82(Z2)) and .6.(Pl~;), 81 (Z2)) -

I 

In computing L1(Z2), the points involved in the point-pairs across quadrants are 

in the exterior planes of the quadrants that these exterior planes neighbor to each 

other. We call these exterior planes the boundary planes. 
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Lemma 3.17 For a canonical Zf, 

~(P(12) a (Z3)) _3_ . 2sk __ 3_ . 22k 
k,l ' 1 k 2 . 7 2 . 7 

~(p(l3) a (Z3)) _5_. 2sk __ 5_. 22k 
k,l ' 1 k 2 . 7 2 . 7 

~(P(23) a (z3)) _ ~ . 2sk _ ~ . 22k. 
k,l ' 1 k 7 7 

Proof. Figure 3.17(a) shows the exterior plane PP;), and Figure 3.17(b) illustrates 
' 

the structures of the underlying quadrants. It is obvious that the plane of the first 

quadrant is the structure of P~~{ 1, those of the second and the third quadrants are 
' 

the structures of P~~3{ 1, and that of the fourth quadrant is the structure of P~~2{ 1. 
' , 

Thus, we can decompose the exterior plane into exterior planes of four quadrants 

Qa(Z2), where a E [4], and the cumulations of index-adjustment from 81(Qa(Zf)) 

to 81 (Zf). A recurrence (ink) for ~(P~~2), 81(Z2)) is established as follows: 

~(P(12) a (Z3)) 
k,l , 1 k 

L nk(v, 81(Z2)) 
Ep(12) 

V k,l 

L n,k-1(v, 81(ZL1)) + 0. 22(k-1). 23(k-1) 

Ep(l2) 
V k-1,1 
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. . . . . . 

··N··:-·N·· ·l·:-l·:-l·:-l· c~Y • • • 
•:• .. 

I o I O ' ' ·····,·····,·····,····· ·····,··---.-·---.-----

·~·-!-·N·· ·l-!-l·i· l-i-ct •:• .. 
•:• .. 

~-2 

axis-1 

axis-2 axis-3 
axis-3 

(a) (b) (c) 

Figure 3.17: The structures of planes and their underlying quadrants for (a) PP1
2); 

(b) P~\3); ( c) P~\3). (The circled solid circles denote the entry points.) ' 
' ' 



+ L nk-1(v, 81(ZL1)) + 1. 22(k-l). 23(k-l) 
E p(12} 

V k-1,1 

+ L nk-1(v, 81(ZL1)) + 2. 22(k-1). 23(k-1) 
Ep(12} 

V k-1,1 

+ L nk-1(v, 81(ZL1)) + 3. 22(k-l). 23(k-1) 
Ep(12} 

V k-1,1 

(every quadrant is a canonical ZL1) 

- 4b..(Pt2l,1, 81(ZL1)) + 6. 22(k-l). 23(k-1). 
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Iterating the recurrence in descending k (to 1) with b..(Pi,1i2), 81 (Zr)) = 6, we have: 

k-1 
b..(P1\2)' 81(Zl)) = 4k-1t1(P1,1i2)' 81(Zf)) + L 4k-11- 1(6. 2517) 

17=1 

- -2_. 25k - _3_. 22k_ 
2·7 2•7 

Similarly, we have 

b..(P(13) a (z3)) = { 4t1(Pt3£,1, B1(ZL1)) + 10. 22(k-1) . 23(k-1) 
k,l ' 1 k 10 

b..(P(23) a (Z3)) = { 4b..(P1~31.1, B1(ZL1)) + 12. 22(k-1). 23(k-1) 
k,l ' 1 k 12 

if k > 1 
if k = 1, 

if k > 1 
if k = 1. 

These yield the closed-form solutions for b..(PPi3\B1(Z2)) and b..(P?i3),81(Z2)). I , , 

Now we partition the summation La:,,BE[SJJa:<,8 b..1(Qa:(Z2), Q,a(Z2)) according to 

the three cases: (1) for a, /3 E {1, 2, 3, 4}, contiguous subcurves ((a, /3) E {(1, 2), (1, 3), 

(2, 4), (3, 4)}) with four similar subcases, (2) for a, /3 E {5, 6, 7, 8}, contiguous sub

curves ((a, /3) E {(5, 6), (5, 7), (6, 8), (7, 8)}) with four similar subcases (in which are 

same as the subcases of the contiguous subcurves in case (1) because of reflective 

(inside-outside symmetric with respect to axis-3 after +1r-rotation) structures), and 

(3) for a, /3 E {1, 2, 3, 4, 5, 6, 7, 8}, diagonal subcurves (a+ /3 = 9) with four similar 

sub cases. 

Lemma 3.18 For a canonical Z2, 



and, 

ll1(Qs(Zf), Q1(Zf)) = ll1(Q6(Zf), Qs(Zf)) 

fl(Pc13) a (z3 )) + fl(Pc13) 8 (z3 )) + 22k-2(23(k-1) + 1) k-1,2k-1, 2 k-1 k-1,1, 1 k-1 

2fl(Pc13) 8 (z3 )) + 22k-2(23(k-1) + 1) k-1,1' 1 k-1 , 

ll1(Q1(Zf), Q2(Z2)) = ll1(Q3(Z2), Q4(Zf)) 

ll1(Qs(Zf), Q6(Z2)) = ll1(Q1(Zf), Qs(Zf)) 

fl(P~~3i,2k-1, 82(ZL1)) + fl(P~~3{,1, 81(ZL1)) + 22k-2(1) 

2fl(P1~3{,1, 81(ZL1)) + 22k-2(1), 

fl1(Q1(Zf), Qs(Zf)) = ll1(Q2(Zf), Q6(Zf)) 

ll1(Q3(Zf), Q1(Zf)) = ll1(Q4(Zf), Qs(Zf)) 

fl(Pc12) a (z3 )) + fl(P(12) 8 (z3 )) + 22k-2(3 . 23(k-1) + 1) k-1,2k-l l 2 k-1 k-1,1, 1 k-1 

2fl(Pt2l,1, 81(ZL1)) + 22k-2(3. 23(k-l) + 1), 
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Proof. The derivations are straightforward. The point-pairs across quadrants 

involved in computing L 1 are in the boundary planes. So, the cumulation of the 

index differences for fl1(Q0 (Z2), Q13 (Z2)), where a< /3, is the cumulations of index 

differences for points in the boundary plane of Q °' ( zn respect to 82 ( Q °' ( zn)' those 

for points in the boundary plane of Q /3 ( Zf) respect to 81 ( Q /3 ( Zf)), and those between 

82(Qa(Z2)) and 81(Q13(Zf)). For ll1(Q1(Zf), Q3(Zf)), 

+ 

'EP(13) 
V k-1,1 

( the connecting planes between 1st and 3rd subcurves 



(13) (13) ) 
are Pk-1,2k-1, Pk-1,1 

+ I: (1. 23(k-1) + 1) 

vEP{l3) k-1,2k-l 
~(Pc13) 8 (z3 )) + ~(P(13) 8 (z3 )) + 22k-2(1 . 23(k-1) + l) k-1,2k-l) 2 k-1 k-1,1, 1 k-1 
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(Lemma 3.16 (part 2): ~(Pi~31,2k_1, &2(ZL1)) = ~(Pt3l,1, &1(ZL1))) 

_ 2 . ~(P(13) 0 (Z3 )) + 22k-2(23(k-1) + l) k-1,2k-l) 1 k-1 . 

Derivations for other cases are similar. 

Theorem 3.4 For a 3-dimensional z-order curve family, 

Proof. For a 3-dimensional z-order curve family, 

Ii-JI 
i,jE[23k]li<j and d1(Z2(i),Zf(j))=6 

a,,BE{l,2,3,4,5,6, 7,S}ia<,8 

By Lemma 3.18, for 8 = 1, the cumulation of index differences: 

a,,BE{l,2,3,4,5,6, 7,8} Ja<,8 

- 8L1(ZLi) 

+4(2~(Pt311, &1(ZL1)) + 22k-2(23(k-1) + 1)) , 

+4(2~(Pi~31,1, &1(ZL1)) + 22k-2(l)) 

+4(2~(Pt2/1, &1(ZL1)) + 22k-2(3. 23(k-1) + 1)) 

8L1(ZL1) + 8(~(Pt2l 1, &1(ZL1)) + ~(Pt3{ 1, &1(ZL1)) 
' ' 

+~(Pt3{,1, &1(ZL1))) + (16. 23(k-l) + 12)(22k-2) 

8L (z3 ) + ~ . 2sk + 22k 
1 k-1 4 . 

A recurrence ( in k) for L1 ( Z2) is established as follows: 

L (Z3) = { 8L1(ZL1) + r 2sk + 22k 
1 k 28 

if k > 1 
if k = 1, 

I 
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which yields the desired closed-form solution for L 1(ZD. 

3.3 Comparison and Verification 

We summarize our analyses of L8(H'f:') and L8(Z'f:') as follows: 

L,(H',;') = I 
and 

i-~. 2 3k+21°g 8 + 0(22k+3 Iog 8) form= 2 and 8 that is an integral 
power of 2 

67 25k + 0(23k) 
2·31 for m = 3 and 8 = 1, 

23k+2log8 + 0(22k+3 Iog 8) form= 2 and 8 that is an integral 
power of 2 

for m = 3 and 8 = 1. 

Thus, for sufficiently large k and 8 « 2k, 

for m = 2 and 8 that is an integral power of 2 

I 

With respect to the locality measure L8 and for sufficiently large k and 8 « 2k, the 

z-order curve family performs better than the Hilbert curve family for m = 2 and 

over the 8-spectrum of integral powers of 2. 

When 8 = 2k, the domination reverses as: 

and 

These give that 

( 2) 37 5k 1 3k 2 k L8 Hk = - · 2 - -. · 2 - - · 2 
240 12 15 ' 

L8(H'f:') ~ 2 · 7 · 37 ~ 0_9682_ 
L8(ZJ:) 5 · 107 

The superiority of the z-order curve family persists but declines for m = 3 with 

unit 1-normed distance for L 8 • 
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For the extreme case m = 2 and /j = 1, the locality measure L 8 in our study 

degenerates to LMD,i in [MD86J. Their analysis shows that for a 2-dimensional 

curve C for the grid [n]2, LMD,l attains its minimum 4- 3v'2n3 + 0( n 2 ) (;:::::;; 0.8619n2 + 
0( n2)) when C and its equivalent variants assume the following characteristics: (1) 

Within the four (1 - ~)n x (1 - ~)n corner-subgrids, the sequence of 1-normed 

distances between adjacent points in [n]2, d1(C(i), C(i + 1)), incrementally increases 

and/or decreases in the range [1, (1 - ~)n] (while interleaving with segments of 

ls), and (2) Within the central region interconnecting the corner-subgrids, the 1-

normed distances are in { (1 - ~)n, n} (while interleaving with segments of ls). As 

the z-order curve family shares some of these characteristics, the asymptotic ratios 

( constants greater than 1) obtained above are not surprising. 

We have verified all the exact formulas (intermediate and final) involved in the 

derivations with computer programs over various grid-orders and 1-normed distances: 

(m = 2, k E {1,2,3,4,5,6,7}, and /j E {1,21,22 ,23, ... ,2k}), and (m = 3, k E 

{1,2,3,4,5,6}, and 6 = 1). 

3.4 Summary 

Our analytical study of the locality properties of the Hilbert and z-order curve fam

ilies, {H'f:' I k = 1, 2, ... } and {Z'f:' I k = 1, 2, ... }, respectively, is based on the 

locality measure L8 , which cumulates all index-differences between point-pairs at a 

common 1-normed distance 6. We have derived the exact formulas for L8(H'f:') and 

L8(H'f:') for m = 2 and arbitrary 6 that is an integral power of 2, and m = 3 and 

/j = 1. The results allow us to gauge the two curve families relative to the optimal 

curves with respect to L8 , and show that the z-order curve family performs better 

than the Hilbert curve family over the considered ranges of dimension, grid-order, 

and 1-normed distance. We have verified all the exact formulas (intermediate and 

final) involved in the derivations with computer programs for m = 2, 3 and over 

various grid-orders and all possible 1-normed distances. 



CHAPTER IV 

LOCALITY MEASURES BASED ON p-NORM METRICS 

To measure the proximity preservation of close-by points in the indexing space [nm], 

Gotsman and Lindenbaum [GL96) develop the following measures: 

L (C) = max d2(C(~), ~(j))m, for CE C. 
GL,max i,jE[nm']li<j Ii - JI 

Specifically, they apply the measure to the 2-dimensional Hilbert curve family, and 

obtain tight bounds: 

Later, Alber and Niedermeier [Alb97, ANOO) generalize LGL to LAN by ,max ,p 

employing the p-normed metric dp in place of the Euclidean distance d2 . They 

improve and extend the above tight bounds for the 2-dimensional Hilbert curve 

family to: 

6(1 - 0(2-k)) 

6(1 - 0(2-k)) 

In this chapter, we close the gaps between the current best lower and upper 

bounds for L AN,p(Ht) for p = 1 and all reals p ~ 2 by exact formulas. 

4.1 Approach 

For a space-filling curve C indexing an m-dimensional grid space with side length n, 

the notation "v E C" refers to "grid point v indexed by C", and c-1 ( v) gives the 
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index of v in the 1-dimensional index space. The locality measure LAN ( C) from 
,P 

Alber and Niedermeier can be expressed in terms of grid points: 

