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INTRODUCTION 

This document consists of four chapters, each reporting separate studies 

conducted during my doctorate program. All chapters are presented in formats 

suitable for publication in professional journals. 
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CHAPTER I 

ECOTOXICOLOGICAL RISKS ASSOCIATED WITH LAND TREATMENT OF 

PETROCHEMICAL WASTE. I. RESIDUAL SOIL CONTAMINATION AND 

BIOACCUMULATION BY CODON RATS (SIGMODON HISPIDUS) 

ABSTRACT 

Petrochemical waste contains both organic and inorganic contaminants 

that can pollute soil and may pose significant ecological risks to wildlife. 

Petrochemical waste typically is disposed of in land treatment units which are 

widespread throughout Oklahoma and the United States. Few studies have 

been conducted evaluating possible toxicity risks to terrestrial organisms residing 

on these units. In this study, the extent of soil contamination with fluoride (F), 

metals, and organic hydrocarbons, the bioaccumulation of F and metals in cotton 

rats (Sigmodon hispidus), the relationship between contaminants in soil and in 

tissues of cotton · rats, and the level of potentially toxic polycyclic aromatic 

hydrocarbons (PAHs) in soil was determined on land treatment units. Over a two 

year period, cotton rats and soils were collected and analyzed from five land 

treatment and matched reference units. The number of land treatment units with 

soil metal contamination (in parentheses) included: Cr, Cu, Pb (5); Al, As, Ni, Sr, 

Zn (4); Ba (3); and Cd, V (2). The number of land treatment units with soil PAH 

contamination (in parentheses) were naphthalene, phenanthrene, benzo (g,h,i) 

perylene (3); acenaphthene, anthracene, pyrene, benzo (a) anthracene, 
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chrysene, benzo (b) fluoranthene, benzo (a) pyrene, indeno (1,2,3-cd) pyrene, 

dibenz (a,h) anthracene (2); and acenaphthylene, fluorene, fluoranthene, benzo 

(k) fluoranthene (1). Total PAH and total petroleum hydrocarbons (TPH) were 

elevated at all five land treatment units. Mean sum of benzo (a) pyrene (B(a)P) 

equivalents (B(a)Pequiv) were not affected on land treatment units as compared to 

reference units. Units 1 and 3 were significantly higher in levels of metals, total 

PAH, TPH and B(a)Pequiv than the other units. Pb and F bioaccumulated in bone 

and Pb bioaccumulated in kidney of cotton rats. Fin bone of 496 to 2212 mg/kg 

was 3- to 15-fold greater than mean F in bone of cotton rats from reference units. 

Elevated levels of Pb in bone of 4.6 to 24.8 mg/kg was 460- to 2500-fold greater 

than mean Pb in bone of cotton rats from reference units. Elevated levels of Pb 

in kidney of 0.31 to 1.08 mg/kg was 10- to 36-fold greater than mean Pb in 

kidney of cotton rats from reference units. Bone F was an accurate predictor of 

the severity of dental fluorosis. Strong relationships were found between bone F 

and HCl-extractable F and bone F and total F in soils of land treatment units. A 

strong relationship was discovered between Pb in bone and Pb in soil. Land 

treatment appears to have been effective as a remediation technology in 

reducing levels of individual PAHs and the sum of B(a)P equivalents to 

background levels on units 2, 4, and 5 but not on units 1 and 3. This study 

shows that certain contaminants such as Pb and F tend to bioaccumulate in 

cotton rats collected from land treatment units. Land treatment was ineffective in 

reducing levels of these contaminants to background levels that will not pose an 

increase in risk to terrestrial mammals. Therefore to avoid accumulation of these 
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contaminants in cotton rats and their possible deleterious effects, these 

contaminants should be measured and land application rates of petrochemical 

waste should be managed to avoid excessive loading into soil systems. 
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INTRODUCTION 

The petrochemical refining industry utilizes a wide variety of chemicals in 

the processing of crude oil and produces a large quantity of hazardous and non

hazardous waste. In 1991, the petroleum industry produced approximately 123 

billion kg of hazardous waste (Bass et al. 1995). Much of this waste is usually 

disposed of or stored on site in land treatment units or in storage pits. Land 

treatment is a waste management technology that involves controlled application 

of wastes onto or into soil for the purpose of biodegradation of organics, 

immobilization of inorganics, and avoiding the bioaccumulation of hazardous 

chemicals (Loehr and Malina 1986). Land treatment of waste on petrochemical 

units can pose risks of exposure to terrestrial vertebrates as many of these areas 

are heavily vegetated and support populations of small mammals and other 

vertebrates. 

Land treatment of petrochemical wastes has been shown to reduce the 

concentrations of organic chemicals through biological degradation. However 

petrochemical waste usually contains various inorganics (i.e. metals and F) 

Which do not biodegrade and which may pose significant ecological risks to 

wildlife. Excessive F. exposure may cause weakening of bones and skeletal 

deformities in humans, domestic stock, and wildlife. Exposure to elevated F may 

result ih dental and skeletal changes (fluorosis) in certain species of wildlife 

(Boulton et al. 1994; Kierdorf et al. 1995; Vikoren and Stuve 1996). Fluorosis 

has been reported in cotton rats ( Sigmodon hispidus) collected from a F 

contaminated land treatment unit in Cyril, OK, USA (Paranjpe et al. 1994; 
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Schroder et al. 1999). Petroleum waste contains metals (Cr and V) and certain 

polycyclic aromatic hydrocarbons (PAHs) (benzo (a) pyrene, benzo (b and k) 

fluoranthene, chrysene, indeno (1, 2, 3,,.c,d) pyrene, dibenz (a, h) anthracene, 

benzo (a) anthracene and benzo (g,h,i) perylene) which have been shown to 

produce immunotoxic effects (Silkworth et al. 1995; IPCS 1986; Schroder et al. 

2000). Several of these chemicals are considered to be probable human 

carcinogens by the United States Environmental Protection Agency (U.S. EPA 

1993a). PAHs occur in the environment as complex mixtures of many 

components, which have wide varying toxic potencies (Santodonato et al. 1981 ). 

Only one of the PAHs, benzo (a) pyrene (B(a)P), has been widely studied and 

characterized toxicologically. The toxicity equivalency factor (TEF) approach has 

been adopted by the United States Environmental Protection Agency as a basis 

for human risk assessment (U.S. EPA 1993b) of PAHs. The TEF approach 

involves the separation of PAHs into two subclasses consisting of the 

carcinogenic and noncarcinogenic PAHs. The noncarcinogenic PAHs are 

assigned a factor of zero; the carcinogenic ones are assigned a factor 

determined by bioassays,. which compare their relative potencies to B(a)P. In 

this approach, concentrations of carcinogenic PAHs are multiplied by their 

appropriate TEF and summed as B(a)P equivalents for use in human risk 

assessments. . Recently the World Health Organization (WHO 1997) has 

recommended TEF. values for wildlife (fish, birds, and mammals) exposed to 

planar halogenated hydrocarbons such as dioxin for use in ecological risk 

assessments and it is possible that TEF values for wildlife exposed to PAH 
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mixtures will be developed in the near future. The World Health Organization 

(1997) concluded that there was insufficient data to discriminate between 

laboratory and wild mammalian species and decided that the TEFs for human 

risk assessment based on laboratory animals would be equally applicable to wild 

mammalian species. Therefore, the TEFs derived by the United States 

Environmental Protection Agency (1993b) for human risk assessment were used 

to calculate the sum of B(a)P equivalents in our study. 

Small mammals residing on land treatment units may be exposed to 

contaminants through a number of pathways including ingestion of contaminated 

soil, water, and food. Mammals have been utilized as indicators of contamination 

with residue being analyzed in whole-body or specific organs. Uptake of 

contaminants and transfer between trophic levels in small mammals for elements 

such as Cd, Pb, and F have been shown to occur at contaminated sites (Hunter 

et al. 1978; Andrews et al. 1989a, 1989b). Small mammals have been 

successfully used to document exposure and toxicity of both F and metals 

(Johnson et al. 1978; Roberts et al. 1978; Walton 1986a, 1986b; Boulton et al. 

1994; Schroder et al. 1999). Cotton rats are indigenous to Oklahoma and serve 

a critical as well as functional role in the terrestrial food chain. Cotton rats have 

proven beneficial as biomonitors for F, metals and organic chemicals (McMurry 

et al. 1991, 1994; Schroder et al. 1999, 2000; Rafferty et al. 2000; Kim et al. 

2001 ). Land treatment units utilized for the disposal of petrochemical wastes are 

widespread throughout Oklahoma and the United States. However, few studies 

have been conducted on these units to evaluate possible toxicity risks to 
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terrestrial organisms residing in these units. The objectives of this study were to 

(1) evaluate the extent of soil contamination with F, metals, and organic 

hydrocarbons on land treatment units; (2) determine bioaccumulation of F and 

metals in cotton rats residing on these land treatment units; (3) determine the 

relationship between contaminants in soil and in tissues of cotton rats collected 

from land treatment units; and (4) to determine if land treatment results in 

elevated levels of potentially toxic PAHs in soil. 

METHODS 

Study Units 

Five abandoned land treatment facilities that historically received 

petrochemical waste products generated by the oil refining industry were 

selected in Oklahoma. Location, climatological data, and a brief history of the 

units are shown in Table 1. Mean annual temperatures were about the same at 

all units but mean annual rainfall varied among units with precipitation at units 1 

and 2 lower than the other units (Table 1 ). Over a two year period cotton rats 

and soils were · collected • and analyzed from these facilities and matched 

reference units. All land treatment facilities (Units 1-5) are privately owned 

(remaining anonymous) in Oklahoma and support resident populations of cotton 

rats. Adjacent reference units that showed no visible evidence of petrochemical 

contamination were identified within 5 km of each facility and chosen based on 

their vegetative and topographic similarity with their matched land treatment unit. 

Contaminated units and their matched reference units all consisted of disturbed 

terrestrial ecosystems with predominantly early seral stage plant species. The 
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most prominent plant species on these units were johnsongrass (Sorghum 

halapense L.), little bluestem (Schizachyrium scoparium Nash), big bluestem 

(Andropogon gerardii Vitman), brome (Bromus spp.), and bermuda grass 

(Cynodon dactylon L.). Trapping grids consisted of eight lines with eight traps 

per line and a total of 64 traps were utilized in the collection of animals. 

Collection and Analysis of Soils 

Surface soils (< 2cm) were collected from trapping grids on the land 

treatment facilities and the reference units. Land treatment facilities and their 

matched reference units were divided into six sub-units and a composite sample 

consisting of six subsamples was collected from each sub-unit. Soils were 

stored and transported in sealed acid washed glass jars. Soils were air-dried and 

sieved to pass a 2 mm screen prior to analysis. 

Soil properties (pH, organic carbon, texture, and electrical conductivity) 

were measured from the collected samples. Soil pH was determined in a 1 :2 

soil: 0.01 M CaC'2 suspension (Thomas 1996). Automated dry combustion was 

utilized to determine soil organic carbon (Nelson and Sommers 1996). Soil 

texture was determined by the hydrometer method (Gee and Bauder 1986). 

Electrical conductivity of a 1 :5 soil:deionized water extract was measured 

(Rhoades 1996). 

Metals (Al, As, Ba, Cd, Cr, Cu, Ni, Pb, Sr, Ti, V, Zn) in soil were digested 

by microwave according to U.S. EPA Method 3051 (USEPA 1994). Metals in 

acid digests were evaluated using inductively coupled plasma atomic emission 

spectroscopy (ICP-AES). Both total F content and potentially bioavailable F of 
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soils were measured. Because acid extractions of soils result in low recoveries 

of total F (Hall 1968; Cooke et al 1976; Venkateswarlu 1983; Andrews et al 

1989b), fusion with NaOH was utilized to measure total F content of soil 

(McQuaker and Gurney 1977). F, in the fused soil sample, was determined 

using a combination F ion-selective electrode (Orion 960900, Beverly, MA, USA). 

A weak acid extraction (0.03 M HCI, pH 1.5) followed by potentiometric 

determination was used to measure the potentially bioavailable F (Walton 1987, 

Schroder et al. 1999, 2000). 

PAHs (naphthalene, acenaphthylene, acenaphthene, fluorene, 

phenanthrene, anthracene, fluoranthene, pyrene, benzo (a) anthracene, 

chrysene, benzo (b) fluoranthene, benzo (k) fluoranthene, benzo (a) pyrene, 

indeno (1,2,3-cd) pyrene, dibenz (a,h) anthracene, and benzo (g,h,i) perylene) 

were extracted using accelerated solvent extraction according to U.S. EPA 

Method 3545 (USEPA 1996a) (Dionex ASE Model 200, Dionex Corporation, 

Houston, TX, USA) and quantified by gas chromatography with mass 

spectroscopic detection (GC-MS, Hewlett-Packard 5890 Series II with 5971 

MSD, Hewlett-Packard, San Fernando, CA, USA) according to U.S. EPA Method 

8270 (USEPA 1996b). The following conditions were used for the extraction of 

PAHs and TPH: system pressure (1500 psi), oven temperature (100°C), sample 

size (10 g), oven heat up time (5 min), static time (5 min), solvent (1: 1 mixture 

dichloromethane/acetone), number of cycles (2). The following GC-MS 

conditions were used for the analysis of PAHs: column 30 m, 0.25 mm ID, 0.25 

µm df, Restek Rtx® -5 (Crossbond® 5% diphenyl/95% polysiloxane); 1 µL splitless 
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injection; oven temperature 40°C to 150°C at 15°C/min then 6°C/min to 300°C 

and hold for 10 min; 265°C injector temperature; 300°C detector temperature; 

helium carrier gas at linear velocity of 50cm/sec set at 300°C. Single ion 

monitoring (SIM) with mass spectroscopic detection was utilized to measure the 

low concentrations of PAHs in our study. Total petroleum hydrocarbons (TPH) 

were extracted using accelerated solvent extraction and analyzed by gas 

chromatography with flame ionization detection according to the Wisconsin 

method (Wisconsin Department of Natural Resources 1993). The following GC 

conditions were used during the analysis of TPH: column 30 m, 0.25 mm ID, 0.25 

µm df; , Restek Rtx® -5 (Crossbond® 5% diphenyl/95% polysiloxane); 1 µL split 

injection; oven temperature 40°C to 150°C at 15°C/min then 6°C/min to 300°C 

and hold for 10 min; 265°C injector temperature; 300°C detector temperature; 

helium carrier gas at linear velocity of 50cm/sec set at 300°C. 

Collection of Animals and Preparation of Tissue 

A total of 12 adult cotton rats were collected from each grid for every land 

treatment unit and the matched reference unit during summer (August 1998, 

1999) and winter (January - February 1999, 2000) using Sherman live traps 

baited with rolled oats (N = · 240 per year). Following capture, the rats were 

housed for 48 hr. and sacrificed by exsanguination. Two humeri and two femurs 

from each rat were cleaned of excess tissue with a scalpel and scissors, freeze

dried, and weighed. The humeri were placed in petroleum ether for 96 h with 

daily changes to remove fat (Paranjpe et al. 1994) to prepare them for F analysis. 

One kidney per rat was removed, freeze-dried, and weighed for subsequent 
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metal analysis. Skulls were removed and fixed in formalin for later evaluation of 

incisors for evidence of dental fluorosis. 

Analysis of Tissues 

Each pair of femurs was acid digested by a method adapted from 

Andrews et al. (1989a). Each pair of femurs (200 mg) was refluxed with 5 ml of 

concentrated trace metal HN03 on a hotplate at 95°C for 1 hr. Digested material 

was diluted with deionized distilled water to 10 ml and metals (Ba, Cd, Cr, Cu, Ni, 

Pb, Sr, Ti, Zn) were analyzed by ICP-AES. Kidneys were digested in the same 

manner and analyzed by ICP-AES. For bone F analysis, each pair of humeri 

(100 mg) was ash dried in porcelain crucibles overnight at 550°C (Singer and 

Armstrong 1968). Ashed bone was ground with a mortar and pestle and 

subsequently dissolved in 0.25 M HCI. The digest was then neutralized with 

0.125 M NaOH. Sample solution (5 ml) was combined with 5 ml of TISAB II 

buffer (Orion No. 940909) to adjust ionic strength and inhibit complexation of F 

by Fe and Al (Orion 1991 ). F was measured using· an Orion F combination 

electrode. Calibration · standards were prepared in a similar manner using 

certified 100 mg F/L standard (Orion No. 940907). Bone F content was 

expressed as mg F/kg on a freeze-dried basis. 

Scoring Of Teeth for Dental Lesions 

Scoring of incisors was performed to document gross morphological 

lesions commonly referred to as dental fluorosis, using a system previously 

described for mammals and summarized in Table 2 (Schupe et al. 1972; Boulton 

et al. 1994). All rats were assigned a random number to prevent bias and were 
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scored blinded by two different analysts for confirmation. Incisor scores were 

reported as an average of the two scores. 

Quality Assurance and Quality Control 

Blanks, spikes, and certified reference materials were digested/extracted 

and analyzed for quality assurance and quality control of metals, PAHs, and TPH 

in soil. Blanks, spikes, and certified reference materials were digested/extracted 

and analyzed for every six soil samples. Digested blanks contained below 

detection limit concentrations of all metals (Table 3). Mean recoveries of metal in 

certified reference soil (CRM020-050, RTC Corporation, Laramie, WY, USA) 

ranged from 91 to 110% with relative standard deviations ranging from 1.1 to 

4.2% (Table 3). Spike recoveries for metals in soil ranged from 90 to 100%. 

Due to lack of an available certified reference material, blanks and spikes 

recoveries were used for quality assurance and quality control in the analysis of 

total and bioavailable F in soil. Laboratory quality assurance and quality control 

procedures showed that the fusion procedure recovered 95 to 105% of the F 

spikes added to soil and the HCl-extractable recoveries ranged from 90 to 95% 

of F spikes. Reagent blanks carried through both procedures contained below 

detection limits of F. Detection limits for the fusion procedure were 10 mg F/kg 

soil and the detection limits for the HCl-extractable procedure were 0.5 mg F/kg 

soil. Mean recoveries of PAHs in certified reference soil (CRM104-100, RTC 

Corporation, Laramie, WY, USA) ranged from 71 to 101 % and the relative 

standard deviations ranged from 2.7 to 6.2 % (Table 3). Mean recovery of TPH 

in certified reference soil (CRM350-100, RTC Corporation, Laramie, WY, USA) 
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was 94% and the mean relative standard deviation was 6.3%. Spike recoveries 

for PAHs in soil ranged from 80 to 110% and spike recoveries for TPH in soil 

ranged from 90 to 100%. Extracted blanks consisting of sand that had been 

muffled furnaced overnight at 550°C contained below detection limit 

concentrations of all PAHs and TPH (Table 3). 

Blanks, spikes, and standard reference material (National Institute of 

Standards and Testing bone meal SRM 1486) were analyzed for quality 

assurance and quality control of metals and F in tissue. Blanks, spikes, and 

certified reference materials were digested and analyzed for every ten tissue 

samples. Ashed and digested blanks contained below detection limit 

concentrations of metals and F. Mean recovery for F in bone was 97% with a 

relative standard deviation of 2.5% (Table 3). Recovery for Sr in bone averaged 

92% with a relative standard deviation of 1.8%. The mean recovery for Zn in 

bone was 93% with a relative standard deviation of 1.2%. Spike recoveries of 

metals and F in the analyses of tissue ranged from 95 to 100%. 

Statistical Analysis 

Soil data were analyzed as a randomized complete block design using 

PROC GLM (SAS Institute 2001). Data were transformed using the natural 

logarithm function to adjust for heterogeneity of variance. The means of each 

contaminant of each land treatment unit were compared to the combined mean 

· of all reference units for each contaminant using Duncan's multiple range test to 

determine organic and inorganic contamination of land treatment units. 
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Tissue data were analyzed using PROC MIXED (SAS Institute 2001) as a 

split block arrangement in a randomized block design with subsampling where 

units were considered blocks, treatments were the main factor, and season as 

the split-unit factor. A log transformation of data was used to control the 

heterogeneity of variance. Analysis of the simple effects of treatment (controlling 

for season) was performed using the SLICE option with the LSMEANS statement 

(SAS Institute 2001) when the treatment by season interaction was significant. 

All reference units were combined and Duncan's multiple range test was used to 

determine contamination of land treatment units. Pearson's linear correlation 

coefficients were calculated using PROC REG (SAS Institute 2001) to evaluate 

the relationship between mean metal and F content in tissue and soil for the 

study units. 

RESULTS 

Soil Properties 

The soil pH of the units was near neutral (mean of 6.7) (Table 4) and 

typical of most Oklahoma soils which have an average pH of approximately 6.3 

and may range in pH from 4.1 to 8.5 (Schroder 2001, unpublished data). All soils 

at the units had similar soil texture of loam. Soil electrical conductivity was not 

elevated and was less than 1.5 dS/m, which is the salinity level that might affect 

. growth of salt sensitive plant species. Soil organic carbon was elevated as 

compared to· typical Oklahoma soils and was likely due to residual 

petrochemicals. Oklahoma soils average 1.3% organic carbon and may range in 

organic carbon content· from 0.3 to 2.6% (Schroder 2001, unpublished data). 
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Both the soil pH and the electrical conductivity of these units are conducive of 

good growth conditions and indeed the units in our study are heavily vegetated. 

