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Chapter 1 

Introduction 

Chapter Overview 

A business process is much like a recipe - it involves some tasks, ingredients, and re­

sources, all coming together to create something that is useful (and hopefully palatable). 

While cooking involves mostly sequential activities, business processes are characterized 

by combinations of concurrency, choice, and asynchronism, the mix of which could lead to 

incorrect designs. The purpose of this chapter is to highlight challenges in the verification 

of business process designs, and to chart the scope and purpose of this research. 

1.1 Business Process Modeling: Purpose and Scope 

A business process is an ordered sequence of tasks/activities involving people, materials, 

energy, equipment, or information, designed to achieve some specific business outcome. 

Business processes are usually one of either a material, information, or a people process, 

or a combination thereof, the characteristics of which are presented in Table 1.1 [21]. 
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Table 1.1: Types of Business Processes 

Process Type 

Material Information People 
(Things) (Data) (Relationships) 

Transform and as-
semble raw materi- Store, retrieve, ma- Articulate and 
als and components nipulate, display, and complete condi-

Purpose into other compo- communicate struc- tions of satisfaction 
nents and finished tured and unstructured between customers 
products, using re- data and knowledge and performers 
sources. 

Based on the tra-
Based on the tradi- Based on structures 

Characteristics ditions of industrial 
tions of computer sci- of human communi-

engineering 
ence and software engi- cation and coordi-
neering nation 

Assemble, Inspect, Request, Promise, 

Verbs Transform, Store, 
Send, Transact, Invoke, Offer, Decline, Pro-

Transport 
Save, Forward, Query pose, Cancel, Mea-

sure 

A business process specifies what a business does, and more importantly, determines 

how well the business does what it does [65]. To this end, irrespective of the type or the 

context of the business process, it is imperative that it be well-designed, to ensure that 

it is both effective and efficient. The effectiveness of a business process is a function of 

the match between the process's operational objectives and the customer's needs, and 

efficiency is an assessment of the process's performance and the level of resource uti-

lization, and depends on its configuration (i.e., its design). The standard approach to 

designing and implementing business processes is to rely on a domain expert to develop 

a process configuration that is subsequently "tuned-up" and configured using descriptive 

(e.g., simulation, queuing models) and/ or prescriptive (e.g., optimization) techniques. 

However, there is a subtle, but significant question that is often never asked, namely -

"what is the guarantee that the process's configuration is correct?" This question has 
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become increasingly important, given the growing interest in process automation [18, 21] 

and enterprise integration [62]. Problems, if any, in the design of a process, are usually 

detected by simulating the run-time behavior of a process. The purpose of this disserta-

tion is to develop generic techniques for verifying the correctness of a process's design, by 

focusing exclusively on its static structural definitions, without recourse to any simulated 

executions. 

The study of business processes requires that a description of the business process be 

prepared by a domain expert, namely, one that is context-specific and rich in detail, and 

accommodative of different operational perspectives, occurrence scenarios, etc. - SAP's 

EPC [52], Baan's DEM1 , and IDEF3 [65] are all examples of process description languages 

that allow a domain expert to represent his/her understanding of the business process 

with complete conceptual clarity [47]. Business process modeling (BPM) is the collective 

term for the process of specifying business process descriptions. To quote Vernadat [93]: 

"Enteprise (process) modeling is concerned with the representation and speci­

fication of the various aspects of an enterprise's operations, namely, functional 

aspects that describe what things are to be done, and in what order; infor­

mational aspects that describe which objects are used or processed; resource 

aspects that describe what or who performs things and according to which 

policy; and organizational aspects that describe the organizational structure 

within which things are to be done." 

The purpose of this research is to develop techniques for verifying that the functional 

and resource aspects of a process's design are correct. The major questions addressed in 

this research are briefly summarized below: 

1. FUNCTIONAL ASPECTS - is the logic of the process correct, i.e., does the flow 

of control within the process ensure that the process will execute correctly from 

initiation to completion? 

1http://www.dynaflow-dem.com 
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2. RESOURCE ASPECTS - is the release and capture of shared resources among dif­

ferent tasks, either in the same or in different instances of a process, well-designed 

so as to avoid conflict? 

1.2 Motivation for this Research 

The need for re-designing existing business processes, improving process efficiencies, co­

ordinating technology with distributed manpower and material resources, and enforcing 

rapid process development and design makes it imperative to adequately represent, study, 

and when possible, automate business processes [22, 33]. This is especially significant 

in the context of today's growing interest in workftow management, which promises au­

tomated control and coordination of business processes, made possible by the numerous 

advances in information technology [18, 79, 62]. Consequently, it is important that design 

errors, if any, be identified and eliminated before the process is deployed, i.e., implemented 

for execution by an automated system. Unlike manual implementation and coordination 

of a process, where human intuition can readily respond to errors and inconsistencies, 

automated solutions require that the process, by design, be correct. This will guarantee 

that any delays or errors in the automated execution arise only from sources like data 

inconsistency, failure of supporting IT infrastructure, etc., and not for anything lacking 

in the design of the process. 

Process descriptions are generally developed using graphical languages that include con­

structs for modeling concurrency (AND operands) and choice (XOR operands), the com­

bination of both of which can result in incorrect process designs - this is discussed further 

in Section 1.3.2. The verification of control flow correctness has received much attention 

recently, in that several restricted classes of the control flow problem have been addressed 

to date [84, 1, 3, 75, 61]; additionally, the general control flow problem has been shown 
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to be NP-complete [40]. As regards the study of resource allocation policies, there has 

been some work, especially in understanding connectivity issues, using metagraphs [11]. 

However, this work does not extend to answering questions about the detection of poten­

tial deadlock possibilities in business process definitions. These are the questions dealt 

with, in this research. 

In the larger context of business process modeling, the research presented herein is an 

essential step in developing an integrated framework for the modeling and analysis of 

business processes that [49, 23]: 

• Reduces the gap between the domain expert and the business process analyst. 

• Allows for the design and analysis of business processes to be simultaneous, with 

analysis influencing the design of effective and efficient processes. 

• Clarifies ambiguities in the domain expert's interpretation, experience, and expec­

tations of the business process through immediate qualitative analysis. 

• Provides a seamless, almost invisible translation between the description of the 

business process and the formalization that feeds the underlying analysis. 

• Provides linkages to other analysis techniques that can be used to derive summary 

metrics about the run-time performance of the business process. 

That the verification of the design of a business process is a fundamental problem that 

should be undertaken for any process modeling effort, is undisputed. That it has only 

taken on an increased urgency, given its relevance to current interest in automated control 

and coordination of business processes, is the motivation for this research. 
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1.3 The Control Flow Problem 

1.3.1 The Control Flow Model 

The description of a business process is usually based on a graphical syntax which in­

cludes constructs for representing choice and concurrency, along with details of specific 

operational scenarios, and various perspectives, namely, functional, informational, and 

organizational [22, 93, 11]. While a process's description must be semantically rich, and 

a formalized model may be completely context-independent, the underlying process logic 

can be represented with just a few basic elements that are both amenable to analysis 

and are also semantically useful. The control flow model captures the partial or total 

ordering among the tasks that constitute the process, and is defined using the following 

elements [41, 95]: 

Task: An abstraction of either a unit activity, or a composite description of a larger sub­

process, embedded in the process's definition. It is graphically represented with a 

rectangular symbol. 

AND-Split: A logical operand that models the concurrent creation of several parallel 

threads of control from a single incoming fl.ow. 

AND-Join: A logical operand that models the asynchronous completion of several par­

allel sub-threads of execution, to be followed by a common outgoing fl.ow. 

XOR-Split: A logical operand that depicts choice in the selection of exactly one of 

several possible outgoing control flows from a single incoming fl.ow. 

XOR-Join: A logical operand that merges several mutually exclusive, multiple sources 

of control, to create a common outgoing flow. 

Directed Arrow: The fl.ow of control between the various elements is captured graph­

ically with directed arrows leading from the preceeding to the succeeding elements 

(task/logical operand). 
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Concurrent 
Control 

Figure 1.1: A Sample Control Flow Model 

Figure 1.1 illustrates all of these basic elements, including iteration, which basically mod-

els the recursive nature of the flow of control, as would be required in say, an inspection 

(reject/accept/re-process) activity. Observe that the control flow model is devoid of the 

operational details of the tasks, namely, their inputs and outputs, which, while necessary 

for developing a process description that is conceptually complete, are not essential for 

capturing the process's logic. Additionally, the control flow model includes two special 

constructs - "Start" and "Finish" which indicate that the process has a unique initiation, 

and a unique termination. There are several advantages to enforcing the unique Start 

and Finish in the control flow model, namely, 

• Sub-processes that have already been verified can be encapsulated and subsumed as 

composite tasks in a larger control flow model to represent , with coarser granularity, 

the individual task descriptions . Such composite tasks, if needed , could be "blown­

up" to reveal their complete detail, by relying on the S and F nodes of the composite 

tasks to easily plug into the bigger model. 

• It would be possible to achieve an incremental, or piece-wise, verification of the 

various sections of the process, without requiring that the entire model be specified 

before any analysis may begin. This would be made possible, by bounding, and 

isolating with a Start and Finish, those sections of the model that are logically 

disjoint and separated from the rest of the model, so far as control flow is con­

cerned. Consequently, this "debugging" at a local level would increase the speed of 

development of a correct control flow model, which, if need be, could be composed 

of previously verified, smaller component models . 
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The four logical operands presented above are adequate for capturing the logic of any 

process. However, certain process description languages ( e.g., IDEF3, EPC) also include 

constructs for modeling inclusive OR-Splits (-Joins) , i.e., activate (merge) at least one 

of several outgoing (incoming) control flows. This, unfortunately, is very ambiguous in 

interpretation, and is ill suited for formalization , for it neither suggests which thread(s) to 

activate, nor how many, except, perhaps those recorded by the domain expert as part of 

his/ her experience. Figure 1.2 illustrates a reformulation of an OR-Split with just XORs 

and ANDs; the equivalent mapping for an OR-Join would be the dual (i.e., graph with 

arrows reversed) of the model shown in Figure 1.2(b). Unfortunately, this comes with 

the penalty that the number of extra XOR or AND operands grows exponentially with 

the out/in-degree of the OR operand. It is recommended that the use of an OR operand 

be explicitly discouraged in developing process descriptions, so as to avoid ambiguity and 

inconsistency of interpretation [2, 53]. 

(a) OR-Split 
example 

Choose exactly one of the three --~ 
possible outgoing threads 

Choose all three possible __ _, 
outgoing threads 

(b) Replacing an OR-Split with XORs and ANDs 

Figure 1.2: Mapping an OR logical operand with XORs and ANDs 
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1.3.2 Control Flow: Statement of the Problem 

The question of verifying the process's design to establish control flow correctness, is 

simply this - can it be verified that beginning with Start, the process will always reach 

Finish? In order that the definition of control flow correctness may be made more pre­

cise, it remains to understand what counts as an incorrect model. Table 1.2 illustrates 

several examples of incorrect control flow. 

There are three points that clarify themselves in all five examples of Table 1.2, namely, 

1. The process must terminate exactly once, i.e., unique termination. 

2. The process must terminate completely, without any residual control flows hanging 

in the balance, i.e., proper termination. 

3. The bulk of control flow errors arise from interspersing XOR and AND logical 

operands. 

The control flow problem can now be restated as: 

The Initiation Problem is to determine if there is a sequence of task executions that 

will lead to the execution of a particular task - this has been shown to be NP­

complete [40]. 

The Termination Problem is to determine if the control flow specification will lead to 

a terminal state - this has been shown to require exponential storage r~quirements 

[40]. 

An alternate derivation of the NP-completeness of the control flow problem is presented 

in Section 3.2.2. 
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Table 1.2: Incorrect Control Flow Models - Some Illustrations 

Incorrect Control Flow Model 

10 

Discussion 

An example of deadlock. The process 
will never terminate, since the AND 
operand will wait indefinitely for two 
incoming flows of control, while the 
XOR creates only one. 

An example of multiple repetitions. 
The process will "Finish" twice, 
since the XOR is expecting only 
one incoming control flow, while the 
preceding AND activates two parallel 
paths. 

Note: It may be argued that it 
does not matter which of the two 
tasks finishes first, as long as one 
does, to enable control flow to pro­
ceed further. However, in this case, 
what is required is not an XOR-Join, 
but an OR-Join, which must be 
formalized using XORs and ANDs as 
illustrated in Figure 1.2. 

If the XOR next to "Start" chooses 
the top branch, the process will termi­
nate properly; if it chooses the lower 
branch, the process will terminate 
twice. 

If the XOR on the lower branch 
chooses the control flow to its top, 
the process will terminate properly; 
if it chooses the flow to its right, the 
process will terminate once, but there 
will be an AND operand waiting for 
a control flow that will never arrive. 

A process model with the possibility 
for infinite repetitions. If the second 
XOR chooses the branch to its right, 
the process will terminate properly; if 
it chooses the lower branch, the pro­
cess will terminate more than once. 



1.3.3 Control Flow: Overview of Research 

There are two approaches to establishing the correctness of control flow in business pro­

cess models, namely, correctness by construction (i.e., build it correctly), or correctness 

by inspection (i.e., check it completely). The former relies on strict grammatical rules 

that govern the composition of the various elements in the model, and this is the basis of 

the model-theoretic event algebras designed by [81, 30], which, however, do not guarantee 

that all models can be constructed using the pre-specified composition rules. The latter, 

on the contrary, is more appealing, in that it does not inhibit the modeler or the analyst. 

These are the considerations that have prompted the use of graph-theoretic techniques 

[76, 75, 11, 61], and Petri nets [1, 84, 88] for verification studies. 

However, all of these approaches impose restrictions on the form and structure of the 

control-flow model to render the analysis questions more tractable, namely, that the 

control-flow model be acyclic (no loops), and that the Petri-net constructions remain 

free-choice. 2 Moreover, with the exception of [76, 3], all of the other approaches present 

only theoretical analyses, the implementation of which is left to question. 

Additionally, there exists no precise mechanism to isolate and identify the sources of 

control flow anomalies, since it is not just enough to identify that there is a problem, 

but, it is more important to identify the why and the where; these are precisely the 

incentives for studying the control flow problem. 

2 A special class of Petri nets wherein all choices within the Petri net are free - this is elaborated 
further in Section 2.5. 
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1.4 The Resource-Sharing Problem 

1.4.1 Formalism for Specifying Resource Requirements 

A process, in the course of its execution, will use some resources ~ more specifically, tasks 

in a process will often require the use of resources (e.g., machines, people, instruments) 

that they capture (i.e., access, exclusively use), and which are then released by either 

the tasks that captured them, or by other subsequently executed tasks. The notion of a 

"resource" as defined here is not to be confused with items like, say, machine-oil or lubri-

eating grease which are consumed, i.e., "depletable resources" exhausted by the process, 

or with items like, say, scrap and metal-filings which are created by the process. In spec-

ifying the resource requirements of a process, the focus is on re-usable, non-perishable, 

and non-depletable physical or informational entities that are accessed or captured by 

tasks, and which are then subsequently released wholly, without loss or detriment in their 

size, quantity, or operational ability [37, 43]. 

More formally, the (re-usable) resource requirements for the tasks in a process are spec­

ified as: 

• R = {R1 ,R2 , .•. ,Rr} is the set of all resources. \/Ri ER, Rf= number of units 

l available for resource ~. 

• \;/ Ri E R, Rf ap : T -. N = {O, 1, ... } is a functional that specifies the number of 

units of resource ~ captured by each task, where T is the set of all tasks. 

• \;/ Ri E R, Rfel : T -. N is a functional that specifies the number of units of resource 

~ released by each task. 
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1.4.2 Resource-Sharing: Statement of the Problem 

In the course of the execution of a business process, deadlock arises when tasks that 

have captured some resources are blocked indefinitely from access to resources held by 

other tasks [19, 43, 46]. The following four conditions are necessary for the occurrence 

of deadlock, namely, [19, 34, 67, 8] 

Mutual Exclusion Tasks require exclusive use of resources. 

Hold-while-waiting Tasks continue holding onto resources that they have 

captured, while waiting for other required resources to become available. 

No Preemption Tasks holding resources determine when they are released. 

Circular-Wait A closed chain of two/more tasks waiting for resources held 

by one another. 

In the context of business process modeling, the first three conditions stated above are 

unavoidable, i.e., resources are assigned for exclusive use of the tasks that require them, 

and cannot be preempted without externally aborting the corresponding tasks. To this 

end, the primary design issue that needs to be addressed in the design of business pro­

cesses is to alert the designer to deadlock possibilities that may arise from circular-wait 

conditions that are not immediately evident in the process's design. Clearly, a very ele­

mentary check for the correctness of resource allocation is to verify that the number of 

times a resource R;, is captured is equal to the number of times it is released. However, 

such a simplistic check is inadequate for guaranteeing the correctness of a process's de­

sign. The problems that arise in the consideration of resource-sharing are best motivated 

with several examples, as presented in Table 1.3. The convention followed for these mod­

els is - (i) the capture and release of resources by each task is specified with directed 

arrows entering and leaving the task symbols, respectively, and (ii) it is assumed that 

Rf = 1 for all the resources cited therein. 
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Table 1.3: Incorrect Resource Allocation Models - Sorne Illustrations 

Incorrect Resource Model 

R, 

Discussion 

14 

There are two problems, namely, (i) re­
source R5 is released before it is captured, 
and (ii) a potential circular-wait could 
arise if T2 captures R1 and T3 captures R2 
and end up waiting indefinitely for each 
other to release their resources. 

There are two major problems, namely, 
(i) if T2 and T3 are assigned R1, R2, re­
spectively, then the process will be dead­
locked, since T1 and T4 will never be exe­
cuted for want of resources that will never 
be released (by T5 and T6) before they are 
completed, and (ii) the number of capture 
requests for both R1 and R2 among the 
concurrent tasks T1, T2, T3, T4, exceeds the 
available number of units, thereby making 
the design infeasible. 

The process will get deadlocked if T1 cap­
tures R1 and T3 captures R2, whereupon 
neither T2 nor T4 can proceed any further, 
and the resources will never be released -
an example of circular-wait. 

Clearly, the control flow is very straight­
forward. However, consider an "incident" 
- T1 captures R1 followed by T2 which cap­
tures R2 and releases R1, and proceeds 
to execute T3; meanwhile, Ti, being en­
abled, captures R1 again and starts an­
other instance of the process, thereby re­
sulting in deadlock since the previous in­
stance will not release R2 without R1 (task 
T4), while the second instance will not re­
lease R1 without R2 (task T2)- another 
circular-wait. 



There are several questions that arise naturally from the three examples presented in 

Table 1.3, namely, 

1. Examples 1 and 3 - what is the order in which resources need to be assigned 

among concurrently enabled tasks, so as to avoid potential circular-wait? 

2. Example 2 - what is the minimum number of units required of each resource 

to enable the process's design to actually succeed? In the case of example 2, for 

the concurrent tasks T1 , T2 , T3 , T4 to actually proceed, a minimum of two units is 

required for resources R1 and R2 - this example was solved intuitively; can it be 

formalized? 

