
FORMAL TECHNIQUES FOR

ANALYZING BUSINESS

PROCESS MODELS

By

ESWAR SIVARAMAN

Bachelor of Technology
National Institute of Foundry & Forge Technology

Ranchi, India
1996

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1998

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
MAY 2003

Copyright

by

ESWAR SIVARAMAN

May, 2003

FORMAL TECHNIQUES FOR

ANALYZING BUSINESS

PROCESS MODELS

Thesis Approved:

M ,~ ~~
"'j Thesis Advisor

11

Acknowledgments

I would like to share with the reader a poem that I came across at the Museum of Fine

Arts, Houston - it was titled INNOCENCE.

Young, naive, curious, and pure,
new to life and all the hardships to endure.

Untarnished by the world's offenses and lies,
he sees nothing but good through his unbiased eyes.

Waiting to be molded, he's impressionable as clay,
receiving characteristics and features day by day.

I know he'll soon grow up and find his way,
without too many bruises I hope and pray.

Innocence is a virtue pure and clean,
childhood to adulthood, somewhere in between.

I am deeply grateful to the faculty and staff of the School of Industrial Engineering &

Management for letting me retain my innocence and· grow up without too many bruises.

The School has been a home away from home, and that which I lost in not being under

my father's shadow, I have more than made up for, within the walls of the department.

The sum total of who I am, my values, and my unflinching belief in goodness and honesty,

all of which I have been fortunate enough to preserve while here at OSU, I owe to my par­

ents; were it not for their support and blessings, this would not have been possible. It is

not possible to acknowledge their sacrifices with a simple 'thank you' - my debt is eternal.

I have admired the personality, the professionalism, and the teaching style of many a

professor, and I most earnestly aspire to see their shadows in mine. I would like to

take this opportunity to record my admiration for the following professors - Drs. Ken­

neth E. Case, David B. Pratt, William J. Kolarik (Ind. Engg), Martin T. Hagan (Elec.

lll

Engg), Wade B. Brorsen (Ag. Econ), Dave Witte, Alan A. Adolphson, John Wolfe,

Dennis Bertholf (Mathematics), James Cain (Philosophy), Leroy J. Folks, Mark Payton

(Statistics), and Blayne Mayfield (Computer Science). To each, I owe a debt of grat­

itude - I have learnt a lot by observing them, both inside and outside the classroom,

and I am happy to say that most of my mannerisms have been influenced (or tempered)

by the greatest gift that I could have ever received from them, that of being their student.

I would like to thank the members of my dissertation advisory committee - Dr. David

B. Pratt, Dr. William J. Kolarik, and Dr. Syam Menon for their time and interest in

helping me succeed. I have benefited immensely from my observations and interactions

with all of them - at times, from a distance, but, close nevertheless.

This research was supported, in part, by the National Science Foundation, under the

Scalable Enterprise Systems initiative (Grant# DMI-0075588).

I am (probably) the worst student anyone can ever have, and Dr. Manjunath Karnath

is the best advisor anyone can ever have - he has allowed me tremendous freedom of

thought, expression, and unlimited opportunity to explore my creativity and curiosity. It

has been a privilege to have earned his trust, friendship, and cherished regard. There is

a dialogue from the movie Nixon that I often recall - "a man must sometimes go down

to the deepest and darkest depths of despair before he can begin to appreciate the glory

of standing at the highest peak" - I am grateful that I had the benefit of Dr. Kamath's

counsel and wisdom to pull me out from my many frequent trips to the abyss. Growing

up is not easy; growing up alone is even worse - Dr. Karnath is the closest surrogate

that I have had for a father, while here in the U.S., and to him, I most fondly dedicate

this dissertation with these words:1

The time has come for closing books and long last looks must end
And as I leave I know that I am leaving my best friend behind.

A friend who taught me right from wrong and weak from strong
That's a lot to learn, but what can I give you in return?

1 Lyrics from the title song of the movie "To Sir, With Love" (1967)

lV

ESWAR SIVARAMAN

Stillwater, Oklahoma

May 2003

Table of Contents

1 Introduction

1.1 Business Process Modeling: Purpose and Scope

1.2 Motivation for this Research

1.3 The Control Flow Problem .

1.3.1 The Control Flow Model .

1.3.2 Control Flow: Statement of the Problem

1.3.3 Control Flow: Overview of Research

1.4 The Resource-Sharing Problem

1.4.1 Formalism for Specifying Resource Requirements

1.4.2 Resource-Sharing: Statement of the Problem .

1.4.3 Resource-Sharing: Overview of Research

1.5 Summary .

2 Review of the Literature

2.1 Business Process Modeling: Major Issues

2.2 Business Processes - General Classification

2.3 Business Process Modeling Methodologies

2.4 Workflow Management

2.4.1 The Modeling Phase

2.4.2 The Execution Phase .

2.4.3 Implementation Issues in Workflow Management .

2.4.4 Process & Workflow Meta-Models - Basic Concepts

2.4.5 Summary

2.5 Control Flow Verification: Research Review

2.5.1 Petri-net Formalizations ..

2.5.2 Graph-theoretic Reductions

V

1

1

4

6

6

9

11

12

12

13

15

17

19

19

21

22

24

24

26

27

27

28

29

29

31

2.5.3

2.5.4

2.5.5

Model-theoretic Event Algebras

Other Related Network Models

Summary

2.6 Resource-Sharing Correctness: Research Review

2.6.1 Summary

3 The Korrectness Algorithm

3.1 Introduction & Background

3.2 The Korrectness Algorithm

3.3

3.2.1 Definitions

3.2.2 The Control Flow Problem is NP-Complete

3.2.3 Construction of Meta-Paths

3.2.4 The Komplete Korrectness Algorithm .

3.2.5 Resolving Cycles in the Control Flow Model

3.2.6 Complexity Analysis

3.2.7 Diagnostic Checking of the Control Flow Model

Summary

4 The Resource-Sharing Problem

4.1 Introduction & Background . .

4.2 The Control Flow Model Revisited

4.3 The Resource-Sharing Problem: Some Ideas

4.4 Single-Instance Verification

4.4.1 Identifying Circular-Waits Within Concurrent Sets

4.4.2 Identifying Circular-Waits Across Concurrent Sets .

4.5 The Static-Design Net Representation

4.5.1 The Static-Design Net

4.5.2 Computing Minimum Resource Requirements

4.5.3 Summary

4.6 Multiple-Instance Verification

4.7 Summary

5 Modeling and Analysis of Business Process Models

5.1 MAPS: Proof-Of-Concept Implementation

5.2 Modeling Interface

Vl

32

33

33

34

36

37

37

38

39

41

46

50

50

55

62

64

65

65

66

70

71

72

74

77

77

82

83

84

87

89

89

90

5.3 Analysis and Verification Capabilities of MAPS

5.3.1 Syntax Verification

5.3.2 Control Flow Verification .

5.4 Summary

6 Summary & Research Contributions

6.1 Summary

6.2 Research Contributions . . .

6.3 Future Research Directions .

A Petri Nets: A Primer

A.1 What is a Petri Net?

A.2 Basic Definitions ..

A.3 Additional Concepts

A.4 Invariant Analysis .

Bibliography

Vll

94

94

94

97

98

98

100

101

104

104

106

108

109

118

List of Figures

1.1 A Sample Control Flow Model

1.2 Mapping an OR logical operand with XORs and ANDs

2.1 Classification of Business Processes

2.2 Example of a Workflow Specification

2.3 Workflow Management System - Reference Model

7

8

21

25

26

2.4 Process Meta-Model 28

2.5 Petri Net Representation - An Example (control-flow only) 30

2.6 Two Examples - (a) Non Free-Choice Net, and (b) Free-Choice Net 31

2. 7 Metagraphs - An Example . 35

2.8 Representational Equivalence of Metagraphs & Petri nets - An Example . 35

3.1 An Illustration of Paths and Meta-paths 39

3.2 (a) XOR-Representation, (b) AND-Repr., and (c) Path-Repr. Graphs 42

3.3 A Control Flow Model with the Maximum Number of S-F Paths 45

3.4 Connectivity between Vertices in V* and V \ V* 52

3.5 Control Flow Sub-model Possibilities for the Case V* n AJ =/. 0 . . 53

3.6 Illustration of Multiple Paths from an AND-Split to an XOR-Join 54

3.7 Expected Number of Valid Meta-Paths in a Random Control Flow Model 58

3.8 Incorrect Process Model - An Example 63

4.1 Partitioning the Control Flow Model - An Example . 67

4.2 Two different classes of Circular-Wait (CW) problems . 72

4.3 Circular-Wait Within A Concurrent Set - Another Example 74

4.4 Petri Net Representation of the Process Model - An Example 76

4.5 The Static-Design Net Representation - An Example 78

4.6 Another Example of a Deadlock-Free Process Model . 81

Vlll

4.7 Example of a Process with Problems of Deadlock across Multiple Instances 85

5.1 A Sample Screen-shot of MAPS

5.2 Identifying the Set of Valid Meta-paths

5.3 Identifying the Set of Valid Meta-paths

A.1 An Example of a Petri Net Model ...

lX

91

95

96

105

List of Tables

1.1 Types of Business Processes

1.2 Incorrect Control Flow Models - Some Illustrations

1.3 Incorrect Resource Allocation Models - Some Illustrations

2.1 A Comparison of Metagraphs and Petri nets .

3.1 Control Flow Sub-models with Empty Cycles.

4.1 Petri Net Mappings of Basic Routing Constructs .

X

2

10

14

36

51

75

List of Algorithms

1 Path Enumeration ... 45

2 Meta-Path Enumeration 49

3 The Korrectness Algorithm 50

4 The Partition Algorithm .. 68

xi

List of Notation

Nomenclature for the Control Flow Model

N

V

N+(x), N-(x)

s
F

T

Xs

XJ

As

AJ

as,xs

L",As,Lxs

LAJ,LxJ

()As, Lxs

6AJ, LxJ

E

c(x, y)
p

M

V(m)
CounterslnAN D(a)

PathsThrough(a)

AN DJoinslnPath(p)

Set of natural numbers, {O, 1, ... }

Set of all vertices in the control flow model

Set of all vertices leading out from, and into, vertex x

The Start node in the control flow model

The Finish node in the control flow model

Set of all Tasks in the control flow model

Set of all XOR-Splits in the control flow model

Set of all XOR-Joins in the control flow model

Set of all AND-Splits in the control flow model

Set of all AND-Joins in the control flow model

Number of AND- and XOR-Joins

Number of AND- and XOR-Splits

Maximum out-degree of AND- and XOR-Splits

Maximum in-degree of AND- and XOR-Joins

Minimum out-degree of AND- and XOR-Splits

Minimum in-degree of AND- and XOR-Joins

Set of all edges in the control flow model

Counter on edge (x, y) in the control flow model

Set of all S - F paths in the control flow model

Set of all valid meta-paths

Vertices covered by the paths in valid meta-path m

Set of all counters arriving at either AND-Join or -Split a

Set of all paths through AND-Join a

Set of all AND-Joins in path p

Xll

Nomenclature for the Resource-Sharing Model

R
Ri!

i

Rfap(Tj)

Rfel(Tj)

Con

Con"['

ConlV(m)

SD"lJet

Cm

The set { R 1 , R2 , ... , Rr} of all resources

Number of units available for resource Ri

Number of units of resource Ri captured by task Tj

Number of units of resource Ri released by task Tj

Set of all concurrent sets { Gani} obtained from the control flow model

Set of concurrent elements that occur on valid meta-path m

The set of concurrent sets {Con"['} with vertices restricted to V (m)

Static-Design Net representation of valid meta-path m

Incidence matrix of SD"lJet

Transition sequence Con0 = {S}, Con1 , •.• , Con";= {F} in SD"lJet

Initial marking of SD"lJet that enables CJm

Set of weighted arcs connecting transitions to places in SD"lJet

Set of weighted arcs connecting places to transitions in SD"lJet

Xlll

Chapter 1

Introduction

Chapter Overview

A business process is much like a recipe - it involves some tasks, ingredients, and re­

sources, all coming together to create something that is useful (and hopefully palatable).

While cooking involves mostly sequential activities, business processes are characterized

by combinations of concurrency, choice, and asynchronism, the mix of which could lead to

incorrect designs. The purpose of this chapter is to highlight challenges in the verification

of business process designs, and to chart the scope and purpose of this research.

1.1 Business Process Modeling: Purpose and Scope

A business process is an ordered sequence of tasks/activities involving people, materials,

energy, equipment, or information, designed to achieve some specific business outcome.

Business processes are usually one of either a material, information, or a people process,

or a combination thereof, the characteristics of which are presented in Table 1.1 [21].

1

Table 1.1: Types of Business Processes

Process Type

Material Information People
(Things) (Data) (Relationships)

Transform and as-
semble raw materi- Store, retrieve, ma- Articulate and
als and components nipulate, display, and complete condi-

Purpose into other compo- communicate struc- tions of satisfaction
nents and finished tured and unstructured between customers
products, using re- data and knowledge and performers
sources.

Based on the tra-
Based on the tradi- Based on structures

Characteristics ditions of industrial
tions of computer sci- of human communi-

engineering
ence and software engi- cation and coordi-
neering nation

Assemble, Inspect, Request, Promise,

Verbs Transform, Store,
Send, Transact, Invoke, Offer, Decline, Pro-

Transport
Save, Forward, Query pose, Cancel, Mea-

sure

A business process specifies what a business does, and more importantly, determines

how well the business does what it does [65]. To this end, irrespective of the type or the

context of the business process, it is imperative that it be well-designed, to ensure that

it is both effective and efficient. The effectiveness of a business process is a function of

the match between the process's operational objectives and the customer's needs, and

efficiency is an assessment of the process's performance and the level of resource uti-

lization, and depends on its configuration (i.e., its design). The standard approach to

designing and implementing business processes is to rely on a domain expert to develop

a process configuration that is subsequently "tuned-up" and configured using descriptive

(e.g., simulation, queuing models) and/ or prescriptive (e.g., optimization) techniques.

However, there is a subtle, but significant question that is often never asked, namely -

"what is the guarantee that the process's configuration is correct?" This question has

2

become increasingly important, given the growing interest in process automation [18, 21]

and enterprise integration [62]. Problems, if any, in the design of a process, are usually

detected by simulating the run-time behavior of a process. The purpose of this disserta-

tion is to develop generic techniques for verifying the correctness of a process's design, by

focusing exclusively on its static structural definitions, without recourse to any simulated

executions.

The study of business processes requires that a description of the business process be

prepared by a domain expert, namely, one that is context-specific and rich in detail, and

accommodative of different operational perspectives, occurrence scenarios, etc. - SAP's

EPC [52], Baan's DEM1 , and IDEF3 [65] are all examples of process description languages

that allow a domain expert to represent his/her understanding of the business process

with complete conceptual clarity [47]. Business process modeling (BPM) is the collective

term for the process of specifying business process descriptions. To quote Vernadat [93]:

"Enteprise (process) modeling is concerned with the representation and speci­

fication of the various aspects of an enterprise's operations, namely, functional

aspects that describe what things are to be done, and in what order; infor­

mational aspects that describe which objects are used or processed; resource

aspects that describe what or who performs things and according to which

policy; and organizational aspects that describe the organizational structure

within which things are to be done."

The purpose of this research is to develop techniques for verifying that the functional

and resource aspects of a process's design are correct. The major questions addressed in

this research are briefly summarized below:

1. FUNCTIONAL ASPECTS - is the logic of the process correct, i.e., does the flow

of control within the process ensure that the process will execute correctly from

initiation to completion?

1http://www.dynaflow-dem.com

3

2. RESOURCE ASPECTS - is the release and capture of shared resources among dif­

ferent tasks, either in the same or in different instances of a process, well-designed

so as to avoid conflict?

1.2 Motivation for this Research

The need for re-designing existing business processes, improving process efficiencies, co­

ordinating technology with distributed manpower and material resources, and enforcing

rapid process development and design makes it imperative to adequately represent, study,

and when possible, automate business processes [22, 33]. This is especially significant

in the context of today's growing interest in workftow management, which promises au­

tomated control and coordination of business processes, made possible by the numerous

advances in information technology [18, 79, 62]. Consequently, it is important that design

errors, if any, be identified and eliminated before the process is deployed, i.e., implemented

for execution by an automated system. Unlike manual implementation and coordination

of a process, where human intuition can readily respond to errors and inconsistencies,

automated solutions require that the process, by design, be correct. This will guarantee

that any delays or errors in the automated execution arise only from sources like data

inconsistency, failure of supporting IT infrastructure, etc., and not for anything lacking

in the design of the process.

Process descriptions are generally developed using graphical languages that include con­

structs for modeling concurrency (AND operands) and choice (XOR operands), the com­

bination of both of which can result in incorrect process designs - this is discussed further

in Section 1.3.2. The verification of control flow correctness has received much attention

recently, in that several restricted classes of the control flow problem have been addressed

to date [84, 1, 3, 75, 61]; additionally, the general control flow problem has been shown

4

to be NP-complete [40]. As regards the study of resource allocation policies, there has

been some work, especially in understanding connectivity issues, using metagraphs [11].

However, this work does not extend to answering questions about the detection of poten­

tial deadlock possibilities in business process definitions. These are the questions dealt

with, in this research.

In the larger context of business process modeling, the research presented herein is an

essential step in developing an integrated framework for the modeling and analysis of

business processes that [49, 23]:

• Reduces the gap between the domain expert and the business process analyst.

• Allows for the design and analysis of business processes to be simultaneous, with

analysis influencing the design of effective and efficient processes.

• Clarifies ambiguities in the domain expert's interpretation, experience, and expec­

tations of the business process through immediate qualitative analysis.

• Provides a seamless, almost invisible translation between the description of the

business process and the formalization that feeds the underlying analysis.

• Provides linkages to other analysis techniques that can be used to derive summary

metrics about the run-time performance of the business process.

That the verification of the design of a business process is a fundamental problem that

should be undertaken for any process modeling effort, is undisputed. That it has only

taken on an increased urgency, given its relevance to current interest in automated control

and coordination of business processes, is the motivation for this research.

5

1.3 The Control Flow Problem

1.3.1 The Control Flow Model

The description of a business process is usually based on a graphical syntax which in­

cludes constructs for representing choice and concurrency, along with details of specific

operational scenarios, and various perspectives, namely, functional, informational, and

organizational [22, 93, 11]. While a process's description must be semantically rich, and

a formalized model may be completely context-independent, the underlying process logic

can be represented with just a few basic elements that are both amenable to analysis

and are also semantically useful. The control flow model captures the partial or total

ordering among the tasks that constitute the process, and is defined using the following

elements [41, 95]:

Task: An abstraction of either a unit activity, or a composite description of a larger sub­

process, embedded in the process's definition. It is graphically represented with a

rectangular symbol.

AND-Split: A logical operand that models the concurrent creation of several parallel

threads of control from a single incoming fl.ow.

AND-Join: A logical operand that models the asynchronous completion of several par­

allel sub-threads of execution, to be followed by a common outgoing fl.ow.

XOR-Split: A logical operand that depicts choice in the selection of exactly one of

several possible outgoing control flows from a single incoming fl.ow.

XOR-Join: A logical operand that merges several mutually exclusive, multiple sources

of control, to create a common outgoing flow.

Directed Arrow: The fl.ow of control between the various elements is captured graph­

ically with directed arrows leading from the preceeding to the succeeding elements

(task/logical operand).

6

Concurrent
Control

Figure 1.1: A Sample Control Flow Model

Figure 1.1 illustrates all of these basic elements, including iteration, which basically mod-

els the recursive nature of the flow of control, as would be required in say, an inspection

(reject/accept/re-process) activity. Observe that the control flow model is devoid of the

operational details of the tasks, namely, their inputs and outputs, which, while necessary

for developing a process description that is conceptually complete, are not essential for

capturing the process's logic. Additionally, the control flow model includes two special

constructs - "Start" and "Finish" which indicate that the process has a unique initiation,

and a unique termination. There are several advantages to enforcing the unique Start

and Finish in the control flow model, namely,

• Sub-processes that have already been verified can be encapsulated and subsumed as

composite tasks in a larger control flow model to represent , with coarser granularity,

the individual task descriptions . Such composite tasks, if needed , could be "blown­

up" to reveal their complete detail, by relying on the S and F nodes of the composite

tasks to easily plug into the bigger model.

• It would be possible to achieve an incremental, or piece-wise, verification of the

various sections of the process, without requiring that the entire model be specified

before any analysis may begin. This would be made possible, by bounding, and

isolating with a Start and Finish, those sections of the model that are logically

disjoint and separated from the rest of the model, so far as control flow is con­

cerned. Consequently, this "debugging" at a local level would increase the speed of

development of a correct control flow model, which, if need be, could be composed

of previously verified, smaller component models .

7

The four logical operands presented above are adequate for capturing the logic of any

process. However, certain process description languages (e.g., IDEF3, EPC) also include

constructs for modeling inclusive OR-Splits (-Joins) , i.e., activate (merge) at least one

of several outgoing (incoming) control flows. This, unfortunately, is very ambiguous in

interpretation, and is ill suited for formalization , for it neither suggests which thread(s) to

activate, nor how many, except, perhaps those recorded by the domain expert as part of

his/ her experience. Figure 1.2 illustrates a reformulation of an OR-Split with just XORs

and ANDs; the equivalent mapping for an OR-Join would be the dual (i.e., graph with

arrows reversed) of the model shown in Figure 1.2(b). Unfortunately, this comes with

the penalty that the number of extra XOR or AND operands grows exponentially with

the out/in-degree of the OR operand. It is recommended that the use of an OR operand

be explicitly discouraged in developing process descriptions, so as to avoid ambiguity and

inconsistency of interpretation [2, 53].

(a) OR-Split
example

Choose exactly one of the three --~
possible outgoing threads

Choose all three possible __ _,
outgoing threads

(b) Replacing an OR-Split with XORs and ANDs

Figure 1.2: Mapping an OR logical operand with XORs and ANDs

8

1.3.2 Control Flow: Statement of the Problem

The question of verifying the process's design to establish control flow correctness, is

simply this - can it be verified that beginning with Start, the process will always reach

Finish? In order that the definition of control flow correctness may be made more pre­

cise, it remains to understand what counts as an incorrect model. Table 1.2 illustrates

several examples of incorrect control flow.

There are three points that clarify themselves in all five examples of Table 1.2, namely,

1. The process must terminate exactly once, i.e., unique termination.

2. The process must terminate completely, without any residual control flows hanging

in the balance, i.e., proper termination.

3. The bulk of control flow errors arise from interspersing XOR and AND logical

operands.