Extent of Soil Contamination 

Metal concentrations in soil were significantly elevated on land treatment 

units as compared to reference unitsfor As, Cr, Ni, Pb and Zn (Table 5). Mean 

concentrations of all metals except Ti on reference units were similar to values 

reported for baseline soils of Oklahoma (Table 5). Titanium concentrations of 

baseline soils reported by Kabata-Pendias and Pendias (1984) were summarized 

from studies that used hydrofluoric acid (HF) in the digestion procedure. Most Ti 

in soil occurs as Ti02 which can only be dissolved using HF. In this study, soil Ti 

levels from land treatment units and reference units were determined by U.S. 

EPA Method 3051, which doesn't utilize HF. Thus, Ti concentrations measured in 

our study are lower than soil Ti levels measured by HF digestion. The number of 

land treatment units (in parentheses) that had elevated levels of metal in soil as 

compared to the mean of all the reference units were Cr, Cu, Pb (5); Al, As, Ni, 

Sr, Zn (4); Ba (3); Cd, V (2); and Ti (0) (Table 6). Soils from three or more of the 

land treatment units were elevated in Al, As, Ba, Cr, Cu, Ni, Pb, Sr, and Zn. 

Aluminum . in · land treatment soil was significantly elevated and was 

approximately 1.5-fold greater than the overall mean for reference units. 

Similarly, land treatment contaminated soils were elevated in As (2- to 4-fold), Ba 

(approximately 1.5 fold), Cr (3- to 85-fold), Cu (2- to 140-fold), Ni (1.5 to 2-fold), 

Pb (2- to-150-fold), Sr (1.5 to 14-fold), and Zn (6- to 17-fold). In general, Units 1 

and 3 had much higher levels of metal in soil than the other sites in our study. 
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Total F in soil and HCl-extractable F in soil were markedly elevated on all 

five of the land treatment units (Table 5). Total soil F of reference units was 

similar to total F in baseline soil, which ranges from 10 to 400 mg/kg (Table 5). 

The HCl-extractable F of reference site soils was also similar to HCl-extractable 

F in baseline soils. The total F was 6- to 34-fold greater on the land treatment 

units as compared to the overall mean of the reference units; HCl-extractable F 

was 50- to 210-fold greater (Table 6). In a prior investigation of petrochemical

contaminated units, Schroder et al. (2000) found elevated levels of both total F 

(range of 878 to 5257 mg/kg) and HCL-extractable F (range of 22 to 1026 mg/kg) 

in soil that received applications of oily sludges containing HF. In general, most 

land treatment units in our study had similar levels of both total F and HCl

extractable Fas was reported by Schroder et al (2000). 

PAH concentrations in soil were only significantly elevated on land 

treatment units as compared to reference units for naphthalene, acenaphthene, 

and benzo (g,h,i) perylene (Table 7). The majority of PAH concentrations in 

reference soils of our study were < 0.01 mg/kg which is the typical endogenous 

level for PAHs in soils· as reported by Edwards (1983). Comparison using the 

Duncan's multiple range test indicates that there were differences between units 

in regard to the sixteen PAH concentrations. The number of land treatment units 

(in parentheses) that had elevated levels of PAHs in soil as compared to the 

mean of all the reference units were naphthalene, phenanthrene, benzo (g,h,i) 

perylene (3); acenaphthene, anthracene, pyrene, · benzo (a) anthracene, 

chrysene, benzo (b} fluoranthene, benzo (a) pyrene, indeno (1,2,3-cd) pyrene, 
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dibenz (a,h) anthracene (2); and acenaphthylene, fluorene, fluoranthene, benzo 

(k) fluoranthene (1) (Table 8). TPH were elevated at all five land treatment units 

as compared to reference units (Table 7) and all five units exceeded the action 

level of 50 mg TPH/kg soil that has been established by Oklahoma (Table 8). 

Total PAH concentrations in soil were markedly elevated but the B(a)Pequiv was 

not affected on land treatment units as compared to reference units (Table 7). 

Examination using the Duncan's multiple range test shows that Units 1 and 3 

have much higher concentrations of total PAH and the sum of B(a)Pequiv than the 

other units in our study (Table 8) 

Tissue Content 

Previous studies indicated that nine metals and F listed in Table 9 had a 

tendency to accumulate in tissue (Schroder et al. 2000). Therefore the 

investigation in this study was limited to the same nine metals and F. Metals that 

did not accumulate (Al, As, V) in tissue in previous studies are not reported in 

Table 7 (Schroder 2000). The mean content of Pb in bone was significantly 

elevated for cotton rats collected from land treatment units compared to 

reference units (Table 9). A significant treatment by season interaction did not 

exist for Pb content in bone or in kidney. The elevated concentrations of Pb in 

bone were approximately 460- to 2500-fold greater than the overall mean of the 

Pb in cotton rats collected from the reference units (Table 9). The elevated 

concentrations of Pb in kidney were approximately 10- to 36-fold greater than the 

overall mean of the Pb in cotton rats collected from the reference units (Table 

10). The overall mean content of Fin bone of cotton rats was markedly elevated 
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3- to 15-fold at land treatment units as compared to reference units (Table 9). A 

significant treatment by season interaction did not exist for F content in bone. 

Dental Lesions 

Approximately 62% of the cotton rats collected from land treatment units 

had dental lesions with approximately 43% of them having a score of 2: 3. The 

majority(> 90%) of the cotton rats collected from the reference units did not have 

dental lesions. Severity of lesions varied among units and ranged from a score 

of zero (normal incisors) to a score of 5 (white chalky lower and upper incisors). 

F prevalence was not higher in winter than in summer. Regression analysis 

indicated there was a strong relationship (r = 0. 78) between incisor score and F 

content in bone of cotton rats. 

Bone and Soil Concentration Relationships 

Regression analysis found a strong relationship between F content in 

bone and total F in soil (r = 0.93, Figure 1A) and F content in bone and HCl

extractable F in soil (r = 0.73, Figure 1 B). A strong relationship was found 

between Pb content in bone of cotton rats and Pb in soil (r = 0.96). Significant 

relationships between other metal concentrations in soil (Ba, Cd, Cr, Cu, Ni, Sr, 

Ti, and Zn) and concentrations in tissue of cotton rats were not found. 

DISCUSSION . 

Petrochemical waste disposal resulted in elevated levels of Al, As, Ba, Cr, 

Cu, Ni, Pb, Sr, Zn, and F in soil of the majority of land treatment units. The 

greatest degree (up to more than 50 times background) of soil metal 

contamination was found for Cr, Cu, Pb, and F and occurred on Units 1 and 3. 
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Loehr et al. (1993) investigated a land treatment unit where petrochemical waste 

had been applied for more than 30 years and found elevated Cr (280 mg/kg), Pb 

(130 mg/kg), Ni (110 mg/kg), and Zn (235 mg/kg) in soils. In general, the soils 

from Units 1 and 3 of our study had higher levels of soil Cr, Pb, and Zn but lower 

levels of Ni as reported by Loehr et al. (1993). 

Total petroleum hydrocarbons and total PAH were elevated at all units 

with the degree of greatest contamination occurring at Units 1 and 3. Some 

PAHs (naphthalene, phenanthrene, and benzo (g,h,i) perylene) were also 

elevated in soils of the majority of land treatment units. The degree of soil 

contamination for these three PAHs was greater than 68 times background 

levels. Loehr et al (1993) found elevated levels of PAHs in the zone of 

incorporation of a land treatment unit where petrochemical waste had been 

applied for more than 30 years. However, the concentrations of PAHs reported 

by Loehr et al. (1993) in 15 cm core samples were 10- to 250-fold greater than 

the elevated concentrations of PAHs found on Units 1 and 3 of our study. The 

. differences in PAH concentrations are probably due to different sampling depths 

· because the type of petroleum waste applied to soils in this and other studies are 

similar. Our study sampled soils at depths of < 2 cm where enhanced 

microclimatic and biodegradation processes may be occurring in an attempt to 

better link soil-concentrations to exposure of cotton rats. Other factors, such as 

climate, moisture, and the time since the last application of petrochemical waste 

may also account for the differences in concentrations between studies. 
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Wilson and Jones (1993) reviewed international clean up standards and 

reported that most countries use site-specific clean up standards while Canada 

has established a remediation criteria of 0.1 mg/kg for PAHs. This remediation 

criterion is the concentration that is considered generally protective of human and 

environmental health in soils and is used as a screening level to determine if 

further investigation is needed at a site. Units 1 and 3 have concentrations of 

PAHs that greatly exceed the Canadian remediation criteria and have much 

higher concentrations of PAHs than the other units in our study. Thus these units 

would require further investigation to determine the degree of risk posed to 

human and ecological health. Potential risk to humans from carcinogenic PAHs, 

measured by the sum of B(a)P equivalents, was on average slightly elevated 

across all land treatment units. Land treatment appears to have been effective 

as a remediation technology in reducing levels of individual PAHs and the sum of 

B(a)P equivalents to background levels on Units 2, 4, and 5 but not on Units 1 

and 3. Units 1 and 3 but not Units 2, 4, and 5 may pose risk from elevated levels 

of carcinogenic PAHs in soil. 

The soils from Units 1 and 3 contained higher levels of metals, PAHs, total 

. PAH, and the sum of B(a)P equivalents than the other units in this study. There 

is limited historical data available for the units in our study but it possible that 

units 1 and 3 were managed differently than the other units of our study. The 

type of waste applied to ·each site was similar but it is possible the amount of 

petrochemical sludge applied to land was greater at Units 1 and 3 or that the 

waste applied to these units was more contaminated than at the other units. 
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Elevated levels of Pb and F were found in bone of cotton rats collected 

from some of the land treatment units. Total F in bone of cotton rats from 

reference units was similar to total F reported in other small mammalian studies 

conducted on uncontaminated units (Kay et al. 1975; Schroder et al. 1999). 

Levels of Pb in bone and kidney of cotton rats collected from reference units in 

our study were similar to reported values in bone and kidney of rodents collected 

from non-contaminated units which typically range from zero to < 3 mg/kg (Ma 

1996). Venugopal and Luckey (1978) indicated chronic Pb exposure may result 

in renal dysfunction, reduced growth, and impairment of reproduction in 

mammals. Ingestion is the most common route of exposure for Pb and more 

than 90% of Pb tends to bioaccumulate in bone of small mammals (Talmage and 

Walton 1991). Several studies have shown that Pb tends to bioaccumulate in 

small mammals collected from highly contaminated Pb-zinc mining sites 

(Johnson et al. 1978; Roberts et al. 1978; Roberts and Johnson 1978; Andrews 

et al. 1989a). Our study shows that Pb accumulates in bone of cotton rats 

collected from land treatment units even though concentrations of Pb in soil at 

these units are much lower than the Pb-zinc mining sites. These results are very 

similar to those reported by Schroder et al. (2000) who found elevated levels of 

Pb in bone of cotton rats collected from petrochemical-contaminated sites. 

Cotton rats collected from Units 1 and 3 bioaccumulated Pb in bone and kidney 

to a greater extent than the cotton rats of the others units of our study and this is 

consistent with higher levels of Pb contamination in soils of these units. Although 

elevated levels ofCr, Cu, Ni, Sr, and Zn were found in soils of these units, these 
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metals did not bioaccumulate in tissues of cotton rats collected from land 

treatment units. 

Dental lesions have been noted in several species of small mammals 

collected from sites with elevated levels of F in soil (Walton 1986 a, 1986 b, 

Cooke et al. 1996, Schroder et al. 1999, 2000). The greatest impact on cotton 

rats was associated with F contamination of land treatment units. Cotton rats 

collected from the land treatment units displayed dental lesions, a classic sign of 

fluorosis, consistent with elevated levels of F in all soils of the land treatment 

units. Fluoride contamination of soil resulted in severe degradation of teeth in 

cotton rats. Increased levels of F in bone have been associated with elevated 

levels of Fin soil (Wright and Davison 1978; Andrews et al. 1982; 1989b). The 

results of this study are consistent with those of Schroder et al. (1999) who 

reported a mean of 1515 mg F/kg in bone of cotton rats collected from a landfarm 

that had received oily sludges containing hydrofluoric acid. 

A strong relationship was found between F content in bone of cotton rats 

and HCl-extractable F and total F · in soil. Regression analysis found a strong 

relationship between Pb content in bone and Pb in soil. However, the degree of 

contamination of bone with· Pb was much smaller than F. Although elevated 

levels of other metals occurred in soils from the land treatment units, other 

metals did not bioaccumulate in bone of cotton rats and strong relationships were 

not found between metal content of bone and soil metal concentrations. The 

results of this study are similar to one conducted by Shore (1995) who examined 

published studies on small mammals and soil concentrations of Pb and F. He 
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reported strong relationships existed for Pb in bone of wood mice and field voles 

and Pb in soil. 

Land treatment is a waste management technology where microbial 

communities in soil are used to degrade and detoxify oily petrochemical sludges. 

Up to 100 g oil waste/kg soil is commonly applied in land treatment operations. 

Land treatment is successful in degradation of most (>99%) of the organic 

compounds in the oily waste. However, small amounts of TPH and PAHs appear 

recalcitrant remaining in soil after 10-20 years. Land treatment was not effective 

in reducing levels of total PAHs and TPH to background levels on any of the units 

in our study. The potential risk to human and environmental health from small 

amounts of remaining TPH and PAHs is unclear. Limited information is available 

on risk posed from low level contamination of soil from TPH and PAH. 

Therefore, screening levels are usually based on background levels of these 

compounds. Most risk from these organic contaminants is associated with 

carcinogenic PAHs. Therefore, an index of potential toxicity associated with 

potential carcinogenic PAH, sum of B(a)P equivalents, should be more accurate 

than total contaminant concentrations at assessing risk from recalcitrant organic 

contaminants in soil. Land treatment effectively reduced both levels of individual 

PAHs and the sum of B(a)P equivalents to background levels on Units 2, 4, and 

5. Organic contaminants should pose little risk at these units. However, 

individual PAHs and the sum of B(a)P equivalents were not reduced to 

background at Units 1 and 3. Land treatment increased risk of exposure to 
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carcinogenic PAHs at these units although the magnitude of the increase 1s 

unknown. 

Soil contamination from inorganics (i.e. metals, F) in sludge associated 

with land treatment is much greater than organic compounds. Inorganic 

compounds do not biodegrade but can be immobilized by soil and made less 

available and pose less risk with time. Results from this and other studies clearly 

show that land application of petrochemical waste results in a large degree of soil 

contamination with Pb and F and subsequent bioaccumulation of these 

contaminants in cotton rats. Land treatment was ineffective in reducing these 

inorganic contaminants to levels that may not pose a significant risk to terrestrial 

mammals. Therefore to avoid accumulation of these contaminants in cotton rats 

and their possible deleterious effects, these contaminants should be measured 

and land application rates of petrochemical waste should be managed to avoid 

excessive loading of these contaminants into soil systems. 
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Table 1. Location, climatological data, and history of land treatment units in Oklahoma. 

Unit Location Mean annual Mean annual History 

rainfall (cm) temperature (Date of last petrochemical 

(OC) waste application) 

1, 2 Southwest OK 82.8 17.1 1983 

Stephens County 

3 Northcentral OK 132 15.4 Unknown 

Kay County 

4,5 Northeast OK 116 14.9 1981 

Creek County 

34 



Table 2. Scoring system for assessing severity of fluoride-induced lesions in incisors of cotton 

rats collected (1998-2000) from five land treatment units andaa matched reference units in 

Oklahoma. 

Score 

0 

1 

2 

3 

4 

5 

Incisor Characteristics 

Normal: smooth, glossy deep yellow-orange 

Slight striation or mottling in lower incisor 

Definite mottling or striation (white chalky) in lower incisors 

White chalky lower incisors; slight mottling in upper incisors 

White chalky lower incisors; definite striation (or mottling) in upper incisor 

White chalky lower and upper incisors 
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Table 3. Mean recovery, relative standard deviations, and detection limits for ten replicate 
analyses of metals, fluoride, PAHs, and TPH in standard reference materials(SRM). 

SRM Contaminant Mean Recovery RSD Detection Limit 
(%) (%) 

Soil CRM020-050 Al 99 1.2 0.50 
As 103 2.3 0.50 
Ba 99 2.3 0.05 
Cd 110 1.1 0.05 
Cr 107 3.8 0.05 
Cu 94 4.1 0.40 
Ni 100 2.4 0.10 
Pb 91 4.2 0.75 
Sr 107 1.9 0.35 
Zn 105 3.7 0.10 

Soil CRM104-100 Naphthalene 81 3.5 0.004 
Acenaphthylene 84 3.8 0.004 
Acenaphthene 75 3.9 0.004 

Fluorene 71 3.1 0.004 
Phenanthrene 100 3.0 0.004 
Anthracene 81 3.6 0.004 

Fluoranthene 84 4.6 0.004 
Pyrene 93 4.4 0.004 

Benzo (a) anthracene 87 4.4 0.004 
Chrysene 79 6.2 0.004 

Benzo (b) fluoranthene 96 3.3 0.004 
Benzo (k) fluoranthene 96 4.5 0.004 

Benzo (a) pyrene 92 2.7 0.004 
lndeno (1,2, 3-cd) 98 4.0 0.004 

pyrene 
Dibenz (a,h) 85 4.4 0.004 
anthracene 

Benzo(g,h,i) perylene 101 3.1 0.004 
Soil CRM350-100 TPH 94 6.3 10.0 
Bone SRM 1486 F 97 2.5 25.0 

Sr 92 1.8 0.35 
Zn 93 1.2 0.10 

Detection limits for soil are expressed as mg contaminant/kg soil and detection limits for bone are 
expressed as mg contaminant/kg bone. 
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Table 4. Soil properties of land treatment study units. 

Unit Soil pH Soil oca Soil texture Soil EC6 

1 7.1 3.2 Sandy clay loam 0.17 

2 6.0 1.9 Loam 0.14 

3 7.3 4.9 Loam 0.39 

4 6.5 2.7 Loam 0.12 

5 6.4 3.3 Silt loam 0.01 

a Organic carbon content in %. 

b Electrical conductivity (dS/m). 
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Table 5. Comparison of the mean, median, and range of contaminant concentrations (inorganics) in soils collected (1998) from five land 
treatment units and matched reference study units in Oklahoma with baseline soil values. 

Mean Median Range of 
Contaminant Concentration Contaminant Concentration Contaminant Concentration 

Contaminant Treatment Reference Baseline Treatment Reference Treatment Reference Baseline 
units units soils units units units units soils 

Al 23,900 17,500 71,000 25,600 15,600 8,260-38,400 9,040-33,800 10,000-300,0003 

As 9.56* 3.44 7.20 9.29 3.38 1.92-19.6 1.96-5.34 0.10-97.0b 
Ba 232 174 580 261 153 81.1-360 118-453 100-3000b 
Cd 0.35 0.13 0.22 0.20 0.09 0.00-1.27 0.00-0.49 0.00-0.61c 
Cr 429* 19.4 39.0 105 18.9 19.9-2,490 10.2-29.0 5.0-1,000 b 

Cu 219 6.83 10.5 19.0 6.06 6.62-1,290 3.55-13.2 2.7-23.9c 
Ni 19.4* 11.0 21.0 20.1 10.1 5.62-43.6 6.16-19.8 6.1-41.7c 
Pb 556* 10.2 16.5 60.6 8.90 14.8-2,450 5.16-29.9 5.1-27.2c 
Sr 95.1 22.3 200 40.4 20.8 12.9-490 8.07-43.8 10.0-500e 
Ti 230 245 2,770 246 183 81.1-332 136-559 684-4,080c 
V 38.1 31.1 31.7 39.3 29.8 14.4-63.1 16.2-56.8 3.8-81.0c 
Zn 330* 52.8 31.7 218 48.2 38.9-1160 29.6-102 22.3-127c 

w HCLF 591* 4.50 4.03 614 4.19 41.9-1,203 1.89-8.31 0.6-26.5d co 
Fusion F 3,490* 161 360 2710 140 374.7-10, 100 86.7-345 10.0-400e 

All values are in mg/kg soil. 
8 Lindsay 1979. 
bAdriano 1986. 
cscott 1994. 
dSchroder et al. 2000. 
eKabata-Pendias and Pendias 1984. 
*significant from reference unit (p < 0.05) 



Table 6. Mean concentrations of metals and fluoride in soils collected (1998) from five land 

treatment units and matched reference study units in Oklahoma. 