3. Example 4 - the incident described in example 4 merits some more attention. 

Clearly, the problem cited therein is not immediately evident, and the execution of 

a single instance of the process would proceed perfectly. However, it still remains 

to alert the designer about the potential for circular-wait that could arise if multiple 

instances of the process become enabled. 

The resource-sharing problem can now be restated as: 

Single-Instance Verification is to determine if the sharing of resources among tasks 

within an instance of a process could lead to deadlock. 

Multiple-Instance Verification is to determine if the sharing of common resources 

among various instances of the process could lead to deadlock. 

1.4.3 Resource-Sharing: Overview of Research 

The study of deadlock has been motivated primarily by problems arising in operating 

systems, beginning with a problem in concurrent control proposed by Dijkstra [27) and 

solved by others [54, 24, 28, 56), namely, to develop an algorithm that will guarantee 

that exactly one among many competing tasks ( or programs) will execute their "critical 

section" (presumably, access to some common computing resource). Subsequently, this 
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problem has been enlarged thus - "given a set of n tasks and m resources, does there 

exist an ordered sequence of the tasks that is safe, and will enable all the tasks to be 

completed? [35, 42, 69, 43]. This problem has received enormous attention, given its im­

portance to operating systems, parallel computing, and distributed database systems, an 

extensive review of which is presented in [46, 39, 82, 31]. These approaches rely primarily 

on the definition of a resource-allocation graph3 that captures the state of the system 

at a particular time, namely, the set of unfulfilled resource requests, the set of captured 

resources, etc., and verifies that the system's evolution into its next state is also safe 

[19, 43]. The existence of a cycle in these resource allocation graphs is necessary for the 

occurrence of a deadlock [19], and is sufficient when there is just a single unit of each re­

source [43, 67, 98, 63]. Unfortunately, these approaches are not applicable to the context 

of business process modeling, since the process's logic pre-specifies the order in which the 

tasks need to be executed. These concerns have also arisen in the study of deadlock as is 

related to the operation of flexible manufacturing systems [8, 94, 29, 99, 74, 73], a recent 

review of which is presented in [92]. 

The most common approaches for handling deadlock are: [43, 46, 94, 57] 

Prevention restrains the request structure of processes so that deadlock is impossible, 

namely, by falsifying any one of the four necessary conditions for deadlock (refer 

Section 1.4.2). 

Detection-Recovery approaches allow deadlock to occur and focus on expedient re­

covery. 

Avoidance uses current state information along with the knowledge of task request 

and release structures to guide look-ahead policies that control how resources are 

allocated so that deadlock is avoided. 

3 also referred to as "wait-for graphs" [67, 58]. 
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The general deadlock avoidance problem has been shown to be NP-complete (90, 34, 32, 

67]. In the spirit of the · adage "prevention is better than cure," the focus of the second 

problem addressed in this research is deadlock prevention, namely, to develop techniques 

for alerting the designer of a business process about potential deadlock possibilities. 

1.5 Summary 

The purpose of this chapter has been to motivate the need for a formal foundation to 

verify the correctness of a business process's design. The design of a business process 

minimally requires the specification of the process's logic, and the resource requirements 

for its constituent tasks. Two major problems have been identified, namely, verifying 

the correctness of (i) control flow, and (ii) resource-sharing requirements - these are the 

questions dealt with, in this dissertation. 

The control flow problem relates to establishing the correctness of a process's logic. More 

specifically, it remains to verify that a single instance of the process will execute correctly 

from initiation to completion (i.e., unique termination), and that there are no incomplete 

control flows remaining elsewhere upon completion of the process (i.e., proper termina­

tion) (40]. These two conditions must be satisfied to establish that the control flow 

model is correct - they are not intended to excessively constrain modeling flexibility; on 

the contrary, they serve to focus and discipline a modeler's intuition in developing a more 

precise design that is logically, and therefore, operationally correct. 

The resource-sharing problem relates to establishing the correctness of a process's (re­

usable) resource requirements. More specifically, it remains to establish that the sharing 

of common resources among different tasks, either within a single-, or across multiple­

instances of the process does not lead to situations wherein two or more tasks compete 
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for resources, without relinquishing control of currently held resources, thereby lead­

ing to deadlock. Several interesting challenges emerge from the study of this problem, 

namely, is deadlock occurring as a result of inadequate resource availability, or is it truly 

a design error that is not immediately obvious? More particularly, is it necessary to 

simulate the operation of a process to identify any such design errors? That the answer 

to this question is No is a prelude to some of the interesting approaches developed herein. 

The remainder of the document is organized as follows. Chapter 2 presents a review of 

the issues and opportunities in business process modeling, and summarizes all relevant 

research related to the two problems mentioned above - it should excite the reader 

to know that the question of verifying the correctness of a process's resource-sharing 

requirements has not been previously studied, and that the results presented herein are 

the first in this regard. Chapter 3 studies the control flow problem, and presents a 

new algorithm for verifying the correctness of control flow in any control flow model. 

Chapter 4 extends the results of Chapter 3, and presents a simple Petri net-theoretic 

approach to studying the correctness of resource-sharing requirements, both in single- and 

in multiple-instances of a process. Chapter 5 documents the features of a proof-of-concept 

implementation of the algorithms developed in this work. Chapter 6 concludes this 

dissertation with a summary of research contributions, and pointers for further research. 
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Chapter 2 

Review of the Literature 

Chapter Overview 

The purpose of this chapter is to present both an overall appraisal of the issues and 

opportunities in business process modeling, and a review of the research approaches and 

results relevant to studying the correctness of control flow and resource-sharing issues. 

2.1 Business Process Modeling: Major Issues 

The complete conceptual description of a business process requires: 

1. specification of the flow of control and the total/partial ordering between the various 

tasks, including feedback and feedforward modes of action, 

2. specification of relevant inputs and outputs, and the flow of data as is dictated by 

the interconnections between the tasks, 

3. assessment of the process's configuration, and a summarization of the process's 

dynamics (i.e., time duration), and estimates of control-flow transition probabilities 

(if required), and 

4. identification of any hierarchical, or multi-level distinctions in the tasks that con­

stitute the process, i.e., is a task elemental, or can the task be expanded to reveal 

other sub-processes? 
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These conceptualization requirements have prompted the creation of process meta-models, 

i.e., models about building models, which aim to standardize terminology and suggest an 

abstraction of how process models must be specified [7, 96]. Research in process meta­

models has also been significantly influenced by the need to create process specifications 

amenable to computer implementation, as is required for workflow automation. 

To summarize, the major issues in business process modeling (BPM) can be classified 

into the following sub-categories [33, 44, 45, 91]: 

1. Process meta-models, process definition - language & grammar, and workflow 

schema representation architectures [60, 17, 59, 96, 18, 15, 55, 66]. 

2. Analysis of conceptual specifications of processes for syntactic and semantic cor­

rectness, and support for performance evaluation & process redesign [3, 1, 11, 76, 

88, 84, 77, 79]. 

3. Implementation and run-time issues related to correctness & failure-handling mech­

anisms in workflow management systems [18, 50, 51, 33] and adapting to dynamic 

changes in workflow and process definitions [72]. 

4. Workflow Management System IT infrastructure & inter-operability standards, 

spearheaded by the Workflow Management Coalition [41, 95, 96]. 

This research is related largely to sub-topic 2 above, namely, to develop techniques for 

verifying the correctness of a process's design. However, it would be very instructive to 

trace the development of ideas in all the sub-categories above, more so, in the context 

of today's growing interest in automated solutions and the correspondingly increased 

demand for improved modeling and analysis techniques. 
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2.2 Business Processes - General Classification 

In addition to the three kinds of processes identified in Table 1.1, business processes can 

be classified into one of collaborative, production, ad hoc, or administrative, depending 

on their business value and the degree of their repetition [60]. A process of high business 

value is more of a core competency, i.e., a fundamental process based on which the orga-

nization has been established (e.g., loan approval by a bank). The degree of repetition is 

a measure of how often the process is performed. Figure 2.1 classifies the four different 

types of business processes, with representative examples. 

Business 
Value 

high··· ... ~----~ 
Collaborative 

Product Promotion 
Documentation 

Ad Hoc 

Memo circulation 
Balance Enquiry 

low······ '------~ 

Production 

Car Assembly 
Loan Approval 

Administrative 

Travel Refunds 
Invoice Handling 

'----,,---------------;---Repetition 

low high 

Figure 2.1: Classification of Business Processes 

Collaborative processes are characterized by high business values and low repetitions -

e.g., building a fighter jet, creating a patch for a Windoze bug, etc. The underlying pro-

cess is generally unique and specific to the instance of the process. Ad hoc processes are 

characterized by low business values and low repetitiveness, and are created on-the-fly, 

literally speaking - e.g., enquiring about the number of customers with bank balances 

in excess of 13.27 dollars, circulating a birthday card for staff signatures, etc. There is 
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no defined structure or logic for these processes, and it changes from one situation to 

another. Adminstrative processes are highly repetitive, but of low business value - e.g., 

processing travel reimbursements, filing plan of study forms, etc. Production processes 

are high-value, high frequency processes that are repeated over and over, and represent 

the core processes of a company - e.g., approving loans in a bank, sorting mail in the 

post-office, etc. It is the efficient and effective execution of production processes that 

define the competitiveness of a company, and consequentially, merit the maximum at­

tention in any BPM effort. 

The complete specification of business processes includes (i) the control flow, i.e., the par­

tial and total ordering specifying the sequence of the various tasks, (ii) the input-output 

requirements (i.e., information, materials) and (iii) the resource (people, machines, etc.) 

allocations for executing the various tasks. Depending on the type of the process (i.e., ma­

terial, information, or people), the specification of a process would also include context­

specific details like personnel involved, rollback-recovery procedures, exception handling 

procedures, abort-recovery consistency checks, communication protocols, etc. [33, 18, 21) 

- this is referred to as the "discovery" of business processes [21). However, discovering 

and documenting the sequence of activities1 within a business process is an iterative 

and time-consuming process, especially, in stating the flow of control from one activity 

to the next, specifying the logical transition conditions, etc., all of which reinforce the 

requirement for a precise modeling methodology. 

2.3 Business Process Modeling Methodologies 

The purpose of business process modeling is to produce an abstraction of the process that 

serves as a basis for detailed definition, study, and possibly, re-engineering, to eliminate 

1 Both tasks and activities are used interchangeably in this document. 
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non-value added activities. To this end, the process model must allow for a clear and 

transparent understanding of the activities being undertaken, the dependencies among 

the activities and resources (people, machines, programs, data, etc.) necessary for the 

process. Process modeling methodologies can be broadly classified into three categories 
' 

- communication-based, artifact-based, and activity-based [66, 17, 18, 33]. 

The communication-based methodology represents an action in a process as a communi-

cation between a customer and a performer, consisting of four phases - request, negotia-

tion, performance, and acceptance. During any phase of the process, the performer of one 

process loop can be a customer of another loop, thus presenting any business process as a 

network of such customer-performer loops. This methodology focuses on communications 

occurring in the workplace and is geared towards one objective, namely, customer satis-

faction, and is not suitable for other goals, especially, process analysis and investigation. 

The artifact-based approach focuses on the objects (artifacts) that are created, modified, 

and used in the process, i.e., the modeling of the process is based on the products, and 

their fl.ow through the various activities; this would be suitable for administrative and ad 

hoc processes. The activity-based methodology focuses on decomposing the process into 

tasks that are ordered based on the dependencies (fl.ow of control and data) between them. 

The activity-based methodology has a number of distinct advantages [59, 66, 18] - (i) it is 

easily understood, (ii) it is readily amenable to formalization2 and (iii) it is the preferred 

choice for computerized specification and modeling, as is evident in it being the basis for 

all the major modeling languages. The reader would no doubt note that the control-fl.ow 

model of Figure 1.1 is an activity-centered process model. 

2Formalizations generally simplify the process model, and replace conceptual descriptions with spe­
cialized abstractions, to focus primarily on the problems being studied. 
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2.4 Workflow Management 

Businesses are increasingly relying on enterprise-wide integration of information using 

technologies like advanced database systems, client-server computing, Web-enabled trans-

actions, etc., to improve the efficiency of their business processes, and to be more com-

petitive in responding to customer needs [18, 50, 79, 66, 77]. These concerns have also 

stimulated the popularity of workftow management as a technique to address the needs 

for representation, study, and automation of business processes, especially information 

and people processes. 

Workflow management supports both process specification, and automated execution 

(instantiation, monitoring, and data maintenance) of business processes, and is a next­

generation extension to business process modeling that emphasizes the increased role that 

information systems have come to play in today's businesses [79]. Workflow management 

facilitates the coordinated execution of the various tasks that comprise a business process; 

it involves two phases - (i) the modeling phase that abstracts from business procedures 

and defines computer-implementable workftow specifications, and (ii) the execution phase 

that executes instances of the workflows to meet business requirements - both these 

phases are managed and coordinated by a Workflow Management System (WfMS). 

2.4.1 The Modeling Phase 

A workftow, as defined by the Workflow Management Coalition (WfMC)3 [41], is "a 

procedure where documents, information, or tasks are passed between participants ac-

cording to a defined set of rules to achieve, or contribute to, an overall business goal." Or 

alternatively, based on the activity-centered modeling methodology, a workflow can be 

viewed as a "collection of steps" that have to performed in a certain order. A workftow 

3 An international consortium founded in 1993 to standardize terminology and enable inter-operability 
between different workflow management systems. http://www. wfmc. org. 
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schema specifies the set of steps that comprise a workflow, and the data and control 

flow between the steps - Figure 2.2 illustrates an example of the process of approving 

applications in a health insurance firm [50]. 

HEALTH INSURANCE APPLICATION APPROVAL TASK 

Get Client 
Application 

Find Client 

··. 

MEDICAL,,.~.~fl~UATION SUBPROCESS 

Request More 
/ /;", Information 

Study 
Application 

Requesl 
Medical History 

Response 
Received 

Respon!.e 
Received 

·•······· ... 

······ ... 
Request Opinion from Opinion 

Medical Expert Received 

Archive 

Decision Points: 

1. Client = New 
2. Client = Old 
3. Decision = Accept 
4. Decision = Reject 
5. More Info. = True 

-------- • Data Flow 

__. Control Flow 

Figure 2.2: Example of a Workflow Specification ( adapted from [50]) 

The data flow specification provides the mapping of data (inputs and outputs) between 

steps, and the control flow specifies the execut ion order of the steps. Several types 

of transition conditions can be specified in the control flow requirements - sequential, 

conditional branching, concurrent branching, and iteration, all of which were illustrated 

in Figure 1.1. To perform a business process, a workfiow instance is initiated. Every 

workflow instance is associated with a state that reflects the values of the various data 

items associated with the workflow, and the state of the steps in the workflow, i.e., which 

of the steps have been completed, etc. The WfMC has established standards for process 

definition, and has developed generic modeling concepts to guide the creation of business 

process models (respectively, workflow schemas) [95]. 
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Workflow Design & Definition Workflow Instantiation & Control Interaction with Users & Application Tools 

Context of our 
Research 

Human 

Program 

System 
Supervisors 

+---Build-Time--...-------- - Run-Time-------- -+ 

Figure 2.3: Workflow Management System - Reference Model (adapted from [41 , 77, 50]) 

2.4.2 The Execution Phase 

Figure 2.3 illust rates the three major functional areas that a WfMS provides support for, 

namely, workflow design & definition (the context of our research), workflow instantiation 

and control, and interaction with users & other applications [41, 77, 50] . The definitions 

of workflows, t asks, staff designations, etc., are all stored in the workfiow database . This 

database also stores t he states of the workflows that are in progress. Scheduling is usually 

performed by a workfiow engine, which refers to the workflow database to determine 

the state of the various workflows in progress. Staff members interact with the WfMS 

through a hum an interaction agent, and they are presented wit h a work-it em list that 

lists all the t asks that have been assigned to them. If a task requires a program or other 

applications, t hese are invoked by the application agent . The application agents interact 

with the workflow engine to fetch the data required to execute a part icular step, and 

to communicate back the output (i.e., return status code and data) produced by the 

step. The workflow database is not accessible to applications external to the WfMS and 

other external resources (programs, databases, etc.) that are accessed by the applications 

executed on behalf of the workflow's steps. 
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2.4.3 Implementation Issues in Workflow Management 

Ensuring data consistency and integrity of the workflow database is a problem that 

is attracting much research - this is largely due to the fact that business procedures 

are generally of extended duration, and traditional transaction models [18, 50, 51] have 

proven inadequate. More specifically, the focus has been on resolving correctness issues 

to ensure data consistency across multiple workflow instances, each of which may be 

in different states, but could require access to common data. The correctness require­

ments in workflow implementation can be broadly classified into two categories, namely, 

execution atomicity, and failure atomicity. Execution atomicity deals with how data is 

committed and how visibility of data between steps, both within and across workflow 

instances, is controlled. Failure atomicity determines what is to be done with the data 

that has already been committed to the steps of a workflow, in the event that a failure 

disrupts the workflow and affects database management and database integrity. This, 

and other run-time issues related to database management, data transaction control 

(check-in, check-out), etc., are beyond the scope of this research. 

2.4.4 Process & Workflow Meta-Models - Basic Concepts 

The WfMC has established commonly accepted terminology for the various components 

of a business process model and associated workflow specifications. The meta-model pre­

sented in Figure 2.4 is a refinement of that proposed by the WfMC [18, 41, 96]. 

The interpretation of the meta-model is as follows: the Business Process is represented by 

a Workfiow that consists of many Activities coordinated by this Workfiow. The Activity 

serves as an abstraction for the Workfiow and Task. The semantics of this approach is 

that the Workfiow consists of tasks or sub-workflows, i.e., a hierarchy of nested workflows. 

The association cooperates expresses the possibility of Workfiow distribution within a 
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Figure 2.4: Process Meta-Model (adapted from [18]) 
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distributed environment. The Task is an abstraction of an Elementary Task and a 

Composite Task that actually consists of Tasks recursively. The Elementary Task requires 

for its performance a Role that can be responsible for many Elementary Tasks. The Role 

is fulfilled by an Agent that plays the role of a processing item. The Agent has assigned 

Tasks that it is responsible for, through a Worklist. The Agent itself can be specialized 

into a System Service (program, application, etc.) or a Human. A System Service can 

be associated with many Databases. The data flow and control flow are represented by 

generic Manipulated Objects (any object or piece of information used and manipulated 

by Workflow) that can be stored in the database. 

2.4.5 Summary 

The discussion has thus far focused on summarizing the major developments in process 

automation and workflow management. The interested reader is directed to refer ad-

ditional references, most notably, [60] for Section 2.2, [66] for Section 2.3, [33, 18, 60] 

for Section 2.4, and [21] for a comprehensive and well-written overview of the issues and 

opportunities in the discovery, design, deployment, and automation of business processes. 
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There has also been considerable interest in developing a common specification for doc­

umenting and describing business processes to standardize exchange and interaction of 

business data among companies maintaining different enterprise integration and process 

management systems - readers are encouraged to refer [48, 96, 7] for additional details. 

The remainder of this chapter will focus on reviewing current approaches to addressing 

the control flow and resource-sharing problems. 