The control flow problem can now be restated as:

The Initiation Problem is to determine if there is a sequence of task executions that

will lead to the execution of a particular task - this has been shown to be NP­

complete [40].

The Termination Problem is to determine if the control flow specification will lead to

a terminal state - this has been shown to require exponential storage r~quirements

[40].

An alternate derivation of the NP-completeness of the control flow problem is presented

in Section 3.2.2.

9

Table 1.2: Incorrect Control Flow Models - Some Illustrations

Incorrect Control Flow Model

10

Discussion

An example of deadlock. The process
will never terminate, since the AND
operand will wait indefinitely for two
incoming flows of control, while the
XOR creates only one.

An example of multiple repetitions.
The process will "Finish" twice,
since the XOR is expecting only
one incoming control flow, while the
preceding AND activates two parallel
paths.

Note: It may be argued that it
does not matter which of the two
tasks finishes first, as long as one
does, to enable control flow to pro­
ceed further. However, in this case,
what is required is not an XOR-Join,
but an OR-Join, which must be
formalized using XORs and ANDs as
illustrated in Figure 1.2.

If the XOR next to "Start" chooses
the top branch, the process will termi­
nate properly; if it chooses the lower
branch, the process will terminate
twice.

If the XOR on the lower branch
chooses the control flow to its top,
the process will terminate properly;
if it chooses the flow to its right, the
process will terminate once, but there
will be an AND operand waiting for
a control flow that will never arrive.

A process model with the possibility
for infinite repetitions. If the second
XOR chooses the branch to its right,
the process will terminate properly; if
it chooses the lower branch, the pro­
cess will terminate more than once.

1.3.3 Control Flow: Overview of Research

There are two approaches to establishing the correctness of control flow in business pro­

cess models, namely, correctness by construction (i.e., build it correctly), or correctness

by inspection (i.e., check it completely). The former relies on strict grammatical rules

that govern the composition of the various elements in the model, and this is the basis of

the model-theoretic event algebras designed by [81, 30], which, however, do not guarantee

that all models can be constructed using the pre-specified composition rules. The latter,

on the contrary, is more appealing, in that it does not inhibit the modeler or the analyst.

These are the considerations that have prompted the use of graph-theoretic techniques

[76, 75, 11, 61], and Petri nets [1, 84, 88] for verification studies.

However, all of these approaches impose restrictions on the form and structure of the

control-flow model to render the analysis questions more tractable, namely, that the

control-flow model be acyclic (no loops), and that the Petri-net constructions remain

free-choice. 2 Moreover, with the exception of [76, 3], all of the other approaches present

only theoretical analyses, the implementation of which is left to question.

Additionally, there exists no precise mechanism to isolate and identify the sources of

control flow anomalies, since it is not just enough to identify that there is a problem,

but, it is more important to identify the why and the where; these are precisely the

incentives for studying the control flow problem.

2 A special class of Petri nets wherein all choices within the Petri net are free - this is elaborated
further in Section 2.5.

11

1.4 The Resource-Sharing Problem

1.4.1 Formalism for Specifying Resource Requirements

A process, in the course of its execution, will use some resources ~ more specifically, tasks

in a process will often require the use of resources (e.g., machines, people, instruments)

that they capture (i.e., access, exclusively use), and which are then released by either

the tasks that captured them, or by other subsequently executed tasks. The notion of a

"resource" as defined here is not to be confused with items like, say, machine-oil or lubri-

eating grease which are consumed, i.e., "depletable resources" exhausted by the process,

or with items like, say, scrap and metal-filings which are created by the process. In spec-

ifying the resource requirements of a process, the focus is on re-usable, non-perishable,

and non-depletable physical or informational entities that are accessed or captured by

tasks, and which are then subsequently released wholly, without loss or detriment in their

size, quantity, or operational ability [37, 43].

More formally, the (re-usable) resource requirements for the tasks in a process are spec­

ified as:

• R = {R1 ,R2 , .•. ,Rr} is the set of all resources. \/Ri ER, Rf= number of units

l available for resource ~.

• \;/ Ri E R, Rf ap : T -. N = {O, 1, ... } is a functional that specifies the number of

units of resource ~ captured by each task, where T is the set of all tasks.

• \;/ Ri E R, Rfel : T -. N is a functional that specifies the number of units of resource

~ released by each task.

12

1.4.2 Resource-Sharing: Statement of the Problem

In the course of the execution of a business process, deadlock arises when tasks that

have captured some resources are blocked indefinitely from access to resources held by

other tasks [19, 43, 46]. The following four conditions are necessary for the occurrence

of deadlock, namely, [19, 34, 67, 8]

Mutual Exclusion Tasks require exclusive use of resources.

Hold-while-waiting Tasks continue holding onto resources that they have

captured, while waiting for other required resources to become available.

No Preemption Tasks holding resources determine when they are released.

Circular-Wait A closed chain of two/more tasks waiting for resources held

by one another.

In the context of business process modeling, the first three conditions stated above are

unavoidable, i.e., resources are assigned for exclusive use of the tasks that require them,

and cannot be preempted without externally aborting the corresponding tasks. To this

end, the primary design issue that needs to be addressed in the design of business pro­

cesses is to alert the designer to deadlock possibilities that may arise from circular-wait

conditions that are not immediately evident in the process's design. Clearly, a very ele­

mentary check for the correctness of resource allocation is to verify that the number of

times a resource R;, is captured is equal to the number of times it is released. However,

such a simplistic check is inadequate for guaranteeing the correctness of a process's de­

sign. The problems that arise in the consideration of resource-sharing are best motivated

with several examples, as presented in Table 1.3. The convention followed for these mod­

els is - (i) the capture and release of resources by each task is specified with directed

arrows entering and leaving the task symbols, respectively, and (ii) it is assumed that

Rf = 1 for all the resources cited therein.

13

Table 1.3: Incorrect Resource Allocation Models - Sorne Illustrations

Incorrect Resource Model

R,

Discussion

14

There are two problems, namely, (i) re­
source R5 is released before it is captured,
and (ii) a potential circular-wait could
arise if T2 captures R1 and T3 captures R2
and end up waiting indefinitely for each
other to release their resources.

There are two major problems, namely,
(i) if T2 and T3 are assigned R1, R2, re­
spectively, then the process will be dead­
locked, since T1 and T4 will never be exe­
cuted for want of resources that will never
be released (by T5 and T6) before they are
completed, and (ii) the number of capture
requests for both R1 and R2 among the
concurrent tasks T1, T2, T3, T4, exceeds the
available number of units, thereby making
the design infeasible.

The process will get deadlocked if T1 cap­
tures R1 and T3 captures R2, whereupon
neither T2 nor T4 can proceed any further,
and the resources will never be released -
an example of circular-wait.

Clearly, the control flow is very straight­
forward. However, consider an "incident"
- T1 captures R1 followed by T2 which cap­
tures R2 and releases R1, and proceeds
to execute T3; meanwhile, Ti, being en­
abled, captures R1 again and starts an­
other instance of the process, thereby re­
sulting in deadlock since the previous in­
stance will not release R2 without R1 (task
T4), while the second instance will not re­
lease R1 without R2 (task T2)- another
circular-wait.

There are several questions that arise naturally from the three examples presented in

Table 1.3, namely,

1. Examples 1 and 3 - what is the order in which resources need to be assigned

among concurrently enabled tasks, so as to avoid potential circular-wait?

2. Example 2 - what is the minimum number of units required of each resource

to enable the process's design to actually succeed? In the case of example 2, for

the concurrent tasks T1 , T2 , T3 , T4 to actually proceed, a minimum of two units is

required for resources R1 and R2 - this example was solved intuitively; can it be

formalized?

3. Example 4 - the incident described in example 4 merits some more attention.

Clearly, the problem cited therein is not immediately evident, and the execution of

a single instance of the process would proceed perfectly. However, it still remains

to alert the designer about the potential for circular-wait that could arise if multiple

instances of the process become enabled.

The resource-sharing problem can now be restated as:

Single-Instance Verification is to determine if the sharing of resources among tasks

within an instance of a process could lead to deadlock.

Multiple-Instance Verification is to determine if the sharing of common resources

among various instances of the process could lead to deadlock.

1.4.3 Resource-Sharing: Overview of Research

The study of deadlock has been motivated primarily by problems arising in operating

systems, beginning with a problem in concurrent control proposed by Dijkstra [27) and

solved by others [54, 24, 28, 56), namely, to develop an algorithm that will guarantee

that exactly one among many competing tasks (or programs) will execute their "critical

section" (presumably, access to some common computing resource). Subsequently, this

15

problem has been enlarged thus - "given a set of n tasks and m resources, does there

exist an ordered sequence of the tasks that is safe, and will enable all the tasks to be

completed? [35, 42, 69, 43]. This problem has received enormous attention, given its im­

portance to operating systems, parallel computing, and distributed database systems, an

extensive review of which is presented in [46, 39, 82, 31]. These approaches rely primarily

on the definition of a resource-allocation graph3 that captures the state of the system

at a particular time, namely, the set of unfulfilled resource requests, the set of captured

resources, etc., and verifies that the system's evolution into its next state is also safe

[19, 43]. The existence of a cycle in these resource allocation graphs is necessary for the

occurrence of a deadlock [19], and is sufficient when there is just a single unit of each re­

source [43, 67, 98, 63]. Unfortunately, these approaches are not applicable to the context

of business process modeling, since the process's logic pre-specifies the order in which the

tasks need to be executed. These concerns have also arisen in the study of deadlock as is

related to the operation of flexible manufacturing systems [8, 94, 29, 99, 74, 73], a recent

review of which is presented in [92].

The most common approaches for handling deadlock are: [43, 46, 94, 57]

Prevention restrains the request structure of processes so that deadlock is impossible,

namely, by falsifying any one of the four necessary conditions for deadlock (refer

Section 1.4.2).

Detection-Recovery approaches allow deadlock to occur and focus on expedient re­

covery.

Avoidance uses current state information along with the knowledge of task request

and release structures to guide look-ahead policies that control how resources are

allocated so that deadlock is avoided.

3 also referred to as "wait-for graphs" [67, 58].

16

The general deadlock avoidance problem has been shown to be NP-complete (90, 34, 32,

67]. In the spirit of the · adage "prevention is better than cure," the focus of the second

problem addressed in this research is deadlock prevention, namely, to develop techniques

for alerting the designer of a business process about potential deadlock possibilities.

1.5 Summary

The purpose of this chapter has been to motivate the need for a formal foundation to

verify the correctness of a business process's design. The design of a business process

minimally requires the specification of the process's logic, and the resource requirements

for its constituent tasks. Two major problems have been identified, namely, verifying

the correctness of (i) control flow, and (ii) resource-sharing requirements - these are the

questions dealt with, in this dissertation.

The control flow problem relates to establishing the correctness of a process's logic. More

specifically, it remains to verify that a single instance of the process will execute correctly

from initiation to completion (i.e., unique termination), and that there are no incomplete

control flows remaining elsewhere upon completion of the process (i.e., proper termina­

tion) (40]. These two conditions must be satisfied to establish that the control flow

model is correct - they are not intended to excessively constrain modeling flexibility; on

the contrary, they serve to focus and discipline a modeler's intuition in developing a more

precise design that is logically, and therefore, operationally correct.

The resource-sharing problem relates to establishing the correctness of a process's (re­

usable) resource requirements. More specifically, it remains to establish that the sharing

of common resources among different tasks, either within a single-, or across multiple­

instances of the process does not lead to situations wherein two or more tasks compete

17

for resources, without relinquishing control of currently held resources, thereby lead­

ing to deadlock. Several interesting challenges emerge from the study of this problem,

namely, is deadlock occurring as a result of inadequate resource availability, or is it truly

a design error that is not immediately obvious? More particularly, is it necessary to

simulate the operation of a process to identify any such design errors? That the answer

to this question is No is a prelude to some of the interesting approaches developed herein.

The remainder of the document is organized as follows. Chapter 2 presents a review of

the issues and opportunities in business process modeling, and summarizes all relevant

research related to the two problems mentioned above - it should excite the reader

to know that the question of verifying the correctness of a process's resource-sharing

requirements has not been previously studied, and that the results presented herein are

the first in this regard. Chapter 3 studies the control flow problem, and presents a

new algorithm for verifying the correctness of control flow in any control flow model.

Chapter 4 extends the results of Chapter 3, and presents a simple Petri net-theoretic

approach to studying the correctness of resource-sharing requirements, both in single- and

in multiple-instances of a process. Chapter 5 documents the features of a proof-of-concept

implementation of the algorithms developed in this work. Chapter 6 concludes this

dissertation with a summary of research contributions, and pointers for further research.

18

Chapter 2

Review of the Literature

Chapter Overview

The purpose of this chapter is to present both an overall appraisal of the issues and

opportunities in business process modeling, and a review of the research approaches and

results relevant to studying the correctness of control flow and resource-sharing issues.

2.1 Business Process Modeling: Major Issues

The complete conceptual description of a business process requires:

1. specification of the flow of control and the total/partial ordering between the various

tasks, including feedback and feedforward modes of action,

2. specification of relevant inputs and outputs, and the flow of data as is dictated by

the interconnections between the tasks,

3. assessment of the process's configuration, and a summarization of the process's

dynamics (i.e., time duration), and estimates of control-flow transition probabilities

(if required), and

4. identification of any hierarchical, or multi-level distinctions in the tasks that con­

stitute the process, i.e., is a task elemental, or can the task be expanded to reveal

other sub-processes?

19

These conceptualization requirements have prompted the creation of process meta-models,

i.e., models about building models, which aim to standardize terminology and suggest an

abstraction of how process models must be specified [7, 96]. Research in process meta­

models has also been significantly influenced by the need to create process specifications

amenable to computer implementation, as is required for workflow automation.

To summarize, the major issues in business process modeling (BPM) can be classified

into the following sub-categories [33, 44, 45, 91]:

1. Process meta-models, process definition - language & grammar, and workflow

schema representation architectures [60, 17, 59, 96, 18, 15, 55, 66].

2. Analysis of conceptual specifications of processes for syntactic and semantic cor­

rectness, and support for performance evaluation & process redesign [3, 1, 11, 76,

88, 84, 77, 79].

3. Implementation and run-time issues related to correctness & failure-handling mech­

anisms in workflow management systems [18, 50, 51, 33] and adapting to dynamic

changes in workflow and process definitions [72].

4. Workflow Management System IT infrastructure & inter-operability standards,

spearheaded by the Workflow Management Coalition [41, 95, 96].

This research is related largely to sub-topic 2 above, namely, to develop techniques for

verifying the correctness of a process's design. However, it would be very instructive to

trace the development of ideas in all the sub-categories above, more so, in the context

of today's growing interest in automated solutions and the correspondingly increased

demand for improved modeling and analysis techniques.

20

2.2 Business Processes - General Classification

In addition to the three kinds of processes identified in Table 1.1, business processes can

be classified into one of collaborative, production, ad hoc, or administrative, depending

on their business value and the degree of their repetition [60]. A process of high business

value is more of a core competency, i.e., a fundamental process based on which the orga-

nization has been established (e.g., loan approval by a bank). The degree of repetition is

a measure of how often the process is performed. Figure 2.1 classifies the four different

types of business processes, with representative examples.

Business
Value

high··· ... ~----~
Collaborative

Product Promotion
Documentation

Ad Hoc

Memo circulation
Balance Enquiry

low······ '------~

Production

Car Assembly
Loan Approval

Administrative

Travel Refunds
Invoice Handling

'----,,---------------;---Repetition

low high

Figure 2.1: Classification of Business Processes

Collaborative processes are characterized by high business values and low repetitions -

e.g., building a fighter jet, creating a patch for a Windoze bug, etc. The underlying pro-

cess is generally unique and specific to the instance of the process. Ad hoc processes are

characterized by low business values and low repetitiveness, and are created on-the-fly,

literally speaking - e.g., enquiring about the number of customers with bank balances

in excess of 13.27 dollars, circulating a birthday card for staff signatures, etc. There is

21

no defined structure or logic for these processes, and it changes from one situation to

another. Adminstrative processes are highly repetitive, but of low business value - e.g.,

processing travel reimbursements, filing plan of study forms, etc. Production processes

are high-value, high frequency processes that are repeated over and over, and represent

the core processes of a company - e.g., approving loans in a bank, sorting mail in the

post-office, etc. It is the efficient and effective execution of production processes that

define the competitiveness of a company, and consequentially, merit the maximum at­

tention in any BPM effort.

The complete specification of business processes includes (i) the control flow, i.e., the par­

tial and total ordering specifying the sequence of the various tasks, (ii) the input-output

requirements (i.e., information, materials) and (iii) the resource (people, machines, etc.)

allocations for executing the various tasks. Depending on the type of the process (i.e., ma­

terial, information, or people), the specification of a process would also include context­

specific details like personnel involved, rollback-recovery procedures, exception handling

procedures, abort-recovery consistency checks, communication protocols, etc. [33, 18, 21)

- this is referred to as the "discovery" of business processes [21). However, discovering

and documenting the sequence of activities1 within a business process is an iterative

and time-consuming process, especially, in stating the flow of control from one activity

to the next, specifying the logical transition conditions, etc., all of which reinforce the

requirement for a precise modeling methodology.

2.3 Business Process Modeling Methodologies

The purpose of business process modeling is to produce an abstraction of the process that

serves as a basis for detailed definition, study, and possibly, re-engineering, to eliminate

1 Both tasks and activities are used interchangeably in this document.

22

non-value added activities. To this end, the process model must allow for a clear and

transparent understanding of the activities being undertaken, the dependencies among

the activities and resources (people, machines, programs, data, etc.) necessary for the

process. Process modeling methodologies can be broadly classified into three categories
'

- communication-based, artifact-based, and activity-based [66, 17, 18, 33].

The communication-based methodology represents an action in a process as a communi-

cation between a customer and a performer, consisting of four phases - request, negotia-

tion, performance, and acceptance. During any phase of the process, the performer of one

process loop can be a customer of another loop, thus presenting any business process as a

network of such customer-performer loops. This methodology focuses on communications

occurring in the workplace and is geared towards one objective, namely, customer satis-

faction, and is not suitable for other goals, especially, process analysis and investigation.

The artifact-based approach focuses on the objects (artifacts) that are created, modified,

and used in the process, i.e., the modeling of the process is based on the products, and

their fl.ow through the various activities; this would be suitable for administrative and ad

hoc processes. The activity-based methodology focuses on decomposing the process into

tasks that are ordered based on the dependencies (fl.ow of control and data) between them.

The activity-based methodology has a number of distinct advantages [59, 66, 18] - (i) it is

easily understood, (ii) it is readily amenable to formalization2 and (iii) it is the preferred

choice for computerized specification and modeling, as is evident in it being the basis for

all the major modeling languages. The reader would no doubt note that the control-fl.ow

model of Figure 1.1 is an activity-centered process model.

2Formalizations generally simplify the process model, and replace conceptual descriptions with spe­
cialized abstractions, to focus primarily on the problems being studied.

23

2.4 Workflow Management

Businesses are increasingly relying on enterprise-wide integration of information using

technologies like advanced database systems, client-server computing, Web-enabled trans-

actions, etc., to improve the efficiency of their business processes, and to be more com-

petitive in responding to customer needs [18, 50, 79, 66, 77]. These concerns have also

stimulated the popularity of workftow management as a technique to address the needs

for representation, study, and automation of business processes, especially information

and people processes.

Workflow management supports both process specification, and automated execution

(instantiation, monitoring, and data maintenance) of business processes, and is a next­

generation extension to business process modeling that emphasizes the increased role that

information systems have come to play in today's businesses [79]. Workflow management

facilitates the coordinated execution of the various tasks that comprise a business process;

it involves two phases - (i) the modeling phase that abstracts from business procedures

and defines computer-implementable workftow specifications, and (ii) the execution phase

that executes instances of the workflows to meet business requirements - both these

phases are managed and coordinated by a Workflow Management System (WfMS).

2.4.1 The Modeling Phase

A workftow, as defined by the Workflow Management Coalition (WfMC)3 [41], is "a

procedure where documents, information, or tasks are passed between participants ac-

cording to a defined set of rules to achieve, or contribute to, an overall business goal." Or

alternatively, based on the activity-centered modeling methodology, a workflow can be

viewed as a "collection of steps" that have to performed in a certain order. A workftow

3 An international consortium founded in 1993 to standardize terminology and enable inter-operability
between different workflow management systems. http://www. wfmc. org.

24

schema specifies the set of steps that comprise a workflow, and the data and control

flow between the steps - Figure 2.2 illustrates an example of the process of approving

applications in a health insurance firm [50].

HEALTH INSURANCE APPLICATION APPROVAL TASK

Get Client
Application

Find Client

··.

MEDICAL,,.~.~fl~UATION SUBPROCESS

Request More
/ /;", Information

Study
Application

Requesl
Medical History

Response
Received

Respon!.e
Received

·•······· ...

······ ...
Request Opinion from Opinion

Medical Expert Received

Archive

Decision Points:

1. Client = New
2. Client = Old
3. Decision = Accept
4. Decision = Reject
5. More Info. = True

-------- • Data Flow

__. Control Flow

Figure 2.2: Example of a Workflow Specification (adapted from [50])

The data flow specification provides the mapping of data (inputs and outputs) between

steps, and the control flow specifies the execut ion order of the steps. Several types

of transition conditions can be specified in the control flow requirements - sequential,

conditional branching, concurrent branching, and iteration, all of which were illustrated

in Figure 1.1. To perform a business process, a workfiow instance is initiated. Every

workflow instance is associated with a state that reflects the values of the various data

items associated with the workflow, and the state of the steps in the workflow, i.e., which

of the steps have been completed, etc. The WfMC has established standards for process

definition, and has developed generic modeling concepts to guide the creation of business

process models (respectively, workflow schemas) [95].

25

Workflow Design & Definition Workflow Instantiation & Control Interaction with Users & Application Tools

Context of our
Research

Human

Program

System
Supervisors

+---Build-Time--...-------- - Run-Time-------- -+

Figure 2.3: Workflow Management System - Reference Model (adapted from [41 , 77, 50])

2.4.2 The Execution Phase

Figure 2.3 illust rates the three major functional areas that a WfMS provides support for,

namely, workflow design & definition (the context of our research), workflow instantiation

and control, and interaction with users & other applications [41, 77, 50] . The definitions

of workflows, t asks, staff designations, etc., are all stored in the workfiow database . This

database also stores t he states of the workflows that are in progress. Scheduling is usually

performed by a workfiow engine, which refers to the workflow database to determine

the state of the various workflows in progress. Staff members interact with the WfMS

through a hum an interaction agent, and they are presented wit h a work-it em list that

lists all the t asks that have been assigned to them. If a task requires a program or other

applications, t hese are invoked by the application agent . The application agents interact

with the workflow engine to fetch the data required to execute a part icular step, and

to communicate back the output (i.e., return status code and data) produced by the

step. The workflow database is not accessible to applications external to the WfMS and

other external resources (programs, databases, etc.) that are accessed by the applications

executed on behalf of the workflow's steps.