Land Treatment Unit 

Metal 1 2 3 4 5 Reference units 

Al 29,700 a* 11,400 C 24,000 a* 24,000 a* 30,300 a* 17,500 b 

As 12.0 a* 3.57 C 15.2 a* 7.55 b* 9.53 b* 3.44 C 

Ba 289 a* 101 d 310 a* 210 be 250 ab* 174 C 

Cd 0.36 b* 0.09 cd 1.10 a* 0.19 C 0.02 d 0.13 cd 

Cr 300 b* 31.0 e* 1650 a* 111 c* 53.1 d* 19.4 f 

Cu 94.5 b* 11.4d* 955 a:* 21.3 c* 12.6 d* 6.83 e 

Ni 25.1 a* 7.63 d 30.2 a* 15.8 b* 18.4 b* 11.0 C 

Pb 1490 a* 54.6 b* 1190 a* 29.8 c* 18.7 d* 10.2 e 

Sr 77.7 b* 18.0 d 309 a* 38.4 c* 31.9c* 22.3 d 

Ti 249 a 118 b 301 a 220 a 259 a 245 a 

V 50.1 a* 17.4 C 32.7 b 39.0 ab 51.2 a* 31.1 b 

Zn 253 b* 52.3 d 878 a* 309 b* 154 c* 52.8 d 

HCIF 652 a* 946 a* 292 b* 843 a* 223 c* 4.50 d 

Fusio 5550 a* 2730 c* 3030 be* 5170 ab* 981 d* 161 e 

nF 

All values are in mg/kg soil. An asterisk indicates values are greater (p < 0.05) than the mean of 

reference units. Mean values with the same letter are not significantly different within a row. 
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Table 7. Comparison of the mean, median, and range of contaminant concentrations (organics) in soils collected (1998) from five land 
treatment units and matched reference study units in Oklahoma with baseline soil values. 

Mean Median Range of 
Contaminant Concentration Contaminant Concentration Contaminant Concentration 

Contaminant Treatment Reference Treatment Reference TE Fa Treatment Reference 
units units units units units units 

Naphthalene 0.290* 0.003 0.195 0.005 0.0 0.019-1.120 0.000-0.009 
Acenaphthylene 0.017 0.000 0.000 0.000 0.0 0.000-0.380 0.000-0.000 
Acenaphthene 0.002* 0.000 0.000 0.000 0.0 0.000-0.010 0.000-0.000 
Fluorene 0.009 0.000 0.000 0.000 0.0 0.000-0.128 0.000-0.000 
Phenanthrene 0.514 0.024 0.138 0.002 0.0 0.009-2.36 0.000-0.130 
Anthracene 0.354 0.000 0.044 0.000 0.0 0.006-3.21 0.000-0.000 
Fluoranthene 0.070 0.001 0.009 0.000 0.0 0.000-0.472 0.000-0.007 
Pyrene 0.390 0.002 0.062 0.000 0.0 0.008-2.46 0.000-0.017 
Benzo (a) anthracene 0.309 0.003 0.044 0.000 0.1 0.008-1.98 0.000-0.17 
Chrysene 0.685 0.003 0.081 0.000 0.001 0.012-5.59 0.000-0.032 
Benzo (b) fluoranthene 0.308 0.007 0.031 0.008 0.1 0.013-2.50 0.000-0.018 

~ Benzo (k) fluoranthene 0.023 0.000 0.008 0.000 0.01 0.000-0.302 0.000-0.004 
0 Benzo (a) pyrene 0.325 0.006 0.050 0.007 1.0 0.000-2.23 0.000-0.021 

lndeno (1,2, 3-cd) 0.386 0.004 0.046 0.006 0.1 0.016-3.25 0.000-0.010 
pyrene 
Dibenz (a,h) 0.298 0.002 0.060 0.000 1.0 0.016-1.76 0.000-0.010 
anthracene 
Benzo(g,h,i) perylene . 3.029* 0.002 0.700 0.000 0.0 0.006-19.9 0.000-0.021 
TPH 1,050* 28.7 810 24.5 127-5,910 0.000-78 
Total PAH 6.99* 0.057 1.30 0.032 0.184-36.4 0.000-0.221 
B(a)P esuiv 0.724 0.010 0.122 0.008 0.030-4.32 0.000-0.036 

All values are in mg/kg soil. 
aToxicity Equivalency Factor (U.S. EPA 1993). 
*significant from reference site (p < 0.05). 



Table 8. Mean concentrations of polycyclic aromatic hydrocarbons in soils collected (1998) from five land 
treatment units and matched reference study units in Oklahoma. 

Land Treatment Unit 
Metal 1 2 3 4 5 Reference Units 
Naphthalene 0.607 a* 0.033 C 0.505 a* 0.255 b* 0.053 C 0.003 C 

Acenaphthylene 0.000 b 0.000 b 0.006 b 0.078 a* 0.002 b 0.000 b 
Acenaphthene 0.000 C 0.001 be 0.004 ab* 0.004 a* 0.002 be 0.000 C 

Fluorene 0.000 b 0.002 b 0.035 a* 0.008 b 0.002 b 0.000 b 
Phenanthrene 0.596 b* 0.168 c* 1.63 a* 0.148 cd 0.003 d 0.024 d 
Anthracene 0.278 b* 0.026 C 1.37 a* 0.079 C 0.015 C 0.000 C 

Fluoranthene 0.026 b 0.009 b 0.301 a* 0.009 b 0.004 b 0.001 b 
Pyrene 0.434b* 0.058 C 1.39 a* 0.058 C 0.014 C 0.002 C 

Benzo (a) anthracene 0.271 b* 0.050 C 1.19 a* 0.024 C 0.013 C 0.003 C 

Chrysene 0.468 b* 0.074 C 2.70 a* 0.045 C 0.025 C 0.003 C 

Benzo (b) fluoranthene 0.239 b* 0.025 C 1.23 a* 0.032 C 0.017 C 0.007 C 

Benzo (k) fluoranthene 0.000 b 0.013 b 0.090 a* 0.010 b 0.002 b 0.000 b 
Benzo (a) pyrene 0.547 b* 0.046 C 1.00 a* 0.016 C 0.013 C 0.006 C 

lndeno (1,2, 3-cd) pyrene 0.414 b* 0.028 C 1.40 a* 0.061c 0.026 C 0.004 C 
~ Dibenz (a,h) anthracene 0.415 b* 0.032 C 0.907 a* 0.106 C 0.031 C 0.002 C ...Jo, 

Benzo(g,h,i) perylene 3.81 b* 0.130 d 10.2 a* 0.806 c* 0.107 d 0.002 d 
TPH 419 b* 760 ab* 2030 a* 1680 a* 370 b* 28.7 C 

Total PAH 8.10 b* 0.696 d* 24.0 a* 1.79 c* 0.350 d* 0.057 e 
B(a)Pe9uiv 1.06 b* 0.089 C 2.30 a* 0.134 C 0.049 C 0.010 C 

All values are in mg/kg soil. An asterisk indicates values are greater (p < 0.05) than the mean of reference units. 
Mean values with the same letter are not significantly different within a mw. 



Table 9. Mean concentration of metals and fluoride in bone of cotton rats collected (1998-2000) 

from five land treatment units and matched reference study units in Oklahoma .. 

Land Treatment Unit 

Metal 2 3 4 5 Reference 

units 

Ba 80.2 b 76.6 b 64.8 b 75.6 b 70.5 b 117 a 

Cd 0.58 b 0.05 b 0.06 b 0.88 a* 0.08 b 0.12 b 

Cr 2.81 ab 2.63 b 2.93 ab 2.71 b 3.07 a 2.74 ab 

Cu 1.29 a 1.27 a 1.23 a 1.43 a 1.49a 1.37 a 

Ni 0.83 ab 0.61 ab 0.30 b 0.48 b 2.38 ab 3.58 a 

Pb 24.8 a* 4.60 b* 12.1 a* 0.0 C 0.03 C 0.01 C 

Sr 137 be 125 C 147 ab 127 C 117 C 158 a 

Ti 1.80 a 0.37 b 1.50 a 1.65 a 1.46 a 1.23 a 

Zn 191 a* 157 C 176 ab 182 ab 170 be 171 be 

F 2210 a* 1040 c* 1820 ab* 1390 b* 496 c* 144 d 

All values are in mg/kg bone. An asterisk indicates values that are greater (p < 0.05) than the 

mean of the reference units. Mean values with the same letter are not significantly different within 

a row. 
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Table 10. Mean concentration of metals in kidney of cotton rats collected (1998-2000) from five 

land treatment units and matched reference study units in Oklahoma. 

Land Treatment Unit 

Metal 2 3 4 5 Reference 

units 

Ba 18.3 C 34.9 a* 26.5 ab 21.9 be 22.3 be 23.9 be 

Cd 0.14 ab 0.06 b 0.24 a 0.12 b 0.09 b 0.30 a 

Cr 0.11 a 0.19 a 0.18 a 0.15 a 0.11 a 0.27 a 

Cu 3.76 a 3.76 a 3.50 a 3.47 a 3.40 a 3.60 a 

Ni 0.21 b 0.40 ab 0.08 b 0.10 b 0.57 a 0.37 ab 

Pb 1.08 a* 0.31 b 1.07 a* 0.08 C 0.00 C 0.03 C 

Sr 0.47 a 0.39 a 0.54 a 0.41 a 0.50 a 0.47 a 

Ti 0.16 b 0.22 a 0.21 a 0.16 b 0.22 a 0.19 ab 

Zn 26.7 b 28.5 ab 31.7 a 26.2 b 28.2 ab 28.9 ab 

All values are in mg/kg kidney. An asterisk indicates values that are greater (p < 0.05) than the 

mean of the reference units. Mean values with the same letter are not significantly different 

within a row. 
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Figure 1A. Mean bone fluoride vs. mean total soil fluoride for soils 
and cotton rats collected (1998-2000) from five land treatment units 
and matched reference units in Oklahoma. 
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Figure 1 B. Mean bone fluoride vs. mean HCl-extractable soil fluoride 
. for soils and cotton rats collected 91998-2000) from five land 

treatmentunits and matched reference units in Oklahoma. 
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CHAPTER II 

AN IN VITRO GASTROINTESTINAL METHOD TO ESTIMATE 

RELATIVE BIOAVAILABLE CADMIUM 

IN CONTAMINATED SOILS 

Abstract 

The capacity of an in vitro gastrointestinal (IVG) method to predict relative 

bioavailable Cd from soil ingestion was evaluated. Bioaccessible Cd, determined 

by the IVG method, was compared with relative bioavailable Cd measured from 

dosing trials using juvenile swine for 10 soils contaminated with Cd from 23.8 to 

465 mg kg-1. The effect of the food-dosing vehicle (e.g., dough) in the IVG 

method was evaluated. Bioaccessible Cd was measured in the gastric extraction 

and intestinal extraction steps of the IVG. Means for bioaccessible Cd, in 

parentheses, were gastric extraction step without dough (63.0%) > intestinal 

extraction step without dough (39.1 %) > gastric extraction step with dough 

(38.2%) > intestinal extraction step with dough (12.9%). It is possible that phytic 

acid associated with the dough addition decreased bioaccessible Cd. In vivo 

relative bioavailable Cd ranged from 10.4 to 116% with a mean of 63.4%. Linear 

relationships between IVG gastric extraction step without dough (r = 0.86), IVG 

intestinal extraction step with dough (r = 0.80) and in vivo relative bioavailable Cd 

were found. Inexpensive in vitro methods may be useful in estimating the 

relative biovailability of Cd in soils from contaminated sites. 
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Introduction 

Cadmium (Cd) is a naturally occurring metal found as a mineral combined with 

other elements such as oxygen (i.e., CdC03) or sulfur (CdS, CdS04). Cd 

typically ranges from 0.1 to 1.0 mg kg-1 in the earth's crust (1-3). Typical mean 

Cd for surface soils worldwide averages 0.53 mg kg-1 and ranges from 0.06 to 1.1 

mg kg-1 (4). Cd levels in uncontaminated surface soils of the United States 

ranges from 0.005 mg kg-1 to 2.4 mg kg-1 with a geometric mean of 0.27 mg kg-1 

(5). Cadmium is used for a variety of industrial and consumer materials, 

including nickel~cadmium batteries; stabilizers for polyvinyl chloride; pigments 

used in plastics, ceramics, and glasses; engineering coatings on steel and some 

non ferrous metals; and components of specialized alloys (2, 6-8). Cadmium 

contamination of soil may result from mining and smelting of (Zn) ores, 

atmospheric deposition from metallurgical industries, incineration of plastics and 

batteries, sewage sludge application to land, and burning of fossil fuels (9). Total 

releases of Cd to the environment due to anthropogenic activities is estimated to 

range from 2,000 to 6,500 MT y(1 with major contributions from mining activities 

and burning of fossil fuels (3). 

Cadmium is considered a human carcinogen by the International Agency 

for Research on Cancer (2) as well as a probable human carcinogen by the 

United States Environmental Protection Agency (10). Human exposure to Cd 

can occur through the consumption of contaminated foods or drinking water; the 

incidental ingestion of soil or dust; the inhalation of Cd-containing particles from 

ambient air; from the inhalation of vaporized Cd in cigarette smoke; or from 
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working in occupations involving exposure to Cd fumes and dust (1). Chronic 

exposure to Cd may result in obstructive pulmonary disease, emphysema, and 

kidney disease (3, 11 ). Cadmium is absorbed and retained by both terrestrial 

and aquatic plants, and, as a consequence, concentrated in the liver and kidney 

of animals that consume these plants. Extremely high dietary intake of Cd has 

been associated with osteomalacia, osteoporosis, and spontaneous fractures, 

which are conditions collectively termed "itai-itai" (ouch-ouch) and were originally 

documented in postmenopausal women living in the. Cd-contaminated Fuchu 

area of Japan prior to and during World War II (12). 

Cadmium pollution of soil has been reported in 433 of the 766 National 

Priorities List hazardous waste sites, and concentrations as high as 750 mg kg-1 

have been reported in soils in the vicinity of Zn smelters (3, 13). Incidental 

ingestion of soil by children is an important pathway in the assessment of public 

health risks due to exposure of metal-contaminated soils. Most risk from Cd in 

ingested soil or waste materials is associated with the fraction of the ingested soil 

or waste material that is available for absorption from the gastrointestinal tract 

into the circulatory system. The amount of Cd absorbed through the 

gastrointestinal tract (bioavailable Cd) may be described in absolute or relative 

terms. Absolute bioavailability (ABA), also referred to as the oral absorption 

fraction, is equal to the absorbed dose/ingested dose as described by equation 1. 

ABA = Absorbed Dose 
Ingested Dose 
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Relative bioavailability (RSA) is the ratio of the ASA of Cd present in some 

test material (study soil) compared to the ASA of Cd in an appropriate reference 

material (equation 2). 

REA= __ A_EA_(s_tu_d_y_s_oz_'l) __ 
AEA (reference material) 

Cadmium chloride (CdCl2), a readily soluble form of Cd and thus easily absorbed 

from the gastrointestinal tract, is used as the reference material in the critical 

toxicity study reported in the Integrated Risk Information System (10). Relative 

bioavailability can be determined experimentally without specifically measuring 

absolute bioavailability. For example, the tissue concentration of Cd in animals 

dosed with study soil can be compared with tissue concentration of Cd in animals 

dosed with reference material. In this case, relative bioavailability is defined by 

equation 3. 

(2) 

REA = __ T'._,_·ss_u_e_C_d_(_st_u_dy_so_il_) __ 
Tissue Cd (reference material) 

(3) 

Often, baseline risk assessments used for contaminated sites assume that 

the relative bioavailability of Cd is 100% (e.g. bioavailability of Cd in 

contaminated soil I media is the same as the bioavailability of CdCl2 used in the 

IRIS critical toxicity study). However, due to the different geochemical and 

physical forms of Cd present in contaminated soils and waste, the relative 

bioavailability of Cd is likely to be less than 100% and may pose less risk to 

humans than highly soluble forms of ingested Cd. The soil matrix lowered the 

relative bioavailability of Cd to rats in a dosing study using Cd-spiked artificial soil 
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(14). The relative bioavailability of metal contaminants (e.g., Pb and As) in waste 

materials from hazardous waste sites has been assessed using in vivo animal 

dosing trials and used for risk assessment. In vivo dosing trials using animal 

models Uuvenile swine, monkeys) are both lengthy and extremely expensive. 

Most dosing studies using contaminated soil have focused on Pb and As. Fewer 

studies have focused on measuring Cd relative bioavailability in contaminated 

soil using animal models (15). 

Less expensive in vitro chemical extraction methods that simulate 

gastrointestinal biochemistry have been developed to estimate relative 

bioavailable Pb (16, 17) and As (18). The amount of contaminant dissolved in 

the gastrointestinal environment that is soluble and available for absorption is 

termed "bioaccessible." Several in vitro methods are sequential extractions with 

two distinct extraction steps: a gastric phase extraction that simulates the acidic 

biochemical stomach environment and a subsequent intestinal phase extraction 

that simulates the biochemical environment of the small intestine. The fraction of 

the contaminant dissolved by the in vitro procedure, the "bioaccessible" 

contaminant, has been used to estimate the relative bioavailability of the 

contaminant in soil (19). Hamel et al. (20) reported an in vitro method to estimate 

bioaccessible Cd in soils, but they did not relate their method to relative 

bioavailable Cd measured by an animal model. The in vitro physiologically 

based extraction test (PBET) of Ruby et al. (17), which does not use food in the 

extraction in order to mimic fasting conditions, has been shown to predict 

accurately relative bioavailable Pb in contaminated soil and media (19). The in 

49 



vitro gastrointestinal (IVG) method developed by Rodriguez et al. (18) is an 

accurate predictor of relative bioavailable As in contaminated soils and waste 

materials while utilizing food in the extraction procedure. To our knowledge, an 

in vitro method to estimate relative bioavailable Cd associated with soil ingestion 

has not been reported. Also, the effect of the presence or absence of food in in 

vitro extraction procedures on the capacity to estimate the relative bioavailability 

of Cd in contaminated soil has not been reported. The objective of this study 

was to determine the capacity of the IVG method of Rodriguez et al. (18), with 

and without food, to predict relative bioavailable Cd in contaminated soil as 

measured in vivo juvenile swine. 

Methods and Materials 

Contaminated Soils. Ten contaminated soils from seven different hazardous 

waste sites were evaluated using the IVG method of Rodriguez et al. (18). Air

dried soil was sieved through nylon mesh (< 250 µm) to obtain the soil fraction 

considered to adhere to fingers and likely to be ingested. Total metal content of 

soil was determined by acid digestion using U.S. EPA Method 3050 (21), and 

elemental analysis was conducted using a high resolution Thermo Jarrell Ash 

IRIS inductively coupled plasma atomic emission spectrophotometer (ICP-AES). 

In Vivo Swine Dosing Study. In vivo relative bioavailable Cd in 

contaminated soil was determined by in vivo dosing trials using standard 

operating procedures developed by Or. Stan Casteel of the University of 

Missouri-Colombia Veterinary Medical Diagnostic Laboratory and approved by 

U.S. Environmental Protection Agency (EPA) Region 8 for Pb contaminated soil 
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(22) with the exception that two dose groups per soil were used instead of three 

dose groups. Male swine (5-6 wk old) weighing 10-12 kg were dosed for 15 d 

with varying concentrations of Cd in substrates. Five swine were randomly 

assigned to treatment groups consisting of Cd-contaminated soil' dosing groups, 

a negative control group (no substrate), and positive control groups that received 

oral CdCb. All swine were individually housed in stainless steel cages and daily 

fed a powdered grower's diet (referred to as dough in this paper) which 

approximated 5% of their body weight (Ziegler Bros., Inc., Gardner, PA). The 

diet was a commercially formulated to have a protein content of approximately 

19% and contained less than 0.01 mg Cd/kg diet. After a 7-d acclimation period, 

the swine were dosed with contaminated soil that was placed in a 5-10 g 

doughball of moistened grower diet. The swine were dosed twice daily to mimic 

childhood cadmium ingestion which is likely to occur between meals while 

children are in a fasted or semi-fasted state. A dose of 6.25 mg soil per kg body 

weight per day was used with half of the first dose being delivered at 9:00 am 

after an overnight fast and the second half of the dose being delivered at 3:00 pm 

after a 4-h fast. A11 ·· swine were fed 2 hr after dosing. The swine were 

euthanized, by electrical stunning and subsequent electrocution at the end of the 

dosing trail in accordance with procedures recommended by the American 

Veterinary Medical Association. All pigs within a treatment group were 

euthanized and necropsied on the same day over a 2 to 4 hour period of time. 

Kidneys were removed and frozen (-70°C) for subsequent metal analyses. 
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Tissue Analyses. Five grams of renal cortex kidney tissue (wet weight) 

were digested overnight at 90°C in 7.5 ml of concentrated trace metal HN03 and 

diluted to a final volume of 25.0 ml with deionized distilled water. Digested 

sample was filtered through a 0.45-µm membrane filter, and Cd was determined 

using ICP-AES. Blanks, spikes, and duplicate analyses were conducted every 

20 samples to meet quality assurance and quality control (QA/QC) requirements. 

Relative Cd bioavailability was estimated using measured Cd concentration in 

kidney. 

Calculation of In Vivo Relative Bioavailability. RBA was calculated 

using equation 3. Cadmium chloride was selected as the reference material in 

our study because it is a readily soluble form of Cd that is easily absorbed and 

used in IRIS. More specifically for each study substrate, the amount of Cd 

bioaccumulated in kidney (e.g., mg Cd kg·1 kidney) was plotted as a linear 

regression of Cd dosed (e.g., µg Cd kg·1 body weight day-1) for both reference 

material and study substrate. The RBA was calculated by dividing the slope for 

the study substrate by the slope for the reference material. 