2.5 Control Flow Verification: Research Review 

The control-flow problem was introduced earlier in Section 1.3, and a brief overview of 

current research presented in Section 1.3.3. To summarize, the current approaches to the 

control-flow problem may be classified into three main categories: 

1. Petri net formalizations [1, 3, 4, 5, 84, 83, 87, 85, 86], 

2. Graph-theoretic reductions [76, 75, 61], and 

3. Model-theoretic event algebras [81, 30, 88]. 

2.5.1 Petri-net Formalizations 

Petri-nets have emerged as a very popular technique for formalizing business process 

models for the following reasons [77, 66, 4] - (i) clear and unambiguous description 

of process logic, (ii) intuitive ease and feel of a self-documenting, graphical formalism 

that retains complete conceptual clarity, and (iii) extensive qualititative and quantitative 

analysis capabilities that would vastly extend the power and usefulness of structured 

process description languages like IDEF3.4 The Petri-net equivalent of the control flow 

model described in Figure 1.1 is illustrated in Figure 2.5. 

4http://www.idef3.com 
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Concurrent 
Control 

Figure 2.5: Petri Net Representation - An Example (control-flow only) 

The standard approach to establishing control-flow correctness in Petri-net formaliza-

tions of business process models is to establish the soundness property [1 , 3], or the 

simple-control property [84, 88], which is the initiation problem, and the termination 

problem both rolled in one (refer Section 1.3.2) . Stated simply, the idea is to put a token 

in the place labeled Start (refer Figure 2.5) and to see if the execution of the Petri 

net will produce a token in the place labeled Stop, without leaving any residual tokens 

elsewhere in the net. These ideas form the basis of WOFLAN, a modeling and verifica­

tion tool developed at the EINDHOVEN INSTITUTE OF TECHNOLOGY,5 The Netherlands. 

The majority of business processes formalized as Petri nets require that the Petri net be 

free-choice, a special class of Petri nets wherein all choices within the net are free[25]. 

Translated literally, this implies that the choice of which transition to fire, in the pres­

ence of conflict, is not influenced by any other place other than the input places of the 

transitions in content ion - Figure 2.6 highlights an example. 

The net in Figure 2.6(a) is not free-choice since the resolution of the conflict at place Pi 

is not free, i.e., the choice on whether T1 or T2 will be fired depends on the availability 

of a token in P2 , while T1 may be fired irrespective of the presence/ absence of a token 

5http: //tmitwww.tm.tue .nl/staff/everbeek/ projects /woflan/woflan.html 
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T, T, 

T, 

(a) (b) 

Figure 2.6: Two Examples - (a) Non Free-Choice Net, and (b) Free-Choice Net 

in P2 . Figure 2.6(b), however, describes a free-choice net wherein the choice between T1 

and T2 is free, since the enabling of either transition requires input tokens only in Pi and 

P2 , and consequently, the choice is equally likely and is unaffected by other elements of 

the net. 

The advantage of requiring that the business process be formalized as a free-choice net is 

that the soundness property can be verified in polynomial time [25, 3]. On the downside, 

restricting the "choice" to free-choice disallows the modeling of all possible business 

processes. Additionally, current applications of Petri net formalizations require that the 

business process model be acyclic, i.e., without any loops. Both these requirements are 

easily violated in practical examples, thus reinforcing the need for a generic approach 

for addressing the control-flow problem without any restrictions on the structure of the 

control-flow model. 

2.5.2 Graph-theoretic Reductions 

This is an interesting visual approach to solving the control-flow problem, deriving from 

the dissertation work of Sadiq [75]; however, Lin et al. [61] have established that the algo­

rithm presented in [75] is incomplete, and have proposed extensions to the same. Stated 

simply, the idea is to remove, from an acyclic control-flow model, all sub-structures of 
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the graph that are definitely correct, and if possible, reduce the control-flow model to an 

empty graph. Conversely, if the reduction to an empty graph is not possible, the control 

flow model is studied further to identify the source of the control-flow anomaly. This 

has been formalized through five reduction rules - terminal, sequential, adjacent, closed, 

and overlapped, each of which is applied, in turn, to all vertices of the graph, continuing 

until no further reductions are possible. These ideas are further illustrated in [76] and 

form the basis of FLOWMAKE, a modeling and verification tool developed by the DIS­

TRIBUTED SYSTEMS TECHNOLOGY CENTER,6 Australia. There are no disadvantages, 

per se, excepting that the approach relies more on the visual nature of the final solution 

- should the process model be incorrect, then the reduced model (not an empty graph) 

would have to be "looked-at" to figure out the where's and why's of the control-flow 

error, since the reduced model loses all resemblance to the original model. 

2.5.3 Model-theoretic Event Algebras 

The process model constructions developed in [81, 30] specify inter-task dependencies as 

logical constraints on the occurrence and temporal order of process events. The rigorous 

grammar underlying these construction techniques necessitates that the process model be 

correct; however, they lose out significantly on ease of use, and do not guarantee that all 

models can be specified using the set rules of construction. Additionally, they have not 

been adopted as the basis for any commercial verification tool. A novel theory of threads 

that attempts to blend the power of process-algebraic reasoning with the modeling ease 

of Petri nets has been developed by Straub and Hurtado [88] - additional details are still 

forthcoming. 

6http://www.dstc.edu.au/praxis/ 
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2.5.4 Other Related Network Models 

The network-like structure of the control flow model· bears similarity to problems com­

monly addressed in PERT /CPM studies [12], reliability models [80], and network-flow 

optimization problems [71 J. This section briefly summarizes the relevance ( or otherwise) 

of each of these ideas to control flow verification. 

PERT/ CPM Networks The precedence networks of PERT/ CPM cannot model choice, 

and consequently, cannot be applied to the context of control flow verification. 

Reliability Models The primary interest in reliability modeling is in the capture of 

minimal tie sets, i.e., the path that requires the smallest number of operational 

links to make the system function, and analogously, minimal cut-sets, i.e., the 

minimal set of links, the elimination of which will render the system inoperable. 

Again, as in PERT /CPM, there is no notion of choice or concurrency in reliability 

networks - parallel links denote redundancy built into the reliability network, and 

not concurrency as is interpreted in control flow models. 

Network-Flow Optimization The correctness of control flow can also be established 

by representing the control flow model as a 0-1 integer programming formulation 

(the multi-commodity network flow problem), with nodal flows specified in accor­

dance with their expected behavior (XOR/ AND /Task), assigning unit costs to the 

edges, and solving it to see if a unit flow can be routed from Start to Finish. 

However, while such a formulation will identify different execution scenarios for a 

correct control flow model, it does not offer any insight into the source and cause 

of the control flow error(s), should the IP formulation fail. 

2.5.5 Summary 

The control-flow problem has been tackled largely by imposing specific restrictions on the 

underlying representation, namely, that the control-flow model be acyclic, or its Petri-net 
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representation be free-choice. Chapter 3 presents an algorithm that is devoid of any such 

restrictions, and identifies, not just the presence/ absence of control-flow anomalies, but 

also the source of the error(s). 

2.6 Resource-Sharing Correctness: Research Review 

As identified in Section 1.4.2, there are two main problems to be addressed in verifying the 

correctness of resource-sharing requirements, namely, the single-instance verification and 

the multiple-instance verification problem. There has been no previous research related to 

studying these problems - this is perhaps due to the fact that most commercial enterprise 

automation systems focus primarily on information and people processes and correctness 

requirements have focused primarily on database consistency checks and transactional 

guarantees [51, 33, 18, 72]. Material processes are usually addressed by industrial engi­

neers, and the motivation for studying deadlock therein arises largely from considerations 

of deadlock avoidance in run-time control of flexible manufacturing systems [92]. 

The design and deployment of business processes begins with the design - thus far, there 

has been some work in developing a formalism for modeling inputs and outputs of a busi­

ness process, called metagraphs [9, 10, 11], and to use it for understanding connectivity 

issues. A metagraph is essentially a directed hypergraph, wherein each edge connects a 

set of invertices to a set of outvertices. In the context of business processes, an edge in 

a metagraph would be a task, and its inputs (resp. outputs) would be captured as the 

edge's in vertices (resp. outvertices). 

Figure 2. 7 illustrates a metagraph description of a business process consisting of four 

tasks { e1 , e2 , e3 , e4}, where the ovals represent the inputs and outputs of each task. More 

specifically, task e3 requires { x 3 , x 4 , x5 } as its inputs, and produces { x 6 , x8 } as its outputs. 
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Figure 2.7: Metagraphs - An Example 

The general connectivity-related questions addressed using metagraphs are: [11] 

1. If a certain input is unavailable, what set of tasks will be affected, and to what 

extent will the completion of the process be affected? 

2. If a certain task is disabled, to what extent will the remainder of the process be 

affected? 

Figure 2.8: Representational Equivalence of Metagraphs & Petri nets - An Example 

It is easy to create an equivalent Petri net model for a metagraph, namely, by mapping 

the vertices and edges in the metagraph to places and transitions in a Petri net. This 

equivalency is illustrated in Figure 2.8, which presents an equivalent Petri net model for 

the metagraph of Figure 2.7. However, while a Petri net can model multiplicity in the 

number of inputs and outputs, the metagraph models only the presence/ absence of inputs 

and outputs, and similarly, while the Petri net specifies the partial/total ordering of the 

various tasks, the metagraph fails to capture any ordering among the tasks. Moreover, 
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all similarities between the techniques end here, and each has spawned its own set of 

distinct analysis techniques. Table 2.1 compares and contrasts the individual strengths 

and capabilities of both metagraphs and Petri nets. 

Table 2.1: A Comparison of Metagraphs and Petri nets 

Modeling Support 
Control flow 
Multiplicity in resource usage 
Capturing time-specific information 
Support for simulation of process dynamics 

Analysis Support 
Foundations 
Handling cycles 
Connectivity issues ( e.g., critical inputs) 

2.6.1 Summary 

Metagraphs 

No 
No 
No 
No 

Set-theoretic 
Easy 
Yes 

Petri nets 

Yes 
Yes 
Yes 
Yes 

Linear-algebraic 
Hard 

Not explored 

There has been no previous research related to studying the resource-sharing problem in 

the design of business processes. More importantly, there are no techniques available to 

alert the designer about potential deadlock possibilities, save for simulated executions, 

which include additional overheads in terms of design specification. The techniques 

presented in Chapter 4 make novel use of the control flow model to alert the designer 

about potential deadlock possibilities not immediately evident in the process's design. 
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Chapter 3 

The Korrectness Algorithm 

Chapter Overview 

This chapter presents the KORRECTNESS algorithm, a recursive, backtracking algorithm 

for verifying the correctness of a control flow model. It does not impose any restriction on 

the form/structure of the control flow model and its results can also be used to identify 

the source of control flow error(s), if any. Some interesting results on properties to be 

expected in random control flow models are also derived. 

3.1 Introduction & Background 

The basics of the control-flow problem were defined in Sections 1.3. More formally, a 

control flow model is a directed graph G = (V, E), where: 

• V = S U T U As U AJ U Xs U XJ U F is the set of vertices 

• E = {(x, y) Ix, y EV; x =/ y} is the set of directed edges leading from x toy 

• 3! x EV 3 indeg(x) = 0 {:}xis the Start node, labeled as S 

• 3! x EV 3 outdeg(x) = 0 {:}xis the Finish node, labeled as F 

• T = {~, i = 1, 2, ... , t} is the set of all Tasks 
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• As= {Ai, i = 1, 2, ... , as} is the set of all AND-Splits 

• AJ = {Ai, i =as+ 1, as+ 2, ... , as+ aJ} is the set of all AND-Joins 

• Xs = {Xi, i = 1, 2, ... , xs} is the set of all XOR-Splits 

• XJ = {Xi, i = xs + 1, xs + 2, ... , xs + XJ} is the set of all XOR-Joins 

The verification requirements of correct control-flow are [40]: 

Unique Termination The process must terminate exactly once. 

Proper Termination The process must terminate exactly once, without any residual 

control flows abandoned elsewhere in the process. 

3.2 The Korrectness Algorithm 

The KORRECTNESS algorithm is a backtracking algorithm that identifies all valid process 

execution traces from Start to Finish. The algorithm may be informally summarized as 

follows: 

• Find all directed acyclic paths from Start to Finish, ignoring the presence or dis­

tinction among the various logical operands and task node - this is readily done 

with a standard depth-first search. 

• Now that all paths from S to F have been found, is it possible to collect or combine 

them in a manner that represents the execution of the process, while accurately cap­

turing the influence of the various AND (parallelism) and XOR (choice) operands? 

This is the KORRECTNESS algorithm. 

• The paths discovered using the depth-first search would not include cycles in the 

control flow model. In the event that the model does contain cycles, a few addi­

tional rules are applied to eliminate incorrect models before proceeding with the 

algorithm. 
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3.2.1 Definitions 

A PATH from S to Fis an ordered sequence of vertices (S = v1, v2 , ••• , Vn = F) where 

vi EV, and (vi-I,vi) EE. A META-PATH is a union of one/more paths, and a VALID 

META-PATH is a collection of paths, which, taken together, represents one possible pro­

cess trace, i.e., an instance of the correct execution of the process from Start to Finish. 

F 

Figure 3.1: An Illustration of Paths and Meta-paths 

The set P of all paths from S to F for the control-flow model in Figure 3.1 is: 

• PATH 1 (p1): (S, A1, Ti, A3, F) 

• PATH 2 (p2): (S,A1,A2,T2,A3,F) 

• PATH 3 (p3): (S, A1, A2, X1, T3, X2, A3, F) 

• PATH 4 (p4): (S,A1,A2,X1,T4,X2,A3,F) 

There are two valid meta-paths for the process in Figure 3.1, namely, {PATH 1, PATH 2, 

PATH 3}, and {PATH 1, PATH 2, PATH 4}, both representing valid execution traces for 

the process. Now, how does one go about identifying the various meta-paths in a process 

model, and how will it help us in verifying if the process model is correct or otherwise? 

Some more definitions follow. 
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A COUNTER is a 2-tuple (i,j) that is added as a label by AND-Split (or AND-Join) 

Ai to each of its j outgoing (respectively, incoming) edges. Counters are added only to 

edges originating from (or leading into) AND-Splits (-Joins), and by default, there are 

no labels on any of the other edges - the counter on edge ( x, y) will be identified by 

the set c(x,y). While identifying the various paths from S to F, the counters that are 

present in the edges traversed along those paths are also noted. Thus, PATH 3 uses {(1, 

2), (2, 2), (3, 3)}. This is more compactly represented as a 2-tuple (p, Gp), where pis the 

name of the path, and GP is the set of all counters present in path p; this is stored as the 

PATH-COUNTER information for the control-flow model of the process. Thus, the path­

counter information for the process in Figure 3,1 is {(PATH 1, {(1, 2), (3, 3)}), (PATH 2, 

{(l, 2), (2, 2), (3, 3)} ), (PATH 3, {(l, 2), (2, 2), (3, 3)} ), (PATH 4, {(l, 2), (2, 2), (3, 3)} )}. 

A few additional concepts are required for identifying the meta-paths. Observe that 

two paths that share a common XOR-Join (or -Split), namely, by entering (or leaving) 

through different edges into (or from) a common XOR-Join (or -Split), cannot be in the 

same meta-path, since it would violate the definition of an XOR operand. To illustrate, 

PATH 3 and PATH 4, in the example above, cannot occur in the same meta-path, since 

they share a common XOR-Join, namely, X 2 • However, note that two paths that enter 

(or leave) a common XOR-Join (or -Split) through the same edge do not violate the 

situation just described, and may likely occur in the same meta-path. More formally, 

\fpi,Pi E P, ViolateXOR(pi,Pi) = TRUE if both Pi and Pi enter (or leave) a common 

XOR-operand through different edges. 

A few other definitions that would be required are: 

• \fp E P, let V(p) ~ V be the set of vertices covered by path p. 

• \fx EV, N+(x) = {yl(x, y) EE} is the set of vertices leading out from x 
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• Vx EV, N-(x) = {yj(y, x) EE} is the set of vertices leading into x 

• Va E AJ, CounterslnAN D(a) = LJ c(x, a), i.e., the counters arriving at an 
xEN-(a) 

AND-Join. 

• Va E As, CounterslnAN D(a) = LJ c(a, x), i.e., the counters created at an 
xEN+(a) 

AND-Split. 

• Va E AJ, PathsThrough(a) = {p E P I a E V(p)}, i.e., the set of all paths through 

an AND-Join. 

• Vp E P, ANDJoinslnPath(p) = {a E AJ I a E V(p)}, i.e., the set of all AND-Joins 

in a path. 

3.2.2 The Control Flow Problem is NP-Complete 

Hofstede et al. (1998) use a reduction of the Satisfiability problem to a control flow 

problem, to prove that the latter is NP-complete. This section presents an alternate 

derivation that reduces the problem of finding valid meta-paths to that of finding maximal 

cliques, an approach that offers more insights into the nature of the control flow problem. 

In addition to the control flow model, three additional graphs, using the set of all paths 

P as their vertex set, are constructed. 

XOR-Representation Graph Xe= (P, Ex). The edge set Ex is constructed thus: 

Vpi,Pj E P, (pi,Pj) E Ex{:} ViolateXOR(pi,Pj) = TRUE. 

The edges of this graph identify the paths that share a common XOR-Join or -Split, 

and thus cannot be in the same meta-path. 

AND-Representation Graph Ac= (P, EA)- The edge set EA is constructed thus: 

Vpi,Pj, (Pi,Pj) E EA{:} ANDJoinslnPath(pi) n ANDJoinslnPath(pj) =/- r/J. 

This edges of this graph identify the paths that share common AND-Joins, and 

thus are likely to be included in the same meta-path. 
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Path-Representation Graph Pa= (P, Ep), where Ep =EA\ Ex. 

The edges of this graph combine the information contained in Aa and Xa; the 

edges identify all pairs of paths that will occur in the same valid meta-path. 

The three {·}-representation graphs for the control flow model of Figure 3.1 are shown 

in Figure 3.2. 

P3 •e---eep4 
(a) 

Figure 3.2: (a) XOR-Representation, (b) AND-Repr., and (c) Path-Repr. Graphs 

In general, both Xa and Aa will be a collection of disjoint vertices, and other connected 

components. The XOR-representation graph reveals a few intuitive details about the 

various meta-paths in a process, namely, that every set of independent vertices (i.e., a 

set of vertices, no two of which are connected by an edge) in Xa is a potential meta-path, 

and thus, the number of valid meta-paths cannot exceed the number of independent sets 

in Xa. Additionally, each complete sub-graph in Aa is a potential valid meta-path, given 

· that all paths in that sub-graph share common AND-Joins, and consequently, common 

counters. Now, the Path-representation graph essentially combines the information con-

tained in both Aa and Xa, to create a graph consisting of several components, from 

which all valid meta-paths can be extracted, using the following theorem. 
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Theorem 3.1 The control flow model is correct if and only if the vertices in every max­

imal clique in Pa represent a valid meta-path. 