26

2.4.3 Implementation Issues in Workflow Management

Ensuring data consistency and integrity of the workflow database is a problem that

is attracting much research - this is largely due to the fact that business procedures

are generally of extended duration, and traditional transaction models [18, 50, 51] have

proven inadequate. More specifically, the focus has been on resolving correctness issues

to ensure data consistency across multiple workflow instances, each of which may be

in different states, but could require access to common data. The correctness require­

ments in workflow implementation can be broadly classified into two categories, namely,

execution atomicity, and failure atomicity. Execution atomicity deals with how data is

committed and how visibility of data between steps, both within and across workflow

instances, is controlled. Failure atomicity determines what is to be done with the data

that has already been committed to the steps of a workflow, in the event that a failure

disrupts the workflow and affects database management and database integrity. This,

and other run-time issues related to database management, data transaction control

(check-in, check-out), etc., are beyond the scope of this research.

2.4.4 Process & Workflow Meta-Models - Basic Concepts

The WfMC has established commonly accepted terminology for the various components

of a business process model and associated workflow specifications. The meta-model pre­

sented in Figure 2.4 is a refinement of that proposed by the WfMC [18, 41, 96].

The interpretation of the meta-model is as follows: the Business Process is represented by

a Workfiow that consists of many Activities coordinated by this Workfiow. The Activity

serves as an abstraction for the Workfiow and Task. The semantics of this approach is

that the Workfiow consists of tasks or sub-workflows, i.e., a hierarchy of nested workflows.

The association cooperates expresses the possibility of Workfiow distribution within a

27

Business
Process

I.A90fldo:

represented by

1. Retatiorllhlp ___ __

2.-........---··­-3. FJllod dol--"mony'-..ily, ·-----111e-o1-. and
!l.Ncm111""'-"""*'"'""objodln -

Activity

data flow

msnipulat dby

(wont I m)

Manipulated
Object

canbe , lonHJ /n

accessedb

Database

Figure 2.4: Process Meta-Model (adapted from [18])

Worlc:lfst

Human

distributed environment. The Task is an abstraction of an Elementary Task and a

Composite Task that actually consists of Tasks recursively. The Elementary Task requires

for its performance a Role that can be responsible for many Elementary Tasks. The Role

is fulfilled by an Agent that plays the role of a processing item. The Agent has assigned

Tasks that it is responsible for, through a Worklist. The Agent itself can be specialized

into a System Service (program, application, etc.) or a Human. A System Service can

be associated with many Databases. The data flow and control flow are represented by

generic Manipulated Objects (any object or piece of information used and manipulated

by Workflow) that can be stored in the database.

2.4.5 Summary

The discussion has thus far focused on summarizing the major developments in process

automation and workflow management. The interested reader is directed to refer ad-

ditional references, most notably, [60] for Section 2.2, [66] for Section 2.3, [33, 18, 60]

for Section 2.4, and [21] for a comprehensive and well-written overview of the issues and

opportunities in the discovery, design, deployment, and automation of business processes.

28

There has also been considerable interest in developing a common specification for doc­

umenting and describing business processes to standardize exchange and interaction of

business data among companies maintaining different enterprise integration and process

management systems - readers are encouraged to refer [48, 96, 7] for additional details.

The remainder of this chapter will focus on reviewing current approaches to addressing

the control flow and resource-sharing problems.

2.5 Control Flow Verification: Research Review

The control-flow problem was introduced earlier in Section 1.3, and a brief overview of

current research presented in Section 1.3.3. To summarize, the current approaches to the

control-flow problem may be classified into three main categories:

1. Petri net formalizations [1, 3, 4, 5, 84, 83, 87, 85, 86],

2. Graph-theoretic reductions [76, 75, 61], and

3. Model-theoretic event algebras [81, 30, 88].

2.5.1 Petri-net Formalizations

Petri-nets have emerged as a very popular technique for formalizing business process

models for the following reasons [77, 66, 4] - (i) clear and unambiguous description

of process logic, (ii) intuitive ease and feel of a self-documenting, graphical formalism

that retains complete conceptual clarity, and (iii) extensive qualititative and quantitative

analysis capabilities that would vastly extend the power and usefulness of structured

process description languages like IDEF3.4 The Petri-net equivalent of the control flow

model described in Figure 1.1 is illustrated in Figure 2.5.

4http://www.idef3.com

29

Concurrent
Control

Figure 2.5: Petri Net Representation - An Example (control-flow only)

The standard approach to establishing control-flow correctness in Petri-net formaliza-

tions of business process models is to establish the soundness property [1 , 3], or the

simple-control property [84, 88], which is the initiation problem, and the termination

problem both rolled in one (refer Section 1.3.2) . Stated simply, the idea is to put a token

in the place labeled Start (refer Figure 2.5) and to see if the execution of the Petri

net will produce a token in the place labeled Stop, without leaving any residual tokens

elsewhere in the net. These ideas form the basis of WOFLAN, a modeling and verifica­

tion tool developed at the EINDHOVEN INSTITUTE OF TECHNOLOGY,5 The Netherlands.

The majority of business processes formalized as Petri nets require that the Petri net be

free-choice, a special class of Petri nets wherein all choices within the net are free[25].

Translated literally, this implies that the choice of which transition to fire, in the pres­

ence of conflict, is not influenced by any other place other than the input places of the

transitions in content ion - Figure 2.6 highlights an example.

The net in Figure 2.6(a) is not free-choice since the resolution of the conflict at place Pi

is not free, i.e., the choice on whether T1 or T2 will be fired depends on the availability

of a token in P2 , while T1 may be fired irrespective of the presence/ absence of a token

5http: //tmitwww.tm.tue .nl/staff/everbeek/ projects /woflan/woflan.html

30

T, T,

T,

(a) (b)

Figure 2.6: Two Examples - (a) Non Free-Choice Net, and (b) Free-Choice Net

in P2 . Figure 2.6(b), however, describes a free-choice net wherein the choice between T1

and T2 is free, since the enabling of either transition requires input tokens only in Pi and

P2 , and consequently, the choice is equally likely and is unaffected by other elements of

the net.

The advantage of requiring that the business process be formalized as a free-choice net is

that the soundness property can be verified in polynomial time [25, 3]. On the downside,

restricting the "choice" to free-choice disallows the modeling of all possible business

processes. Additionally, current applications of Petri net formalizations require that the

business process model be acyclic, i.e., without any loops. Both these requirements are

easily violated in practical examples, thus reinforcing the need for a generic approach

for addressing the control-flow problem without any restrictions on the structure of the

control-flow model.

2.5.2 Graph-theoretic Reductions

This is an interesting visual approach to solving the control-flow problem, deriving from

the dissertation work of Sadiq [75]; however, Lin et al. [61] have established that the algo­

rithm presented in [75] is incomplete, and have proposed extensions to the same. Stated

simply, the idea is to remove, from an acyclic control-flow model, all sub-structures of

31

the graph that are definitely correct, and if possible, reduce the control-flow model to an

empty graph. Conversely, if the reduction to an empty graph is not possible, the control

flow model is studied further to identify the source of the control-flow anomaly. This

has been formalized through five reduction rules - terminal, sequential, adjacent, closed,

and overlapped, each of which is applied, in turn, to all vertices of the graph, continuing

until no further reductions are possible. These ideas are further illustrated in [76] and

form the basis of FLOWMAKE, a modeling and verification tool developed by the DIS­

TRIBUTED SYSTEMS TECHNOLOGY CENTER,6 Australia. There are no disadvantages,

per se, excepting that the approach relies more on the visual nature of the final solution

- should the process model be incorrect, then the reduced model (not an empty graph)

would have to be "looked-at" to figure out the where's and why's of the control-flow

error, since the reduced model loses all resemblance to the original model.

2.5.3 Model-theoretic Event Algebras

The process model constructions developed in [81, 30] specify inter-task dependencies as

logical constraints on the occurrence and temporal order of process events. The rigorous

grammar underlying these construction techniques necessitates that the process model be

correct; however, they lose out significantly on ease of use, and do not guarantee that all

models can be specified using the set rules of construction. Additionally, they have not

been adopted as the basis for any commercial verification tool. A novel theory of threads

that attempts to blend the power of process-algebraic reasoning with the modeling ease

of Petri nets has been developed by Straub and Hurtado [88] - additional details are still

forthcoming.

6http://www.dstc.edu.au/praxis/

32

2.5.4 Other Related Network Models

The network-like structure of the control flow model· bears similarity to problems com­

monly addressed in PERT /CPM studies [12], reliability models [80], and network-flow

optimization problems [71 J. This section briefly summarizes the relevance (or otherwise)

of each of these ideas to control flow verification.

PERT/ CPM Networks The precedence networks of PERT/ CPM cannot model choice,

and consequently, cannot be applied to the context of control flow verification.

Reliability Models The primary interest in reliability modeling is in the capture of

minimal tie sets, i.e., the path that requires the smallest number of operational

links to make the system function, and analogously, minimal cut-sets, i.e., the

minimal set of links, the elimination of which will render the system inoperable.

Again, as in PERT /CPM, there is no notion of choice or concurrency in reliability

networks - parallel links denote redundancy built into the reliability network, and

not concurrency as is interpreted in control flow models.

Network-Flow Optimization The correctness of control flow can also be established

by representing the control flow model as a 0-1 integer programming formulation

(the multi-commodity network flow problem), with nodal flows specified in accor­

dance with their expected behavior (XOR/ AND /Task), assigning unit costs to the

edges, and solving it to see if a unit flow can be routed from Start to Finish.

However, while such a formulation will identify different execution scenarios for a

correct control flow model, it does not offer any insight into the source and cause

of the control flow error(s), should the IP formulation fail.

2.5.5 Summary

The control-flow problem has been tackled largely by imposing specific restrictions on the

underlying representation, namely, that the control-flow model be acyclic, or its Petri-net

33

representation be free-choice. Chapter 3 presents an algorithm that is devoid of any such

restrictions, and identifies, not just the presence/ absence of control-flow anomalies, but

also the source of the error(s).

2.6 Resource-Sharing Correctness: Research Review

As identified in Section 1.4.2, there are two main problems to be addressed in verifying the

correctness of resource-sharing requirements, namely, the single-instance verification and

the multiple-instance verification problem. There has been no previous research related to

studying these problems - this is perhaps due to the fact that most commercial enterprise

automation systems focus primarily on information and people processes and correctness

requirements have focused primarily on database consistency checks and transactional

guarantees [51, 33, 18, 72]. Material processes are usually addressed by industrial engi­

neers, and the motivation for studying deadlock therein arises largely from considerations

of deadlock avoidance in run-time control of flexible manufacturing systems [92].

The design and deployment of business processes begins with the design - thus far, there

has been some work in developing a formalism for modeling inputs and outputs of a busi­

ness process, called metagraphs [9, 10, 11], and to use it for understanding connectivity

issues. A metagraph is essentially a directed hypergraph, wherein each edge connects a

set of invertices to a set of outvertices. In the context of business processes, an edge in

a metagraph would be a task, and its inputs (resp. outputs) would be captured as the

edge's in vertices (resp. outvertices).

Figure 2. 7 illustrates a metagraph description of a business process consisting of four

tasks { e1 , e2 , e3 , e4}, where the ovals represent the inputs and outputs of each task. More

specifically, task e3 requires { x 3 , x 4 , x5 } as its inputs, and produces { x 6 , x8 } as its outputs.

34

Figure 2.7: Metagraphs - An Example

The general connectivity-related questions addressed using metagraphs are: [11]

1. If a certain input is unavailable, what set of tasks will be affected, and to what

extent will the completion of the process be affected?

2. If a certain task is disabled, to what extent will the remainder of the process be

affected?

Figure 2.8: Representational Equivalence of Metagraphs & Petri nets - An Example

It is easy to create an equivalent Petri net model for a metagraph, namely, by mapping

the vertices and edges in the metagraph to places and transitions in a Petri net. This

equivalency is illustrated in Figure 2.8, which presents an equivalent Petri net model for

the metagraph of Figure 2.7. However, while a Petri net can model multiplicity in the

number of inputs and outputs, the metagraph models only the presence/ absence of inputs

and outputs, and similarly, while the Petri net specifies the partial/total ordering of the

various tasks, the metagraph fails to capture any ordering among the tasks. Moreover,

35

all similarities between the techniques end here, and each has spawned its own set of

distinct analysis techniques. Table 2.1 compares and contrasts the individual strengths

and capabilities of both metagraphs and Petri nets.

Table 2.1: A Comparison of Metagraphs and Petri nets

Modeling Support
Control flow
Multiplicity in resource usage
Capturing time-specific information
Support for simulation of process dynamics

Analysis Support
Foundations
Handling cycles
Connectivity issues (e.g., critical inputs)

2.6.1 Summary

Metagraphs

No
No
No
No

Set-theoretic
Easy
Yes

Petri nets

Yes
Yes
Yes
Yes

Linear-algebraic
Hard

Not explored

There has been no previous research related to studying the resource-sharing problem in

the design of business processes. More importantly, there are no techniques available to

alert the designer about potential deadlock possibilities, save for simulated executions,

which include additional overheads in terms of design specification. The techniques

presented in Chapter 4 make novel use of the control flow model to alert the designer

about potential deadlock possibilities not immediately evident in the process's design.

36

Chapter 3

The Korrectness Algorithm

Chapter Overview

This chapter presents the KORRECTNESS algorithm, a recursive, backtracking algorithm

for verifying the correctness of a control flow model. It does not impose any restriction on

the form/structure of the control flow model and its results can also be used to identify

the source of control flow error(s), if any. Some interesting results on properties to be

expected in random control flow models are also derived.

3.1 Introduction & Background

The basics of the control-flow problem were defined in Sections 1.3. More formally, a

control flow model is a directed graph G = (V, E), where:

• V = S U T U As U AJ U Xs U XJ U F is the set of vertices

• E = {(x, y) Ix, y EV; x =/ y} is the set of directed edges leading from x toy

• 3! x EV 3 indeg(x) = 0 {:}xis the Start node, labeled as S

• 3! x EV 3 outdeg(x) = 0 {:}xis the Finish node, labeled as F

• T = {~, i = 1, 2, ... , t} is the set of all Tasks

37

• As= {Ai, i = 1, 2, ... , as} is the set of all AND-Splits

• AJ = {Ai, i =as+ 1, as+ 2, ... , as+ aJ} is the set of all AND-Joins

• Xs = {Xi, i = 1, 2, ... , xs} is the set of all XOR-Splits

• XJ = {Xi, i = xs + 1, xs + 2, ... , xs + XJ} is the set of all XOR-Joins

The verification requirements of correct control-flow are [40]:

Unique Termination The process must terminate exactly once.

Proper Termination The process must terminate exactly once, without any residual

control flows abandoned elsewhere in the process.

3.2 The Korrectness Algorithm

The KORRECTNESS algorithm is a backtracking algorithm that identifies all valid process

execution traces from Start to Finish. The algorithm may be informally summarized as

follows:

• Find all directed acyclic paths from Start to Finish, ignoring the presence or dis­

tinction among the various logical operands and task node - this is readily done

with a standard depth-first search.

• Now that all paths from S to F have been found, is it possible to collect or combine

them in a manner that represents the execution of the process, while accurately cap­

turing the influence of the various AND (parallelism) and XOR (choice) operands?

This is the KORRECTNESS algorithm.

• The paths discovered using the depth-first search would not include cycles in the

control flow model. In the event that the model does contain cycles, a few addi­

tional rules are applied to eliminate incorrect models before proceeding with the

algorithm.

38

3.2.1 Definitions

A PATH from S to Fis an ordered sequence of vertices (S = v1, v2 , ••• , Vn = F) where

vi EV, and (vi-I,vi) EE. A META-PATH is a union of one/more paths, and a VALID

META-PATH is a collection of paths, which, taken together, represents one possible pro­

cess trace, i.e., an instance of the correct execution of the process from Start to Finish.

F

Figure 3.1: An Illustration of Paths and Meta-paths

The set P of all paths from S to F for the control-flow model in Figure 3.1 is:

• PATH 1 (p1): (S, A1, Ti, A3, F)

• PATH 2 (p2): (S,A1,A2,T2,A3,F)

• PATH 3 (p3): (S, A1, A2, X1, T3, X2, A3, F)

• PATH 4 (p4): (S,A1,A2,X1,T4,X2,A3,F)

There are two valid meta-paths for the process in Figure 3.1, namely, {PATH 1, PATH 2,

PATH 3}, and {PATH 1, PATH 2, PATH 4}, both representing valid execution traces for

the process. Now, how does one go about identifying the various meta-paths in a process

model, and how will it help us in verifying if the process model is correct or otherwise?

Some more definitions follow.

39

A COUNTER is a 2-tuple (i,j) that is added as a label by AND-Split (or AND-Join)

Ai to each of its j outgoing (respectively, incoming) edges. Counters are added only to

edges originating from (or leading into) AND-Splits (-Joins), and by default, there are

no labels on any of the other edges - the counter on edge (x, y) will be identified by

the set c(x,y). While identifying the various paths from S to F, the counters that are

present in the edges traversed along those paths are also noted. Thus, PATH 3 uses {(1,

2), (2, 2), (3, 3)}. This is more compactly represented as a 2-tuple (p, Gp), where pis the

name of the path, and GP is the set of all counters present in path p; this is stored as the

PATH-COUNTER information for the control-flow model of the process. Thus, the path­

counter information for the process in Figure 3,1 is {(PATH 1, {(1, 2), (3, 3)}), (PATH 2,

{(l, 2), (2, 2), (3, 3)}), (PATH 3, {(l, 2), (2, 2), (3, 3)}), (PATH 4, {(l, 2), (2, 2), (3, 3)})}.

A few additional concepts are required for identifying the meta-paths. Observe that

two paths that share a common XOR-Join (or -Split), namely, by entering (or leaving)

through different edges into (or from) a common XOR-Join (or -Split), cannot be in the

same meta-path, since it would violate the definition of an XOR operand. To illustrate,

PATH 3 and PATH 4, in the example above, cannot occur in the same meta-path, since

they share a common XOR-Join, namely, X 2 • However, note that two paths that enter

(or leave) a common XOR-Join (or -Split) through the same edge do not violate the

situation just described, and may likely occur in the same meta-path. More formally,

\fpi,Pi E P, ViolateXOR(pi,Pi) = TRUE if both Pi and Pi enter (or leave) a common

XOR-operand through different edges.

A few other definitions that would be required are:

• \fp E P, let V(p) ~ V be the set of vertices covered by path p.

• \fx EV, N+(x) = {yl(x, y) EE} is the set of vertices leading out from x

40

• Vx EV, N-(x) = {yj(y, x) EE} is the set of vertices leading into x

• Va E AJ, CounterslnAN D(a) = LJ c(x, a), i.e., the counters arriving at an
xEN-(a)

AND-Join.

• Va E As, CounterslnAN D(a) = LJ c(a, x), i.e., the counters created at an
xEN+(a)

AND-Split.

• Va E AJ, PathsThrough(a) = {p E P I a E V(p)}, i.e., the set of all paths through

an AND-Join.

• Vp E P, ANDJoinslnPath(p) = {a E AJ I a E V(p)}, i.e., the set of all AND-Joins

in a path.

3.2.2 The Control Flow Problem is NP-Complete

Hofstede et al. (1998) use a reduction of the Satisfiability problem to a control flow

problem, to prove that the latter is NP-complete. This section presents an alternate

derivation that reduces the problem of finding valid meta-paths to that of finding maximal

cliques, an approach that offers more insights into the nature of the control flow problem.

In addition to the control flow model, three additional graphs, using the set of all paths

P as their vertex set, are constructed.

XOR-Representation Graph Xe= (P, Ex). The edge set Ex is constructed thus:

Vpi,Pj E P, (pi,Pj) E Ex{:} ViolateXOR(pi,Pj) = TRUE.

The edges of this graph identify the paths that share a common XOR-Join or -Split,

and thus cannot be in the same meta-path.

AND-Representation Graph Ac= (P, EA)- The edge set EA is constructed thus:

Vpi,Pj, (Pi,Pj) E EA{:} ANDJoinslnPath(pi) n ANDJoinslnPath(pj) =/- r/J.

This edges of this graph identify the paths that share common AND-Joins, and

thus are likely to be included in the same meta-path.

41

Path-Representation Graph Pa= (P, Ep), where Ep =EA\ Ex.

The edges of this graph combine the information contained in Aa and Xa; the

edges identify all pairs of paths that will occur in the same valid meta-path.

The three {·}-representation graphs for the control flow model of Figure 3.1 are shown

in Figure 3.2.

P3 •e---eep4
(a)

Figure 3.2: (a) XOR-Representation, (b) AND-Repr., and (c) Path-Repr. Graphs

In general, both Xa and Aa will be a collection of disjoint vertices, and other connected

components. The XOR-representation graph reveals a few intuitive details about the

various meta-paths in a process, namely, that every set of independent vertices (i.e., a

set of vertices, no two of which are connected by an edge) in Xa is a potential meta-path,

and thus, the number of valid meta-paths cannot exceed the number of independent sets

in Xa. Additionally, each complete sub-graph in Aa is a potential valid meta-path, given

· that all paths in that sub-graph share common AND-Joins, and consequently, common

counters. Now, the Path-representation graph essentially combines the information con-

tained in both Aa and Xa, to create a graph consisting of several components, from

which all valid meta-paths can be extracted, using the following theorem.

42

Theorem 3.1 The control flow model is correct if and only if the vertices in every max­

imal clique in Pa represent a valid meta-path.

Proof (=}, by contradiction) Suppose C C P is a maximal clique in Pa, and the paths

in C do not represent a valid meta-path. Now, are all the paths in C required for a valid

meta-path? Yes, since they all share common AND-Joins. Since the control flow model

is correct, there exists at least one more path p Ff C that is required to complete the valid

meta-path. Since pis required, it must merge with a path Pa E C at some AND-Join, say

Aa. Since C is a complete subgraph, any other path Pf3 EC must also share a common

AND-Join, say, Af3, with Pa· Now, since Aa and Af3 lie on Pa, there are two possibilities,

i.e., there is either (i) a path from Af3 to Am or (ii) a path from Aa to Af3· In case (i),

the path from Af3 to Aa lies on both Pf3 and Pm which implies that pis incident with Pf3

as well, since Pf3 joins p at Aa. In case (ii), the path from Aa to Af3 lies on both p and

Pa, which implies that p joins Pf3 as well at Af3· Since this holds for any path Pf3, this can

be extended to show that pis incident with all other vertices in C, thereby contradicting

the maximality of C.