In Vitro Gastrointestinal Method (IVG). Bioaccessible Cd was estimated 

in our study using the IVG method developed by Rodriguez et al. (18). The IVG 

method is a two-step sequential extraction; a gastric solution extraction followed 

by an intestinal solution extraction. An equivalent amount of the dosing vehicle 

(200 g of wet feed termed "dough") was added to the gastric solution to mimic 

the in vivo dosing of 100 mg soil to 5 g of dough. Gastric solution was 0.15 M 

NaCl and 1 % porcine pepsin (Sigma Chemical Company, St. Louis, MO, cat. no. 
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P7000). The in vitro method was conducted using 1 L glass jars in a water bath 

at body temperature (37°C). Soil (4.0 g) was placed in 600 ml of gastric solution 

to which either O g (e.g., no dough) or 200 g of dough was added. The pH of the 

gastric solution was adjusted to pH 1.8 with trace metal grade HCI. Anaerobic 

conditions were maintained by constantly bubbling argon through the solution 

and pH was continuously monitored and adjusted to 1.8 throughout the 1-h 

procedure. Mixing (to simulate gastric mixing) was maintained during the 

procedure using individual paddle stirrers set at a speed of 100 rpm. After 1 h, 

40 ml of gastric solution, removed for Cd analysis, was replaced with 40 ml of 

fresh gastric solution. Subsequently, the extraction solution was modified to 

simulate intestinal solution by adding saturated NaHC03 solution to adjust the pH 

to 5.5 followed by the addition of 2.10 g of porcine bile extract (Sigma Chemical 

Company, St. Louis, MO, cat. no. 88631) and 0.21 g of porcine pancreatin (cat. 

No. P1500). A small amount of anti-foam agent (decanol) was added to each 

reaction vessel. After 1 h, 40 ml of intestinal solution was collected for Cd 

analysis. Gastric and intestinal solution samples were centrifuged for 15 min at 

10,000 rpm and filtered through 0.45-µm membrane filters immediately after their 

collection. The samples were acidified to pH of 2 using trace metal HCI, and Cd 

was determined using ICP-AES. 

In Vitro Bioaccessibility. Bioaccessible Cd was calculated by dividing 

the Cd concentration measured in the in vitro gastric or intestinal solutions by the 

total soil Cd content (e.g., USEPA method 3050). 
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Statistical Analysis. Analysis of variance using PROC MIXED (23) was 

performed to evaluate the effects of extraction step (gastric or intestinal) and 

method (dough or no dough addition) on bioaccessible Cd. The data were 

analyzed as a split plot arrangement in a randomized complete block design. 

The combination of replicate and soil were used as blocks, method was the 

whole plot factor, and phase was the split plot factor. Simple effects of method 

given phase and phase given method were analyzed with a SLICE option in the 

LSMEANS statement. The relationship between mean in vitro bioaccessible Cd 

and mean in vivo relative bioavailable Cd was determined using PROC REG 

(23). 

Results and Discussion 

Soil Cd Concentrations. The Cd content of the contaminated soils ranged from 

23.8 to 465 ing/kg (Table 1), which is well above the Cd content of 0.06 to 1.1 mg 

kg-1 reported for uncontaminated soils (4). The study soils were also 

contaminated with other heavy metals (e.g., Pb, Zn) and metalloids (As) (Table 

1 ). The soils also contained significant amounts of elements known to affect Cd 

uptake and bioavailability, including Fe, Ca, and Zn. 

Tissue Content and Soil Doses. Cadmium bioaccumulated in the renal 

cortex of juvenile swine dosed with contaminated soil. Kidney Cd ranged from 

0.036 mg kg-1 for the control group to 2.41 mg kg-1 for the highest dose group 

(Table 2). Our results are similar to those of Schilderman et al. (14) which 

showed that rats bioaccumulated Cd in liver and kidney when dosed with a Cd

spiked artificial soil. The concentrations of Cd found in kidney of the control 
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group of our study are comparable to 0.019 mg kg-1obtained in their study for 

control rats. 

Doses in our study ranged from 0.59 µg Cd kg-1 body weight/day to 160 

µg kg-1 body weight day-1, and concentrations in the kidney of pigs increased in a 

dose-dependent manner within each soil (Table 2). Linear regression showed 

that Cd in the kidney of pigs increased as dose in soil increased (p < 0.01, r = 

0.92; Figure 1 ). Our results are comparable to those of Lehman and Klassen 

(24) who administered CdCl2 orally to rats and found that the retention of Cd after 

ingestion was dose-dependent and resulted from increased absorption of Cd at 

higher doses. Dose-dependent relationships have also been reported for mice, 

quail, dogs, and swine in other studies that used CdCl2 (24-29). 

In Vivo Relative Bioavailable Cd. Percentage relative bioavailable Cd 

estimated using the juvenile swine model ranged from 10.4 to 116% and 

averaged 63.4% for the soils evaluated in our study (Table 3). Relatively little 

literature has been generated regarding the oral bioavailability of Cd from 

contaminated soils. Schilderman et al. (14) exposed male rats to a dose of 650 

µg Cd/day from a spiked artificial soil and reported the relative bioavailability of 

Cd as 46% based on kidney data. In another in vivo rat feeding study conducted 

on a soil sample from a zinc smelter in Bartlesville, OK; the relative bioavailability 

of Cd based on liver and kidney data was reported as 33% (30, 31). 

In Vitro Bioaccessible Cd. Bioaccessible Cd measured by the gastric 

extraction step) using dough in the extraction ranged from 11.7 to 47.5% with an 

overall mean of 38.2% (Table 3). In vitro Cd measured by the intestinal 
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extraction step using dough in the procedure ranged from 4.05 to 19.5% and 

averaged 12.9% for soils, which was much lower extraction step Cd (Table 3). In 

part, the reduction of measured Cd between the gastric extraction step and the 

intestinal extraction step can be attributed to the reduced solubility of Cd in the 

higher solution pH of the intestinal extraction step vs. gastric extraction step (pH 

5.5 vs. 1.8). Gastric extraction step Cd without using dough in the extraction 

ranged from 21.3 to 95.9% with an overall mean of 63.0% (Table 3). Within the 

intestinal extraction step, in vitro Cd without using dough in the extraction ranged 

from 15.0 to 55.0% with an overall mean of 39.1 % (Table 3). Similar to results 

obtained with the IVG with dough method, Cd extracted for all 1 O soils was 

intestinal extraction step < gastric extraction step. Mean gastric extraction step 

Cd both with and without dough were greater than mean intestinal extraction step 

Cd (p < 0.001, Table 3). Limited data are available concerning the estimation of 

the bioaccessibility of Cd in soils using in vitro extraction procedures. Hamel et 

al. (20) used an in vitro extraction procedure at a pH of 1.1 to evaluate the 

bioaccessibility of Cd and other contaminants in a National Institute of Standards 

and Testing standard reference material (NIST Soil SRM 2710). Their study 

investigated the effect of varying the liquid to solid ratio on the extractability of 

As, Cr, Ni, Cd, and Pb without using food in the extraction. Their results 

indicated that the solubility of Cd in the SRM 2710 was affected only slightly by 

changing the liquid-to-solid ratio, and they reported the bioaccessibility of Cd as 

54.1% at a liquid to solid ratio of 100:1 and 61% at a liquid to solid ratio of 200:1. 

For comparison, in vitro bioaccessible Cd was measured in the same NIST SOIL 

56 



SRM 2710 both with and without dough. IVG gastric extraction step Cd (without 

dough) was 69% and was similar to that found by Hamel et al. (20), while 

intestinal extraction step Cd (without dough) was 38%. Measured gastric 

extraction step Cd (with dough) was 44% and intestinal extraction step Cd (with 

dough) was 20%. 

Dough vs. No Dough. Comparison of the dough vs. no-dough methods 

showed that the mean Cd of 51.0% for the combined gastric and intestinal 

extraction steps without using dough in the extraction was greater than the mean 

Cd extracted of 25.6% for the combined gastric and intestinal extraction steps 

. using dough in the extraction (p < 0.001 ). There were no significant interactions 

between method and extraction step (e.g., gastric vs. intestinal) (p = 0.766). In a 

review on human bioavailability, Ragan (32) reported that the solubility and 

absorption of Fe, Cd, and Pb may be lowered by dietary components such as 

oxalates, phosphates, and phytates. Lind et al. (33) fed mice diets containing 

0.050 mg/kg Cd from wheat bran, sugar-beet fibre, carrots, or CdCl2 mixed in a 

synthetic low-Cd feed and found that the group receiving the wheat-bran diet had 

significantly lower fractional Cd accumulation in the liver and kidneys as 

compared to the other groups in the experiment. The wheat-bran diet had 

significantly higher levels of phytates as compared to the other diets in their 

study, and they concluded that the decreased fractional absorption of Cd from 

the wheat-bran diet was due to the formation of insoluble Cd-phytate complexes. 

Turecki et al. (34) conducted an in vitro study using male rat intestines and 

showed that the absorption of Cd was significantly lowered in the presence of 
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phytic acid. The calcium-phytate complex has a strong affinity for both Pb and 

Cd (35). Chan et al. (29) fed mice a diet of field-grown, Cd-contaminated grain or 

grain that had been "amended" (i.e., spiked) with soluble cadmium nitrate and 

compared bioaccumulation of these diets with a gavage of soluble cadmium 

nitrate. Their results showed that for similar doses the administration of cadmium 

nitrate as a gavage resulted in higher accumulation of Cd in livers and kidneys of 

mice as compared to the spiked grain or when Cd was plant-incorporated into the 

grain. Results from the above studies show that the presence of food decreases 

the solubility and the absorption of Cd in the gastrointestinal system of mice. It is 

possible that Cd-phytate complexes or insoluble complexes involving phytic acid 

and Ca with Cd coprecipitating the complex were formed during the in vitro 

extraction of soils using dough, which resulted in lower bioaccessible Cd as 

compared to the extractions that did not use dough. 

The dough material has a P content of 7580 mg kg-1. A considerable 

amount of P was dissolved in the IVG methods. Results show that the inclusion 

of dough increased soluble P in the gastric extraction step from 53.9 to 1900 mg 

L-1 without soil. Similarly, inclusion of dough increased soluble P in the intestinal 

extraction step from 64.5 to 1740 mg L-1 without soil. Results show that the 

inclusion of dough increased soluble P in the gastric extraction step from 49.1 to 

1810 mg L-1 with contaminated SRM 2710 soil. Similarly, inclusion of dough 

increased soluble Pin the intestinal extraction step from 56.7 to 1570 mg L-1 with 

contaminated SRM 2710 soil. The equilibrium geochemical speciation model 

MINTEQA2 (ver. 4.0) was used to investigate the possibility that the addition of 
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dough to the IVG procedure resulted in precipitation of inorganic cadmium 

phosphates, thus lowering measured concentrations of in vitro Cd (36). In vitro 

concentrations of Ca, Cd, Fe, P, Zn, Na, Cl, and solution pH were used as model 

inputs. Total dissolved P was assumed to be present as orthophosphate ion, 

which would be consistent with the most likely scenario to form cadmium 

phosphate mineral precipitate. MINTEQA2 results predicted that the IVG gastric 

extraction and intestinal extraction step solutions, with and without dough, were 

unsaturated with respect to cadmium phosphate solid phases for contaminated 

soil. These results suggest formation of cadmium phosphate precipitates from 

dough addition could not be used to explain decreased in vitro Cd associated 

with dough addition. 

Relationships Between Bioaccessible Cd and In Vivo Relative 

Bioavailable Cd. Linear regression indicated that the relationship was not 

significant (p = 0.098, r = 0.55) between the gastric extraction step Cd using 

dough in the extraction and in vivo relative bioavailable Cd (Figure 2A). 

Regression analysis showed that there was a strong linear relationship between 

the intestinal extraction step Cd using dough in the extraction and in vivo Cd (p < 

0.01, r = 0.77) (Figure 28). A strong linear relationship was found between the 

gastric extraction step Cd without using dough in the extraction and in vivo 

relative bioavailable Cd (p < 0.01, r = 0.86) (Figure 2C). However, a significant 

relationship between the intestinal extraction step and in vivo Cd was not found 

(p = 0.111, r = 0.54) (Figure 20). 
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Gastrointestinal Interactions. Many interactions in the gastrointestinal 

systems of various animals affect Cd absorption. Gastrointestinal absorption of 

Cd is a complex and dynamic process involving dissolution, absorption, and 

interactions with other dietary components. Iron deficiencies in both humans and 

rats have been shown to increase Cd absorption in both humans and rats (37, 

38). Additionally, dietary deficiencies of Ca, Zn, and protein enhanced 

absorption of Cd in humans and mice (3, 39-41 ); The ratios of total elemental 

content for Zn:Cd ranged from 25 to 1640 with a median value of 124; for Ca:Cd, 

ranged from 6 to 2950 with a median value of 372; and for Fe:Cd, ranged from 

84 to 1630 with a median value of 447. The ratio of Zn:Cd extracted during the 

gastric extraction step with dough ranged from 33 to 1270 with a median value of 

288, while the ratio of Fe:Cd extracted during the gastric extraction step with 

dough ranged from 6 to 7930 with a median value of 37. The extractable Zn:Cd 

ratio for the intestinal extraction step using dough ranged from 10 to 441 with a 

median value of 67, and the extractable Fe:Cd ratio (intestinal extraction step 

using dough) ranged from 3 to 4930 with a median of 8. It is possible large 

amounts of Ca, Fe, and/or Zn decreased Cd absorption in some soils more than 

others. 

Gastrointestinal absorption of Cd and heavy metal contaminants is a 

dynamic process involving dissolution and absorption). Biological 

gastrointestinal digestive processes are quite complicated and difficult to 

simulate in vitro. In vitro gastrointestinal methods based solely on measuring 

heavy metal contaminant solubility do not account for active and passive 
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absorption processes and can only be accurate estimators of contaminant 

bioavailability if dissolution of the contaminant matrix is the rate-limiting step in 

this kinetic process (19, 42). Strong relationships from several studies between 

in vitro bioaccessible Pb or As and in vivo Pb or As suggest that dissolution of 

the contaminant matrix is the rate-limiting step for As and Pb in contaminated 

soils (19, 42). Bioaccessible Pb measured in the simulated gastric environment 

without dough (e.g., gastric extraction step) is correlated with in vivo Pb (17, 19, 

43). Weaker relationships are found between bioaccessible Pb in the in vitro 

intestinal environment and in vivo Pb. Similarly, bioaccessible Cd was related to 

in vivo Cd in the in vitro gastric environment without dough addition (Figure 2). 

Strong relationships are found between bioaccessible As measured by IVG 

gastric extraction step and intestinal extraction step with dough and in vivo As 

(18) and bioaccessible As measured by IVG gastric extraction step and intestinal 

extraction step without dough and in vivo As where in vivo As was measured 

from juvenile swine dosing trials. The relationship between bioaccessible Cd 

and in vivo Cd (Figure 2) is more complex than As because it is affected by the 

presence of dough. The gastric extraction step of the IVG method of Rodriguez 

et al. (18) is related to in vivo Cd when dough is not present, but the intestinal 

extraction step of the IVG method is related to in vivo Cd when dough is present 

(Figure 2). 

Precision of the IVG Method. The precision of the IVG method with and 

without dough was evaluated by conducting 12 replicated extractions of soil 1 

(Table 4). The relative standard deviations for all IVG methods were < 10%, 
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indicating that the IVG method is precise. The inclusion of dough in the gastric 

extraction or intestinal extraction steps of the IVG method did not consistently 

affect precision. 

Summary. In summary, only two of the phases (intestinal extraction step 

with dough and gastric extraction step without dough) of the IVG method were 

able to predict relative bioavailable Cd in contaminated soil as measured by in 

vivo swine dosing trials. The combination of the complex biochemistry and 

biological processes in the gastrointestinal system makes it difficult to measure 

bioavailable Cd by in vitro methods. However, the capacity of the IVG method to 

estimate relative bioavailable Cd shows some promise. Additional studies that 

compare in vitro results with in viv·o bioavailable Cd should be conducted on 

more soils from a wide range of matrices (soil, slag, etc.). It is unlikely that an in 

vitro method can be developed to replace animal models in the estimation of in 

vivo bioavailability, but in vitro methods (i.e., the IVG method) may be useful as 

rapid screening tools in assessing relative bioavailability of Cd in soils from 

contaminated sites. Because in vitro methods are inexpensive, they can be used 

to analyze large numbers of soil samples and provide an estimate of the 

variability in bioavailable Cd at a single study site. The gastric extraction step of 

the IVG method without dough has the capacity to provide an estimate of the 

relative bioavailability-of Cd, As, and Pb in contaminated soil. 
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TABLE 1. Elemental Content of Select Metal Contaminants, Ca, and 
Fe in Study Soils 

Soil Cd As Pb Zn Ca Fe 
(mg/kg) (mg/kg) (mg/kg) (g/kg) (g/kg) (g/kg) 

1 465 1820 
2 43.0 240 8600 12.0 16.0 50.0 
3 26.6 181 152 0.66 22.2 11.9 
4 188 11.0 4050 50.0 81.8 18.0 
5 139 16.0 6940 17.2 19.9 26.6 
6 29.9 695 11500 48.9 88.1 16.9 
7 23.8 310 3200 10.4 69.0 38.7 
8 195 110 3230 6.50 1.16 25.9 
9 319 134 2150 19.1 2.48 26.7 
10 47.4 17.0 3870 4.11 17.3 23.0 

68 



TABLE 2. Cd Dose, Mean Kidney Cd (n = 5) and % Relative Standard 
Deviation for Juvenile Swine Exposed to Two Different Doses of Cd in 
Ten Soils 
Soil 

Control 
Cd Cb 
Cd Cb 
1 
1 
2 
2 
3 
3 
4 
4 
5 
5 
6 
6 
7 
7 
8 
8 
9 
9 
10 
10 

Cd Dose 
(µg/kg body 
weight/day) 

0 
20.0 
80.0 
40.0 

160 
1.13 
3.38 
2.94 
7.35 

10.4 
31.3 

4.51 
13.5 
0.59 
1.76 
1.67 
5.02 
4.53 

13.6 
11.1 
33.4 

2.76 
8.27 

Description 
of Dose 

None 
Low 
High 
Low 
High 
Low 
High 
Low 
High 
Low 
High 
Low 
High 
Low 
High 
Low 
High 
Low 
High 
Low 
High 
Low 
High 

Mean Kidney Cd 
(mg/kg) 

0.036 
0.448 
2.27 
0.771 
2.41 
0.033 
0.061 
0.123 
0.187 
0.088 
0.481 
0.067 
0.270 
0.014 
0.038 
0.054 
0.109 
0.126 
0.375 
0.255 
1.03 
0.05 
0.212 

RSD 
(%) 

33.6 
7.61 

24.8 
48.1 
13.7 
57.3 
73.5 
19.0 
12.4 
71.3 
17.5 
10.6 
31.0 
20.2 
30.0 
13.1 
21.9 
32.9 
12.8 
41.7 
15.3 
28.4 
26.2 

RSD = relative standard deviation, the standard deviation divided by the 
mean expressed as a percentage. Mean kidney values are based on five 
replicates. 
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TABLE 3. Comparison of Soil Cd and In Vivo Relative Bioavailable Cd with 
Bioaccessible Cd Determined by the IVG Method With and Without Dough Additive 

Bioaccessible Cd 
IVG with dough IVG without dough 

Soil Soil Cda In Vivo Relative 
Bioavailable Cdb GEC I Ed GEC I Ed 

mg/kg % % % % % 

1 465 55.4 34.0 11.2 54.8 43.2 
2 43.0 29.9 11.7 4.05 21.3 15.0 
3 26.6 73.4 37.9 9.81 75.6 42.9 
4 188 53.6 28.7 11.2 53.2 33.5 
5 139 63.3 46.8 17.9 69.0 55.0 
6 29.9 10.4 40.4 6.69 42.1 25.6 
7 23.8 56.8 42.9 16.2 75.0 49.2 
8 195 94.2 46.1 16.1 75.2 38.1 
9 319 116 46.1 19.5 95.9 40.8 
10 47.4 80.6 47.5 16.6 68.1 47.9 

Mean 148 63.4 38.2 12.9 63.0 39.1 
Median 93.2 60.1 41.7 13.7 68.6 41.9 
Minimum 23.8 10.4 11.7 4.05 21.3 15.0 
Maximum 465 116 47.5 19.5 95.9 55.0 

a SW 846, USEPA method 3050. b Determined from immature swine dosing trial. 
c Gastric solution extraction step. d Intestinal solution extraction step. 
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TABLE 4. Precision of the IVG Methods for Determination of 
Bioaccessible Cd Determined by 12 Replicated Extractions 
of Soil 1 

IVG Method 

GE+ Dough 
IE+ Dough 
GE, No Dough 
IE, No Dough 

Mean 
(mg/kg) 

Range 
(mg/kg) 

159 154-162 
51. 46.0-56.7 

255 233-273 
201 192-207 

RSD 
(%) 

2.08 
7.80 
6.61 
2.78 

GE= gastric solution extraction; IE= intestinal solution extraction; 
RSD = relative standard deviation, the standard deviation divided 
by the mean expressed as a percentage. 
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Figure 1. Concentration of Cd in kidney of juvenile swine 
as a function of increasing Cd dose in soil. 
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CHAPTER Ill 

VALIDATION OF THE IN VITRO GASTROINTESTINAL (IVG) METHOD TO 

ESTIMATE RELATIVE BIOAVAILABLE LEAD IN 

CONTAMINATED SOILS 

ABSTRACT 

The effect of the dosing vehicle (e.g., dough) on the ability of an in vitro 

gastrointestinal (IVG) method to predict relative bioavailable Pb associated with 

soil ingestion was evaluated. Bioaccessible Pb determined by the IVG method 

was compared with relative bioavailable Pb measured from dosing trials using 

juvenile swine for 18 contaminated soils ranging from 1,270 to 14,200 mg Pb kg 1. 