( ) dp( C( i), C(j) )m ( dp( C( i), C(j) )m) 
LAN C = max = max 

,P i,jE[n"']li<j dp(i, j) i,jE[nmJli<j ji - jj 
dp(v, u)m 

~~~ 1c-1 (v) - c-1 (u)I" 

When m = 2, we write Lc,p(v, u) = 7}ct;;, where bc(v, u) denotes the index

difference 1c-1(v) - c-1(u)I. A pair of grid points v and u is representative for 

C with respect to LAN ,P if Lc,p ( v, u) = LAN ,P ( C), and the pair ( v, u) is called a 

representative pair for C with respect to L AN,p· 

To obtain the exact formula for LAN (Hi), we identify representative pairs ( v, u) 
,P 

that yield £H2p(v,u) = LAN (Hi). Our approach that covers several cases for 
k' ,p 

different values of p is stated as follows. 

1. For p = {1, 2}: 

(a) Follow the steps in the upper-bound argument in [GL96] by considering 

an arbitrary subcurve/subpath P of length l along Hf, where (2r-l )2 < 

l < (2r) 2 for some sufficiently large integer r < k. This subcurve P is 

contained in two adjacent quadrants Q' and Q", each with size (2r)2 (grid 

points). Let D denote the diameter ( with respect to the p-normed distance 

dp) of the set of grid points in P. A case analysis of subpath containment 

( of P) in subquadrants of size (2r-l )2 within Q' U Q" results in six cases 

for ~2 (see [GL96] or Section 4.2.2). 

(b) In order to obtain the desired LAN 2-bound, it suffices to refine the analy-, 

sis of subpath containment in subquadrants of size (2r-2) 2 . By comparing 

the values of ~2
, the refined analysis obtains the subcurve (from Case 5 in 

[GL96]) in which a representative pair resides after ruling out other cases. 

This obtained subcurve is a structure of four linearly adjacent Hilbert 

subcurves (see Figure 4.1). 
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( c) Identify a representative pair that has the maximum of ~2 within the 

subcurve of four linearly adjacent Hilbert subcurves: across the first Hf
structured sub curve ( denoted by 1 HD and the fourth one ( denoted by 

4HD, there exist pairs of grid points that have greater value of ~2 than 

any pairs of grid points across other pairs of subcurves. A more refined 

analysis yields a pair of grid points across Q3 ( 1HD and Q2 ( 4HD as the 

representative pair. 

2. For arbitrary real number p > 2, we identify a representative pair same as the 

one for p = 2 by the observation that the value ~2 of this representative pair 

remains unchanged when p increases while the values of others decrease, 

Prior to discussing details, first extend notations to identify all C1-structured sub

curves of a structured er for all l E [k] inductively on the order. Let Qa(Cr) 

denote the a-th cr_cstructured subcurve (along the amalgamating Ci-curve) for 

all a E [2m]. Then for the a-th CEcstructured subcurve, Qa(Ci), of er, where 

2 < l ~ k and a E [2ml, let Qf3(Qa(C1)) denote the ,B-th CErstructured subcurve 

of Qa(C1) for all ,BE [2m]. We write Q&+l(C1) for Qa(Q&(C1)) for all l E [k] and 

all positive integers q < l. For the two extreme cases: Q~(Ci) denotes Ci (when 

q = 0), and Q~(Ci) (when q = l) identifies the a-th grid point in the Ci-structured 

subcurve Q~-1(C1). We write Q&+1(C1) for an iteration Qa(Q&(C1)) for all l E [k] 

and all positive integers q < l. 

For an H1-structured subcurve C of a 2-dimensional Hilbert curve H'f: in Carte

sian x-y coordinates, where l E [k], notice that 81 ( C) and 82 ( C) differ exactly in one 

coordinate, say z E { x, y}. It is said that the sub curve C is z+ -oriented ( respectively, 

z--oriented) if the z-coordinate of 81 ( C) is less than (respectively, greater than) that 

of 82 ( C). Note that for a 2-dimensional Hilbert curve H'f:, its two subcurves Q2 ( H'f:) 

and Q3 (Hr) inherit the orientation from their supercurve Hf. 
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I I I I 

2 ' ( 2) ' ' ( 2)' ( 2) Hk): Q4 1Hk : : Q1 4Hk : Q2 4Hk 

y 

Figure 4.1: Four linearly adjacent Hf-structured subcurves. 

4.2 Exact Formula for LAN (HD with p = 2 ,p 

According to locality measure in [Alb97, ANOO], we consider the case of p = 2 first 

by following the argument in [GL96] with a refined analysis and then extend p to be 

arbitrary real p > 2. As mentioned in Section 4.1, we seek the representative pair in 

the curve that is composed of four linearly adjacent Hf-structured subcurve before 

others and after that, we attempt to refine the case analysis of subpath containment 

in [GL96] by narrowing down the possible subcurve that contains representative 

pair. As a matter of fact, this subcurve is precisely the subcurve composed of four 

linearly adjacent Hf-structured subcurve that has been sought previously, so the 

exact formula for LAN (HD is corollarily derived. 
,P 

4.2.1 Locality of Four Linearly Adjacent Hilbert Subcurves 

For a 2-dimensional Hilbert curve Hz2 with l ;::: 3, there exists a subcurve C that is 

composed of four linearly adjacent Hf-structured subcurves with k::; l-3. Figure 4.1 

depicts the arrangement in Cartesian coordinates. Denote the leftmost and rightmost 

(first and fourth in the traversal order) Hf-structured subcurves by 1Hf (x- -oriented) 

and 4Hf (x+-oriented), respectively. 

For a grid point v, denotes by X ( v) and Y ( v) the x- and y-coordinate of v, 

respectively, and denotes by (X(v), Y(v)) the grid point v in the coordinate system. 

In this subsection, we assume that the lower-left corner grid point of 1Hf is the 
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origin (1, 1) of the coordinate system. In the following analysis, we identify a pair 

of grid points v' E 1Hf and u' E 4Hf such that .Cc,2(v', u') = max{.Cc,2(v, u) I v E 

1 Hf and u E 4Hf}. Later we see that ( v', u') serves as the representative pair for C 

with respect to LAN 2. 
' 

To locate a potential representative pair v E 1 Hf and u E 4Hf, the following 

three lemmas show that the possibility "v E Q3(1Hf} and u E Q3(4Hf)" is reduced 

to seeking v in successive Q3-subcurves of 1Hf. 

Lemma 4.1 For all v E Q3(1Hf) - Q3(Q3(1Hf)) and all u E Q3(4Hf), there exists 

v' E Q3(Q3(1Hf)) such that .Cc,2(v',u) 2: Cc,2(v,u). 

Proof. Since Q3(1Hf}-Q3(Q3(1Hf)) = Q1(Q3(1Hf})UQ2(Q3(1Hf})UQ4(Q3(1Hf)), 

we consider the following three cases. 

Case 1: v E Q2(Q3(1Hf)). Consider v' E Q3(Q3(1Hf)) with Y(v') = Y(v), then 

d2(v',u)2 > d2(v,u) 2 and 8c(v',u) < 8c(v,u), and we have .Cc,2(v',u) > Cc,2(v,u). 

Case 2: v E Q1(Q3(1Hf)). Consider v" E Q2(Q3( 1Hf}) with X(v") = X(v), 

then .Cc,2(v",u) 2: Cc,2(v,u). From Case 1, there exists v' E Q3(Q3(1Hf)) such that 

.Cc,2 ( v', u) > Cc,2 ( v", u) > £2 ( v, u). 

Case 3: v E Q4(Q3(1Hf)). Consider v' E Q3(Q3(1Hf}) with Y(v') = 1 and 

X(v') = X(v), we have: 

d2(v',u) 2 · 8c(v,u) - d2(v,u) 2 · 8c(v',u) 

- ((Y(u) - Y(v')) 2 + (X(u) - X(v'))2) · 

(8c(v, 82(1Hl)) + 2 · 22k + 8c(u, 81(4HD) + 1) 

-((Y(u) - Y(v))2 + (X(u) - X(v))2) · 

(8c(v', 82(1Hl)) + 2 · 22k + 8c(u, 81(4HD) + 1) 

((Y(u) - l)2)(8c(v, 82(1Hl)) + 2 · 22k + 8c(u, 81(4Hl)) + 1) 

+(X(u) - X(v))2(8c(v, 82(1Hl)) + 2 · 22k + 8c(u, 81(4Hl)) + 1) 

(because Y(v') = l,X(v') = X(v)) 

-((Y(u) - Y(v))2)(8c(v', 82(1HD) + 2 · 22k + 8c(u, 81(4HD) + 1) 
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-(X(u) - X(v)) 2(bc(v', 82(1Hl)) + 2 · 22k + bc(u, 81(4Hl)) + 1) 

- Y(u)2(bc(v, 82(1HD) - bc(v', 82(1Hl))) 

+(-2Y(u) + 1 + 2Y(u) · Y(v) - Y(v)2)(2. 22k + 1) 

+(-2Y(u) + 1 + 2Y(u) · Y(v) - Y(v)2)(bc(v', 82(1Hf)) + bc(u, 81(4Hl))) 

+(X(u) - X(v))2 · bc(v, 82(1Hl)) - (X(u) - X(v)) 2 • bc(v', 82(1Hf)) 

- Y(u)2(bc(v, 82(1Hf)) - bc(v', 82(1Hl))) 

+(2Y(u) - l)(Y(v) - 1)(2 · 22k + 1) 

+(2Y(u) - l)(Y(v) - l)(bc(v', 82(1Hl)) + bc(u, 81(4Hl))) 

+(X(u) - X(v))2(bc(v, 82(1Hl)) - bc(v', 82(1Hl))). 

The ranges for the values related to u, v are: 

4 · 2k ~ Y(u) 

2k ~ X(u) 

1 k 
- ·2 > 2 - Y(v) 

1 k - . 2 > 4 - X(v) 

7 k 
>-·2 +1 -2 ' 

1 k 
> - · 2 + 1 -2 ' 

1 k 
>-·2 +1 -4 ' 

~ 1, 

1 > - . 22k 
- 4 ' 

> ~. 22k. 
- 16 

Thus, the ranges of the four terms in the last statement in Equation 4.1 are 

> -2. 24k 
- ' 

(2Y(u) - l)(Y(v) - 1)(2 · 22k + 1) 

~ (7 · 2k + 1) (} · 2k) (2 · 22k + 1) > ; · 24\ 

(2Y(u) - l)(Y(v) - l)(bc(v', 82(1Hf)) + bc(u, 81(4H2))) 

k 1 k 9 2k 
~ (7. 2 + 1) ( 4 · 2 ) ( 16 · 2 ) > 0, 

(4.1) 
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Combining these four terms together, Equation 4.1 is greater than 0. Therefore, 

d2(v',u) 2 · c>c(v,u) - d2(v,u) 2 · bc(v',u) > 0. 

This gives that £c,2(v',u) > £c,2(v,u). 

Combining the three cases, the lemma is proved. I 

Lemma 4.2 For all integers h with 1 :S h < k, and all v E Q~(1Hf) - Q~+1(1Hf) 

and all u E Q3(4Hf), there exists v' E Q~+1(1Hf) such that £c,2(v', u) > £c,2(v, u). 

Proof. Similar to the proof of the previous lemma. I 

Lemma 4.3 For all integers h with 1 :S h < k, and all v E Q~(1Hf) - Q~(1Hf) 

and all u E Q3(4Hf), there exists v' E Q~(1Hf) such that £c,2(v', u) > £ 0 ,2(v, u). 

Proof. By induction on k - h. For the basis of the induction (k - h = 1), apply 

Lemma 4.2 with h = k - 1. 

For the induction step, suppose that the statement in the lemma is true for all in

tegers h with 1 :S k- h < n, where n > 1. Consider the case when k - h = n. Let v E 

Q~(1Hf)-Q~(1Hf) and u E Q3(4Hf) be arbitrary. Since Q~(1Hf) = Q3(Q~(1Hf)) U 

( Q1 ( Q~(1Hf)) UQ2 ( Q~ (1Hf)) UQ4 ( Q~ (1Hf))) = Q~+i (1Hf) U ( Q~ (1Hf )-Q~+1 (1Hf) ), 

we consider the following two cases. 

Case 1: v E Q~+1(1Hf). Notice that k - (h + 1) < n. Apply the induction 

hypothesis for the case of k - ( h + 1), we obtain a desired v'. 

Case 2: v E Q~(1Hf) - Q~+l(1Hf). By Lemma 4.2, there exists v' E Q~+1(1Hf)) 

such that £c,2(v',u) > £c,2(v,u). If v' E Q~(1Hf), then v' is a desired grid point. 

Otherwise (v E Q~+1(1Hf) - Q~(1Hf)), this is reduced to Case 1. 

This completes the induction step, and the lemma is proved. I 

Lemma 4.3 says that the lower-left corner grid point v' with coordinates (1, 1) 
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is unique in Q3(1HD such that .Cc,2(v', u) = max{.Cc,2(v, u) I v E Q3( 1Hf)} for 

arbitrary u E Q3(4HD. 

The search for a potential representative pair can be reduced to a case analysis 

for all possible pair-combinations (Qi(1HD,Qj(4HD) for all i,j E {1,2,3,4}. Af

ter eliminating symmetrical cases and grouping, it suffices to consider the analysis 

for five major cases: (Q3(1Hf), Q2(4HD), (Q3(1HD, Q3(4HD), (Q3(1HD, Q4(4HD), 

(Q4(1Hf),4Hf), and (Q1(1Hf) U Q2(1HD,Q3(4Hf) U Q4(4HD). We show that the 

analysis for each pair is reduced to that for the pair (Q3(1HD, Q2 ( 4 HD) in the fol

lowing lemmas (Lemmas 4.4, 4.5, 4.7, and 4.8). 

Lemma 4.4 For all v E Q3(1HD and all u E Q3(4Hf), there exist v' E Q3(1Hf) 

and u' E Q2(4HD such that .Cc,2(v', u') > .Cc,2(v, u). 

Proof. Consider v' E Q~(1HD (= (1, 1)) and u' E Q2(4HD with Y(u') = Y(u) 

and X(u') = 1. A case analysis for u E Qi(Q3(4Hf)) with i E {1, 2, 3, 4} can show 

that .Cc,2(v', u') > .Cc,2(v', u). By Lemma 4.3, £c,2(v', u) 2: .Cc,2(v, u); therefore 

.Cc,2(v', u') > .Cc,2(v, u). I 

Lemma 4.5 For all v E Q3(1HD and all u E Q4(4HD, there exist v' E Q3(1HD 

andu' E Q2(4HD, such that .Cc,2(v',u') > .Cc,2(v,u). 

Proof. Consider u" E Q3(4Hf) with X(u") = X(u). Notice that d2(v, u") > 

d2(v, u) and bc(v, u") < bc(v, u), we have .Cc,2(v, u") > .Cc,2(v, u). By Lemma 4.4, 

there exist v' E Q3(1Hf) and u' E Q2(4Hi) such that .Cc,2(v', u') > .Cc,2(v, u") > 

.Cc,2(v, u). I 

Lemma 4.6 For all v E Q4 ( 1Hf) and all u E 4H£ ( Q1(4Hf} U Q2(4HD U 

Q3(4HD U Q4(4HD), there exists v' E Q3(1HD such that .Cc,2(v', u) > .Cc,2(v, u). 

Proof. Consider v' E Q3(1HD with X(v') = X(v) and Y(v') = 1. A case analysis 

for u E Qi(4Hf) with i E {1, 2, 3, 4} can show that £c,2(v', u) > .Cc,2(v, u). I 
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u' E Q2(4Hf) such that Lc,2(v', u') > Lc,2(v, u). 

Proof. Lemma 4.6 says that there exists v' E Q3 ( 1HD such that £c,2(v', u) > 

£c,2(v, u). Since u E 4Hf = Q1 (4Hf) U Q2(4Hf) U Q3(4HD U Q4(4HD, consider four 

pair-combinations for (v', u): (Q3(1Hf), Qi(4H~)) with i E {1, 2, 3, 4}. The analysis 

for the pair (Q3(1HD, Q1(4HD) is equivalent to that for (Q4(1HD, Q2(4H~)), which is 

reduced to (Q3(1HD, Q2(4HD) by applying Lemma 4.6. The pair (Q3(1HD, Q3(4HD) 

is reduced to (Q3(1Hf), Q2(4H~)) by Lemma 4.4, and the pair (Q3(1H~), Q4(4HD) 

I 

Lemma 4.8 For all v E Q1(1H~) U Q2(1HD and all u E Q3(4HD U Q4(4HDJ there 

exist v' E Q3(1H~) and u' E Q2(4HD such that Lc,2(v', u') > Lc,2(v, u). 

Proof. Consider v" E Q3(1HD U Q4 ( 1HD with Y(v") = Y(v) and X(v") 

X(v)- 2k-l, and u" E Q1 (4HD U Q2(4HD with Y(u") = Y(u) and X(u") = X(u) -

2k-l. Since d2(v",u") = d2(v,u) and 6c(v",u") < 6c(v,u), we have £c,2(v",u") > 

Lc,2( v, u). It suffices to consider two pair-combinations for ( v", u"): ( Q3(1HD, Q1 (4HD) 

and (Q4(1HD, Q1(4HD U Q2(4Hf)). The analysis for the pair (Q3(1H~), Q1(4HD) is 

equivalent to that for (Q4(1HD, Q2(4HD), which is reduced to (Q3(1HD, Q2(4HD) 

by Lemma 4.6. The pair (Q4(1HD, Q1( 4HD U Q2(4HD) is a subcase of Lemma 4.7. 

As a consequence, for these two pair-combinations for ( v", u"), there exists v' E 

Q3 ( 1H~) and u' E Q2 ( 4 HD such that £c,2(v', u') > Lc,2 (v", u"), then we can reach 

Lc,2( v', u') > Lc,2( v, u). I 

An immediate consequence of Lemmas 4.4, 4.5, 4.7 and 4.8 is summarized below 

- a representative pair must reside in (Q3(1H~), Q2(4H~)). 

Lemma 4.9 For all v E 1H~ - Q3(1H~) and all u E 4H~ - Q2(4HDJ there exist 

v' E Q3(1HD and u' E Q2(4HD such that Lc,2 (v', u') > £c,2(v, u). 

The following lemmas complement Lemmas 4.2 and 4.3, respectively, with similar 

proofs. Having reached the pair (Q3 ( 1HD, Q2 ( 4H~)) for seeking a potential repre-
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sentative pair ( v', u'), they guide the search into successive Q3-subcurves of 1 Hf for 

v'. The symmetry in the pair (Q3(1HD, Q2(4HD) leads the search into successive 

Q2-subcurves of 4Hf for u'. 

Lemma 4.10 For all integers h with 1 :::;; h < k, and all v E Q~(1Hf) - Q~+1(1Hf) 

and all u E Q2(4Hf), there exists v' E Q~+1(1Hf) such that £c,2(v', u) > £c,2(v, u). 

Lemma 4.11 For all integers h with 1 :::;; h < k, and all v E Q~(1HD - Q~(1Hf) 

and all u E Q2(4Hf), there exists v' E Q~(1Hf) such that £c,2(v', u) > £c,2(v, u). 

The following theorem summarizes our analysis above, and asserts that the unique 

representative pair reside at the lower-left and lower-right corners of C. 

Theorem 4.1 For all v E 1Hf - Q~(1HD and all u E 4Hf - Q~(4Hf), there exist 

v' E Q~(1Hf) and u' E Q~(4Hf) such that £c,2(v',u') > £c,2(v,u) and £c,2(v',u') = 

6 22k+3_2k+2+2-l 
. 22k+3+1 • 

Proof. By Lemmas 4.9 and 4.11 (and its symmetry), we have v' E Q~(1HD with 

coordinates (1, 1) and u' E Q~(HD with coordinates (1, 2k+2), which maximizes the 

£02-value. 
' 
Notice that 8c(v', u') = 2(E7:t 22i + 1 + 2 · 22k) -1. This give that £c,2(v', u') = 

d2 (v',u1)2 = 6 . 22k+3_2k+2+2-1 
8c(v',u,) 22k+3+1 · I 

4.2.2 Exact Formula for LAN 2(HD 
' 

The current best bounds for the 2-dimensional Hilbert curve family with respect to 

LAN 2 (Hf) [ANOO] is: 
' 

Following the argument in [GL96] with a refined analysis, together with the exact 

formula for £c,2(v', u') in Section 4.2.1, we merge the two bounds to an exact formula 

for LAN,2 (HD. 
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Theorem 4.2 There exists a positive integer k0 such that, for all k 2: k0 , 

Proof. In the upper-bound argument in [GL96], an arbitrary subcurve/subpath P 

of length l along Hl is considered. Note that for arbitrary l, there exists a sufficiently 

large positive integer r such that (2r-l ) 2 < l :S (2r)2. This gives that Pis contained 

in two adjacent quadrants Q' and Q", each with size (2r-1) 2 (grid points). Let D 

denote the diameter (Euclidean) of the set of grid points in P. A case analysis of 

subpath containment ( of P) in subquadrants of size (2r-l ) 2 within Q' U Q" results 

in the following six cases. 

1. _!_4r < l < ..§..4r · 
16 - 16 . D 2 < ~. 4r, hence ~2 :S 5. 

2. ..§..4r < l < ..2._4r. 
16 - 16 . D 2 < 29 • 4r hence D 2 < 51 16 , l - s· 

3. ..2._4r < l < .1..4r. 
16 - 16 . D 2 < lO • 4r hence D 2 < 6l 

4 ' l - 3· 

4. .l.4r < l < ~4r. 16 - 16 . D2 < lO · 4r hence D 2 < 5.§. 
4 ' l - 7· 

5. ~4r < z < 124r. 
16 - 16 . D 2 < 13 · 4r hence D 2 < 61 

4 ' l - 2· 

6. i~4r < l :S 4r: D 2 < 5. 4\ hence ~2 :S 6r 

In order to obtain the desired LAN 2-bound, it suffices to refine the analysis of , 

subpath containment in cases 3, 5, and 6 in subquadrants of size (2r-2) 2 . 

The refined analysis for case 3 yields the upper bounds on ~ 2
: ~, 1;;, 12~1 , and 

126l (maximum is 1;l < 5.93). For case 6, the upper bounds on ~2 are: ~~' I~, ~~' 

and ~~ (maximum is ~~ < 5.72). 

The analysis for case 5 reveals that all but one arrangement ( of subquadrants 

of size (2r-2) 2) yield upper bounds that are bounded above and away from 6. The 

exception structure is given by the subcurve C (described in Section 4.2.1) of four 

linearly adjacent Hilbert subcurves. By Theorem 4.1, the maximum ~2 -value for 

h. . 6 22k+3_2k+2+2-1 Ob h 22k+3 21<:+2+2-1 • . l . . (. k) t IS case IS · 22k+3+1 . serve t at 2;+3+1 IS stnct y mcreasmg m 
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and approaching 1 ( as k ---+ oo). This establishes the theorem. I 

For an y+-oriented Hilbert curve Hf with 81(Hf) = (1, 1), where k ;::: ko, the 

representative pair for Hf with respect to LAN 2 reside at the lower-left corner 
. I 

(with coordinates (2k-l + 1, 2k-2 + 1)) and the lower-right corner (with coordinates 

(2k-l + 1, 2k -2k-2)) of four linearly adjacent largest subquadrants (HLrstructured 

subcurves). 

4.3 Exact Formula for LAN,p(Hf) with p > 2 

In order to study LAN for arbitrary real p, we first investigate the monotonicity of 
,P 

the underlying p-normed metric. 
1 

Lemma 4.12 The function f : (0, +oo) ---+ (1, +oo) defined by f(p) = (1 + aP):ii, 

where a is a positive real constant, is strictly decreasing over its domain. 

Proof. It is equivalent to show that the function g : (0, +oo) ---+ (0, +oo) defined 

by g(p) = logf(p) ("log" denotes the natural logarithm) is strictly decreasing over 

its domain. We consider the first derivative of g, which is defined on (0, +oo): 

~ logaP - log(l + aP) logaP - log(l + aP) - ~ g' (p) = _l+~a_P ________ _ 
p2 p2 

Cl 1 '( ) it P logoP-}og(l+aP) 0 .C O 1 d '( ) !ogoP-log(l+oP)- 1~r•; 
ear y, g p = "' 2 < 1or < a < , an g p = 2 "' p p 

< 0 for 1 :'.S a. This proves the strictly decreasing property of f over its domain. I 

An immediate corollary of the previous lemma is that for all grid points v and u, 

the p-normed metric dp(v, u) is decreasing in p E (0, +oo). Hence for a space-filling 

curve C, .Cc,p(v, u) = ~~(~~2; is decreasing in p E (0, +oo), as bc(v, u) is independent 

of p. 

Theorem 4.3 There exists a positive integer k0 such that, for all k ;::: k0 , 

22k-3 2k-l + 2-1 
L AN,p(Hl) = 6 · 2~_3 + 1 , for all real p;::: 2. 

Proof. Let ( v', u') be the representative pair for Hf with respect to LAN 2, with 
I 

their coordinates v' = (2k-l + 1, 2k-2 + 1) and u' = (2k-l + 1, 2k -2k-2). Consider an 
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arbitrary real p ~ 2. We show that ( v', u') also serves as the unique representative 

pair for Hl with respect to LAN,p' that is, Csi,p(v',u') > Csi,p(v,u) with (v,u) =/:

(v', u'). 

Observe that X(v') = X(u'), which implies that dp(v',u') = d2(v',u'). Then for 

arbitrary grid points v, u E Hf with ( v', u') =/:- ( v, u), we have: 

£ ( , ') _ dp(v', u') 2 _ d2(v', u') 2 _ £ ( , ') 
si ,P v ' u - 8 2 (v' u') - 8 2 (v' u') - si ·2 v ' u 

Hk ' Hk ' 

> Csp(v,u) (as (v',u') is a representative pair with respect to £si,2) 

> Csi,p(v, u) (by the monotonicity of Csi,p). 

4.4 Exact Formula for LAN (Hf) with p = 1 ,p 

I 

Following an argument similar to the one in Sections 4.2.1 and 4.2.2 to establish 

LAN 2(Hf), we obtain the exact formula for LAN 1 (Hi). , , 

Theorem 4.4 There exists a positive integer k0 such that, for all k ~ k0 , 

L (H2) - 9 3 2-k+3 + 2-2k+4 AN,1 k - - • · 

There are two (symmetrical) representative pairs for Hf with respect to LAN 1; , 

namely ( v', u') and ( v", u"). For an y+ -oriented Hilbert curve Hf with 81 (Hi)· = 

(1, 1), where k ~ k0 , the coordinates of (v',u') and (v",u") are ((1,2k-1), (2\ 1)) and 

((1, 2k-l + 1), (2\ 2k)), respectively. Thus d1(v', u') = 2k + 2k-l - 2 and 8s2(v', u') = 
k 

22k-2 and LA (H2) = £ 2 (v' u') = 9 - 3 · 2-k+3 + 2-2k+4. ' N,1 k Hk,1 , 

4.5 Summary 

The ?,nalytical study of the locality properties in this chapter is based on the lo

cality measure LAN , which is the maximum ratio of dp(v,u)m to dp(v,u) over 
,P 

all corresponding point-pairs ( v, u) and ( v, u) in the m-dimensional grid space and 
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index space, respectively. For this locality measure of the Hilbert curve family 

{Hf I k = 1, 2, ... }, our work merges the current best lower and upper bounds 

to exact formulas for. p E {1, 2}, and also extend our work to all reals p 2:: 2. In 

addition, we identify all the representative pairs (which realize LAN,p(Hf)) for p = 1 

and all reals p 2:: 2. We also validate the results with computer programs over various 

p-values (p E {1, 2, 3}) and grid-orders (k E { 4, 5, ... , 10} ). 



CHAPTER V 

MEASURE BY MEAN NUMBER OF CLUSTERS 

Evaluating clustering performance of space-filling curves is primarily to measure the 

distribution of continuous runs of grid points (clusters) over all identically shaped 

subspaces of [nm]. Moreover, it caii be characterized into two different measures: 

the mean number of clusters and the mean inter-cluster distance within a subspace. 

This and next chapters cover the discussions of clustering and inter-clustering, re

spectively. 

Using the mean number of clusters within a subspace as a measure for a space

filling curve is initiated from space-filling indexing applications for multi-dimensional 

databases, in which a range query is mapped to a subspace ( see Figure 5.1). The 

number of clusters within a subspace is related to the number of disk access. If a 

grid point corresponds to a disk page, the number of clusters within a subspace is 

related to the number of non-consecutive disk accesses, hence a typical query requires 

additional disk-seek operations. On the other hand, if many grid points are mapped 

to a disk page, this measure is still highly correlated to the number of disk access, 

since consecutive grid points are likely located in the same disk page ( or neighboring 

disk pages) while non-consecutive grid points are likely located in different disk pages 

(and/or non-neighboring disk pages) - which results in more disk accesses. In other 

words, the less disk accesses are resulted from operations, the better performances 

of space-filling curves are. Based on this criterion, the statistics of mean number of 

clusters is used to gauge the performances of different space-filling curves. 

Moon, Jagadish, Faloutsos, and Saltz [MJFSOlJ extend the work in [Jag97] to 

obtain the exact formula for the mean number of clusters over all rectangular 2q x 

2q subspaces of an Hf-structural grid space. Alternatively, we follow a recursive 
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Figure 5.1: Clusters within a subspace for (a) z-order curve and (b) Hilbert curve. 

approach to derive the exact formulas for the Hilbert and z-order curve families. 

5;1 Approach 

r:i 

For an Hf- and Zf-structural grid spaces, we obtain the exact formulas for the mean 

number of clusters over all rectangular 2q x 2q subspaces by computing the edge cuts 

in and between its subgrids that are decomposed recursively. The idea behind this 

derivation is to count the the total number of edges that are cut by the sides of all 

possible identically shaped 2q x 2q subspaces as observed in [MJFS01]. The reason 

is because the entry and exit grid points of a cluster connect to grid points outside 

of this subspace (two cuts by side(s) of this subspace); every cluster has two cuts by 

the subspace. A cut on an edge by a side of a subspace is called an "edge cut". We 

give an overview of the derivation for both curve families as follows. 

1. Compute the number of edges that are cut by the sides of all possible 2q x 2q sub

spaces, which are exactly inside of one of the four quadrants, and the number 

of edges cut by the sides of subspaces across different quadrants, respectively. 

The number of cuts on edges is twice the number of clusters over all identically 

shaped subspaces. 

2. Categorize the edge cuts caused by subspaces across quadrants into: edge cuts 

within 2q x 2q corner boundaries of the quadrants and within side boundaries 
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(of 2q rows/columns) of the quadrants. (Note that the edges that are cut by 

subspaces across quadrants only in the boundary regions (sides and corners) of 

the quadrants.) By decomposing these corner and side boundaries, we derive 

recurrences for each of them: 

(a) For edge cuts within one of the four corner boundaries: edge cuts within 

upper (left or right) corner and lower (left or right) corner boundaries are 

inter-recurrence related. 

(b) For edge cuts within one of the four side boundaries: 

i. Edge cuts in left boundary (same as right boundary) consists of sub

structures of left boundary, bottom boundary and two lower-corner 

boundaries, 

ii. Edge cuts in bottom boundary consists of substructures of two left 

boundaries and two upper-corner boundaries, and 