(¢=, by contrapositive example) Consider the first incorrect model shown in Table 1.2.

The Path-representation graph is just the empty graph with two isolated vertices, the

vertices corresponding to the two paths from S to F. Each isolated vertex in Pa is a

maximal subgraph; however, each vertex by itself is not a valid meta-path, thereby com­

pleting the proof. •

Let M be the set of all valid meta-paths for the control flow model represented with Pa.

An immediate corollary of Theorem 3.1 is:

Corollary 3.1 The control flow model is correct{:} Vp E P, :3m EM 3 p Em.

43

The * part of the proof tells us that for a correct control flow model, every maximal

clique in Pa is a valid meta-path, identifying all of which is NP-complete [97]. It also

suggests our first bound, namely, that the size of the largest clique in Pa is the size of the

largest valid meta-path - can this bound be improved? Suppose, in the extremal case,

there is a path p which traverses through all the AND-Joins; clearly, in a correct model

this path would require the maximum number of paths to be included along with it, to

create a valid meta-path. The maximum number of paths thus required will be equal to

the sum of the in-degrees of all the AND-Joins in p, which would be at most 6AJ * aJ,

where 6AJ is the maximum in-degree of any of the aJ AND-Joins. Thus, the size of the

largest valid meta-path in a control flow model (and the size of the largest clique in Pa)

is at most 6AJ * aJ.

The ~ part of the proof presents some clues on how to identify if the model is incorrect

or otherwise, namely, that if a maximal clique is an invalid meta-path, then the control

flow model is incorrect. In any case, establishing that the control flow model is correct

is equivalent to finding all the maximal cliques in Pa, thereby making it NP-complete -

so why study this problem at all?

Let us analyze the steps that would be needed for solving the control flow problem.

Finding all the Paths

The first step is to find the set P of all directed acyclic paths from S to F - this is

readily done with a standard depth-first search routine (Algorithm 1); the special case of

handling cycles in the control flow model is discussed in Section 3.2.5. The time taken

for finding a single path is 0(/E/), and as we will see in Section 3.2.6, many of our results

will depend on /Pl, the number of S-F paths. However, there is no closed-form expres­

sion for estimating /Pl as a function of the degree distribution (6x8 , 6A8) and other

44

parameters, namely, X8 , XJ, as, aJ, of the control flow model. Moreover, in the worst-case,

the number of S-F paths can be exponential, as is for the extremal example of Figure 3.3.

Algorithm 1: Path Enumeration
Input: The current-node in the search tree, the path traversed thus far, and
the goal.
Output: The set P of all paths from S to F.
PATHENUM(currnode, currpath, goal)
(1) if currnode = goal
(2) PATHS t- PATHS U {currpath}
(3) else
(4) foreach x E N+ (currnode)
(5) if x fj. currpath
(6) PATHENUM(x, currpath U { x }, goal)

Figure 3.3: A Control Flow Model with the Maximum Number of S-F Paths

Construction of the Meta-Paths

Now that all paths have been found, the maximum number of potentially valid meta­

paths would be the power set P(P) with size 2IPI - all of these possibilities would have

to be checked to identify which one is, and which one is not a valid meta-path, which

is exponential in the worst case. However, the problem is not entirely without hope.

45

Observe that if Vi_ and Vi are two valid meta-paths, is it possible that Vi_ c Vi? - No,

since that would contradict the maximality of the clique that Vi_ represents in Pa. Thus,

there are certain subtleties unique to the character of the control flow problem that can,

and have been exploited, in developing MPSEARCH, a recursive backtracking approach for

identifying all the valid meta-paths.

3.2.3 Construction of Meta-Paths

The MPSEARCH procedure is a recursive, backtracking algorithm that identifies all valid

meta-paths from a depth-first search tree of all meta-paths. To better motivate the

discussion that follows, consider a few questions - what is a valid meta-path, or more

simply, why isn't a path sufficient to represent the process's execution? Suppose there

is a path p with a non-NULL counter set Gp. The presence of counters in p implies that

there is at least one AND-Split (or -Join) occurring in p, which indicates that there are

one/more parallel threads created (or merged) along with pin the process's execution.

The collective representation of p, along with all of its parallel threads, represents a trace

of the sequence of tasks that an instance of the process might progress through - this

collective representation is what is defined as a valid meta-path. The idea behind the

creation of meta-paths originated from the realization that in a correct process execution,

all parallel threads created with an AND-Split are subsequently merged at an AND-Join.

More intuitively, the process begins with no counters from S and ends with no counters

upon reaching F - this is the principle that has been formalized as the KORRECTNESS

algorithm, an informal description of which is presented next.

In the example of Figure 3.1, PATH 1, i.e., p1 = (S, A1 , T1 , A3 , F), is not a valid meta­

path in itself, since it carries the counters {(1, 2), (3, 3)}, with (1, 2) implying that it

is one of the two threads that originate at A1 , and (3, 3) implying that it is one of the

three threads that merge at A3 . Consequently, some more paths have to be included

46

along with p1 to account for the missing threads; let M = {p1} be the current meta-path,

and CM = {(1, 2), (3, 3)} be its counter-set. Any other path that is included with p1

must necessarily pass through some AND-Join present in p1 . To this end, if there were

no AND-Joins in p1 , and yet if it carries some counter, say (i,j), then this would be an

invalid meta-path, since the sub-thread created at AND-Split Ai could never be merged

with any other thread due to the absence of AND-Joins along the path. Clearly, this

intuitive approach presents the germ of an idea for diagnostic checking to help identify

the source of control flow errors, if any - this is further elaborated in Section 3.2. 7.

Is it permissive to include PATH 3 in M? Yes, since ViolateXOR(p1,p3) = FALSE, and

there is an AND-Join present in p1 . Is it worthwhile adding p3 to the current meta-path?

Yes, since it carries counters that are present in the counter-set of our meta-path, and

thus, the meta-path is now M = {p1,p3}. What is CM, the current counter-set of M?

Note that when a new path Pi is added to a meta-path M, care must be taken to include

only those counters that occur on edges not already traversed by one of the paths in­

cluded in M, to avoid double-counting of any counter(s) - this is the GETUSEFULCNTRS

procedure. By this rule, if p3 is included in M, all of its counters can be appended to CM,

since all of them occur on edges not already covered by the existing path in M, namely,

p1 . Thus, the meta-path is now M = {p1 , p3} and CM = {(1, 2), (1, 2), (2, 2), (3, 3),

(3, 3)}.

Observe that there are two occurrences of the counter (1, 2) in CM - this confirms that

both the threads that originated at A1 have been accounted for, and can be removed

from all future consideration. Moreover, the GETUSEFULCNTRS procedure ensures that

these counters will not be included again. Thus, if the number of occurrences of a counter

(i,j) in CM is equal to j, they are removed from the counter-set - this is the REMOVE­

MATCHEDCOUNTERS procedure. By this rule, both occurrences of (1, 2) in CM are

47

removed, whereby, CM= {(2, 2), (3, 3), (3, 3)}. The meta-path is not valid yet - it still

remains to account for (2, 2) and (3, 3). Consider the most recently added path, namely,

p3 - any other path(s) to be included in the meta-path must also necessarily pass through

any AND-Joins in p3 ; to this end, the reasoning used for including p3 can be repeated

recursively, i.e., by looking at the AND-Joins in the last added path (p3). There is one

AND-Join, namely, A3, in p3, and PathsThrough(A3) = {p1, P2, p3, p4}. Since p1 and

p3 are already present in M, the only paths that merit consideration for inclusion in M

are p2 and p4.

As before, consider the question - is it permissive to include p4 in M? No, since

ViolateXOR(p3,p4) = TRUE, or alternatively, (p3,p4) E Ex. More precisely, only

paths that do not share a common XOR-Join or -Split, along different edges, with one of

the paths already present in the meta-path can be chosen for inclusion. We can however,

include p 2 in our meta-path, whereby M = {p1 , p 2 , p 3 }. Although CP2 = {(1, 2), (2, 2),

(3, 3)}, the (1, 2) counter cannot be included since it occurs on an edge A1 --+ A2 that

has already been covered by p3 - this is handled by the GETUSEFULCNTRS procedure.

Now, CM = {(2, 2), (2, 2), (3, 3), (3, 3), (3, 3)}, and by an application of the REMOVE­

MATCHEDCOUNTERS procedure, it reduces to CM= 0. Thus, one valid meta-path for

the control flow model of Figure 3.1 has been identified, namely, by accounting for all

sub-threads that were created along the paths from S to F. The intuition described thus

far has been formalized into a backtracking procedure, MPSEARCH (Algorithm 2), that

can be used to generate all the meta-paths that require a particular path. To illustrate,

the set of all valid meta-paths that include PATH 1, i.e., p1 , for the control-flow model

of Figure 3.1, is generated by MPSEARCH(p1, {p1}, CpJ-

Line 1 begins the MPSEARCH procedure by removing all matched counters, following

which, if the set Temp is empty, it follows that currmetapath is a valid meta-path, and

48

Algorithm 2: Meta-Path Enumeration
Input: The last-added path, the current meta-path, and the current counter­
set.
Output: The set of all valid meta-paths that can be generated from the current
meta-path.
MPSEARCH(lastaddedpath, currmetapath, currcounterset)
(1) Temp+- REMQVEMATCHEDCOVNTERS(currcounterset)
(2) if Temp = 0
(3) # we have a valid meta-path - adjoin it to the set of valid meta-paths
(4) ValidMetaPaths +- ValidMetaPaths U {currmetapath}
(5) # include the paths in currmetapath in the set of paths covered
(6) PathsCovered +- PathsCovered U currmetapath
(7) # mark the last added path
(8) PathsMarked +- PathsMarked U {lastaddedpath}
(9) else
(10) CurrentM etaPathlnvalid +- TRUE
(11) foreach a E ANDJoinslnPath(lastaddedpath)
(12) if Temp n CounterslnAN D(a) =/. 0
(13) foreach p E PathsThrough(a)
(14) if p ¢ currmetapath and p ¢ PathsMarked
(15) if NoCOMMONXORJOINORSPLIT(p, currmetapath)
(16) Temp+- Temp U GETUSEFULCNTRS(p, currmetapath)
(17) CurrentM etaPathlnvalid +- F ALBE
(18) MPSEARCH(p, currmetapath U {p}, Temp)
(19) if CurrentMetaPathlnvalid
(20) # The current meta-path is an invalid meta-path
(21) InValMPath +- InValMPath U {{currmetapath}, {currcounterset}}

is included with the set of valid meta-paths (line 4). Upon discovering a valid meta­

path, the lastaddedpath is also marked (line 8), as a way of remembering that all valid

meta-paths that include it will be discovered in the current call to MPSEARCH, i.e., by

exploring all branches leading out from lastaddedpath. Additionally, the paths in the

set PathsM arked serve us well in that, should a marked path be encountered in ex­

ploring any other branch of the search tree, the search can be terminated, since any/ all

valid meta-paths in that route would have already been discovered. The procedure No­

COMMONXORJOINORSPLIT(p, currmetapath) checks to see that ViolateXOR(·, ·) is

FALSE for p and every other path in currmetapath. Additionally, if the search fails to

progress along the search tree, currmetapath is included in the set of invalid meta-paths

(line 21), to be used later for diagnostic checking (Section 3.2.7). The remainder of the

procedure is self-explanatory, and is identical to the discussion presented earlier.

49

3.2.4 The Komplete Korrectness Algorithm

The KORRECTNESS algorithm (Algorithm 3) is a backtracking algorithm for generating

all valid meta-paths in the process model. It involves two steps - (i) generate all di­

rected paths from Start to Finish, and (ii) scan them one by one, calling in turn, the

MPSEARCH routine, while taking care not to scan paths that have already been included

in other meta-paths. After all the valid meta-paths have been identified, it only remains

to check that all paths in P appear in at least one valid meta-path to ensure that the

control flow model is correct (Corollary 3.1).

Algorithm 3: The Korrectness Algorithm
Input: The control-flow model G = (V, E)
Output: The set ValidM etaPaths of all valid meta-paths
KORRECTNESS(G)
(1) # generate the set P of all Paths from S to F
(2) PATHENUM(S, { S}, F)
(3) # generate the set of all valid meta-paths
(4) PathsCovered +-- (/J

(5) foreach p E Paths
(6) if p (/_ PathsCovered
(7) PathsM arked +-- (/J

(8) MPSEARCH(p, {p}, Gp)

3.2.5 Resolving Cycles in the Control Flow Model

The set P includes only directed acyclic paths from S to F; what if the control flow

model was not acyclic? A simple test to check if the model is cyclic or otherwise is to

check if v \ upEP V(p) = 0, i.e., do the paths in P cover all the vertices of the set V?

This gives rise to two cases.

Case 1: V \ upEP V(p) = 0

The fact that the paths in P include all vertices in V does not exclude the presence of

cycles - four such possibilities are presented in Table 3.1.

50

.Table 3.1: Control Flow Sub-models with Empty Cycles

Sub-models Discussion

(a) This sub-model is correct.

(b) This sub-model is incorrect, since it
violates the requirement of unique ter­
mination.

(c and d) These sub-models are incor­
rect, since they model concurrency in
feedback which makes it impossible for
control flow to proceed.

In sub-model (a) of Table 3.1, the XOR-pairs model recursion in the flow of control,

which must eventually move ahead from the second XOR - to this end, it is immaterial

if control flow is looped more than once within the model, and such a model can be

analyzed with the KORRECTNESS algorithm. However, should iteration be misused as in

sub-models (b)-(d) of Table 3.1, the algorithm will correctly identify the error, since the

counters generated at the AND-Joins/Splits will never be accounted for by any path in

P. Consequently, the KORRECTNESS algorithm can be used without any further checks

for the case v \ upEP V(p) = 0.

Case 2: V \ upEP V(p) =I- 0

Let V* = V \ upEP V(p). The following two rules can be used to immediately identify if

a control flow model with cycles is incorrect.

Rule 1 :3a E As 3 N+(a) n V* =I- 0 =} The control flow model is incorrect. The fifth

example in Table 1.2 illustrates this rule, which essentially means that should an

AND-Split lead control flow away into a cycle that does not reach toward F, then

51

the model is incorrect , since the counter created by the AND-Split will never be

accounted for, in any meta-path.

Rule 2 :la E AJ 3 N-(a) n V* =/- 0 =:, The control flow model is incorrect. The situation

tackled by this rule is similar to that created in sub-models (c) and (d) of Table

3.1 , and essentially implies that should an AND-Join receive control flow from an

element that is not part of a directed path from S to F , it becomes a situation

wherein control flow will not proceed any further.

Now, there are four possibilities, as regards the content of V*, namely - (i) V* ~ T , i.e.,

the elements not covered by P are all tasks with just sequential flow of control among

them, (ii) V* ~ (T UXsUXJ) , i.e. , the elements not covered include just choice and/or

sequential flow of control among them, (iii) V* n AJ =I- 0, and/or (iv) V* n As =I- 0. Both

(i) and (ii) can be easily eliminated by applying rules 1 and 2; it is (iii) and (iv) that is

more interesting.

The Set V \ V *

The Set v •

Figure 3.4: Connectivity between Vertices in V* and V \ V*

By definition, the control flow model is a single connected component, and so, the ele­

ments in V* must be connected to the vertices in V \ V* at either XOR/ AND logical

operands (labeled in Figure 3.4 with???). If they were connected at an AND-Join/Split,

then rules 1 and 2 will eliminate the model as incorrect. Consequently, the only cases

that need to be considered are those in which the elements in V* are c9nnected to the

main model via XOR operands - this will be referred to as the XOR Rule.

52

The Set V \ v •

--~ ::::::)E)j- -- -=e--
An AND.Join that is part of an internal A dead AND.Join
concurrent path

Figure 3.5: Control Flow Sub-model Possibilit ies for the Case V* n AJ =/. 0

Consider cases (iii) and (iv) presented above. If v• n AJ =/. 0, then there are only two

possible ways that an AND-Join may occur in V*. Figure 3.5 illustrates these two pos-

sibilities, namely, an AND-Join is dead and will never get activated, or is part of an

internal con current path. If the AND-Join is dead , it doesn 't affect the KORRECTNESS

algorithm, but it still remains to ident ify that it is dead; if it is part of an internal con-

current path, then V* n As =/. 0, or else the model would be incorrect, which leads us to

(iv) above. Note that the operand labeled ??? in Figure 3.5 may either be an XOR (in

which case it would be incorrect) , or an AND (which would be (iv) again).

Let P{x,y} be the set of all directed, acyclic paths from vertex x to vertex y , and let

V(P{x,y}) be the set of vertices covered by these paths. If V* n As =/. 0, then the

following rules can be used to (i) identify dead AND-Joins, and (ii) eliminate incorrect

models.

Rule 3 3x E AJ n V* , {y,z} E Xs \ V * 3 (IP{y,x} I ~ 1) A (IP{z,x}I ~ 1) A (IP{y,x} I =/.

IP{ z ,x} I) =} the AND-Join x is dead. This essentially means that if there are two

XOR-Splits {y, z} E V \ V * which have different paths leading into a common

AND-Join x E V *, then the AND-Join is dead, as is illustrated in Figure 3.5.

Consider case (iv): Let x E As nV* ~nd y E XJ \ V *). If IP{x,y} I = 0, then the XOR-Join

does not lie on a direct path from x, and can be ignored. If IP{x,y} I = 1, then the control

flow model is incorrect, since there are at least two threads created at AND-Split x, and

53

The Set V \ v•

Multiple paths from A 9 to X 6

Figure 3.6: Illustration of Multiple Paths from an AND-Split to an XOR-Join

they must all be merged before they reach the main threads in V \ V* , or else they will

never be merged (by the XOR Rule). If the multiple threads created at x were merged

at say, node z, then there would be (at least) one path from z toy and two/more paths

from x to z, each of which can be combined to create two/more x - z -y paths, thereby

contradicting the correctness of a model with IP{x,y}I = 1. If IP{x,y} I > 1, then these mul­

t iple paths may occur as a result of internal concurrent paths, as is illustrated in Figure

3.5, or multiple distinct paths as is illustrated in Figure 3.6, the latter being incorrect

- this can be easily solved by applying the KORRECTNESS algorithm to the sub-model

beginning with AND-Split x and ending with XOR-Join y, and using P{x,y} as the set of

paths from which the valid meta-paths will be constructed. If no valid meta-paths are

found, as would be the case for the example in Figure 3.6, then the model is correctly

identified as incorrect.

Rules 1 and 2 can both be evaluated in linear time, and Rule 3 can be evaluated in O(IEI),

namely, the run-time complexity for generating P{x,y} · The last rule (case (iv)), how­

ever, requires the same run-time complexity as that of the backtracking KORRECTNESS

algorithm, which can be exponential in the worst-case.

54

3.2.6 Complexity Analysis

The KORRECTNESS algorithm identifies all valid (and invalid) meta-paths by selectively

enumerating and exploring combinations of the paths from S to F. In the worst case,

the algorithm could end up scanning all 2IPI possible combinations of paths to identify

even one valid meta-path - this could explode further if the number of valid meta-paths

is again large. Note, however, that it is not entirely correct to say that all 2IPI possible

combinations of paths will be explored, without taking into account the structure of

the control flow model, namely, the number of AND-Joins, the distribution of the in­

degrees of the AND-Joins, the number of AND- and XOR-Splits, etc. - these issues are

summarized in the following questions:

• What is the expected number of valid meta-paths in any control flow model?

• What is the expected time it will take to identify a single valid meta-path?

It is clear that the KORRECTNESS algorithm is exponential in the worst case. However,

what about on average?

Establishing the Average Number of Valid Meta-Paths

Suppose a control flow model with 20 nodes is randomly drawn - it is possible to estimate

the average number of valid meta-paths in such a model? What if the model has 20,000

nodes? It turns out that, on average, the number of valid meta-paths to be expected in

any control flow model is at most 9. Also, if the number of paths from S to F is say,

50, then, the expected number of valid meta-paths in such a control flow model is only

about 4.6.

Let Pn be the maximum number of pa_ths possible between S and F in a control flow

model with n vertices, and call this set Pmax = {p1,P2, ... ,PPn}. The set of all possible

paths that can be discovered for a given control flow model is the power set P(Pmax) with

55

size 2Pn. Let Av (k) be the average number of valid meta-paths that can be discovered

among k paths. Consequently, Vn, the average number of valid meta-paths in a control

flow model with n vertices, averaged over all possible combinations of paths, is:

(3.1)

Equation 3.1 essentially sums over the number of ways of choosing k paths from a maxi­

mum of Pn, multiplied by Av(k), the average number of valid meta-paths among k paths

(k = 0, 1, ... , Pn), and we have used the identity Lf:,0 (~n) = 2Pn. Consider Av(k) - it

was noted earlier in Section 3.2.1 that the maximum number of valid meta-paths can-

not exceed the the number of independent sets in Xe, the XOR-representation graph.

Consequently, the average number of valid meta-paths among k paths cannot exceed the

average number of independent sets in the XOR-representation graph with k vertices.