Proof ( =}, by contradiction) Suppose C C P is a maximal clique in Pa, and the paths 

in C do not represent a valid meta-path. Now, are all the paths in C required for a valid 

meta-path? Yes, since they all share common AND-Joins. Since the control flow model 

is correct, there exists at least one more path p Ff C that is required to complete the valid 

meta-path. Since pis required, it must merge with a path Pa E C at some AND-Join, say 

Aa. Since C is a complete subgraph, any other path Pf3 EC must also share a common 

AND-Join, say, Af3, with Pa· Now, since Aa and Af3 lie on Pa, there are two possibilities, 

i.e., there is either (i) a path from Af3 to Am or (ii) a path from Aa to Af3· In case (i), 

the path from Af3 to Aa lies on both Pf3 and Pm which implies that pis incident with Pf3 

as well, since Pf3 joins p at Aa. In case (ii), the path from Aa to Af3 lies on both p and 

Pa, which implies that p joins Pf3 as well at Af3· Since this holds for any path Pf3, this can 

be extended to show that pis incident with all other vertices in C, thereby contradicting 

the maximality of C. 

( ¢=, by contrapositive example) Consider the first incorrect model shown in Table 1.2. 

The Path-representation graph is just the empty graph with two isolated vertices, the 

vertices corresponding to the two paths from S to F. Each isolated vertex in Pa is a 

maximal subgraph; however, each vertex by itself is not a valid meta-path, thereby com­

pleting the proof. • 

Let M be the set of all valid meta-paths for the control flow model represented with Pa. 

An immediate corollary of Theorem 3.1 is: 

Corollary 3.1 The control flow model is correct{:} Vp E P, :3m EM 3 p Em. 
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The * part of the proof tells us that for a correct control flow model, every maximal 

clique in Pa is a valid meta-path, identifying all of which is NP-complete [97]. It also 

suggests our first bound, namely, that the size of the largest clique in Pa is the size of the 

largest valid meta-path - can this bound be improved? Suppose, in the extremal case, 

there is a path p which traverses through all the AND-Joins; clearly, in a correct model 

this path would require the maximum number of paths to be included along with it, to 

create a valid meta-path. The maximum number of paths thus required will be equal to 

the sum of the in-degrees of all the AND-Joins in p, which would be at most 6AJ * aJ, 

where 6AJ is the maximum in-degree of any of the aJ AND-Joins. Thus, the size of the 

largest valid meta-path in a control flow model (and the size of the largest clique in Pa) 

is at most 6AJ * aJ. 

The ~ part of the proof presents some clues on how to identify if the model is incorrect 

or otherwise, namely, that if a maximal clique is an invalid meta-path, then the control 

flow model is incorrect. In any case, establishing that the control flow model is correct 

is equivalent to finding all the maximal cliques in Pa, thereby making it NP-complete -

so why study this problem at all? 

Let us analyze the steps that would be needed for solving the control flow problem. 

Finding all the Paths 

The first step is to find the set P of all directed acyclic paths from S to F - this is 

readily done with a standard depth-first search routine (Algorithm 1); the special case of 

handling cycles in the control flow model is discussed in Section 3.2.5. The time taken 

for finding a single path is 0(/E/), and as we will see in Section 3.2.6, many of our results 

will depend on /Pl, the number of S-F paths. However, there is no closed-form expres­

sion for estimating /Pl as a function of the degree distribution (6x8 , 6A8 ) and other 
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parameters, namely, X8 , XJ, as, aJ, of the control flow model. Moreover, in the worst-case, 

the number of S-F paths can be exponential, as is for the extremal example of Figure 3.3. 

Algorithm 1: Path Enumeration 
Input: The current-node in the search tree, the path traversed thus far, and 
the goal. 
Output: The set P of all paths from S to F. 
PATHENUM( currnode, currpath, goal) 
(1) if currnode = goal 
(2) PATHS t- PATHS U {currpath} 
(3) else 
( 4) foreach x E N+ ( currnode) 
(5) if x fj. currpath 
(6) PATHENUM(x, currpath U { x }, goal) 

Figure 3.3: A Control Flow Model with the Maximum Number of S-F Paths 

Construction of the Meta-Paths 

Now that all paths have been found, the maximum number of potentially valid meta­

paths would be the power set P(P) with size 2IPI - all of these possibilities would have 

to be checked to identify which one is, and which one is not a valid meta-path, which 

is exponential in the worst case. However, the problem is not entirely without hope. 
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Observe that if Vi_ and Vi are two valid meta-paths, is it possible that Vi_ c Vi? - No, 

since that would contradict the maximality of the clique that Vi_ represents in Pa. Thus, 

there are certain subtleties unique to the character of the control flow problem that can, 

and have been exploited, in developing MPSEARCH, a recursive backtracking approach for 

identifying all the valid meta-paths. 

3.2.3 Construction of Meta-Paths 

The MPSEARCH procedure is a recursive, backtracking algorithm that identifies all valid 

meta-paths from a depth-first search tree of all meta-paths. To better motivate the 

discussion that follows, consider a few questions - what is a valid meta-path, or more 

simply, why isn't a path sufficient to represent the process's execution? Suppose there 

is a path p with a non-NULL counter set Gp. The presence of counters in p implies that 

there is at least one AND-Split ( or -Join) occurring in p, which indicates that there are 

one/more parallel threads created (or merged) along with pin the process's execution. 

The collective representation of p, along with all of its parallel threads, represents a trace 

of the sequence of tasks that an instance of the process might progress through - this 

collective representation is what is defined as a valid meta-path. The idea behind the 

creation of meta-paths originated from the realization that in a correct process execution, 

all parallel threads created with an AND-Split are subsequently merged at an AND-Join. 

More intuitively, the process begins with no counters from S and ends with no counters 

upon reaching F - this is the principle that has been formalized as the KORRECTNESS 

algorithm, an informal description of which is presented next. 

In the example of Figure 3.1, PATH 1, i.e., p1 = (S, A1 , T1 , A3 , F), is not a valid meta­

path in itself, since it carries the counters {(1, 2), (3, 3)}, with (1, 2) implying that it 

is one of the two threads that originate at A1 , and (3, 3) implying that it is one of the 

three threads that merge at A3 . Consequently, some more paths have to be included 
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along with p1 to account for the missing threads; let M = {p1} be the current meta-path, 

and CM = {(1, 2), (3, 3)} be its counter-set. Any other path that is included with p1 

must necessarily pass through some AND-Join present in p1 . To this end, if there were 

no AND-Joins in p1 , and yet if it carries some counter, say (i,j), then this would be an 

invalid meta-path, since the sub-thread created at AND-Split Ai could never be merged 

with any other thread due to the absence of AND-Joins along the path. Clearly, this 

intuitive approach presents the germ of an idea for diagnostic checking to help identify 

the source of control flow errors, if any - this is further elaborated in Section 3.2. 7. 

Is it permissive to include PATH 3 in M? Yes, since ViolateXOR(p1,p3 ) = FALSE, and 

there is an AND-Join present in p1 . Is it worthwhile adding p3 to the current meta-path? 

Yes, since it carries counters that are present in the counter-set of our meta-path, and 

thus, the meta-path is now M = {p1,p3}. What is CM, the current counter-set of M? 

Note that when a new path Pi is added to a meta-path M, care must be taken to include 

only those counters that occur on edges not already traversed by one of the paths in­

cluded in M, to avoid double-counting of any counter(s) - this is the GETUSEFULCNTRS 

procedure. By this rule, if p3 is included in M, all of its counters can be appended to CM, 

since all of them occur on edges not already covered by the existing path in M, namely, 

p1 . Thus, the meta-path is now M = {p1 , p3} and CM = {(1, 2), (1, 2), (2, 2), (3, 3), 

(3, 3)}. 

Observe that there are two occurrences of the counter (1, 2) in CM - this confirms that 

both the threads that originated at A1 have been accounted for, and can be removed 

from all future consideration. Moreover, the GETUSEFULCNTRS procedure ensures that 

these counters will not be included again. Thus, if the number of occurrences of a counter 

(i,j) in CM is equal to j, they are removed from the counter-set - this is the REMOVE­

MATCHEDCOUNTERS procedure. By this rule, both occurrences of (1, 2) in CM are 

47 



removed, whereby, CM= {(2, 2), (3, 3), (3, 3)}. The meta-path is not valid yet - it still 

remains to account for (2, 2) and (3, 3). Consider the most recently added path, namely, 

p3 - any other path(s) to be included in the meta-path must also necessarily pass through 

any AND-Joins in p3 ; to this end, the reasoning used for including p3 can be repeated 

recursively, i.e., by looking at the AND-Joins in the last added path (p3 ). There is one 

AND-Join, namely, A3, in p3, and PathsThrough(A3) = {p1, P2, p3, p4}. Since p1 and 

p3 are already present in M, the only paths that merit consideration for inclusion in M 

are p2 and p4. 

As before, consider the question - is it permissive to include p4 in M? No, since 

ViolateXOR(p3,p4) = TRUE, or alternatively, (p3,p4) E Ex. More precisely, only 

paths that do not share a common XOR-Join or -Split, along different edges, with one of 

the paths already present in the meta-path can be chosen for inclusion. We can however, 

include p 2 in our meta-path, whereby M = {p1 , p 2 , p 3 }. Although CP2 = {(1, 2), (2, 2), 

(3, 3)}, the (1, 2) counter cannot be included since it occurs on an edge A1 --+ A2 that 

has already been covered by p3 - this is handled by the GETUSEFULCNTRS procedure. 

Now, CM = {(2, 2), (2, 2), (3, 3), (3, 3), (3, 3)}, and by an application of the REMOVE­

MATCHEDCOUNTERS procedure, it reduces to CM= 0. Thus, one valid meta-path for 

the control flow model of Figure 3.1 has been identified, namely, by accounting for all 

sub-threads that were created along the paths from S to F. The intuition described thus 

far has been formalized into a backtracking procedure, MPSEARCH (Algorithm 2), that 

can be used to generate all the meta-paths that require a particular path. To illustrate, 

the set of all valid meta-paths that include PATH 1, i.e., p1 , for the control-flow model 

of Figure 3.1, is generated by MPSEARCH(p1, {p1}, CpJ-

Line 1 begins the MPSEARCH procedure by removing all matched counters, following 

which, if the set Temp is empty, it follows that currmetapath is a valid meta-path, and 
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Algorithm 2: Meta-Path Enumeration 
Input: The last-added path, the current meta-path, and the current counter­
set. 
Output: The set of all valid meta-paths that can be generated from the current 
meta-path. 
MPSEARCH(lastaddedpath, currmetapath, currcounterset) 
(1) Temp+- REMQVEMATCHEDCOVNTERS(currcounterset) 
(2) if Temp = 0 
(3) # we have a valid meta-path - adjoin it to the set of valid meta-paths 
(4) ValidMetaPaths +- ValidMetaPaths U {currmetapath} 
(5) # include the paths in currmetapath in the set of paths covered 
(6) PathsCovered +- PathsCovered U currmetapath 
(7) # mark the last added path 
(8) PathsMarked +- PathsMarked U {lastaddedpath} 
(9) else 
(10) CurrentM etaPathlnvalid +- TRUE 
(11) foreach a E ANDJoinslnPath(lastaddedpath) 
(12) if Temp n CounterslnAN D( a) =/. 0 
(13) foreach p E PathsThrough(a) 
(14) if p ¢ currmetapath and p ¢ PathsMarked 
(15) if NoCOMMONXORJOINORSPLIT(p, currmetapath) 
(16) Temp+- Temp U GETUSEFULCNTRS(p, currmetapath) 
(17) CurrentM etaPathlnvalid +- F ALBE 
(18) MPSEARCH(p, currmetapath U {p}, Temp) 
(19) if CurrentMetaPathlnvalid 
(20) # The current meta-path is an invalid meta-path 
(21) InValMPath +- InValMPath U {{currmetapath}, {currcounterset}} 

is included with the set of valid meta-paths (line 4). Upon discovering a valid meta­

path, the lastaddedpath is also marked (line 8), as a way of remembering that all valid 

meta-paths that include it will be discovered in the current call to MPSEARCH, i.e., by 

exploring all branches leading out from lastaddedpath. Additionally, the paths in the 

set PathsM arked serve us well in that, should a marked path be encountered in ex­

ploring any other branch of the search tree, the search can be terminated, since any/ all 

valid meta-paths in that route would have already been discovered. The procedure No­

COMMONXORJOINORSPLIT(p, currmetapath) checks to see that ViolateXOR(·, ·) is 

FALSE for p and every other path in currmetapath. Additionally, if the search fails to 

progress along the search tree, currmetapath is included in the set of invalid meta-paths 

(line 21), to be used later for diagnostic checking (Section 3.2.7). The remainder of the 

procedure is self-explanatory, and is identical to the discussion presented earlier. 
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3.2.4 The Komplete Korrectness Algorithm 

The KORRECTNESS algorithm (Algorithm 3) is a backtracking algorithm for generating 

all valid meta-paths in the process model. It involves two steps - (i) generate all di­

rected paths from Start to Finish, and (ii) scan them one by one, calling in turn, the 

MPSEARCH routine, while taking care not to scan paths that have already been included 

in other meta-paths. After all the valid meta-paths have been identified, it only remains 

to check that all paths in P appear in at least one valid meta-path to ensure that the 

control flow model is correct (Corollary 3.1). 

Algorithm 3: The Korrectness Algorithm 
Input: The control-flow model G = (V, E) 
Output: The set ValidM etaPaths of all valid meta-paths 
KORRECTNESS( G) 
(1) # generate the set P of all Paths from S to F 
(2) PATHENUM(S, { S}, F) 
(3) # generate the set of all valid meta-paths 
(4) PathsCovered +-- (/J 

(5) foreach p E Paths 
(6) if p (/_ PathsCovered 
(7) PathsM arked +-- (/J 

(8) MPSEARCH(p, {p}, Gp) 

3.2.5 Resolving Cycles in the Control Flow Model 

The set P includes only directed acyclic paths from S to F; what if the control flow 

model was not acyclic? A simple test to check if the model is cyclic or otherwise is to 

check if v \ upEP V(p) = 0, i.e., do the paths in P cover all the vertices of the set V? 

This gives rise to two cases. 

Case 1: V \ upEP V(p) = 0 

The fact that the paths in P include all vertices in V does not exclude the presence of 

cycles - four such possibilities are presented in Table 3.1. 
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.Table 3.1: Control Flow Sub-models with Empty Cycles 

Sub-models Discussion 

(a) This sub-model is correct. 

(b) This sub-model is incorrect, since it 
violates the requirement of unique ter­
mination. 

( c and d) These sub-models are incor­
rect, since they model concurrency in 
feedback which makes it impossible for 
control flow to proceed. 

In sub-model (a) of Table 3.1, the XOR-pairs model recursion in the flow of control, 

which must eventually move ahead from the second XOR - to this end, it is immaterial 

if control flow is looped more than once within the model, and such a model can be 

analyzed with the KORRECTNESS algorithm. However, should iteration be misused as in 

sub-models (b)-(d) of Table 3.1, the algorithm will correctly identify the error, since the 

counters generated at the AND-Joins/Splits will never be accounted for by any path in 

P. Consequently, the KORRECTNESS algorithm can be used without any further checks 

for the case v \ upEP V(p) = 0. 

Case 2: V \ upEP V(p) =I- 0 

Let V* = V \ upEP V(p). The following two rules can be used to immediately identify if 

a control flow model with cycles is incorrect. 

Rule 1 :3a E As 3 N+(a) n V* =I- 0 =} The control flow model is incorrect. The fifth 

example in Table 1.2 illustrates this rule, which essentially means that should an 

AND-Split lead control flow away into a cycle that does not reach toward F, then 
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the model is incorrect , since the counter created by the AND-Split will never be 

accounted for, in any meta-path. 

Rule 2 :la E AJ 3 N-( a) n V* =/- 0 =:, The control flow model is incorrect. The situation 

tackled by this rule is similar to that created in sub-models ( c) and ( d) of Table 

3.1 , and essentially implies that should an AND-Join receive control flow from an 

element that is not part of a directed path from S to F , it becomes a situation 

wherein control flow will not proceed any further. 

Now, there are four possibilities, as regards the content of V*, namely - (i) V* ~ T , i.e., 

the elements not covered by P are all tasks with just sequential flow of control among 

them, (ii) V* ~ (T UXsUXJ) , i.e. , the elements not covered include just choice and/or 

sequential flow of control among them, (iii) V* n AJ =I- 0, and/or (iv) V* n As =I- 0. Both 

(i) and (ii) can be easily eliminated by applying rules 1 and 2; it is (iii) and (iv) that is 

more interesting. 

The Set V \ V * 

The Set v • 

Figure 3.4: Connectivity between Vertices in V* and V \ V* 

By definition, the control flow model is a single connected component, and so, the ele­

ments in V* must be connected to the vertices in V \ V* at either XOR/ AND logical 

operands (labeled in Figure 3.4 with???). If they were connected at an AND-Join/Split, 

then rules 1 and 2 will eliminate the model as incorrect. Consequently, the only cases 

that need to be considered are those in which the elements in V* are c9nnected to the 

main model via XOR operands - this will be referred to as the XOR Rule. 
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The Set V \ v • 

--~ :::::: )E)j- -- -=e--
An AND.Join that is part of an internal A dead AND.Join 
concurrent path 

Figure 3.5: Control Flow Sub-model Possibilit ies for the Case V* n AJ =/. 0 

Consider cases (iii) and (iv) presented above. If v• n AJ =/. 0, then there are only two 

possible ways that an AND-Join may occur in V*. Figure 3.5 illustrates these two pos-

sibilities, namely, an AND-Join is dead and will never get activated, or is part of an 

internal con current path. If the AND-Join is dead , it doesn 't affect the KORRECTNESS 

algorithm, but it still remains to ident ify that it is dead; if it is part of an internal con-

current path, then V* n As =/. 0, or else the model would be incorrect, which leads us to 

(iv) above. Note that the operand labeled ??? in Figure 3.5 may either be an XOR (in 

which case it would be incorrect) , or an AND (which would be (iv) again). 

Let P{x,y} be the set of all directed, acyclic paths from vertex x to vertex y , and let 

V(P{x,y}) be the set of vertices covered by these paths. If V* n As =/. 0, then the 

following rules can be used to (i) identify dead AND-Joins, and (ii) eliminate incorrect 

models. 

Rule 3 3x E AJ n V* , {y,z} E Xs \ V * 3 (IP{y,x} I ~ 1) A (IP{z,x}I ~ 1) A (IP{y,x} I =/. 

IP{ z ,x} I) =} the AND-Join x is dead. This essentially means that if there are two 

XOR-Splits {y, z} E V \ V * which have different paths leading into a common 

AND-Join x E V *, then the AND-Join is dead, as is illustrated in Figure 3.5. 