iii. Edge cuts in the top boundary consists of substructures of two top 

boundaries and two upper-corner boundaries. These inter-recurrent 

relations are based upon the construction of a canonical H't ( see Fig

ure 2.6). 

3. After obtaining the numbers of edge cuts in boundaries that are derived from 

Step 2, we solve the recurrence for the total number of edge cuts, then divide 

it by 2 to get the total number of clusters. To obtain the mean number of 

clusters, the total number of clusters needs to be divided by the total number 

of subspaces of size 2q x 2q, which is (2k - 2q + 1 )2 . 

5.2 Analytical Study of Number of Clusters for Hilbert Curve 

With respect to the canonical orientation of H't shown in Figure 2.6(a), we cover 

the 2-dimensional k-order grid with 2k rows (Rk,l, Rk,2 , ••. , Rk,2k ), indexed from the 

bottom, and 2k columns (Ck,l, Ck,2 , ... , Ck,2k), indexed from the left. We denote: 
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1. For a grid point v E [2k]2, its x- and y-coordinate by X ( v) and Y ( v), respec

tively (that is, vis the intersection grid point of the row Rk,X(v) and the column 

Ck,Y(v)), 

2. For a rectangular query subgrid with its lower-left corner at grid point (x, y) 

and upper-right corner at grid point (x', y') (1 ~ x ~ x' ~ 2k and 1 ~ y ~ 

y' ~ 2k) covering ut=xRk,a n ut=yck,(3 by G(x,y,x',y') (= {v E [2k] 2 Ix~ 

X(v) ~ x' and y ~ Y(v) ~ y'}). The size of the query subgrid G(x,y,x',y') is 

( X 1 - X + 1) X (y' - y + 1). 

Notes: 

1. axis-1 and axis-2 correspond to the x-axis and y-axis, respectively, 

2. ( +~)-rotation and (-~)-rotation correspond to the go0 -clockwise rotation and 

go0 -counterclockwise rotation from axis-1 to axis -2, respectively. 

Remark 5.1 For most self-similar m-dimensional order-k space-filling curve Cf: 

indexing the grid [2kr, we can view er as a CJ:_q-curve interconnecting 22(k-q) c:;
subcurves for all q E [ k]. 

The remark above motivates our analytical study of clustering performances to be 

based upon query subgrids of size 2q x 2q. 

For a 2-dimensional order-k Hilbert curve H't, let Sk,2q (H't) denote the summation 

of all numbers of clusters over all 2q x 2q query subgrids of an H't-structural · grid 

space [2k]2. 

Remark 5.2 Within a query subgrid G, the number of clusters is half of the number 

of edges of underlying space-filling curve that are cut by the sides of G [MJFS01}. 

Denote by n( C, G) the number of edges within C that are cut by sides of subgrid G 

(without counting edge(s) connecting between C and other subcurves). Remark 5.2 

translates the computation of the summation of all numbers of clusters over all 

identically shaped subgrids G to the computations of ! (I:a1i an( C, G) + 2) ( the 

contribution of 2 is the number of cuts for connecting edges of C to other curves). 
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Figure 5.2: The boundary regions of neighboring quadrants are organized into nine 
regions. 

For 2q x 2q subgrids G, we denote by Eq( C) all numbers of clusters over all identically 

shaped 2q x 2q subgrids G, which is Lall c n( C, G) + 2. 

The recursive decomposition of Hf (see Figure 2.6(b)) gives that 

where ck,q{Hf) denotes the summation of all edge cuts over all identically shaped 

2q x 2q query subgrids, each of which overlaps with more than one quadrant (that 

is, two or four). These query subgrids are contained in the boundary regions of 

neighboring quadrants as shown in Figure 5.2. 

Remark 5.3 For a 2-dimensional Hilbert curve Hf, the connecting edge between 

Q1(Hf) and Q2(Hf) is on the first column (left-most column), that between Q2(Hf) 

and Q3(Hf) is on the 2k-I + l-st row {the lowest row of these two quadrants), and 

that between Q3(Hf) and Q4 (Hf) is on the 2k-th column {right-most column). 

We denote the connecting edge between two quadrants Qi(Hf) and Qj(Hf) by a pair 

(Qi(Hf), Qj(Hf)). The previous remark tells the locations of the connecting edges. 

In addition to the cuts on connecting edges, the computation of ck,q(Hf) is divided 

into two parts according to the overlaps of subspaces: 

For a 2q x 2q query subgrid G, G overlaps with: 
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2. Qi(Hf) for all i E {1, 2, 3, 4}. 

We develop combinatorial lemmas in the following two subsections to support the 

computations. We denote by G(x, y, x', y') the query subgrid, in which the lower-left 

grid point is (x, y) and the upper-right grid point (x', y'). 

5.2.1 L n(Hf, G) over Subgrids G Overlapping with Two Quadrants 

Consider an arbitrary 2q x 2q query subgrid G that exactly overlaps two quadrants 

Qi(HD and Qi mod 4+1(Hf), where i E {1, 2, 3, 4}. The side-length is from 1 to 2q -1 

for the side across two quadrants. Since the quadrants are isomorphic to a canonical 

Hf- 1 via symmetry ( reflection and rotation), we consider the· following system of 

summations nk,2q = (Of. 2q, Of,2q, nr,2q, r2{2q) in a general context of a canonical Hf 

2k-2q+12q-l 

nf.2q = L L n(Hf, G(x, 1, x + 2q - 1, y)) - for left boundary 
x=l y=l 

(see Figure 5.3(a)), 
2k 

L n(Hl, G(x, y, y + 2q - 1, 2k)) - for right boundary, 
x=l y=2k-2q+2 

2q-12k-2q+1 

nf,2q - L L n(Hl, G(l, y, x, y + 2q - 1)) - for bottom boundary, 
x=l y=l 

2k 2k-2q+1 

L L n(Hl, G(x, y, 2\ y + 2q - 1)) - for top boundary, and 
x=2k-2q+2 y=l 

2k-2q+12q-l 
Nf,2q - L L 1 - for the number of rectangular subgrids 

x=l y=l 

in a boundary for nk,2q. 

We will establish a system of recurrences (ink) for nk,2q (see Lemma 5.4 below). 

The system of recurrence involves another system of summations as prerequisites, as 

demonstrated in the following example. Consider a recursive decomposition of nf 2q, 

' 
illustrated in Figure 5.3(b), into four parts: (1) nf_1,2q, (2) r2%~1,2q, r2%~ 1•2q, (3) 

nf_1,2q, and (4) the number of cuts on connecting edges. The part r2%~ 1•2q (r2%~1•2q) 
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Figure 5.3: (a) nf 2q for a canonical Hf; (b) its recursive decomposition. 
' 

Figure 5.4: The four (2q - 1) x (2q - 1) corners of a canonical Hf 
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computes E n( Hf, G) over all "incomplete" rectangular subgrids G ( with one side

length at most 2q -1) overlapping both Q1(Hl) and Q2(Hf). Each of the three parts 

rl[1,2q, rl%:_1,2q (rl%4...1:2q); and nf_1,2q is defined with respect to a canonical HL1. 

Note that nf 2q = nf 2q because of the left-right symmetry property of Hf. 
' ' 

The recursive decompositions of all four parts in nf 2q, nf 2q, nf 2q, and Of 2q lead 
' ' ' ' 

us to consider a prerequisite system of summations fl% 2q = (rl%12q, rl%22q, rl%32q, rl%42q) 
' ' ' ' ' 

in a more general context of a canonical Hf {see Figure 5.4): 

2q-12q-1 

rl%~2q - LL n(Hl, G(l, 1, x, y)) - for lower-left corner, 
x=l y=l 

2k 2q-1 

L L n(Hl, G(x, 1, 2\ y)) - for upper-left corner, 
x=2k-2q+2 y=l 

2k 

L n(Hl, G(x, y, 2\ 2k)) - for upper-right corner, 



2q-1 2k 

nt2q - L L n(Hl, G(l, y, x, 2k)) - for lower-right corner, 
x=l y=2k-2q+2 

2q-12q-1 
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Nf:, 2q = L L 1 - for the number of incomplete rectangular subgrids in a corner. 
x=l y=l 

These four summations involve rectangular subgrids contained in (2q - 1) x (2q - 1) 

corners. Note that 0%\q = 0%42q and 0%\q = 0%32q because of the left-right symmetry 
' ' ' ' 

property of Hf. As suggested by Remark 5.1, we zoom in on the 2q x 2q H;-structural 

corners, and consider the following system of summations n:,2q = (0:~2q, n;~2q): 

2q 2q 
-c1 nq,2q LL n(H;, G(l, 1, x, y)) - for lower(-left) corner, 

x=l y=l 

2q 2q 

(= LL n(H;, G(l, y, x, 2q))) - for lower(-right) corner, 
x=l y=l 

2q 2q 
-c2 nq,2q - LL n(H;, G(x, 1, 2q, y)) - for upper(-left) corner, 

x=l y=l 

2q 2q 

(= LL n(H;, G(x, y, 2q, 2q))) - for upper(-right) corner, 
x=l y=l 

2q 2q 

Iv;,2q LL 1 - for the number of rectangular subgrids in a 2q x 2q corner. 
x=l y=l 

Thus far, we learn that the system of recurrences for nk,2q can be defined and 

solved via the prerequisite system nk,2q, which is related to the system 0:,2q ( see 

Lemma 5.3 below). The system n:,2q, which involves subgrids (with both side

lengths at most 2q) of a canonical H;, represents the basis of the recursive de

compositions (in k to q) of nk,2q and nk,2q. Similar to the reduction of nk,2q to 

nk,2q, we develop a system of recurrences (in q) for 0:,2q via a prerequisite system, 

as demonstrated in the following example. Consider a recursive decomposition of 

n:~2q = E;:1 E!:1 n(H;, G(l, 1, x, y)) into four parts, based upon the overlapping 

scenario of the rectangular subgrid G(l, 1, x, y) with the four quadrants of a canonical 

H; (see Figure 5.5). 

Case 1: G(l, 1, x, y) is contained in Q1(H;) (see Figure 5.5(a)). This part is 
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(a) (b) (c) (d) 

Figure 5.5: Four overlapping scenarios when decomposing 0:~2q in a canonical H;= 
(a) contained in Q1(H;); (b) and (d) overlapping with exactly two quadrants; (c) 
overlapping with all quadrants. 

reduced to n:~1,2q-1 after (-~)-rotating and then left-right reflecting Q1(H;) into a 

canonical HJ_1 and all numbers of cuts on connecting edge (Q1(H;), Q2(H;)) that 

are caused by the top (horizontal) side of G. 

Case 2: G(l, 1, x, y) overlaps with exactly Q1(H;) and Q2(H;) (see Figure 5.5(b)). 

This part is reduced to 0:~1,2q-1 and all numbers of cuts on horizontal edge within 

Q1(H;) and on connecting edge (Q2 (H;), Q3 (H;)) that are caused by the right (ver

tical) side of G. 

Case 3: G(l, 1, x, y) overlaps with exactly Q1(H;) and Q4(H;) (see Figure 5.5(d)). 

This part is reduced to n:\,2q-1 after ( +~)-rotating and then left-right reflecting 

Q4(H;) into a canonical HJ_1 and all numbers of cuts on vertical edges within Q1 (H;) 

and on connecting edges (Q1(H;),Q2(H;)) and (Q3 (H;),Q4 (H;)) that are caused 

by the top (horizontal) side of G. 

Case 4: G(l, 1, x, y) overlaps with exactly all the quadrants (see Figure 5.5(c)). 

This part is reduced to 0:~1,2q-1 and all numbers of cuts on vertical edges within 

Q2(H;) and horizontal edges within Q4(H;) that are caused by the top (horizontal) 

and right (vertical), respectively, sides of G. 

The recursive decompositions of n:~2q, and 0:~2q lead us to consider a prerequisite 

system of summations II9 = (IT;, rr;) in a general context of a canonical H;= 
2q 

IT; = I)i(H;, G(l, 1, x, 2q)) - number of vertical edges (edges cut by 
x=l 

top (horizontal) sides of G that covers lower part of H;) 
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2q 

rr; L n(H;, G(l, 1, 2q, y)) - number of horizontal edges (edges cut by 
y=l . 

right (vertical) sides of G that covers left part of H;) 

We develop and solve a system of recurrences for IIq and reverse the sequence of 

reductions to obtain the closed-form solutions for nk,2q, which are summarized in the 

following four lemmas. 

Lemma 5 .1 For a canonical H;, 

{ = -h 
if q > 1 rr 2Ilq-l + 2Ilq-l + 2 q 

2 if q = 1 

{ = -h 
if q > 1 -h 2Ilq-1 + 2Ilq-1 + 1 IIq 

1 if q = 1 

Proof. For~' the number of edge cuts by top (horizontal) sides of G can be 

computed from cuts within the four quadrants and cuts on the two connecting edges 

2q 

~ = L n(H;, G(l, 1, x, 2q)) 
x=l 

2q-l 

L n(H;, G(l, 1, x, 2q)) (cuts on vertical edge within Q1(H;), Q4(H;) 
x=l 

plus cuts on two connecti:0:g edges when x = 2q-l) 
2q 

+ L n(H;, G(l, 1, x, 2q)) (cuts on vertical edges within 
x=2q-1+1 

2q-l 

(L n(Q1(H;), G(l, 1, x, 2q-1)) (cuts on vertical edges within Q1(H;)) 
x=l 

2q-l 

+ L n(Q4(H;), G(l, 2q-1 + 1, x, 2q)) 
x=l 

(cuts on vertical edges within Q4 (H;)) 

+ 2) (cuts on connecting edges (Q1 (H;), Q2(H;)), (Q3 (H;), Q4(H;)) 

when x = 2q-l) 
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2q 

+( L n(Q2(H;), G(2q-1 + 1, 1, x, 2q-1)) 

( cuts on vertical edges within Q2 ( H;)) 
2q 

+ . L n(Q3(H;), G(2q-1 + 1, 2q-1 + 1, x, 2q))) 
x=2q-1+1 

(cuts on vertical edges within Q3(H;)) 
2q-l 

- (L n(H;_1, G(l, 1, 2q-1, y)) (after (-i )-rotating and left-right 
y=l 

reflecting Q1(H;) into canonical H;_1) 

2q-l 

+ L n(H;_1, G(l, 1, 2q-1, y)) 
y=l 

7r 
(after ( + 2 )-rotating and left-right 

reflecting Q4(H;) into canonical H;_1) 

+ 2) 
2q-l 

+(L n(H;_i, G(l, 1, x, 2q-1)) (Q2(H;): a canonicalH;_1) 

x=l 

x=l 
-h-h == = -h 

- (IIq-1 + rrq-1 + 2) + (IIq-1 + rrq-1) = 2IIq-1 + 2IIq-1 + 2. 

The proof of rr: is similar to that of ~. I 

The closed-form solutions for IIq are employed to establish a system of recurrences 

for n;,2q. 

Lemma 5.2 For a canonical HJ, 

{ 

nCl ~2 1 =.I 1 -h 
3Hq-i,2q-l + Hq-i,2q-l + 3. 2q- . rrq-l + 2q- . rrq-l 

- + 3 · 2q-l + 1 
4 

{ 
n;=-1,2q-1 + 3n;~1,2q-l + 2q-1 · ~-1 + 3 . 2q-1 . rr:_1 

- + 3 · 2q-l + 2 
5 

if q > 1, 
if q = 1; 

if q > 1, 
if q = 1. 

Proof. As in Figure 5.5 and the case discussion for n~~2q, we can split n~~2q into 
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four parts. Thus, 

2q 2q 

n:~2q =LL n(H;, G(l, 1, x, y)) 
x=l y=l 

2q-l 2q-l 

LL n(H;, G(l, 1, x, y)) (Figure 5.5(a)) 
x=l y=l 

2q 2q-l 

+ L Lfi(H;,G(l,1,x,y)) (Figure5.5(b)) 

2q 

L n(H;, G(l, 1, x, y)) (Figure 5.5(c)) 

2q 

L n(H;, G(l, 1, x, y)) (Figure 5.5( d)) 

2q-l 2q-l 

- (L L n(Q1(H;), G(l, 1, x, y)) (cuts within Q1(H;)) 
x=l y=l 

2q-l 2q-l 

+ L L 1) (cuts on connecting edge (Q1(H;), Q2(H;))) 

2q-l 

L n(Q2(H;), G(2q-1 + 1, 1, x, y)) (cuts within Q2(H;)) 

2q 2q-l 

+ L L n(Q1(H;), G(l, 1, 2q-l, y)) (cuts within Q1(H;) 

by vertical side of G) . 

(cuts on connecting edge (Q2(H;), Q3(H;))) 

2q 

L n(Q3(H;), G(2q-1 + 1, 2q-1 + 1, x, y)) 

(cuts within Q3 (H;)) 
2q-l 2q 

+ L L n(Q2(H;), G(2q-l + 1, 1, x, 2q-1)) (cuts within Q2(H;) 

by horizontal side of G) 
2q 
L n(Q4(H;),G(1,2q-1 + 1,2q-1,y))) 



( cuts within Q4(H;) by vertical side of G) 
2q-l 2q 

+(L L n(Q4 (H;), G(l, 2q-l + 1, x, y)) (cuts within Q4 (H;)) 

2q-l 2q 

+ L L n(Q1(H;), G(l, 1, x, 2q-1)) (cuts within Q1(H;) 
x=l y=2q-1+1 

by horizontal side of G) 
2q-l 2q 

+ L L · 1 ( cuts on connecting edge ( Q1 ( H;), Q2 ( H;))) 

2q-l 2q 

+ L L 1) (cuts on connecting edge (Q3(H;), Q4 (H;))) 

7r 
(after (-2) - rotating (and left-right 

x=l y=l 

reflecting) Q1(H;) into a canonical H;_1) 

+ (2q-l)) 

x=l y=l 

7r . 
( after ( - 2) - rotatmg ( and 

x=l y=l 

left-right reflecting) Q1 (H;) into a canonical H;_1) 

+(L L n(H;_1, G(l, 1, x, y)) (Q3(H;) a canonical H;_1) 

x=l y=l 

+LL n(H;_1, G(l, 1, x, 2q-1)) (Q2(H;): a canonical H;_1) 

x=l y=l 

2q-l 2q-l 

+LL n(H;_1, G(l, 1, x, 2q-1))) (after ( +~) - rotating (and 
x=l y=l 

left-right reflecting) Q4(H;) into a canonical H;_1) 

2q-l 2q-l 

+(I: L n(H;_1, G(l, 1, x, y)) 
7r 

(after ( +2) - rotating (and left-right 
x=l y=l 

reflecting) Q4 (H;) into a canonical H;_1 ) 

132 
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2q-l 2q-l 

+LL n(H;_1 , G(l, 1, 2q-l, y)) (after (-i) - rotating (and 
x=l y=l 

left-right reflecting) Q1(H;) into a canonical H;_1) 

+ (2q-l) + 1) 

(0:~1.2q-l + 2q-l) 

+(fr1 - + Ii · 2q-l + 2q-l) q-l,2q 1 q-1 

+(n:~1,2q-l + rr:-1 · 2q-l + rr:-1 . 2q-1) 

( nc2 ITh 2q-l 2q-l 1) 
+ Hq-l,2q-l + q-1. + + 

3~1 nC2 3 2q-l =rr 2q-l rrh 3 2q-l 1 
- Hq-l,2q-l + Hq-l,2q-1 + • • q-1 + • q-1 + • + . 

The proof for 0:~2q is similar to this one. I 

The closed-form solutions for 0:.2q and ITq are employed to obtain exact formulas 

for nk 2q· 
' 

Lemma 5.3 For a canonical Hi structured as an HLq-curve interconnecting 22(k-q) 

H;-subcurves, 

nc1 nCl ITh =rr 
~Gk,2q - ~Gq,2q - q - q, 

nc2 nC2 ITh =rr 
~Gk,2q ~Gq,2q - q - q' 

Proof. By the definition, we have 

2q-12q-1 

ni~2q = L L n(Hi, G(1, 1, x, y)) 
x=l y=l 

2q-1 2q 2q-1 2q 

- LL n(Hi, G(l, 1,x,y))- LL n(Ht G(l, 1,x,y)) 
x=l y=l 

~ ~ ~ ~ 

- (L L n(Hi, G(l, 1, x, y)) - LL n(Hi, G(l, 1, x, y))) 
x=l y=l 

2q 2q 2q 2q 

-(L L n(Hi, G(l, 1, x, y)) - L L n(Ht G(l, 1, x, y))) 
x=l y=2q 

-c1 -h = 
Oq,2q - ITq - ITq. 
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The proof of n%~2q is similar to this one. I 

The exact formulas for nk 2q are employed to establish a system of recurrences 
' 

Lemma 5.4 For a canonical Hl structured as an HLq-curve interconnecting 22(k-q) 

H;-subcurves, 

Proof. 

if k > q, 

if k = q; 

Similar to the proof of Lemma 5.3, from the definition, we have (see 

Figure 5.3) 

2k-2q+1 2q-1 

nf.2q = L L n(Hl, G(x, 1, x + 2q - 1, y)) 
x=l y=l 

2k-l_2q+12q-l 

L L n( Ht G( x, 1, x + 2q - 1, y)) 
x=l y=l 

2q-1 

+ L n(Ht G(x, 1, x + 2q - 1, y)) (G across Q1(Hl), Q2(Hl)) 

2k-2q+1 2q-1 

+ L L n(Hl, G(x, 1, x + 2q - 1, y)) (Gin Q2(Hl)) 

2k-l_2q+12q-l 

- ( L Ln(Q1(Hl),G(x,l,x+2q-l,y)) (cutswithinQ1(Hl)) 
x=l y=l 

2k-l_2q+1 2q-1 

+ L L l) (cuts on connecting edge (Q1(H;), Q2(H;))) 

2q-1 

L n(Q1(Hl), G(x, 1, 2k-l, y)) (zooming in Q1(Hl)) 

2q-1 

+ L n(Q2(Hl), G(2k-1 + 1, 1, x + 2q - 1, y))) 



(zooming in Q2(Hf)) 
2k-2q+1 2q-1 

+( L L n(Q2(Hf), G(x, 1, x + 2q - 1,y)) (cuts within Q2(Hl)) 

( 

2k-1+1 2q-1 
+ L L 1) (cuts on connecting edge (Q1(H;), Q2 (H;))) 

2k-l_2q+12q-l 
L L n(HL1, G(x, 1, x + 2q - 1, y)) (after (-i )-rotating and 
x=l y=l 

left-right reflecting Q 1 ( Hl) into a canonical HL 1) 

+ (2q - 1)) 

n(HL1, G(l, y, x, 2k-1)) (after (-i )-rotating and 
x=l y=2k-1_2q+2 

left-right reflecting Q 1 ( Hl) into a canonical HL 1) 

2q-12q-1 
+LL n(Q2(Hl), G(l, 1, x, y))) (Q2(Hl): a canonical HL1) 

x=l y=l 
2k-l_2q+12q-l 
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+( L L n(HL1, G(x, 1, x + 2q - 1, y)) (Q2(Hf): a canonical HL1) 
x=l y=l 

+ (2q - 1)) 

(Of_12q + (2q - 1)) 
' 

+(0%~1,2q + 0%=-1,2q) (0%~1,2q = 0%=-1,2q) 

+(nf_1,2q + (2q - 1)) 

- Of_12q + Of_12q + 20%~12q + 2(2q - 1). 
' ' ' 

For Of_12q and OL1 2q, the proofs are similar to this one. 
' ' 

I 

We obtain the closed-form solutions for Ok,2q by using the mathematical software 

Maple. 

5.2.2 Query Subgrids Overlapping with All Quadrants 

For a 2q x 2q query subgrid G that overlaps four quadrants around the center of 

Hl, when zooming in on the incomplete rectangular subgrid G n G1 (with both 
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side-lengths at most 2q - 1), where G1 denotes the subspace of Q1(Hl), we reduce 

Lall cnc1 n(Hl, G n G1) to r2%~1,2q(= r2%~1,2q) after (-~)-rotating and left-right re

flecting Q1(Hl) into a canonical Hf-1. Similar consideration leads to reductions 

of Lall enc' n(Hf, G n G') to rl%':_12q(= D%~12q), r2%~12q and r2%~12q when G n G' 
' ' ' ' 

denotes the subspace for G overlapping Q2 (Hf), Q3 ( Hl), or Q3 ( Hl), respectively: 

Thus, the summation of numbers of edge cuts for all 2q x 2q query subgrids G 

that overlap all four quadrants is 

5.2.3 The Big Picture: Computing Eg(Hl) 

The results in the previous three subsections yield Ek,q(Hf). Hence, we have the 

following lemma for Eq{Hf). 

Lemma 5.5 For a canonical Hf, the recurrence for total number of cuts on edges 

by all 2q x 2q subgrids G: 

4Eq(HL1) + (nf_12q + nf_12q + (2q - 1)) 
L L' ' + (nk-12q + nk-12q) 
L ' B ' + (nk-12q + nk-12q + (2q - 1)) 

+ (nL1'2q + nL1'2q) 
+ (20%~12q + 20%~12q) if k > q, ' , 

2 if k = q. 

Proof. Similar to the proofs of Lemmas 5.1 to 5.4. 

Case 1: G overlaps with exactly Q1(Hl) and Q2(Hf). This part is reduced to 

nf_12q(= nf_12q) (cuts on Q1(Hl)), nf_12q (cuts on Q2(Hf)), and 2q - 1 cuts on , , , 

the connecting edge (Q2(Hf), Q3(Hl)). 

Case 2: G overlaps with exactly Q2 (Hl) and Qa.(Hf). This part is reduced to 

nf-1,2q(= nf_1,2q) (cuts on Q2(Hl)), and nL1,2q (cuts on Q3(Hf)). 

Case 3: G overlaps with exactly Q3(Hl) and Q4(Hf). This part is reduced to 

nf_12q (cuts on Q3(Hf)), nf_12q (cuts on Q4(Hf)), and 2q-1 cuts on the connecting , , 

edge (Q2(Hf), Q3 (Hl)). 
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Case 4: G overlaps with exactly Q1(HD and Q4(Hf). This part is reduced to 

nr_12q (cuts on Q1(Hf)), and nr_12q (cuts on Q4(HD). , , 

Case 5: G overlaps with exactly all four quadrants. This part is reduced to 

0%:.12q(= 0%~12q) (cuts on Q1(Hf)), 0%~12q(= 0%~12q) (cuts on Q2(HD), 0%~12q 
' ' ' ' ' 

(cuts on Q3(HD),and 0%~12q (cuts on Q4(Hf)). , 

Combining all the five cases, complete the recurrence. 

For the case of k = q, there are two cuts that are the edge cut between entry grid 

point and other curve, and the edge cut between exit grid point and other curve. I 

Therefore, the exact formula for Eg(Hf) is: 

The summation of all numbers of clusters over all identically shaped 2q x 2q query 

subgrids of an Hl-structural grid space [2k]2 is 

s (H2) - Eq(HD 
k,2q k - 2 . 

The mean number of cluster within a subspace of size 2q x 2q for Hf is 

Thus, the exact formula for the mean number of cluster within a subspace 2q x 2q 

for Hf is corollarily derived. 

Theorem 5.1 The mean number of cluster over all identical subspaces 2q x 2q for 

Hf is 
22k+q+l - 2k+2q+2 + 2k+q+l + 2k-q+l + 23q+l - 22q+l 

2(2k - 2q + 1)2 

5.3 Analytical Study of Number of Clusters for z-Order Curve 

With respect to the canonical orientation of Zl shown in Figure 2.3(a), we apply 

the same approach and notations as in previous section to derive the exact formula 

for Sk,2q ( ZD, which is the summation of all numbers of clusters over all identically 

shaped 2q x 2q query subgrids of an Zl-structural grid space [2k]2. 
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Like the approach in previous section, we compute the summation of all num

bers of edge cuts over all identically shaped 2q x 2q subgrids G by the recursive 

decomposition of Zf 

where C:k,q{ Zl) denotes the summation of all edge cuts over all 2q x 2q query subgrids, 

each of which overlaps with more than one quadrant ( that is, two or four). These 

query subgrids are contained in the boundary regions of neighboring quadrants. 

We set up the systems for Eq(Zf) similar to that for Eq{Hl) in previous section. 

5.3.1 En(Zl, G) over Subgrids G Overlapping with Two Quadrants 

Consider an arbitrary 2q x 2q query subgrid G that exactly overlaps two quadrant 

Qi(Zl) and Qi(Zl), where (i, j) E {(1, 2), (1, 3), (2, 4), (3, 4)}. The side-length is 

from 1 to 2q - 1 for the side across two quadrants. Since all the quadrants are 

isomorphic to a canonical ZL1 , we consider the following system of summations 

nk,2q = ( nf,2q, nf.2q, n~2q, nr.2q) in a general context of a canonical zi: 

2k-2q+12q-l 

nf,2q = L L n(Zl, G(x~ 1, x + 2q - 1, y)) - for left boundary 
x=l y=l 

(see Figure 5.6(a)), 
2k 

L n(Zl, G(x, y, x + 2q - 1, 2k)) - for right boundary, 
x=l y=2k-2q+2 

2q-12k-2q+1 

nf,2q - L L n(Zt G(l, y, x, y + 2q - 1)) - for bottom boundary, 
x=l y=l 

2k 2k-2q+1 

L L n(Zt G(x, y, 2\ y + 2q - 1)) - for top boundary, and 

2k-2q+12q-l 

Nf,2q - L L 1 - for the number of rectangular subgrids 
x=l y=l 

in a boundary for nk,2q. 

We will establish a system of recurrences (ink) for nk,2q (see Lemma 5.9 below). 

Note, nf 2q = nf 2q and nf 2q = nr 2q because of the property of symmetry for Zf. 
, ' ' ' 
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Figure 5.6: (a) nf 2q for a canonical Zf; (b) its recursive decomposition. , 

Figure 5.7: The four (2q - 1) x (2q - 1) corners of a canonical Zf 
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The recursive decompositions of all four parts in nf 2q, nf 2q, nf 2q, and nf 2q 
' ' , ' 

require a prerequisite system of summations D,k 2q = (D.%12q, D.%\q, D.%32q, D.%\q) in a 
' ' ' ' ' 

more general context of a canonical Z~ (see Figure 5.7): 

2q-12q-1 

D.%~2q L L n(Zt G(l, 1, x, y)) - for lower-left corner, 
x=l y=l 

2k 2q-1 

D.%~2q - L L n(Zl, G(x, 1, 2\ y)) - for upper-left corner, 
x=2k-2q+2 y=l 

n(Zl, G(l, y, x, 2k)) - for lower-right corner, 

2k 

L n(Zt G(x, y, 2\ 2k)) - for upper-right corner, 
x=2k-2q+2 y=2k-2q+2 

2q-12q-1 

N{,2q - LL 1 - for the number of incomplete rectangular subgrids in a corner. 
x=l y=l 

compute nk,2q, we set up the following system of summations ~,2q = (~~2q, ~~2q): 

-c1 
nq,2q -

(= 

-c2 
nq,2q -

(= 

N:,2q -

2q 2q 

LL n(z;, G(l, 1, x, y)) - for lower-left corner, 
x=l y=l 

2q 2q 

LL n(Z;, G(x, y, 2q, 2q))) - for upper-right corner, 
x=l y=l 

2q 2q 

LL n(Z;, G(x, 1, 2q, y)) - for upper-left corner, 
x=l y=l 

2q 2q 

LL n(z;, G(l, y, x, 2q))) - for lower-right corner, 
x=l y=l 

2q 2q 

L L 1 - for the number of rectangular subgrids in a 2q x 2q corner. 
x=l y=l 

Similar to the reduction of nk,2q to nk,2q, we develop a system of recurrences (in 
-c - =-h 

q) for nq,2q via a prerequisite system IIq = (IIq, IIq). 

This prerequisite system of summations in a general context of a canonical z;: 
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(•) (b) (c) (d) 

Figure 5.8: Four overlapping scenarios when decomposing n;\q in a canonical z;: 
(a) contained in Q1(Z;); (b) and (d) overlapping with exactly two quadrants; (c) 
overlapping with all quadrants. 

2q 

rr: L n(Zl, G(l, 1, x, 2q)) - number of edge cuts by horizontal lines, and 
x=l 

2q 

rr; - L n(Z2, G(l, 1, 2q, y)) - number of edge cuts by vertical lines. 
y=l 

We develop and solve a system of recurrences for IIq and reverse the sequence of 

reductions to obtain the closed-form solutions for Dk,2q, which are summarized in the 

following four lemmas. 

Lemma 5.6 For a canonical z;, 
ff _ { 43rr:-1 + 2q + 1 if q > 1 

q ifq=l 

-h 
II = q 

{ tZ-, + 2(2•-1 - 1) + 1 if q > 1 
if q = 1 

Proof. The number of edges that are cut by horizontal lines can be computed from 

the edge cuts within four quadrants plus cuts on three connecting edges ( Q1 ( z;), Q2 ( Z;)), 

(Q3(Z;), Q4(Z;)), and (Q2(Z;), Q3(Z;)). 

2q 

rr: = L n(z;, G(l, 1, x, 2q)) 
x=l 

x=l 

plus the cuts on connecting edges) 
2q 