The exact formula for h, the average number of independent sets in a graph of order k

is ([97], §5.6)

1- -t, G)r<.-1>1, (3.2)

substituting for which, in equation 3.1, and using the relation Av(k) ::; h, we get

(3.3)

where the last inequality has been obtained by just manipulating the binomial coeffi­

cients in the inner sum using the identities (~n) (;) = (Pn-k~(~-r)!r! :S; (P;r (~n_7), and

~Pn (Pn -r) = 2Pn -r.
wk=r k-r

56

Now, the series represented in equation 3.3 is a unimodal sequence, i.e., the terms tr

increase up to a certain value rm and then decrease thereon, whereby it follows that the

sum of the sequence is at most (Pn + 1) times the largest element in the sequence. To

show that the sequence is unimodal, consider the ratio of two successive terms, tk/tk-l,

which evaluates to Pn/(k2k). It is immediately obvious that for k ~ log2 (Pn), the ratio

is less than 1, assuming Pn ~ 2. To better estimate rm, it remains to solve for k in

k 2k = Pn, which can be rewritten as

(k · ln(2)) · ek·ln2 = Pn · ln(2) (3.4)

which, incidentally, is in the standard form for the Lambert's W function. The Lam­

bert's W function [14, 20] is evaluated as the value of W(x) that satisfies the equation

W(x)ew(x) = x, and is usually approximated as:1

{
0.665 · (1 + 0.0195 · ln(x + 1)) · ln(x + 1) + 0.04

W(x) ~
ln(x - 4) - (1 - ln(x)) · ln(ln(x))

0::; X::; 500

X > 500

Additionally, symbolic processing packages like Maple readily compute the values of

the Lambert's function using in-built recurrence relations [13, 20]. Comparing with

the standard form of the Lambert's W function, it follows that the value of k · ln(2)

that satisfies equation 3.4 is W(Pn · ln(2)). Thus, the value at which the sequence in

equation 3.3 attains its maximum is rm = W(Pn · ln(2))/ln(2). Since the sum of the

series in equation 3.3 cannot exceed (Pn + 1) times the value at trm, it follows that

(3.5)

The final result is obtained by using Sterling's approximation [97], i.e., n! ~ (e/nr, in

equation 3.5 to prove that, on average, the number of valid meta-paths in a control flow

model on n vertices is

V: < _(P,_n_+_l_)_· _er~m
n - 2(rm(rm+l)/2)

1http://www.desy.de/-t00fri/qcdins/texhtml/lambertw/

57

(3.6)

Now, equation 3.6 is interesting in its own right. A plot of the value of the estimated

upper bound for Vn for Pn = {1, 2, ... , 300} is shown in Figure 3.7. Figure 3.7 offers

some interesting insights, namely, that in any control flow model, drawn at random, the

average number of valid meta-paths does not exceed 9, which shall be referred to as the

threshold of valid meta-paths, and moreover, as the number of paths from S to F in-

creases, the value of Vn converges to zero!!

Threshold of Valid Meta-Paths

l\
s I \

I \
I \
I \

6 I \
i \

V_n I \\
4 I

I
"'" ~' -----~ --------------------·--·-·······

2

0 50 100 150 200 250 300

Number of Paths from Start to Finish

Figure 3.7: Expected Number of Valid Meta-Paths in a Random Control Flow Model

Consider equation 3.6 ~ it reveals that, irrespective of the order of the control flow model

n, the expected number of valid meta-paths is bounded, and is a function only of the

number of paths from S to F. Suppose there are 237 paths from S to F. Equation 3.6

and Figure 3. 7 confirm our intuition that in a model of such complexity, it is very likely

that there are only a limited number of valid meta-paths. Now, what about the run-time

complexity? More specifically, what is the expected time it takes to identify one valid

meta-path?

58

Estimating the Run-time for the Korrectness Algorithm

The main sets of notation that would be required are briefly summarized - P is the

set of all S-F paths found in a control flow model on IVI vertices, with IEI edges, xs

XOR-Splits, XJ XOR-Joins, as AND-Splits, and aJ AND-Joins. The maximum and

minimum in-degree (resp., out-degree) of the XOR/ AND-Joins (resp., -Splits) will be de-

noted by 6.* and 8*, where { *} represents the logical operand under consideration, and

6.A = max(6.As, 6.A.1). Note that the maximum size of a valid meta-path is 6.AJ * aJ

(refer Section 3.2.2). It is also assumed that the three representation graphs Xe, Ac,

and Pa have been constructed - this would require a run time of 8(IPl 2), to identify all

the (l;I) possible edges in the graphs. Consequently, checking conditions like NoCoM­

MONXORJOINORSPLIT(pi, Pi) is just equivalent to checking if the corresponding edge

is present (or absent) in Xe. A step-by-step analysis of Algorithm 2 is presented next.

Line 1: Temp+- REMOVEMATCHEDCOUNTERS(currcounterset)

Since counters are created only on edges incident with AND-Joins and -Splits, the maxi­

mum number of counters possible is 6.As *as+ 6.A.1 * aJ = 0(6.A)· Thus the maximum

time required for this step of the algorithm is 0(6.A) - run through currcounterset once

tracking the occurrence count of each counter, and run through it again, removing the

matched counters.

Line 11: foreach a E ANDJoinslnPath(lastaddedpath)

Let us condition on the number of AND-Joins in the lastaddedpath, which corresponds to

the number of times this loop will be executed. The probability that the lastaddedpath

contains any AND-Join is the probability that it is one of the at least 8A.1 paths through

the AND-Join, which is 8A.1/IPI. Thus, the probability that the lastaddedpath contains

k AND-Joins is~(~) (~~.1)·

59

Line 12: if Temp n CounterslnAN D(a) -/= 0

Suppose the number of paths in currmetapath isl. Consider any path in currmetapath.

The probability that it contains AND-Join a is the probability that it is one of the at

least OAJ paths through a. Since there are l paths in currmetapath, the probability that

at least one of them includes AND-Join a is 2'.: l ~it.
Line 13: foreach p E PathsThrough(a)

This loop will be executed at least o AJ times.

Line 14: if p rt currmetapath and p rt PathsM arked

This probability shall be approximated by q1, where l is the number of paths~in currmetapath.

Line 15: if NoCOMMONXORJOINORSPLIT(p, currmetapath)

The probability that p and some path p* E currmetapath share a common XOR-Join or

-Split is at most x 8 / ('\s) + x 1 / ("~J), where 1/ ("~J) is the maximum probability that p

and p* share two of the at least OxJ paths through a particular XOR-Join, and there are

x1 choices for the XOR-Join (the argument is similar for XOR-Splits). Since there are l

choices for p*, the pro~ability that p do~s not sh(are a c:;mon ~~R)-Join or -Split with

any one of the l paths m currmetapath 1s 2'.: l * 1 - ("~s) - ("~J) .

Line 16: Temp - Temp U GETUSEFULCNTRS(p, currmetapath).

This step would require a run time of O(IEI) for checking the counters in each path, and

consequently a total of l * O(IEI) for all paths in curremetapath, which is again O(IEI).

60

The calculations for the running time of the MPSEARCH procedure can now be sum-

marized. Let f(l) be the running time required by the procedure when the size of

currmetapath isl. Based on the observations above, the running time can be written as

Equation 3.7 is quite unwieldy. To simplify it further - in a worst case scenario - let us

suppose that the probability that all the if conditions are satisfied is 1. In such a case,

equation 3. 7 can be rewritten into a more comforting first-order recurrence as follows.

(3.8)

where we have used the identity I::;=0 k (;) = n * 2n-1 . The solution for the first-order

recurrence of equation 3.8 is f(l) = O(c + E)1, where c = 2 I~~ 8 2 , for every E > 0
aJ. aJ • aJ

([97], Theorem 1.4.1).

Now, f(l) is the time spent in evaluating all branches in the search tree at a level where

the number of paths in currmetapath is l. In the worst case, the MPSEARCH proce­

dure may end up exploring all branches at all levels, namely, for l = {1, 2, ... , IPI - 1},

whereby, the absolute worst case running time for finding even one single valid meta-path

is estimated as I::1 f(l) = O(c + E)IPI.

Clearly, this is the worst-case scenario for the time it takes to complete one run through

the MPSEARCH procedure, and correspondingly, to identify one valid meta-path. Since

the expected number of meta-paths is bounded (Section 3.2.6), the expected running

time for finding all valid meta-paths is also O(c + E)IPI. Thus, the total running time for

the KORRECTNESS algorithm is O(IEI) + 8(IPl 2) + O(c + E)IPI.

61

Scope for Improvement

There are two main avenues for improving both the design and the analysis of the Ko-

RRECTNESS algorithm, namely:

· • Is it possible to design heuristics to "speed-up" the search process? Will it improve

the speed of the MPSEARCH procedure if it is begun with a path that has the

maximum number of AND-Joins? Or, is it possible to pre-process and sort the set

of paths in P taking into account the specific structure of the control flow model,

namely, the in- and out-degree distribution of the logical operands? Also, none of

the steps in Algorithm 2 make any choices based on the size of currmetapath - can

this information be used to influence the search time?

• The worst case analysis presented in Section 3.2.6 is quite crude, and does not

exploit attributes specific to the structure of the control flow model which will

definitely impact the traversal of the search tree. There is much scope for improving

the running-time bound for J(l). More specifically, is it possible to estimate the

probability qi that was assumed for line 14 of Algorithm 2? Is it possible to derive

a better estimate of the expected running time of the algorithm to show that,

perhaps, it is usually fast?

3.2. 7 Diagnostic Checking of the Control Flow Model

This section will discuss the use of the KORRECTNESS algorithm for identifying the source

of control flow errors in a business process model. Consider the incorrect process model

of Figure 3.8.

The results of the KORRECTNESS algorithm (implemented in PYTHON) are as follows:

Paths There are 7 paths from Start to Finish. The paths from Start to Finish are:

'path2': ['s' ' 'Ai' , C Xi' ' 'Ti' , 'X6' , 'A2' , 'X7' , 'F' J '
'path3': ['s' ' 'Ai', 'Xi' , 'T2' , 'X5' , 'A2', 'X7', 'F' J '
'path!': ['s' ' 'Ai', 'X2' , 'T4' , 'X7', 'F' J '
'path6': ['s' ' 'Ai' , 'X2', 'T3' , 'X4' , 'X5', 'A2', 'X7', 'F' J ,

62

Figure 3.8: Incorrect Process Model - An Example

'path7': ['S', 'A1', 'X2', 'T3', 'X4', 'X6', 'A2', 'X7', 'F'],

'path4': ['S', 'A1', 'X3', 'T5', 'X6', 'A2', 'X7', 'F'],

'path5': ['S', 'A1', 'X3', 'T6', 'X5', 'A2', 'X7', 'F']

Counter-Sets The counters in all the paths, including the edge that the counter occurs

on, are:

'path2' : [[('A1' , 'X1') , (1, 3)], [('X6' , 'A2') , (2, 2)]],

'path3' : [[('A1' , 'X1') , (1, 3)], [('X5' , 'A2') , (2, 2)]],

'path1': [[('A1', 'X2'), (1, 3)]],

'path6': [[(' Ai', 'X2'), (1, 3)], [('X5', 'A2'), (2, 2)]],

'path7': [[('A1', 'X2'), (1, 3)], [('X6', 'A2'L (2, 2)]],

'path4' : [[('A1' , 'X3') , (1, 3)], [('X6' , 'A2') , (2, 2)]],

'path5': [[('A1', 'X3'), (1, 3)], [('X5', 'A2'), (2, 2)]]

Predictably, the set of valid meta-paths is empty. The list InValMPath of all invalid

meta-paths is:

Invalid Meta-paths The invalid meta-path results, i.e., (set of paths, counter-set) are:

1: [[-'path2', 'path6'], [(1, 3), (1, 3)]],

2: [['path3', 'path7'], [(1, 3), (1, 3)]],

3: [['path1'], [(1, 3)]],

4: [['path4', 'path3'], [(1, 3), (1, 3)]],

5: [['path5', 'path2'], [(1, 3), (1, 3)]]

63

None of the paths occur in any valid meta-path - let us investigate further.

• PATH 1 does not cover any AND-Joins, and so, the (1, 3) counter that it carries

can never be removed.

• All the other meta-paths are short of just one more (1, 3) counter - now, why did

this occur? Observe that each meta-path includes both the XOR-Joins, namely,

X5 and X 6 • Since each XOR-Join requires only one flow through its incoming arcs,

other paths through these XOR-Joins cannot be included. The only other path is

PATH 1, which, however, cannot be added since it doesn't cover any AND-Joins.

Thus, a wealth of information can be extracted simply by examining the final meta-path

results and by tracking the counters that remain unaccounted for, in each incomplete

meta-path, to provide precise feedback about the source of the control flow error(s).

3.3 Summary

This chapter presented the KORRECTNESS algorithm, a graph-theoretic approach to ad­

dressing correctness issues in control-flow models, without any restriction on the form

or structure of the business process. The algorithm has been implemented in MAPS, a

computerised environment for Modeling and Analysis of Process modelS, the details of

which are presented in Chapter 5.

Additionally, it has been shown that, on average, the number of valid meta-paths in a

random control-flow model does not exceed 9. From an implementation standpoint, this

is very satisfying, since it would imply that the enumerative approach of the KORRECT­

NESS algorithm does not fall prey to the exponential growth in problem complexity, but

instead, is bounded in its average run-time complexity.

64

Chapter 4

The Resource-Sharing Problem

Chapter Overview

This chapter outlines a collection of novel techniques that exploit the control flow model to

gain insight into the structure and behavior of a process. Several simple rules are derived

to help the designer compute minimal resource requirements to maximize parallelism

within the process, and also to identify design errors that could lead to deadlocks either

within a single-instance, or across multiple-instances of a process.

4.1 Introduction & Background

The basics of the resource-sharing problem were introduced in Section 1.4.1- the resource

requirements for a business process may be specified as follows:

• R = {R1 , R2 , ... , Rr} is the set of all resources. VR ER, Rf = number of units

available for resource R.

• \:/Ri E R, Rfap : T ---+ N = {O, 1, ... } is a functional that specifies the number of

units of resource R captured by each task, where T is the set of all tasks.

• V Ri E R, Rfel : T ---+ N is a functional that specifies the number of units of resource

R released by each task.

65

The verification requirements of correct resource-sharing are:

Single-Instance Verification is to determine if the sharing of common resources among

tasks within an instance of a process could lead to deadlock.

Multiple-Instance Verification is to determine if the sharing of common resources

among various instances of the process could lead to deadlock.

The principal challenge associated with both problems above is to identify potential

circular-wait (CW) conditions that could arise in the process - these are determined

primarily by the logic of the process, i.e., the control flow model. It is assumed that the

control flow model is correct; consequently, the focus of this chapter is to further study

the control flow model, coupled with the additional information contained in Rf ap, Rfel,

etc., to identify potential deadlock situations, as were illustrated in Table 1.3.

4.2 The Control Flow Model Revisited

The control flow model was formalized in Chapter 3 - to summarize, it is a directed

graph representation of tasks and logical operands (AND, XOR), which taken together,

represent the logic and ordering of the process. The main sets of notation that would

be required are V, T, P, and M, representing respectively, the sets of vertices, tasks,

the S - F paths, and the set of all valid meta-paths identified by the KORRECTNESS

algorithm. Additionally, Vm E M, V(m) ~ V is the set of vertices covered by all the

paths included in the meta-path m - the reader is referred to Section 3.1 for notation

not covered here.

Consider the control flow model of Figure 3.1, repeated in Figure 4.1. Observe that

the control flow model lends itself naturally to being partitioned into sets of concurrent

elements (tasks and logical operands), as illustrated in Figure 4.1.

66

Concurrent Set Con0

Con, Con2 Con3 Con4 Con7

Figure 4.1: Partitioning the Control Flow Model - An Example

Figure 4.1 highlights many interesting ideas - the control flow model has been partitioned

into seven disjoint sets of concurrent elements. The concurrent sets are interpreted thus:

Can2 = {T1, A2 } implies that both T1 and A2 can be activated simultaneously within a

single instance of the process. Additionally, the index 2 in Can2 suggests the order in

which its elements are arrived at , beginning at Can0 = {S}. The reader would no doubt

wonder, among other questions, why partition the control flow model?

The objective of partitioning the control flow model into sets of concurrent tasks is to

explicitly order the tasks, namely, by assigning a functional value f : T - N such that

for any two tasks ti, tj , f(ti) < (=) f(tj) implies that task ti precedes (is concurrently

enabled with) task tj in the execution of a process. Such an ordering would aid in

immediate investigation of potential circular-wait conditions t hat could arise between

tasks t hat have t he same f (·) value - this is elaborated in Section 4.3. Once the set

Con = {Gani} of concurrent elements have been identified, assigning the functional f(·)

is trivial, namely, Vt E Ganin T , f (t) = i .

67

The partitioning of the control flow model into the concurrent sets { Conj is based on a

very simple idea, namely, for an element x to belong to Gani, all of its incoming elements,

i.e., N-(x) must belong in LJk<i Conk. This is formalized in Algorithm 4.

Algorithm 4: The Partition Algorithm
Input: The control-flow model G = (V, E)
Output: The set {Gani} of all concurrent elements, the function f: T-+ N
PARTITION(G)
(1) # Partition the control flow model into concurrent sets
(2) Con0 f- {S} # Initialize the algorithm
(3) if- 1; Temp f- 0
(4) # Repeat until the Finish node is reached
(5) while Con;_1 -=/= { F}
(6) Con; f- 0 # Initialize the current set
(7) # Create a set Temp of all elements covered thus far
(8) Temp f- Temp U Con;-1
(9) # For each element x in the last concurrent set
(10) foreach x E Con;-1
(11) # For each new vertex y leading out from x
(12) foreach y E N+(x) \ Temp
(13) # If all of y's input vertices are present in Temp, include in Con;
(14) if N-(y) ~ Temp
(15) Con; f- Con; U {y}
(16) # Assign the functional f : T-+ N
(17) foreach t E Con; n T
(18) J(t) f- i
(19) i f- i + 1 # Increment the set index

The PARTITION procedure (Algorithm 4) is quite self-explanatory. Lines 2 and 3 initialize

the algorithm by setting Con0 = {S}. The loop in line 5 repeats until the Finish node is

reached, and begins by creating a new empty set, i.e., Gani= 0 (line 7). Line 8 appends

the previously discovered concurrent set, Coni-l, to the set Temp of all elements covered

thus far. Subsequently, for each vertex x in the most recent concurrent set Coni-l (loop

in line 10), it remains to check that, for each new (i.e., not included in other concurrent

sets) output vertex y of x (loop in line 12), that all of y's input vertices are present in one

of the previously discovered concurrent sets (line 14), for it to merit inclusion in Gani

(line 15). Lines 17 and 18 assign the functional f : T -, N by assigning the index i to

all tasks in Gani, i.e., Vt E Ganin T, f(t) = i.

68

The run-time complexity of the PARTITION procedure is O(IV/ 2) - lines 5 and 10 are

executed at most /V/ times, and line 12 is executed at most max{.6.As, .6x5 } times. The

partitioning of the control flow model was inspired by a similar concept presented in [89].

The { Gani} partitions need to be understood as purely mathematical conveniences ob­

tained from the control flow graph G, minus the actual interpretation of the elements

contained within. To see why, consider the set of concurrent elements in Figure 4.1;

Gon4 = {n, T4} is especially interesting, since it implies that both T3 and T4 can be

enabled simultaneously, which is impossible since they are activated by a common XOR­

Split, X 1 ; this would also be clarified by examining the set of valid meta-paths M -

observe that both T3 and T4 do not occur together in any of the valid meta-paths,

i.e., ~m E M 3 {T3 , T4 } ~ V(m). This is clarified thus: for each valid meta-path

m E M, define Gonr = Gani n V(m) to be the concurrent set relevant to m, and

ConlV(m) = {Gonr} to be the set of concurrent sets with vertices restricted to V(m).

However, note that tasks that have the same J(-) values and occur in the same valid

meta-path may not be truly concurrent - they may need to be executed in some partial

sequence, as constrained by the availability of resources. To illustrate, suppose R! = 1,

f(~) = f(Tj), and both require resource Ra; clearly, both ~ and Tj cannot occur

concurrently (assuming that they are present in the same valid meta-path) - one must

precede the other. But, for each valid meta-path m, { Gonr} reveals the sets of truly

concurrent elements that the process designer envisioned for the process; consequently,

for the benefits of concurrency to be fully realized, it only remains to ensure that for

each valid meta-path m, the number of available resources is adequate to ensure full

parallelism for all tasks in any concurrent set Gonr. This, and other considerations, are

more thoroughly explored in the sections that follow.

69

4.3 The Resource-Sharing Problem: Some Ideas

The design of a business process minimally requires the specification of the process's

logic, and the specifics of resource requirements by the constituent tasks. Additional

details like input-output requirements, infrastructure support, activity durations, etc.,

while necessary for completing the process's description, are not essential to verifying

the correctness of a process's design. As illustrated in Table 1.3, the design problems

that may arise from resource-allocation can be categorized into one of:

Conservation of Resources To check that the number of times a resource is captured

is equal to the number of times it is released. This is enforced by verifying that

VRi ER, Vm EM

tEV(m)nT tEV(m)nT

This rule essentially checks to see that in each valid meta-path, the number of times

each resource is captured is equal to the number of times it is released, i.e., a simple

check for conservation of resources.

Release-before-Capture Improperly specified process definitions wherein resource units

are released before they are captured. This is enforced by verifying that

Rfap(ta) + L [Rfap(t) - R~1(t)] ~ Rfel(ta)
\ltEV(m)nT:/(t)</(t,.)

This rule essentially checks to see that in each valid meta-path, the number of units

of a particular resource that are being "held" by the process is greater than or equal

to the number of units that are being released by a particular task.

Inadequate Capacity The specified resource capacity {Rf} is inadequate for satisfying

the resource requirements of a single instance of the process.

70

Circular-Wait The most important and the least evident problem of all, wherein two or

more tasks capture a set of resources and end up waiting indefinitely for resources

held by one another.

In the context of resource-allocation, there are two main problems that the process de­

signer needs to be alerted to, namely, the obvious and the not-so-obvious. The obvious

design errors include "conservation of resources" and "release-before-capture," both of

which have been addressed above. The not-so-obvious problems include "inadequate ca­

pacity" and "circular-wait." Clearly, the circular-waits are the most severe design errors

that could escape the attention of a process designer - the intuition derived from the par­

titions { Gani} will be used extensively in identifying potential circular-waits, especially

across multiple instances of the process.

4.4 Single-Instance Verification

With regard to the execution of a single instance of a process, the circular-waits (CWs)

are further classified into two categories, namely (i) CWs within a concurrent set, and (ii)

CWs across concurrent sets. Both (i) and (ii) are illustrated, based on examples drawn

from Table 1.3, in Figure 4.2 - the reader is referred to Table 1.3 for a detailed discussion

on both examples.

Identifying CWs within a concurrent set is relatively straightforward, and is discussed

in Section 4.4.1. Circular-Waits across concurrent sets are also (easily?) identified by

creating an equivalent Petri net representation of the control flow model, and exploring

its reachability tree to verify that it is deadlock free, and is discussed in Section 4.4.2.

71

(a) CW within a concurrent set

Con2

R,

Con4

(b) CW across concurrent sets

Figure 4.2: Two different classes of Circular-Wait (CW) problems

4.4.1 Identifying Circular-Waits Within Concurrent Sets

It would be useful to begin by summarizing the main question that is being addressed in

this section - are there any potential circular-waits among a set of concurrent activities?