Bioaccessible Pb was measured in the IVG gastric extraction (GE) and intestinal 

extraction (IE) solutions. Mean bioaccessible Pb (in parentheses) were GE 

without dough (32.2%), GE with dough (23.0%), IE without dough (1.06%), and 

IE with dough (0.56%). It is possible that phytic acid associated with the dough 

addition decreased bioaccessible Pb. In vivo relative bioavailable Pb ranges for 

different swine tissues (in parentheses) were blood (1 to 87%), liver (0 to 110%), 

kidney (1 to 124%), and bone (0.04 to 94%). Strong linear relationships between 

IVG GE Pb with dough (r > 0.76, P < 0.0002), IVG IE Pb with dough (r > 0.56, P 

< 0.015), and IVG GE Pb without dough (r > 0.81, P < 0.0001) and in vivo 

· bioavailable Pb as estimated with blood, kidney, liver, and bone were found. A 

weak but significant relationship was found between IVG IE Pb without dough (r 
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= 0.47, P = 0.049) and in vivo relative bioavailable Pb using bone data. 

Relationships between IVG IE Pb without dough and in vivo relative bioavailable 

Pb estimated using the other tissues were not significant (P > 0.05). Inexpensive 

in vitro methods may be useful in providing an estimate of the variability in 

relative bioavailable Pb at a single study site. The GE (no dough) can be used to 

estimate relative bioavailable Pb, As, and Cd in contaminated soil. 
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Lead (Pb) is a naturally occurring, bluish-gray metal usually found as a mineral 

combined with other elements, such as sulfur (i.e., PbS, PbS04) or oxygen 

(PbC03), and ranges from 10 to 30 mg kg-1 in the earth's crust (U.S. Department 

of Health and Human Services, 1999). Typical mean Pb for surface soils 

worldwide averages 32 mg kg-1 and ranges from 10 to 67 mg kg-1 (Kabata

Pendias and Pendias, 1992). Typical background Pb levels in surface soils of 

the United States range from 0.5 to 135 mg kg-1 with a median value of 11 mg kg-

1 (Holmgren et al., 1993). Lead is used for a variety of industrial and consumer 

materials, including lead-acid batteries (63.0%), pigments and other compounds 

(12%), rolled and extruded products (7.7%), cable sheathing (4.5%), and 

gasoline additives (2.2%) (Adriano, 2001; U.S. Department of Health and Human 

Services, 1999). Lead contamination of soil may result from mining and smelting 

activities, sewage sludge usage in agriculture, contamination from vehicle 

exhausts, manufacturing processes- involving Pb, and recycling and disposal of 

Pb-containing products (Adriano, 2001; Davies, 1990). Past uses of lead in the 

United States that have resulted in soil contamination include its addition to 

gasoline and its use in pesticides, batteries, firing ranges, and Pb-based paint 

chips (Adriano, 2001; Davies, 1990). 

Lead is considered a possible human carcinogen by the International 

Agency for Research on Cancer (2002) as well as a probable human carcinogen 

by the· United States Environmental Protection Agency (U.S. EPA, 1996b). 

Human exposure to Pb can occur through the- consumption of contaminated 

foods or drinking water, incidental ingestion of soil or dust, inhalation of Pb-
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containing particles from ambient air, ingestion of paint chips from Pb-painted 

surfaces, use of medications in the form of folk remedies, inhalation of 

automobile emissions, or from working in occupations involving exposure to Pb 

fumes and dust (Adriano, 2001; U.S. Department of Health and Human Services, 

1999). Lead is a very toxic element, and exposure results in a variety of effects 

in humans. In both adults and children, the main target of lead toxicity is the 

central nervous system (U.S. Department of Health and Human Services, 1999). 

Acute exposure to high levels of Pb may result in gastrointestinal symptoms 

(cramping, colicky abdominal pain, nausea, and vomiting), brain damage, kidney 

damage, lowered sperm production, miscarriages, and possibly death. Chronic 

exposure to Pb may result in effects on the blood (anemia), central nervous 

system (CNS), blood pressure, kidneys, and Vitamin D metabolism (U.S. 

Department of Health and Human Services, 1999). Central nervous system 

effects on adults consist of subtle behavior changes, fatigue, and impaired 

concentration. Children are more susceptible to Pb exposure because they 

absorb and retain approximately 50% more in proportion to their body weight 

(Mushak et al., 1989). Exposure of children to Pb may result in impaired 

neurological development (both cognitive and behavioral). as evidenced by 

deficits in intelligence scores, speech and language processing, attention and 

classroom performance (da la Burde and Choate, 1972; Grant and Davis, 1989; 

Needleman et al., 1979, 1990; Rummo et al., 1979; Winneke, 1995). 

Lead is ubiquitous in the environment primarily as a result of 

anthropogenic activities; and the U.S. Department of Health and Human Services 
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(1999) estimates that 89.4% of the total environmental release of Pb in 1996 was 

to soil. Pb ranks first on the priority list of hazardous substances found at 

Superfund sites (based on its frequency at sites, its toxicity, and its potential for 

human exposure) and has been identified in soils from 675 of the 1,026 National 

Priorities List (NPL) hazardous waste sites (Adriano 2001; U.S. Department of 

Health and Human Services, 1999). Concentrations as high as 60,000 mg kg-1 

have been reported in soils adjacent to a smelter in Missouri (Palmer and 

Kucera, 1980). Additionally, soils adjacent to Pb-painted houses may contain > 

10,000 mg kg-1 (U.S. EPA, 1986). The incidental ingestion of soil by children is 

an important pathway in the assessment of public health risks due to exposure of 

metal contaminated soils. Most risks from Pb in ingested soil or waste materials 

is associated with the fraction of the soil or waste material that is available for 

absorption from the gastrointestinal tract into the circulatory system. The amount 

of Pb absorbed through the gastrointestinal tract (bioavailable Pb) may be 

described in absolute or relative terms. Absolute bioavailability (ABA), also 

referred to as the oral absorption fraction, is equal to the absorbed dose/ingested 

dose as described by Eq. [1]: 

ABA = Absorbed Dose 
Ingested Dose 
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Relative bioavailability (RSA) is the ratio of the ASA of Cd present in some 

test material (study soil) compared to the ASA of Cd in an appropriate reference 

material [Eq. 2]: 

RBA = __ A_BA_(s_tu_d_y_s_oz_"l) __ 
ABA (reference material) 

Lead acetate, a readily soluble form of Pb and thus easily absorbed from the 

gastrointestinal tract, is used as the reference material in the critical toxicity study 

reported in the Integrated Risk Information System (IRIS; U.S. EPA, 1996b). 

Relative bioavailability can be determined experimentally without specifically 

measuring absolute bioavailability. For example, the tissue concentration of Pb 

in animals dosed with study soil can be compared with tissue concentration of Pb 

in animals dosed with reference material. In this case, relative bioavailability is 

defined by Eq. [3]: 

[2] 

RBA = __ T_i_ss_u_e _P_b_(s_tu_d_y_s_oz_.l) __ 
Tissue Pb (reference material) 

[3] 

Often, baseline risk assessments used for contaminated sites assume that 

the relative bioavailability of Pb in soil is 60%, which is the default value used by 

the Integrated Exposure and Uptake Biokinetic (IEUBK) model for lead in 

children (U.S. EPA, 1994). However, because of the different geochemical and 

physical forms of Pb present in contaminated soils and waste, the relative 

bioavailability of Pb may be different than the default IEUBK value .. Therefore, a 

more accurate estimation of the relative bioavailability of metal contaminants 
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(e.g., Pb and As) in waste materials from hazardous waste sites has been 

assessed using in vivo animal dosing trials and used for risk assessment. 

Less expensive in vitro chemical extraction methods that simulate 

gastrointestinal biochemistry have been developed to estimate relative 

bioavailable Pb (Ellickson et al., 2001; Hamel et al., 1998; Ruby et al., 1992, 

1996), As (Rodriguez et al., 1999) and Cd (Schroder et al., in press). The 

amount of contaminant dissolved in the gastrointestinal environment and 

available for absorption is termed "bioaccessible" (Ruby et al., 1999). Most in 

vitro methods are sequential extractions with two distinct extraction steps: 1) a 

gastric phase extraction that simulates the acidic biochemical stomach 

environment, and 2) a subsequent intestinal phase extraction that simulates the 

biochemical environment of the small intestine. The fraction of the contaminant 

dissolved by the in vitro procedure, the "bioaccessible" contaminant, has been 

used to estimate the relative bioavailability of the contaminant in soil (Ruby, 

1999). While many different in vitro methods have been developed to estimate 

bioacccessible Pb, few have related their results to relative bioavailable Pb as 

measured by an animal model. The in vitro physiologically based extraction test 

(PBET), which does not use food in the extraction in order to mimic fasting 

conditions, has been correlated with relative bioavailable Pb as estimated by two 

animal models (weanling rats and swine) (Medlin, 1997; Ruby et al., 1996, 1999). 

The in vitro gastrointestinal (IVG) method developed by Rodriguez et al. (1999) is 

an accurate predictor of relative bioavailable As in contaminated soils and waste 

materials as estimated by a juvenile swine model while utilizing food in the 
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extraction procedure. Recently, Schroder et al. (in press) showed that the IVG 

method was correlated with in vivo relative bioavailable Cd using a juvenile swine 

model. The objective of this study was to determine the ability of the IVG method 

of Rodriguez et al. (1999), with and without food, to predict relative bioavailable 

Pb in contaminated soil as measured by in vivo juvenile swine dosing trials. 

MA TE RIALS AND METHODS 

Contaminated Soils and Solid Media 

Eighteen contaminated soils from eight different hazardous waste sites 

were evaluated using the in vitro gastrointestinal (IVG) method of Rodriguez et 

al. (1999). Air-dried soil was sieved through nylon mesh (< 250 µm) to obtain the 

soil fraction considered to adhere to fingers and likely to be ingested. Total metal 

content of soil was determined by acid digestion using U.S. EPA Method 3050 

(1996a) and total elemental analysis was conducted using a high resolution 

Thermo Jarrell Ash IRIS inductively coupled plasma atomic emission 

spectrophotometer (ICP-AES). 

In Vivo Swine Dosing Study 

In vivo relative bioavailable Pb in contaminated soil was determined by in 

vivo dosing trials using standard operating procedures (Casteel, 1995). Male 

swine (5-6 wk old) and weighing 10-12 kg were dosed for 15 d with varying 

concentrations of Pb in substrates. Five swine were randomly assigned to 

treatment groups consisting of a dosing group, a negative control group (no 

substrate), and a positive control group that received oral lead acetate. All swine 

were individually housed in stainless steel cages and daily fed a powdered 
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grower's diet (referred to as dough in this paper), which approximated 5% of their 

body weight (Ziegler Bros., Inc., Gardner, PA). The diet was commercially 

formulated to have a protein content of approximately 19% and contained < 0.2 

mg Pb kg-1 diet. After a 7-d acclimation period, the swine were dosed with 

contaminated soil that was placed in a 5-10 g doughball of moistened grower 

diet. The swine were dosed twice daily to mimic childhood Pb ingestion, which is 

likely to occur between meals while children are in a fasted or semi-fasted state. 

A dose of 6.25 mg soil per kg body weight per day was used with half of the first 

dose being delivered at 9:00 am after an overnight fast and the second half of the 

dose being delivered at 3:00 pm after a 4-h fast. All swine were fed 2 hr after 

dosing. 

Tissue Analyses 

Blood (1.0 ml) was mixed with 9.0 ml of a matrix modifier consisting of 

0.2% v/v trace metal nitric acid, 0.5% v/v Triton X-100, and 0.2% w/v ammonium 

phosphate in deionized distilled water prior to analyses. Kidney or liver (1.0 g) 

were digested overnight at 90°C in 2.0 ml of concentrated trace metal HN03 and 

diluted to a final volume of 10.0 .ml with deionized distilled water. Femurs were 

oven-dried overnight at 100°C and were ashed in a muffle furnace at 450°C for 

48 h. Aliquots of ashed femurs (200 mg) were dissolved in 10.0 ml of a 1: 1 

mixture of trace metal nitric acid and deionized distilled water. All samples were 

filtered through 0.45 membrane filters prior to analyses by graphite furnace 

atomic absorption spectroscopy (GFASS). Blanks, spikes and duplicate 

analyses were conducted every 20 samples to meet quality assurance and 
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quality control (QA/QC) requirements. Relative Pb bioavailability was estimated 

using measured Pb concentrations in blood, liver, kidney, and bone. 

Calculation of In Vivo Relative Bioavailability 

RBA was calculated from Eq. [3]. Lead acetate was selected as reference 

material in our study because it is a readily soluble form of Pb that was used in 

critical toxicity studies as reported in IRIS. More specifically, for each study 

substrate, the amount of Pb bioaccumulated in tissue (e.g., µg Pb L-1 for blood 

and mg Pb kg-1 kidney, liver, or bone) was plotted as a function of Pb dosed 

(e.g., µg Pb kg-1 body weight daf1) for both reference material and study 

substrate. The resulting best-fit straight lines (calculated by linear regression) for 

both the reference material and the study substrate were used to estimate the 

RBA. The RBA was calculated by dividing the slope for the study substrate by 

the slope for the reference material. 

In Vitro Gastrointestinal Method (IVG) 

Bioaccessible Pb was estimated in our study using the IVG method 

developed by Rodriguez et al. (1999). The IVG method is a two-step sequential 

extraction: a· gastric solution extraction followed by an intestinal solution 

extraction. An equivalent amount of the dosing vehicle (200 g of wet feed termed 

"dough") was added to the gastric solution to mimic the in vivo dosing of 100 mg 

soil to 5 g of dough. Gastric solution was 0.15 M NaCl and 1% porcine pepsin 

(Sigma Chemical Company, St. Louis, MO, cat. no. P7000). The in vitro method 

was conducted using 1 L glass jars in a water bath at body temperature (37°C). 

Soil (4.0 g) was placed in 600 ml of gastric solution to which either O g (e.g., no 
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dough) or 200 g of dough was added. The pH of the gastric solution was 

adjusted to pH 1.8 with trace metal grade HCI. Anaerobic conditions were 

maintained by constantly bubbling argon through the solution; pH was 

continuously monitored and adjusted to 1.8 throughout the 1-h procedure. 

Mixing (to simulate gastric mixing) was maintained during the procedure using 

individual paddle stirrers set at a speed of 100 rpm. After 1 h, 40 ml of gastric 

solution, removed for Pb analysis, was replaced with 40 ml of fresh gastric 

solution. Subsequently, the extraction solution was modified to simulate 

intestinal solution by adding saturated NaHC03 solution to adjust the pH to 5.5 

followed by the addition of 2.10 g of porcine bile extract (Sigma Chemical 

Company, St. Louis, MO, cat. no. 88631) and 0.21 g of porcine pancreatin (cat. 

No. P1500). A small amount of anti-foam agent (decanol) was added to each 

reaction vessel. After 1 h, 40 ml of intestinal solution was collected for Pb 

analysis. Gastric and intestinal solution samples were centrifuged for 15 min at 

10,000 rpm and filtered through 0.45 µm membrane filters immediately after their 

collection. The samples were acidified to pH of 2 using trace metal HCI, and Pb 

was determined using ICP-AES. 

In Vitro Bioaccessibility Calculations 

Bioaccessible Pb was calculated by dividing the Pb concentration 

measured in the in vitro gastric or intestinal solutions by the total soil Pb content 

(e.g., U.S. EPA method 3050) 
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Statistical Analysis 

Analysis of variance using PROC MIXED (SAS Institute, 2001) was 

performed to evaluate the effects of the extraction step (gastric or intestinal) and 

method (dough or no dough addition) on bioaccessible Pb. The data were 

analyzed as a split plot arrangement in a randomized complete block design. 

The combination of replicate and soil were used as blocks, method was the 

whole plot factor, and phase was the split plot factor. Simple effects of method 

given phase and phase given method were analyzed with a SLICE option in the 

LSMEANS statement. The relationship between mean in vitro bioaccessible Pb 

and mean in vivo relative bioavailable Pb in different tissues was determined 

using PROC REG (SAS Institute, 2001 ). 

RESULTS AND DISCUSSION 

Soil Pb Concentrations 

The Pb content of the contaminated soils ranged from 1,270 to 14,200 mg 

kg-1 (Table 1 ), which is well above the Pb content of 10 to 67 mg/kg reported for 

uncontaminated soils (Kabata-Pendias and Pendias, 1992). The study soils 

were also contaminated with other heavy metals (e.g., Cd, Zn) and metalloids 

(As) (Table 1 ). The soils also contained significant amounts of elements known 

to affect Pb uptake and bioavailability including Fe, Ca, and Zn. 

In Vivo Relative Bioavailable Pb 

Ranges (in parentheses) for percent relative bioavailable Pb estimated 

using the young swine model varied by tissue and were blood (1 to 87%), liver (0 

to 110%), kidney (1 to 124%), and bone (0.04 to 94%) for the soils evaluated in 
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our study (Table 2). In a review on the oral bioavailability of inorganics in soil, 

Ruby (1999) reported that the bioavailability of Pb in an ingested soil depends on 

the chemistry, particle size distribution, mechanism of dissolution, and 

geochemistry of the soil. Our results are similar to those of Ruby (1999) who 

reported that the relative bioavailability of Pb in contaminated soils ranged from 1 

to 90% based on a combination of data from blood, bone, liver, and kidney using 

juvenile swine with blood data weighted more heavily. 

In Vitro Bioaccessible Pb 

The in vitro bioaccessible Pb measured by the IVG gastric solution 

extraction step (GE) using dough in the extraction ranged from 0. 70 to 36.3% 

with an overall mean of 23.0% (Table 2). In vitro bioaccessible Pb measured by 

the IVG intestinal solution extraction step (IE) using dough in the procedure 

ranged from 0.02 to 1.16% and averaged 0.56% for the soils (Table 2). IVG GE 

Pb without using dough in the extraction ranged from 1.4 to 64.4% with an overall 

mean of 32.2% (Table 2). Within the IE, the in vitro Pb without using dough in 

the extraction ranged from 0.03 to 3.23% with an overall mean of 1.06% (Table 

2). Much literature has been published concerning the estimation of 

bioaccessible Pb in soil .using in vitro procedures (Davis et al., 1992; Ellickson et 

al., 2001; Hamel et al., 1998; Ruby et al., 1992, 1993, 1996). Previous work has 

reported a range of values for bioaccessible Pb in soils with most values < 100%. 

Davis et al. (1992) used an in vitro procedure to compare the solubility of lead 

. acetate with the solubility of a soil from the Butte, MT, mining district and found 

that Pb in lead acetate was 70 · and 5 times more available than an equivalent 
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mass of Pb found in the soil under simulated stomach and intestine conditions, 

respectively. Ruby et al. (1992, 1993) investigated mine-waste samples and 

found that bioaccessible Pb ranged from 0.5 to 6%. Hamel et al. (1998) used an 

in vitro extraction procedure composed of a gastric step at a pH of 1.1 to 

evaluate the bioaccessibility of Pb and other contaminants in a National Institute 

of Standards and Testing standard reference material (NIST Soil SRM 2710). 

Their study investigated the effect of varying the liquid to solid ratio on the 

extractability of As, Cr, Ni, Cd, and Pb without using food in the extraction. Their 

results indicate that the solubility of Pb in the SRM 2710 was affected only 

slightly by changing the liquid to solid ratio; they reported the bioaccessibility of 

Pb in SRM 2710 as 36% at a liquid to solid ratio of 100:1, 46% at a liquid to solid 

ratio of 200: 1, and 35% at a liquid to solid ratio of 2000: 1. The IVG extraction of 

Rodriguez et al. (1999) used a liquid:solid ratio of 150:1. In vitro bioaccessible 

Pb was measured in NIST SOIL SRM 2710 both with and without dough. IVG 

GE Pb (without dough) was 60%, while IVG IE Pb (without dough) was 4%. 

Measured IVG GE Pb (with dough) was 28%, and IVG IE Pb (with dough) was 

0.4%. Ellickson et al. (2001) used a two step in vitro procedure (without food) 

composed of a saliva-gastric step (pH = 1.4) and an intestinal step (pH = 6.5) to 

evaluate the bioaccessibility of Pb and As in a National Institute of Standards and 

Testing standard reference material (NIST Soil SRM 2710). Using a liquid to 

solid ratio of approximately 3500: 1, they reported the bioaccessibility of Pb in the 

saliva-gastric step as 76.1 % and the bioaccessibility of Pb in the intestinal step 

as 10.7%. Ruby et al. (1996) used.the PBET composed of a stomach step (pH= 

87 



2.5) and an intestinal step (pH= 7.0) at a liquid to solid ratio of 160:1 without food 

to estimate bioaccessible Pb in a set of seven soils. Percent bioaccessible Pb 

extracted by their stomach step ranged from 3.8 to 26%, while percent 

bioaccessible Pb for their intestinal step ranged from 0.6 to 29%. 