+ L n(Z;, G(l, 1, x, 2q)) (cuts within Q2(Z;), Q4(Z;) 

plus the cuts on connecting edge) 



2q-l 

(L n( Q1 (Z;), G(l, 1, x, 2q-l )) ( cuts within Q1 (Z;)) 
x=l 

2q-l 

+ L n(Q3(Z;), G(l, 2q-l + 1, x, 2q)) (cuts within Q3 (Z;)) 
x=l 

+ L 1 (cuts on connecting edge (Q1 (Z;), Q2 (Z;))) 
x=2q-l 

2q-l 

+ L 1 (cuts on connecting edge (Q2(Z;), Q3 (Z;))) 
x=l 

+ L 1) (cuts on connecting edge (Q3 (Z;), Q4 (Z;))) 

2q 

+( L n(Q2(Z;), G(2q-l + 1, 1, x, 2q-1)) (cuts within Q2(Z;)) 
x=2q- 1+1 

2q 

+ L n(Q4(Z;), G(2q-1 + 1, 2q-1 + 1, x, 2q)) 

(cuts within Q4(Z;)) 
29-1 

+ L 1) (cuts on connecting edges (Q2(Z;), Q3 (Z;))) 

- (L n(z;_i, G(l, 1, x, 2q-1))) (Q1 (Z;): a conanical z;_1) 

x=l 
2q-l 

+(L n(z;_1 , G(l, 1, x, 2q-1)) (Q3(Z;): a conanical z;_1) 

x=l 
+ 1 + 2q-l + 1) 

+(L n(Z;_1, G(l, 1, x, 2q-1))) (Q2(Z;): a conanical z;_1) 

x=l 
2q-l 

+(L n(Z;_1, G(l, 1, x, 2q-1)) (Q4 (Z;): a conanical z;_1) 

x=l 
+ 2q-l - 1) 
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- ~-1 + (~-1 + 2q-l + 2) + ~-1 + (~-1 + 2q-l - 1) = 4. ~-1 + 2q + 1. 

The proof of II~ is similar to that of ~. I 
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The closed-form solutions for IIq are employed to establish a system of recurrences 

for n;,2q· 

Lemma 5.7 For a canonical z;, 
{ 

=1 = -h 2 
4nq-i,2q-l + 2q . rrq-l + 2q . rrq-l + 2 q - 2q + 3 if q > 1, 
5 if q = 1; 

{ 4 ,..c2 2q =rr 2q IIh 2 2q 2q :.r 1 
Hq-1,2q-l + . q-1 + • q-1 + + iJ q > l 

6 if q = 1. 

Proof. As in Figure 5.8 and the case discussion for n~~2q, we can split n~~2q into 

four parts: 
2q 2q 

n;~2q = LLn(Z;,G(l,1,x,y)) 
x=l y=l 

- LL n(Z;, G(l, 1, x, y)) (Figure 5.8(a)) 
x=l y=l 

2q 2q-l 

+ L L n(Z;, G(l, 1, x, y)) (Figure 5.8(b)) 
x=2q-1+1 y=l 

2q 2q 

+ L L n(Z;, G(l, 1, x, y)) (Figure 5.8(c)) 

2q-l 2q 

+ L L n(Z;, G(l, 1, x, y)) (Figure 5.8(d)) 

- (L L n(Q1(Z;), G(l, 1, x, y)) (cuts within Q1 (Z;)) 
x=l y=l 

2q-l 2q-l 

+ L L 1) (cut on connecting edge (Q1(Z;), Q2 (Z;))) 

2q-l 

L n(Q2(Z;), G(l, 1, x, y)) (cuts within Q2(Z;)) 

2q 2q-l 

+ L L n(Q1(Z;), G(l, 1, 2q-I, y)) (cuts within Q1(Z;) 
x=2q-I+l y=l 

by vertical side of G) 
2q 2q-l_l 

+ L L 1 (cuts on connecting edge (Q 1 (Z;), Q2 (Z;))) 
;=2q-I+l y=l 
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2q 2q-l 

+ L L 1) (cut on connecting edge (Q2 (Z;), Q3 (Z;))) 
x=2q y=2q-l 

2q 2q 

+( L L n(Q4(Z;), G(l, 1, x, y)) (cuts within Q4 (Z;)) 
x=2q-l+1 y=2q- 1+1 

2q 2q 

+ L L n(Q2(Z;), G(l, 1, x, 2q-1)) (cuts within Q2 (Z;) 

by horizontal side of G) 
2q 

L n(Q3(Z;), G(l, 1, 2q-1, y)) (cuts within Q3(Z;) 

by vertical side of G) 
2q 

L 1 ( cuts on connecting edge ( Q2 ( z;), Q3 ( z;))) 

2q-1 

L 1) (cuts on connecting edge (Q3(Z;), Q4 (Z;))) 

2q 

L n(Q3(Z;),G(l,l,x,y)) (cuts within Q3(Z;)) 

2q 2q-l 

+ L L n(Q1(Z;), G(l, 1, x, 2q-1)) (cuts within Q1(Z;) 
x=2q-1+1 y=l 

by horizontal side of G) 
2q-l 2q-l 

+ L L 1 (cuts on connecting edge (Q1(Z;), Q2(Z;))) 

2q 2q-l 

+ L L 1 (cuts on connecting edge (Q2 (Z;), Q3(Z;))) 

2q-l 2q 

+ L L l) (cut on connecting edge (Q3(Z;), Q4(Z;))) 

2q-l 2q-l 

- (L L n(Z;_1, G(l, 1, x, y)) (Q1 (Z;): a canonical z;_1) 

x=l y=l 

+ 1) 
2q-l 2q-l 

+(I: L n(Z;_1, G(l, 1, x, y)) (Q2(Z;): a canonical z;_1) 

x=l y=l 
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2q-l 

+ (2q-1) L n(Z;, G(l, 1, 2q-1,y)) (Q1(Z;): a canonical z;_1) 
y=l 

+ (2q-1(2q-l - 1)) 

+ 1) 
2g-l 2q-l 

+(L L n(Z;_1, G(l, 1, x, y))(Q4(Z;): a canonical z;_1) 

x=l y=l 
2q-l 

+ (2q-1) L n(Z;_1, G(l, 1, x, 2q-1)) (Q2(Z;): a canonical z;_1) 
x=l 

2q 

+ (2q-1) L n(Z;_1, G(l, 1, 2q-1, y)) (Q3(Z;): a canonical z;_1) 

+ (2q-1(2q-l - 1)) 

+ (2q-1(2q-l - 1))) 
2g-l 2q-l 

+(I: L n(Z;_1, G(l, 1, x, y)) (Q3(Z;): a canonical z;_1) 

x=l y=l 
2g-l 2g-l 

+LL n(Z;_1, G(l, 1, x, 2q-1)) (Q1(Z;): a canonical z;_1) 
x=l y=l 

+ 2q-l + (2q-l )2 + 1) 

- (0:~1,2g-l + 1) 

+("[r1 _ + 2q-l . IIh + 2q-1(2q-l - 1) + 1) q-1,2q 1 q-1 

+("fr1 + 2q-l . IT' + 2q-l. IIh + 2q-1(2q-l - 1) + 2q-1(2q-l - 1)) q-l,2q-l q-1 q-1 

+(n:~1,2g-1 + 2q-1 . r=r:-1 + 2q-1 + (2q-1 )2 + 1) 

47¥1 2q =rr 2q IIh 22q 2q 3 - Hq-1,2g-1 + . q-1 + • q-1 + - + . 

The proof for 0:~2q is similar to this one. I 

The closed-form solutions for n;,2g and IIq are employed to obtain exact formulas 

for nk 2q• 
' 

Lemma 5.8 For a canonical Zl structured as an ZLq-curve interconnecting 22(k-q) 
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z;-subcurves, 

nci ('vl rrh =rr ~Lk,2q ~Lq,2q - q - q, 

r)C2 nC2 rrh =rr Hk,2q Hq,2q - q - q' 

Proof. By the definition, we have 

2q-12q-1 

0%~2g =LL n(Zl,G(l, 1,x,y)) 
x=l y=l 

2q-1 2g 2g-1 2g 

- L Ln(Zl,G(l, 1,x,y))- LL n(Zi,G(l, 1,x,y)) 
x=l y=l 

~ ~ ~ ~ 

- (L L n(Z2, G(l, 1, x, y)) - LL n(Z2, G(l, 1, x, y))) 
x=l y=l 

~ ~ ~ ~ 

-(L L n(Zi, G(l, 1, x, y)) - L L n(Zi, G(l, 1, x, y))) 
x=l y=2q x=2q y=2q 

=1 -h =V 

- nq,2q - IIq - IIq. 

The proof of 0%2 2g is similar to this one. I 
' 

The exact formulas for nk 2q are employed to establish a system of recurrences 
' 

for nk 2q, 
' 

Lemma 5.9 For a canonical zi structured as an Zf_q-curve interconnecting 22(k-q) 

ZJ-subcurves, 

{ 
2~L1,2q + n%~1,2g + n%~1,2g + (2q - 1)2 + (2q - 1) 
ITq 

{ 
~f-1,2g + 0%~1.2q + 0%~1,2q + (2q - 1)2 + (2q - 1) 
ITq 

if k > q, 

if k = q; 

if k > q, 
if k = q. 

Proof. Similar to the proof of Lemma 5.8, from the definition, we have (see 

Figure 5.6) 

2k-2q+12g-l 

nf.2q = L L n(zi, G(x, 1, x + 2q - 1, y)) 
x=l y=l 



2k-l_2q+12q-l 

L L n(Zl, G(x, 1, x + 2q - 1, y)) (in Q1 (Zl)) 
x=l y=l 

2q-1 
L n(Zf, G(x, 1, x + 2q - 1, y)) (across Q1(Zl), Q2(ZD) 

x=2k-1_2q+2 y=l 
2k-2q+1 2q-1 

+ L L n(Zt G(x, 1, x + 2q - 1, y)) (in Q2 (Zl)) 

2k-l_2q+12q-l 
( L L n(Q1(Zf), G(x, 1, x + 2q - 1, y))) (cuts within Q1(Zl)) 

x=l y=l 
2q-1 
L n(Q1(Zf), G(x, 1, 2k-1 , y)) (zooming in Q1(Zf)) 

2k-l 2q-1 
+ L L n(Q2(Zl), G(2k-1 + 1, 1, x + 2q - 1, y)) 

x=2k--:1-2q+2 y=l 

(zooming in Q2(Zl)) 
2q-1 
L 1) (cuts on connecting edge (Q1(Zl), Q2(Zl))) 

x=2k-1_2q+2 y=l 
2k-2q+1 2q-1 

+( L L n(Q2(Zl), G(x, 1, x + 2q - 1, y)) (cuts within Q2(Z2)) 

2k-l+1 2q-l_1 
L L 1) (cuts on connecting edge (Q1(Z2), Q2(Z2))) 

2k-l_2q+12q-l 
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- ( L L n(ZL1, G(x, 1, x + 2q -1, x))) (Q1(Zl): a canonical ZL1) 
x=l y=l 

2q-1 
L n(ZL1,G(x, l,2k-1,y)) (Q1(Zl): a canonical ZL1) 

2q-12q-1 
+LL n(ZL1, G(l, 1, x, y)) (Q1(Zl): a canonical ZL1) 

x=l y=l 
+ (2q - 1)2) 

2k-l_2q+12q-l 
( L L n(ZL1, G(x, 1, x + 2q - 1, y)) (Q2(Zl): a canonical ZL1) 

x=l y=l 
+ (2q - 1)) 
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nL1,2q 

+(n%~12q + 0%~12q + (2q - 1)2) 
' ' 

+(nL1,2q + (2q - 1)) 

- 2nL1,2q + n%~1.2q + n%~1.2q + (2q - 1)2 + (2q - 1). 

For nf_1 2q , the proof is similar to this one. 
' 

I 

We obtain the closed-form solutions for nk,2q by using the mathematical software 

Maple. 

5.3.2 Query Subgrids Overlapping with All Quadrants 

For a 2q x 2q query subgrid G that overlaps four quadrants around the center of 

zi, when zooming in on the incomplete rectangular subgrid G n G1, where G1 de

notes the subspace of Q1(Zf) (with both side-lengths at most 2q - 1), we reduce 

Lall cnc1 n(zi, G n G1) to 0%~1.2q(= 0%~1.2q). Similar consideration leads to a re

duction of Lall GnG' n(zi, G n G') to 0%~1.2q(= 0%~1.2q), 0%~1.2q and 0%~1.2q when 

G n G' denotes the subspace for G overlapping Q2(Zi), Q3 (Zf), or Q3 (Zl), respec

tively. 

Thus, the summation of numbers of edge cuts for all identically shaped 2q x 2q 

query subgrids G that overlap all four quadrants is 

5.3.3 The Big Picture: Computing Eq(Zf) 

The results in the previous three subsections yield €k,q( zi). Hence, we have the 

following lemma for Eq ( Zf): 

Lemma 5.10 For a canonical zi, the recurrence for total number of cuts on edges 



by all identically shaped 2q x 2q subgrids G: 

4Eq(ZL1) + 2(0f-1 2q + Of-1 2q + 2(2q - 1)) 
+ 2(nf_12q + of12q + 2(2q - 1)) 
+ (20%~1·2q + 20%~12q + 2(2q - 1)2) if k > q + 1, 

' ' 

if k = q+ 1, 

2 if k = q. 

Proof. Fork> q + 1, the proof is similar to the proof of Lemma 5.5: 
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Case 1: G overlaps with exactly Q1 (zn and Q2(zn. This part is reduced to 

OL1,2q(= Of_1,2q) (cuts on Q1(Zl)), Of_1,2q (cuts on Q2(Zl)), 2(2q - 1) cuts on the 

connecting edge (Q1(zn, Q2(Zl)) when subgrids G align left-most and right-most 

side of these two quadrants. 

Case 2: G overlaps with exactly Q2(Zl) and Q4(zn. This part is reduced to 

Of_12q(= Of_12q) (cuts on Q2(zn), Of_12q (cuts on Q4(zn), (2q - 1) cuts on the 
' ' ' 

connecting edge (Q2(Zl), Q3(Zn) when subgrids G align top-most side of these two 

quadrants, and (2q-1) cuts on the connecting edge (Q3 (Zl), Q4(Zl)) when subgrids 

G align bottom-most side of these two quadrants. 

Case 3: G overlaps with exactly Q3(Zn and Q4(Zl). This part is reduced to 

OL1,2q(= Of_1,2q) (cuts on Q3(Zl)), Of_1,2q (cuts on Q4(Zl)), and 2(2q - 1) cuts 

on the connecting edge (Q3 (Zf), Q4(zn) when subgrids G align left-most and right

most side of these two quadrants. 

Case 4: G overlaps with exactly Q1(zn and Q3(Zn. This part is reduced to 

Of_1,2q(= Of_1,2q) (cuts on Q1(zn), Of_1,2q (cuts on Q3(zn), (2q - 1) cuts on the 

connecting edge (Q2(Zf), Q3(Zn) when subgrids G align bottom-most side of these 

two quadrants, and (2q - 1) cuts on the connecting edge (Q1(Zl), Q2(Zl)) when 

sub grids G align top-most side of these two quadrants. 

Case 5: G overlaps with exactly all four quadrants. This part is reduced to 

0%~1,29 (= 0?_1,2q) (cuts on Q1(Zl)), 0%3-.1,29 (= 0%~1.29 ) (cuts on Q2(zn), 0%~1.29 

(cuts on Q3(Zn), 0%~12q (cuts on Q4(Zn), and 2(2q-:- 1)2 cuts on the connecting 
' 
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Combining all the five cases, complete the recurrence for k > q + 1. 

For k = q + 1, there are no cuts on connecting edges in Cases 1 and 3 because the 

connecting edges are inside of all the subspaces that are across exactly two quadrants 

( first and second, or third and fourth quadrants). 

For the case of k = q, there are two cuts that are the edge cut between entry grid 

point and other curve, and the edge cut between exit grid point and other curve. I 

The exact formula for Eq{ Zf) is: 

Eq(zi) = 22k+q+2 _ 22H2 + 3 . 22k-q _ 22k-2q _ 2k+2q+3 + 3 . 2k+q+2 _ 2k+a 

+2k-q+2 + 23q+2 - 22q+3 + 2q+2. 

The summation of all numbers of clusters over all identically shaped 2q x 2q query 

subgrids of an zrstructural grid space [2k]2 is 

S (z2) - Eq(zn 
k,2q k - 2 . 

The mean number of cluster within a subspace 2q x 2q is 

Thus, the exact formula for the mean number of cluster within a subspace 2q x 2q 

for Zf is corollarily derived. 

Theorem 5.2 The mean number of cluster over all identical subspaces 2q x 2q for 

zi is 

(22k+q+2 - 22k+2 + 3. 22k-q + 22k-2q - 2k+2q+3 + 3. 2k+q+2 + 2k+3 

+2k-q+2 + 23q+2 + 22q+3 + 2q+2)/(2(2k - 2q + 1)2). 
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5.4 Comparisons and Validation 

For a space-filling curve Ck indexing the grid space [2k]2, denote by Sk,q( Ck) the 

mean number of clusters over all 2q x 2q subgrids of the Ck-structural grid space. 

The exact formulas for Eq(H'D and Eq(Z'D give the exact formulas for Sk,2q(Hf) 

and Sk,2q ( Z'D. We simplify the exact results asymptotically as follows. For suffi

ciently large k and q with k » q ( typical scenario for range queries), 

With respect to the Sk,q-statistics, the Hilbert curve family clearly performs better 

than the z-order curve family over the considered ranges for k and q. 

5.5 Summary 

In this chapter, the analytical study of the clustering performances of 2-dimensional 

order-.k Hilbert and z-order curve families are based upon the clustering statistics 

Sk,2q - mean number of clusters over all 2q x 2q identically shaped subgrids, respec

tively. By taking advantage of self-similar properties of Hilbert and z-order curve, we 

derive their exact formulas for Sk,2q. The results are same as those derived by Moon, 

Jagadish, Faloutsos, and Saltz [MJFSOl]. The exact results allow us to compare 

their relative performances with respect to this measure. For sufficiently large k and 

q with k » q, Hilbert curve family performs significantly better than z-order curve 

family with respect to Sk,2q. 



CHAPTER VI 

MEASURE BY MEAN INTER-CLUSTER DISTANCE 

In addition to considering the number of clusters to optimize a range query over 

space-filling curves in multi-dimensional databases, the mean inter-cluster distance 

within a subspace is adopted as another measure of performances for space-filling 

indexing methods. This idea is stemmed from Asano, Ranjan, Roos, Welzl, and 

Widmayer [ARR+97]. They consider the problem of minimizing the number of seek 

operations, mainly because there is a tradeoff between seek time to proper block 

(cluster) and latency/transfer time for unnecessary blocks (inter-cluster gap). Thus, 

good bounds on the inter-clustering statistics can translate into good bounds on the 

average tolerance of unnecessary block transfers. 

Similar to Chapter V, we propose a measure by the mean inter-cluster distance 

within a subspace for space-filling curves and use it to compare Hilbert and z-order 

curve families. 

6.1 Approach 

Note that there are two statistics for the mean inter-cluster distance within a sub

space: one is the mean inter-cluster distance over all inter-cluster gaps, the other 

one is the mean total inter-cluster distance over all identically shaped subgrids. The 

derivations for both statistics involve the computation of the total inter-cluster dis

tance over the identically shaped subspaces and the computations of calculates the 

number of inter-cluster gaps and the number of subspaces. 

Within a subspace G, we denote the first entry (lowest-indexed) and last exit 

(highest-indexed) grid points by (Ji(G) and fh(G), the number of clusters and the 

number of grid points inside of G by n(G) and !GI, respectively. The following 
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-- clusters of G 
-------- inter-cluster gaps of G 

H2 
k 

Figure 6.1: An example query subgrid G inducing its first entrance 81(G) and last 
exit 82 ( G), and interleaving clusters and inter-cluster gaps. 

observations helps the derivations of mean inter-cluster distance: 

1. Sum of inter-cluster distances within a subspace G equals to 82 ( G) - 81 ( G) -

IGI + 1. 

2. For a subspace G overlapping with more than one quadrant, 81 ( G) must be 

in the lowest numbered quadrant, and 82(G) must be in the highest numbered 

quadrant. 

3. Number of inter-cluster gaps within a subspace G equals to n( G) - 1 (see 

Figure 6.1). 

With the above observations, we can translate the computation of inter-cluster dis

tances into the computation of the index cumulations of 81 ( G) and 82 ( G), respec

tively, for all identically shaped subspaces G. 

The index-cumulation for 82 ( G) for all identically shaped subspace G is based on 

the construction framework by recursion: 

1. Decompose the index-cumulation into index-cumulations within the four quad

rants and index-cumulation for subspaces G across different quadrants. 

2. Categorize the 82(G) of a subspace across quadrants into: 82 (G) in four corner 

boundaries and four side boundaries that are inter-recurrence related. 

Similarly, we can derive the index-cumulation for all 81(G). 
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6.2 Analytical Study of Inter-Clustering Performances for Hilbert Curve 

With respect to the canonical orientation of H'f shown in Figure 2.6(a), we cover 

the 2-dimensional k-order grid with 2k rows (Rk,I, Rk,2 , ... , Rk,2k), indexed from the 

bottom, and 2k columns (Ck,I, Ck, 2 , ... , Ck, 2k), indexed from the left. We denote: 

1. For a grid point v E [2k]2, its x- and y-coordinate by X ( v) and Y ( v), respec

tively (that is, vis the intersection grid point of the row Rk,X(v) and the column 

Ck,Y(v), 

2. For the grid points v, v' E [2k]2, their index-difference by nk(v, v') (= l(H't)-1(v)

(H'f)-1(v')I), and 

3. For a rectangular query subgrid with its lower-left corner at grid point (x, y) 

and upper-right corner at grid point (x', y') (1 ::; x < x' < 2k and 1 ::; y ::; 

y' ::; 2k) covering U~'=xRk,a n ut=yCk,/3, its set of grid points by Gk(x, y, x', y') 

(= {v E [2k] 2 Ix::; X(v) ::; x' and y::; Y(v) ::; y'}). The size of the query 

subgrid Gk(x, y, x', y') is (x' - x + 1) x (y' - y + 1). 

As suggested in Remark 5.1, we study the inter-clustering performances based upon 

query subgrids of size 2q x 2q. 

For a 2-dimensional order-k Hilbert curve H'f, let Wk,q{H't) denote the summation 

of all inter-cluster distances over all 2q x 2q query subgrids of an H'f-structural grid 

space [2k]2. For a subgrid G, let B1(G) denote the first entrance (the lowest H'f

indexed grid point) into G and B2 (G) denote the last exit (the highest H'f-indexed 

grid point) out of G. Figure 6.1 illustrates an example query subgrid and its induced 

first entrance and last exit, and interleaving clusters and inter-cluster gaps. 

Remark 6.1 Within a query subgrid G (with IGI grid points), the summation of 

all its inter-cluster distances is nk(B1(G), B2(G))- IGI + 1. In developing the support

ing lemmas, we express nk(B1(G), B2 (G)) as nk(B2 (G), v)- nk(B1(G), v) for a suitably 

chosen grid point v. 
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I 
I I 

__ ..,....., 'TJ (1~ 'TJ (,'rn---

~--~·-''\,4~,i_''\,_4_,i~· ---~ Hf 

Figure 6.2: The boundary regions of neighboring quadrants are organized into nine 
d ... t . . ,r:,(l) ,r:,(2) f . - 1 2 3 4 d ,n 

ISJOIIT reg10ns. /'\,i,i mod 4+1' /'\,i,i mod 4+1 or 'l - ' ' ' ' an /'\,. 

Thus, Remark 6.1 reduces the computation of the summation of all inter-cluster dis

tances over all identically shaped subgrids G to the computations of Ea1i a fik(Bj(G), v) 

for j = 1, 2 and a suitably chosen v. 

The recursive decomposition of Hf (see Figure 2.6(b)) gives that 

where ck,q{Hl) denotes the summation of all inter-cluster distances over all 2q x 2q 

query subgrids, each of which overlaps with more than one quadrant ( that is, two 

or four). These query subgrids are contained in the boundary regions of neighboring 

d t h. h b . d . t . d" . . t . ,r, (l) '"(2) qua ran s, w IC can e orgamze m o nme ISJOIIT reg10ns: /'\,i,i mod 4+ 1, J'\,i,i mod 4+ 1 

for i = 1, 2, 3, 4, and R, as shown in Figure 6.2. 

Remark 6.2 For a query subgrid G overlapping with more than one quadrant, (}1 ( G) 

is in the lowest-numbered quadrant, and (}2 ( G) is in the highest-numbered quadrant. 

For a 2q x 2q query subgrid G, G overlaps with: 

1. Exactly Qi(Hl) and Qimod4+1(Hf) if and only if Q ~ R~Ymod4+1 un~~)mod4+1 

for every i E {1, 2, 3, 4}. In this case, B.,,( G) E R~}) mod 4+1 for rJ E {1, 2} by 

Remark 6.2. 

2. Qi(Hl) for all i E {1, 2, 3, 4} if and only if G ~ R. In this case, B1 (G) E Q1 (Hf) 
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(upper-right corner) and fh(G) E Q4 (Hi) (upper-left corner) by Remark 6.2. 

We divide the computation of E:k,q(Hi) into three parts: 

1. E nk(02(G), &1(Hi)) over all 2q x2q query subgrids G ~ ni~) mod4+1 uni~2 mod4+1 

for i E {1, 2, 3, 4}, 

2. E nk(01(G), &1(Hi)) over all 2qx2q query subgrids G ~ n?} mod 4+1 uni~) mod4+1 

for i E {1, 2, 3, 4}, and 

3. the summation of all inter-cluster distances over all 2q x 2q query subgrids 

contained in R. 

We develop combinatorial lemmas in the following three subsections to support the 

computations. 

6.2.1 E nk(02(G), &1(Hl)) over Subgrids G Overlapping with Two Quadrants 

Consider an arbitrary 2q x 2q query subgrid G ~ ni~) mod 4+1 U R~~[ mod 4+1 where 

. i E {1,2,3,4}. Remark 6.2 gives that 02(G) E niJmod 4+1, and we zoom in on 

the "incomplete" rectangular subgrid Gnni~) mod 4+1 (with one side-length at most 

2q -1). Observe that for i = 1, 2, 3, 4, R~~) mod 4+1 aggregates the 2q -1 bottom rows, 

leftmost columns, top rows, and leftmost columns of Q2 (H't), Q3(Hl), Q4 (Hl), and 

Q4 (H't), respectively. Since the quadrants are isomorphic to a canonical HL1 via 

symmetry ( reflection and rotation), we consider the following system of summations 

!tk,2q = (nt2q, !1f2q, nr,2q, !1f,2q) in a general context of a canonical Hf= 

2k-2q+1 2q-1 

nf.2q = L L nk(02(G_k(x, 1, X + 2q ~ 1, y)), &1(Hi)) 
x=l y=l 

- for left boundary (see Figure 6.3(a)), 
2k-2q+1 2k 

nf2q - L L nk(02(Gk(x,y,x+2q-1,2k)),&1(Hi)) 
x=l y=2k-2q+2 

- for right boundary, 
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(a) 

Figure 6.3: (a) Of 2q for a canonical H;; (b) its recursive decomposition. 
' 

2q-12k-2q+1 

of2q L L !ik(82(Gk(1, y, x, y + 2q - 1)), 81(Hl)) 
x=l .Y=l 

- for bottom boundary, 
2k 2k-2q+l 

or,2q L L nk(82(Gk(x, y, 2k, y + 2q - 1)), 81(Hl)) 
x=2k-2q+2 y=l 

- for top boundary, and 
2k-2q+12q-l 

Nf.2q L I:1 
x=l y=l 
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- for the number of incomplete rectangular subgrids in a boundary. 

We will establish a system of recurrences (ink) for Ok,2q (see Lemma 6.4 below). 

The system of recurrence involves another system of summations as prerequisites, as 

demonstrated in the following example. Consider a recursive decomposition of Of 2q, 

' 
illustrated in Figure 6.3(b), into four parts: (1) ot12q, (2) 0%~12q, (3) Of_12q, 

' ' ' 
and (4) adjustments for the previous three parts. The part 0%~12q helps compute 

. ' 

L nk ( 82 ( G), 81 ( H;)) over all incomplete rectangular sub grids G ( with one side-length 

at most 2q - 1) overlapping both Q1(H;) and Q2 (Hf). According to Remark 6.2, 

the computation of this summation is reduced to L nk-l ( 82 ( G), 81 ( HL1)) over all 

incomplete rectangular subgrids G (with both side-lengths at most 2q - 1) in the 

c1-corner (lower-left corner) of a canonical Hf-1 (that is, Q2 (Hf)). Each of the·three 

parts Of_1,2q, 0%~1•2q, and Of_1,2q is defined with respect to 81(HL1) of a canonical 
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2 -st-~: 3 

2q - 1 ! C1 I i I 

Figure 6.4: The four (2q - 1) x (2q - 1) corners of a canonical Hf 
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HL1, we need to adjust each part with distance cumulation between the entry/exit 

of the underlying quadrant and f)i ( Hn. 
The recursive decompositions of all four parts in Of 2q, Of 2q, Of 2q, and nf 2q lead 

' ' ' ' 
us to consider a prerequisite system of summations nk 2q = ( 0%12q, 0%2 2q , 0%3 2q, 0%4 2q) 

' ' ' , ' 

in a more general context of a canonical Hf (see Figure 6.4): 
2q-12q-1 
LL nk(02(Gk(l, 1, x, y)), 81(Hf)) - for lower-left corner, 
x=l y=l 

2k 2q-1 

L L nk(02(Gk(x, 1, 2\ y)), 81(Hf)) - for upper-left corner, 

2k 

L nk(02(Gk(x, y, 2\ 2k)), 81(Hf)) - for upper-right corner, 
x=2k-2q+2 y=2k-2q+2 
2q-1 2k 

0%~2q L L nk(02(Gk(l, y, x, 2k)), 81(Hf)) - for lower-right corner, and 
x=l y=2k-2q+2 
2q-12q-1 

N{2q = L L 1 - for the number of incomplete rectangular subgrids in a corner. 
x=l y=l 

Note that in 0%~2q, 02(Gk(l, y, x, 2k)) = 82(Hf) for all x and y in the summation

index ranges, hence 0%~2q = (2q - 1)2nk(82(Hf), 81(Hf)) = (2q - 1)2(22k - 1). All 

other three summations involve rectangular subgrids contained in (2q -1) x (2q -1) 

corners. As suggested by Remark 5.1, we zoom in on the 2q x 2q HJ-structural 
. . . -c -c1 -c2 -=c:3 

corners, and consider the followmg system of summations nq,2q = (nq,2q, nq,2q, nq,2q): 
2q 2q 

-ci 
nq,2q - LL nq{02(Gq(l, 1, x, y)), 81(H;)) - for lower-left corner, 

x=l y=l 
2q 2q 

-c2 
nq,2q - LL nq(02(Gq(x, 1, 2q, y)), 81(H;)) - for upper-left corner, 

x=l y=l 
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(a) (b) (c) (d) 

Figure 6.5: Four overlapping scenarios when decomposing 0:~2q in a canonical H;: 
(a) contained in Q1(H;); (b) and (d) overlapping with exactly two quadrants; (c) 
overlapping with all quadrants. 

2q 2q 

n;~2q - LL nq(02(Gq(x, y, 2q, 2q)), 81(H;)) - for upper-right corner, and 
x=l y=l 
2q 2q 

xr;,2q = LL 1 - for the number of rectangular subgrids in a 2q X 2q corner. 
x=l y=l 

Thus far, we learn that the system of recurrences for nk,2q can be defined and 

solved via the prerequisite system nk,2q, which is related to the system 0:.2q ( see 

Lemma 6.3 below). The system 0:.2q, which involves subgrids ( with both side

lengths at most 2q) of a canonical H;, represents the basis of the recursive de

compositions (in k to q) of nk,2q and nk 2q. Similar to the. reduction of nk,2q to , 

nk,2q, we develop a system of recurrences (in q) for 0:,2q via a prerequisite sys

tem, as demonstrated in the following example. Consider a recursive decomposi

tion of 0:~2q = E!:1 E!:1 nk ( 02 ( G q( 1, 1, X' y)), 81 ( H;)) into four parts ( together 

with adjustments), based upon the overlapping scenario of the rectangular subgrid 

Gq(l, 1, x, y) with the four quadrants of a canonical H; (see Figure 6.5). 

Case 1: Gq{l, 1, x, y) is contained in Q1(H;) (see Figure 6.5(a)). This part is 

reduced to n;~1•2q-1 after (-~)-rotating and then left-right reflecting Q1(H;) into a 

canonical H;_ 1. 

Case 2: Gq(l, 1, x, y) overlaps with exactly Q1(H;) and Q2(H;) (see Figure 6.5(b)). 

This part is reduced to n;~1•2q-1 (with adjustment of distance cumulation). 

Case 3: Gq(l, 1, x, y) overlaps with exactly Q1(H;) and Q4(H;) (see Figure 6.5(d)). 

This part is reduced to n;~ 1,2q-1 after (+~)-rotating and then left-right reflecting 
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I 

.... : ..... , ..... : . ' ... 
: :~:: . . . . . . ....... ............ .. . . . . . . . . . . 

. I 

(a) (b) (c) 

Figure 6.6: For subgrids overlapping with all quadrants of a canonical H;, their last 