Consider case (iv): Let x E As nV* ~nd y E XJ \ V *). If IP{x,y} I = 0, then the XOR-Join 

does not lie on a direct path from x, and can be ignored. If IP{x,y} I = 1, then the control 

flow model is incorrect, since there are at least two threads created at AND-Split x, and 
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The Set V \ v• 

Multiple paths from A 9 to X 6 

Figure 3.6: Illustration of Multiple Paths from an AND-Split to an XOR-Join 

they must all be merged before they reach the main threads in V \ V* , or else they will 

never be merged (by the XOR Rule). If the multiple threads created at x were merged 

at say, node z, then there would be (at least) one path from z toy and two/more paths 

from x to z, each of which can be combined to create two/more x - z -y paths, thereby 

contradicting the correctness of a model with IP{x,y}I = 1. If IP{x,y} I > 1, then these mul­

t iple paths may occur as a result of internal concurrent paths, as is illustrated in Figure 

3.5, or multiple distinct paths as is illustrated in Figure 3.6, the latter being incorrect 

- this can be easily solved by applying the KORRECTNESS algorithm to the sub-model 

beginning with AND-Split x and ending with XOR-Join y, and using P{x,y} as the set of 

paths from which the valid meta-paths will be constructed. If no valid meta-paths are 

found, as would be the case for the example in Figure 3.6, then the model is correctly 

identified as incorrect. 

Rules 1 and 2 can both be evaluated in linear time, and Rule 3 can be evaluated in O(IEI), 

namely, the run-time complexity for generating P{x,y} · The last rule (case (iv)), how­

ever, requires the same run-time complexity as that of the backtracking KORRECTNESS 

algorithm, which can be exponential in the worst-case. 
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3.2.6 Complexity Analysis 

The KORRECTNESS algorithm identifies all valid (and invalid) meta-paths by selectively 

enumerating and exploring combinations of the paths from S to F. In the worst case, 

the algorithm could end up scanning all 2IPI possible combinations of paths to identify 

even one valid meta-path - this could explode further if the number of valid meta-paths 

is again large. Note, however, that it is not entirely correct to say that all 2IPI possible 

combinations of paths will be explored, without taking into account the structure of 

the control flow model, namely, the number of AND-Joins, the distribution of the in­

degrees of the AND-Joins, the number of AND- and XOR-Splits, etc. - these issues are 

summarized in the following questions: 

• What is the expected number of valid meta-paths in any control flow model? 

• What is the expected time it will take to identify a single valid meta-path? 

It is clear that the KORRECTNESS algorithm is exponential in the worst case. However, 

what about on average? 

Establishing the Average Number of Valid Meta-Paths 

Suppose a control flow model with 20 nodes is randomly drawn - it is possible to estimate 

the average number of valid meta-paths in such a model? What if the model has 20,000 

nodes? It turns out that, on average, the number of valid meta-paths to be expected in 

any control flow model is at most 9. Also, if the number of paths from S to F is say, 

50, then, the expected number of valid meta-paths in such a control flow model is only 

about 4.6. 

Let Pn be the maximum number of pa_ths possible between S and F in a control flow 

model with n vertices, and call this set Pmax = {p1,P2, ... ,PPn}. The set of all possible 

paths that can be discovered for a given control flow model is the power set P(Pmax) with 
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size 2Pn. Let Av ( k) be the average number of valid meta-paths that can be discovered 

among k paths. Consequently, Vn, the average number of valid meta-paths in a control 

flow model with n vertices, averaged over all possible combinations of paths, is: 

(3.1) 

Equation 3.1 essentially sums over the number of ways of choosing k paths from a maxi­

mum of Pn, multiplied by Av(k), the average number of valid meta-paths among k paths 

(k = 0, 1, ... , Pn), and we have used the identity Lf:,0 (~n) = 2Pn. Consider Av(k) - it 

was noted earlier in Section 3.2.1 that the maximum number of valid meta-paths can-

not exceed the the number of independent sets in Xe, the XOR-representation graph. 

Consequently, the average number of valid meta-paths among k paths cannot exceed the 

average number of independent sets in the XOR-representation graph with k vertices. 

The exact formula for h, the average number of independent sets in a graph of order k 

is ([97], §5.6) 

1- -t, G)r<.-1>1, (3.2) 

substituting for which, in equation 3.1, and using the relation Av(k) ::; h, we get 

(3.3) 

where the last inequality has been obtained by just manipulating the binomial coeffi­

cients in the inner sum using the identities (~n) (;) = (Pn-k~(~-r)!r! :S; (P;r (~n_7), and 

~Pn (Pn -r) = 2Pn -r. 
wk=r k-r 
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Now, the series represented in equation 3.3 is a unimodal sequence, i.e., the terms tr 

increase up to a certain value rm and then decrease thereon, whereby it follows that the 

sum of the sequence is at most ( Pn + 1) times the largest element in the sequence. To 

show that the sequence is unimodal, consider the ratio of two successive terms, tk/tk-l, 

which evaluates to Pn/(k2k). It is immediately obvious that for k ~ log2 (Pn), the ratio 

is less than 1, assuming Pn ~ 2. To better estimate rm, it remains to solve for k in 

k 2k = Pn, which can be rewritten as 

(k · ln(2)) · ek·ln2 = Pn · ln(2) (3.4) 

which, incidentally, is in the standard form for the Lambert's W function. The Lam­

bert's W function [14, 20] is evaluated as the value of W(x) that satisfies the equation 

W(x)ew(x) = x, and is usually approximated as:1 

{ 
0.665 · (1 + 0.0195 · ln(x + 1)) · ln(x + 1) + 0.04 

W(x) ~ 
ln(x - 4) - (1 - ln(x)) · ln(ln(x)) 

0::; X::; 500 

X > 500 

Additionally, symbolic processing packages like Maple readily compute the values of 

the Lambert's function using in-built recurrence relations [13, 20]. Comparing with 

the standard form of the Lambert's W function, it follows that the value of k · ln(2) 

that satisfies equation 3.4 is W(Pn · ln(2)). Thus, the value at which the sequence in 

equation 3.3 attains its maximum is rm = W(Pn · ln(2))/ln(2). Since the sum of the 

series in equation 3.3 cannot exceed (Pn + 1) times the value at trm, it follows that 

(3.5) 

The final result is obtained by using Sterling's approximation [97], i.e., n! ~ (e/nr, in 

equation 3.5 to prove that, on average, the number of valid meta-paths in a control flow 

model on n vertices is 

V: < _( P,_n_+_l_)_· _er~m 
n - 2(rm(rm+l)/2) 

1http://www.desy.de/-t00fri/qcdins/texhtml/lambertw/ 

57 

(3.6) 



Now, equation 3.6 is interesting in its own right. A plot of the value of the estimated 

upper bound for Vn for Pn = {1, 2, ... , 300} is shown in Figure 3.7. Figure 3.7 offers 

some interesting insights, namely, that in any control flow model, drawn at random, the 

average number of valid meta-paths does not exceed 9, which shall be referred to as the 

threshold of valid meta-paths, and moreover, as the number of paths from S to F in-

creases, the value of Vn converges to zero!! 

Threshold of Valid Meta-Paths 
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Number of Paths from Start to Finish 

Figure 3.7: Expected Number of Valid Meta-Paths in a Random Control Flow Model 

Consider equation 3.6 ~ it reveals that, irrespective of the order of the control flow model 

n, the expected number of valid meta-paths is bounded, and is a function only of the 

number of paths from S to F. Suppose there are 237 paths from S to F. Equation 3.6 

and Figure 3. 7 confirm our intuition that in a model of such complexity, it is very likely 

that there are only a limited number of valid meta-paths. Now, what about the run-time 

complexity? More specifically, what is the expected time it takes to identify one valid 

meta-path? 
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Estimating the Run-time for the Korrectness Algorithm 

The main sets of notation that would be required are briefly summarized - P is the 

set of all S-F paths found in a control flow model on IVI vertices, with IEI edges, xs 

XOR-Splits, XJ XOR-Joins, as AND-Splits, and aJ AND-Joins. The maximum and 

minimum in-degree (resp., out-degree) of the XOR/ AND-Joins (resp., -Splits) will be de-

noted by 6.* and 8*, where { *} represents the logical operand under consideration, and 

6.A = max(6.As, 6.A.1). Note that the maximum size of a valid meta-path is 6.AJ * aJ 

(refer Section 3.2.2). It is also assumed that the three representation graphs Xe, Ac, 

and Pa have been constructed - this would require a run time of 8(IPl 2), to identify all 

the (l;I) possible edges in the graphs. Consequently, checking conditions like NoCoM­

MONXORJOINORSPLIT(pi, Pi) is just equivalent to checking if the corresponding edge 

is present (or absent) in Xe. A step-by-step analysis of Algorithm 2 is presented next. 

Line 1: Temp+- REMOVEMATCHEDCOUNTERS(currcounterset) 

Since counters are created only on edges incident with AND-Joins and -Splits, the maxi­

mum number of counters possible is 6.As *as+ 6.A.1 * aJ = 0(6.A)· Thus the maximum 

time required for this step of the algorithm is 0(6.A) - run through currcounterset once 

tracking the occurrence count of each counter, and run through it again, removing the 

matched counters. 

Line 11: foreach a E ANDJoinslnPath(lastaddedpath) 

Let us condition on the number of AND-Joins in the lastaddedpath, which corresponds to 

the number of times this loop will be executed. The probability that the lastaddedpath 

contains any AND-Join is the probability that it is one of the at least 8A.1 paths through 

the AND-Join, which is 8A.1/IPI. Thus, the probability that the lastaddedpath contains 

k AND-Joins is~(~) (~~.1 )· 

59 



Line 12: if Temp n CounterslnAN D(a) -/= 0 

Suppose the number of paths in currmetapath isl. Consider any path in currmetapath. 

The probability that it contains AND-Join a is the probability that it is one of the at 

least OAJ paths through a. Since there are l paths in currmetapath, the probability that 

at least one of them includes AND-Join a is 2'.: l ~it. 
Line 13: foreach p E PathsThrough(a) 

This loop will be executed at least o AJ times. 

Line 14: if p rt currmetapath and p rt PathsM arked 

This probability shall be approximated by q1, where l is the number of paths~in currmetapath. 

Line 15: if NoCOMMONXORJOINORSPLIT(p, currmetapath) 

The probability that p and some path p* E currmetapath share a common XOR-Join or 

-Split is at most x 8 / ('\s) + x 1 / ("~J), where 1/ ("~J) is the maximum probability that p 

and p* share two of the at least OxJ paths through a particular XOR-Join, and there are 

x1 choices for the XOR-Join (the argument is similar for XOR-Splits). Since there are l 

choices for p*, the pro~ability that p do~s not sh(are a c:;mon ~~R)-Join or -Split with 

any one of the l paths m currmetapath 1s 2'.: l * 1 - ("~s) - ("~J) . 

Line 16: Temp - Temp U GETUSEFULCNTRS(p, currmetapath). 

This step would require a run time of O(IEI) for checking the counters in each path, and 

consequently a total of l * O(IEI) for all paths in curremetapath, which is again O(IEI). 

60 



The calculations for the running time of the MPSEARCH procedure can now be sum-

marized. Let f(l) be the running time required by the procedure when the size of 

currmetapath isl. Based on the observations above, the running time can be written as 

Equation 3.7 is quite unwieldy. To simplify it further - in a worst case scenario - let us 

suppose that the probability that all the if conditions are satisfied is 1. In such a case, 

equation 3. 7 can be rewritten into a more comforting first-order recurrence as follows. 

(3.8) 

where we have used the identity I::;=0 k (;) = n * 2n-1 . The solution for the first-order 

recurrence of equation 3.8 is f(l) = O(c + E)1, where c = 2 I~~ 8 2 , for every E > 0 
aJ. aJ • aJ 

([97], Theorem 1.4.1). 

Now, f(l) is the time spent in evaluating all branches in the search tree at a level where 

the number of paths in currmetapath is l. In the worst case, the MPSEARCH proce­

dure may end up exploring all branches at all levels, namely, for l = {1, 2, ... , IPI - 1}, 

whereby, the absolute worst case running time for finding even one single valid meta-path 

is estimated as I::1 f(l) = O(c + E)IPI. 

Clearly, this is the worst-case scenario for the time it takes to complete one run through 

the MPSEARCH procedure, and correspondingly, to identify one valid meta-path. Since 

the expected number of meta-paths is bounded (Section 3.2.6), the expected running 

time for finding all valid meta-paths is also O(c + E)IPI. Thus, the total running time for 

the KORRECTNESS algorithm is O(IEI) + 8(IPl 2 ) + O(c + E)IPI. 
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Scope for Improvement 

There are two main avenues for improving both the design and the analysis of the Ko-

RRECTNESS algorithm, namely: 

· • Is it possible to design heuristics to "speed-up" the search process? Will it improve 

the speed of the MPSEARCH procedure if it is begun with a path that has the 

maximum number of AND-Joins? Or, is it possible to pre-process and sort the set 

of paths in P taking into account the specific structure of the control flow model, 

namely, the in- and out-degree distribution of the logical operands? Also, none of 

the steps in Algorithm 2 make any choices based on the size of currmetapath - can 

this information be used to influence the search time? 

• The worst case analysis presented in Section 3.2.6 is quite crude, and does not 

exploit attributes specific to the structure of the control flow model which will 

definitely impact the traversal of the search tree. There is much scope for improving 

the running-time bound for J(l). More specifically, is it possible to estimate the 

probability qi that was assumed for line 14 of Algorithm 2? Is it possible to derive 

a better estimate of the expected running time of the algorithm to show that, 

perhaps, it is usually fast? 

3.2. 7 Diagnostic Checking of the Control Flow Model 

This section will discuss the use of the KORRECTNESS algorithm for identifying the source 

of control flow errors in a business process model. Consider the incorrect process model 

of Figure 3.8. 

The results of the KORRECTNESS algorithm (implemented in PYTHON) are as follows: 

Paths There are 7 paths from Start to Finish. The paths from Start to Finish are: 

'path2': [ 's' ' 'Ai' , C Xi' ' 'Ti' , 'X6' , 'A2' , 'X7' , 'F' J ' 
'path3': [ 's' ' 'Ai', 'Xi' , 'T2' , 'X5' , 'A2', 'X7', 'F' J ' 
'path!': [ 's' ' 'Ai', 'X2' , 'T4' , 'X7', 'F' J ' 
'path6': [ 's' ' 'Ai' , 'X2', 'T3' , 'X4' , 'X5', 'A2', 'X7', 'F' J , 
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Figure 3.8: Incorrect Process Model - An Example 

'path7': ['S', 'A1', 'X2', 'T3', 'X4', 'X6', 'A2', 'X7', 'F'], 

'path4': ['S', 'A1', 'X3', 'T5', 'X6', 'A2', 'X7', 'F'], 

'path5': ['S', 'A1', 'X3', 'T6', 'X5', 'A2', 'X7', 'F'] 

Counter-Sets The counters in all the paths, including the edge that the counter occurs 

on, are: 

'path2' : [ [ ( 'A1' , 'X1') , (1, 3)], [ ( 'X6' , 'A2') , (2, 2)]], 

'path3' : [ [ ( 'A1' , 'X1') , (1, 3)], [ ( 'X5' , 'A2') , (2, 2)]], 

'path1': [[('A1', 'X2'), (1, 3)]], 

'path6': [[(' Ai', 'X2'), (1, 3)], [('X5', 'A2'), (2, 2)]], 

'path7': [[('A1', 'X2'), (1, 3)], [('X6', 'A2'L (2, 2)]], 

'path4' : [ [ ( 'A1' , 'X3') , (1, 3)], [ ( 'X6' , 'A2') , (2, 2)]], 

'path5': [[('A1', 'X3'), (1, 3)], [('X5', 'A2'), (2, 2)]] 

Predictably, the set of valid meta-paths is empty. The list InValMPath of all invalid 

meta-paths is: 

Invalid Meta-paths The invalid meta-path results, i.e., (set of paths, counter-set) are: 

1: [[-'path2', 'path6'], [(1, 3), (1, 3)]], 

2: [['path3', 'path7'], [(1, 3), (1, 3)]], 

3: [['path1'], [(1, 3)]], 

4: [['path4', 'path3'], [(1, 3), (1, 3)]], 

5: [['path5', 'path2'], [(1, 3), (1, 3)]] 
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None of the paths occur in any valid meta-path - let us investigate further. 

• PATH 1 does not cover any AND-Joins, and so, the (1, 3) counter that it carries 

can never be removed. 

• All the other meta-paths are short of just one more (1, 3) counter - now, why did 

this occur? Observe that each meta-path includes both the XOR-Joins, namely, 

X5 and X 6 • Since each XOR-Join requires only one flow through its incoming arcs, 

other paths through these XOR-Joins cannot be included. The only other path is 

PATH 1, which, however, cannot be added since it doesn't cover any AND-Joins. 

Thus, a wealth of information can be extracted simply by examining the final meta-path 

results and by tracking the counters that remain unaccounted for, in each incomplete 

meta-path, to provide precise feedback about the source of the control flow error(s). 

3.3 Summary 

This chapter presented the KORRECTNESS algorithm, a graph-theoretic approach to ad­

dressing correctness issues in control-flow models, without any restriction on the form 

or structure of the business process. The algorithm has been implemented in MAPS, a 

computerised environment for Modeling and Analysis of Process modelS, the details of 

which are presented in Chapter 5. 

Additionally, it has been shown that, on average, the number of valid meta-paths in a 

random control-flow model does not exceed 9. From an implementation standpoint, this 

is very satisfying, since it would imply that the enumerative approach of the KORRECT­

NESS algorithm does not fall prey to the exponential growth in problem complexity, but 

instead, is bounded in its average run-time complexity. 
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Chapter 4 

The Resource-Sharing Problem 

Chapter Overview 

This chapter outlines a collection of novel techniques that exploit the control flow model to 

gain insight into the structure and behavior of a process. Several simple rules are derived 

to help the designer compute minimal resource requirements to maximize parallelism 

within the process, and also to identify design errors that could lead to deadlocks either 

within a single-instance, or across multiple-instances of a process. 

4.1 Introduction & Background 

The basics of the resource-sharing problem were introduced in Section 1.4.1- the resource 

requirements for a business process may be specified as follows: 

• R = {R1 , R2 , ... , Rr} is the set of all resources. VR ER, Rf = number of units 

available for resource R. 

• \:/Ri E R, Rfap : T ---+ N = {O, 1, ... } is a functional that specifies the number of 

units of resource R captured by each task, where T is the set of all tasks. 

• V Ri E R, Rfel : T ---+ N is a functional that specifies the number of units of resource 

R released by each task. 
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The verification requirements of correct resource-sharing are: 

Single-Instance Verification is to determine if the sharing of common resources among 

tasks within an instance of a process could lead to deadlock. 

Multiple-Instance Verification is to determine if the sharing of common resources 

among various instances of the process could lead to deadlock. 

The principal challenge associated with both problems above is to identify potential 

circular-wait (CW) conditions that could arise in the process - these are determined 

primarily by the logic of the process, i.e., the control flow model. It is assumed that the 

control flow model is correct; consequently, the focus of this chapter is to further study 

the control flow model, coupled with the additional information contained in Rf ap, Rfel, 

etc., to identify potential deadlock situations, as were illustrated in Table 1.3. 