Consider any concurrent set Con7I', for some valid meta-path m - if ICon7I' n Tl ::; 1,

there is no concern about circular-waits within Con7I'. It is only in the case when there

are two/more concurrent tasks that it remains to verify that circular-wait conditions are

not existent. A few additional definitions that would be required before continuing the

discussion are:

• Vt ET, tCap ={~E R I R fap(t) =/=- O} is the set of resources captured by task t.

• Vt E T , tRel = { ~ E RI Rfel (t) =/=- 0} is the set of resources released by task t.

The general rules presented next will be useful in detecting potential circular-waits within

a concurrent set. The special case of when resource capture/release by a task is limited

to one unit each is presented first , and is subsequently generalized to allow for multiple

units of resource capture/release by a task.

72

Special Case: R[°ap,Rel}: T-+ {O, 1} and Rf:::; 1. In the special case when the re­

lease/capture of resources by a task is limited to one unit each, and unit resource

availabilities, the following situation would lead to a circular-wait. If there is a

meta-path with two concurrent tasks, say ti and tj, each requiring two or more

common resources, then a deadlock would arise if both ti and tj capture some re­

sources and end up waiting for one another to relinquish their captured resources

(refer example 1 in Table 1.3).

More formally, 't/m E M, 't/Con": E Con1v(m) 3 JCon": n Tl > 1

General Case: R[°ap, Rel} : T -+ N and Rf :2: O. In the general case when multiple units

of a resource may be released/captured by a task, a circular-wait will occur if the

combined request for any two common resources Rp and Rq by two concurrently

enabled tasks exceeds the resource capacities Rf and Rf.

Figure 4.3 illustrates an example, with Rf = Rf = 2. A circular-wait will occur

if both T1 and T2 capture one unit each of R1 and R2 - more specifically, the

combined request for both R1 and R2 by the two concurrently enabled tasks T1 and

T2 is equal to three, and exceeds the resource capacity of two.

More formally, 't/m EM, 't/Con": E ConlV(m) 3 JCon": n Tl> 1

:3Rp, Rq ER, ti, tj E Conf n T 3 [{Rp, Rq} ~ tfap] A [{(Rp, Rq} ~ tfap]A

[tfap(Rp) + tfap(Rp) :2: Rf] A [tfap(Rq) + tfap(Rq)J :2: Rf]=} Circular - Wait

The rules presented above are just elementary count-based checks for identifying potential

circular-waits within a concurrent set. Moreover, as will become evident in Section 4.5.2,

these checks become redundant with the calculation of minimal resource requirements

that guarantee the successful deadlock-free execution of a process, which, by definition,

renders void the existence of any circular-wait conditions.

73

Figure 4.3: Circular-Wait Within A Concurrent Set - Another Example

4.4.2 Identifying Circular-Waits Across Concurrent Sets

The main question addressed in this section is - is it possible to detect potential circular­

waits that may occur among activities that are not necessarily simultaneously enabled?

This question is readily answered by creating a Petri net representation of each valid

meta-path of the control flow model, including the resource requirements, and studying

its reachability tree to identify potential deadlock possibilities. Table 4.1 illustrates the

Petri net mappings used to translate basic control flow elements into net constructions.

It is assumed that the reader is familiar with the basics of Petri nets - a brief primer is

presented in Appendix A.

The equivalent Petri net construction for the example in Figure 4.2(b) is presented in

Figure 4.4 - note that there is only one valid meta-path for this process. The tokens

in the net are interpreted thus - (i) a single token in the place "Start" corresponds to

the execution of a single instance, and (ii) the tokens in the places corresponding to the

resources signify the number of units of the resource that are available, i.e., Rf.

74

Table 4.1: Petri Net Mappings of Basic Routing Constructs

Logical Operand

AND-Split: A point
within the process model
where a single thread of
control splits into two or
more threads to be exe­
cuted simultaneously.

AND-Join: A point
within the process model
where two or more dif­
ferent threads of control
merge asynchronously.

XOR-Split: A point
within the process model
where the thread of control
selectively chooses one of
several possible paths.

XOR-Join: A point
within the process model
where the thread of con­
trol from one of several
different paths converges.

Iteration/Feedback
Routing: A section
within the process model
that may require the
repetitive execution of one
or more activities until
certain conditions are
satisfied.

Graphical Construct

75

Petri Net Mapping

Task2

AND-Split

Task3

Task 1

AND-Join

Task2

Task2

Task3

Task 1

Task3

Task2

Task 1

Task2

Resource R1

Control Flow Model

Finish

Resource R2

Figure 4.4: Petri Net Representation of the Process Model - An Example

Consider the Petri net illustrated in Figure 4.4 - clearly, the transition sequence As1 , T1 , n
leads to deadlock, and will be immediately evident upon studying the net's reachability

tree. This approach can be applied to verifying the correctness of resource-sharing for any

process - a total of IMI (the number of valid meta-paths) different Petri nets will need to

be constructed and their reachability trees examined to confirm the presence/absence of

deadlocks. Should deadlocks occur, the transition sequence that led to the same can be

studied to identify and isolate the reasons for deadlock. Additionally, the Petri nets thus

constructed will all be k-bounded , where k = maxi(Rf), i.e., the maximum number of

tokens in the net corresponds to the resource with the highest Rf . However, generating

the reachability tree is computationally expensive [68 , 26] - is it really necessary to gen­

erate the complete reachability tree to even establish that the process's design is correct?

More specifically, is there a simpler way to just check the process's design and to answer

"YES - the resource-sharing in this process is OK, and will not lead to deadlock," thereby

avoiding the expense of detailed reachability enumeration? That this is so is the impetus

for the approaches derived next.

76

4.5 The Static-Design Net Representation

The purpose of this section is to develop an approach that will identify if the process's

resource-sharing requirements will or will not lead to deadlock - should the answer be in

the negative, the analysis can be continued with a detailed reachability enumeration of

the Petri net construction as presented in Section 4.4.2. It would be useful to begin by

summarizing what has been achieved thus far, namely:

1. Given a correct control flow model, partition it into sets of concurrent elements

Con= {Goni}, and consequently order the tasks with the functional f: T - N.

2. Confirm that there are no potential circular-waits within each concurrent set in

ConlV(m), for all valid meta-paths m E M.

Thus far, the control flow model and the resource-allocation requirements have been

considered in separate formalisms; Section 4.5.1 presents a Petri-net construction that

captures both the ordering suggested by the control flow model and the details of resource

allocations.

4.5.1 The Static-Design Net

Consider the following Petri net construction for some valid meta-path m of the process.

The concurrent sets {Oonr} are represented as transitions, and the resources {.RJ are

represented as places; the places and transitions are connected by weighted arcs, the

weights indicating the effective number of units of a particular resource that are captured

(or released) by the tasks in the concurrent set, according to as whether the arc is directed

from a place to a transition, or vice-versa. Figure 4.5 illustrates this Petri net construction

for the example in Figure 4.2(b) - note that Rf = Rf = 1 and since there is only one

valid meta-path in the process, the superscript mis omitted from oonr.

77

I Con0= {S}

I Con1= {A.1}

I Cons= {Ai2}

I Con6 = {F}

Figure 4.5: The Static-Design Net Representation - An Example

This Petri-net mapping shall be referred to as the Static-Design Net, named in part, to

reinforce the suggestion that the structure of the net will be used to gain insights about

the correctness of the process's design with regard to resource-sharing requirements.

More formally, for each valid meta-path m E M, its Static-Design net representation is

a 4-tuple SDTJJet = (R, ConlV(m), :F;;,,, :F;f;,), where R, the set of resources, corresponds

to the set of places, and ConlV(m) = {Gonf}, the set of concurrent sets with vertices

restricted to V(m), corresponds to the set of transitions. The functionals :F;;,, : {R x

Con1v(m)} - N and :F;f;, : {Con1v(m) x R} - N specify the weighted arcs connecting

places to transitions, and vice-versa. The initial marking of the net is Mo= [Rf], namely,

the capacities of the various resources. The structure of the net SDTJJet is captured with

the incidence matrix C,:n = [Cijl, where

l!ij = L Rfap(t) - Rtre1(t)
VtECon7J'nT

78

The Static-Design net of Figure 4.5, and in particular, the example in Figure 4.2(b),

reveal several points of interest, namely:

1. Unlike the regular Pi, ti naming convention for places and transitions, the places

and transitions in the static-design net have been named by their actual definitions,

namely resources (~) - places, and concurrent sets (Canr) - transitions. This

is to avoid any conflict with the definition of a task Ti, and to aid concept clarity.

2. The interpretation of the Static-Design net is as follows:

• An arc is drawn from a place, Ri (respectively, transition Can7F) to a tran­

sition Conj (respectively, place Ri) if there is a task in Can7F that captures

(respectively, releases) resource ~-

• The weight on the arc, and in turn; its direction, is determined by the number

of capture and release requests within the concurrent set. To illustrate, observe

that both tasks T2 and T3 capture a unit of resource R2 , and so, an arc with

weight 2 is drawn from place R 2 to transition Can2 .

• The number of tokens in place ~ signifies the number of units Rf available

for that resource.

3. There is only valid meta-path in the example of Figure 4.2(b), and the sequence

through which the process progresses is strictly Can0 - Can1 - Can2 • • • - Can5 •

Thus, the concurrent sets also aid in capturing the process ordering imposed by the

control flow model.

In continuation of point (3) above, note that, although Con0 is, by definition, per­

manently enabled, and can fire indefinitely, such firing sequences will not be stud-

ied - in fact, the control flow model specifies the transition firing sequence, namely,

Can0 - Can1 - Can2 • • • - Can5 , i.e., the increasing order of { Gani} suggests the

sequence through which the process progresses. Observe that this transition sequence is

not possible in the static-design net shown in Figure 4.5-why so? At the very least, Can2

cannot be enabled given that there is only one unit of R2 - this hints at problems either

in inadequate resource capacity or potential circular-waits. The intuition just described

is formalized in the following theorem.

79

Theorem 4.1 Suppose it is given that, for each valid meta-path m in a process, there

are no circular-waits within any concurrent set in Coniv(m). If the transition sequence

C on0 = { S}, C onf, ... , Con"; = { F} is enabled1 for the static-design net of all valid

meta-paths m, then there exist no deadlocks within a single instance of the process.

Proof Consider any valid meta-path m of the process. Since resources cannot be re­

leased before they are captured Conf is automatically enabled, as Con0 = {S} does not

capture/release any resource. Consequently, the fact that Con'f, i > 1 is enabled, and

requires, say, resource Ra, implies that there is either another transition Conr;, 1 ::; j < i

that releases the required number of units of resource Ra, or there are adequate number

of units of Ra available to meet the needs of Con'f. Since this holds for all Con'f, it fol­

lows that there cannot be any problems in resource-sharing across concurrent sets in that

valid meta-path. Moreover, it is given that there are no circular-waits within any Con'f

for all valid meta-paths m. Therefore, the transition sequence Con0, Conf, ... , Con";

does indeed correspond to the deadlock-free execution of a single instance of the process

for any valid meta-path m, thereby completing the proof. •

Note, however, that the failure of the conditions of the proof, for some valid meta-path

m of a process, does not imply that the process cannot execute correctly. To see why,

consider the process represented in Figure 4.4 - while the transition sequence aincarrect =

As1 , T1 , T3 leads to deadlock, the reader may argue that the process could still execute

correctly with the transition sequence acorrect = A81 , T1 , T2 , Aj1 , T5 , T3 , T4 , Ai2 • Thus,

Theorem 4.1 establishes only a sufficiency condition - it is not a necessary condition

for deadlock freedom. To illustrate - the process in Figure 4.6 fails the conditions for

Theorem 4.1, but is nevertheless deadlock-free.

1 Refer Definition A.4.

80

Con2 Con, Con4

R1 R2

Figure 4.6: Another Example of a Deadlock-Free Process Model

Before continuing with the discussion, it would be worthwhile to pause and reconsider

a statement presented in the paragraph above. It is true that, for the process in Figure

4.4, the transition sequence O'correct satisfies the requirements of the correct execution of

the process. However, observe that O'correct breaks the process into two sequential threads

As1 , T1 , T2 , A11 , n and T3 , T4 , A12 - is this what the process designer envisioned? where

is the parallelism? if such an execution was acceptable, then why design the process such

that task T3 is concurrent with tasks T1 and T2? (refer Figure 4.2(b) .)

In summary, what is the contribution of Theorem 4.1? Should the conditions of Theorem

4.1 be satisfied, i.e., the ordered transition sequence Con0 = {S}, Conf, . . . , Con;i =

{ F} is enabled for every valid meta-path m of a process, then, it confirms that a single­

instance of the process is deadlock-free without requiring any additional analysis. How­

ever, the failure of the conditions for Theorem 4.1 indicates an immediate problem with

inadequate resource capacity - ideally, the designer envisioned the tasks in each concur­

rent set Conr_:', for each valid meta-path m, to be truly concurrent. The parallelism

dictated by the design would have been possible had there been adequate number of

resource units to meet the resource requirements of each task in Conr_:', in which case

Theorem 4.1 would not have failed; that it failed is the answer to begin answering the

question of minimal resource requirements for the process.

81

4.5.2 Computing Minimum Resource Requirements

The failure of Theorem 4.1 offers an immediate opportunity to compute the minimal

resource requirements that will guarantee the successful execution of an instance of the

process that also assures the parallelism envisioned by the process's designer. More

specifically, for each valid meta-path m, it remains to compute the minimum resource

requirement (i.e., the initial marking for the net SD"!Jet) that will guarantee that the

transition sequence Con0 = {S}, Con1 , ••• ,Con";' = {F} (call it crm) will be enabled.

Note that upon execution of crm, the net will return to its initial marking (by conserva-

tion of resources). Consequently, the minimum resource requirements for the process is

computed as Rf= M0(i), where, Vm EM, M; ~ M; holds, i.e., M0(i) is the minimum

number of units required for resource ~ that will guarantee that the conditions of The-

orem 4.1 hold true for all valid meta-paths min the process.

To illustrate - suppose there are two valid meta-paths m1 and m2 in a process, and that

two resources R1 and R2 are being used by the process. Suppose the smallest initial

marking that will satisfy the requirements of Theorem 4.1 for both meta-paths is [1, 3]

and [2, 1], respectively. Taken together, the minimum resource requirements that ensure

that Theorem 4.1 holds for both meta-paths is [2, 3], i.e., Rf= 2, and Rf= 3.

It is quite easy to compute M*. Suppose that R = { R1, R2 , ••• , R,.} is the set of r

resources. Consider some valid meta-path m with q+ 1 concurrent sets, namely, { Con0 =

{S}, Con1 , ... , Con";' = {F} }. Let M[f" be the smallest initial marking for SD"!Jet that

guarantees that M[f" ~ M[f" holds, where the superscript m indicates that the marking

corresponds to valid meta-path m. M[f" is computed thus:

Vi=l,2, ... ,r
q

M(:(i) = L max(F;(~, ConT) - F;;;,(Con7?-1 , RJ, 0)
j=l

82

(4.1)

The mechanics of equation 4.1 is quite simple. It essentially keeps track of how many

new tokens are required in place Ri, in addition to those returned by ConT-- 1 , to enable

each Con1. Once M0 has been computed, it follows that the minimal requirements for

resource ~ is

M;(i) = max Mf;(i) Vi= 1, 2, ... , r
m

Interestingly, note that M0 also eliminates the possibility for circular-waits within a con­

current set, since the resource requirements for all competing concurrent tasks will be

satisfied by M0, thus rendering redundant the count-based checks presented in Section

4.4.1.

Thus, the computations above derive the minimum number of units required for each

resource ~ to ensure that the conditions of Theorem 4.1 hold - this will ensure the

successful deadlock-free execution of a single instance of the process, with the maximum

degree of parallelism as desired by the process's designer.

4.5.3 Summary

Recall that design errors in resource-sharing are not restricted to single instances (refer

example 4 in Table 1.3). Clearly, the basic Petri net approach suggested in Section

4.4.2 can be extended to study multiple-instance verification, simply by increasing the

number of tokens in the place corresponding to Start and exploring the reachability tree

to detect deadlock occurrences. However, can the static-design net be used to derive a

quicker answer to help detect the possibility for potential deadlock, without recourse to

exhaustive enumeration via reachability analysis?

83

4.6 Multiple-Instance Verification

The purpose of this section is to develop an approach that will identify if the sharing

of resources across multiple instances of the process will or will not lead to deadlock -

the approach will rely on the static-design net representation of the process, and on the

notion of transition invariants for a Petri net (refer Section A.4).

Observe that the static-design net will be a collection of isolated vertices and several

disjoint, connected components.2 There is no sharing of resources across disjoint com­

ponents (else, they would not be disconnected), and isolated transitions (i.e., concurrent

sets) do not capture/release any resources, and hence, are inconsequential. Isolated

places correspond to resources that are not being accessed in the valid meta-path that

the static-design net represents. Consequently, it is within a connected component of the

static-design net, that deadlock possibilities, if any, wait to be unearthed.

Figure 4. 7(b) illustrates the static-design representation for example 4 from Table 1.3,

also repeated in Figure 4.7(a). Note that the process is completely sequential, with no

choice or concurrency; therefore, it readily follows that a single-instance of the process is

deadlock free, since the size of each concurrent set is only one.

The weights on the arcs of the static-design net in Figure 4. 7(b) have been omitted since

they are all equal to one - this net consists of one connected component (consisting of R1 ,

R2 , Con1 , Con2 , Con4, and Cons), and other isolated vertices. The connected component

has two transition invariants, namely, Tinv1 = [Con1 , Cons] and Tinv2 = [Con2 , Con4].

Does this suggest something? Yes, it does - it suggests that there is a potential problem

of circular-wait across two instances with one executing Tinv1 and the other executing

2 A connected component is a subset of a graph which is disjoint from the remainder of the graph, and
within which, every pair of vertices is connected by an undirected path. A strongly connected component
is a connected component, within which, every pair of vertices is connected by a directed path.

84

(a) Incorrect Process Design

I Con0= {S}

r-------- Con1= {T 1}

Con2= {T2}

Con5 = {T J

I Con6 = {F}

(b) Static-Design Net

Figure 4.7: Example of a Process with Problems of Deadlock across Multiple Instances

Tinv2 , with the latter being denied access to R1 being held by the former - this is

possible since R1 is released by Con2 enabling another instance to commence execution.

More specifically, the connected component in Figure 4. 7(b) runs the risk of deadlock

because the resources required by it are not guaranteed to he exclusively available for

its execution without the possibility of being captured by other previous/later instances.

The intuition underlying this argument is very simple, namely - disjoint components of

the static-design net do not have any problems of resource-sharing either within a single­

or multiple-instances of the process; consequently, within a connected component, the

only way to ensure that it will not get deadlocked is to ensure complete access to all of its

required resources before another instance may begin. In short, the transition invariant

of a connected component of the static-design net must consist of all the transitions in

that component - this is formalized in Theorem 4.2.

85

Theorem 4.2 Suppose it is given that there are no deadlocks within a single-instance

of the process. Then) there exist no deadlocks arising from resource-sharing across mul­

tiple instances of the process executing the same valid meta-path, only if the transition

invariant for each connected component of the process's static-design net consists of all

transitions in that component.

Proof The proof follows immediately from the argument above, and from the definition

of a transition invariant. •

The uniqueness of Theorem 4.2 is that it relies only on the structure of the static-design

net, and not on its initial marking [Rf], or the number of instances that are active -

it is thus a simple approach to identify problems across multiple instances without the

simulated execution of multiple concurrent instances.

Note that Theorem 4.2 also establishes only a sufficiency condition, i.e., it is sufficient to

show that the transition invariant for each connected component consists of all transitions

in that component to confirm that there are no deadlocks when multiple instances of the

same valid meta-path are active. To show that it is also a necessary condition would be

a tremendous achievement, since computing transition-invariants is a polynomial-time

operation [64, 26], as opposed to the exponential state-space explosion of reachability

enumeration.

There is however, one shortcoming of Theorem 4.2 - it cannot identify deadlock possibil­

ities for multiple instances of the process, each executing different valid meta-paths. The

answer to this question would ultimately require the reachability enumeration approach

of 4.4.2 with multiple tokens in the place corresponding to Start. More specifically, The­

orem 4.2 captures the border between that which can be answered in polynomial time,

and that which requires exhaustive enumeration.

86

4.7 Summary

The ideas presented in this chapter form the foundations of the first-ever attempts to

study the business process's design in its entirety, including both the process's logic,

and its resource requirements - not with simulated executions, but with very elemen­

tary graph-theoretic ideas. The most notable achievement is that the simplicity of the

approaches presented herein is complemented only by the sheer magnitude and value

of the questions addressed and answered. More specifically, the purpose of this chapter

has been to study the process's design as the designer envisioned it, and to study its

resource allocations with the intent of (i) computing the minimal resource requirements

that guarantee the successful execution of the process and exploit the parallelism allowed

in its design, and (ii) alerting the designer about potential deadlock possibilities that

may &rise either within a single-, or across multiple-instances of the process.

An alternate Petri net representation of the process that captures the ordering sug­

gested by the control flow model with the specifics of resource requirements, the STATIC­

DESIGN NET, has been developed, and sufficiency conditions have been derived to estab­

lish deadlock-freedom both within a single- and across multiple-instances of the process.

A simple approach to compute the minimum resource requirements that guarantee the

successful deadlock-free execution of the process has also been developed.

The correctness issues studied thus far have focused primarily on design errors arising

either from incorrect control flow or improper resource-sharing. What about the inputs

and outputs for each task? Are there any correctness issues that remain to be investigated

in the input-output specification for the tasks in a process? Metagraphs [9, 10, 11] have

been used to study connectivity issues in the input-output specification of a process.

Additionally, an immediate extension of the ideas presented in this chapter would be

87

to use the concurrent set partitions, { Gani}, of the control flow model to study the

correctness of a process's input-output specifications. This would r~quire a formalism

identical to R(ap, and Rfel, focusing, in turn, on the inputs and outputs of each task,

and addressing questions similar to those presented in Section 4.3 - these ideas are

reserved for future work.

88

Chapter 5

Modeling and Analysis of Business

Process Models

Chapter Overview

This chapter outlines the features of a proof-of-concept implementation of the algorithms

developed in this work.

5.1 MAPS: Proof-Of-Concept Implementation

A computerized environment titled MAPS - Modeling and Analysis of business Process.

modelS has been developed to support the techniques developed in this dissertation.

MAPS has been written in PYTHON, an open-source programming language, and its

graphical interface coded in Tkinter - it retains the native look and feel of a Windows

application, and supports a good graphical editor for the development of process models.