exits are the same. 

Q4(H;) into a canonical H;_1 (with adjustment of distance cumulation). 

Case 4: Gq{l, 1, x, y) overlaps with all quadrants (see Figure 6.5(c)). The over

lapping condition gives that x, y E {2q-l + 1, 2q-l + 2, ... , 2q}. According to Re

mark 6.2, 02(Gq{l, 1, x, y)) E Q4 (H;). Observe that, as shown in Figure 6.6, for 

every y E {2q-l + 1, 2q-l + 2, ... , 2q}, the subgrids Gq{l, 1, x, y) for all x E {2q-l + 
1, 2q-l + 2, ... , 2q} have the same 02(Gq(l, 1, x, y)) (independent of x). 

The recursive decompositions of n:~2g, n:~2q, and 0::2q lead us to consider a pre

requisite system of summations ITq = (rr;, II~) in a general context of a canonical 

H2· q. 

-T 
ITq -

-L 
ITq -

1 

L !iq(02(Gq(x, l, 2\ 2q)), 81(H;))-top to bottom incrementally, and 
x=2q 

2q 

L liq(02(Gq(l, 1, 2q, y)), 81(H;))-left to right incrementally. 
y=l 

We develop and solve a system of recurrences for ITq and reverse the sequence of 

reductions to obtain the closed-form solutions for nk,2q, which are summarized in the 

following four lemmas. Note that we present the systems of recurrences only (which 

are solved by a mathematical and analytical software such as Maple). 

Lemma 6.1 For a canonical H;, 

_ { rr
5 

;_1 + 2(2q-1 )3 + rr~_1 + 3(2q-1 )3 if q > 1 
if q = 1 

{ rr~-1 + (2q-1 )3 + rr;_1 + 3(2q-1 )3 if q > 1 
4 ifq=l 
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. . . . '§] . . . . . . . . . . . . . . .. . .. ~ .......... . . . . . . . . . . 

(a) (b) (c) (d) 

Figure 6.7: (a),(b) scenarios for II;; (c),(d) scenarios for II~. 

Proof. The scenarios for IIq are shown in Figure 6.7: (a) and (b) for II;: 

Gq(x, 1, 2q, 2q) (a) overlaps with Q2(H;) and Q3 (H;), and (b) overlaps with Q1(H;) 

and Q4(H;); (c) and (d) for II~: Gq{x, 1, 2q, 2q) (c) overlaps with Q1(H;) and Q2(H;), 

and (d) overlaps with Q3(H;) and Q4 (H;). 

1 

II;= L liq(B2(Gq{x, 1, 2q, 2q)), 81(H;)) 

2q-1 +1 

L liq(B2(Gq(x, 1, 2q, 2q)), 81(H;)) (overlaps with Q2(H;), Q3(H;) only) 

1 

+ L liq(B2(Gq(x, 1, 2q, 2q)), 81(H;)) (overlaps with all four quadrants) 

2q-1 +1 

L fiq{B2(Gq{x, 2q-'-l + 1, 2q, 2q)), 81(H;)) (Remark 6.2) 

1 

+ L fiq{B2(Gq(x, 1, 2q, 2q)), 81(H;)) (Remark 6.2) 

2q-1 +1 

L (liq(B2(Gq{x, 2q-l + 1, 2q, 2q)), 81(Q3(H;))) + fiq{81(Q3(H;), 81(H;))) 

1 

+ L (fiq{B2(Gq{x, 2q-l + 1, 2q, 2q)), 81(Q4(H;))) + fiq{81(Q4(H;), 81(H;))) 

1 

L ( fiq-1 ( B2 ( G q-1 ( X' 1, 2q-l' 2q-l))' 81 ( H;_ 1)) + 2 ( 2q-l )2 

1 

+ L (fiq-1 (B2( Gq-1(1, 1, 2q-l, y)), 81(H;_1)) + 3(2q-l )2 

7r 
(after ( +2 )-rotating and then left-right reflecting Q4 (H;) 
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into a canonical H;_ 1) 

rr;_1 + 2q-l · 2(2q-l )2 + II~_1 + 2q-l · 3(2q-l )2 

- rr;_ 1 + 2 ( 2q-l )3 + II~_ 1 + 3 ( 2q-l )3. 

The proof of II~ is similar to that of rr;. I 

The closed-form solutions for IIq are employed to establish a system of recurrences 

for 0:.2q. 

Lemma 6.2 For a canonical H;, 

=1 
nq,2q -

=2 
nq,2q -

-=<:3 

nq,2q -

{ 
~1 ~3 53 4q 3 2q f 2

7
Hq-1,2q-l + Hq-1,2q-l + 2s . 2 - 24 . 2 i Q > 1, 

if q = 1; 

{ 3~2 + 3.41 24q 3 22q f 1 Hq-l,2q-l """:28 • - 24 . 'I, q > ' 
7 if q = 1; 

{ 0:~1.2q-l + 0:~1.2q-l + ;~ . 24q - {3 . 22q if q > 1, 
10 if q > 1. 

Proof. As illustrated in Figure 6.5 and in the case discussion for n~~2q, we split 
-c1 . 
nq,2q mto four parts: 

2q 2g 

n;~2g =LL liq(B2(Gq(1, 1, x, y)), a1(H;)) 
x=l y=l 

x=l y=l 
2q 2g-l 

+ L L liq{B2(Gq(l, 1, x, y), 81(H;)) (Figure 6.5(b)) 

2q 

L liq(B2(Gq{l, 1, x, y), 81(H;)) (Figure 6.5(c)) 

2q 

L liq{B2(Gq{l, 1, x, y), 81(H;)) (Figure 6.5(d)) 

x=l y=l 
2q 2q-l 

+ L L(nq{B2(Gq{1, 1, x, y)), 81(Q2(H;))) + nq(81(Q2(H;)), 81(H;))) 
x=2g-1 +1 y=l 



2q 

L (nq(B2(Gq(1, 1, x, y)), 81(Q4(H;))) 

2q-l 2q-l 

- L I)nq-1(B2(Gq-1(1, 1, x, y)), 81(H;_1)) + o. (2q-1)2) 
x=l y=l 

x=l y=l 
2q-l 

L(nq-1(B2( Gq-1(1, 1, 2q-1, y)), 81(H;_1)) + 3. (2q-1 )2) 
x=2q-1+1 y=l 

(after (+~)-rotating and then left-right reflecting Q4(H;) 
2 . 

into a canonical H;_1) 
2q-l 2q-l 

+ L L(nq-1(B2(Gq-1(x, Y, 2q-l, 2q-1)), 81(H;_1}) + 3. (2q-1)2) 
x=l y=l 

(after ( +i )-rotating and then left-right reflecting Q4(H;) 

into a canonical H;_ 1) 

- o:~1,2q-1 + n;~1,2q-1 + (2q-l )4 + (II~_1 + 3(2q-l )2) (2q-l )2 

+0;~1,2q-1 + 3(2q-1 )4 

20;~1,2q-1 + n;~1,2q-l + (2q-1 )2rr~_1 + 1(2q-1 )4 

-c1 -c3 53 4q 3 2q 
20q-i,2q-1 + Oq-l,2q-1 + 28 · 2 - 24 · 2 (Lemma 6.1). 

The proofs for 0;~2q and 0;~2q are similar to this one. 
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I 

The closed-form solutions for n;,2q and IIq are employed to obtain exact formulas 

for Ok 2q. , 

Lemma 6.3 For a canonical H~ structured as an Hf_q-curve interconnecting 22(k-q) 

H;-subcurves, 
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i=q 

k-1 

0%~2q - 0;~2q - rr; - (2q - 1)(22q - 1) + (2q - 1)2(22k - L 22i - 22q). 
i=q 

Proof. By the definition, we have: 

2q-1 2q-1 
0%~2q =LL nk(02(Gk(l, l,x,y)),81(Hl)) 

x=l y=l 

2q-1 2q 
LL nk(02(Gk(1, 1, x, y)), 81(Hl)) 
x=l y=l 

2q-1 2q 
- LL nk(02(Gk(1, l,x,y)),81(Hl)) 

2q 2q 

- (L L nk(02(Gk(1, 1, x, y)), 81(Hl)) 
x=l y=l 

2q 2q 

- LL nk(02(Gk(1, 1, x, y)), 81(Hl))) 

2q 2q 

-(L L nk(02(Gk(1, 1, x, y)), 81(Hi)) 

2q 2q 

- L L nk(02(Gk(1, 1, x, y)), 81(Hi))) 

2q 

- L nk(02(Gk(1, 1, 2q, y)), 81(Hi)) 
y=l 

2q 

- L nk(02(Gk(l, 1, x, 2q)), 81(Hn) (Gk containing 82(H;)) 
x=l 

+nkq(02(Gk(l, 1, 2q, 2q)), 81(Hl))) (02(G(l, 1, 2q, 2q)) = 82(H;)) 

- If1 - ITL - (22q - 1) · 2q + (22q - 1) q,2q q 

0:~2q - II~ - (2q - 1)(22q - 1). 

The proofs of 0%2 2q and 0%3 2q are similar to this one. , , I 
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The exact formulas for 0%,2q are employed to establish a system of recurrences 

for nk2q. 
' 

Lemma 6.4 For a canonical Hf structured as an Hf_q-curve interconnecting 22(k-q) 

H;-subcurves, 

if k > q, 

if k = q; 

if k > q, 
if k = q; 

if k > q, 
if k = q; 

if k > q, 

if k = q. 

Proof. Similar to the proof of Lemma 6.3, from the definition, we have (see 

Figure 6.3): 

2k-2q+1 2q-1 
nf.2q = L L nk(B2(Gk(x, 1, X + 2q - 1, y)), 81(Hi)) 

x=l y=l 

2k-l_2q+l 2q-1 
L L nk(B2(Gk(x, 1, X + 2q - 1, y)), 81(Hi)) 
:x=l y=l 

2q-'1 
L nk(B2(Gk(x, 1, X + 2q - 1, y)), 81(Hi)) 

(across CJ1(Hi),CJ2(Hi)) 
2k-2q+1 2q-1 

+ L L nk(B2(Gk(x, 1, X + 2q - 1, y)), 81(Hi)) (in CJ2(Hi)) 

2k-l_2q+12q-l 
L 1:(nk(B2(Gk(x, 1, X + 2q - 1, y)), 81(CJ1(Hi))) 
x=l y=l 
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2q-1 
L nk(B2(Gk(2k-l + 1, 1, x + 2q - 1, y)), 81(Hl)) 

(Remark 6.2) 
2k-2q+1 2q-1 

+ L I:(nk(B2(Gk(x, 1, X + 2q - 1, y)), 81(Q2(HD)) 

+ nk(81(Q2(Hl)), 81(Hl))) 
2k-l_2q+12q-l 

L L (nk-1(B2(Gk-1(x, 1, X + 2q - 1, y)), 81(HL1)) + 0. (2k-1)2) 
x=l y=l 

7r 
(after (-2 )-rotating and then left-right reflecting Q1(Hl) 

into a canonical HL 1) 

( change index of y ) 

2q-12k-l_2q+1 
+ I: I: (nk-1(B2(Gk-1(1, y, x, y + 2q - 1)), 81(HL1)) + 1. (2k-1)2) 

x=l y=l 

- nf-12q +o 
' 2k-1+2q-12q-l 

+ L I:(nk(B2(Gk(1,2k-i + l,x,y)),81(Q2(Hl))) 

+ nk(81(Q2(Hl)), 81(Hl))) 

+nL1,2q + 1. (2k-1)2(2q - 1)(2k-1 - 2q + 1) 

nf-1,2q + (nL1,2q + (2k-1)2(2q - 1)(2k-1 - 2q + 1)) 
2q-12q-1 

+ L I:(nk-1(B2(Gk-1(l, l,x,y)),81(HL1)) + l • (2k-1)2) 
x=l y=l 

(Q2(Hl) is a canonical HL1 ) 

- nt1,2q + (n%~1.2q + (2q - 1)2(2k-1)2) 

+(nL1,2q + (2k-1)2(2q - 1)(2k-1 - 2q + 1)). 

For nf_12q, nf_12q, and rlf_1 2q, the proofs are similar to this one. 
' . ' ' I 
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6.2.2 Computing~ nk(B1(G), 81(Hn) over Subgrids G Overlapping with Two Quad
rants 

We may proceed as in Section 6.2.1, based upon the following system of summations 

2k-2q+12q-l 
wf2q - L L n(B1(Gk(x, 1, X + 2q - 1, y)), 81(Hn)-for left boundary, 

x=l y=l 
2k-2q+l 2k 

wf2q - L L n((Ji(Gk(x, y, x + 2q - 1, 2k)), 81(Hf))-for right boundary, 
x=l y=2k-2q+2 

2q-12k-2q+1 
wf,2q L L n(B1(Gk(l, y, x, y + 2q - 1)), 81(Hf))-for bottom boundary, and 

x=l y=l 
2k 2k-2q+1 

wl,2q - L L n(B1(Gk(x, y, 2\ y + 2q - 1)), 81(Hl))-for top boundary. 
x=2k-2q+2 y=l 

Or, we apply the following lemma to relate the two systems wk,2q and nk,2q. 

Lemma 6.5 For a canonical Hf, 

(22k - l)Nf.2q, 

(22k - l)Nf 2q, 
' 

(22k - 1)Nf2q, 
' 

Proof. A canonical Hf is left-right reflexive. For a grid point v = (x, y), its mirror 

point v' = (x, 2k + 1 - y), and the mirror pair (v, v') satisfies that: 

The right reflection of Gk ( x, 1, x + 2q -1, y), where y E [2q) and q < k, is Gk ( x, 2k + 1-

Y, x+2q-1, 2k), and the reflection of the lowest indexed point in Gk(x, 1, x+2q-1, y) 

is the highest indexed in Gk(x, 2k+l-y, x+2q-1, 2k); that is, B1(Gk(x, 1, x+2q-1, y)) 

and ()2 (Gk(x, 2k + 1 - y, x + 2q - 1, 2k)) are mirror pair. Thus, 



2k-2q+12q-l 
L L n(fli(Gk(x, 1, x + 2q - 1, y)), 81(Hl)) 
x=l y=l 
2k.:....2q+l 2k 

+ L L nk(02(Gk(x, Y, X + 2q - 1, 2k)), 81(Hl)) 

2k-2q+12q-l 
L L n(01(Gk(x, 1, x + 2q - 1, y)), 81(Hl)) 
x=l y=l 

1 

L nk(02(Gk(x, 2k + 1 - 'Y, x + 2q - 1, 2k)), 81(Hl)) 
x=l -y=2q-1 

( change of summation index: 'Y = 2k + 1 - y) 
2k-2q+12q-l 
L L n(01(Gk(x, 1, x + 2q - 1, y)), 81(Hl)) 
x=l y=l 
2k-2q+12q-l 

+ L L nk(02(Gk(x, 2k + 1 - Y, x + 2q - 1, 2k)), 81(Hl)) 
x=l y=l 

( change of summation index: y = 'Y) 
2k-2q+12q-l 
L L (n(01(Gk(x, 1, x + 2q - 1, y)), 81(HD) 
x=l y=l 

2k-2q+12q-l 
I: I:(22k _ 1) ( mirror pair) 
x=l y=l 

2k-2q+1 2q-1 
- (22k - 1) I: I: 1 

x=l y=l 
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The proofs for w{: 2q + Of 2q, w[ 2q + Of 2q, and wf 2q + nf 2q are similar to this one. I 
' ' ' ' ' ' 

6.2.3 Query Subgrids Overlapping with All Quadrants 

For a 2q x 2q query subgrid G ~ R, we have: (1) 02 (G) E Q4 (Hf) and (2) 01(G) E 

Q1(Hn by Remark 6.2. 

For (1), when zooming in on the incomplete rectangular subgrid G n Q4(Hn 

(with both side-lengths at most 2q - 1), we reduce L-al1G,;;;nnk(02(G), 81(Hn) to 
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ni~1,2q after ( +i)-rotating and left-right reflecting Q4(Hn into a canonical HL1 

(with adjustment of distance cumulation). 

For ( 2), similar consideration leads to a reduction of Ea11c~R nk ( (Ji ( G), 81 ( H't)) to 

wi~1,2q, where wi~2q denotes E;:2k_2q+2 E!:2L 2q+2 nk(01(Gk(x, y, 2\ 2k)), 81(H't)) 

for a canonical H't and is related to 0%2 2q as follows. , 

Lemma 6.6 For a canonical H't, wi32q + 0%22q = (22k - l)Nk 2q. , , , 

Proof. Similar to the proof of Lemma 6.5, 

c3 + nc2 wk,2q k,2q 
2k 2k 
L L nk(01(Gk(x, y, 2k, 2k)), 81(Hl}) 

2k 2q-1 
+ L L nk(02(Gk(x, 1, 2k, y)), 81(Hf)) 

x=2k-2q+2 y=l 
2k 1 
L L nk(01(Gk(x, 2k + 1- 'Y, 2k, 2k)), 81(Hf)) 

x=2k-2q+2 -y=2q-1 
( change of summation index: 'Y = 2k + 1 - y) 

2k 2q-1 
+ L L nk(02(Gk(x, 1, 2\ y)), a1(Hf)) 

2k 2q-1 
L L nk(01(Gk(x, 2k + 1 - Y, 2k, 2k)), 81(Hf)) 

x=2k-2q+2 y=l 
( change of summation index: y = 'Y) 

2k 2q-1 
+ L L nk(02(Gk(x, 1, 2k, y)), 81(Hf)) 

2k 2q-1 
L L(nk(01(Gk(x,2k + l-y,2k,2k)),81(Hf)) 

+ nk(02(Gk(x, 1, 2k, y)), 81(Hf))) 
2k 2q-1 
L L(22k - 1) (mirror pair) 

2k 2q-1 
(22k -1) L L 1 

x=2k-2q+2 y=l 
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I 

Thus, the summation of all inter-cluster distances over all 2q x 2q query subgrids 

contained in R is 

( ne2 3 22k-2 A re ) e3 (22q 1) A re Hk-1,2q + . JVk-1,2q - Wk-1,2q - - JVk-1,2q· 

6.2.4 The Big Picture: Computing wq{HD 

The results in the previous three subsections yield €k,q{Hl). Hence, we have the 

following theorem for W q (HD. 

Theorem 6.1 For a canonical Hl, the recurrence for summation of all inter-cluster 

distances over all 2q x 2q query subgrids of an Hi-structural grid space [2k] 2 is: 

4wq(HL1) + (nt1,2q + 22k-2N!-1,2q) 
- w{:-_12q - (22q - l)Nf_12q 
+ (nL'12q + 2. 22k-2Nf_~ 2q) 
- (wf:'-1:2q + 22k-2Nff-1,2q)'- (22q - l)Nff-1,2q 
+ (Of:-12q + 3. 22k-2Nff-12q) 
- (wf_1,2q + 2. 22k-2Nff-1'2q) - (22q - l)Nff-12q 
+ (nL1'2q + 3 · 22k-2Nt_; 2q) · 

, s' 
- (wL12q) - (22q - l)Nk-12q 
+ (0%~1· 2q + 3. 22k-2Nk-12~) 
- (w~~ 1:2q) - (22q - l)Nk~1,2q if k > q, 

0 if k = q. 

The exact formula for Wq(HD is: 

w (H2) = 17 . 23k+q - 17 . 23k - 20885 . 22k+2q 139 . 22k+q !_ . 22k-2q . 3q 
q k 14 14 8151 + 48 + 39 

- 22k-1 - ! . 22k-q-2 + ~. 22k-2q((3 + v'5)q + (3 - v'5)q) 
3 1254 2 2 

21 · y'5. 22k-2q((3 + v'5)q (3 - y'5)q) 29767 . 2k+3q _ 13. 2k+2q-4 
+ 2090 2 + 2 + 21736 

_ 2k+q _ !_. 2k-q. 3q + 3 . 2k-2 _ 63 · v'5. 2k-q((3 + v'5)q _ (3 - v'5)q) 
39 2090 2 2 

_ 31 . 2k-q((3 + v'5)q (3 - v'5)q) _ 755 . 24q _ 73 . 23q-2 3 . 22q-l 
418 2 + 2 35112 21 + 
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6.2.5 Total Number of Inter-cluster Gaps 

In order to compute the (universe) mean inter-cluster distance over all inter-cluster 

gaps from all identically shaped subgrids, we need to derive the total number of 

inter-cluster gaps, denoted by if>k,q(HD for a canonical Hf 

For a grid space indexed by a space-filling curve, since the clusters interleave with 

the inter-cluster gaps of every query subgrid, we have: 

total number of inter-cluster gaps 

total number of clusters - total number of query subgrids. 

As discussed in Chapter V, 

total number of clusters= total number of edges cut by all query subgrids/2, 

and the exact formula that we have derived for the total number of edges that cut 

all 2q x 2q query subgrids is: 

Hence, the total number of inter-cluster gaps: 

Ek,q(Hf) - (2k - 2q + 1)2 
2 

22k+q - 22k - 2k+2q+l + 3 . 2k+q - 2k+l + 2k-q 

+23q - 22q+l + 2q+l - 1. 

6.3 Analytical Study of Inter-Clustering Performances for z-Order Curve 

Similar to the approach in the previous section for Hilber curve Hf, we now adopt the 

same approach for z-order curve Zf. Following the approach in Section 6.2, we apply 

same notations to computations in Zf. For a 2-dimensional z-order curve of order-k 

zt let \J! k,q{ Zf) denote the summation of all inter-cluster distances over all 2q x 2q 



(2) 
1,2 

, n<1), n<2), 
I 4,21 4,21 
I I I 
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I 
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~~~~'~1,~3,~1-,3~'~~~~Zf 
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Figure 6.8: The boundary regions of neighboring quadrants are organized into nine 
disjoint regions: n~Y' ni1 for (i, j) E {1, 4} X {2, 3}, and n. 

query subgrids of an Zl-structural grid space [2k]2. The recursive decomposition of 

Zf (see Figure 2.3) gives that: 

where E:k,q(Zf) denotes the summation of all inter-cluster distances over all 2q x 2q 

query subgrids, each of which overlaps with more than one quadrant ( that is, two 

or four). These query subgrids are contained in the boundary regions of neighboring 

dr h h b d d ,n{l) ,n{2) C (" ") qua ants, w ic can e organize into nine isjoint regions: '"i,j , '"i,j 1or i, J E 

{1, 4} x {2, 3}, and R, as shown in Figure 6.8. 

For a 2q x 2q query sub grid G, G overlaps with: 

1. Exactly Qi(Zf) and Qi(Zf) if and only if G ~ n~Y U nij for every (i,j) E 

{1, 4} x {2, 3}. In this case, OrJ(G) E niJ for rJ E {1, 2} by Remark 6.2. 

2. Qi(Zl) for all i E {1, 2, 3, 4} if and only if G ~ n. In this case, 01(G) E Q1(Zl) 

(upper-right come~) and 02 (G) E Q4 (Zl) (lower-left corner) by Remark 6.2. 

We divide the computation of E:k,q( Zf) into three parts: 

1. E nk(02(G), 81(Zf)) over all 2q X 2q query subgrids G ~ niy uni; for (i,j) E 

{1, 4} X {2, 3}, 
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2. Enk((Ji(G),81(zn) over all 2q x 2q query subgrids G ~ n?J uniJ for (i,j) E 

{1, 4} x {2, 3}, and 

3. the summation of all inter-cluster distances over all 2q x 2q query subgrids 

contained in R. 

As in the previous section, we develop combinatorial lemmas in the following three 

subsections to support the computations. 

6.3.1 E nk(B2(G), 81(Zl)) over Subgrids G Overlapping with Two Quadrants 

canonical zr 
2k-2q+1 2q-1 

nf.2q = L L nk(B2(Gk(x, 1, X + 2q - 1, y)), 81(Zl)) 
x=l y=l 

- for left boundary (see Figure 6.9(a)), 
2k-2q+1 2k 

nf.2q - L L nk(B2(Gk(x, Y, X + 2q - 1, 2k)), 81(Zl)) 
x=l y=2k-2q+2 

- for right boundary, 
2q-12k-2q+1 

nf2q I: I: nk(B2(Gk(1, y, x, y + 2q - 1)), 81 (Zl)) 
x=l y=l 

- for bottom boundary, 
2k 2k-2q+1 
L L nk(B2(Gk(x, Y, 2\ y + 2q - 1)), 81(Zl)) 

x=2k-2q+2 y=l 

- for top boundary, and 
2k-2q+12q-l 

Nf.2q - L 2:1 
x=l y=l 

- for the number of incomplete rectangular subgrids in a boundary. 

We will establish a system ofrecurrences (ink) for nk,2q (see Lemma 6.10 below). 

The system of recurrence involves another system of summations as prerequisites 

nk 2q = (rl%12q, 0%\q, 0%\q, rl%42q), as demonstrated in the example in the computation 
' , ' ' ' 

for Hilbert curve. 
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r----------.-
1 

fiL I 

k,2;..,.-~-----_-_ ....... _:_--___ --,--,-. - .-

11 j 

i 

l c1 .... :. -: .. .::j- - - .. nk-1,2q 

I 
L---------~.-

(a) 

1~ ...... ~ .. ·-·1 

~---.-fiL 
k-l,2q 

(b) 

Figure 6. 9: (a) nf 2q for a canonical Zf; (b) its recursive decomposition. 
' 

Figure 6.10: The four (2q - 1) x (2q - 1) corners of a canonical Zf 
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Zl (see Figure 6.10) are: 

2g-12g-1 

n%~2g - LL !ik(82(Gk(l, l,x,y)),81(Zl)) - for lower-le.ft corner, 
x=l y=l 

2k 2q-l 

L L !ik(82(Gk(x, 1, 2\ y)), 81(Zl)) - for upper-left corner, 
x=2k-2q+2 y=l 
2g-1 2k 

n%~2g L L !ik(82(Gk(l,y,x,2k)),81(Zl)) - for lower-right corner, and 

r,c4 
Hk 2q 

' 

2k 
L !ik(82(Gk(x, y, 2\ 2k)), 81(Zl)) - for upper-right corner, 

x=2k-2q+2 y=2k-2q+2 
2q-12g-1 

N{,2q = LL 1 - for the number of incomplete rectangular subgrids in a corner. 
x=l y=l 

Unlike the structure of Hilbert curve, there are no reflection and rotation required 

for subcurves in z-order to be a canonical z-order curve. The 82 ( G) is always in 

the upper-right corner of G; 81 ( G) is always in the lower-left corner of G. When 

G overlaps more than one quadrants, 82 ( G) can only be in left side, bottom side or 

lower-left corner of the right, upper or upper-right quadrant, respectively; 81 ( G) can 

only be in right side, top side or upper-right corner of the left, bottom or upper-right 

quadrant, respectively. Thus, for nk,2q, we focus on n%~2g only; for nk,2q, we focus on 

nf 2g, nf 2g· , , 

The prerequisite system of summations n;,2g = (n;:2q): 

2q 2q 

n;:2g = LL !ik(82(Gq(l, 1, x, y)), 81(Z;)) - for lower-left corner, 
x=l y=l 
2q 2q 

xr;,2q = LL 1 - for the number of rectangular subgrids in a 2q x 2q corner. 
x=l y=l 

In a general context of a canonical z;, the recursive decompositions of n;:2q need 
- -B -L 

a prerequisite system of summations IIq = (IIq , IIq ) : 

2q rr: L !iq(82(Gq{l, 1, x, 2q)), 81(Z;)) - bottom to top incrementally, and 
x=l 



176 

(a) (b) (c) (d) 

Figure 6.11: Four overlapping scenarios when decomposing 0:~2q in a canonical z;: 
(a) contained in Q1(Z;); (b) and (d) overlapping with exactly two quadrants; (c) 
overlapping with all quadrants. 

(a) (b) (c) (d) 

-B -L 
Figure 6.12: (a),(b) scenarios for IIq; (c),(d) scenarios for IIq. 

2q 

II~ L nq(B2(Gq(l, 1, 2q, y)), 81(Z;)) - left to right incrementally. 
y=l 

As in the derivation for Hilbert curve, we develop and solve a system of recurrences 

for IIq and reverse the sequence of reductions to obtain the closed-form solutions for 

nk,2q, which are summarized in the following four lemmas. 

Lemma 6. 7 For a canonical z;, 
rr: _ { ~rr:_, + 5(2•-1)' 

II~ _ { ~rr;_, + 4{2•-1) 3 

if q > 1 
if q = 1 

if q > 1 
if q = 1 

- -B 
Proof. The scenarios for IIq are shown in Figure 6.12: (a) and (b) for IIq: 

Gq{l, 1, x, 2q) (a) overlaps with Q1(Z;) and Q3 (Z;), and (b) overlaps with Q2 (Z;) 

and Q4 (Z;); (c) and (d) for II~: Gq{x, 1, 2q, 2q) (c) overlaps with Q1(Z;) and Q2 (Z;), 



177 

and (d) overlaps with Q3(Z;) and Q4 (Z;). 

x=l 
2q-l 
L liq(02(Gq(l, 1, x, 2q)), &1(Z;)) (overlapping with Q1(Z;), Q3(Z;) only) 
x=l 

2q 
+ L liq(02(Gq(l, 1, x, 2q)), &1(Z;)) (overlapping with four quadrants) 

2q-l 
L liq(02(Gq(l, 2q-l + 1, x, 2q)), &1(Z;)) (Remark 6.2) 
x=l 

2q 
+ L liq(02(Gq(2q-l + 1, 2q-l + 1, x, 2q)), &1(Z;)) (Remark 6.2) 

2q-l 
- L(liq(02(Gq(l, 2q-l + 1, x, 2q)), &1(Q3(Z;))) + liq(&1(Q3(Z;), &1(Z;))) 

x=l 
2q 

+ L (liq(02(Gq(2q-l + 1, 2q-l + 1, x, 2q)), &1(Q4(Z;))) 

2q-l 
- L(liq-1(B2(Gq-1(l, 1, x, 2q-1)), &1(Z;_1)) + 2(2q-1)2) 

x=l 
2q-l 

+ L(liq-1(B2(Gq-1(l, 1, x, 2q-1)), &1(Z;_1)) + 3(2q-1)2) 
x=l 

(Q3(Zt), Q4(Z;): canonical z;_1) 

- rr:_1 + 2q-1 . 2(2q-1 )2 + rr:_1 + 2q-1 . 3(2q-1 )2 

- 2rr:_1 + s(2q-1)3. 

The proof of II~ is similar to that of rr:. I 

The closed-form solutions for IIq are employed to establish a system of recurrences 

for n;,2q· 

Lemma 6.8 For a canonical z;, 
0ci _ { 4TI;=-1.2q-l + 6(2q-1 )4 if q > 1, 

q,2q - 6 if q = 1. 
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Proof. As in Figure 6.11 and the case discussion for n~~2q, we can split n:~2q into 

four parts by similar way: 

2q 2q 

0:~2q = I: I: nq(B2(Gq(1, 1, x, y)), 81(z;)) 
x=l y=l 

2q-l 2q-l 
- LL nq(B2(Gq(l, 1, x, y), 81(Z;)) (Figure 6.ll(a)) 

x=l y=l 

2q 2q-l 
+ L L nq{B2(Gq{l, 1, x, y), 81(Z;)) (Figure 6.ll(b)) 

2q-l 2q 
+ L L nq(B2(Gq(l, 1, x, y), 81(Z;)) (Figure 6.ll(d)) 

2q 
L nq(B2(Gq(l, 1, x, y), 81(Z;)) (Figure 6.ll(c)) 

2q-l 2q-l 
- L I:(nq{B2(Gq{1, 1, x, y)), 81(Q1(Z;))) + nq(81(Q1(Z;)), 81(Z;))) 

x=l y=l 

2q 2q-l 

+ I: I:(nq{B2(Gq{1, 1, x, y)), 81(Q2(Z;))) + nq{81(Q2(z;)), 81(Z;))) 

2q-l 2q 

+ I: I: (nq{B2(Gq{1, 1, x, y)), 81(Q3(Z;))) + nq(81(Q3(Z;)), 81(Z;))) 

2q 
L (nq{B2( Gq(l, 1, x, y)), 81( Q4(Z;))) + nq(81 (Q4(Z;)), 81 (Z;))) 

2q-l 2q-l 
I: I:(nq-1(B2(Gq-1(1, 1, x, y)), 81(z;_1)) + o. (2q-1)2) 
x=l y=l 

2q-l 2q-l 

+ I: I: ( nq-1 ( B2 ( G q-1 ( 1, 1, x, y)), 81 ( z;_ 1)) + 1 . ( 2q-1) 2) 
x=l y=l 

. 2q-l 2q-l 

+ I: I:(nq-1(B2(Gq-1(1, 1, x, y)), 81(z;_1)) + 2. (2q-1)2) 
x=l y=l 

2q-l 2q-l 
+ I: I:(nq-1(B2(Gq-1(1, 1, x, y)), 81(z;_1)) + 3. (2q-1)2) 

x=l y=l 

-c1 =1 ( q 1)4 - nq-1,2q-1 + nq-1,2q-l + 2 -



+0:~1,2q-l + 2(2q-l )4 + 0:~1,29-l + 3(2q-l )4 

- 40:~1,29-l + 6(2q-l )4 • 
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I 

The closed-form solutions for n;,29 and Ilq are employed to obtain exact formulas 

for fl% 2q. , 

Lemma 6.9 For a canonical Zf structured as an ZLq-curve interconnecting 22<k-q) 

Z;-subcurves, 

Proof. By following the definition, we have 

29-129-1 

ni~2q = I: I: nk(02(Gk(1, 1, x, y)), 81(Zl)) 
x=l y=l 

29 29-1 

- LL hk(02(Gk(l, 1, x, y)), 81(Zl)) 
x=l y=l 

29 2q-1 

- L L hk(02(Gk(l, 1, x, y)), 81(Zl)) 

2q 29 

- (I: L hk(02(Gk(l, 1, x, y)), 81(Zl)) 
x=l y=l 

29 2q 

- LL hk(02(Gk(l, l,x,y)),81(Zi))) 

29 29 

-(I: L hk(02(Gk(l, 1, x, y)), 81(Zi)) 

2q 2q 

- L L hk(02(Gk(l, 1, x, y)), 81(Zl))) 

-c1 
nq,2q 

2q 

-L hk(02(Gk(l, 1, x, 2q)), 81(Zl)) 
x=l 
2q 

- L hk(02(Gk(l, 1, 2q, y)), 81(Zl)) 
y=l 
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I 

The exact formulas for nk 2q are employed to establish a system of recurrences , 

Lemma 6.10 For a canonical Zl structured as an Zf_q-curve interconnecting 

22(k-q) Z 2-subcurves 
q ' 

{ 
nt1,2q + (n%~1,2q + (2q - 1)2(2k-1 )2) 

+ (nf_1,2q + (2k-1 - 2q + 1)(2q - 1)(2k-1)2) if k > q, 
-L 2 IIq - (2 q - 1) if k = q; 

{ 
nf_1,2q + (n%~1,2q + 2(2q - 1)2(2k-1)2) 
-B+ (0f_l,2q + 2(2k-l - 2q + 1)(2q - 1)(2k-l)2) if k > q, 

IIq - (22q - 1) if k = q. 

Proof. Similar to the proof of Lemma 6.9, from the definition, we have (see 

Figure 6.9) 

2k-2q+12q-l 
nt2q = L L fik(82(Gk(x, 1, X + 2q - 1, y)), 81(Zl)) 

:z:=1 y=l 

2k-l_2q+12q-l 
L L fik(82(Gk(x, 1, x + 2q - 1, y)), 81(Zl)) (in Q1(Zl)) 
:z:=1 y=l 

2q-1 
L fik(82(Gk(x, 1, x + 2q - 1, y)), 81(Zl)) 

(across Q1(Zl), Q2(Zl)) 
2k-2q+1 2q-1 

+ L L fik(82(Gk(x, 1, x + 2q - 1, y)), 81(Zl)) (in Q2(Zl)) 

2k-l_2q+12q-l 
L 2:(nk(82(Gk(x, 1, X + 2q -1, y)), 81(Q1(zi))) 
:z:=1 y=l 

+ fik(81(Q1(Zl)), 81(Zl))) 
2q-1 
L fik(82(Gk(2k-l + 1, 1, x + 2q - 1, y)), 81(Zl}) 
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(Remark 6.2) 
2k-2q+l 2q-1 

L L (1ik(02(Gk(x, 1, x + 2q - 1, y)), 81(Q2(Zf))) 

+ fik(81(Q2(Zf)),81(Zf))) 
2k-l_2q+l 2q-1 

L L (fik-1(02(Gk-1(x, 1, x + 2q - 1, y)), 81(ZL1)) + 0 · (2k-1)2) 
:z:=1 y=l 

2k- 1+2q-12q-1 

+ L L fik(02(Gk(2k-l + 1, 1, x, y)), 81(Zf)) (change index of x) 

2k-t_2q+12q-l 

+ L L (fik-1(02(Gk-1(x, 1, x + 2q - 1, y)}, 81(ZL1)) + 1 · (2k-1)2) 
:z:=1 y=l 

nf-1,2q + o 
2k- 1+2q-12q-1 

+ L L(fik(02(Gk(2k-I + 1, l,x,y)),81(Q2(Zl))) 

+ fik(81(Q2(Zf)), 81(Zf))) 

+nL1,2q + 1. (2k-1)2(2q - 1)(2k-1 - 2q + 1) 

- nL1,2q + (nL1,2q + (2k-1)2(2q - 1)(2k-1 - 2q + 1)) 
2q-12q-1 

+ L I::(nk-1(02(Gk-1(l, l,x,y)),81(ZL1)) + l • (2k-1)2) 
:z:=1 y=l 

nL + (nc1 + (2q _ 1)2(2k-1)2) k-1,2q k-1,2q 

+(nL1,2q + (2k-1)2(2q - 1)(2k-1 - 2q + 1)). 

For nf_1 2q, the proof is similar to this one. , I 

6.3.2 Computing I: fik(01(G), 81(Zl)) over Subgrids G Overlapping with Two Quad
rants 

We may proceed as in Section 6.3.1, based upon the following system of summations 

2k-2q+12q-l 

wf,2q L L fi(01(Gk(x, 1, x + 2q - 1, y)), 81(Zf))-for left boundary, 
:z:=1 y=l 
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2k 

R wk,2q L n(B1(Gk(x, y, x + 2q - 1, 2k)), 81(Zl))-for right boundary, 

2q-1 2k-2q+1 
B wk,2q - L L n(B1(Gk(l, y, x, y + 2q - 1)), 81(Zl))-for bottom boundary, 

x=l y=l 

2k 2k-2q+1 
T wk,2q L L n(B1(Gk(x, y, 2\ y + 2q - 1)), 81(Zl))-for top boundary. 

x=2k-2q+2 y=l 

Or, we apply the following lemma to relate the two systems wk,2q and nk,2q. As 

mentioned before, the system need only the computations for 01 ( G) in right side or 

top side in a quadrant. We consider w:,2q, wf,2q in the following lemma. 

Lemma 6.11 For a canonical Zf, 

- (22k - l)Nf2q, , 

- (22k - l)Nf2q· 
' 

Proof. A canonical Zf is a reflexive. (After top-down and then left-right reflect 

Zf, we get the one of same structure.) For a grid point v = (x, y), its mirror point 