4.2 The Control Flow Model Revisited 

The control flow model was formalized in Chapter 3 - to summarize, it is a directed 

graph representation of tasks and logical operands (AND, XOR), which taken together, 

represent the logic and ordering of the process. The main sets of notation that would 

be required are V, T, P, and M, representing respectively, the sets of vertices, tasks, 

the S - F paths, and the set of all valid meta-paths identified by the KORRECTNESS 

algorithm. Additionally, Vm E M, V(m) ~ V is the set of vertices covered by all the 

paths included in the meta-path m - the reader is referred to Section 3.1 for notation 

not covered here. 

Consider the control flow model of Figure 3.1, repeated in Figure 4.1. Observe that 

the control flow model lends itself naturally to being partitioned into sets of concurrent 

elements ( tasks and logical operands), as illustrated in Figure 4.1. 
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Concurrent Set Con0 

Con, Con2 Con3 Con4 Con7 

Figure 4.1: Partitioning the Control Flow Model - An Example 

Figure 4.1 highlights many interesting ideas - the control flow model has been partitioned 

into seven disjoint sets of concurrent elements. The concurrent sets are interpreted thus: 

Can2 = {T1, A2 } implies that both T1 and A2 can be activated simultaneously within a 

single instance of the process. Additionally, the index 2 in Can2 suggests the order in 

which its elements are arrived at , beginning at Can0 = {S}. The reader would no doubt 

wonder, among other questions, why partition the control flow model? 

The objective of partitioning the control flow model into sets of concurrent tasks is to 

explicitly order the tasks, namely, by assigning a functional value f : T - N such that 

for any two tasks ti, tj , f(ti) < (= ) f(tj) implies that task ti precedes (is concurrently 

enabled with) task tj in the execution of a process. Such an ordering would aid in 

immediate investigation of potential circular-wait conditions t hat could arise between 

tasks t hat have t he same f ( ·) value - this is elaborated in Section 4.3. Once the set 

Con = {Gani} of concurrent elements have been identified, assigning the functional f(·) 

is trivial, namely, Vt E Ganin T , f (t) = i . 
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The partitioning of the control flow model into the concurrent sets { Conj is based on a 

very simple idea, namely, for an element x to belong to Gani, all of its incoming elements, 

i.e., N-(x) must belong in LJk<i Conk. This is formalized in Algorithm 4. 

Algorithm 4: The Partition Algorithm 
Input: The control-flow model G = (V, E) 
Output: The set {Gani} of all concurrent elements, the function f: T-+ N 
PARTITION(G) 
(1) # Partition the control flow model into concurrent sets 
(2) Con0 f- {S} # Initialize the algorithm 
(3) if- 1; Temp f- 0 
(4) # Repeat until the Finish node is reached 
(5) while Con;_1 -=/= { F} 
(6) Con; f- 0 # Initialize the current set 
(7) # Create a set Temp of all elements covered thus far 
(8) Temp f- Temp U Con;-1 
(9) # For each element x in the last concurrent set 
(10) foreach x E Con;-1 
(11) # For each new vertex y leading out from x 
(12) foreach y E N+(x) \ Temp 
(13) # If all of y's input vertices are present in Temp, include in Con; 
(14) if N-(y) ~ Temp 
(15) Con; f- Con; U {y} 
(16) # Assign the functional f : T-+ N 
(17) foreach t E Con; n T 
(18) J(t) f- i 
( 19) i f- i + 1 # Increment the set index 

The PARTITION procedure (Algorithm 4) is quite self-explanatory. Lines 2 and 3 initialize 

the algorithm by setting Con0 = {S}. The loop in line 5 repeats until the Finish node is 

reached, and begins by creating a new empty set, i.e., Gani= 0 (line 7). Line 8 appends 

the previously discovered concurrent set, Coni-l, to the set Temp of all elements covered 

thus far. Subsequently, for each vertex x in the most recent concurrent set Coni-l (loop 

in line 10), it remains to check that, for each new (i.e., not included in other concurrent 

sets) output vertex y of x (loop in line 12), that all of y's input vertices are present in one 

of the previously discovered concurrent sets (line 14), for it to merit inclusion in Gani 

(line 15). Lines 17 and 18 assign the functional f : T -, N by assigning the index i to 

all tasks in Gani, i.e., Vt E Ganin T, f(t) = i. 
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The run-time complexity of the PARTITION procedure is O(IV/ 2 ) - lines 5 and 10 are 

executed at most /V/ times, and line 12 is executed at most max{.6.As, .6x5 } times. The 

partitioning of the control flow model was inspired by a similar concept presented in [89]. 

The { Gani} partitions need to be understood as purely mathematical conveniences ob­

tained from the control flow graph G, minus the actual interpretation of the elements 

contained within. To see why, consider the set of concurrent elements in Figure 4.1; 

Gon4 = {n, T4} is especially interesting, since it implies that both T3 and T4 can be 

enabled simultaneously, which is impossible since they are activated by a common XOR­

Split, X 1 ; this would also be clarified by examining the set of valid meta-paths M -

observe that both T3 and T4 do not occur together in any of the valid meta-paths, 

i.e., ~m E M 3 {T3 , T4 } ~ V(m). This is clarified thus: for each valid meta-path 

m E M, define Gonr = Gani n V(m) to be the concurrent set relevant to m, and 

ConlV(m) = {Gonr} to be the set of concurrent sets with vertices restricted to V(m). 

However, note that tasks that have the same J(-) values and occur in the same valid 

meta-path may not be truly concurrent - they may need to be executed in some partial 

sequence, as constrained by the availability of resources. To illustrate, suppose R! = 1, 

f(~) = f(Tj), and both require resource Ra; clearly, both ~ and Tj cannot occur 

concurrently ( assuming that they are present in the same valid meta-path) - one must 

precede the other. But, for each valid meta-path m, { Gonr} reveals the sets of truly 

concurrent elements that the process designer envisioned for the process; consequently, 

for the benefits of concurrency to be fully realized, it only remains to ensure that for 

each valid meta-path m, the number of available resources is adequate to ensure full 

parallelism for all tasks in any concurrent set Gonr. This, and other considerations, are 

more thoroughly explored in the sections that follow. 
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4.3 The Resource-Sharing Problem: Some Ideas 

The design of a business process minimally requires the specification of the process's 

logic, and the specifics of resource requirements by the constituent tasks. Additional 

details like input-output requirements, infrastructure support, activity durations, etc., 

while necessary for completing the process's description, are not essential to verifying 

the correctness of a process's design. As illustrated in Table 1.3, the design problems 

that may arise from resource-allocation can be categorized into one of: 

Conservation of Resources To check that the number of times a resource is captured 

is equal to the number of times it is released. This is enforced by verifying that 

VRi ER, Vm EM 

tEV(m)nT tEV(m)nT 

This rule essentially checks to see that in each valid meta-path, the number of times 

each resource is captured is equal to the number of times it is released, i.e., a simple 

check for conservation of resources. 

Release-before-Capture Improperly specified process definitions wherein resource units 

are released before they are captured. This is enforced by verifying that 

Rfap(ta) + L [Rfap(t) - R~1(t)] ~ Rfel(ta) 
\ltEV(m)nT:/(t)</(t,.) 

This rule essentially checks to see that in each valid meta-path, the number of units 

of a particular resource that are being "held" by the process is greater than or equal 

to the number of units that are being released by a particular task. 

Inadequate Capacity The specified resource capacity {Rf} is inadequate for satisfying 

the resource requirements of a single instance of the process. 
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Circular-Wait The most important and the least evident problem of all, wherein two or 

more tasks capture a set of resources and end up waiting indefinitely for resources 

held by one another. 

In the context of resource-allocation, there are two main problems that the process de­

signer needs to be alerted to, namely, the obvious and the not-so-obvious. The obvious 

design errors include "conservation of resources" and "release-before-capture," both of 

which have been addressed above. The not-so-obvious problems include "inadequate ca­

pacity" and "circular-wait." Clearly, the circular-waits are the most severe design errors 

that could escape the attention of a process designer - the intuition derived from the par­

titions { Gani} will be used extensively in identifying potential circular-waits, especially 

across multiple instances of the process. 

4.4 Single-Instance Verification 

With regard to the execution of a single instance of a process, the circular-waits (CWs) 

are further classified into two categories, namely (i) CWs within a concurrent set, and (ii) 

CWs across concurrent sets. Both (i) and (ii) are illustrated, based on examples drawn 

from Table 1.3, in Figure 4.2 - the reader is referred to Table 1.3 for a detailed discussion 

on both examples. 

Identifying CWs within a concurrent set is relatively straightforward, and is discussed 

in Section 4.4.1. Circular-Waits across concurrent sets are also (easily?) identified by 

creating an equivalent Petri net representation of the control flow model, and exploring 

its reachability tree to verify that it is deadlock free, and is discussed in Section 4.4.2. 
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(a) CW within a concurrent set 

Con2 

R, 

Con4 

(b) CW across concurrent sets 

Figure 4.2: Two different classes of Circular-Wait (CW) problems 

4.4.1 Identifying Circular-Waits Within Concurrent Sets 

It would be useful to begin by summarizing the main question that is being addressed in 

this section - are there any potential circular-waits among a set of concurrent activities? 

Consider any concurrent set Con7I', for some valid meta-path m - if ICon7I' n Tl ::; 1, 

there is no concern about circular-waits within Con7I'. It is only in the case when there 

are two/more concurrent tasks that it remains to verify that circular-wait conditions are 

not existent. A few additional definitions that would be required before continuing the 

discussion are: 

• Vt ET, tCap ={~E R I R fap(t) =/=- O} is the set of resources captured by task t. 

• Vt E T , tRel = { ~ E RI Rfel ( t) =/=- 0} is the set of resources released by task t. 

The general rules presented next will be useful in detecting potential circular-waits within 

a concurrent set. The special case of when resource capture/release by a task is limited 

to one unit each is presented first , and is subsequently generalized to allow for multiple 

units of resource capture/release by a task. 
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Special Case: R[°ap,Rel}: T-+ {O, 1} and Rf:::; 1. In the special case when the re­

lease/capture of resources by a task is limited to one unit each, and unit resource 

availabilities, the following situation would lead to a circular-wait. If there is a 

meta-path with two concurrent tasks, say ti and tj, each requiring two or more 

common resources, then a deadlock would arise if both ti and tj capture some re­

sources and end up waiting for one another to relinquish their captured resources 

(refer example 1 in Table 1.3). 

More formally, 't/m E M, 't/Con": E Con1v(m) 3 JCon": n Tl > 1 

General Case: R[°ap, Rel} : T -+ N and Rf :2: O. In the general case when multiple units 

of a resource may be released/captured by a task, a circular-wait will occur if the 

combined request for any two common resources Rp and Rq by two concurrently 

enabled tasks exceeds the resource capacities Rf and Rf. 

Figure 4.3 illustrates an example, with Rf = Rf = 2. A circular-wait will occur 

if both T1 and T2 capture one unit each of R1 and R2 - more specifically, the 

combined request for both R1 and R2 by the two concurrently enabled tasks T1 and 

T2 is equal to three, and exceeds the resource capacity of two. 

More formally, 't/m EM, 't/Con": E ConlV(m) 3 JCon": n Tl> 1 

:3Rp, Rq ER, ti, tj E Conf n T 3 [{Rp, Rq} ~ tfap] A [{(Rp, Rq} ~ tfap]A 

[tfap(Rp) + tfap(Rp) :2: Rf] A [tfap(Rq) + tfap(Rq)J :2: Rf]=} Circular - Wait 

The rules presented above are just elementary count-based checks for identifying potential 

circular-waits within a concurrent set. Moreover, as will become evident in Section 4.5.2, 

these checks become redundant with the calculation of minimal resource requirements 

that guarantee the successful deadlock-free execution of a process, which, by definition, 

renders void the existence of any circular-wait conditions. 
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Figure 4.3: Circular-Wait Within A Concurrent Set - Another Example 

4.4.2 Identifying Circular-Waits Across Concurrent Sets 

The main question addressed in this section is - is it possible to detect potential circular­

waits that may occur among activities that are not necessarily simultaneously enabled? 

This question is readily answered by creating a Petri net representation of each valid 

meta-path of the control flow model, including the resource requirements, and studying 

its reachability tree to identify potential deadlock possibilities. Table 4.1 illustrates the 

Petri net mappings used to translate basic control flow elements into net constructions. 

It is assumed that the reader is familiar with the basics of Petri nets - a brief primer is 

presented in Appendix A. 

The equivalent Petri net construction for the example in Figure 4.2(b) is presented in 

Figure 4.4 - note that there is only one valid meta-path for this process. The tokens 

in the net are interpreted thus - (i) a single token in the place "Start" corresponds to 

the execution of a single instance, and (ii) the tokens in the places corresponding to the 

resources signify the number of units of the resource that are available, i.e., Rf. 

74 



Table 4.1: Petri Net Mappings of Basic Routing Constructs 

Logical Operand 

AND-Split: A point 
within the process model 
where a single thread of 
control splits into two or 
more threads to be exe­
cuted simultaneously. 

AND-Join: A point 
within the process model 
where two or more dif­
ferent threads of control 
merge asynchronously. 

XOR-Split: A point 
within the process model 
where the thread of control 
selectively chooses one of 
several possible paths. 

XOR-Join: A point 
within the process model 
where the thread of con­
trol from one of several 
different paths converges. 

Iteration/Feedback 
Routing: A section 
within the process model 
that may require the 
repetitive execution of one 
or more activities until 
certain conditions are 
satisfied. 

Graphical Construct 
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Petri Net Mapping 

Task2 

AND-Split 

Task3 

Task 1 

AND-Join 

Task2 

Task2 

Task3 

Task 1 

Task3 

Task2 

Task 1 

Task2 



Resource R1 

Control Flow Model 

Finish 

Resource R2 

Figure 4.4: Petri Net Representation of the Process Model - An Example 

Consider the Petri net illustrated in Figure 4.4 - clearly, the transition sequence As1 , T1 , n 
leads to deadlock, and will be immediately evident upon studying the net's reachability 

tree. This approach can be applied to verifying the correctness of resource-sharing for any 

process - a total of IMI (the number of valid meta-paths) different Petri nets will need to 

be constructed and their reachability trees examined to confirm the presence/absence of 

deadlocks. Should deadlocks occur, the transition sequence that led to the same can be 

studied to identify and isolate the reasons for deadlock. Additionally, the Petri nets thus 

constructed will all be k-bounded , where k = maxi(Rf), i.e., the maximum number of 

tokens in the net corresponds to the resource with the highest Rf . However, generating 

the reachability tree is computationally expensive [68 , 26] - is it really necessary to gen­

erate the complete reachability tree to even establish that the process's design is correct? 

More specifically, is there a simpler way to just check the process's design and to answer 

"YES - the resource-sharing in this process is OK, and will not lead to deadlock," thereby 

avoiding the expense of detailed reachability enumeration? That this is so is the impetus 

for the approaches derived next. 
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4.5 The Static-Design Net Representation 

The purpose of this section is to develop an approach that will identify if the process's 

resource-sharing requirements will or will not lead to deadlock - should the answer be in 

the negative, the analysis can be continued with a detailed reachability enumeration of 

the Petri net construction as presented in Section 4.4.2. It would be useful to begin by 

summarizing what has been achieved thus far, namely: 

1. Given a correct control flow model, partition it into sets of concurrent elements 

Con= {Goni}, and consequently order the tasks with the functional f: T - N. 

2. Confirm that there are no potential circular-waits within each concurrent set in 

ConlV(m), for all valid meta-paths m E M. 

Thus far, the control flow model and the resource-allocation requirements have been 

considered in separate formalisms; Section 4.5.1 presents a Petri-net construction that 

captures both the ordering suggested by the control flow model and the details of resource 

allocations. 

4.5.1 The Static-Design Net 

Consider the following Petri net construction for some valid meta-path m of the process. 

The concurrent sets {Oonr} are represented as transitions, and the resources {.RJ are 

represented as places; the places and transitions are connected by weighted arcs, the 

weights indicating the effective number of units of a particular resource that are captured 

( or released) by the tasks in the concurrent set, according to as whether the arc is directed 

from a place to a transition, or vice-versa. Figure 4.5 illustrates this Petri net construction 

for the example in Figure 4.2(b) - note that Rf = Rf = 1 and since there is only one 

valid meta-path in the process, the superscript mis omitted from oonr. 
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I Con0= {S} 

I Con1= {A.1} 

I Cons= {Ai2} 

I Con6 = {F} 

Figure 4.5: The Static-Design Net Representation - An Example 

This Petri-net mapping shall be referred to as the Static-Design Net, named in part, to 

reinforce the suggestion that the structure of the net will be used to gain insights about 

the correctness of the process's design with regard to resource-sharing requirements. 

More formally, for each valid meta-path m E M, its Static-Design net representation is 

a 4-tuple SDTJJet = (R, ConlV(m), :F;;,,, :F;f;,), where R, the set of resources, corresponds 

to the set of places, and ConlV(m) = {Gonf}, the set of concurrent sets with vertices 

restricted to V(m), corresponds to the set of transitions. The functionals :F;;,, : {R x 

Con1v(m)} - N and :F;f;, : {Con1v(m) x R} - N specify the weighted arcs connecting 

places to transitions, and vice-versa. The initial marking of the net is Mo= [Rf], namely, 

the capacities of the various resources. The structure of the net SDTJJet is captured with 

the incidence matrix C,:n = [Cijl, where 

l!ij = L Rfap(t) - Rtre1(t) 
VtECon7J'nT 
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The Static-Design net of Figure 4.5, and in particular, the example in Figure 4.2(b), 

reveal several points of interest, namely: 

1. Unlike the regular Pi, ti naming convention for places and transitions, the places 

and transitions in the static-design net have been named by their actual definitions, 

namely resources (~) - places, and concurrent sets (Canr) - transitions. This 

is to avoid any conflict with the definition of a task Ti, and to aid concept clarity. 

2. The interpretation of the Static-Design net is as follows: 

• An arc is drawn from a place, Ri (respectively, transition Can7F) to a tran­

sition Conj (respectively, place Ri) if there is a task in Can7F that captures 

(respectively, releases) resource ~-

• The weight on the arc, and in turn; its direction, is determined by the number 

of capture and release requests within the concurrent set. To illustrate, observe 

that both tasks T2 and T3 capture a unit of resource R2 , and so, an arc with 

weight 2 is drawn from place R 2 to transition Can2 . 

• The number of tokens in place ~ signifies the number of units Rf available 

for that resource. 

3. There is only valid meta-path in the example of Figure 4.2(b), and the sequence 

through which the process progresses is strictly Can0 - Can1 - Can2 • • • - Can5 • 

Thus, the concurrent sets also aid in capturing the process ordering imposed by the 

control flow model. 

In continuation of point (3) above, note that, although Con0 is, by definition, per­

manently enabled, and can fire indefinitely, such firing sequences will not be stud-

ied - in fact, the control flow model specifies the transition firing sequence, namely, 

Can0 - Can1 - Can2 • • • - Can5 , i.e., the increasing order of { Gani} suggests the 

sequence through which the process progresses. Observe that this transition sequence is 

not possible in the static-design net shown in Figure 4.5-why so? At the very least, Can2 

cannot be enabled given that there is only one unit of R2 - this hints at problems either 

in inadequate resource capacity or potential circular-waits. The intuition just described 

is formalized in the following theorem. 
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Theorem 4.1 Suppose it is given that, for each valid meta-path m in a process, there 

are no circular-waits within any concurrent set in Coniv(m). If the transition sequence 

C on0 = { S}, C onf, ... , Con"; = { F} is enabled1 for the static-design net of all valid 

meta-paths m, then there exist no deadlocks within a single instance of the process. 