MAPS includes the KORRECTNESS algorithm (Chapter 3) for control flow verification,

and also provides diagnostic feedback about control flow errors, if any.

89

The choice of PYTHON as the development language was motivated by two reasons:

1. MAPS is intended to grow as a research test-bed for new ideas and algorithms

in business process modeling, and it was essential that the underlying code and

program design remain simple, without being excessively clouded with the details

of syntax and software-specific overheads.1

2. The complexity of the algorithms notwithstanding, Python provided for nearly­

identical translations of mathematical intuition (especially, set-theoretic formula­

tions) into program syntax, making it ideal as a tool-of-choice that would attract

and offer incentives for other researchers to continue experimenting with, and de­

veloping MAPS.

This chapter is intended to be a walk-through of MAPS's salient features and the signifi­

cance of its contribution as a modeling and design verification tool. The main attributes

of MAPS are its simple modeling interface, and support for control flow verification.

5.2 Modeling Interface

The development of a process's design in MAPS begins with the specification of its

control flow model, followed by the separate specification of its resource requirements.

Figure 5.1 presents a screen-shot of MAPS ~ it illustrates the control flow model of the

counter-example presented by Lin et al. [61] to show that the algorithms of Sadiq [75]

are incomplete.

1VC++/MFC and JAVA/JFC-Swing applications, to name a few.

90

Figure 5.1: A Sample Screen-shot of MAPS

The major components of the graphical editor are:

1. The stencil that the user uses to select the control flow element being drawn.

The stencil offers simple click-to-select functionality - the user selects (left-click)

the control flow element that needs to be drawn, and then selects a position in the

canvas to place them, or, if a control flow arrow is being drawn, the user selects the

"source" (from) and "destination" (to) of the arrow with consecutive clicks inside

the face of two elements on the canvas. The model can contain only one "Start" and

one "Finish" - the corresponding stencil elements get disabled thereafter, unless

those elements are subsequently deleted from the model.

91

2. The canvas on which the model is drawn - the canvas supports intuitive operations

for both movement and deletion of elements in it. Deletion is enabled only in the

"cursor ~ mode" via right-click mouse operations on the edges of the elements -

the mouse cursor will change to a hollow circle to indicate that the element can be

deleted with a right-click. Movement of elements is enabled in the "cursor mode"

with a left-click hold and release mouse movement, or with a right-click hold and

release mouse movement in one of the "non-cursor modes" - in both cases, the

mouse click must be inside the face of the element, which will be signalled by the

cursor changing to a filled circle with an embedded cross (a ffour) . The "non-cursor

modes" refer to the selection of either a task/logical-operand/ arrow on the stencil

- a left-click operation either places a new element (task/logical-operand) on the

canvas, or is used to consecutively select the source and destination of a control

flow arrow.

3. The control flow elements' tablet (or frame) that provides an easy and accessible

summary of each control flow element's attributes.

This frame is organized as follows - a drop-down options box allows the user to

select the type of the control flow element that they need details for , namely, Start,

92

Finish, Task, or a logical operand. Once the selection is made, say, "Task," a list

of all tasks is generated, ordered by their screen IDs, individual selection of which

will populate the basic fields beneath to reveal their names, input and output el­

ements, and on-screen graphical coordinates. The screen IDs of the elements are

prefixed with a ["S," "F ," "T _," "Xs," Xj ," "As," "Aj"] to indicate that they are

either a "Start ," "Finish," "Task," "XOR-Split ," "XOR-Join," "AND-Split ," or an

"AND-Join." All of the basic fields are fixed and cannot be edited, except for the

names of tasks, which can be changed from the program-generated "Task n" to

something more meaningful, if needed.

4. The model monitor that provides continuous feedback to the modeler about their

actions through short messages.

The model monitor will be indispensable when dealing with complex models - it

includes several useful features that will guide the user in the construction of the

model, and more so, when the user is contemplating the deletion of some elements.

Unlike commercial grade software with the luxury of undos and such, the user will

have to rely on the model monitor to inject the requisite caution in dealing with

mouse-clicks, right or left .

In addition to the features listed above, help balloons have been programmed to appear

liberally across all aspects of the application to clarify the purpose of all four components

above. The models thus created can be saved and retrieved with standard File-> Save

operations.

93

5.3 Analysis and Verification Capabilities of MAPS

The current version of MAPS includes support for verifying the model syntax, and the

KORRECTNESS algorithm for control flow verification, both of which are described below.

5.3.1 Syntax Verification

The syntax checks enforced in MAPS ensure that the model does not have any abandoned

elements, that it has a "Start" and a "Finish," and that all other elements have properly

defined "from" and "to" elements, as illustrated below.

Iools

-::!!~- I/,®
~ ~ ,ii_jiYioiu,1moidi~ih~i lhieiroillow,i njgje"iorisijii::::, ::"""=~ I

1.You do not have t>Stt>rtnode, II! 2. You do not hDVe" Finish.no.de.
! 3 The following nodes do nol have IOllY mes coming into !hem.

I T_l. Xst

:
If ~ The following nodes do not have IOllY arcs coming out of !hem:

[I\ T_1. ~1

Additionally, should the user attempt to draw, say, two arcs leading into a task (or

an AND / XOR-split) , or other such basic modeling errors that violate the definition of

the elements, the model monitor will alert the modeler to the same, thereby allowing

for immediate model checks as well - the syntax verification capabilities in MAPS are

dynamic and work constantly during the development of the model.

5.3.2 Control Flow Verification

The verification of control flow correctness follows the KORRECTNESS algorithm, in that

it proceeds by generating the set of S - F paths, the set of valid meta-paths, and the set

94

of invalid meta-paths, if any. Figure 5.2 shows a snap-shot of the application interface

after the KORRECTNESS algorithm has been applied to the control flow model shown in

Figure 5.1 - note that the results of the control flow verification procedure will open up

on a new page titled "Korrectness Results."

~
! Error Commenteiy

/®\ ® @

Figure 5.2: Identifying the Set of Valid Meta-paths

The interfaces for browsing through the set of paths, valid, and invalid meta-paths are

all designed to be very simple, and follow a layout identical to the control flow elements'

frame discussed for the modeling interface.

95

Figure 5.3 illustrates a snap-shot of the application interface after the KORRECTNESS

algorithm has been applied to the incorrect control flow model of Figure 3.8 - it illustrates

one of several invalid meta-paths in the process.

Figure 5.3: Identifying the Set of Valid Meta-paths

Much like the "model monitor" in the modeling interface, the "Error Commentary"

provides feedback about the source of the control flow error - the meta-path in Figure

5.3 is invalid because one of the three control flows required at AND-Split As1 is missing.

This "error commentary" feature of MAPS in unique in providing precise reasons as to

the failure of a control flow design - what is missing however, is a way to automate the

correction of these control flow errors, or at the very least , to give suggestions to fix the

same.

96

5.4 Summary

This chapter outlined the use of MAPS, a computerized environment that was devel­

oped to support the algorithms developed in this dissertation. MAPS has been designed

to be easily extendible with new functionalities, either in graphical modeling, or algorith­

mic support. Thus far, MAPS includes only qualitative analysis capabilities; it would

be a wonderful addition to also incorporate code-support for simulation of a business

process, and possibly, detailed Petri net modeling and queuing analysis - these are not

careless dreams or whimsical hopes·. It is the author's earnest hope that the simplicity

of MAPS's program design will inspire further work in extending it to make it a useful

tool for classroom instruction, and also as a rewarding intellectual exercise for those who

choose to relive the joy that was the author's privilege in creating it.

Currently, MAPS includes an editor for creating, storing, and retrieving control flow mod­

els, and analysis support to establish control flow correctness. The following extensions

are anticipated for future development of MAPS:

1. Incorporating functionality for verifying the correctness of resource-sharing and

computing minimal resource requirements, based on the techniques developed in

Chapter 4.

2. Interfaces to (the input and output of) XML descriptions of business process def­

initions, based on pre-specified process templates as specified by [96, 7], would be

a fantastic addition that would impact both the commerce and the care that the

BPM software industry extends to design verification.

97

Chapter 6

Summary & Research Contributions

Chapter Overview

This chapter summarizes the major contributions of this research, and outlines research

questions that will expand the reach and value of the design verification techniques

developed in this work.

6.1 Summary

The purpose of this dissertation has been to study the design of a business process, as

determined by its logic, and to give useful feedback to the designer about the correct­

ness of the design. Stated simply, the. question being addressed is not "how good is this

process's design," but is more fundamental, namely, "is the design good at all?" The

former question relates to studying the performance of a business process, with regard to

its operational efficiency and other metrics summarized through analytical calculations

or simulated executions of the process - it necessarily assumes an affirmative answer to

the latter question. That the design of a process may not be good to begin with, (and if

not, why so?) is the motivation for this dissertation.

98

This dissertation presents a comprehensive foundation for the formalization and verifi­

cation of business process designs. A business process could be one of either a material,

information, or a people process, or a combination thereof (Table 1.1) - irrespective of

the type of the business process, the design of a process minimally requires the spec­

ification of the process's logic, and the resource requirements for its constituent tasks.

Business processes arise in numerous contexts; however, the verification issues are the

same, namely

1. FUNCTIONAL ASPECTS - is the logic of the process correct, i.e., does the flow

of control within the process ensure that the process will execute correctly from

initiation to completion?

2. RESOURCE ASPECTS - is the release and capture of shared resources among dif­

ferent tasks, either in the same or in different instances of a process, well-designed

so as to avoid conflict?

This dissertation presents a completely context-independent formalism that bridges the

diversity in process types, with the commonality of the questions and correctness issues

that arise within - this, above all, is the most significant contribution of this work. Both

the control fl.ow and resource-sharing problems have been thoroughly studied, to present,

in effect, a solid foundation for the verification of process designs that will significantly

change the currently understood interpretation of design verification, which relates pri­

marily to syntactic checks restricted to the graphical modeling formalism.

Chapter 1 presents a short, but precise, introduction that motivates the relevance of,

and the challenges associated with, the control fl.ow and the resource-sharing problem.

Chapter 2 presents a comprehensive overview of the issues and opportunities in business

process modeling, business process automation, and an accurate review of all relevant

99

research - it is important to note that the resource-sharing problem, as studied in this

dissertation has not been previously addressed anywhere else. Chapter 3 presents the

KORRECTNESS algorithm, a recursive, backtracking algorithm for verifying the correct­

ness of control fl.ow in any process, without any restrictions on the form/structure of its

design, and to provide diagnostic feedback about the source of the control fl.ow error (if

any). Chapter 4 presents a collection of Petri net-theoretic techniques for studying the

correctness of resource-sharing in a process, and to identify potential design errors that

could lead to deadlock. Chapter 5 details the success of a proof-of-concept implementa­

tion of the algorithms developed in this work.

6.2 Research Contributions

The most significant contribution of this dissertation is a simple formalism for specifying

both the control fl.ow (Chapter 3) and resource requirements (Chapter 4) of a process, in

a manner that does not diminish the semantic value of the elements being defined, while

still retaining sufficient rigor to motivate abstract study of the process's definition. The

specific contributions of this dissertation are listed below.

Control Flow A recursive, backtracking algorithm for verifying control fl.ow correct­

ness has been developed. The algorithm does not impose any restrictions on the

form/structure of the control flow model, and some interesting results on proper­

ties to be expected in random control flow models have been derived. Additionally,

the results of the algorithms also provide precise diagnostic information about the

reasons for the control flow error(s), if any.

Resource-Sharing A simple Petri-net theoretic approach for identifying potential dead­

locks, especially circular-waits, has been developed. The approach is unique in that

it exploits the control fl.ow model to gain intuitions about the structure and behav­

ior of the process, without ever requiring any simulations. More specifically, simple

100

rules have been developed to (i) compute the minimal resource requirements that

guarantee the successful execution of the process, while fully exploiting the paral­

lelism in the process as envisioned by its designer, and (ii) alert the designer about

potential deadlock possibilities that may arise either within a single-, or across

multiple-instances of the process.

MAPS A computerized environment titled MAPS - Modeling and Analysis of Process

modelS (implemented in Tcl/Tk and Python) has been developed to support the

algorithms developed in the dissertation. Ideally, MAPS should grow as a research

test-bed for new ideas and algorithms in business process modeling. The salient

features of MAPS are:

• A good graphical environment for modeling anq specifying business processes.

• Algorithms for verifying the correctness of control flow and providing diagnos­

tic feedback about the sources of control flow error(s), if any.

6.3 Future Research Directions

Automatic design verification capabilities are as yet unavailable in current business pro­

cess modeling softwares. To this end, the ideas developed herein significantly advance

the power and potential for the development of good processes, the designs of which are

influenced both by the judgment of the domain expert and by the clarity of analysis. In

continuance of this work, the following ideas merit inquiry:

1. Automation of Business Process Redesign Suppose the process's design, i.e.,

control flow and/ or resource requirements, is incorrect; can the redesign of business

processes, to eliminate design errors, be automated? More specifically, can hu­

man intuition be replaced with algorithmic deduction and correction? Currently,

101

diagnostic checking is limited to identification - can it be extended to include elim­

ination?

2. Automatic Reconfiguration of Business Processes Suppose the process's de­

.sign, i.e., control flow and resource-sharing, is correct; is it possible to suggest

approaches to reconfigure or "optimize" the process's design, based on the nature

of the resource-allocation requirements and the precedence-order relationships that

are imposed by the logic of the process? This would require a more precise under­

standing of the expectations of "optimality" in business process designs - stated

simply, the domain expert has identified a particular configuration for the process;

can it be improved?

3. Standards for Business Process Specification To develop a formalism for mod­

eling and specification of business processes that blends the ease of modeling intu­

ition with the rigor required for design verification. Ideally, a formalism that capital­

izes on the transparency of XML, the ease of graphical modeling, and the support of

underlying design verification techniques would greatly enhance the value-addition

of enterprise automation.

The research proposed in question (3) above has already been initiated, and the Business

Process Management Initiative1 is spearheading current efforts toward the development

of BPML, an open-source standard Business Process Modeling Language. There is

also a competitive, commercial effort that has been initiated by Microsoft, IBM, and

BEA, called BPEL4WS - readers are referred to [48, 78, 36] for a good overview of the

issues involved in developing a standard for the design, deployment, execution, control,

and optimization of business processes. In conjunction with these efforts, it would be

extremely useful to explore the possibilities for abstracting from the XML description

of a business process, sufficient detail such as is required for developing an analytical

1http://www.bpmi.org.

102

or a simulation model, to motivate further analysis of the process's configuration and

performance, independent of the context in which the process may arise - this has been

partly addressed in IBM's OPS (Operational Specification), an artifact-based approach

to business process modeling and enterprise integration [16].

The questions raised in (1) and (2) are more fundamental and as yet unexplored; to

allow for a computer to suggest a better process design is very intriguing, and such

an ability would lend new meaning to "automation" in business process automation -

some preliminary work has been addressed in [38], but, it is still not "automation."

The extent of the second question's appeal is surpassed only by the vagueness of its

answer. To answer the same, without requiring context-specific information particular to

a process's domain, would be the first steps in establishing a "science-base" for business

process modeling. The bridge between the abstract and the real has thus far been absent

in business process modeling, so much so, that the question of "deadlock" in business

processes is met, not with a !, but with a ? - it is hoped that the techniques developed

in this dissertation would contribute to building such a bridge.

103

Appendix A

Petri Nets: A Primer

Chapter Overview

This appendix presents a quick overview of the basics of Petri nets. Readers are referred

to [6, 70, 68, 25, 26] for a more extended discussion on the theory, applications, and

analysis of Petri nets.

A.1 What is a Petri Net?

A Petri net is an anagraphical (i.e., analytical and graphical) tool that combines the

appeal of graphical description with the rigor of mathematical formalism, making it the

preferred tool of choice for modeling discrete event systems. In particular, systems,

whose description can be specified as a collection of events, and conditions preceding and

succeeding the execution of those events, are well suited to being modeled and studied

with Petri nets. Petri nets· are especially well-suited to modeling concurrency, asynchro-
1

nism, and choice. More formally, a Petri net is a 4-tuple, N = (P, T, 1+ 1-), where

P = {P1,P2, ... ,Pn} and T = {t1 , t2, ... , tm} are disjoint, finite sets of places and transi­

tions, respectively. Additionally, 1+ : T x P -+ N = {O, 1, ... } and 1- : P x T -+ N are

104

the incidence functions from transitions to places, and vice-versa. It is common practice

to associate places with conditions, and transitions with events in a discrete event system.

The graphical representation of a Petri net is a directed, bi-partite graph with two sets of

vertices - places P (represented as circles) and transitions T (represented as lines/bars),

and weighted arcs drawn from places to transitions, (respectively, transitions to places),

the weights on the arcs corresponding to the values of J-(Pi, ti) (respectively, J+(ti,Pi)),

for every pair (pi, ti) of places and transitions - Figure A.1 illustrates an example (arcs

with unit weights are left unlabeled).

Figure A.1: An Example of a Petri Net Model

For each t E T, •t = {p E PI J-(p, t) > O} and t• = {p E PI J+(t,p) > O} represent,

respectively, the set of input and output places of t. The sets •p and p• are defined

analogously for each place p. The incidence matrices Ctxm (from transitions to places)

and c;xm (from places to transitions) are defined as

105

The incidence matrix of the net is represented as C = c+ - c-. A marking is a func­

tion M : P ---+ N that assigns a numeric value to each place in the net. Graphically,

markings are identified by tokens (black dots) residing in the places of the net, and

capture the state of the net. The Petri net N, together with an initial marking M 0 ,

is adequate to model the evolution of a system starting at state M 0 • The dynamics of

the net's evolution are controlled by firing transitions, the definitions of all of which are

presented next. Unless stated otherwise, assume that the initial marking of the net is M0 .

The initial marking for the Petri net in Figure A.l is M 0 = (1, 0, 1, 0, 1), and its incidence

matrices are

0 1 0 1 1 0 0 0

1 0 0 0 0 1 0 0

c+= 0 0 0 0 c-= 0 0 1 0

0 0 1 0 0 0 0 1

0 1 0 1 0 1 0 1

A.2 Basic Definitions

The vector oi will denote the vector whose ith element is 1, and O elsewhere, i.e., oi =

(0, 0, ... , 0, 1, 0, ...]. The dimensions of the vector will be obvious from the context in

which it appears.

Definition A.1 A transition ti is enabled under some marking Mj if Mj 2::: c-oi, i.e.,

there are enough tokens available in all of ti's input places, i.e., •ti, to meet its "input"

requirements.

For the net in Figure A.l, only transitions t 1 and t3 are enabled under Mo= (1, 0, 1, 0, 1].

106

Definition A.2 An transition ti that is enabled under marking Mi can fire, i.e., it

can move tokens from its input places {•ti) to its output places (ti•). More specifically,

upon firing an enabled transition ti, the net evolves from marking Mi to marking MH1

according to the equation

Mj+l = Mj + c+8i - c-8i = Mj + C8i

and is usually notated as Mi ~ MH1, signifying that marking Mi+l is immediately

reachable from Mi.

Actually, when a transition t fires, it removes f-(p, t) tokens from each input place p E •t,

and deposits f+(t,p) tokens in each output place p Et•. For the net in Figure A.l, the

marking reached from firing transition t 1 is [O, 1, 1, 0, 1].

The function z : T - N will be used to generalize the definition of 8i presented above,

and model multiplicities in the number of times each transition fires - it will be referred

to as the firing-count vector, with [z]i indicating the number of times that transition ti

is fired.

Definition A.3 The firing-count vector z is enabled under marking Mi if Mi 2:: c-z.

The state that the system evolves into, upon firing z, is Mi+l = Mi + C · z - this is also

referred to as the state equation.

For the net in Figure A.1, the marking reached upon executing the firing-count vector

[1, 1, 1, 1] is equal to M 0 , i.e., the tokens arrive in their initial places after executing all

four transitions.

Note that the firing count vector does not specify the order in which the transitions are

fired. Define u = tii, ti2 , tia, ... , tik to be an ordered sequence of transitions, and u(i) to

be the ith transition in that sequence.

107

Definition A.4 A transition sequence a is enabled under marking Mi if, for all i, tran­

sition t = a(i) is enabled under marking Mi+(i-1), where Mi+(i-1) = Mj + C · Lr<i 8a(r)·

More specifically, the transition sequence a = ti1 , ti2 , ti3 , ••• , tik is enabled under marking

holds true. This is frequently abbreviated as Mi .:!.+ Mi+k.

A marking Md is said to be reachable from marking M 0 if there exists a transition

sequence a such that M 0 .:!.+ Md. The reachability set R(M0) is the set of all mark­

ings that can be reached from M0 . The reachability set for the net in Figure A.1 is

{[1, 0, 1, 0, 1], [O, 1, 1, 0, 1], [1, 0, 0, 1, 1], [O, 1, 0, 1, 1]}.

A.3 Additional Concepts

There are a few additional definitions that merit inclusion for sake of completeness. A

Petri net is said to be acyclic if it does not contain any cycles, and pure if it does not

contain any self-loops. A Petri net is said to be free-choice if and only if for every

two transitions t 1 and t2 , •t1 n •t2 =J. (/J implies that •t1 = •t2 - the reader is referred

to [25] for an excellent treatise on free-choice Petri nets. Aside from these structural

characterizations, there are certain behavioral properties that are defined as follows.

Definition A.5 A Petri net is said to be proper if M 0 E R(M0), i.e., if the initial

marking is reachable from itself

Definition A.6 A transition t is said to be live if for each marking M' E R(M0), there

exists another marking reachable from M' in which t is enabled.

Murata [68] presents several other characterizations of liveness, based on slight modifica­

tions of the conditions of Definition A.6 above. A Petri net N, together with an initial

marking M 0 , is said to be live if all of its transitions are live.

108

Definition A. 7 A place p is said be k-bounded is there is an integer k such that for all

ME R(M0), M(p) ::; k.

The Petri net (N) is said to be k-bounded if all of its places are k-bounded. An 1-bounded

Petri net is called safe. The net in Figure A.1 is proper, live, and safe.

To summarize, a Petri net captures the structure of a system, and can model its evolution

through the movement of tokens. Thus, the net N, taken together with an initial marking

M0 , and the reachability set R(M0), completely describes a system's behavior. Aside from

the state evolution rules outlined in Definitions A.3 and A.4, the structure of the net, as

represented by its incidence matrix C, also reveals several clues about the behavior of

the system, the study of which is known as invariant analysis.

A.4 .Invariant Analysis

Recall from Definition A.3 above that the evolution of the system is characterized by the

state equation Md= M0 + C · z, where Cnxm is the incidence matrix for the net with n

places and m transitions.