v' = ( 2k + 1 - x, 2k + 1 - y), and the mirror pair ( v, v') satisfies that: 

Top-down and then left-right reflect Gk(x, 1, x + 2q -1, y), where y E [2q] and q < k, 

we get Gk(2k - 2q + 2 - x, 2k + 1 -y, 2k + 1- x, 2k), and the reflection of the lowest 

indexed point in Gk(x, 1, x + 2q - 1, y) is the highest indexed in Gk(2k - 2q + 2 -

x, 2k + 1 - y, 2k + 1 - x, 2k); that is, B1(Gk(x, 1, x + 2q - 1, y)) and B2 (Gk(2k - 2q + 
2 - x, 2k + 1 - y, 2k + 1 - x, 2k)) are mirror pair. Thus, 

2k-2q+1 2q-1 

L L n(B1(Gk(x, 1, x + 2q - 1, y)), 81(Zl)) 
x=l y=l 

2k-2q+1 2k 

+ L L nk(B2(Gk(x, Y, X + 2q - 1, 2k)), 81(Z2)) 
x=l y=2k-2q+2 
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2k-2q+l 29-1 

L L li(B1(Gk(x, 1, x + 2q - 1, y)), c)i(Zl)) 
x=l y=l 

1 1 

+ I: L lik(B2(Gk(2k - 2q + 2 - 1, 2k + 1- 1', 2k + 1 - 1, 2k)), 81(ZD) 
,=2k-29+l ,'=29-l 

( change of summation index: 1 = 2k - 2q + 2 - x, 1' = 2k + 1 - y) 
2k-2q+l 29-1 

L L li(B1(Gk(x, 1, x + 2q - 1, y)), 81(Zl)) 
x=l y=l 
2k-29+1 2q-1 

+ L L lik(B2(Gk(2k - 2q + 2 - x, 2k + 1 -y, 2k + 1 - x, 2k)), 81(Zl)) 
x=l y=l 

(change of summation index: x = 1, y = 1') 
2k-2q+1 29-1 

L L(li(B1(Gk(x,l,x+2q-l,y)),81(Zl)) 
x=l y=l 

+ lik(B2(Gk(2k - 2q + 2 - x, 2k + 1- y, 2k + 1 - x, 2k)), 81(Zl))) 
2k-29+12q-1 

I: I:(22k -1) ( mirror pair) 
x=I y=I 

The proof for wf 29 + nr 29 is similar to this one. 
' ' 

6.3.3 Query Subgrids Overlapping with All Quadrants 

I 

For a 2q x 2q query subgrid G ~ R, we have: (1) B2(G) E Q4(Zl) and (2) B1(G) E 

Q1(Zl) by Remark 6.2. 

For (1), when zooming in on the incomplete rectangular subgrid GnQ4 (Zl) (with 

both side-lengths at most 2q - 1)) we reduce Ea11acn. lik ( 02 ( G)' 81 ( zn) to 0.%1:_ 1 2q - , 

(with adjustment of distance cumulation). 

For (2), similar consideration leads to a reduction of Eana~n. lik(B1(G), 81(Zf)) 

to wf~1.2q, where wt29 denotes E;:2L 2q+2 E!:2k_2q+2 lik(B1(Gk(x, y, 2\ 2k)), 81(Zl)) 

for a canonical Zf and is related to 0.%~29 as follows. 

Lemma 6.12 For a canonical Zf, wf\9 + 0.%\q = (22k - l)Nk 29 . , , ' 



Proof. Similar to the proof of Lemma 6.11, 

2k 

L nk(e1(Gk(x, Y, 2\ 2k)), 81(ZD) 

2q-12q-1 

+ I: I: nk(e2(Gk(1, 1, x, y)), B1(Zf)) 
x=l y=l 

1 1 

I: I: nk(e1(Gk(2k + 1 - 1, 2k + 1 - 1', 2\ 2k)), 01(ZD) 
-y=2q-1-y'=2q-1 

184 

( ( change of summation index: 1 = 2k + 1 - x, 1' = 2k + 1 - y) 
2q-12q-1 

+ I: I: nk(e2(Gk(1, 1, x, y)), B1(Zf)) 
x=l y=l 

2q-12q-1 

- I: I: nk(e1(Gk(2k + 1 - x, 2k + 1 - y, 2\ 2k)), B1(Zf)) 
x=l y=l 

(change of summation index: x = 1, y = 1') 
2q-12q-1 

+ I: I: nk(e2(Gk(1, 1, x, y)), B1(Zf)) 
x=l y=l 

2q-12q-1 

- I: Z:(nk(e1(Gk(2k + 1- x, 2k + 1-y, 2\ 2k)), 81(Zf)) 
x=l y=l 

+ nk( e2( Gk(l, 1, x, y )), 81 ( Zf))) 
2q-12q-1 

- L L(22k -1) (mirror pair) 
x=l y=l 

- (22k - l)Nk 2q. 

' 

6.3.4 The Big Picture: Computing wq(Zf) 

I 

The results in the previous three subsections yield ck,q(zi). Hence, we have the 

following theorem for '11 q ( Zf): 

Theorem 6.2 For a canonical Zl, the recurrence for summation of all inter-cluster 



distances over all 2q x 2q query subgrids of an Zl-structural grid space [2k] 2 is: 

0 if k = q. 

The exact formula for Wq(Zf) is: 

Wq(Zl) = 23k+q _ 23k _ 22k+2q+1 + 22k+q+1 + 2k+3q _ 2k+q+l + 2k 

- 23q + 22q+1 - 2q 

6.3.5 Total Number of Inter-cluster Gaps 
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In order to compute the (universe) mean inter-cluster distance over all inter-cluster 

gaps from all identically shaped subgrids, we need to derive the total number of 

inter-cluster gaps, denoted by <I>k,q(ZD for a canonical Zf 

In Chapter V, we have derived the exact formula for Ek,q(Z?), which denotes the 

total number of edges cut all 2q x 2q query subgrids, and the closed-form solution for 

Ek,q(ZD is 

Hence, the total number of inter-cluster gaps: 

E (Z2) k,q k - (2k - 2q + 1)2 
2 

- 22k+q+l - 3. 22k + 3. 22k-q-1 - 22k-2q-l - 2k+2q+2 + 2k+q+3 
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6.4 Comparisons and Validation 

For a space-filling curve Cf indexing the grid space [2k]2, denote by b.k,q{ Cf) the 

universe mean inter-cluster distance over all inter-cluster gaps from all 2q x 2q subgrids 

of the Cf-structural grid space, and by .6.k,q( en the mean total inter-cluster distance 

over all 2q x 2q subgrids of the Cl-structural grid space. 

The exact formulas for Wq(Hl), <I>k,q(Hf), Wq(Zl), and <I>k,q(Zl) give the exact 

formulas for b.k,q{Hl), b.k,q{Zf), .6.k,q(Hf), and .6.k,q(Zf). We simplify the exact 

results asymptotically as follows. For sufficiently large k and q with k » q ( typical 

scenario for range queries), 

'f C2 . H 2 1 k IS k, 'f C2 • H 2 1 k IS k, 

if C 2 is Z 2 · k k, if C 2 is Z 2• k k, 

75. (H2) 
k,q k ~ 17 ,._.., 1 21 

Li (Z2 ) 14 ,._.., ' · 
k,q k 

With respect to the b.k,q-statistics, the z-order curve family clearly performs 

better than the Hilbert curve family over the considered ranges for k and q. With 

respect to the b.k,q-statistics, the superiority of z-order curve family persists but 

declines significantly. 

We have validated all the exact formulas (intermediate and final) involved in the 

derivations in the analytical study with computer programs over various grid- and 

subgrid-orders: k E {3, 4, ... , 10} and q E {2, 3, ... , k }. 

6.5 Summary 

Our analytical study of the inter-clustering performances of 2-dimensional order-k 

Hilbert and z-order curve families are based upon the two inter-clustering statistics 

b.k,q and b.k, q - universe mean inter-cluster distance over all inter-cluster gaps 

and mean total inter-cluster distance over all subgrids of size 2q x 2q, respectively. 

The exact results allow us to compare their relative performances with respect to 

these two measures. For sufficiently large k and q with k » q, z-order curve family 
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performs significantly (marginally) better than Hilbert curve family with respect 

to ~k,q-statistics ( .6.k,q-statistics, respectively). We also validate the results with 

computer programs over various grid- and subgrid-orders. 



CHAPTER VII 

CONCLUSION 

Evaluating either locality preservation or clustering performance is considered as a 

criterion as far as the applicabilities of space-filling curves are concerned. In this 

research, we focus on the relevant work for these two categories of measures. The 

objectives of this research are to ( 1) investigate the locality preservation and cluster

ing performances for space-filling curves, especially the most popular ones, z-order 

and Hilbert space-filling curve families, (2) derive the closed-form formulas for dif

ferent measures to quantify the qualities of space-filling curves, and (3) compare the 

z-order curve family with the Hilbert curve family by the derived formulas. 

For the research related to locality preservation, we propose a new locality mea

sure L0 that quantifies the locality preservation of space-filling curves by considering 

the mean absolute index-difference for two grid points at a common Manhattan dis

tance in multi-dimensional space ( quantifying the applicabilities of the space-filling 

curves is the initial step in the whole work for evaluating their performances). Then 

comparisons have been made between Hilbert and z-order curve families. Basically, 

we have derived the exact formulas for L0(H'f:') and L0(Z'f:') for m=2 and arbitrary 

8 that is an integral power of 2, and m=3 and 8 = 1. The results obtained from the 

exact formulas allow us to gauge the two curve families relative to the optimal curves 

with respect to L0 , and indicate that the z-order curve family performs better than 

the Hilbert curve family over the considered ranges of dimension, grid-order, and 

1-normed distance. Besides, we have verified all the exact formulas (intermediate 

and final) involved in the derivations with computer programs form= 2, 3 and over 

various grid-orders and all possible 1-normed distances. 

In addition to proposing a new locality measures, we have closed the bounds of 
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the well-known p-normed metric measure for the 2-dimensional Hilbert curve family. 

For p-normed metric measure, the analytical study of the locality properties is con

structed on the locality measure LAN , which is the maximum ratio of dp(v,u)m to 
,P 

dp(v, u) over all corresponding point-pairs (v, u) and (v, u) in them-dimensional grid 

space and index space, respectively. Regarding this locality measure of the Hilbert 

curve family, our work merges the current best lower and upper bounds to exact 

formulas for p E {1, 2}, and also extend our work to all real p 2:: 2. Moreover, we 

identify all the representative pairs ( which realize LAN ,P ( Hn) for p = 1 and all real 

p 2:: 2 and also validate the results with computer programs over various p-values. 

In the part of research related to clustering performance, there are two kinds of 

measures that have been developed. One is built on the mean number of clusters 

within a subgrid; the other one is built on the mean inter-cluster distance within a 

subgrid. We have derived the exact formulas for the mean numbers of clusters and 

the mean inter-cluster distances within subspaces for a 2-dimensional space. 

Our first analytical study of the clustering performances of 2-dimensional order

k Hilbert and z-order curve families are based upon clustering statistics - a mean 

number of clusters over all subgrids of size 2q x 2q, respectively. The quantified results 

allow us to compare the relative performances of these two families. For sufficiently 

large k and q with k >> q, the Hilbert curve family performs significantly better 

than the z-order curve family with respect to the mean numbers of clusters within 

subspaces. 

The other analytical study of the clustering performances are based upon the 

two inter-clustering statistics - universe mean inter-cluster distance over all inter

cluster gaps and mean total inter-cluster distance over all subgrids of size 2q x 2q. 

Similarly, the results quantified by our formulas allow us to compare their relative 

performances as well: for sufficiently large k and q with k ~ q, the z-order curve 

family performs significantly (marginally) better than the Hilbert curve family in 

this respect. We also validate the results with computer programs over various grid

and subgrid-orders. 
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In summary, we study both locality preservation and clustering performances by 

proposing various measures and also providing their derivations of exact formulas 

for the Hilbert and z-order curve families. Having closed-form formulas allows us 

to compare the relative performances of locality or clustering between these two 

space-filling curve families. A practical implication of our results is that the exact 

formulas provide good bounds on measuring the loss in data locality in the index 

space, while spatial correlation exists in the 2-dimensional grid space. For higher 

dimensionality, it becomes much more difficult due to the loss of geometric intuition. 

Nevertheless, Alber and Niedermeier [ANDO] provide a mathematical mechanism to 

describe and analyze the combinatorial properties of continuous curves such as the 

Hilbert curves and non-continuous ones such as z-order curves in arbitrary dimen

sions. Their structure-theoretic viewpoint may shed some light on our future study 

with arbitrary dimensions. 
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APPENDIX A 

MAPLE SOURCE CODES 

A.l Number of Edge Cuts over All 2q x 2q Subspaces in H't 
>#of Edge Cuts For 2-dimensional Hilbert Curves. 
# Space is 2-k * 2-k, the rectangular query is 2-q * 2-q 
# where l<=q<=k 
# E(k,q) denotes the number of edge cuts by 2-q * 2-q rectangular 
# query in a 2-k * 2-k space. 
# If first character of a variable is r for a variable, it is a 
# statement for recurrent equation 
# If the first two characters are r for a variable, it is the 
# intermediate variable for the notations that we want to solve. 
# The intermediate results will appear if replacing 11 : 11 with 11 ; 11 • 

# 
# Lemma 5.1: For an Hilbert curve of order q, Pi {h,v}: 
> rrv:='rrv': rrh:='rrh': ## reset variables 
> rv:=rrv(q)=2*rrv(q-1)+2*rrh(q-1)+2: 
> rvbase:=rrv(1)=2: 
> rh:=rrh(q)=2*rrv(q-1)+2*rrh(q-1)+1: 
> rhbase:=rrh(1)=1: 
> rsolve({rv,rvbase,rh,rhbase},{rrv(q),rrh(q)}): 
> assign(%); v:=unapply(rrv(q),q): h:=unapply(rrh(q),q): 
# Lemma 5.2: For an Hilbert curve of order q, Omega bar {c1,c2}: 
> rrbar~c1:='rrbar_c1': rrbar_c2:='rrbar_c2': ## reset the variables 
> rbar_c1:=rrbar_c1(q)=3*rrbar_c1(q-1)+rrbar_c2(q-1) 
> +3*2-(q-1)*v(q-1)+2-(q-1)*h(q-1)+3*2-(q-1)+1: 
> rbar_c1base:=rrbar_c1(1)=4: 
> rbar_c2:=rrbar_c2(q)=rrbar_c1(q-1)+3*rrbar_c2(q-1)+2-(q-1)*v(q-1) 
> +3*2-(q-l)*h(q-1)+3*2-(q-1)+2: 
> rbar_c2base:=rrbar_c2(1)=5: 
> rsolve({rbar_c1,rbar_c1base,rbar_c2,rbar_c2base},{rrbar_c1(q), 
> rrbar_c2(q)}): 
> assign(%): bar_c1:=unapply(rrbar_c1(q),q): 
> bar_c2:=unapply(rrbar_c2(q),q): 
# Lemma 5.3: For an Hilbert curve of order k, Omega {c1,c2}: 
> c1:=(k,q)->bar_c1(q)-h(q)-v(q): 
> c2:=(k,q)->bar_c2(q)-h(q)-v(q): 
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# Lemma 5.4: For an Hilbert curve of order k, Omega {L,B,T}: 
# Let z=k-q (because maple only takes one variable for 
# recurrent equation). 
> rrL:='rrL': rrT:='rrT': rrB:='rrB': 
> rL:=rrL(z)=rrB(z-1)+rrL(z-1)+2*c1(z+q-1,q)+2*(2-q-1): 
> rLbase:=rrL(O)=h(q): 
> rB:=rrB(z)=2*rrL(z-1)+2*c2(z+q-1,q): 
> rBbase:=rrB(O)=v(q): 
> rT:=rrT(z)=2*rrT(z-1)+2*c2(z+q-1,q): 
> rTbase:=rrT(O)=v(q): 
> rsolve({rL,rLbase,rB,rBbase,rT,rTbase},{rrL(z),rrB(z),rrT(z)}): 
> assign(%): L:=unapply(rrL(z),z,q): B:=unapply(rrB(z),z,q): 
> T:=unapply(rrT(z),z,q): 
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# Lemma 5.5: For an Hilbert curve of order k, the number of edge cuts 
# Let z=k-q (because maple only takes one variable for 
# recurrent equation) 
> rrE:='rrE': ## reset the variable 
> rE:=rrE(z)=4*rrE(z-1)+L(z-1,q)+B(z-1,q)+2-q-1 
> +L(z-1,q)+L(z-1,q) 
> +L(z-1,q)+B(z-1,q)+2-q-1 
> +T(z-1,q)+T(z-1,q) 
> +2*c1(z-1,q)+2*c2(z-1,q): 
> rEbase:=rrE(0)=2: 
> rsolve({rE,rEbase},rrE(z)): 
> Ez:=unapply(%,z,q): 
> E:=unapply(simplify(Ez(k-q,q)),k,q); 

(k - q) 

(k, q) -> 2 4 
q q q (1 + k - q) 

E 

# The 

(k - q) 

- 4 2 

8 - 2 4 + 2 8 + 2 

q (1 + k - q) 
8 + 2 

above is the result for 2-k * 2-k space 

q 
4 

# Compare to Moon's paper, they use the space as 2-(k+q) x 2-(k+q) 
> E(k+q,q): simplify(%); 

k q q q (1 + k) q k q (1 + k) 
2 4 8 - 2 4 + 2 8 + 2 4 - 4 2 8 + 2 

A.2 Number of Edge Cuts over All 2q x 2q Subspaces in Zf 

>#of Edge Cuts For 2-dimensional z-Order Curves. 



# Space is 2Ak * 2Ak , the rectangular query is 2-q * 2Aq 
# where 1<=q <=k 
# E(k,q) denotes the number of edge cuts by 2Aq * 2Aq rectangular 
# query in a 2Ak * 2Ak space. 
# If first character of a variable is r for a variable, it is a 
# statement for recurrent equation 
# If the first two characters are r for a variable, it is the 
# intermediate variable for the not.ations that we want to solve. 
# The intermediate results will appear if replacing":" by";". 
# Lemma 5.6: For a z-order curve of order q, Pi {h,v}: 
> rrv:='rrv': rrh:='rrh': ## reset variables 
> rv:=rrv(q)=4*rrv(q-1)+2Aq+1: 
> rvbase:=rrv(1)=3: 
> rh:=rrh(q)=4*rrh(q-1)+2*(2A(q-1)-1)+1: 
> rhbase:=rrh(1)=1: 
> rsolve({rv,rvbase,rh,rhbase},{rrv(q),rrh(q)}): 
> assign(%); v:=unapply(rrv(q),q): h:=unapply(rrh(q),q): 
# Lemma 5.7: For a z-order curve of order q, Omega bar {c1,c2}: 
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> rrbar_c1:='rrbar_c1': rrbar_c2:='rrbar_c2': ## reset the variables 
> rbar_c1:=rrbar_c1(q)=4*rrbar_c1(q-1)+2Aq*v(q-1)+2Aq*h(q-1)+2A(2*q) 
> -rq+3: 
> rbar_c1base:=rrbar_c1(1)=5: 
> rbar_c2:=rrbar_c2(q)=4*rrbar_c2(q-1)+2-q*v(q-1)+2Aq*h(q-1)+2-(2*q) 
> +rq: 
> rbar_c2base:=rrbar_c2(1)=6: 
> rsolve({rbar_c1,rbar_c1base,rbar_c2,rbar_c2base},{rrbar_c1(q), 
> rrbar_c2(q)}): 
> assign(%): bar_c1:=unapply(rrbar_c1(q),q): 
> bar_c2:=unapply(rrbar_c2(q),q): 
# Lemma 5.8: For a z-order curve of order k, Omega {c1,c2}: 
> c1:=(k,q)->bar_c1(q)-h(q)-v(q): 
> c2:=(k,q)->bar_c2(q)-h(q)-v(q): 
# Lemma 5.9: For a z-order curve of order k, Omega {L,B}: 
# Let z=k-q (because maple only takes one variable for 
# recurrent equation). 
> rrL:='rrL': rrB:='rrB': 
> rL:=rrL(z)=2*rrL(z-1)+c1(z+q-1,q)+c2(z+q-1,q)+(2-q-1)-2+(2-q-1): 
> rLbase:=rrL(O)=h(q): 
> rB:=rrB(z)=2*rrB(z-1)+c1(z+q-1,q)+c2(z+q-1,q)+(2-q-1)-2+(2-q-1): 
> rBbase:=rrB(O)=v(q): 
> rsolve({rL,rLbase,rB,rBbase},{rrL(z),rrB(z)}): 
> assign(%): L:=unapply(rrL(z),z,q): B:=unapply(rrB(z),z,q): 
# Lemma 5.10: For a z-order curve of order k, the number of edge cuts 
# Let z=k-q (because maple only takes one variable for 



# recurrent equation) 
> rrE:='rrE': ## reset the variable 
> rE:=rrE(z)=4*rrE(z-1)+2*(B(z-1,q)+B(z-1,q)+2*(2-q-1)) 
> +2*(L(z-1,q)+L(z-1,q)+2*(2-q-1)) 
> +2*c1(z-1,q)+2*c2(z-1,q)+2*(2-q-1)-2: 
> rEbase:=rrE(1)=4*2+2*(B(O,q)+B(O,q)) 
> +2*(L(O,q)+L(O,q)+2*(2-q-1)) 
> +2*c1(0,q)+2*c2(0,q)+2*(2-q-1)-2: 
> rsolve({rE,rEbase},rrE(z)): 
> Ez:=unapply(%,z,q): 
> E:=unapply(simplify(Ez(k-q,q)),k,q); 

(k - q) ( 1 + k - q) q (1 + k) 

E (k, q) -> -4 + 4 8 - 4 

(k - q) 

+ 3 4 
q q q q (q + 1) 

2 + 4 2 - 8 4 + 4 8 - 8 

k (k - q) (k - q) q 
- 8 2 + 4 2 + 12 2 4 

# The above is the result for 2-k * 2-k space 

(k - q) 

2 

# Compare to Moon's paper, they use the space as 2-(k+q) x 2-(k+q) 
> E(k+q,q): simplify(%); 

k (1 + k) 
-4 + 4 

q (1 + k + q) 
8 - 4 

(q + 1) 

- 8 
k (k + q) 

2 - 8 2 

k q q q q 
+ 3 4 2 + 4 2 - 8 4 + 4 8 

k k q 
+ 4 2 + 12 2 4 

A.3 Total Inter-cluster Distance over All 2q x 2q Subspaces in Hl 
> Inter-cluster Distance For 2-dimensional Hilbert Curves. 
# Space is 2-k * 2-k , the rectangular query is 2-q * 2-q 
# where 1<=q<=k 
# Psiq(k,q) denotes the total intercluster distances over all 
# rq * rq rectangular query in a rk * rk space. 
# If first character of a variable is r for a variable, it is a 
# statement for recurrent equation 
# If the first two characters are r for a variable, it is the 
# intermediate variable for the notations that we want to solve. 
# The intermediate results will appear if replacing 11 : 11 by";". 
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# Let z=k-q (because maple only takes one variable for recurrent 
# equation). 
# Lemma 6.1: For an Hilbert curve of order q, Pi {T,L}: 
> rrPiT:='rrPiT': rrPiL:='rrPiL': ## reset variables 
> rPiT:=rrPiT(q)=rrPiT(q-1)+2*(2-(q-1))-3+rrPiL(q-1)+3*(2-(q-1))-3: 
> rPiTbase:=rrPiT(1)=5: 
> rPiL:=rrPiL(q)=rrPiL(q-1)+(2-(q-1))-3+rrPiT(q-1)+3*(2-(q-1))-3: 
> rPiLbase:=rrPiL(1)=4: 
> rsolve({rPiT,rPiTbase,rPiL,rPiLbase},{rrPiT(q),rrPiL(q)}): 
> assign(%): PiT:=unapply(rrPiT(q),q): PiL:=unapply(rrPiL(q),q): 
# Lemma 6.2: For an Hilbert curve of order q, Omega bar {c1,c2,c3}: 
> rrbar_c1:='rrbar_c1': rrbar_c2:='rrbar_c2': rrbar_c3:='rrbar_c3': 
>##reset the variables 
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> rbar_c1:=rrbar_c1(q)=2*rrbar_c1(q-1)+rrbar_c3(q-1)+5-3/2-8*2-(4*q) 
> -3/2-4*2-(2*q): 
> rbar_c1base:=rrbar_c1(1)=7: 
> rbar_c2:=rrbar_c2(q)=3*rrbar_c2(q-1)+3*41/2-8*2-(4*q)-3/2-4*2-(2*q): 
> rbar_c2base:=rrbar_c2(1)=7: 
> rbar_c3:=rrbar_c3(q)=rrbar_c1(q-1)+rrbar_c3(q-1)+23/2-5*2-(4*q) 
> -3/2-3*2-(2*q): 
> rbar_c3base:=rrbar_c3(1)=10: 
> rsolve({rbar_c1,rbar_c1base,rbar_c3,rbar_c3base},{rrbar_c1(q), 
> rrbar_c3(q)}): 
> assign(%): bar_c1~=unapply(simplify(rrbar_c1(q)),q): 
> bar_c3:=unapply(simplify(rrbar_c3(q)),q): 
> rsolve({rbar_c2,rbar_c2base},rrbar_c2(q)): 
> bar_c2:=unapply(simplify(%),q): 
# Lemma 6.3: For an Hilbert curve of order k, Omega {c1,c2,c3}: 
> c1:=(k,q)->bar_c1(q)-PiL(q)-(2-q-1)*(2-(2*q)-1): 
> c2:=(k,q)->bar_c2(q)-PiT(q)-PiL(q)+(2-(2*q)-1) 
> +c2-q-1)-2*sumc2-(2*i),i=q .. k-1): 
> c3:=(k,q)->bar_c3(q)-PiT(q)-(2-q-1)*(2-(2*q)-1)+(2-q-1)-2*(2-(2*k) 
> -sumc2-c2*i),i=q .. k-1)-2-(2*q)): 
# Let z=k-q 
> Nc:=(k,q)->(2-q-1)-2: 
> c1z:=(z,q)->c1(z+q,q): 
> c2z:=(z,q)->c2(z+q,q): 
> c3z:=(z,q)->c3(z+q,q): 
> Ncz:=(z,q)->Nc(z+q,q): 
# Lemma 6.4: For an Hilbert curve of order k, Omega {L,R,B,T}: 
# Let z=k-q (because maple only takes one variable for 
# recurrent equation). 
> Ns:=(k,q)->(2-k-2-q+1)*(2-q-1): 
> Nsz:=(z,q)->Ns(z+q,q): 



> rrL:='rrL': rrR:='rrR': rrT:='rrT': rrB:='rrB': 
> rL:=rrL(z)=rrB(z-1)+c1z(z-1,q)+Ncz(z-1,q)*(2-((z+q)-1))-2 
> +rrL(z-1)+Nsz(z-1,q)*(2-((z+q)-1))-2: 
> rLbase:=rrL(O)=PiL(q)-(2-(2*q)-1): 
> rR:=rrR(z)=rrB(z-1)+3*Nsz(z-1,q)*(2-((z+q)-1))-2 
> +c1z(z-1,q)+3*Ncz(z-1,q)*(2-((z+q)-1))-2 
> +rrR(z-1)+2*Nsz(z-1,q)*(2-((z+q)-1))-2: 
> rRbase:=rrR(0)=(2-q-1)*(2-(2*q)-1): 
> rB:=rrB(z)=rrL(z-1)+c3z(z-1,q)+3*Ncz(z-1,q)*(2-((z+q)-1))-2 
> +rrR(z-1)+3*Nsz(z-1,q)*(2-((z+q)-1))-2: 
> rBbase:=rrB(0)=(2-q-1)*(2-(2*q)-1): 
> rT:=rrT(z)=rrT(z-1)+(2-((z+q)-1)-2-q+1)*(2-q-1)*(2-((z+q)-1))-2 
> +c2z(z-1,q)+2*(2-q-1)-2*(2-((z+q)-1))-2 
> +rrT(z-1)+2*(2-((z+q)-1)-2-q+1)*(2-q-1)*(2-((z+q)-1))-2: 
> rTbase:=rrT(O)=PiT(q)-(2-(2*q)-1): 
> rsolve({rL,rLbase,rR,rRbase,rB,rBbase},{rrL(z),rrR(z),rrB(z)}): 
> assign(%): L:=unapply(rrL(z),z,q): R:=unapply(rrR(z),z,q): 
> B:=unapply(simplify(rrB(z)),z,q): 
> rsolve({rT,rTbase},rrT(z)): 
> T:=unapply(simplify(%),z,q): 
# Lemma 6.5: For an Hilbert curve of order k, 
# Let z=k-q 
> oL:=(z,q)->(2-(2*(z+q))-1)*Nsz(z,q)-R(z,q): 
> oR:=(z,q)->(2-(2*(z+q))-1)*Nsz(z,q)-L(z,q): 
> oB:=(z,q)->(2-(2*(z+q))-1)*Nsz(z,q)-B(z,q): 
> oT:=(z,q)->(2-(2*(z+q))-1)*Nsz(z,q)-T(z,q): 
# Lemma 6.6: For an Hilbert curve of order k, 
# Let z=k-q 
> oc3:=(k,q)->(2-(2*k)-1)*Nc(k,q)-c2(k,q): 
> oc3z:=(z,q)->oc3(z+q,q): 
# Theorem 6.1: For a canonical Hilbert of order k, sum of all 
# inter-cluster distances 
# Let z=k-q. 
> rrPsi:='rrPsi': 
> rPsi:=rrPsi(z)=4*rrPsi(z-1)+B(z-1,q)+2-(2*(z+q)-2)*Nsz(z-1,q) 
> -oR(z-1,q)-(2-(2*q)-1)*Nsz(z-1,q) 
> +L(z-1,q)+2*2-(2*(z+q)-2)*Nsz(z-1,q) 
> -(oR(z-1,q)+2-(2*(z+q)-2)*Nsz(z-1,q))-(2-(2*q)-1)*Nsz(z-1,q) 
> +L(z-1,q)+3*2-(2*(z+q)-2)*Nsz(z-1,q) 
> -(oB(z-1,q)+2*2-(2*(z+q)-2)*Nsz(z-1,q))-(2-(2*q)-1)*Nsz(z-1,q) 
> +T(z-1,q)+3*2-(2*(z+q)-2)*Nsz(z-1,q) 
> -(oT(z-1,q))-(2-(2*q)-1)*Nsz(z-1,q) 
> +c2z(z-1,q)+3*2-(2*(z+q)-2)*Ncz(z-1,q) 
> -(oc3z(z-1,q))-(2-(2*q)-1)*Ncz(z-1,q): 
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> rPsiBase:=rrPsi(O)=O: 
> rsolve({rPsi,rPsiBase},rrPsi(z)): Psiz:=unapply(%,z,q): 
# change input parameter to be k,q (k=z+q). 
> Psiq:=unapply(simplify(Psiz(k-q,q)),k,q): 

A.4 Total Inter-cluster Distance over All 2q x 2q Subspaces in Zl 

> Inter-cluster Distance For 2-dimensional z-order Curves. 
# Space is 2-k * 2-k, the rectangular query is 2-q * 2-q 
# where 1<=q<=k 
# Psiq(k,q) denotes the total inter-cluster distances over 
# all 2-q * 2-q rectangular query in a 2-k * 2-k space. 
# If first character of a variable is r for a variable, it is a 
# statement for recurrent equation 
# If the first two characters are r for a variable, it is the 
# intermediate variable for the notations that we want to solve. 
# The intermediate results will appear if replacing 11 : ·11 by 11 ; 11 • 

# Let z=k-q (because maple only takes one variable for recurrent 
# equation). 
# Lemma 6.7: For a z-order curve of order q, Pi {B,L}: 
> rrPiB:='rrPiB': rrPiL:='rrPiL': ## reset variables 
> rPiB:=rrPiB(q)=2*rrPiB(q-1)+5*(2-(q-1))-3: 
> rPiBbase:=rrPiB(1)=5: 
> rPiL:=rrPiL(q)=2*rrPiL(q-1)+4*(2-(q-1))-3: 
> rPiLbase:=rrPiL(1)=4: 
> rsolve({rPiB,rPiBbase,rPiL,rPiLbase},{rrPiB(q),rrPiL(q)}): 
> assign(%): PiB:=unapply(rrPiB(q),q): PiL:=unapply(rrPiL(q),q): 
# Lemma 6.8: For a z-order curve of order q, Omega bar {c1}: 
> rrbar_c1:='rrbar_c1': ## reset the variables 
> rbar_c1:=rrbar_c1(q)=4*rrbar_c1(q-1)+6*(2-(q-1))-4: 
> rbar_c1base:=rrbar_c1(1)=6: 
> rsolve({rbar_c1,rbar_c1base},rrbar_c1(q)): 
> bar_c1:=unapply(simplify(%),q): 
# Lemma 6.9: For a z-order curve of order k, Omega {c1}: 
> c1:=(k,q)->bar_c1(q)-PiB(q)-PiL(q)+(2-(2*q)-1): 
# Let z=k-q 
> Nc:=(k,q)->(2-q-1)-2: 
> c1z:=(z,q)->c1(z+q,q): 
> Ncz:=(z,q)->Nc(z+q,q): 
# Lemma 6.10: For a z-order curve of order k, Omega {L,B}: 
# Let z=k-q (because maple only takes one variable for 
# recurrent equation). 
> Ns:=(k,q)->(2-k-2-q+1)*(2-q-1): 
> Nsz:=(z,q)->Ns(z+q,q): 
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> rrL:='rrL': rrB:='rrB': 
> rL:=rrL(z)=rrL(z-1)+c1z(z-1,q)+Ncz(z-1,q)*(2~((z+q)-1))~2 
> +rrL(z-1)+Nsz(z-1,q)*(2~((z+q)-1))-2: 
> rLbase:=rrL(O)=PiL(q)-(2-(2*q)-1): 
> rB:=rrB(z)=rrB(z-1)+c1z(z-1,q)+2*Ncz(z-1,q)*(2-((z+q)-1))-2 
> +rrB(z-1)+2*Nsz(z-1,q)*(2-((z+q)-1))-2: 
> rBbase:=rrB(O)=PiB(q)-(2-(2*q)-1): 
> rsolve({rL,rLbase,rB,rBbase},{rrL(z),rrB(z)}): 
> assign(%): L:=unapply(rrL(z),z,q): B:=unapply(rrB(z),z,q): 
# Lemma 6.11: For a z-order curve of order k, 
# Let z=k-q 
> oR:=(z,q)->(2-(2*(z+q))-1)*Nsz(z,q)-L(z,q): 
> oT:=(z,q)->(2-(2*(z+q))-1)*Nsz(z,q)-B(z,q): 
# Lemma 6.12: For a z-order curve of order k, 
# Let z=k-q 
> oc4:=(k,q)->(2-(2*k)-1)*Nc(k,q)-c1(k,q): 
> oc4z:=(z,q)->oc4(z+q,q): 
# Theorem 6.2: For a canonical z-order of order k, sum of all 
# inter-cluster distances 
# Let z=k-q. 
> rrPsi:='rrPsi': 
> rPsi:=rrPsi(z)=4*rrPsi(z-1)+B(z-1,q)+2-(2*(z+q)-2)*Nsz(z-1,q) 
> -oT(z-1,q)-(2-(2*q)-1)*Nsz(z-1,q) 
> +L(z-1,q)+3*2-(2*(z+q)-2)*Nsz(z-1,q) 
> -(oR(z-1,q)+2-(2*(z+q)-2)*Nsz(z-1,q))-(2-(2*q)-1)*Nsz(z-1,q) 
> +B(z-1,q)+3*2-(2*(z+q)-2)*Nsz(z-1,q) 
> -(oT(z-1,q)+2*2-(2*(z+q)-2)*Nsz(z-1,q))-(2-(2*q)-1)*Nsz(z-1,q) 
> +L(z-1,q)+2*2-(2*(z+q)-2)*Nsz(z-1,q) 
> -(oR(z-1,q))-(2-(2*q)-1)*Nsz(z-1,q) 
> +c1z(z-1,q)+3*2-(2*(z+q)-2)*Ncz(z-1,q) 