Dough vs. No Dough 

Pb extracted by the IVG GE was greater than Pb extracted by the IVG IE 

for the 18 individual soils for both dough and no dough methods (Table 2). Mean 

IVG GE Pb was also greater than mean IVG IE Pb for the soils using both 

methods (p < 0.001, Table 2). In part, the reduction of measured Pb between 

IVG GE and IVG IE can be attributed to the reduced solubility of Pb in the higher 

solution pH of the IE as compared to the GE (pH 5.5 vs. 1.8). During our study, 

mean Pb in the IE without dough decreased by approximately 97% as compared 

to mean GE Pb without dough. Our results are similar to those of Ruby et al. 

(1996) who showed that solubilized Pb decreased by 74% upon entering the 

small intestine step during the PBET due to adsorption and precipitation 

reactions removing Pb from solution as the pH increased. 

Compartson of the dough vs. no-dough methods shows that the mean Pb 

of 16.6% for the combined GE and IE without using dough in the extraction was 

greater than the mean Pb extracted of 11.8% for the combined GE and IE using 

dough in the extraction (p = 0.003 ·(Table 2); Mean IVG GE Pb of 32.2% without 

dough in the extraction was significantly greater than mean IVG GE Pb of 23.0% 

using dough in the extraction (p < 0.001) (Table 2). There was a significant 

interaction between method and extraction phase (e.g., gastric vs. intestinal) (p = 
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0.011 ). Mean IVG IE Pb of 1.06% without dough in the extraction was not 

significantly greater than mean IVG IE Pb of 0.56% using dough in the extraction 

(p = 0.689, Table 2). Our results are similar to those of Ruby et al. (1993) who 

reported that the addition of rabbit chow to an in vitro procedure reduced the 

mass solubilized Pb during the stomach phase by approximately 10.8%. 

In a review on human bioavailability. Ragan (1983) reported that the 

solubility and absorption of Fe, Cd, and Pb may be lowered by dietary 

components such as oxalates, phosphates, and phytates. The presence of food 

reduces absorption of ingested water-soluble Pb (e.g., lead chloride, lead nitrate, 

lead acetate) by humans primarily due to the presence of calcium and phosphate 

(Blake and Mann, 1983; Blake et al., 1983; Heard and Chamberlain, 1982; 

Rabinowitz et al., 1980). Madalonni et al. (1998) dosed human volunteers with 

contaminated soil from Bunker Hill, ID, and reported that the absorption of Pb 

was greatly affected by the presence of food in the gastrointestinal systems of 

test subjects. Their study reported the absorption of Pb in fasted test subjects as 

26% and the absorption of Pb in fed test subjects as 2.5%. Phytic acid 

(myoinositol hexaphosphate) or its salt, phytate, is an important plant constituent 

accounting for up to 90% of total phosphorus in cereals, legumes, and oilseeds 

(Reddy et al., 1982). Phytic acid is capable of forming strong complexes with 

various metal cations under physiological conditions (Nolan et al., 1987). Wise 

(1981, 1983) conducted both acute (8 d) and chronic studies (6 mo) involving the 

addition of calcium phytate to Pb-contaminated diets fed to mice and reported 

that calcium phytate reduced blood Pb levels. Rose and Quarterman (1984) fed 
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rats a diet containing 200 mg Pb kg-1 supplemented with phytate (1 O g kg-1) or 

calcium (6 g kg-1) and found that the addition of phytate or calcium separately 

reduced the accumulation of Pb in bone, blood, and liver. They also reported 

that the greatest reduction in tissue accumulation of Pb occurred when phytate 

and calcium were fed together. Bullock et al. (1995) investigated the effect of 

phytate on the in vitro solubility of Al, Ca, Hg, and Pb as a function of pH at 37°C. 

They varied the Pb to phytate ratio across the pH range of 3.0 to 7.0 and found 

that the solubility of Pb varied with both pH and the Pb to phytate molar ratio. Pb 

solubility in their study was greatly reduced by the formation of Pb-phytate 

precipitates. Maximum reduction in Pb solubilites occurred at a Pb:phytate ratio 

of approximately 3:1 with reductions ranging from 96% (pH = 3.0) to 88% (pH = 

7.0). The calcium-phytate complex has a strong affinity for both Pb and Cd 

(Wise, 1983). Also, Wise and Gilburth (1981) reported that almost complete 

binding of both Cd and Pb occurred at Ca:phytate ratios that are common in 

stock diets of laboratory animals. It is possible that Pb-phytate complexes or 

insoluble complexes involving phytic acid and Ca with Pb coprecipitating the 

complex were formed during the in vitro extraction of soils using dough, which 

resulted in lower bioaccessible Pb as compared to the extractions that did not 

use dough. 

The dough material has a phosphorus content of 7,580 mg kg-1. A 

· considerable amount of P was dissolved in the IVG methods. Results show that 

the inclusion of dough increased soluble P in the IVG GE solution from 53.9 to 

1,900 mg L-1 without soil. Similarly, inclusion of dough increased soluble P in the 
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IVG IE from 64.5 to 1,740 mg L-1 without soil. Results show that the inclusion of 

dough increased soluble P in the IVG GE solution from 49.1 to 1,810 mg L-1 with 

contaminated SRM 2710 soil. Similarly, inclusion of dough increased soluble P 

in the IVG IE from 56.7 to 1,570 mg L-1 with contaminated SRM 2710 soil. The 

equilibrium geochemical speciation model MINTEQA2 (ver. 4.0) was used to 

investigate the possibility that the addition of dough to the IVG procedure 

resulted in precipitation of inorganic Pb phosphorus compounds, thus lowering 

measured concentrations of in vitro Pb (U.S. EPA, 1999). In vitro concentrations 

of Ca, Pb, Fe, P, Zn, Na, Cl, and solution pH were used as model inputs. Total 

dissolved P was assumed to be present as orthophosphate ion, which would be 

consistent with the most likely scenario to form Pb phosphate mineral precipitate. 

MINTEQA2 predicted that the IVG GE solutions, with and without dough, were 

oversaturated with respect to lead phosphate solid phases for the contaminated 

SRM 2710 soil. MINTEQA2 indicated that 24.6% of the total Pb could precipitate 

as pyromorphite without dough and that 79.6% of the total Pb could precipitate 

as pyromorphite with dough, which is consistent with decreased in vitro Pb 

associated with dough addition during the gastric step of the in vitro procedure. 

MINTEQA2 predicted that oversaturati6n occurred for the IVG IE solutions with 

and without dough. The model predicted that 99.98% of the total Pb could 

precipitate as pyromorphite without dough, while 99.96% of the total Pb could 

precipitate as pyromorphite with dough. However, MINTEQA2 failed to explain 

decreased in vitro Pb associated with dough addition (10x less for the SRM 
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2710) during the intestinal step and showed little difference between the dough 

and no dough situations. 

Relationships Between Bioaccessible Pb and In Vivo Relative Bioavailable 

Pb 

Concentrations of Pb in blood are the most widely used biomarkers of lead 

exposure (U.S. Department of Health and Human Services, 1999). However, 

approximately 94% of the total body burden of Pb is found in bones with Pb 

cycling between blood and bone (U.S. Department of Health and Human 

Services, 1999). The relationship between blood Pb and Pb exposure is 

nonlinear for gastrointestinal exposure at high exposure concentrations, and Pb 

in bone is considered a more appropriate biomarker of cumulative Pb exposure 

than Pb in blood (U.S. Department of Health and Human Services, 1999; U.S. 

EPA, 1986). Linear regression indicated there was a strong relationship between 

IVG GE Pb using dough in the extraction and in vivo relative bioavailable Pb 

estimated using blood data (P < 0.0001, r = 0.93) (Fig. 1A). Regression analysis 

showed there was a strong relationship (P < 0.0001, r = 0.80) between IVG IE Pb 

using dough in the extraction and in vivo relative bioavailable Pb estimated using 

blood data (Fig. 1 B). A strong relationship was found between IVG GE Pb 

without using dough in the extraction and in vivo relative bioavailable Pb using 

blood data (P < 0.0001, r = 0.89) (Fig. 1 C). However, a significant relationship 

between IVG IE Pb (no dough) and in vivo relative bioavailable Pb using blood 

data was not found (P = 0.121, r = 0.38) (Fig. 10). Strong relationships also 

existed between IVG GE Pb using dough in the extraction and estimated in vivo 
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relative bioavailable Pb using other tissues (e.g., liver, kidney, and bone) with 

regression coefficients ranging from 0. 76 to 0.85 (Table 3). Strong relationships 

were also found between IVG IE Pb using dough in the extraction and in vivo 

relative bioavailable Pb as estimated by the other tissues with regression 

coefficients ranging from 0.56 to 0.80 (Table 3). Significant relationships were 

also found between IVG GE (no dough) and in vivo relative bioavailable Pb using 

the other tissues, and regression coefficients ranged from 0.81 to 0.93 (Table 3). 

Conversely, within the IE without dough in the extraction, only the relationship 

between IVG Pb and in vivo relative bioavailable Pb using bone data was 

significant (P = 0.049, r = 0.47) (Table 3). Ruby et al. (1996) showed that the 

stomach phase of the PBET at pH values of 1.3 and 2.5 was highly correlated 

with in vivo relative bioavailable Pb as measured by a weanling rat model with 

blood as the target organ (f = 0.93 for both pH values, n = 7). Their study 

reported a weaker relationship (f = 0.76) between intestinal bioaccessible Pb 

and in vivo relative bioavailable Pb. In a review article on bioavailability of 

inorganics in soils, Ruby (1999) cited a study by Medlin (1997) and indicated that 

the stomach phase of the PBET was strongly correlated (f = 0.79, n = 15) with a 

"weighted estimate" (i.e., blood weighted 3:1 over each tissues) of in vivo relative 

bioavailable Pb from a young swine model. However, correlations between the 

intestinal phase of the PBET and in vivo relative bioavailable Pb were not 

reported in the review. In general, the results of our study are very similar to 

those reported by Ruby et al. (1996) and Ruby ( 1999) in that the GE without 
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dough was highly correlated with in vivo relative bioavailable Pb as estimated 

with all tissues. 

Many interactions in the gastrointestinal systems of various animals affect 

Pb absorption. Gastrointestinal absorption of Pb is a complex and dynamic 

process involving dissolution, absorption, and interactions with other dietary 

components. Iron deficiencies in children have been associated with elevated 

blood Pb concentrations, and several animal studies have shown that Fe 

deficiencies increase gastrointestinal absorption of Pb (Barton et al., 1978; 

Flanagan et al., 1979; Mahaffey and Annest, 1986; Morrison and Quarterman, 

1987; Sullivan and Ruemmler, 1987). Dietary deficiencies of Ca, Zn, and P 

enhance absorption of Pb in humans, rats, mice, and pigs (Heard and 

Chamberlain, 1982; Hsu et al., 1975; Johnson and Tenuta, 1979; U.S. 

Department of Health and Human Services, 1999; Van Barneveld and Van Den 

Hamer, 1985; World Health Organization, 1996). The ratios of total elemental 

content for Zn:Pb ranged from 0.01 to 12 with a median value of 2, Ca:Pb ranged 

from 0.24 to 22 with a median value of 4, and Fe:Pb ranged from 0.89 to 308 with 

a median value of 8. It is possible large amounts of Ca, Fe, and/or Zn decreased 

Pb absorption in some soils more than others. 

CONCLUSIONS 

Three of the solution extraction steps (GE with dough, IE with dough, and 

GE without dough) of the IVG method were able to predict bioavailable Pb in 

contaminated soils as measured by in vivo pig dosing trials. The combination of 

the complex biochemistry and biological processes in the gastrointestinal system 
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make it difficult to measure bioavailable Pb by in vitro methods. However, the 

ability of the IVG method to estimate bioavailable Pb is promising. Additional 

studies that compare in vitro results with in vivo bioavailable Pb should be 

conducted on more soils from a wide range of matrices (soil, slag, etc.). It is 

unlikely that an in vitro method can be developed to replace animal models in the 

estimation of in vivo bioavailability; however, in vitro methods (i.e., the IVG 

method) may be useful as rapid screening tools in assessing bioavailability of Pb 

on contaminated sites. Because in vitro methods are inexpensive, they can be 

used to analyze large numbers of soil samples and provide an estimate of the 

variability in bioavailable Pb at a single study site. The GE step of the IVG 

method both with and without dough has the ability to provide an estimate of 

bioavailable As and Pb in contaminated soil. The GE (no dough) can be used to 

estimate relative bioavailable Pb, As, and Cd in contaminated soil. 
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Table 1. Elemental content of select metal contaminants, Ca, 
and Fe in study soils. 
Soil Pb As Cd Zn Ca Fe 

mg/kg mg/kg mg/kg g/kg g/kg g/kg 

1 1590 51 4.20 0.90 13.6 16.1 

2 8600 240 43.0 1.20 16.0 50.0 

3 11200 4.9 0.80 0.11 2.65 10.0 

4 10800 25 33.7 10.0 45.8 40.2 

5 4050 11 188 50.0 81.8 18.0 

6 6940 16 139 17.2 19.9 26.6 

7 7510 203 59.9 13.7 20.1 68.1 

8 4320 110 38.5 2.65 3.93 27.5 

9 10600 1050 12.8 67.3 117 207 

10 1270 1290 4.00 0.44 8.29 391 

11 7895 591 24.4 31.9 90.1 196 

12 11500 695 29.9 48.9 88.1 169 

13 3200 310 23.8 10.4 69.0 38.7 

14 8350 5 4.00 1.88 11.8 8.89 

15 3230 110 195 6.50 1.16 25.9 

16 2150 134 319 19.1 2.48 26.7 

17 14200 67 41.9 6.58 37.2 33.7 

18 3870 17 47.4 4.11 17.3 23.0 
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Table 2. Comparison of soil Pb and in vivo relative bioavailable Pb with bioaccessible Pb determined by 
the IVG method with and without dough additive. 

Bioaccessible Pb 
In vivo relative bioavailable Pbt IVG with dough IVG without dough 

Soil Soil Pb+ Blood Liver Kidney Bone GE9 IE,1 GE9 IE,1 

mg/kg % % % % % % % % 
1 1590 33 33 21 21 19.7 0.54 21.1 2.79 
2 8600 22 9 13 13 5.90 0.17 6.81 0.48 
3 11200 1 0 1 1 0.70 0.02 1.40 0.32 
4 10800 56 92 50 55 27.8 1.16 55.2 1.66 
5 4050 78 110 77 70 31.6 1.06 64.4 0.49 
6 6940 82 66 50 94 34.3 0.95 58.8 2.22 
7 7510 71 92 91 62 26.4 0.47 41.0 1.93 
8 4320 87 96 124 84 35.0 0.80 53.0 1.95 
9 10600 20 11 10 18 8.24 0.04 7.50 0.09 
10 1270 6 5 4 0.04 4.74 0.18 6.71 0.18 ...... 
11 7895 20 8 8 9 13.8 0.06 6.85 0 0.03 

.i::,.. 12 11500 55 37 44 61 22.3 0.57 24.7 0.05 
13 3200 67 87 102 63 31.6 0.32 51.9 0.07 
14 8350 82 85 70 63 29.6 0.84 36.9 1.01 
15 3230 74 50 42 47 31.1 0.59 32.2 0.75 
16 2150 58 54 34 39 36.3 0.87 36.3 0.36 
17 14200 56 86 68 72 23.3 0.66 37.7 1.43 
18 3870 58 74 74 68 31.0 0.73 36.2 3.23 

Mean 6740 51 55 49 47 23.0 0.56 32.2 1.06 
Median 7230 57 60 47 58 27.1 0.58 36.3 0.62 
Minimum 1270 1 0 1 0.04 0.70 0.02 1.40 0.03 
Maximum 14200 87 110 124 94 36.3 1.16 64.4 3.23 

1Determined from juvenile swine dosing trial. 
+ SW 846, USE PA method 3050. 
§Gastric solution extraction step. 
111ntestinal solution extraction step. 



Table 3. Regression coefficients (r) and regression equations between percent bioaccessible Pb (in vitro) gastric 

and intestinal steps and percent relative bioavailable Pb (in vivo) as determined in different tissues of juvenile 

swine. Regression coefficients with asterisks are statistically significant (P < 0.05). 

Dough No dough 

Tissue GE1 Regression IE:I: Regression GE+ Regression IE:I: Regression 

equation equation ·equation equation 

Blood 0.93* y = 0.39x + 2.97 0.80* y = 0.01x + .0001 0.89* y = 0.65x -1.44 0.38 y = 0.01x + 0.52 

Liver 0.84* y = 0.26x + 8.65 0.80* y = 0.01x + 1.13 0.93* y = 0.50x + 4.22 0.43 y = 0.01x + 0.41 

Kidney 0.76* y = 0.24x + 11.1 0.56* y = 0.01x + 0.29 0.81* y = 0.45x + 10.0 0.39 y = 0.01x + 0.53 
....... 
0 
0, Bone 0.85* y = 0.33x + 7.40 0.78* y = 0.01x + 0.12 0.89* y = 0.61x + 3.53 0.47* y = 0.02x + 0.30 

f Gastric solution extraction step 

*Intestinal solution extraction step 
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CHAPTER IV 

BIOAVAILABIL TY OF CADMIUM, LEAD AND ZINC 

TO LETTUCE AND EARTHWORMS IN SOILS 

OF DIFFERENT PROPERTIES. 

ABSTRACT 

Estimation of bioavailability is important in the characterization of 

contaminated sites and bioavailability should be considered in the risk 

assessment of these sites. Indirect methods like chemical extraction that do not 

use living organisms may be useful in estimating bioavailability of heavy metals 

and performing risk assessments. For chemical extraction methods to be useful, 

they must first be correlated with heavy metal bioavailability determined by 

bioassays. In this study the relationships between two chemical extraction 

methods (Potentially BioAvailable Sequential Extraction (PBASE) procedure and 

pore water extraction of soil) and heavy metal bioavailability determined by 

bioassays were evaluated in 22 field soils spiked with heavy metals. The PBASE 

procedure is a sequential extraction procedure using four different extractants: 

0.5 M Ca(N03)2 (E1 ), 1.0 M NaOAc (E2), 0.1 M Na2EDTA (E3), and 4 M HN03 

(E4). Heavy metal bioavailability was estimated with a lettuce (Lactuca saliva 

var. Paris Island Cos) bioassay and an earthworm (Eisenia andret) bioassay. 

Significant linear relationships were found between E1 and lettuce metal content 

for the Cd50 (p < 0.05, r = 0.41 ), Cd300 (p < 0.01, r = 0.62), Pb (p < 0.01, r = 

0.74) and the Zn (p < 0.01, r = 0.71) spiked soils. Strong linear relationships 

existed between E1 and earthworm mortality for the Pb (p < 0.01, r = 0.86) and 
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the Zn (p < 0.01, r = 0.54) spiked soils, however relationships between E1 and 

earthworm mortality were not significant (p > 0.05) for the Cd spiked soils. 

Significant relationships were found between E1 and metal content in 

earthworms for the Cd50 (p < 0.01, r = 0.67), Cd300 (p < 0.01, r = 0.68), Pb (p < 

0.01, r = 0.65), and Zn (p < 0.05, r = 0.44) spiked soils. Regression analysis 

established significant relationships between soil pore water and lettuce metal 

content for th Cd50 (p < 0.05, r = 0.43), Cd300 (p < 0.05, r = 0.48) , Pb (p < 0.01, 

r = 0.55) and the Zn (p < 0.01, r = 0.83) spiked soils. Regression analysis 

revealed strong relationships (p < 0.01. r > 0.62) between soil pore water and 

earthworm mortality for the spiked soils. Significant relationships existed 

between soil pore water and earthworm metal concentrations for the Cd300 (p , 

0.01, r = 0.66), Pb (p < 0.01, r = 0.73) and the Zn (p < 0.05, r 0.49) spiked soils. 

The E1 fraction of the PBASE procedure and soil pore water extractions can be 

employed to provide information on Cd, Pb and Zn phytoavailability as well as 

information on the toxicity and bioavailability of Cd, Pb and Zn to earthworms. 
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INTRODUCTION 

Soils contaminated with heavy metals are a common problem throughout 

the United States and worldwide. Sources of heavy metal contamination include 

mining and smelting of Pb and Zn ores, atmospheric deposition from 

metallurgical industries, incineration of plastics and batteries, sewage sludge 

land application, burning of fossil fuels, pesticide use, contamination from vehicle 

exhausts, and manufacturing processes involving Pb and recycling and disposal 

of Pb-containing products (Davies 1990; Adriano 2001 ). Adverse environmental 

impacts due to soil contamination include risks to human health, phytotoxicity 

and ecotoxicity. Threats to humans and animals in relation to heavy metals may 

occur directly or indirectly. Direct threats are a result of inhalation or ingestion of 

contaminated soil; while indirect threats include contamination of groundwater 

and/or consumption of plants grown in contaminated soil. Risk of heavy metals 

is related to the bioavailability of these metals generally defined as "the amount 

or concentration of a chemical that can be absorbed by an organism thereby 

creating the potential for toxicity or the necessary concentration for survival" 

(Parametrix 1995). Estimation of bioavailability is important in the 

characterization of contaminated sites and bioavailability should be considered in 

the risk assessment of contaminated sites (Allen 2002). 