Definition A.8 An x 1 vector X is a place-invariant if xr · C = 0.

Suppose X is a place-invariant. Substituting in the state equation, we get xr · Md =

xr · Mo (since xr · C = 0), whereupon it follows that for all markings M reachable from

Mo, the weighted sum of tokens, i.e., ~~=l Xi· M(pi), is a constant. Consequently, if

there exists a place invariant vector all of whose n entries are strictly positive, it follows

that the net is bounded.

For the net in Figure A.l, the minimal, linearly independent (i.e., one is not a subset of

another) place-invariants are {[1, 1, 0, 0, 1], [O, 0, 1, 1, l]}.

109

Definition A.9 A m x 1 vector Y is a transition-invariant if C · Y == 0.

Suppose Y is a place-invariant, all of whose entries are positive. The firirig vector corre­

sponding to such a vector returns the net back to its initial marking, i.e., M0+C·Y = M0 .

Consequently, if there exists a transition-invariant with some positive elements and some

zeros, then, it indicates that the net can be returned to its initial marking by firing only

a subset of the transitions.

For the net in Figure A.1, the minimal, linearly independent (i.e., one is not a subset of

another) transition-invariants are {[1, 1, 0, O], [O, 0, 1, 1]}.

The definitions presented in this section are by no means exhaustive - the reader is

referred to [26] for a well-written and comprehensive introduction to the theory and

applications of Petri nets.

110

Bibliography

[1] Aalst, W.M.P. "The Application of Petri Nets to Workflow Management". The
Journal of Circuits, Systems, and Computers, 8(1):21-66, 1998.

[2] Aalst, W.M.P. "Formalization and Verification of Event-Driven Process Chains".
Information and Software Technology, 41(10):639-650, 1999.

[3] Aalst, W.M.P. "Workflow Verification: Finding Control-Flow Errors Using Petri-Net
Based Techniques". In Aalst, W.M.P., Desel, J., and Oberweis, A., editors, Business
Process Management - Models, Techniques, and Empirical Studies, volume 1806 of
Lecture Notes in Computer Science, pages 161-183. Springer-Verlag, 2000.

[4] Aalst, W.M.P., Desel, J., and Oberweis, A.(Eds.). Business Process Management -
Models, Techniques, and Empirical Studies, volume 1806 of Lecture Notes in Com­
puter Science. Springer-Verlag, 2000.

[5] Aalst, W.M.P and Hee, K. Workfiow Management: Models, Methods, and Systems.
MIT Press, Cambridge, MA, 2002.

[6] Agerwala, T. "Putting Petri Nets To Work". Computer, 12(12):85-94, 1979.

[7] Arkin, A. "Business Process Modeling Language". Technical report, Business Pro­
cess Management Initiative, http://www.bpmi.org, 2003.

[8] Banaszak, Z.A. and Krogh, B.H. "Deadlock Avoidance in Flexible Manufactur­
ing Systems with Concurrently Competing Process Flows". IEEE Transactions on
Robotics and Automation, 6:724-734, 1990.

[9] Basu, A. and Blanning, R.W. "Metagraphs: A Tool for Modeling Decision Support
Systems". Management Science, 40(12):1579-1600, 1994.

[10] Basu, A. and Blanning, R.W. "Metagraphs in Workflow Support Systems". Decision
Support Systems, 25:199-208, 1999.

[11] Basu, A. and Blanning, R.W. "A Formal Approach to Workflow Analysis". Infor­
mation Systems Research, 11(1):17-36, 2000.

[12] Bedworth, D.D. and Bailey, J.E. Integrated Production Control Systems: Manage­
ment, Analysis and Design. John Wiley & Sons, Inc., NY, 2 edition, 1987.

111

[13] Borwein, J.M. "The Experimental Mathematician:
of Discovery and the Role of Proof'' . CECM
http://www.cecm.sfu.ca/preprints/2002pp.html, 2002.

The Pleasure
Preprint 02:178,

[14] Borwein, J.M. and Corless, R. "Emerging Methods in Experimental Mathematics".
American Mathematical Monthly, 106:181-194, 1999.

[15] Casati, F., Ceri, S., Pernici, B., and Pozzi, G. "Conceptual Modeling of Worfk­
lows". Proceedings of the DOER '95, 14th International Object-Oriented and Entity­
Relationship Modelling Conference, Gold Coast, Australia, pages 341-354, 1995.

[16] Caswell, N .S. and Nigam, A. "Operational Specification: A Technique for Busi­
ness Process Integration and Analysis". Invited paper at the INFORMS Fall 2002
Meeting, November 2002.

[17] Chen, P. A Use Case Driven Object-Oriented Design Methodology for the Design
of Multi-Level Workfiow Schemas. PhD thesis, Department of Computer Science,
Illinois Institute of Technology, Chicago, IL, 2000.

[18] Cichocki, A., Helal, A., Rusinkiewicz, M., and Woelk, D. Workfiow and Process
Automation: Concepts and Technology. Kluwer Academic Publishers, MA, 1998.

[19] Coffman, E.G., Elphick, M.J., and Shoshani, A. "System Deadlocks". Computing
Surveys, 3:67-78, 1971.

[20] Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.G., and Knuth, D.E. "On the
Lambert W Function". Advances in Computational Mathematics, 5:339-359, 1996.

[21] CSC Corporation. "The Emergence of Business Process Management". Research
report, version 1.0, Computer Sciences Corporation, http://www.bpmi.org, January
2002.

[22] Curtis, B., Kellner, M.I., and Over, J. "Process Modeling". Communications of the
ACM, 35(9):75-90, 1992.

[23] Dalal, N.P., Karnath, M., Kolarik, W.J., and Sivaraman, E. "Toward an Integrated
Framework for Modeling Enterprise Processes". Communications of the ACM, 2003
(in print).

[24] de Bruijn, N.G. "Additional Comments on a Problem in Concurrent Programming
Control". Communications of the ACM, 10:137-138, 1967.

[25] Desel, J. and Esparza, J. Free Choice Petri Nets. Cambridge University Press, 1995.

[26] Desrochers, A.A. and Al-Jaar, R.Y. Applications of Petri Nets in Manufacturing
Systems: Modeling, Control, and Performance Analysis. IEEE Press, NJ., 1995.

[27] Dijkstra, E.W. "Solution of a Problem in Concurrent Programming Control". Com­
munications of the ACM, 8:569, 1965.

112

• [28] Eisenberg, M.A. and McGuire, M.R. "Further Comments on Dijkstra's Concurrent
Programming Control Problem". Communications of the ACM, 15:999-1000, 1972.

[29] Ezpeleta, J., Colom, J.M., and Martinez, J. "A Petri Net Based Deadlock Prevention
Policy for Flexible Manufacturing Systems". IEEE Transactions on Robotics and
Automation, 11:173-184, 1995.

[30] Fan, W. and Weinstein, S. "Specifying and Reasoning About Workflows with Path
Constraints". In Proceedings of the 5th International Computer Science Confer­
ence{ICSC'99}, HongKong, China, volume 1749 of Lecture Notes in Computer Sci­
ence. Springer, Dec. 13-15 1999.

[31] Fujimoto, R.M. "Parallel Discrete Event Simulation". Communications of the ACM,
33:30-53, 1990.

[32] Garey, M.R. and Johnson, D.S. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman· Co., San Francisco, 1979.

[33] Georgakopoulos, D., Hornick, M., and Sheth, A. "An Overview ofWorkflow Manage­
ment: From Process Modeling to Workflow Automation Infrastructure". Distributed
and Parallel Databases, 3:119-153, 1995.

[34] Gold, E.M. "Deadlock Prediction: Easy and Difficult Cases". SIAM Journal of
Computing, 7:320-336, 1978.

[35] Habermann A.N. "Prevention of System Deadlocks". Communications of the ACM,
12:373-377, 385, 1969.

· [36] Harmon, P. "XML Business Process Languages". The Business Process Trends
Newsletter, http://www.bptrends.com, March 2003.

[37] Havender J.W. "Avoiding Deadlock in Multitasking Systems". IBM Systems Jour­
nal, 7:74-84, 1968.

[38] Hofacker, I. and Vetschera, R. "Algorithmical Approaches to Business Process De­
sign". Computers & Operations Research, 28:1253-1275, 2001.

[39] Hofri, M. "The Deadlock Problem in Computing and Communication Systems - An
Annotated Bibliography". Technical Report 500, Technion, Haifa, Israel, 1988.

[40] Hofstede, A.H.M., Orlowska, M.E., and Rajapakse, J. "Verification Problems in
Conceptual Workflow Specifications". Data & Knowledge Engineering, 24(3):239-
256, 1998.

[41] Hollingsworth, D. "The Workflow Reference Model". · Techni-
cal Report WfMC-TC-1003, The Workflow Management Coalition,
http://www.wfmc.org/standards/docs.htm, 1995.

[42] Holt, R.C. "Comments on Prevention of System Deadlocks". Communications of
the ACM, 14:36-38, 1971.

113

[43] Holt, R.C. "Some Deadlock Properties of Computer Systems". Computing Surveys,
4:179-196, 1972.

[44] Hsu, M. "Special Issue on Workflow Systems". Bulletin of the Technical Committee
on Data Engineering, IEEE, 16(2), 1993.

[45] Hsu, M. "Special Issue on Workflow Systems". Bulletin of the Technical Committee
on Data Engineering, IEEE, 18(1), 1995.

[46] Isloor, S.S. and Marsland, T.A. "The Deadlock Problem: An Overview". IEEE
Computer, 9:58-:-77, 1980.

[47] Karnath, M., Dalal, N.P., Chaugule, A., Sivaraman, E., and Kolarik, W.J. "A Re­
view of Enterprise Modeling Techniques". In Prabhu, V., Kumara, S., and Karnath,
M., editors, Scalable Enterprise Systems:_ Recent Advances. Kluwer Academic Pub­
lishers, 2003.

[48] Karnath, M., Dalal, N.P., and Chinnanchetty, R. "The Application of XML-Based
Markup Languages in Enterprise Process Modeling". Proceedings of the 11th Annual
Industrial Engineering Research Conference, Orlando, USA, 2002.

[49] Karnath, M. and Sivaraman, E. "Analysis of Business Processes". Invited paper at
the INFORMS Fall 2002 Meeting, November 2002.

[50] Karnath, M.U. Improving Correctness and Failure Handling in Workftow Manage­
ment Systems. PhD thesis, Department of Computer Science, University of Mas­
sachusetts, Amherst, MA, 1998.

[51] Karnath, M.U. and Ramamritham, K. "Correctness Issues in Workflow Manage­
ment". Distributed Systems Engineering Journal, 3(4):213-221, December 1996.
Special Issue on Workflow Systems.

[52] Keller, G. and Detering, S. "Process-Oriented Modeling and Analysis of Business
Processes using the R/3 Reference Model". In Bemus, P. and Nemes, L., editors,
Modeling and Methodologies for Enterprise Integration, pages 183-200. Chapman &
Hall, U.K., 1996.

[53] Kiepuszewski, B., Hofstede, A.H.M., and Aalst, W.M.P. "Fundamentals of Control
Flow in Workflows". Technical Report FIT-TR-2002-02, Queensland Institute of
Technology, Brisbane, Australia, 2002.

[54] Knuth, D.E. "Additional Comments on a Problem in Concurrent Programming
Control". Communications of the ACM, 9:321-322, 1966.

[55] Knutilla, A., Schlenoff, C., Ray, S., Polyak, S.T., Tate, A., Cheah, S.C., and An­
derson, R.C. "Process Specification Language: An Analysis of Existing Representa­
tions". NISTIR 6160, National Institute of Standards and Technology, Gaithersburg,
MD, 1998. http://www.mel.nist.gov/psl/.

114

[56] Lamport, L. "A New Solution of Dijkstra's Concurrent Programming Problem".
Communications of the ACM, 17:453-455, 1974.

[57] Lawley, M.A. and Reveliotis, S.A. "Deadlock Avoidance for Sequential Resource
Allocation Systems: Hard and Easy Cases". The International Journal of Flexible
Manufacturing Systems, 13:385-404, 2001.

[58] Lee. D. and Kim, M. "A Distributed Scheme for Dynamic Deadlock Detection and
Resolution". Information Sciences, 64:149-164, 1992.

[59] Lei, Y. and Singh, M.P. "A Comparison of Workflow Metamodels". Proceed­
ings of the ER-97 Workshop on Behavioral Modeling €3 Design Transformation Is­
sues and Opportunities in Conceptual Modeling, Los Angeles, CA, November 1997.
http://osm7.cs.byu.edu/ER97 /workshop4/ls.html.

[60] Leymann, F. and Roller, D. Production Workfiow: Concepts and Techniques.
Prentice-Hall, Inc., 2000.

[61] Lin, H., Zhao, H., Li, H., and Chen, Z. "A Novel Graph Reduction Algorithm to
Identify Structural Conflicts". In Proceedings of the 35th Annual Hawaii Interna­
tional Conference on System Science {HICSS-35'02). IEEE Computer Society Press,
2002.

[62] Linthicum, D.S. Enterprise Application Integration. Addison-Wesley, Boston, USA,
2000.

[63] Lynch, J.F. "Random Resource Allocation Graphs and The Probability of Dead­
lock". SIAM Journal on Discrete Mathematics, 7:458-473, 1994.

[64] Martinez, J. and Silva, M. "A Simple and Fast Algorithm to Obtain all Invariants
of a Generalized Petri Net". In Girault, C. and Reisig, W., editors, Application
and Theory of Petri Nets, volume 52 of Lecture Notes in Computer Science, pages
301-311. Springer-Verlag, 1982.

[65] Mayer, R.J., Menzel, C.P., Painter, M.K., deWitte, P.S., Blinn, T., and Perakath,
B. "Information Integration for Concurrent Engineering (IICE) - IDEF3 Process
Description Capture Report". Technical report, KBSI Systems, Inc., College Station,
TX, http://www.idef.com, 1995.

[66] Mentzas, G., Halaris, C., and Kavadias, S. "Modelling Business Processes with
Workflow Systems: An Evaluation of Alternative Approaches". International Jour­
nal of Information Management, 21:123-135, 2001.

[67] Minoura, T. "Deadlock Avoidance Revisited". Journal of the ACM, 29:1023-1048,
1982.

[68] Murata, T. "Petri Nets: Properties, Analysis, and Applications". Proceedings of the
IEEE, 77(4):541-580, 1989.

115

[69] Parnas, D.L. and Habermann, A.N. "Comment on Deadlock Prevention Method".
Communications of the ACM, 15:840-841, 1972.

[70] Peterson, J.L. Petri Net Theory and the Modeling of Systems. Prentice-Hall, Inc.,
1981.

[71] Rardin, R.L. Optimization in Operations Research. Prentice-Hall, NJ, 1998.

[72] Recihert, M. and Dadam, P. "ADEPT flex - Supporting Dynamic Changes of Work­
flows Without Losing Control". Journal of Intelligent Information Systems, 10:93-
129, 1998. Special Issue on Workflow Management Systems.

[73] Reveliotis, S.A. "Liveness Enforcing Supervision for Sequential Resource Allocation
Systems: State of the Art and Open Issues". In Cailaud, B., Xie, X., Darondeau, P.,
and Lavagno. L., editors, Synthesis and Control of Discrete Event Systems, pages
203-212. Kluwer Academic Publishers, 2002.

[7 4] Reveliotis, S.A. and Ferreira, P.M. "Deadlock Avoidance Policies for Automated
Manufacturing Systems". IEEE Transactions on Robotics and Automation, 12:845-
857, 1996.

[75] Sadiq, W. On Verification Issues in Conceptual Modeling of Workfiow Processes.
PhD thesis, Department of Computer Science and Electrical Engineering, The Uni­
versity of Queensland, Australia, 2001.

[76) Sadiq, W. and Orlowska, M.E. "Analyzing Process Models using Graph Reduction
Techniques". Information Systems, 25(2):117-134, 2000.

[77] Salimifard, K. and Wright, M. "Petri-Net based Modeling of Workflow Systems: An
Overview". European Journal of Operational Research, 134(3):218-230, 2001.

[78] Shapiro, R. "A Technical Comparison of XPDL, BPML, and BPEL4WS". Business
Process Trends - White Paper/Technical Brief, http://www.bptrends.com, 2002.

[79] Sheth, A., Aalst, W.M.P., and Arpinar, I. "Processes Driving the Networked Econ­
omy". IEEE Concurrency, 7(3):18-31, 1999.

[80] Shooman, M.L. Probabilistic Reliability: An Engineering Approach. McGraw-Hill
Book Company, NY, 1968.

[81 J Singh, M.P. "Formal Semantics for Workflow Computations". Technical Report TR-
96-08, Department of Computer Science, North Carolina State University, January
1996.

[82] Singhal, M. "Deadlock Detection in Distributed Systems". IEEE Computer, 22:37-
48, 1989.

[83) Straub, P. and Hurtado, C.L. "A Theory of Parallel Threads in Process Models".
Technical Report RT-PUC-DCC-95-05, Computer Science Department, Catholic
University of Chile, Santiago, Chile, 1995. ftp://ing.puc.cl/doc/techReports.

116

(84] Straub, P. and Hurtado, C.L. "The Simple Control Property of Business Process
Models". Proceedings of the XV Conference of the Chilean Computer Society, Arica,
Chile, Oct. 30-Nov. 3, 1995. ftp://ing.puc.cl/doc/techReports.

(85] Straub, P. and Hurtado, C.L. "Avoiding Useless Work in Workflow Systems". Pro­
ceedings of the International Conference on Information Systems Analysis and Syn­
thesis, Orlando, USA, July 22-26, 1996.

(86] Straub, P. and Hurtado, C.L. "Business Process Behavior is (almost) Free­
choice". Computational Engineering in Systems Applications, Session on Petri
Nets for Multi-Agent Systems and Groupware, Lille, France, July 9-12, 1996.
ftp://ing.puc.cl/doc/techReports.

(87] Straub, P. and Hurtado, C.L. "Understanding Behavior of Business Process Models".
Proceedings of the First International Conference on Coordination Languages and
Models, Cesena, Italy, April 15-17, 1996. ftp://ing.puc.cl/doc/techReports.

(88] Straub, P. and Hurtado, C.L. "Control in Multi-Threaded Information Systems".
Unpublished working report, Computer Science Department, Catholic University of
Chile, Santiago, Chile, 1997. ftp://ing.puc.cl/doc/techReports.

(89] Stremersch, G. and Boel, R.K. "Structuring Acyclic Petri Nets for Reachability
Analysis and Control". Discrete Event Dynamic Systems, 12:7-41, 2002.

(90] Sugiyama, Y., Araki, T., Kasami, T., and Okui, J. "Complexity of the Deadlock
Avoidance Problem". Systems, Computers, Controls, 8:44-51, 1977.

(91] Veijalainen, J., Lehtola, A., and Pihlajamaa, 0. "Research Issues in Work­
flow Systems". Proceedings of the 8th ERCIM Database Research Group Work­
shop on Database Issues and Infrastructure in Cooperative Informations Sys­
tems Trondheim, Norway, August 1995. http://www.ercim.org/publication/ws­
proceedings/ 8th-ED RG /8th-EDRG-contents.html.

(92] Venkatesh, S. Deadlock Detection and Resolution in Discrete Event Simulation and
Shop Floor Control. PhD thesis, Department of Industrial Engineering, Texas A&M
University, College Station, TX, 1996.

(93] Vernadat, F.B. "CIM Business Process and Enterprise Activity Modeling". In
Bemus, P. and Nemes, L., editors, Modeling and Methodologies for Enterprise Inte­
gration, pages 171-182. Chapman & Hall, U .K., 1996.

(94] Viswanadham, N., Narahari, Y., and Johnson, T.J. "Deadlock Prevention and
Deadlock Avoidance in Flexible Manufacturing Systems Using Petri Net Models".
IEEE Transactions on Robotics and Automation, 6:713-723, 1990.

(95] WfMC. "Terminology & Glossary". Technical Report WfMC-TC-1011, The Work­
flow Management Coalition, http://www.wfmc.org/standards/docs.htm, 1999.

117

[96] WfMC Work Group 1. "Interface 1: Process Definition Interchange Process
Model". Technical Report WfMC-TC-1016-P, The Workflow Management Coali­
tion, http://www.wfmc.org/standards/docs.htm, 1999.

[97] Wilf, H. Algorithms and Complexity. Prentice-Hall, Inc., NY., 1986.

[98] Wojcik, B.E. and Wojcik, Z.M. "Sufficient Condition for Communication Deadlock
and Distributed Deadlock Detection". IEEE Transactions on Software Engineering,
15:1587-1595, 1989.

[99] Xing, K.Y., Hu, B.S., and Chen, H.X. "Deadlock Avoidance Policy for Petri-Net
Modeling of Flexible Manufacturing Systems with Shared Resources". IEEE Trans­
actions on Software Engineering, 15:1587-1595, 1989.

118

VITA2

Eswar Sivaraman
Candidate for the Degree of

Doctor of Philosophy

THESIS: FORMAL TECHNIQUES FOR ANALYZING BUSINESS PROCESS MODELS

MAJOR FIELD: Industrial Engineering & Management

BIOGRAPHICAL:

Personal Data : Born in Kumbakonam, Tamil Nadu, India, September 15,
1975, son of Mrs. K. Vasantha and Mr. E. Sivaraman.

Education : Graduated from Padma Seshadri Bala Bhavan Senior Sec­
ondary School, Madras, India, in May 1992; received the Bachelor of
Technology degree in Manufacturing Engineering from National Institute
of Foundry & Forge Technology, Ranchi, India, in May 1996; received the
Master of Science degree in Industrial Engineering & Management from
Oklahoma State University in May 1998; completed requirements for the
Doctor of Philosophy degree at Oklahoma State University in May 2003.

Experience : Graduate Teaching Assistant, School of Industrial Engineering
and Management, Oklahoma State University, Fall 1996 ~ Spring 2003;
Graduate Research Associate, Center for Computer Integrated Manu­
facturing, Oklahoma State University, Fall 1998 ~ Spring 2003; Summer
Intern (Mathematical Programming), CIENA Corporation, Cupertino,
CA, June 2000 ~ July 2000.

Honors : OSU Graduate Research Excellence Award for outstanding Ph.D.
Dissertation, Spring 2003; OSU Graduate Research Excellence Award
for outstanding M.S. Thesis, Spring 1998; Phi Kappa Phi, Spring 2003;
Pi Mu Epsilon, Fall 1998; Alpha Pi Mu, Fall 1997.

Professional Membership : INFORMS, IIE, and AMA.