> -(oc4z(z-1,q))-(2-(2*q)-1)*Ncz(z-1,q): 
> rPsiBase:=rrPsi(O)=O: 
> rsolve({rPsi,rPsiBase},rrPsi(z)): Psiz:=unapply(%,z,q): 
# change input parameter to be k,q (k=z+q). 
> Psiq:=unapply(simplify(Psiz(k-q,q)),k,q): 
> Psiq(k,q); 

(k - q) 

2 
q (1 + k - q) 

16 - 2 
q k (k - q) 

4 + 2 + 2 4 
q 

8 

(k - q) q q q q k (k - q) q 
- 2 4 16 - 8 + 2 4 - 2 - 8 + 8 16 
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APPENDIX B 

PROGRAM SOURCE CODES 

B.l 2-Dimensional Space-Filling Curves 

B.1.1 VectorD2D.h 

///////////////////////////////////////////////////////////////////// 
II VectorD2D: a class for the 2D vector. 
II 
II Note: all the indices in program starts from 0 
/////////////////////////////////////////////////I/II//////////////// 
#ifndef __ VECTORD2D_H 
#define __ VECTORD2D_H 
#include <iostream> 
#include <sstream> 
#include <string> 
#include <math.h> 
using namespace std 

class VectorD2D 
{ 

protected: 
int mNumDim; // dimensionality 
long mE[2]; II the coordinates (axis-1, axis-2) 

public: 
VectorD2D() :mNumDim(2) { //constructor, default 2-D 

} 

for (int i=O; i<mNumDim; i++) 
mE[i] =-1; 

VectorD2D(VectorD2D *other):mNumDim(2) 
for (int i=O; i<mNumDim; i++) 

mE[i]=other->mE[i]; 
} 

VectorD2D(int a, int b):mNumDim(2){ 
//VectorD2D(); 
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{ //copy constructor 

//constructor 



} 

mE[O]=a; 
mE[1]=b; 

-vectorD2D() { // destructor 
//delete[] mE; 

} 

int getnDimO { II# of dimension 
return mNumDim; 

} 

int getVofDim(int dim) {//coordinate 
if (dim> getnDim()) 

return -9999; 
return mE[dim]; 

} 

II addition 
VectorD2D add (VectorD2D &other) { 

VectorD2D tmp(this); 
int n_lower = getnDim(); // get the lower dimensionality 
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if (getnDim() >= other.getnDim()) n_lower = other.getnDim(); 
for (int i=O; i< n_lower; i++){ 

tmp.mE[i] += other.mE[i]; 
} 

return tmp; 
} 

II subtraction 
VectorD2D subtract (VectorD2D &other) { 

VectorD2D tmp(this); 

} 

int n_lower = getnDim(); // get the lower dimensionality 
if (getnDim() >= other.getnDim()) n_lower = other.getnDim(); 
for (int i=O; i< n_lower; i++) { 

tmp.mE[i] = other.mE[i]; 
} 

return tmp; 

II multiply 
VectorD2D Multiply (int num) { 

VectorD2D tmp(this); 
for (int i=O; i< tmp.getnDim(); i++) { 



tmp.mE[i] *= num; 
} 

return tmp; 
} 

VectorD2D Multiply (double num) { 

} 

VectorD2D tmp(this); 
for (int i=O; i< tmp.getnDim(); i++) { 

tmp.mE[i] = (int) tmp.mE[i] * num; 
} 

return tmp; 

VectorD2D MultiplyLeftShiftHalf (double num) { 
VectorD2D tmp(this); 

} 

double tmpDouble =0.0; 

for (int i=O; i< tmp.getnDim(); i++) { 
tmpDouble = ((double) tmp.mE[i]) * num; 
if (-1 < tmpDouble && tmpDouble <0) 

tmp.mE[i] = -1; 

} 

else 
tmp.mE[i] 

return tmp; 

(int)( tmp.mE[i] * num); 

II dot opertation 
long dot (VectorD2D 

int tmp = O; 
*other) { 

} 

for (int i=O; i< 
tmp += mE[i] 

} 

return tmp; 

getnDim(); i++) { 
* other->mE[i]; 

long dot (VectorD2D &other) { 

} 

int tmp = O; 
for (int i=O; i< getnDim(); i++) { 

tmp += mE[i] * other.mE[i]; 
} 

return tmp; 
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VectorD2D& copyFrom(VectorD2D &other) { //copy, -1 if error 



} 

int nshortest = getnDim(); 
if (getnDim() >= other.getnDim()) 

nshortest = other.getnDim(); 

for (int i=O; i< nshortest; i++) { 
mE[i] = other.mE[i]; 

} 

return *this; 

II get the shortest 

VectorD2D& copyFrom(VectorD2D *other) { //copy constructor 

} 

int nshortest = getnDim(); 
if (getnDim() >= other->getnDim()) 

nshortest = other->getnDim(); // get the shortest 

for (int i=O; i< nshortest; i++) { 
mE[i] = other->mE [i] ; 

} 

return *this; 

VectorD2D & operator= ( VectorD2D &other) { 
if (this != &other) { 

} 

} 

for (int i=O; i<mNumDim; i++) 
mE[i]=other.mE[i]; 

return *this; 

VectorD2D Normalized() { 
VectorD2D unitVector(*this); 
long sqr_len=O; 
inti; 

for (i=O; i<mNumDim; i++) //sqr sum 
sqr_len += (long) pow(mE[i], 2.0); 

sqr_len = (long) sqrt(sqr_len); // length(distance) 

if (sqr_len != 0) { 

} 

for (i=O; i<mNumDim; i++) 
unitVector.mE[i] /= sqr_len; 

return unitVector; 
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} 

string toString() { 

} 

std: :ostringstream o; 
if (o << *this) 

return o . str () ; 
return 1111. 

' 
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friend std::ostream& operator<< (std: :ostream& o, VectorD2D& v) { 
o << 11 ( 11 << v.getVofDim(O); 

} 

}; 

#end if 

for (int i=1; i< v.getnDim() ; i++) { 
o << 11 , 11 << v.getVofDim(i) 

} 

return o << 11 ) 11 ; 

B.1.2 Node2D.h 

/////////////I//II//////II/I///////////////////II/II///////////////// 
II Node2D: an class for the element in the array.· 
II data: coordinates, index, next element 
II Note: all the indices in program starts from 0 
///////////////////////////////////////////////////I/II/I/I////////// 
#ifndef __ NODE2D_H 
#define __ NODE2D_H 
#include <iostream> 
#include <sstream> 
#include <string> 
#include "VectorD2D.h" 
using namespace std; 

class Node2D { 
private: 

VectorD2D *mData; //coordinates (axis 1, axis 2) 
VectorD2D *mNext; //next indexed element's coordinates 
long mSFCCode;//index 
int mChecked; // mark after visited in a traversal 

public: 
Node2D() { //constructor 

mData = new VectorD2D(-1,-1); 



} 

mNext = NULL; 
mSFCCode = -1; 
mChecked=O; 
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II constructor with input of next node's coordinates, this index 
Node2D(VectorD2D *data, VectorD2D *next, long hcode) { 

} 

if (data != NULL) 
mData = new VectorD2D(data); 

else 
mData=NULL; 

if (next != NULL) 
mNext = new VectorD2D(next); 

else 
mData = NULL; 

mSFCCode = hcode; 
mChecked=O; 

-Node2D() { //destructor 
delete mData; 
delete mNext; 

} 

void setData(long a, long b) { 
VectorD2D tmp(a, b); . 

} 

if (mData == NULL) 
cerr << "NULL for mData" << endl; 

mData->copyFrom(tmp); 

VectorD2D* getNext() { return mNext; } 

VectorD2D* getCoor() {return mData;} 

long getSFCCode() { return mSFCCode; } 

void setNext(VectorD2D *next) { 
if (next != NULL) 

} 

if (mNext == NULL) 
mNext = new VectorD2D(next); 

else 
mNext->copyFrom(next); 



void setSFCCode(long hcode) 

string toString() { 

} 

std: :ostringstream o; 
if (o << *this) 

return o . str O ; 
return 1111. 

' 
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{ mSFCCode = hcode;} 

friend std: :ostream& operator<< (std: :ostream& o, Node2D& v) { 
o << "Node: 11 << *(v.mData) <<" (index code=" 

} 

<< v.getSFCCode(); 
if (v.mNext == NULL) 

o << 11 ) nextNode= (NULL)"; 
else 

o << 11 ) nextNode=" << *(v.mNext) 
return o; 

II The following 3 fxns are for traversal 
void setChecked() { mChecked++; } // mark for been visited 
void setUnChecked() { mChecked=O; } // clear the mark 
int getChecked() { return mChecked; } // the status of the mark 

}; 

#end if 

B.1.3 SFCArray2D .h 

//////////////////////////////II///////////////////////////////////// 
II SFCArray2D: a class for maintaining the indices and coordinates. 
II 
II Note: all the indices in program starts from 0 
////////////ll/ll///l///////////////////////l/lll//////////////////// 
#ifndef SFCARRAY2D_H 
#define SFCARRAY2D_H 
#include <iostream> 
#include <stdio.h> 
#include <malloc.h> 
#include <math.h> 
#include 11 VectorD2D.h 11 

#include 11 Node2D.h 11 

using namespace std 



long two(long x) { II 2Ax 
long one=1; 

} 

long outcome=O; 
if (x<O) 

return -1; 
return one<< x; 

class SFCArray2D { 
private: 

Node2D* mSFCArray; II array of grid points 
long order; II the order 
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long mWidth; II the max width for each coordinate, =2A(order) 
int Successful; II for checking the indexing 
int mSFC; II type sfc, 0: Hilbert; 1: z-order 

II the constructor for a node in SFCArrayNode 
II by taking different input formats. 
Node2D* SFCArrayNode (VectorD2D *location) { 

} 

if (location != NULL) 

else 

return &(mSFCArray[location->getVofDim(O) * mWidth 
+ location->getVofDim(1)]); 

return NULL; 

Node2D* SFCArrayNode (VectorD2D &location) { 

} 

return &(mSFCArray[location.getVofDim(O) * mWidth 
+ location.getVofDim(1)]); 

Node2D* SFCArrayNode (const long i, const long j) { 
if (i < mWidth && i>=O && j <mWidth && j>=O) 

return &(mSFCArray[i * mWidth + j]); 
else 

return NULL; 
} 

public: 
I I Hilbert array 
SFCArray2D(long max, int level, int sfc): mWidth(max), mSFC(sfc), 

Successful(O), order(level) { 
if (max< (long)pow(2.0, level)) { II Array is too small 



} 

} 

} 

cerr << "Overflow in the array"; 
return; 

mSFCArray = new Node2D[max*max]; 
II initiallize elements 
for (long i = O; i< mWidth; i++) { 

} 

for (long j=O; j< mWidth; j++) { 
mSFCArray[i*mWidth + j] .setData(i,j); 

} 

VectorD2D o(O,O); II origin 
VectorD2D DO (max, O); II DO direction 
VectorD2D D1 (O,max); II D1 direction 
II construct the array's nextpoint 
II recusive call to calculate the linkage and the SFC code 
if (mSFC==O) II Hilbert curve 

SFCLineArray(o, DO, D1, level, &o); 
else// z-order curve mSFC==1 

ZLineArray(o, DO, D1, level, &o); 

-sFCArray2D () { 
delete[] mSFCArray; 
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long get Width() { return mWidth; } 

VectorD2D SFCLineArray(VectorD2D &o, VectorD2D &DO, 
VectorD2D &D1, int level, VectorD2D *Prev) { 
VectorD2D tmpo(o), tmpDO(DO), tmpD1(D1); //copy of o, DO, D1 
if (level<= 0) { 

if (Prev->getVofDim(O)<O I I Prev->getVofDim(1)<0 I I 
Prev->getVofDim(O)>=getWidth() I I 
Prev->getVofDim(1)>=getWidth0) 

cerr <<"error, less:"<< (*Prev) << endl; 

if (SFCArrayNode(Prev) == NULL) 
SFCArrayNode(o)->setNext(&o); //no previous node 

else { 

} 

SFCArrayNode(o)->setSFCCode( 
SFCArrayNode(Prev)->getSFCCode()+1); 

SFCArrayNode(Prev)->setNext(&o); 



} 

return o; 
} 

else { 

} 

VectorD2D tmpV; 

tmpV=SFCLineArray(tmpo=o, 
tmpD1=D1.Multiply(.5), tmpDO=DO.Multiply(.5), 
level-1, Prev); IIOO block 

tmpV=SFCLineArray(tmpo=o.add(DO.Multiply(.5)), 
tmpDO=DO.Multiply(.5), tmpD1=D1.Multiply(.5), 
level-1, &tmpV); 1101 block 

tmpV=SFCLineArray(tmpo=o.add(DO.Multiply(.5)). 
add(D1.Multiply(.5)), 
tmpDO=DO.Multiply(.5), tmpD1=D1.Multiply( .5), 
level-1, &tmpV); 1111 block 

tmpV=SFCLineArray(tmpo=o.add(DO.Multiply(.5)). 
add(D1). subtract (DO. Normalized()). 
subtract(D1.Normalized()), 
tmpD1=D1.Multiply(-.5), tmpDO=DO.Multiply(-.5), 
level-1, &tmpV); 1110 block 

return tmpV; 

II z-order 
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VectorD2D ZLineArray(VectorD2D &o, VectorD2D &DO, VectorD2D &D1, 
int level, VectorD2D *Prev) { 

VectorD2D tmpo(o), tmpDO(DO), tmpD1(D1); 
if (level<= 0) { 

} 

if (Prev->getVofDim(O)<O I I Prev->getVofDim(1)<0 I I 
Prev~>getVofDim(O)>=getWidthO 11 

Prev->getVofDim(1)>=getWidth()) { 
cerr << 11 error, less: 11 << (*Prev) << endl; 

} 

if (SFCArrayNode(Prev) == NULL) { II no previous node 
SFCArrayNode(o)->setNext(&o); 

} 

else { 
SFCArrayNode(o)->setSFCCode(SFCArrayNode(Prev) 

->getSFCCode()+1); 
SFCArrayNode(Prev)->setNext(&o); 

} 

return o; 



} 

else { 

} 

VectorD2D tmpV; 

tmpV=ZLineArray(tmpo=o, 
tmpDO=DO.Multiply(.5), tmpD1=D1.Multiply(.5), 
level-1, Prev); IIOO block 

tmpV=ZLineArray(tmpo=o.add(DO.Multiply(.5)), 
tmpDO=DO.Multiply(.5), tmpD1=D1.Multiply(.5), 
level-1, &tmpV); 1101 block 

tmpV=ZLineArray(tmpo=o.add(D1.Multiply(.5)), 
tmpDO=DO'.Multiply(.5), tmpD1=D1.Multiply( .5), 
level-1, &tmpV); 1111 block 

tmpV=ZLineArray(tmpo=o.add(DO.Multiply(.5)). 
add(D1 .Multiply(. 5)), 

tmpDO=DO. Multiply(. 5), tmpD1=DLMultiply(. 5), 
level-1, &tmpV); 1110 block 

return tmpV; 

II--- end of z-order 

const VectorD2D* getNextPoint(VectorD2D *cur) { 
if (cur != NULL && SFCArrayNode(cur)!= NULL) 

return SFCArrayNode(cur)->getNext(); 
else 

return NULL; 
} 

const VectorD2D* getNextV(Node2D *cur) { 
if (cur !=NULL) 

} 

return cur->getNext(); 
else 

return NULL; 

II this will check the indexing for SFC curve 
II return the# of used 
long Check() 
{ 

VectorD2D *tmp = new VettorD2D(O,O); II starting point 
Node2D *tmpNode = SFCArrayNode(tmp);II starting node 
long nChecked=O, II Checked# 

nError=O, II Error# 
old_hcode = -1; II cur_SFCCode 

delete tmp; 
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while (tmpNode !=NULL){ 

} 

if (tmpNode->getSFCCode() != old_hcode+1) 
cout << "Not cotinuous at" << tmpNode->toStringO 
<<" and prev:" << old_hcode <<endl; 

tmpNode->setChecked(); 
if (nChecked>mWidth*mWidth) { 

} 

cout << "Error in the setChecked "<< endl; 
return -1; 

old_hcode = tmpNode->getSFCCode(); 
tmpNode = SFCArrayNode(tmpNode->getNext()); 

for (int i=O; i< getWidth(); i++) 
for (int j=O; j<getWidth(); j++) 

if (SFCArrayNode(i,j) != NULL) 
if (SFCArrayNode(i,j)->getChecked() -- 1) 

nChecked++; 
else 

nError--; 
cout << "init:" << *SFCArrayNode(O,O) << 

" \nend:" << *SFCArrayNode(O,getWidth()-1) << endl; 
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cout << "nError: "<<nError<<" nChecked:" << nChecked << endl; 
if (nError < 0) 

return nError; 
else 

return nChecked; 
} 

II created succesfully? 
int IsSuccessful() { return Successful; } 

long lemma3_1(int r=O) { 
long R1=0,R2; II sum for row, R1 R2 is for comparison 
if (mSFC==O) { 

for (int i=O; i< getWidth() i++){ 
R1=0; II initialize R1 
for (int j=O; j<getWidth(); j++) { 

} 

R1 += abs(SFCArrayNode(i,j)->getSFCCode() -
SFCArrayNode(0,0)->getSFCCode()); 

if (i>O) 
if (R1 != R2) 
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cerr << 11 row 11 << i-1 << 11 != row 11 << i <<endl; 

} 

R2=R1; 
} 

} 

else { II z-order 

} 

for (int j=O; j<getWidth(); j++) 
R1 += abs(SFCArrayNode(r,j)->getSFCCode() -

SFCArrayNode(0,0)->getSFCCode()); 

cout << 11 Sum at row 11 << r << 11 = 11 << R1 << endl; 
return R1; 

long lemma3_2(int c) { II c is column number (indexed from 0) 
long cSum=O; II summation of column c 

} 

for (int i=O; i<getWidth(); i++) 
cSum += abs(SFCArrayNode(i,c)->getSFCCode() -

SFCArrayNode(0,0)->getSFCCode()); 
cout << 11 Sum at column 11 << c << 11 = 11 << cSum << endl; 
return cSum; 

long lemma3_3() { 

} 

long ASum=O, DSum=O; II summation of A, D 
for (int i=O; i<getWidthO; i++} { 

} 

ASum += abs(SFCArrayNode(i,getWidth()-i-1)-> 
getSFCCode() -

SFCArrayNode(0,0)->getSFCCode()); 
DSum += abs(SFCArrayNode(i,i)->getSFCCode() -

SFCArrayNode(0,0)->getSFCCode()); 

if ((mSFC==O && ASum+DSum != two(3*order)-two(order)) I I 
(mSFC==1 && (ASum!=DSum I I 

ASum!= (two(3*order)-two(order))l2))) 
cerr << 11 A+D is incorrect. A+D= 11 << ASum+DSum << endl; 

cout << 11 Sum for A (rk) = 11 << ASum << endl; 
return ASum; 

long lemma3_5(int q) { II 2~q * 2~q is query size 
if (q<=O I I q>order) { 

} 

cerr << 11 0<q<=k only 11 <<endl; 
return -1; 
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long Wbar=O, Nbarq=O, Rbarq=O, Cbarq=O, Abarq=O, 
AbarPrimeq=O, Dbarq=O, DbarPrimeq=O; //summation of Xbar 

inti, j, ri, rj; 
for (i=O; i<getWidth(); i++) 

for (j=O; j<getWidth(); j++) 
Wbar += abs(SFCArrayNode(i,j)->getSFCCode() -

SFCArrayNode(0,0)->getSFCCode()); 
for (i=O; i<two(q); i++) 

for (j=O; j<two(q)-i; j++) 
Nbarq ++; 

for (i=O; i<two(q); i++) 
for (j=O; j<getWidth(); j++) 

Rbarq += abs(SFCArrayNode(i,j)->getSFCCode() -
SFCArrayNode(0,0)->getSFCCode()); 

for (i=O; i<getWidth(); i++) 
for (j=O; j<two(q); j++) 

Cbarq += abs(SFCArrayNode(i,j)->getSFCCode() -
SFCArrayNode(0,0)->getSFCCode()); 

for (i=O; i<two(q); i++) 
for (j=O; j<two(q)-i; j++) { 

} 

rj= getWidth()-j-1; // reverse direction of j 
ri= getWidth()-i-1; // reverse direction of i 
Abarq += abs(SFCArrayNode(i,j)->getSFCCode() -

SFCArrayNode(0,0)->getSFCCode()); 
Dbarq += abs(SFCArrayNode(i,rj)->getSFCCode()

SFCArrayNode(0,0)->getSFCCode()); 
DbarPrimeq += abs(SFCArrayNode(ri,j)-> 

getSFCCode()
SFCArrayNode(0,0)->getSFCCode()); 

AbarPrimeq += abs(SFCArrayNode(ri,rj)-> 
getSFCCode()

SFCArrayNode(0,0)->getSFCCode()); 

if (Wbar != two(4*order-1)-two(2*order-1)) 
cerr << "Wbar error, Wbar= 11 << Wbar << endl; 

if (Nbarq != two(2*q-1)+two(q-1)) 
cerr << "Nbar error, Nbar= 11 << Nbarq << endl; 

if (mSFC==O){ 
if (Rbarq != two(q)*lemma3_1()) 

cerr << "Rbar error, Rbar= 11 << Rbarq << endl; 
if (Cbarq != two(q)*lemma3_2(0)+2*(two(4*q)-two(q))/7) 

cerr << 11 Cbar error, Cbar= 11 << Cbarq << endl; 
long Wbarq_1 = two(4*(q-1))/2-two(2*(q-1))/2; 



} 

long Nbarq_1 = (long)(pow(2.,2*(q-1))/2.+pow(2.,q-1)/2.); 
long ASumq_1 = O; 
for (i=O; i<two(q-1); i++) 
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ASumq_1 +=abs(SFCArrayNode(i,two(q-1)-i-1)->getSFCCode()
SFCArrayNode(O,O)->getSFCCode()); 

//Abar (k,q) == Abar(q,q) 
if (Abarq != 2*Wbarq_1+ASumq_1+two(2*q)*Nbarq_1) 

cerr << "Abar error, Abar= 11 << Abarq << endl; 
if (Dbarq + Abarq != (two(2*order)-1)*Nbarq) 

cerr << "Dbar+Abar error"<< endl; 
if (Dbarq + Abarq != DbarPrimeq+AbarPrimeq) 

cerr << "Dbar+Abar = Abar' + Dbar' error"<< endl; 
} 

else { // z-order 
if (Rbarq != two(q)*lemma3_1(0)+ 

(two(order+3*q)-two(order+q))/6) 
cerr << "Rbar error, Rbar=" << Rbarq << endl; 

if (Cbarq != two(q)*lemma3_2(0)+ 
(two(order+3*q)-two(order+q))/3) 

cerr << "Cbar error, Cbar= 11 << Cbarq << endl; 
long ASumq = O; 
for (i=O; i<two(q); i++) 

ASumq += abs(SFCArrayNode(i,two(q)-i-1)->getSFCCode() -
SFCArrayNode(0,0)->getSFCCode()); 

II Abar (k,q)==Abar(q,q) 
if (Abarq != (two(4*q)+7*two(3*q-2)-7*two(2*q-2)-two(q))/7) 

cerr << "Abar error, Abar= 11 << Abarq << endl; 
} 

cout << "Abar(q)="<<Abarq <<" Abar'(q)="<<AbarPrimeq 
<< 11 Dbar(q)="<<Dbarq <<" Dbar'(q)="<<DbarPrimeq << endl; 

return DbarPrimeq; 

long lemma3_6(int q) { // 2-q * 2-q is query size 
if (q<=O I I q>order) { 

} 

cerr << "O<q<=k only"<<endl; 
return -1; 

long Nq=O, Rq=O, Cq=O, Aq=O, 
APrimeq=O, Dq=O, DPrimeq=O; //summation of X 

inti, j, ri, rj; 
for (i=O; i<two(q); i++) 

for (j=O; j<two(q)-i; j++) 
Nq += (two(q)-i-j); 



for (i=O; i<two(q); i++) 
for (j=O; j<getWidth(); j++) 

Rq += abs(SFCArrayNode(i,j)->getSFCCode() -
SFCArrayNode(0,0)->getSFCCode())*(two(q)-i); 

for (i=O; i<getWidth(); i++) 
for (j=O; j<two(q); j++) 

Cq += abs(SFCArrayNode(i,j)->getSFCCode() -
SFCArrayNode(0,0)->getSFCCode())*(two(q)-j); 

for (i=O; i<two(q); i++) 
for (j=O; j<two(q)-i; j++) { 

} 

rj= getWidth()-j-1; // reverse direction of j 
ri= getWidth()-i-1; // reverse direction of i 
Aq += abs(SFCArrayNode(i,j)->getSFCCode() -

SFCArrayNode(0,0)->getSFCCode())*(two(q)-i-j); 
Dq += abs(SFCArrayNode(i,rj)->getSFCCode()

SFCArrayNode(0,0)->getSFCCode())*(two(q)-i-j); 
DPrimeq += abs(SFCArrayNode(ri,j)-> 

getSFCCode()
SFCArrayNode(0,0)->getSFCCode())*(two(q)-i-j); 

APrimeq += abs(SFCArrayNode(ri,rj)-> 
getSFCCode()

SFCArrayNode(0,0)->getSFCCode())*(two(q)-i-j); 

double ftmp=(pow(2.,3*q-1)+3*pow(2.,2*q-1)+pow(2.,q))/3.; 
if (Nq != ftmp) 
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cerr << "N error, N= "<<Nq <<"formula="<< ftmp << endl; 
if (mSFC ==O) {//Hilbert curve 
if (Rq != lemma3_1()*(two(q)+1)*two(q)/2) 

cerr << "R error, R= 11 << Rq << endl; 
if (Cq != (3*two(3*order+2*q-2)+3*two(3*order+q-2) 

-7*two(order+2*q-2)-7*two(order+q-2)+(two(5*q+3) 
+7*two(q))/15+two(4*q))/7) 

cerr << "C error, C= II<< Cq << endl; 
if (Dq + Aq != (two(2*order)-1)*Nq) 

cerr << "D+A error" << endl; 
if (Dq + Aq != DPrimeq+APrimeq) 

cerr << "D+A = A' + D' error"<< endl; 
ftmp=7./45.*pow(2.0,5*q-2)+3.*pow(2. ,4*q-4) 

+5./9.*pow(2.,3*q-2)-pow(2.,2*q-2)-pow(2.,q+3)/45.; 
if (Aq != ftmp) 

cerr << "A error, A= 11 <<Aq<<" formula=" << ftmp << endl; 
ftmp=11./45.*pow(2.0,5*q-2)+3.*pow(2.,4*q-4)+pow(2.,3*q-2)/9. 

-pow(2.,2*q-2)-pow(2.,q+2)/45.; // D'q,q 
if (DPrimeq != Nq*(two(2*order)-two(2*q))/3+ftmp) 



} 

cerr << "D' error, D'=" << DPrimeq <<"formula=" 
<< Nq*(two(2*order)-two(2*q))/3+ftmp << endl; 

} else 
{ 

if (Rq != (two(3*order+2*q-1)*7+two(3*order+q-1)*7 
+two(order+4*q)+two(order+3*q-2)*7 
-two(order+2*q-2)*21-two(order+q-1)*9)/21) 

cerr << "R error, R=" << Rq << endl; 
if (Cq != (two(3*order+2*q-2)*7+two(3*order+q-2)*7 

+two(order+4*q+1)+two(order+3*q-1)*7 
-two(order+2*q-2)*21-two(order+q-2)*15)/21) 

cerr << "C error, C=" << Cq << endl; 
if (Aq + APrimeq != (two(2*order)-1)*Nq) 

cerr << "A+A' error"<< endl; 
if (Dq + DPrimeq != Aq+APrimeq) 

cerr << "D+D' =A+ A' error" << endl; 
ftmp=(pow(2.,5*q-3)*5.+3.*pow(2.,4*q)+7.*pow(2.,3*q-2) 

-pow(2.,2*q-3)*33-pow(2.,q-2)*5.)/21.; 
if (Aq != ftmp) 
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cerr << "A error, A=" <<Aq<<" formula="<< ftmp << endl; 
ftmp=(pow(2.,5*q-3)*11.+9.*pow(2.,4*q-1)+7.*pow(2.,3*q-2) 

-pow(2. ,2*q-3)*39-pow(2. ,q-2)*11.)/21.; /ID' (q,q) 
if (DPrimeq != Nq*(two(2*order)-two(2*q))/3+ftmp) 

} 

cerr << "D' error, D'=" << DPrimeq <<"formula=" 
<< Nq*(two(2*order)-two(2*q))/3+ftmp << endl; 

cout << "A(q)="<<Aq <<" A'(q)="<<APrimeq 
<< "D(q)="<<Dq <<" D'(q)="<<DPrimeq << endl; 

return DPrimeq; 

II distance for 1-normed distance 
long theorem3_1(int q) { 

long delta=two(q), sumDist=O, sumNeighbor=O; 
double ftmp; //tmp variable for formula 
int ni; // ni-th upper or lower neighbor 
for (int i=O; i< getWidth() ; i++) 
for (int j=O; j<getWidth(); j++) { 

if (i+delta<getWidth()) { 

} 

sumDist += abs( 
SFCArrayNode(i,j)->getSFCCode() -

SFCArrayNode(i+delta,j)->getSFCCode()); 
sumNeighbor++; 



} 
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if (i-delta>=O) { 

} 

sumDist += abs( 
SFCArrayNode(i,j)->getSFCCode() -
SFCArrayNode(i-delta,j)->getSFCCode()); 

sumNeighbor++; 

for (ni=delta-1; ni>=O; ni--){ II upper neighbors 

} 

if (i+ni<getWidth() && j+delta-ni<getWidth()) { 
sumDist +=abs(SFCArrayNode(i,j)->getSFCCode()

SFCArrayNode(i+ni,j+delta-ni)->getSFCCode()); 
sumNeighbor++; 

} 
if (i+ni<getWidth() && j-delta+ni>=O) { 

} 

sumDist +=abs(SFCArrayNode(i,j)->getSFCCode()
SFCArrayNode(i+ni,j-delta+ni)->getSFCCode()); 

sumNeighbor++; 

for (ni=1; ni<=delta-1; ni++){ II lower neighbors 
if (i-ni>=O && j+delta-ni<getWidth()) { 

} 

} 

sumDist += abs(SFCArrayNode(i,j)->getSFCCode()
SFCArrayNode(i-ni,j+delta-ni)->getSFCCode()); 

sumNeighbor++; 

if (i-ni>=O && j-delta+ni>=O) { 

} 

sumDist += abs(SFCArrayNode(i,j)->getSFCCode()
SFCArrayNode(i-ni,j-delta+ni)->getSFCCode()); 

sumNeighbor++; 

sumDist /= 2;//everyone had been summed twice 
if (mSFC==O) { //Hilbert curve 
if (q==O) 

ftmp = (51*two(3*order)-35*two(2*order)-16)/42; 
else 

ftmp = pow(2.,3*order+2*q)*17./14.-(8.*3.*25.*7.* 
(order-q)+35.*383.)/(16.*27.*35.)*pow(2. ,2*order+3*q) 
+(30.*(order-q)-1.)*pow(2.,2*order+q)/(4.*27.)-164.* 
pow(2.,5*q)/(27.*35.)-2*pow(2. ,3*q)/27.-2*pow(2.,q)/15.; 

} else { // z-order curve 
if (q==O) 

ftmp = (two(3*order)-two(order)); 
else 



} 

} 
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ftmp = pow(2.,3*order+2*q)
((order-q)*2./9.+1949/(32.*27.*7.))*pow(2.,2*order+3*q) 
+(2./9.*(order-q)+7/(4.*27.))*pow(2.,2*order+q)+ 
19./(4.*3.*7.)*pow(2.,2*order)-4./7.*pow(2.,order+4*q) 
-3./7.*pow(2.,order+q)+10./(27.*7.)*pow(2.,5*q) 
-pow(2.,3*q+2)/27.+pow(2.,2*q+1)/21.; 

if (ftmp != sumDist) 
cerr << "Ldelta error, formula= 11 << ftmp << endl; 

cout <<"Total distance(delta="<<delta<<"): 11 << sumDist 
<< 11 Sum of neighbor:"<< sumNeighbor <<endl; 

return sumDist; 

double pnorm(VectorD2D *V, VectorD2D *U, double p) { 

} 

return pow(pow(abs(v->getVofDim(O)-u->getVofDim(O)),p)+ 
pow(abs(v->getVofDim(1)-u->getVofDim(1)),p),1/p); 

void theorem4_3and4() { 
VectorD2D *rep1, *rep2, *rep3, *rep4, //representative 

*tmp= new VectorD2D(O,O); 
Node2D *tmpNode, *tmpNode2; //other nodes compared with tmpNode 
double dp, maxV=O., LAN; 
int numberMax=O; // number of representative pairs 

for (int p=1; p<4; p++){ II p-normed value 
maxV=O; tmpNode= SFCArrayNode(tmp); // starting node 

while (tmpNode !=NULL) { 
tmpNode2 = SFCArrayNode (tmpNode->getNext ()); 
while (tmpNode2!=NULL) { 

dp=pnorm(tmpNode->getCoor(), tmpNode2->getCoorO ,p); 
LAN=dp*dp/(tmpNode2->getSFCCode()-tmpNode->getSFCCode()); 
if (LAN> maxV){ 

maxV=LAN; numberMax=1; 
rep1=tmpNode->getCoor(); 
rep2=tmpNode2->getCoor(); 

} else if (LAN== maxV) {// another pair 
numberMax++; 
rep3=tmpNode->getCoor(); 
rep4=tmpNode2->getCoor(); //keep 2 pairs only. 

} 

tmpNode2=SFCArrayNode(tmpNode2->getNext()); 



} 

} 
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} 

tmpNode = SFCArrayNode(tmpNode->getNext()); 
} 

if ( (p==i && 

maxV != 9.-3.*pow(2.,-order+3)+pow(2.,-2*order+4)) 
I I (p>i && maxV != (pow(2.,2*order-3)-pow(2.,order-i)+ 

1.l2.)*6.l(pow(2.,2*order-3)+i))) 
cerr << 11 p= 11 << p << 11 error 11 << endl; 

cout << 11 p= 11 << p<< 11 Max value= 11 << maxV<< endl 
<< numberMax << 11 representative pair(s) are 11 

<< repi->toStringO << rep2->toStringO; 
if (numberMax>i) 

cout << 11 and 11 << repi->toString() << rep2->toString(); 
cout << endl 

delete tmp; II it was temporary starting point 

void lemma6_i() { 
long PiT=O, PiL=O, PiB=O, maxi, tmp; 
if (mSFC==O) II Hilber curve 
for (int ri=O; ri< getWidth() ; ri++){ 

maxi=O; II initialize maxi 

} 

for (int i=ri; i<getWidth(); i++) 
for (int j=O; j<getWidth(); j++) 

if ((tmp= abs(SFCArrayNode(i,j)->getSFCCode() -
SFCArrayNode(0,0)->getSFCCode())) > maxi) 

maxi=tmp; 
PiT += maxi; 

else llz-order curve 
for (int ri=O; ri< getWidth() ri++){ 

maxi=O; II initialize maxi 

} 

for (int i=O; i<=ri; i++) 
for (int j=O; j<getWidth(); j++) 

if ((tmp= abs(SFCArrayNode(i,j)->getSFCCode() -
SFCArrayNode(0,0)->getSFCCode())) > maxi) 

maxi=tmp; 
PiB += maxi; 

for (int rj=O; rj< getWidth() ; rj++){ 
maxi=O; II initialize maxi 
for (int i=O; i<getWidth(); i++) 



} 

} 

for (int j=O; j<=rj; j++) 
if ((tmp= abs(SFCArrayNode(i,j)->getSFCCode() -

SFCArrayNode(0,0)->getSFCCode())) > maxi) 
max1=tmp; 

PiL += maxi; 

if (mSFC==O) II Hilbert curve 
cout << "PiT= 11 << PiT; 