Both direct and indirect methods exist for the estimation of heavy metal 

bioavailability. Direct methods involve the responses of organisms and/or the 

measurement of internal metal concentrations in an organism. Heavy metal 

bioavailability has. been assessed by bioassays using plant or animal models. 
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Lettuce (Latuca sativa L..) is a cadmium (Cd) accumulator and has been used to 

assess the bioavailability of heavy metals in contaminated soils and food-chain 

risk to humans (Chaney and Ryan 1994; Brown et. al 1996; Brown et. al. 1998: · 

Logan et. al. 1997; Basta and Gradwohl 2000). The earthworm toxicity test is a 

standardized toxicity test protocol (ASTM 1995) where several species of 

earthworms have been shown to be useful in the estimation of heavy metal 

bioavailability (Morgan and Morgan 1988; Van Gestel 1993; Jannsen et. al. 1997; 

Marinussen et al. 1997; Scaps et. al. 1997; Peijnenburg et. al. 1999; Lock and 

Jannsen 2001 ). 

Indirect methods do not employ living organisms to estimate the 

bioavailability of heavy metals. Instead they involve the measurement of 

concentrations of chemicals in soils that are potentially available for uptake. In 

many cases total metal analyses is not a good predictor of heavy metal 

bioavailability to plants (McLaughlin 2002). Chemical extraction methods 

correlating well with bioassays of contaminants may be useful in estimating 

bioavailability of contaminants and performing risk analysis. Chemical 

fractionation methods involving sequential extraction can be used to determine 

the chemical forms of the contaminant ranging from water soluble to residual 

forms trapped in· mineral lattices in soil (Chao 1984; Lake et al. 1984; Harrison 

1987; Ure 1990). Although sequential extraction methods vary, heavy metal 

solubility and bioavailability decrease with each successive step of the sequential 

extraction method. Specific chemical pools have been identified and correlated 

with plant uptake of heavy metals (lvenger et al. 1981, LeClaire et al. 1984, Xian 

110 



1989 a, b). Additionally, Aten and Gupta (1996) demonstrated that metals in soil 

extracted with several different weak salt solutions were highly correlated with 

heavy metal content in lettuce. Recently Basta and Gradwohl (2000) used a 

simplified sequential extraction procedure, Potentially BioAvailable Sequential 

Extraction (PBASE), to extract twelve soils contaminated from Pb and Zn mining 

and smelting activities. They illustrated that Cd and Zn extracted by Ca(N03) 2 

was correlated with lettuce uptake of Cd and Zn. Additionally, it is believed that 

weakly bound metals extracted by weak salt solutions are available for uptake by 

earthworms (Jannsen et. al. 1997; Posthuma et. al. 1997; Peijnenburg et. al. 

1999). Conder and Lanno (2000) demonstrated that earthworm toxicity was well 

related in a metal-spiked artificial soil with soluble metal extracted by 0.1 M 

Ca(N03)2. Soft-bodied soil organisms (i.e. earthworms) are generally thought to 

be exposed to metals mainly by soil pore water with uptake tending to proceed 

via the soil solution (Peijnenburg 1997; Peijnenburg 2002). The equilibrium 

partitioning theory assumes a relationship exists between contaminant 

concentrations in pore water and tissue concentration in organisms and has 

proven useful for organic chemicals in earthworms (Oste et al. 2001). However, 

a few studies have examined the relationships between heavy metals in soil pore 

water and accumulation of heavy metals in earthworms (Jannsen et al.1997; 

Peijnenburg 1999; Oste et al. 2001 ). While the uptake of metals in plants is 

thought to occur via soil solution, few studies have examined the link between 

heavy metals in soil solution (i.e pore water metals) and plant metal uptake or 

toxicity (McLaughlin 2002). Research has been conducted showing that total 
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trace metal concentrations in pore waters of sediments are correlated with 

organism mortality (Swartz et. al. 1985; Di Toro et al. 1990). This work has not 

been extended to examine the relationship between pore water metal and 

earthworm mortality. The objectives of this study were to (1) evaluate the extent 

of heavy metal accumulation in earthworms and lettuce in soils with different 

properties; (2) determine the relationships between soil extracts (pore water and 

0.5 M Ca(N03)2 ) and lettuce metal content; and (3) determine the relationships 

between soil extracts (pore water and 0.5 M Ca(N03)2 ) and metal content in 

earthworms. 

MATERIALS AND METHODS 

Selection of Soils 

Approximately 40 soils were collected from the states of Oklahoma and 

Iowa to provide a wide range of soil properties including soil pH, organic carbon 

(OC) content, cation exchange capacity (CEC) and clay content. Oklahoma has 

a very diverse paleoclimatology and geology with soils that represent 8 of the 11 

soil orders. Soils collected from central Iowa were Mollisols with a high organic C 

content. Chemical and physical properties were measured on the collected soils 

and twenty-two soils were selected from the larger set of 40 soils. 

Selected soils showed a wide range in chemical properties including soil 

pH (4.0 to 8.0), organic carbon {0.3 to 3.0%), CEC (3.0 to 32.4 cmolc kg-1), and 

clay content (5.0 to 71.3%) (Table 1 ). Metal contaminants in selected soils were 

determined by acid digestion using microwave (CEM MOS 2100, CEM 

Corporation, Matthews, NC, USA) according to U.S. EPA Method 3051 for 
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confirmation of non-contamination prior to analysis of chemical and physical 

properties (U.S. EPA 1994). Duplicate analyses were conducted on all collected 

samples for the determination of baseline metal content. Heavy metal 

contaminant contents (Cd, Pb and Zn) of study soils were similar to 

uncontaminated background soil contents in literature (Table 2). Blanks, spikes 

and certified reference soil (CRM020-050, RTC Corporation, Laramie, WY, USA) 

were digested and analyzed as QA samples. 

Preparation of Contaminated Soils by Contaminant Spiking 

Soils were spiked with reagent grade Cd(N03)2, Pb(N03)2, or Zn(N03)2 to 

obtain soil concentrations of 50 mg Cd/kg, 300 mg Cd/kg, 2000 mg Pb/kg, or 300 

mg Zn/kg. Soils were spiked with only one metal (e.g. Pb spiked soil, Cd spiked 

soil, etc) to avoid competitive adsorption effects (Basta and Tabatabai, 1992a). 

One liter of spiking solution was prepared using reagent grade metal salt and 

deionized distilled water. Ten ml of the spiking solution was retained and 

analyzed by inductively coupled plasma atomic emission spectroscopy (ICP

AES) to confirm th.e spiking concentration. Spiking solution (1 L) was added and 

mixed with 5.0 kg of soil -in an aluminum pan. Additional deionized distilled water 

was added and thoroughly mixed with the soil to make a saturated paste. The 

soil was oven-dried at 105 °C for 24 h. After 24 h, the dried soil was removed 

from the oven and deionized distilled water was added to make a saturated paste 

followed by drying at 105 °C for 24 h. Excessive soil salinity (salt) may reduce 

the growth and yield of many crops and is commonly determined by measuring 

the electrical conductivity (EC) of a solution extracted from a water-saturated soil 
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paste. Therefore, soil (EC) of the spiked soils was determined after the second 

wetting and drying cycle as follows: Fifty grams of soil was shaken with 50 ml of 

deionized distilled water for 2 h. Soil EC was measured on filtered solution (0.45 

µm Supor membrane filter; Fisher Scientific, Pittsburgh, PA). Soils with EC > 1.5 

dS/m (i.e. a level that should not reduce yields of lettuce) were leached with the 

minimum amount of deionized distilled water to reduce EC < 1.5 dS/m 

(Soltanpour and Follett, CSU Fact Sheet No. 0.505). Soils that had EC < 1.5 

dS/m were not leached. All soils underwent three wet-dry cycles to achieve 

adequate reaction with the soil matrix. Heavy metals added as salt to soil can 

result in "salt effect" where heavy metal availability is greater in spiked soil than 

untreated soil (Logan and Chaney 1983). The sequence minimized artifacts from 

spiking by reducing the "salt effect." Treated soils were crushed using a jar mill 

and corundum ball grinding media to pass a 2.0 mm sieve. Spiked soils were 

digested by microwave according to U.S. EPA Method 3051 to confirm the 

spiked concentration of each metal. Ranges of spiked metal concentrations, in 

parentheses, were Cd50 (40-54 mg Cd/kg soil), Cd300 (270-326 mg Cd/kg soil), 

Pb (1,697-2,023 mg Pb/kg soil) and Zn (292-445 mg/kg soil) (Table 3). Blanks, 

spikes and certified reference soil (CRM020-050, RTC Corporation, Laramie, 

WY, USA) were digested and analyzed for quality assurance in the determination 

of metal content- in soil. 

Chemical and Physical Properties 

Soil pH was determined in 1: 1 soil:water suspension (Thomas, 1996) as 

follows: 10.0 ml of deionized distilled water was combined with 10.0 g of air-dried 
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soil in a 50.0 ml plastic solo cup. The suspension was mixed for 15 min. The 

suspension was allowed to settle for 10 min and the pH was measured using a 

combination pH electrode. Duplicate soil pH analyses were conducted on each 

soil. Because metal salt additions result in acidification from metal hydrolysis 

(Basta and Tabatabai, 1992b), soil pH was measured on control (unspiked) and 

on metal-spiked soils. 

Soil organic carbon content was determined by acid dichromate digestion 

according to Heanes (1984). Air-dried soil was ground to< 0.15 mm Soil (0.5 g) 

was added to 5.0 ml of 0.5 M K2Cr207 and 10.0 ml of concentrated H2S04 in 

glass digestion tubes. Calibration standards of organic carbon were prepared 

from sucrose (Fisher Scientific, Pittsburgh, PA, USA) and treated similarly as to 

samples. Also, two reagent blanks were prepared for digestion and subsequent 

analysis. Samples, calibration standards and blanks were placed into a pre

heated digestion block set at 145 °C and digested for 30 min. The digested 

samples, calibration standards and blanks were diluted to 50.0 ml in a volumetric 

flask then filtered through 0.45 µm filters. Absorbance at 600 nm was measured 

on a spectrophotometer for samples, calibration standards and blanks. The 

amount of organic carbon in the sample was determined from a calibration curve 

generated using sucrose. Duplicate analyses were conducted on each soil in the 

determination of organic matter. 

Cation exchange capacity of non-calcareous soil (soil pH < 7.0) was 

determined using a procedure adopted from Hendershot and Duquette (1986). 

Soil (0.5 g) was weighed into 50 ml centrifuge tubes. Twenty ml of 0.1 M BaCl2 
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was added and the samples were shaken for 2.0 h. The extracted samples were 

centrifuged at 10,000 rpm for 10.0 min and filtered with 0.45 µm filters. 

Concentrations of cations were analyzed by ICP-AES and summation of cations 

(Al, Ca, Fe, K, Mg, Mn and Na) was used to represent the CEC of each soil. 

Cation exchange capacity of calcareous soils (soil pH > 7.0) was 

determined according to the method of Polemic and Rhoades (1977) as follows. 

Soil (5.0 g) was weighed into 50 ml centrifuge tubes and saturated with 33.0 ml 

of a 60% ethanol solution of 4.0 N NaOAc-0.1 N NaCl. Equilibration was 

obtained by shaking the soil-solution mixtures for 5.0 min. Samples were 

centrifuged at 10,000 rpm for 10.0 min and the supernatant were discarded. The 

process was repeated three more times. Then the saturated sample was 

extracted with 33.0 ml of a 1.0 N Mg(N03)2 solution by shaking for 5.0 min 

followed by centrifugation. Supernatant was retained in a 250 ml volumetric flask 

and the process was repeated three more times. The extracted supernatants 

were combined, diluted to a final volume of 250 ml and analyzed for Na using 

ICP-AES and for Cl using ion chromatography with the resulting concentrations 

were used to calculate CEC. Duplicate analyses were conducted on each soil in 

the determination of cation exchange capacity. 

Soil texture was determined by the hydrometer method (Gee and Bauder, 

1986).· Each soil was pretreated to remove organic matter prior to particle size 

analysis as follows: Deionized distilled water (100 ml) was added to 100 g of soil 

in a 1 L glass beaker. The beakers were placed in a hot water bath set to 85 °c 

and 50 ml of H202 was added to each beaker. The addition of H20 2 resulted in 
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frothing from oxidation of soil organic matter. Samples were periodically stirred 

and heated until frothing subsided. They were re-treated with 50.0 ml H20 2, and 

heated until frothing subsided. The samples were treated until a total of 300 ml 

of H20 2 had been added. Samples were then oven-dried at 105 °C and ground 

to pass through a 2.0 mm sieve with a mortar and pestle. Soil (40.0 g) was 

weighed into a 200 ml container. One hundred ml of 5% sodium 

he:xametaphosphate was added and each sample was shaken for 16 h. The 

suspension was then transferred into a 1 L glass graduated cylinder and 

deionized water was added to bring to 1.0 L final volume. Hydrometer readings 

were taken at 30 sec and 7 h 14 sec to determine the sand and clay content, 

respectively. Silt was determined by difference (100% - %sand -%clay). 

Hydrometer readings of blank solution were used to compensate for differences 

in temperature and solution viscosity. Duplicate analyses were conducted on 

each soil in the determination of soil texture. 

Amorphous (i.e. reactive) Al and Fe oxides were determined on unspiked 

control soils using Tamm's reagent according to the procedure of Loeppert and 

Inskeep (1996). Soil (0.5 g) ground to < 0.15 mm was added to 30 ml of acidified 

ammonium oxalate solution (0.175 M ammonium oxalate plus 0.1 M oxalic acid, 

pH adjusted to 3.0) in 50 ml centrifuge tubes, shaken for 2.0 h, centrifuged at 

10,000 rpm for 10.0 min, and analyzed for Al and Fe by ICP-AES. Duplicate 

analyses were conducted on each soil in the determination of aluminum and iron 

oxides. 
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Sequential Extraction Procedure 

The solubility and potential bioavailability of Cd, Pb and Zn in the spiked 

soils were determined using a four step sequential extraction procedure 

developed by Basta and Gradwohl (2000) and termed the potential bioavailability 

sequential extraction or PBASE procedure. Soil (1.0 g) was placed in a 50 ml 

centrifuge tube and extracted with 20.0 ml of 0.5 M Ca(N03)2 solution (E1 

solution). The samples were shaken end-to-end on a reciprocal shaker for 16 h. 

The solution was then centrifuged at 10,000 rpm for 15 min and the supernatant 

decanted and filtered through a 0.45 µm membrane filter. The supernatant were 

acidified with 1.0 ml of trace metal concentrated HCI and stored at 4°C until 

analysis of metal by ICP-AES. In the second step of the PBASE, 20.0 ml of 1 M 

NaOAc (E2 solution) adjusted to pH 5.0 was added to the residue soil in the tube 

and shaken for 5 hr. After extraction, the supernatant was prepared for analysis 

as detailed above. In the third step of the PBASE, 20.0 ml of 1 M Na2EDTA (E3 

solution) adjusted to pH 7.0 was added to the residue in the tube and shaken for 

6 h. The resulting supernatant was filtered but not acidified because acidification 

causes precipitation of EDTA salts. The EDTA extracts were stored at 4°C until 

analysis. In the final step of the PBASE, 20.0 ml of 4 M HN03 (E4 solution) was 

· added to the residue in the tube and shaken for 16 h in a heated water bath (80 

· °C). The E4 extract was then filtered through a 0.45 membrane filter prior to 

metal analysis. Triplicate analyses were conducted for all soils in the study. 
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Pore Water Extraction 

Approximately 40.0 g of soil was weighed into plastic solo cups. 

Deionized distilled water was added to each sample to make a saturated paste 

as described by Rhoades (1996) when measuring electrical conductivity. The 

soils were allowed to equilibrate for 48 h, transferred to 50 ml tubes and 

centrifuged at 10, 000 rpm for 15 min. The supernatant was filtered through a 

0.45 µm membrane filter, acidified with trace metal HCI and retained for 

subsequent metal analyses. 

Lettuce Bioassay 

Lettuce (Lactuca sativa var. Paris Island Cos) was grown in 15-cm pots 

containing 750 g samples of control or spiked soil placed over a 2-cm layer of 

vermiculite in a completely randomized design with three replicates. Twenty 

seeds were planted per pot and the pots were kept in an environmental chamber 

for 40 days, during which they received 16 h light at 22°C ± 3°C and 8 h of 

darkness at 20°C ± 3°C per day. Seed germination was counted at 8 days. 

Lettuce was thinned to five plants per pot at 14 days. Lettuce was watered to 

"'field capacity" as needed and the pots were fertilized three times with a dilute 

nutrient solution (3.64 g L"1) of commercial plant food (20-20-20). Lettuce was 

harvested at the soil surface and washed three times with deionized water. Dry 

matter production and metal content of lettuce was determined after harvest. 

The lettuce was dried at 75°C for 48 h then ground (< 2 mm) in a Wiley mill 

(Jones and Case 1990). Dry lettuce tissue (0.25 g) was predigested for 4 h in 10 

ml of trace-metal nitric acid. Predigested samples were digested at 140 °C for 2 
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h. Digested samples were diluted to a final volume of 25.0 ml and analyzed for 

metals by ICP-AES. Blanks, spikes and certified reference materials (National 

Institute of Standards and Technology Spinach Leaves SRM 1570a for Cd, Zn 

and Commission of the European Communities Trace Elements in an Aquatic 

Plant, Lagarosiphon major BCR No 60 for Pb) were digested and analyzed for 

quality assurance in the determination of metal content in lettuce. 

Earthworm Bioassays 

Twenty-eight day earthworm bioassays were conducted using mature 

(clitellate) manure worms (Eisenia andret) according to the American Society for 

Testing and Materials (ASTM) protocol (ASTM 1997). Testing was conducted in 

an environmental chamber set to 20°C ±1 °C with constant light and three 

replicates of each spiked metal. Each replicate contained 200 g of soil and 10 

earthworms. Testing was also conducted on unspiked soils and ASTM artificial 

soil (69.5% silica sand, 20% kaolin clay, 10% 2-mm sieved sphagnum moss, and 

approximately 0.5% CaC03 ) to serve as controls during the experiment. Prior to 

testing, 200 g of each replicate was placed in glass jars with three small holes in 

the lid, moistened to between 1/3 bar and saturation and allowed to acclimate for 

24 h in the environmental chamber. Twenty-four hours prior to the addition of 

earthworms to the test soils, earthworms weighing 0.2-0.4g were removed from 

in-house culture containers, rinsed with distilled water and placed on moist filter 

paper to depurate most of the bedding from their intestinal tract (van Gestel et al. 

1993). At the start of the toxicity test, earthworms were removed from the filter 

paper, rinsed, blotted dry and separated into replicate groups of 10 earthworms. 
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Each replicate group was weighed and arbitrarily added to a randomly 

determined soil replicate. Earthworms were monitored daily for the first eight 

days and afterwards they were checked three times per week for the duration of 

the 28 day test. During each check, any dead earthworms were removed, rinsed 

thoroughly with distilled, deionized water, individually wrapped in aluminum foil 

and frozen at -20°C for storage. Earthworms were judged dead if they failed to 

respond to gentle stimulation with a blunt probe. Live earthworms present at the 

termination of the tests were rinsed, weighed and stored as described above. 

Internal Concentrations of Earthwoms 

Metal concentrations in earthworms were determined according to the 

method of Morgan et al. (1982). One worm from each replicate was unfrozen, 

dried for 24 h at 105°C in a 10 ml beaker and weighed. Individual worms were 

digested in 5.0 ml of concentrated trace metal nitric acid. Digests were 

evaporated to dryness, resolubilized at 60°C for 15 min in 3.0 ml of 0.5 M trace 

metal nitric acid and diluted to a final volume or 10 ml with 0.5 M trace metal 

HN03. Metal concentrations in earthworm tissue were measured by graphite 

furnace atomic absorption spectroscopy (GFAAS) and expressed as mg metal/kg 

dry weight earthworm. Blanks, spikes· and certified reference material (lobster 

hepatopancreas, TORT-2, National Research Council, Canada) were digested 

and analyzed for quality assurance and quality control in the determination of 

metal in earthworms. 