Proof Consider any valid meta-path m of the process. Since resources cannot be re­

leased before they are captured Conf is automatically enabled, as Con0 = {S} does not 

capture/release any resource. Consequently, the fact that Con'f, i > 1 is enabled, and 

requires, say, resource Ra, implies that there is either another transition Conr;, 1 ::; j < i 

that releases the required number of units of resource Ra, or there are adequate number 

of units of Ra available to meet the needs of Con'f. Since this holds for all Con'f, it fol­

lows that there cannot be any problems in resource-sharing across concurrent sets in that 

valid meta-path. Moreover, it is given that there are no circular-waits within any Con'f 

for all valid meta-paths m. Therefore, the transition sequence Con0, Conf, ... , Con"; 

does indeed correspond to the deadlock-free execution of a single instance of the process 

for any valid meta-path m, thereby completing the proof. • 

Note, however, that the failure of the conditions of the proof, for some valid meta-path 

m of a process, does not imply that the process cannot execute correctly. To see why, 

consider the process represented in Figure 4.4 - while the transition sequence aincarrect = 

As1 , T1 , T3 leads to deadlock, the reader may argue that the process could still execute 

correctly with the transition sequence acorrect = A81 , T1 , T2 , Aj1 , T5 , T3 , T4 , Ai2 • Thus, 

Theorem 4.1 establishes only a sufficiency condition - it is not a necessary condition 

for deadlock freedom. To illustrate - the process in Figure 4.6 fails the conditions for 

Theorem 4.1, but is nevertheless deadlock-free. 

1 Refer Definition A.4. 
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Con2 Con, Con4 

R1 R2 

Figure 4.6: Another Example of a Deadlock-Free Process Model 

Before continuing with the discussion, it would be worthwhile to pause and reconsider 

a statement presented in the paragraph above. It is true that, for the process in Figure 

4.4, the transition sequence O'correct satisfies the requirements of the correct execution of 

the process. However, observe that O'correct breaks the process into two sequential threads 

As1 , T1 , T2 , A11 , n and T3 , T4 , A12 - is this what the process designer envisioned? where 

is the parallelism? if such an execution was acceptable, then why design the process such 

that task T3 is concurrent with tasks T1 and T2? (refer Figure 4.2(b) .) 

In summary, what is the contribution of Theorem 4.1? Should the conditions of Theorem 

4.1 be satisfied, i.e., the ordered transition sequence Con0 = {S}, Conf, . . . , Con;i = 

{ F} is enabled for every valid meta-path m of a process, then, it confirms that a single­

instance of the process is deadlock-free without requiring any additional analysis. How­

ever, the failure of the conditions for Theorem 4.1 indicates an immediate problem with 

inadequate resource capacity - ideally, the designer envisioned the tasks in each concur­

rent set Conr_:', for each valid meta-path m, to be truly concurrent. The parallelism 

dictated by the design would have been possible had there been adequate number of 

resource units to meet the resource requirements of each task in Conr_:', in which case 

Theorem 4.1 would not have failed; that it failed is the answer to begin answering the 

question of minimal resource requirements for the process. 
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4.5.2 Computing Minimum Resource Requirements 

The failure of Theorem 4.1 offers an immediate opportunity to compute the minimal 

resource requirements that will guarantee the successful execution of an instance of the 

process that also assures the parallelism envisioned by the process's designer. More 

specifically, for each valid meta-path m, it remains to compute the minimum resource 

requirement (i.e., the initial marking for the net SD"!Jet) that will guarantee that the 

transition sequence Con0 = {S}, Con1 , ••• ,Con";' = {F} (call it crm) will be enabled. 

Note that upon execution of crm, the net will return to its initial marking (by conserva-

tion of resources). Consequently, the minimum resource requirements for the process is 

computed as Rf= M0(i), where, Vm EM, M; ~ M; holds, i.e., M0(i) is the minimum 

number of units required for resource ~ that will guarantee that the conditions of The-

orem 4.1 hold true for all valid meta-paths min the process. 

To illustrate - suppose there are two valid meta-paths m1 and m2 in a process, and that 

two resources R1 and R2 are being used by the process. Suppose the smallest initial 

marking that will satisfy the requirements of Theorem 4.1 for both meta-paths is [1, 3] 

and [2, 1], respectively. Taken together, the minimum resource requirements that ensure 

that Theorem 4.1 holds for both meta-paths is [2, 3], i.e., Rf= 2, and Rf= 3. 

It is quite easy to compute M*. Suppose that R = { R1, R2 , ••• , R,.} is the set of r 

resources. Consider some valid meta-path m with q+ 1 concurrent sets, namely, { Con0 = 

{S}, Con1 , ... , Con";' = {F} }. Let M[f" be the smallest initial marking for SD"!Jet that 

guarantees that M[f" ~ M[f" holds, where the superscript m indicates that the marking 

corresponds to valid meta-path m. M[f" is computed thus: 

Vi=l,2, ... ,r 
q 

M(:(i) = L max(F;(~, ConT) - F;;;,(Con7?-1 , RJ, 0) 
j=l 
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The mechanics of equation 4.1 is quite simple. It essentially keeps track of how many 

new tokens are required in place Ri, in addition to those returned by ConT-- 1 , to enable 

each Con1. Once M0 has been computed, it follows that the minimal requirements for 

resource ~ is 

M;(i) = max Mf;(i) Vi= 1, 2, ... , r 
m 

Interestingly, note that M0 also eliminates the possibility for circular-waits within a con­

current set, since the resource requirements for all competing concurrent tasks will be 

satisfied by M0, thus rendering redundant the count-based checks presented in Section 

4.4.1. 

Thus, the computations above derive the minimum number of units required for each 

resource ~ to ensure that the conditions of Theorem 4.1 hold - this will ensure the 

successful deadlock-free execution of a single instance of the process, with the maximum 

degree of parallelism as desired by the process's designer. 

4.5.3 Summary 

Recall that design errors in resource-sharing are not restricted to single instances ( refer 

example 4 in Table 1.3). Clearly, the basic Petri net approach suggested in Section 

4.4.2 can be extended to study multiple-instance verification, simply by increasing the 

number of tokens in the place corresponding to Start and exploring the reachability tree 

to detect deadlock occurrences. However, can the static-design net be used to derive a 

quicker answer to help detect the possibility for potential deadlock, without recourse to 

exhaustive enumeration via reachability analysis? 
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4.6 Multiple-Instance Verification 

The purpose of this section is to develop an approach that will identify if the sharing 

of resources across multiple instances of the process will or will not lead to deadlock -

the approach will rely on the static-design net representation of the process, and on the 

notion of transition invariants for a Petri net ( refer Section A.4). 

Observe that the static-design net will be a collection of isolated vertices and several 

disjoint, connected components.2 There is no sharing of resources across disjoint com­

ponents (else, they would not be disconnected), and isolated transitions (i.e., concurrent 

sets) do not capture/release any resources, and hence, are inconsequential. Isolated 

places correspond to resources that are not being accessed in the valid meta-path that 

the static-design net represents. Consequently, it is within a connected component of the 

static-design net, that deadlock possibilities, if any, wait to be unearthed. 

Figure 4. 7(b) illustrates the static-design representation for example 4 from Table 1.3, 

also repeated in Figure 4.7(a). Note that the process is completely sequential, with no 

choice or concurrency; therefore, it readily follows that a single-instance of the process is 

deadlock free, since the size of each concurrent set is only one. 

The weights on the arcs of the static-design net in Figure 4. 7(b) have been omitted since 

they are all equal to one - this net consists of one connected component ( consisting of R1 , 

R2 , Con1 , Con2 , Con4, and Cons), and other isolated vertices. The connected component 

has two transition invariants, namely, Tinv1 = [Con1 , Cons] and Tinv2 = [Con2 , Con4]. 

Does this suggest something? Yes, it does - it suggests that there is a potential problem 

of circular-wait across two instances with one executing Tinv1 and the other executing 

2 A connected component is a subset of a graph which is disjoint from the remainder of the graph, and 
within which, every pair of vertices is connected by an undirected path. A strongly connected component 
is a connected component, within which, every pair of vertices is connected by a directed path. 
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(a) Incorrect Process Design 

I Con0= {S} 

r-------- Con1= {T 1} 

Con2= {T2} 

Con5 = {T J 

I Con6 = {F} 

(b) Static-Design Net 

Figure 4.7: Example of a Process with Problems of Deadlock across Multiple Instances 

Tinv2 , with the latter being denied access to R1 being held by the former - this is 

possible since R1 is released by Con2 enabling another instance to commence execution. 

More specifically, the connected component in Figure 4. 7(b) runs the risk of deadlock 

because the resources required by it are not guaranteed to he exclusively available for 

its execution without the possibility of being captured by other previous/later instances. 

The intuition underlying this argument is very simple, namely - disjoint components of 

the static-design net do not have any problems of resource-sharing either within a single­

or multiple-instances of the process; consequently, within a connected component, the 

only way to ensure that it will not get deadlocked is to ensure complete access to all of its 

required resources before another instance may begin. In short, the transition invariant 

of a connected component of the static-design net must consist of all the transitions in 

that component - this is formalized in Theorem 4.2. 
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Theorem 4.2 Suppose it is given that there are no deadlocks within a single-instance 

of the process. Then) there exist no deadlocks arising from resource-sharing across mul­

tiple instances of the process executing the same valid meta-path, only if the transition 

invariant for each connected component of the process's static-design net consists of all 

transitions in that component. 

Proof The proof follows immediately from the argument above, and from the definition 

of a transition invariant. • 

The uniqueness of Theorem 4.2 is that it relies only on the structure of the static-design 

net, and not on its initial marking [Rf], or the number of instances that are active -

it is thus a simple approach to identify problems across multiple instances without the 

simulated execution of multiple concurrent instances. 

Note that Theorem 4.2 also establishes only a sufficiency condition, i.e., it is sufficient to 

show that the transition invariant for each connected component consists of all transitions 

in that component to confirm that there are no deadlocks when multiple instances of the 

same valid meta-path are active. To show that it is also a necessary condition would be 

a tremendous achievement, since computing transition-invariants is a polynomial-time 

operation [64, 26], as opposed to the exponential state-space explosion of reachability 

enumeration. 

There is however, one shortcoming of Theorem 4.2 - it cannot identify deadlock possibil­

ities for multiple instances of the process, each executing different valid meta-paths. The 

answer to this question would ultimately require the reachability enumeration approach 

of 4.4.2 with multiple tokens in the place corresponding to Start. More specifically, The­

orem 4.2 captures the border between that which can be answered in polynomial time, 

and that which requires exhaustive enumeration. 
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4.7 Summary 

The ideas presented in this chapter form the foundations of the first-ever attempts to 

study the business process's design in its entirety, including both the process's logic, 

and its resource requirements - not with simulated executions, but with very elemen­

tary graph-theoretic ideas. The most notable achievement is that the simplicity of the 

approaches presented herein is complemented only by the sheer magnitude and value 

of the questions addressed and answered. More specifically, the purpose of this chapter 

has been to study the process's design as the designer envisioned it, and to study its 

resource allocations with the intent of (i) computing the minimal resource requirements 

that guarantee the successful execution of the process and exploit the parallelism allowed 

in its design, and (ii) alerting the designer about potential deadlock possibilities that 

may &rise either within a single-, or across multiple-instances of the process. 

An alternate Petri net representation of the process that captures the ordering sug­

gested by the control flow model with the specifics of resource requirements, the STATIC­

DESIGN NET, has been developed, and sufficiency conditions have been derived to estab­

lish deadlock-freedom both within a single- and across multiple-instances of the process. 

A simple approach to compute the minimum resource requirements that guarantee the 

successful deadlock-free execution of the process has also been developed. 

The correctness issues studied thus far have focused primarily on design errors arising 

either from incorrect control flow or improper resource-sharing. What about the inputs 

and outputs for each task? Are there any correctness issues that remain to be investigated 

in the input-output specification for the tasks in a process? Metagraphs [9, 10, 11] have 

been used to study connectivity issues in the input-output specification of a process. 

Additionally, an immediate extension of the ideas presented in this chapter would be 
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to use the concurrent set partitions, { Gani}, of the control flow model to study the 

correctness of a process's input-output specifications. This would r~quire a formalism 

identical to R(ap, and Rfel, focusing, in turn, on the inputs and outputs of each task, 

and addressing questions similar to those presented in Section 4.3 - these ideas are 

reserved for future work. 
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Chapter 5 

Modeling and Analysis of Business 

Process Models 

Chapter Overview 

This chapter outlines the features of a proof-of-concept implementation of the algorithms 

developed in this work. 

5.1 MAPS: Proof-Of-Concept Implementation 

A computerized environment titled MAPS - Modeling and Analysis of business Process. 

modelS has been developed to support the techniques developed in this dissertation. 

MAPS has been written in PYTHON, an open-source programming language, and its 

graphical interface coded in Tkinter - it retains the native look and feel of a Windows 

application, and supports a good graphical editor for the development of process models. 

MAPS includes the KORRECTNESS algorithm (Chapter 3) for control flow verification, 

and also provides diagnostic feedback about control flow errors, if any. 
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The choice of PYTHON as the development language was motivated by two reasons: 

1. MAPS is intended to grow as a research test-bed for new ideas and algorithms 

in business process modeling, and it was essential that the underlying code and 

program design remain simple, without being excessively clouded with the details 

of syntax and software-specific overheads.1 

2. The complexity of the algorithms notwithstanding, Python provided for nearly­

identical translations of mathematical intuition ( especially, set-theoretic formula­

tions) into program syntax, making it ideal as a tool-of-choice that would attract 

and offer incentives for other researchers to continue experimenting with, and de­

veloping MAPS. 

This chapter is intended to be a walk-through of MAPS's salient features and the signifi­

cance of its contribution as a modeling and design verification tool. The main attributes 

of MAPS are its simple modeling interface, and support for control flow verification. 

5.2 Modeling Interface 

The development of a process's design in MAPS begins with the specification of its 

control flow model, followed by the separate specification of its resource requirements. 

Figure 5.1 presents a screen-shot of MAPS ~ it illustrates the control flow model of the 

counter-example presented by Lin et al. [61] to show that the algorithms of Sadiq [75] 

are incomplete. 

1VC++/MFC and JAVA/JFC-Swing applications, to name a few. 
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Figure 5.1: A Sample Screen-shot of MAPS 

The major components of the graphical editor are: 

1. The stencil that the user uses to select the control flow element being drawn. 

The stencil offers simple click-to-select functionality - the user selects (left-click) 

the control flow element that needs to be drawn, and then selects a position in the 

canvas to place them, or, if a control flow arrow is being drawn, the user selects the 

"source" (from) and "destination" (to) of the arrow with consecutive clicks inside 

the face of two elements on the canvas. The model can contain only one "Start" and 

one "Finish" - the corresponding stencil elements get disabled thereafter, unless 

those elements are subsequently deleted from the model. 
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2. The canvas on which the model is drawn - the canvas supports intuitive operations 

for both movement and deletion of elements in it. Deletion is enabled only in the 

"cursor ~ mode" via right-click mouse operations on the edges of the elements -

the mouse cursor will change to a hollow circle to indicate that the element can be 

deleted with a right-click. Movement of elements is enabled in the "cursor mode" 

with a left-click hold and release mouse movement, or with a right-click hold and 

release mouse movement in one of the "non-cursor modes" - in both cases, the 

mouse click must be inside the face of the element, which will be signalled by the 

cursor changing to a filled circle with an embedded cross (a ffour) . The "non-cursor 

modes" refer to the selection of either a task/logical-operand/ arrow on the stencil 

- a left-click operation either places a new element (task/logical-operand) on the 

canvas, or is used to consecutively select the source and destination of a control 

flow arrow. 

3. The control flow elements' tablet ( or frame) that provides an easy and accessible 

summary of each control flow element's attributes. 

This frame is organized as follows - a drop-down options box allows the user to 

select the type of the control flow element that they need details for , namely, Start, 
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Finish, Task, or a logical operand. Once the selection is made, say, "Task," a list 

of all tasks is generated, ordered by their screen IDs, individual selection of which 

will populate the basic fields beneath to reveal their names, input and output el­

ements, and on-screen graphical coordinates. The screen IDs of the elements are 

prefixed with a [ "S," "F ," "T _," "Xs," Xj ," "As," "Aj"] to indicate that they are 

either a "Start ," "Finish," "Task," "XOR-Split ," "XOR-Join," "AND-Split ," or an 

"AND-Join." All of the basic fields are fixed and cannot be edited, except for the 

names of tasks, which can be changed from the program-generated "Task n" to 

something more meaningful, if needed. 

4. The model monitor that provides continuous feedback to the modeler about their 

actions through short messages. 

The model monitor will be indispensable when dealing with complex models - it 

includes several useful features that will guide the user in the construction of the 

model, and more so, when the user is contemplating the deletion of some elements. 

Unlike commercial grade software with the luxury of undos and such, the user will 

have to rely on the model monitor to inject the requisite caution in dealing with 

mouse-clicks, right or left . 

In addition to the features listed above, help balloons have been programmed to appear 

liberally across all aspects of the application to clarify the purpose of all four components 

above. The models thus created can be saved and retrieved with standard File-> Save 

operations. 
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5.3 Analysis and Verification Capabilities of MAPS 

The current version of MAPS includes support for verifying the model syntax, and the 

KORRECTNESS algorithm for control flow verification, both of which are described below. 

5.3.1 Syntax Verification 

The syntax checks enforced in MAPS ensure that the model does not have any abandoned 

elements, that it has a "Start" and a "Finish," and that all other elements have properly 

defined "from" and "to" elements, as illustrated below. 

Iools 

-::!!~- I/,® 
~ ~ ,ii_jiYioiu,1moidi~ih~i lhieiroillow,i njgje"iorisijii::::, ::"""=~ I 

1.You do not have t>Stt>rtnode, II! 2. You do not hDVe" Finish.no.de. 
! 3 The following nodes do nol have IOllY mes coming into !hem. 

I T_l. Xst 

:
If ~ The following nodes do not have IOllY arcs coming out of !hem: 

[I\ T_1. ~1 

Additionally, should the user attempt to draw, say, two arcs leading into a task (or 

an AND / XOR-split) , or other such basic modeling errors that violate the definition of 

the elements, the model monitor will alert the modeler to the same, thereby allowing 

for immediate model checks as well - the syntax verification capabilities in MAPS are 

dynamic and work constantly during the development of the model. 

5.3.2 Control Flow Verification 

The verification of control flow correctness follows the KORRECTNESS algorithm, in that 

it proceeds by generating the set of S - F paths, the set of valid meta-paths, and the set 
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of invalid meta-paths, if any. Figure 5.2 shows a snap-shot of the application interface 

after the KORRECTNESS algorithm has been applied to the control flow model shown in 

Figure 5.1 - note that the results of the control flow verification procedure will open up 

on a new page titled "Korrectness Results." 