else II z-order curve 
cout << "PiB= 11 << PiB; 

cout << 11 PiL=" << PiL << endl; 
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void lemma6_2() { 
long barc1=0, barc2=0, barc3=0, maxi, tmp; 
int ri, rj, i, j; 
for (ri=O; ri< getWidth() ; ri++) 
for (rj=O; rj< getWidth() ; rj++){ 

} 

max1=0; II initialize maxi 
for (i=O; i<=ri; i++) 
for (j=O; j<=rj; j++) 

if ((tmp= abs(SFCArrayNode(i,j)->getSFCCode() -
SFCArrayNode(0,0)->getSFCCode())) > maxi) 

max1=tmp; 
bare! += maxi; 

for (ri=O; ri< getWidth() ; ri++) 
for (rj=O; rj< getWidth() ; rj++){ 

} 

max1=0; II initialize maxi 
for (i=ri; i<getWidth(); i++) 
for (j=O; j<=rj; j++) 

if ((tmp= abs(SFCArrayNode(i,j)->getSFCCode() -
SFCArrayNode(0,0)->getSFCCode())) > maxi) 

max1=tmp; 
barc2 += maxi; 

for (ri=O; ri< getWidth() ; ri++) 
for (rj=O; rj< getWidth() ; rj++){ llc3area is z-order's c4 

max1=0; II initialize maxi 
for (i=ri; i<getWidth(); i++) 
for (j=rj; j<getWidth(); j++) 

if ((tmp= abs(SFCArrayNode(i,j)->getSFCCode() -
SFCArrayNode(0,0)->getSFCCode())) > maxi) 

max1=tmp; 



} 

barc3 += maxi; 
} 

if (mSFC==O) II Hilbert 

else 

cout << "bar ci= 11 << barci << 11 bar c2= 11 << barc2 
<< 11 bar c3= 11 << barc3<< endl; 

cout << "bar ci=" << barci << endl; 

void lemma6_3(int q) { 
long ci=O, c2=0, c3=0, maxi, tmp; 
int ri, rj, i, j; 
for (ri=O; ri< two(q)-i ; ri++) 
for (rj=O; rj< two(q)-i ; rj++){ 

maxi=O; // initialize maxi 
for (i=O; i<=ri; i++) 
for (j=O; j<=rj; j++) 

if ((tmp= abs(SFCArrayNode(i,j)->getSFCCode() -
SFCArrayNode(0,0)->getSFCCode())) > maxi) 

maxi=tmp; 
ci += maxi; 

} 

for (ri=getWidth()-two(q)+2-i; ri< getWidth() ri++) 
for (rj=O; rj< two(q)-i ; rj++){ 

} 

maxi=O; // initialize maxi 
for (i=ri; i<getWidth(); i++) 
for (j=O; j<=rj; j++) 

if ((tmp= abs(SFCArrayNode(i,j)->getSFCCode() -
SFCArrayNode(0,0)->getSFCCode())) > maxi) 

maxi=tmp; 
c2 += maxi; 

for (ri=getWidth()-two(q)+2-i; ri< getWidth() 
for (rj=getWidth()-two(q)+2-i; rj< getWidth() 

maxi=O; // initialize maxi 

ri++) 
rj++){ 

} 

for (i=ri; i<getWidth(); i++) 
for (j=rj; j<getWidth(); j++) 

if ((tmp= abs(SFCArrayNode(i,j)->getSFCCode() -
SFCArrayNode(0,0)->getSFCCode())) > maxi) 

maxi=tmp; 
c3 += maxi; // z-order's c4 

if (mSFC==O) //Hilbert 
cout << "ci= 11 << ci << 11 c2= 11 << c2 
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} 

<< 11 c3= 11 << c3<< endl; 
else //z-order 

cout << 11 ci= 11 << ci << endl; 

void lemma6_4(int q) { 

} 

long L=O, R=O, B=O, maxi, tmp; 
int ri, rj, i, j; 
for (ri=O; ri< getWidth()-two(q)+1 ri++) 
for (rj=O; rj< two(q)-i ; rj++){ 

} 

max1=0; // initialize max! 
for (i=ri; i<=ri+two(q)-1; i++) 
for (j=O; j<=rj; j++) 

if ((tmp= abs(SFCArrayNode(i,j)->getSFCCode() -
SFCArrayNode(0,0)->getSFCCode())) > maxi) 

max1=tmp; 
L += max!; 

for (ri=O; ri< getWidth()-two(q)+1 ; ri++) 
for (rj=getWidth()-two(q)+2-1; rj< getWidth() rj++){ 

max1=0; // initialize max! 

} 

for (i=ri; i<=ri+two(q)-1; i++) 
for (j=rj; j<getWidth(); j++) 

if ((tmp= abs(SFCArrayNode(i,j)->getSFCCode() -
SFCArrayNode(0,0)->getSFCCode())) > max!) 

max1=tmp; 
R += max!; 

for (ri=O; ri< two(q)-1 ; ri++) 
for (rj=O; rj< getWidth()-two(q)+1; rj++){ 

max1=0; // initialize max! 

} 

for (i=O; i<=ri; i++) 
for (j=rj; j<=rj+two(q)-1; j++) 

if ((tmp= abs(SFCArrayNode(i,j)->getSFCCode() -
SFCArrayNode(0,0)->getSFCCode())) > maxi) 

max1=tmp; 
B += max!; 

cout << 11 L= 11 << L << 11 R= 11 << R 
<< 11 B= 11 << B << endl; 

void lemma6_5(int q) { 
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long L=O, R=O, B=O, T=O, mini, tmp; 
int ri, r j , i, j ; 
for (ri=O; ri< getWidth()-two(q)+i ri++) 
for (rj=O; rj< two(q)-i ; rj++){ 

} 

mini=getWidth()*getWidth(); // initialize mini 
for (i=ri; i<=ri+two(q)-i; i++) 
for (j=O; j<=rj; j++) 

if ((tmp= abs(SFCArrayNode(i,j)->getSFCCode() -
SFCArrayNode(0,0)->getSFCCode())) <mini) 

mini=tmp; 
L += mini; 

for (ri=O; ri< getWidth()-two(q)+i ; ri++) 
for (rj=getWidth()-two(q)+2-i; rj< getWidth() ; rj++){ 

mini=getWidth()*getWidth(); // initialize mini 

} 

for (i=ri; i<=ri+two(q)-i; i++) 
for (j=rj; j<getWidth(); j++) 

if ((tmp= abs(SFCArrayNode(i,j)->getSFCCode() -
SFCArrayNode(0,0)->getSFCCode())) <mini) 

mini=tmp; 
R += mini; 

for (ri=O; ri< two(q)-i ; ri++) 
for (rj=O; rj< getWidth()-two(q)+i; rj++){ 

mini=getWidth()*getWidth(); // initialize mini 
for (i=O; i<=ri; i++) 

} 

for (j=rj; j<=rj+two(q)-i; j++) 
if ((tmp= abs(SFCArrayNode(i,j)->getSFCCode() -

SFCArrayNode(0,0)->getSFCCode())) < mini) 
mini=tmp; 

B += mini; 

for (ri=getWidth()-two(q)+2-i; ri< getWidth() ; ri++) 
for (rj=O; rj< getWidth()-two(q)+i; rj++){ 

} 

mini=getWidth()*getWidth(); // initialize mini 
for (i=ri; i<getWidth(); i++) 
for (j=rj; j<=rj+two(q)-i; j++) 

if ((tmp= abs(SFCArrayNode(i,j)->getSFCCode() -
SFCArrayNode(0,0)->getSFCCode())) < mini) 

mini=tmp; 
T += mini; 

cout << 11 thetai L= 11 << L << 11 R= 11 << R 
<< 11 B= 11 << B << 11 T= 11 << T << endl; 
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} 

void lemma6_6(int q) { 

} 

long ci=O, c2=0, c3=0, mini, tmp; 
int ri, rj, i, j; 
for (ri=O; ri< two(q)-i ; ri++) 
for (rj=O; rj< two(q)-i ; rj++){ 

} 

mini=getWidth()*getWidth();; II initialize maxi 
for (i=O; i<=ri; i++) 
for (j=O; j<=rj; j++) 

if ((tmp= abs(SFCArrayNode(i,j)->getSFCCode() -
SFCArrayNode(0,0)->getSFCCode())) <mini) 

mini=tmp; 
ci += mini; 

for (ri=getWidth0-two(q)+2-i; ri< getWidth() ; ri++) 
for (rj=O; rj< two(q)-i ; rj++){ 

} 

mini=getWidth()*getWidth();; II initialize maxi 
for (i=ri; i<getWidth(); i++) 
for (j=O; j<=rj; j++) 

if ((tmp= abs(SFCArrayNode(i,j)->getSFCCode() -
SFCArrayNode(0,0)->getSFCCode())) <mini) 

mini=tmp; 
c2 += mini; 

for (ri=getWidth()-two(q)+2-i; ri< getWidth() ; ri++) 
for (rj=getWidth()-two(q)+2-i; rj< getWidth() ; rj++){ 

} 

mini=getWidth()*getWidth();; II initialize maxi 
for (i=ri; i<getWidth(); i++) 
for (j=rj; j<getWidth(); j++) 

if ((tmp= abs(SFCArrayNode(i,j)->getSFCCode() -
SFCArrayNode(0,0)->getSFCCode())) <mini) 

mini=tmp; 
c3 += mini; 

II area of c4 for z-order is the area of c3 for Hilbert 
if (mSFC==O) 

else 

cout << 11 thetai ci= 11 << ci << 11 c2= 11 << c2 
<< 11 c3= 11 << c3<< endl; 

cout << 11 thetai c4=" << c3 << endl; 

void theorem6_i(int q) { 
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} 

}; 

#end if 

long Psiq=O, mini, maxi, tmp; 
int ri, rj, i, j; 
for (ri=O; ri< getWidth()-two(q)+i ; ri++) 
for (rj=O; rj< getWidth()-two(q)+i ; rj++){ 

} 

mini=getWidth()*getWidth(); II initialize mini 
maxi=O; II initialize maxi 
for (i=ri; i<=ri+two(q)-i; i++) 
for (j=rj; j<=rj+two(q)-i; j++) { 

} 

if ( (tmp= abs (SFCArrayNode (i, j )->getSFCCode () -
SFCArrayNode(0,0)->getSFCCode())) <mini) 

mini=tmp; 
if (tmp>maxi) 

maxi=tmp; 

Psiq += (maxi-mini-two(q)*two(q)+i); 

cout << "Psiq=" << Psiq << endl; 

B.1.4 2D.cpp 
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IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
II 2D.cpp: the interface 
II 
II Note: all the indices in program starts from 0 
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
#include <iostream> 
#include "Node2D.h" 
#include "VectorD2D.h" 
#include "SFCArray2D.h" 

SFCArray2D *HA; 

void init (int nLevel, int sfctype) { 
long tmp =(long) pow(2.0,nLevel); 
HA= new SFCArray2D(tmp ,nLevel, sfctype); 

} 

int main(char * s[]) { 
int q=2; II query size 2-q * 2-q, or distance 2-q, q must be>= 0 
int sfctype=i; IIO: Hilbert, i:z-order 
for (int k=i; k<iO; k++) { 



II 

} 

} 

init(k, sfctype); 
if (sfctype==O) 
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cout <<"============Hilbert Curve===========" << endl; 
else 

cout << "============ z-Order Curve===========" << endl; 
if (HA->IsSuccessful()) { 

return -1; 
} 

cout << 11 k: 11 << k << 11 q=" << q << endl; 
HA->Check(); 

cout << "Lemma 3.1 (3.7 for z-order)" << endl; 
HA->lemma3_1(0); // parameter:row number (indexed from 0) 
cout << "Lemma 3.2 (3.8 for z-order)" << endl; 
HA->lemma3_2(0); // parameter:column number (indexed from 0) 
cout << "Lemma 3.3 (3.9 for z-order)" << endl; 
HA->lemma3_3(); 
cout << "Lemma 3.5 (3.11 for z-order)" << endl; 
HA->lemma3_5(q); 
cout << "Lemma 3.6 (3.12 for z-order)" << endl; 
HA->lemma3_6(q); 
cout << "Theorem 3.1 (3.2 for z-order)" << endl; 
HA->theorem3_1(q); 
cout << "Theorem 4.3 and 4.4" << endl; //Not for z-order 
HA->theorem4_3and4(); 
cout << "Lemma 6.1 (6.7 for z-order)" << endl; 
HA->lemma6_1(); 
cout << "Lemma 6.2 (6.8 for z-order)" << endl; 
HA->lemma6_2(); 
cout << "Lemma 6.3 (6.9 for z-order)" << endl; 
HA->lemma6_3(q); 
cout << "Lemma 6.4 (6.10 for z-order)" << endl; 
HA->lemma6_4(q); 
cout << "Lemma 6.5 (6.11 for z-order)" << endl; 
HA->lemma6_5(q); 
cout << "Lemma 6.6 (6.12 for z-order)" << endl; 
HA->lemma6_6(q); 
cout << "Theorem 6.1 (6.2 for z-order)" << endl; 
HA->theorem6_1(q); 

delete HA; 

return O; 
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B.2 3-Dimensional Space-Filling Curves 

B.2.1 VectorD3D.h 

/////////////////II/II/////////////////////////II//III/IIII/I/II///// 
II VectorD3D: a class for 3D vector. 
II 
II Note: all the indices in program starts from 0 
//II//II//////////I////////II/III/I//////////////////I////I//III////I 
#ifndef __ VECTORD3D_H 
#define VECTORD3D_H 
#include <iostream> 
#include <sstream> 
#include <string> 
#include <math.h> 
using namespace std 

class VectorD3D { 
protected: 

int mNumDim; 
long mE[3]; II the value for each dimension 

public: 
VectorD3D():mNumDim(3) {//constructor 

for (int i=O; i<mNumDim; i++) 
mE[i] =-1; 

} 

VectorD3D(VectorD3D *other):mNumDim(3) { // constructor 
for (int i=O; i<mNumDim; i++) 1 

mE[i]=other->mE[i]; 
} 

VectorD3D(int a, int b, int c) :mNumDim(3){ // for coordinate 
mE[O]=a; 
mE[i]=b; 
mE[2]=c; 

} 

-vectorD3D() { /*delete[] mE;*/} II destructor 

int getnDimO{ II# of dimension 
return mNumDim; 

} 



int getVofDim(int dim) {//value in each dimension 
if (dim> getnDim()) 

return -9999; 
return mE[dim]; 

} 

II addition 
VectorD3D add (VectorD3D &other) { 

VectorD3D tmp(this); 
int nshortest = getnDim(); 
if (getnDim() >= other,getnDim()) 

nshortest = other.getnDim(); // get the shortest 
for (int i=O; i< nshortest; i++) { 

tmp.mE[i] += other.mE[i]; 
} 

return tmp; 
} 

II subtraction 
VectorD3D subtract (VectorD3D &other) { 

VectorD3D tmp(this); 
int nshortest = getnDim(); 
if (getnDim() >= other.getnDim()) 

nshortest = other.getnDim(); // get the shortest 
for (int i=O; i< nshortest; i++) { 

tmp.mE[i] -= other.mE[i]; 
} 

return tmp; 
} 

II multiply 
VectorD3D Multiply (int num) { 

VectorD3D tmp(this); 

} 

for (int i=O; i< tmp.getnDim(); i++) 
tmp.mE[i] *= num; 

return tmp; 

VectorD3D Multiply (double num) { 
VectorD3D tmp(this); 
for (int i=O; i< tmp.getnDim(); i++) 

tmp.mE[i] = (int) tmp.mE[i] * num; 
return tmp; 
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} 

VectorD3D MultiplyLeftShiftHalf (double num) { 
VectorD3D tmp(this); 

} 

double tmpDouble =0.0; 
for (int i=O; i< tmp.getnDim(); i++) { 

tmpDouble = ((double) tmp.mE[i]) * num; 
if (-1 < tmpDouble && tmpDouble <0) 

tmp.mE[i] = -1; 

} 

else 
tmp.mE[i] 

return tmp; 

(int)( tmp.mE[i] * num); 

II dot opertation 
long dot (VectorD3D *other) { 

int tmp = O; 

} 

for (int i=O; i< getnDim(); i++) 
tmp += mE[i] * other->mE[i]; 

return tmp; 

long dot (VectorD3D &other) { 

} 

int tmp = O; 
for (int i=O; i< getnDim(); i++) 

tmp += mE[i] * other.mE[i]; 
return tmp; 
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VectorD3D& copyFrom(VectorD3D &other){llcopy, return -1 for error 
int nshortest = getnDim(); 

} 

if (getnDim() >= other.getnDim()) 
nshortest = other.getnDim(); II get the shortest 

for (int i=O; i< nshortest; i++) 
mE[i] = other.mE[i]; 

return *this; 

VectorD3D& copyFrom(VectorD3D *other){ II constructor 
int nshortest = getnDim(); 
if (getnDim() >= other->getnDim()) 

nshortest = other->getnDim(); II get the shortest 



} 

for (int i=O; i< nshortest; i++) 
mE[i] = other->mE[i]; 

return *this; 

VectorD3D & operator= ( VectorD3D &other) { 
if (this != &other) { 

} 

} 

for (int i=O; i<mNumDim; i++) 
mE[i]=other.mE[i]; 

return *this; 

VectorD3D Normalized() { 

} 

VectorD3D unitVector(*this); 
long sqr_len=O; 
int i; 

for (i=O; i<mNumDim; i++) //sqr sum 
sqr_len += (long) pow(mE[i], 2.0); 

sqr_len = (long) sqrt(sqr_len); // length(distance) 

if (sqr_len != 0) { 

} 

for (i=O; i<mNumDim; i++) 
unitVector.mE[i] /= sqr_len; 

return unitVector; 

string toString() { 

} 

std: :ostringstream o; 
if (o << *this) 

return o . str () ; 
return 1111. 

' 

233 

friend std: :ostream& operator<< (std: :ostream& o, VectorD3D& v){ 
o << 11 ( 11 << v.getVofDim(O); 
for (int i=1; i< v.getnDim() ; i++) 

o << 11 , 11 << v. getVofDim(i) ; 
return o << 11 ) 11 ; 

} 



}; 

#end if 

B.2.2 Node3D.h 
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/////////////////II/II/II/II/IIIIII/III//II////////////////////////// 
II Node3D: a class for the element in the array. 
II data: coordinates, index, next element 
II Note: all the indices in program starts from 0 
///////////////////////////////////////////////////////////////////// 
#ifndef __ NODE3D_H 
#define NODE3D_H 
#include <iostream> 
#include <sstream> 
#include <string> 
#include "VectorD3D.h" 
using namespace std; 

class Node3D { 
private: 

VectorD3D *mData; 
VectorD3D *mNext; 
long mSFCCode; 
int mChecked; 

public: 
Node3D() { //constructor 

} 

mData = new VectorD3D(-1,-1,-1); 
mNext = NULL; 
mSFCCode = -1; 
mChecked=O; 

Node3D(VectorD3D *data, VectorD3D *next, long hcode){//constructor 
if (data != NULL) 

} 

mData = new VectorD3D(data); 
else 

mData=NULL; 
if (next != NULL) 

mNext = new VectorD3D(next); 
else 

mData = NULL; 
mSFCCode = hcode; 
mChecked=O; 



-Node3D() { 
delete rnData; 
delete rnNext; 

} 

void setData(long a, long b, long c) { 
VectorD3D trnp(a,b, c); 

} 

if (rnData == NULL) 
cerr << "NULL for rnData" << endl; 

rnData->copyFrorn(trnp); 

VectorD3D* getNext() { 
return rnNext; 

} 

long getSFCCode() { 
return rnSFCCode; 

} 

void setNext(VectorD3D *next) { 
if (next != NULL) { 

if (rnNext == NULL) 
rnNext = new VectorD3D(next); 

else 
rnNext->copyFrorn( next); 

} 

} 

void setSFCCode(long hcode) { 
rnSFCCode = hcode; 

} 

string toString() { 

} 

std: :ostringstrearn o; 
if (o << *this) 

return o.str(); 
return 1111. 

' 
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friend std: :ostrearn& operator<< (std: :ostrearn& o, Node3D& v) { 
o << "Node: 11 << *(v.rnData) << 11 (SFCCode=" << v.getSFCCode(); 
if (v.rnNext == NULL) 



} 

o << ") nextNode= (NULL)"; 
else 

o << ") nextNode=" << *(v.mNext) 
return o; 

int getVofDim(int dim) { //value in each dimension 
if (dim> mData->getnDim()) 

return.-9999; 
return mData->getVofDim(dim); 

} 

void setChecked() {//set for mChecked 
mChecked++; 

} 

void setUnChecked() {//set for unchecked 
mChecked=O; 

} 

int getChecked() { 

} 

}; 

#end if 

return mChecked; 

B.2.3 SFCArray3D.h 
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I//I//////////////////////I///I/II/////////////////////////////////// 
II SFCArray3D: a class for maintaining the indices and coordinates. 
II 
II Note: all the indices in program starts from 0 
I/////////////////////////////I//////////////////////I/II/II///////// 
#ifndef __ SFCARRAY3D_H 
#define __ SFCARRAY3D_H 
#include <iostream> 
#include <stdio.h> 
#include <malloc.h> 
#include <math.h> 
#include "VectorD3D.h" 
#include "Node3D.h" 
using namespace std 

class SFCArray3D { 
private: 

Node3D* mSFCArray; // array to keep the indices and coordinates 



long mWidth; II the max width for each coordinate 
int order; II order 
int mSFC; II 0: Hilbert, 1: z-order 
int Successful; 

long arrayindex(VectorD3D *location){ 
long array!ndex=O; 
if (location== NULL) 

return -1; 
for (int i=O; i< location->getnDim(); 

if (1ocation->getVofDim(i) < 0) 
array!ndex = -1; 
break; 

} 

i++){ 
{ 
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array!ndex =array!ndex * mWidth + location->getVofDim(i); 
} 

return array!ndex; 
} 

Node3D* SFCArrayNode (VectorD3D *location) { 
if (location != NULL) { 

} 

long array!nd = array!ndex(location); 
if (array!nd < 0) 

return NULL; 
return &(mSFCArray[arrayind]); 

} else { 
return NULL; 

} 

Node3D* SFCArrayNode (VectorD3D &location) { 
long array!nd = array!ndex(&location); 

if (array!nd < 0) 
return NULL; 

return &(mSFCArray[arrayind]); 
} 

Node3D* SFCArrayNode (const long i, const long j, const long k) { 
if (i < mWidth && i>=O && j <mWidth && j>=O && 

} 

k<mWidth && k>=O) 
return &(mSFCArray[(i * mWidth + j)*mWidth +k]); 

else 
return NULL; 



public: 
SFCArray3D(int max, int level, int sfctype):mWidth(max), 

Successful(O), mSFC(sfctype), order(level) { 
if (max< (int)pow(2.0, level)) { 

} 

} 

cerr << "Too few of elements in the array"; 
return; 

mSFCArray = new Node3D[max*max*max]; 
II initiallize the Node3D 
for (long i = O; i< mWidth; i++) 

for (long j=O; j< mWidth; j++) 
for (long k=O; k< mWidth; k++) 

mSFCArray[(i*mWidth+j)*mWidth+k] .setData(i,j,k); 
VectorD3D o(0,0,0); II origin 

VectorD3D DO (max, 0, O); II DO direction 
VectorD3D D1 (0,max, O); II Di direction 
VectorD3D D2 (0, 0, max); II D2 direction 
II construct the array's nextpoint 
II recusive call to calculate the linkage and the SFC code 
SFCLineArray(o, DO, D1, D2, level, &o); 

-sFCArray3D() { delete[] mSFCArray;} 

long get Width() {return mWidth; } 

VectorD3D SFCLineArray(VectorD3D &o, VectorD3D &DO, 
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VectorD3D &D1, VectorD3D &D2, int level, VectorD3D *Prev) { 
VectorD3D tmpo(o), tmpDO(DO), tmpD1(D1), tmpD2(D2); 
II copy of o, DO, D1, D2 
if (level<= 0) { 

if (Prev->getVofDim(O)<O I I Prev->getVofDim(1)<0 I I 

} 

Prev->getVofDim(2)<0 I I 
Prev->getVofDim(O)>=getWidth() I I 
Prev->getVofDim(1)>=getWidth() I I 
Prev->getVofDim(2)>=getWidth()) { 

cerr <<"error, less:"<< (*Prev) << endl; 

if (SFCArrayNode(Prev) == NULL) { II no previous node 
SFCArrayNode(o)->setNext(&o); 

} else { 
SFCArrayNode(o)->setSFCCode(SFCArrayNode(Prev)-> 



} 

getSFCCode()+1); 
SFCArrayNode(Prev)->setNext(&o); 

return o; 
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} else { 

} 

VectorD3D tmpV; 
tmpV=SFCLineArray( tmpo=o, tmpD1=D1.Multiply(. 5), 

tmpD2=D2.Multiply(.5), tmpDO=DO.Multiply(.5), 
level-1, Prev); IIOO block 

tmpV=SFCLineArray( tmpo=o.add(DO.Multiply(.5)), 
tmpD2=D2.Multiply(.5), tmpDO=DO.Multiply(.5), 
tmpD1=D1.Multiply(.5), level-1, &tmpV); 1101 block 

tmpV=SFCLineArray( 
tmpo=o.add(DO.Multiply(.5)).add(D1.Multiply(.5)), 
tmpD2=D2.Multiply(.5), tmpDO=DO.Multiply(.5), 
tmpD1=D1.Multiply(.5), level-1, &tmpV); 1111 block 

tmpV=SFCLineArray(tmpo=o.add(DO.Multiply(.5)). 
subtract(DO.Normalized()).add(D1). 
subtract(D1.Normalized()), tmpDO=DO.Multiply(-.5), 
tmpD1=D1.Multiply(-.5), tmpD2=D2.Multiply(.5), 
level-1, &tmpV); 1110 block 

II the other side of D2 (3rd D) 
tmpV=SFCLineArray(tmpo=o.add(DO.Multiply(.5)). 

subtract(DO.Normalized()).add(D1). 
subtract(D1.Normalized()).add(D2.Multiply(.5)), 
tmpDO=DO.Multiply(-.5), tmpD1=D1.Multiply(-.5), 
tmpD2=D2.Multiply(.5), level-1, &tmpV); 1110 block 

tmpV=SFCLineArray(tmpo=o.add(DO.Multiply(.5)).add(D1). 
subtract(D1.Normalized()).add(D2). 
subtract(D2.Normalized()),tmpD2=D2.Multiply(-.5), 
tmpDO=DO.Multiply(.5), tmpD1=D1.Multiply(-.5), 
level-1, &tmpV); 1111 block 

tmpV=SFCLineArray(tmpo=o.add(DO.Multiply(.5)). 
add(D1.Multiply(.5)).subtract(D1.Normalized()). 
add(D2).subtract(D2.Normalized()), 
tmpD2=D2.Multiply(-.5), tmpDO=DO.Multiply(.5), 
tmpD1=D1.Multiply(-.5), level-1, &tmpV); 1101 block 

tmpV=SFCLineArray(tmpo=o.add(DO.Multiply(.5)). 
subtract(DO.Normalized()).add(D2). 
subtract(D2.Normalized()), tmpD1=D1.Multiply(.5), 
tmpD2=D2.Multiply(-.5), tmpDO=DO.Multiply(-.5), 
level-1, &tmpV); IIOO block 

return tmpV; 



} 

const VectorD3D* getNextPoint(VectorD3D *cur) { 
if (cur != NULL && SFCArrayNode(cur)!= NULL) { 

return SFCArrayNode(cur)->getNext(); 
} else { 

return NULL; 
} 

} 

const VectorD3D* getNextV(Node3D *cur) { 
if (cur !=NULL) { 

return cur->getNext(); 
} else { 

return NULL; 
} 

} 

II return the# of points visited 
long Check(){ 

VectorD3D *tmp = new VectorD3D(O,O,O); 
Node3D *tmpNode = SFCArrayNode(tmp); 
long nChecked=O, II Checked# 

nError=O~ II Error# 
old_hcode = -1; II cur_SFCCode 

while (tmpNode !=NULL) { 

I I start point 

if (tmpNode->getSFCCode() != old_hcode+1) { 
cout << "Not cotinuous at"<< *tmpNode 

<< 11 and prev:" << old_hcode <<endl; 

} 

} 

tmpNode->setChecked(); 
if (nChecked>mWidth*mWidth*mWidth) { 

} 

cout << "Error in the setChecked 11 << endl; 
return -1; 

cout << tmp->toStringO << endl; 
old_hcode = tmpNode->getSFCCode(); 
tmp = tmpNode->getNext(); II 
tmpNode = SFCArrayNode(tmp); 

for (int i=O; i< getWidth(); i++) 
for (int j=O; j<getWidth(); j++) 

for (int k=O; k<getWidth(); k++) 
if (SFCArrayNode(i,j, k) !=NULL) 
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} 

if (SFCArrayNode(i,j,k)->getChecked() i) 
nChecked++; 

else 
nError--; 

cout << 11 init: 11 << *SFCArrayNode(0,0,0) << 
11 \nend: 11 << *SFCArrayNode(O,O,getWidthO-i) << endl 
<<"nError: 11 <<nError<< 11 nChecked: 11 << nChecked << endl; 

if (nError < 0) 
return nError; 

else 
return nChecked; 
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II created succesfully? 
int IsSuccessful() { return Successful; } 

double lemma3_i3(int r=O) { 
double Pi=O.,P2=0.,P3=0.; //for planei3,23, P2 is for comparison 
if (mSFC==O) { 

} 

for (int i=O; i< getWidth() ; i++){ 
Pi=O.; II initialize Pi 

} 

for (int j=O; j<getWidth(); j++) 
for (int k=O; k<getWidth(); k++) { 

} 

Pi+= (double) abs(SFCArrayNode(i,j,k)->getSFCCode()
SFCArrayNode(0,0,0)->getSFCCode()); 

if (i>O) 
if (Pi != P2) 

cerr << 11 plane 11 << i-i << 11 != plane 11 << i <<endl; 
P2=Pi; 

else { // z-order 
for (int j=O; j<getWidth(); j++) 

} , 

P3=Pi; 

Pi+= abs(SFCArrayNode(r,j,0)->getSFCCode() -
SFCArrayNode(0,0,0)->getSFCCode()); 

cout << 11 Sum at P(23) 11 << r << 11 = 11 <<Pi<< endl; 
if (mSFC==O) { 

for (int j=O; j< getWidth() j++){ 
Pi=O.; II initialize Pi 
for (int i=O; i<getWidth(); i++) 
for (int k=O; k<getWidth(); k++) { 



} 

} 

} 

} 
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P1 += (double) abs(SFCArrayNode(i,j,k)->getSFCCode()
SFCArrayNode(0,0,0)->getSFCCode()); 

if (j>O) 
if (P1 != P2) 

cerr << 11 plane 11 << j-1 << 11 != plane 11 << j <<endl; 
P2=P1; 

if (P3 !=P1 I I P3 !=pow(2.,5*order-1)-pow(2.,2*order-1)) 
cerr << "P13 != P23 error 11 << endl; 

else { // z-order 

} 

for (int j=O; j<getWidthO; j++) 
P1 += abs(SFCArrayNode(r,j,0)->getSFCCode() -

SFCArrayNode(0,0,0)->getSFCCode()); 

cout << 11 Sum at P(13) 11 << r << 11 = 11 << P1 << endl; 
return P1; 

double lemma3_14() { 

} 

double P1=0.,P2=0.; //for plane12, P2 is for comparison 
if (mSFC==O) { 

} 

for (int i=O; i< getWidth() ; i++) 
for (int j=O; j<getWidth(); j++) 

P1 += (double) abs(SFCArrayNode(i,j,0)->getSFCCode()
SFCArrayNode(0,0,0)->getSFCCode()); 

P2=15./62.*pow(2.,5*order)-pow(2.,2*order-1)+8./31.; 

else { // z-order 

} 

for (int j=O; j<getWidth(); j++) 
P1 += abs(SFCArrayNode(O,j,0)->getSFCCode() -

SFCArrayNode(0,0,0)->getSFCCode()); 

if (P1 != P2) 
cerr << "P12 0 error"<< endl; 

cout << 11 Sum at P (12) O= 11 << P1 << endl; 
return P1; 

II for 1-normed distance 
void theorem3_3() { 

double sumDist=O; 
long sumNeighbor=O; 



} 

}; 

#end if 

for (int i=O; i< getWidth() ; i++) 
for (int j=O; j<getWidth(); j++) { 

for (int k=O; k<getWidth(); k++) { 
if (i+1 < getWidth()) { 
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sumDist += abs(SFCArrayNode(i,j, k)->getSFCCode() -
SFCArrayNode (i +1, j, k)->getSFCCode ()) ; 

} 

} 

sumNeighbor ++; 
} 

if (j+1 < mWidth) { 

} 

sumDist += abs(SFCArrayNode(i,j, k)->getSFCCode() -
SFCArrayNode(i,j+l, k)->getSFCCode()); 

sumNeighbor ++; 

if (k+l < mWidth) { 

} 

sumDist += abs(SFCArrayNode(i,j, k)->getSFCCode() -
SFCArrayNode(i,j, k+1)->getSFCCode()); 

sumNeighbor ++; 

if (sumDist != 67./62*pow(2.,5*order) 
-11./14.*pow(2.,3*order)-64./7./31.) 
cerr << "Tatal distance error"<< endl; 

cout <<"Total distance(width="<<getWidthO<<"):" << sumDist 
<< " Sum of neighbor: 11 · << sumNeighbor <<endl; 

cout << "average distance of 1 for HA:" 
<< (double)sumDist/sumNeighbor <<endl; 

return; 

B.2.4 3D.cpp 

//II///////////////////////////////////////////////////////////////// 
II 3D.cpp: the interface 
II 
II Note: all the indices in program starts from 0 
//II///////////////////////////////////////I////////II//////I/I////// 
#include <iostream> 
#include "Node3D.h" 
#include "VectorD3D.h" 
#include "SFCArray3D.h" 



SFCArray3D *HA; 

void init (int nLevel,int sfctype) { 
long tmp =(long) pow(2.0,nLevel); 
HA= new SFCArray3D(tmp ,nLevel,sfctype); 

} 

int main(char * s[]) { 
int sfctype=O; IIO: Hilbert, 1: z-order 
for (int k=1; k<8; k++) { 

init(k,sfctype); 
if (sfctype==O) 
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cout <<"============Hilbert Curve===========" << endl; 
else 

cout << "============ z-Order Curve===========" << endl; 
if (HA->IsSuccessful()) { 

return -1; 
} 

cout << "k: " << k << endl; 
II HA->Check(); 
II cout << "Lemma 3.1 (3.7 for z-order)" << endl; 

} 

} 

cout « "Lemma 3.13 (3.16 for z-order)" << endl; 
HA->lemma3_13(0); II parameter:row number (indexed from 0) 
cout << "Lemma 3.14 (3.17 for z-order)" << endl; 
HA->lemma3_14(); II parameter:row number (indexed from 0) 
cout << "Theorem 3.3 (3.4 for z-order)" << endl; 
HA->theorem3_3(); II parameter:row number (indexed from 0) 
delete HA; 

return O; 
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