~ 
! Error Commenteiy 

/®\ ® @ 

Figure 5.2: Identifying the Set of Valid Meta-paths 

The interfaces for browsing through the set of paths, valid, and invalid meta-paths are 

all designed to be very simple, and follow a layout identical to the control flow elements' 

frame discussed for the modeling interface. 
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Figure 5.3 illustrates a snap-shot of the application interface after the KORRECTNESS 

algorithm has been applied to the incorrect control flow model of Figure 3.8 - it illustrates 

one of several invalid meta-paths in the process. 

Figure 5.3: Identifying the Set of Valid Meta-paths 

Much like the "model monitor" in the modeling interface, the "Error Commentary" 

provides feedback about the source of the control flow error - the meta-path in Figure 

5.3 is invalid because one of the three control flows required at AND-Split As1 is missing. 

This "error commentary" feature of MAPS in unique in providing precise reasons as to 

the failure of a control flow design - what is missing however, is a way to automate the 

correction of these control flow errors, or at the very least , to give suggestions to fix the 

same. 
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5.4 Summary 

This chapter outlined the use of MAPS, a computerized environment that was devel­

oped to support the algorithms developed in this dissertation. MAPS has been designed 

to be easily extendible with new functionalities, either in graphical modeling, or algorith­

mic support. Thus far, MAPS includes only qualitative analysis capabilities; it would 

be a wonderful addition to also incorporate code-support for simulation of a business 

process, and possibly, detailed Petri net modeling and queuing analysis - these are not 

careless dreams or whimsical hopes·. It is the author's earnest hope that the simplicity 

of MAPS's program design will inspire further work in extending it to make it a useful 

tool for classroom instruction, and also as a rewarding intellectual exercise for those who 

choose to relive the joy that was the author's privilege in creating it. 

Currently, MAPS includes an editor for creating, storing, and retrieving control flow mod­

els, and analysis support to establish control flow correctness. The following extensions 

are anticipated for future development of MAPS: 

1. Incorporating functionality for verifying the correctness of resource-sharing and 

computing minimal resource requirements, based on the techniques developed in 

Chapter 4. 

2. Interfaces to (the input and output of) XML descriptions of business process def­

initions, based on pre-specified process templates as specified by [96, 7], would be 

a fantastic addition that would impact both the commerce and the care that the 

BPM software industry extends to design verification. 
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Chapter 6 

Summary & Research Contributions 

Chapter Overview 

This chapter summarizes the major contributions of this research, and outlines research 

questions that will expand the reach and value of the design verification techniques 

developed in this work. 

6.1 Summary 

The purpose of this dissertation has been to study the design of a business process, as 

determined by its logic, and to give useful feedback to the designer about the correct­

ness of the design. Stated simply, the. question being addressed is not "how good is this 

process's design," but is more fundamental, namely, "is the design good at all?" The 

former question relates to studying the performance of a business process, with regard to 

its operational efficiency and other metrics summarized through analytical calculations 

or simulated executions of the process - it necessarily assumes an affirmative answer to 

the latter question. That the design of a process may not be good to begin with, ( and if 

not, why so?) is the motivation for this dissertation. 
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This dissertation presents a comprehensive foundation for the formalization and verifi­

cation of business process designs. A business process could be one of either a material, 

information, or a people process, or a combination thereof (Table 1.1) - irrespective of 

the type of the business process, the design of a process minimally requires the spec­

ification of the process's logic, and the resource requirements for its constituent tasks. 

Business processes arise in numerous contexts; however, the verification issues are the 

same, namely 

1. FUNCTIONAL ASPECTS - is the logic of the process correct, i.e., does the flow 

of control within the process ensure that the process will execute correctly from 

initiation to completion? 

2. RESOURCE ASPECTS - is the release and capture of shared resources among dif­

ferent tasks, either in the same or in different instances of a process, well-designed 

so as to avoid conflict? 

This dissertation presents a completely context-independent formalism that bridges the 

diversity in process types, with the commonality of the questions and correctness issues 

that arise within - this, above all, is the most significant contribution of this work. Both 

the control fl.ow and resource-sharing problems have been thoroughly studied, to present, 

in effect, a solid foundation for the verification of process designs that will significantly 

change the currently understood interpretation of design verification, which relates pri­

marily to syntactic checks restricted to the graphical modeling formalism. 

Chapter 1 presents a short, but precise, introduction that motivates the relevance of, 

and the challenges associated with, the control fl.ow and the resource-sharing problem. 

Chapter 2 presents a comprehensive overview of the issues and opportunities in business 

process modeling, business process automation, and an accurate review of all relevant 
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research - it is important to note that the resource-sharing problem, as studied in this 

dissertation has not been previously addressed anywhere else. Chapter 3 presents the 

KORRECTNESS algorithm, a recursive, backtracking algorithm for verifying the correct­

ness of control fl.ow in any process, without any restrictions on the form/structure of its 

design, and to provide diagnostic feedback about the source of the control fl.ow error (if 

any). Chapter 4 presents a collection of Petri net-theoretic techniques for studying the 

correctness of resource-sharing in a process, and to identify potential design errors that 

could lead to deadlock. Chapter 5 details the success of a proof-of-concept implementa­

tion of the algorithms developed in this work. 

6.2 Research Contributions 

The most significant contribution of this dissertation is a simple formalism for specifying 

both the control fl.ow (Chapter 3) and resource requirements (Chapter 4) of a process, in 

a manner that does not diminish the semantic value of the elements being defined, while 

still retaining sufficient rigor to motivate abstract study of the process's definition. The 

specific contributions of this dissertation are listed below. 

Control Flow A recursive, backtracking algorithm for verifying control fl.ow correct­

ness has been developed. The algorithm does not impose any restrictions on the 

form/structure of the control flow model, and some interesting results on proper­

ties to be expected in random control flow models have been derived. Additionally, 

the results of the algorithms also provide precise diagnostic information about the 

reasons for the control flow error(s), if any. 

Resource-Sharing A simple Petri-net theoretic approach for identifying potential dead­

locks, especially circular-waits, has been developed. The approach is unique in that 

it exploits the control fl.ow model to gain intuitions about the structure and behav­

ior of the process, without ever requiring any simulations. More specifically, simple 
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rules have been developed to (i) compute the minimal resource requirements that 

guarantee the successful execution of the process, while fully exploiting the paral­

lelism in the process as envisioned by its designer, and (ii) alert the designer about 

potential deadlock possibilities that may arise either within a single-, or across 

multiple-instances of the process. 

MAPS A computerized environment titled MAPS - Modeling and Analysis of Process 

modelS (implemented in Tcl/Tk and Python) has been developed to support the 

algorithms developed in the dissertation. Ideally, MAPS should grow as a research 

test-bed for new ideas and algorithms in business process modeling. The salient 

features of MAPS are: 

• A good graphical environment for modeling anq specifying business processes. 

• Algorithms for verifying the correctness of control flow and providing diagnos­

tic feedback about the sources of control flow error(s), if any. 

6.3 Future Research Directions 

Automatic design verification capabilities are as yet unavailable in current business pro­

cess modeling softwares. To this end, the ideas developed herein significantly advance 

the power and potential for the development of good processes, the designs of which are 

influenced both by the judgment of the domain expert and by the clarity of analysis. In 

continuance of this work, the following ideas merit inquiry: 

1. Automation of Business Process Redesign Suppose the process's design, i.e., 

control flow and/ or resource requirements, is incorrect; can the redesign of business 

processes, to eliminate design errors, be automated? More specifically, can hu­

man intuition be replaced with algorithmic deduction and correction? Currently, 
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diagnostic checking is limited to identification - can it be extended to include elim­

ination? 

2. Automatic Reconfiguration of Business Processes Suppose the process's de­

.sign, i.e., control flow and resource-sharing, is correct; is it possible to suggest 

approaches to reconfigure or "optimize" the process's design, based on the nature 

of the resource-allocation requirements and the precedence-order relationships that 

are imposed by the logic of the process? This would require a more precise under­

standing of the expectations of "optimality" in business process designs - stated 

simply, the domain expert has identified a particular configuration for the process; 

can it be improved? 

3. Standards for Business Process Specification To develop a formalism for mod­

eling and specification of business processes that blends the ease of modeling intu­

ition with the rigor required for design verification. Ideally, a formalism that capital­

izes on the transparency of XML, the ease of graphical modeling, and the support of 

underlying design verification techniques would greatly enhance the value-addition 

of enterprise automation. 

The research proposed in question (3) above has already been initiated, and the Business 

Process Management Initiative1 is spearheading current efforts toward the development 

of BPML, an open-source standard Business Process Modeling Language. There is 

also a competitive, commercial effort that has been initiated by Microsoft, IBM, and 

BEA, called BPEL4WS - readers are referred to [48, 78, 36] for a good overview of the 

issues involved in developing a standard for the design, deployment, execution, control, 

and optimization of business processes. In conjunction with these efforts, it would be 

extremely useful to explore the possibilities for abstracting from the XML description 

of a business process, sufficient detail such as is required for developing an analytical 

1http://www.bpmi.org. 
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or a simulation model, to motivate further analysis of the process's configuration and 

performance, independent of the context in which the process may arise - this has been 

partly addressed in IBM's OPS (Operational Specification), an artifact-based approach 

to business process modeling and enterprise integration [16]. 

The questions raised in (1) and (2) are more fundamental and as yet unexplored; to 

allow for a computer to suggest a better process design is very intriguing, and such 

an ability would lend new meaning to "automation" in business process automation -

some preliminary work has been addressed in [38], but, it is still not "automation." 

The extent of the second question's appeal is surpassed only by the vagueness of its 

answer. To answer the same, without requiring context-specific information particular to 

a process's domain, would be the first steps in establishing a "science-base" for business 

process modeling. The bridge between the abstract and the real has thus far been absent 

in business process modeling, so much so, that the question of "deadlock" in business 

processes is met, not with a !, but with a ? - it is hoped that the techniques developed 

in this dissertation would contribute to building such a bridge. 
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Appendix A 

Petri Nets: A Primer 

Chapter Overview 

This appendix presents a quick overview of the basics of Petri nets. Readers are referred 

to [6, 70, 68, 25, 26] for a more extended discussion on the theory, applications, and 

analysis of Petri nets. 

A.1 What is a Petri Net? 

A Petri net is an anagraphical (i.e., analytical and graphical) tool that combines the 

appeal of graphical description with the rigor of mathematical formalism, making it the 

preferred tool of choice for modeling discrete event systems. In particular, systems, 

whose description can be specified as a collection of events, and conditions preceding and 

succeeding the execution of those events, are well suited to being modeled and studied 

with Petri nets. Petri nets· are especially well-suited to modeling concurrency, asynchro-
1 

nism, and choice. More formally, a Petri net is a 4-tuple, N = (P, T, 1+ 1-), where 

P = {P1,P2, ... ,Pn} and T = {t1 , t2, ... , tm} are disjoint, finite sets of places and transi­

tions, respectively. Additionally, 1+ : T x P -+ N = {O, 1, ... } and 1- : P x T -+ N are 
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the incidence functions from transitions to places, and vice-versa. It is common practice 

to associate places with conditions, and transitions with events in a discrete event system. 

The graphical representation of a Petri net is a directed, bi-partite graph with two sets of 

vertices - places P (represented as circles) and transitions T (represented as lines/bars), 

and weighted arcs drawn from places to transitions, (respectively, transitions to places), 

the weights on the arcs corresponding to the values of J-(Pi, ti) (respectively, J+(ti,Pi)), 

for every pair (pi, ti) of places and transitions - Figure A.1 illustrates an example (arcs 

with unit weights are left unlabeled). 

Figure A.1: An Example of a Petri Net Model 

For each t E T, •t = {p E PI J-(p, t) > O} and t• = {p E PI J+(t,p) > O} represent, 

respectively, the set of input and output places of t. The sets •p and p• are defined 

analogously for each place p. The incidence matrices Ctxm (from transitions to places) 

and c;xm (from places to transitions) are defined as 
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The incidence matrix of the net is represented as C = c+ - c-. A marking is a func­

tion M : P ---+ N that assigns a numeric value to each place in the net. Graphically, 

markings are identified by tokens (black dots) residing in the places of the net, and 

capture the state of the net. The Petri net N, together with an initial marking M 0 , 

is adequate to model the evolution of a system starting at state M 0 • The dynamics of 

the net's evolution are controlled by firing transitions, the definitions of all of which are 

presented next. Unless stated otherwise, assume that the initial marking of the net is M0 . 

The initial marking for the Petri net in Figure A.l is M 0 = (1, 0, 1, 0, 1), and its incidence 

matrices are 

0 1 0 1 1 0 0 0 

1 0 0 0 0 1 0 0 

c+= 0 0 0 0 c-= 0 0 1 0 

0 0 1 0 0 0 0 1 

0 1 0 1 0 1 0 1 

A.2 Basic Definitions 

The vector oi will denote the vector whose ith element is 1, and O elsewhere, i.e., oi = 

(0, 0, ... , 0, 1, 0, ... ]. The dimensions of the vector will be obvious from the context in 

which it appears. 

Definition A.1 A transition ti is enabled under some marking Mj if Mj 2::: c-oi, i.e., 

there are enough tokens available in all of ti's input places, i.e., •ti, to meet its "input" 

requirements. 

For the net in Figure A.l, only transitions t 1 and t3 are enabled under Mo= (1, 0, 1, 0, 1]. 
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Definition A.2 An transition ti that is enabled under marking Mi can fire, i.e., it 

can move tokens from its input places {•ti) to its output places (ti•). More specifically, 

upon firing an enabled transition ti, the net evolves from marking Mi to marking MH1 

according to the equation 

Mj+l = Mj + c+8i - c-8i = Mj + C8i 

and is usually notated as Mi ~ MH1, signifying that marking Mi+l is immediately 

reachable from Mi. 

Actually, when a transition t fires, it removes f-(p, t) tokens from each input place p E •t, 

and deposits f+(t,p) tokens in each output place p Et•. For the net in Figure A.l, the 

marking reached from firing transition t 1 is [O, 1, 1, 0, 1]. 

The function z : T - N will be used to generalize the definition of 8i presented above, 

and model multiplicities in the number of times each transition fires - it will be referred 

to as the firing-count vector, with [z]i indicating the number of times that transition ti 

is fired. 

Definition A.3 The firing-count vector z is enabled under marking Mi if Mi 2:: c-z. 

The state that the system evolves into, upon firing z, is Mi+l = Mi + C · z - this is also 

referred to as the state equation. 

For the net in Figure A.1, the marking reached upon executing the firing-count vector 

[1, 1, 1, 1] is equal to M 0 , i.e., the tokens arrive in their initial places after executing all 

four transitions. 

Note that the firing count vector does not specify the order in which the transitions are 

fired. Define u = tii, ti2 , tia, ... , tik to be an ordered sequence of transitions, and u( i) to 

be the ith transition in that sequence. 
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Definition A.4 A transition sequence a is enabled under marking Mi if, for all i, tran­

sition t = a(i) is enabled under marking Mi+(i-1), where Mi+(i-1) = Mj + C · Lr<i 8a(r)· 

More specifically, the transition sequence a = ti1 , ti2 , ti3 , ••• , tik is enabled under marking 

holds true. This is frequently abbreviated as Mi .:!.+ Mi+k. 

A marking Md is said to be reachable from marking M 0 if there exists a transition 

sequence a such that M 0 .:!.+ Md. The reachability set R(M0) is the set of all mark­

ings that can be reached from M0 . The reachability set for the net in Figure A.1 is 

{[1, 0, 1, 0, 1], [O, 1, 1, 0, 1], [1, 0, 0, 1, 1], [O, 1, 0, 1, 1]}. 

A.3 Additional Concepts 

There are a few additional definitions that merit inclusion for sake of completeness. A 

Petri net is said to be acyclic if it does not contain any cycles, and pure if it does not 

contain any self-loops. A Petri net is said to be free-choice if and only if for every 

two transitions t 1 and t2 , •t1 n •t2 =J. (/J implies that •t1 = •t2 - the reader is referred 

to [25] for an excellent treatise on free-choice Petri nets. Aside from these structural 

characterizations, there are certain behavioral properties that are defined as follows. 

Definition A.5 A Petri net is said to be proper if M 0 E R(M0), i.e., if the initial 

marking is reachable from itself 

Definition A.6 A transition t is said to be live if for each marking M' E R(M0), there 

exists another marking reachable from M' in which t is enabled. 

Murata [68] presents several other characterizations of liveness, based on slight modifica­

tions of the conditions of Definition A.6 above. A Petri net N, together with an initial 

marking M 0 , is said to be live if all of its transitions are live. 
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Definition A. 7 A place p is said be k-bounded is there is an integer k such that for all 

ME R(M0 ), M(p) ::; k. 

The Petri net (N) is said to be k-bounded if all of its places are k-bounded. An 1-bounded 

Petri net is called safe. The net in Figure A.1 is proper, live, and safe. 

To summarize, a Petri net captures the structure of a system, and can model its evolution 

through the movement of tokens. Thus, the net N, taken together with an initial marking 

M0 , and the reachability set R(M0), completely describes a system's behavior. Aside from 

the state evolution rules outlined in Definitions A.3 and A.4, the structure of the net, as 

represented by its incidence matrix C, also reveals several clues about the behavior of 

the system, the study of which is known as invariant analysis. 

A.4 .Invariant Analysis 

Recall from Definition A.3 above that the evolution of the system is characterized by the 

state equation Md= M0 + C · z, where Cnxm is the incidence matrix for the net with n 

places and m transitions. 

Definition A.8 An x 1 vector X is a place-invariant if xr · C = 0. 

Suppose X is a place-invariant. Substituting in the state equation, we get xr · Md = 

xr · Mo (since xr · C = 0), whereupon it follows that for all markings M reachable from 

Mo, the weighted sum of tokens, i.e., ~~=l Xi· M(pi), is a constant. Consequently, if 

there exists a place invariant vector all of whose n entries are strictly positive, it follows 

that the net is bounded. 

For the net in Figure A.l, the minimal, linearly independent (i.e., one is not a subset of 

another) place-invariants are {[1, 1, 0, 0, 1], [O, 0, 1, 1, l]}. 
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Definition A.9 A m x 1 vector Y is a transition-invariant if C · Y == 0. 

Suppose Y is a place-invariant, all of whose entries are positive. The firirig vector corre­

sponding to such a vector returns the net back to its initial marking, i.e., M0+C·Y = M0 . 

Consequently, if there exists a transition-invariant with some positive elements and some 

zeros, then, it indicates that the net can be returned to its initial marking by firing only 

a subset of the transitions. 

For the net in Figure A.1, the minimal, linearly independent (i.e., one is not a subset of 

another) transition-invariants are {[1, 1, 0, O], [O, 0, 1, 1]}. 

The definitions presented in this section are by no means exhaustive - the reader is 

referred to [26] for a well-written and comprehensive introduction to the theory and 

applications of Petri nets. 
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