121 



Quality Assurance and Quality Control 

Blanks, spikes and certified/standard reference materials were digested 

and analyzed for quality assurance and quality control of metals in soil, plant 

tissue and earthworm tissue. Blanks, spikes and certified/standard reference 

materials were evaluated for every six samples of soil, plant tissue or earthworm 

tissue. Examples of certified/standard reference materials for different sample 

types include: Soil (CRM020-050, RTC Corporation, Laramie, WY, USA); Plant 

tissue (National Institute of Standards and Technology Spinach Leaves SRM 

1570a for Cd, Zn and Commission of the European Communities Trace 

Elements in an Aquatic Plant, Lagarosiphon major BCR No 60 for Pb), and 

Earthworm Tissue (lobster hepatopancreas, TORT-2, National Research Council, 

Canada). Digested blanks contained below detection limit concentrations of Cd, 

Pb and Zn for all three types of samples (Table 4). Within the three types of 

samples spike recoveries of metals ranged from 95 to 100%. Mean recoveries of 

metal in certified reference soil (CRM020-050, RTC Corporation, Laramie, WY, 

USA) ranged from 98 to 99% with relative standard deviations ranging from 0.63 

to 3.7% (Table 4). While mean recoveries of metals in certified plant materials 

ranged from 93 to 95% with relative standard deviations ranging from 2.6 to 2.7% 

(Table 4). Concurrently mean recoveries for metals in lobster hepatopancreas 

. r~nged from 96 to 102% with relative standard deviations ranging from 1.1 to 

3.2% (Table 4). 
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.RESULTS AND DISCUSSION 

Soil Extractions 

The distribution of metal species within the four PBASE extraction 

fractions varied among metals (Figure 1). Comparison of the mean values for 

the 22 spiked soils show that 57% of soil Cd was in the E1 fraction and 

approximately 68% of soil Cd was extracted by the first two extracts of PBASE 

(I:E1-E2) for the Cd50 soil. Slightly more soil Cd was extracted in the E1 fraction 

of the Cd300 soil (68%) with approximately 74% of the soil Cd being extracted by 

the first two extracts (IE1-E2). Approximately 36% of the soil Pb was extracted 

by the first two extracts (IE1-E2)) which is composed of 28% E1 extractable Pb 

and 8% E2 extractable Pb. Mean Zn extracted in the E1 fraction was 26% while 

28% was extracted by the first two extracts of the PBASE. The bioavailability of 

metals is related to extractability, thus the relative bioavailability of the four 

fractions of the PBASE should be E1 > E2 > E3 > E4. The results of our study 

indicate that the metal solubility of spiked soils is Cd > Pb = Zn. The 

percentages of metal extracted in the E1 step of the sequential procedure are 

much higher than those reported by other researchers. Basta et al. (2000) used 

the same sequential extraction procedure to investigate twelve smelter

contaminated soils and reported that the E1 step extracted 25% of the total Cd, 

0.2% of the total Pb, and 6% of the total Zn present in the soils. They reported 

the solubility of metals in smelter-contaminated soils as Cd > Zn > Pb. Sloan et 

al. (1997) studied agricultural soils that received applications of biosolids and 

found that metal extracted by 0.5 M Ca(N03)2 ranged from 38 to 48% for Cd, 0.4 
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to 1.5% for Pb, and 10 to 17% for Zn. Conder et al. (2001) reported 0.1 M 

Ca(N03)2 extracted approximately 46.1 % of the Cd, 0.3% of the Pb, and 6.9% of 

the Zn present in a smelter-contaminated soil. However our results are 

somewhat comparable to those of Conder and Lanno (2000) who spiked an 

artificial soil with five different concentrations of metals (Cd, Pb and Zn) and 

found that 0.1 M Ca(N03)2 extractable Cd ranged from 27 to 59%, extractable Pb 

ranged from 0.4 to 9.7% and extractable Zn ranged from 13 to 72%. Similarly, 

Geebelen et al. (2002) spiked an acid sandy soil with 2000 mg total Pb/kg and 

reported 0.1 M Ca(N03)2 extracted 24.6% of the total lead. Perhaps spiking of the 

soils resulted in increased amounts of metal in the soluble and exchangeable E1 

fraction as compared to smelter-contaminated or biosolids amended soils. 

Mean pore water concentrations of spiked metals, in parentheses, were 

Cd50 (2.39 mg/L), Cd300 (23.2 mg/L), Pb (24.4 mg/L), and Zn (28.5 mg/L) 

(Table 5). These concentrations are much greater than the concentrations 

reported by Kabata-Pendias and Pendias (1992) for Cd (0.006 mg/L), Pb (0.008 

mg/L) and Zn (0.351 mg/L) in solutions of uncontaminated soils. Our results are 

similar to those reported by other spiking studies. Oste et al. (2001) spiked an 

uncontaminated sandy Dutch soil with cadmium nitrate to obtain a final soil 

concentration of 10 mg Cd/kg soil and reported total Cd in pore water as 1 .4 7 

mg/L. Mitchell et al. (1975) spiked sewage sludge with cadmium or zinc sulfate 

and added the spiked sludge to a calcareous and acidic soil to obtain final soil 

concentrations ranging from zero to 640 mg metal/kg soil. Their study reported 

pore water Cd in soils spiked with 40 mg Cd/kg as 3.9 mg Cd/L for calcareous 
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soil and 2.8 mg Cd/L for acidic soil while soils spiked with 320 mg/kg soil 

contained 6.8 mg Cd/L (calcareous soil) and 35 mg Cd/L (acidic soil). In the 

same study, water-soluble Zn concentrations for soils spiked with 320 mg Zn/kg 

soil were 4.0 mg Zn/L for the calcareous soil and 79 mg Zn/L for the acidic soil. 

The pore water concentrations in our spiked soils are orders of magnitude 

greater than those reported by Janssen et al. (1997a) who evaluated pore water 

concentrations in 20 Dutch field soils that contained Cd (range of 0.11 to 49.5 

mg/kg), Pb (range of 70.4 to 847 mg/kg), and Zn (range of 5.23 to 3,110 mg/kg). 

Their reported medians for pore water metal concentrations, in parentheses, 

were Cd (0.002 mg/L), Pb (0.010 mg/L) and Zn (0.202 mg/L). Our results are 

comparable to those of Peijenburg et al. (2000) who spiked a field soil with metal 

salts and reported increased pore water concentrations of Cd, Pb and Zn in the 

spiked soils as compared to soils with approximately the same total metal 

content that received metal inputs from sources other than spiking. 

Lettuce Germination, Yield and Metal Content 

Lettuce germination rates in unspiked soils with germination ranged from 

50.0% to 91.7% and averaged 77.5%. Lettuce also successfully germinated in 

all spiked soils with the exception of the Bernow B Zn spiked soil (Table 6). 

Germination for the Cd50 spiked soils ranged from 70.0 to 95.0% with an overall 

mean of 82.9%. Mean germination for the Cd300 spiked soils was 70.1 % with 

germination ranging from 56.7 to 91.7%. Within the Pb spiked soils, germination 

ranged from 66.7 to 95.0% and averaged 83.6%. Germination results for the Pb 

spiked soils· differ from those of Chang et al. (1997) who reported that 
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germination was reduced to approximately 68% in an artificial soil consisting of 

100% silica sand spiked with lead nitrate to levels of 300 mg Pb/kg soil. In our 

study, only two of the Pb spiked soils (Mansic A and Summit A) displayed < 70% 

germination at a spiked concentration of 2000 mg Pb/kg soil. Perhaps the 

difference in germination between the studies is that the Pb was more available 

in the spiked sand than with our soils, which contain clay and organic matter 

having a higher capacity for adsorption of metals as compared to the silica sand. 

Germination for the Zn spiked soils (excluding the Bernow soil) ranged from 68.3 

to 95.0% with an overall mean of 83.3%. 

Mean yield of lettuce grown on unspiked soils ranged from 0.42 to 8.27 g 

with an overall mean of 5.66 g (Table 7). Yield of lettuce grown on spiked soils 

varied by soil and metal and was reduced in all spiked soils as compared to 

unspiked soils (Table 7). Lettuce yield for the Cd50 spiked soils ranged from 

0.12 to 4.60 g with an overall mean of 1.87 g. Mean lettuce yield was reduced by 

approximately 67% for the Cd50 and 88% for the Cd300 spiked soils as 

compared to the mean yield for the unspiked soils. Mean yield of 0.69 g was 

more reduced on the Cd300 spiked soil as compared to the Cd50 spiked soils 

and ranged from 0.07 to 3.41 g (Table 7). The results for the Cd spiked soils are 

similar to those of other investigators. · Moustakas et al. (2001) found lettuce 

yields were reduced (9%) when grown on a soil spiked with concentrations 

greater than 10 mg Cd/kg soil. In another study, Bingham et al. (1975) reported 

that soil Cd of 13 mg Cd/kg soil resulted in a 25% reduction in yield of lettuce 

grown on soils treated with cadmium-enriched sewage sludge. Mean yield for 
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the Pb spiked soils ranged from 0.13 to 6.45 g averaging 1.92 g (Table 6). Mean 

yield for the Pb spiked soils was reduced by approximately 66% as compared to 

the mean yield of the unspiked soils which is consistent with the yield reductions 

reported in other studies. John and Laerhoven (1972) reported that lettuce yield 

from soils spiked with 1000 mg Pb/kg soil was reduced by approximately 25% as 

compared to yields on unspiked soil. Yield for the Zn spiked soils (excluding the 

Bernow soil) ranged from 0.22 to 5.65 g with an overall mean of 2.84 g (Table 7). 

Mean yield of lettuce was reduced by approximately 50% as compared to mean 

yield for the unspiked soils. Mitchell et al. (1975) grew lettuce on a calcareous 

and an acidic soil that were amended with spiked sewage sludge to obtain soil 

concentrations of 320 mg Zn/kg soil and reported that lettuce yields were 

reduced by approximately 10% on the calcareous soil and approximately 40% on 

the acidic soil. 

All three metals (Cd, Pb and Zn) accumulated in lettuce and metal content 

of lettuce varied by soil (Table 8). Cd content in lettuce grown on the Cd50 

spiked soils ranged from 23.8 mg/kg to 221 mg/kg with an overall mean of 76.1 

mg/kg (Table 8). Lettuce Cd for the Cd300 spiked soils ranged from 57.8 mg/kg 

to 403 mg/kg and averaged 156 mg/kg. The results for the Cd spiked soils are 

consistent with those of other researchers. Brown et al. (1998) spiked two soils 

(pH = 6.9, pH = 5.2) with cadmium chloride to a concentration of 5.7 mg total 

Cd/kg soil and evaluated Cd content in Paris Island Cos lettuce during four 

different growing seasons. Lettuce Cd for the spiked soil with a pH of 6.9 ranged 

from 19.4 to 37.2 mg/kg in their study while Cd in lettuce grown on the spiked soil 
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with a pH of 5.2 ranged from 22.6 to 51.0 mg/kg. Similarly, Moustakas et al. 

(2001) spiked a 50/50 mixture of peat and soil (pH = 7.1) with cadmium oxide to 

reach 50 mg Cd/kg soil and reported concentrations of approximately 50 mg/kg 

in Parris Island lettuce. Other studies involving spiking of sewage sludge with 

cadmium sulfate and its addition to soil to obtain final soil concentrations of 320 

mg Cd/kg soil have resulted in lettuce Cd ranging from 413 to 780 mg Cd/kg 

lettuce (Mahler et al. 1978; Mitchell et al. 1978). Mean content of Cd for lettuce 

grown on unspiked soils was 0.23 mg/kg which is comparable to concentrations 

of 0.69 to 1.84 mg Cd/kg reported by Brown et al. (1998) for Paris Island Cos 

lettuce grown on control plots. Mean Pb content in lettuce grown on spiked soils 

ranged from 3.22 to 233 mg/kg averaging 63.9 mg/kg (Table 8). John and 

Laerhoven (1972) used lead nitrate to spike an acid soil (pHKc1 = 3.8) with 1000 

mg Pb/Kg soil and reported Pb content in lettuce as 141 mg/kg. Nwosu et al. 

(1995) grew lettuce on a soil (pH = 6.2) spiked with a mixture of Cd and Pb and 

reported accumulations of 39.0 mg Pb/kg lettuce at a spiked mixture of 100 mg 

Cd/kg soil and 1000 mg Pb/kg soil. Mean Pb content in lettuce grown on 

unspiked soils was extremely low (i.e. < 0.5 mg/kg) similar to that reported by 

Kabata-Pendias and Pendias (1992) for lettuce grown on uncontaminated sites 

(range of 0.7 to 3.6 mg./kg). Mean Zn content in lettuce grown on spiked soils 

wa$ 322 mg/kg with a range of 18.4 to 2,040 mg/kg (Table 8). Mitchell et al. 

(1975) analyzed lettuce grown on a calcareous and 'an acidic soil that were 

amended with spiked sewage sludge to obtain soil concentrations of 320 mg 

Zn/kg soil detailing that lettuce from the calcareous :soils contained 380 mg Zn/kg 
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while lettuce from the acidic soils contained 1,585 mg Zn/kg. Zn content in 

lettuce grown on unspiked soils ranged from 11.9 mg/kg to 39.4 mg/kg with an 

overall mean of 21.1 mg/kg. Kabata-Pendias and Pendias (1992) reported that 

Zn concentrations in lettuce grown on uncontaminated areas ranged from 44 

mg/kg to 73 mg/kg. 

Earthworm Mortality and Internal Concentrations 

The mortality of earthworms varied by soil type and metal species (Table 

9). Mean earthworm mortality for the 22 unspiked soils never exceeded 10% and 

averaged 1.21 %, which is indicative of a valid toxicity test. Mean earthworm 

mortality for the Cd50 soil ranged from zero to 93.3% with an overall mean of 

7 .27%. The Cd300 soils were more toxic to earthworms as compared to the 

Cd50 spiked soils with mortality ranging from zero to 100% and averaging 18.9% 

(Table 9). Our results differ from those of Spurgeon et al. (1994) who reported 

no significant mortality in E. fetida exposed for 28 days to a spike concentration 

of 300 mg Cd/kg soil in an artificial Organization for Economic Cooperation 

Development (OECD) soil. Within the Pb spiked soils, earthworm mortality 

ranged from zero to 100% with an overall mean of 39.1% (Table 9). Significant 

mortality (i.e. > 50%) occurred in several of the Pb soils at the spiked 

concentration of 2000 mg Pb/kg soil which is lower than levels reported by other 

researchers to cause significant mortality in earthworms. Davies et al. (2002) 

conducted the 28 day OECD draft earthworm reproduction test using an artificial 

· soil and E .fetida as the test organism. Their study reported the LC50 for Pb as 

5,395 mg/kg and the No Observed Effect Concentration (NOEC) as 3,000 mg/kg. 

129 



Earthworm mortality for the Zn spiked soils ranged from zero to 100% and 

averaged 14.5%. However, 100% mortality occurred in only one soil (Efaw) and 

mortality in the other soils was < 50% (Table 9). Zero mortality was observed for 

many of the soils in our study, consistent with the findings of Spurgeon and 

Hopkin (1996) who reported zero mortality in earthworms exposed for 14 days to 

the OECD artificial soil spiked with 350 mg Zn/kg. Conder and Lanno (2000) 

spiked an artificial soil, similar to the OECD soil with Cd, Pb or Zn salts and 

conducted toxicity tests with Eisenia fetida. They reported time-independent 

LC50s for Cd, Pb, and Zn as 2,237; 5,822; and 631 total mg metal/kg soil, 

respectively. In our study, 100% mortality occurred in some soils at much lower 

total concentrations indicating that soil properties were affecting bioavailability of 

metals to earthworms. 

Mean internal metal concentrations, in parentheses, for earthworms 

exposed to unspiked soils were Cd (7.30 mg/kg), Pb (0.60 mg/kg) and Zn (148 

mg/kg) (Table 10). These findings are consistent with those of Janssen et al. 

(1997b) who found 5.17 mg- Cd/kg, 2.07 mg Pb/kg and 196 mg Zn/kg in Eisenia 

andrei exposed to an uncontaminated OECD artificial soil for 21 days. Metals 

bioaccumulated in earthworms exposed to the spiked soils with mean internal 

concentrations in earthworms for the Cd50 ·spiked soils ranging from 71.0 to 

1,190 mg/kg with an overall mean of 321 mg/kg (Table 10). More Cd 

accumulated in the tissues of earthworms exposed to the Cd300 spiked soils as 

compared to the Cd50 spiked soils. Internal concentrations in earthworms for the 

Cd300 soil averaged 529 mg/kg and ranged from 77.4 to 908 mg/kg (Table 10). 
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The results of the Cd spiked soils are similar to those of Lock and Jannsen 

(2001) who evaluated uptake and elimination of Cd in E. fetida by spiking the 

OECD soil with varying concentrations of Cd. They found that at the conclusion 

of their experiment (28 days) earthworms accumulated approximately 150 mg 

Cd/kg earthworm tissue at a spiked concentration of 56 mg Cd/kg soil and 

approximately 1000 mg Cd/kg earthworm tissue at a spiked concentration of 560 

mg Cd/kg soil. Earthworm concentrations for the Pb spiked soils ranged from 

28.7 to 1,030 mg/kg and averaged 306 mg/kg (Table 10). Scaps et al. (1997) 

found that E. fetida accumulated approximately 350 mg/kg tissue when exposed 

for 56 days to an artificial soil spiked with 2000 mg Pb/kg soil. Mean 

concentrations of Zn in earthworms exposed to spiked soils were not different 

from concentrations found in earthworm exposed to unspiked soils, thus Zn 

appeared to be regulated in earthworms exposed to spiked soils. Mean internal 

concentrations of Zn ranged from 38.2 to 188 mg/kg with an overall mean of. 136 

mg/kg (Table 10). Several researchers have reported that Zn concentrations are 

regulated by different species of earthworms (Van Gestel et al. 1993; Peijunburg 

et al. 1999; Lock and Janssen 2001 ). Lock and Janssen (2001) reported that Zn 

was regulated by E. fetida to an internal concentration of approximately 100 to 

120 mg/kg earthworm when exposed to concentrations of Zn in the OECD soil 

that ranged from 10 to 1000 mg Zn/kg soil. 

Linear Regressions . 

Linear regressions between lettuce data and soil extractions are shown in 

Table 11. No significant relationships (i.e. p > 0.05) were found between 
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germination of lettuce in the Cd, Pb or Zn spiked soils and soil extractions. It 

appears that germination is not a sensitive enough indicator to be visibly affected 

by soil properties at the metal levels used in our study. Significant positive 

relationships were found between yield and PBASE E1 fraction for the Cd50 (p < 

0.05, r = 0.41) and the Zn (p < 0.01, r = 0.57) spiked soils. Summations of E1 

with other PBASE fractions did not improve the regressions found between yield 

and E1 for the Cd50 or the Zn spiked soils. Significant negative relationships 

were found between yield and the E3 PBASE fraction (p < 0.05, r = -0.45) and 

between yield and the E4 PBASE fraction (p < 0.01, r = 0.51) for the Cd50 spiked 

soils. A significant negative relationship was also found between yield and the 

E3 PBASE fraction for the Zn spiked soils (p < 0.05, r = -0.42). Significant 

relationships also existed between yield and pore water concentrations for the 

Cd50 spiked soils (p < 0.05, r = 0.47) and the Zn spiked soils (p < 0.05, r = 0.46). 

Strong relationships were found between lettuce uptake and metal extracted by 

PBASE E1 fraction for the Cd300 (p < 0.01, r = 0.62), Pb (p < 0.01, r = 0.74), and 

Zn (p < 0.01, r = 0.71) spiked soils (Figure 2). A weaker relationship was found 

between Cd in lettuce and the E1 fraction for the Cd50 spiked soils (p < 0.05, r = 

0.41) (Figure 2). Summations of E1 with other PBASE fractions did not improve 

the regressions found between metal content of lettuce and E1. Our results are 

slightly different from those established by other researchers. Sloan et al. (1997) 

studied agricultural soils that received applications of biosolids and reported 

significant relationships between metal extracted by 0.5 M Ca(N03)2 and lettuce 

Cd (p < 0.01, r = 0.85) and lettuce Zn (p < 0.001, r = 0.87) . However, they did 
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not find that a significant relationship existed between Pb extracted by 0.5 M 

Ca(N03)2 and Pb in lettuce (p > 0.05, r = 0.55). Similarly, Basta et al. (2000) 

used the same sequential extraction procedure as our study to investigate twelve 

smelter-contaminated soils and reported that the PBASE E1 fraction was 

significantly correlated with lettuce Cd (p < 0.001, r = 0.97, and Zn (p < 0.05, r = 

0.68) but was not significantly correlated with lettuce Pb (p > 0.05, r = 0.54). 

Perhaps spiking of the. soils resulted in increased amounts of Pb in the soluble 

and exchangeable E1 as compared to their studies allowing significant 

relationships to be established. Strong relationships were found between metal 

content in lettuce and pore water metal for the Pb (p < 0.01, r =0.55) and the Zn 

(p < 0.01, r = 0.83) spiked soils (Figure 3). Weaker relationships were found 

between lettuce metal and concentrations in pore water extracts for Cd50 (p < 

0.05, r = 0.43) and Cd300 (p < 0.05, r = 0.48) spiked soils. These results are 

similar to those of Mitchell et al. (1975) who spiked sewage sludge with cadmium 

or zinc sulfate, added the spiked sludge to soils to obtain final soil concentrations 

ranging from zero to 640 mg metal/kg soil, and grew lettuce on a calcareous and 

an acidic soil. They reported water-soluble metal was significantly related to 

lettuce Cd (p < 0.05, r = 0.91) and lettuce Zn (p < 0.05, r = 0.87). Similarly, 

Peijnenburg et al. (2000) conducted a bioassay with lettuce using 17 different 

Dutch field soils that were collected at moderately contaminated sites or sites 

that were expected to contain background levels of metals and two artificially 

metal-contaminated soils. They reported a significant relationship using log-log 

transformed data between lettuce Cd (p < 0.001. r = 0.79) and pore water Cd. 
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Their study also found a significant relationship between lettuce Zn (p < 0.001, r 

= 0.89) and pore water Zn but no relationship was found for Pb due to low levels 

of Pb in their study soils and subsequently lack of accumulation of Pb in lettuce 

tissue. 

Linear regressions between earthworm data and soil extractions are 

shown in Table 12. Strong relationships were found between earthworm 

mortality and the E1 fraction of the PBASE for the Pb (p < 0.01, r = 0.86) and the 

Zn (p < 0.01, r = 0.54) spiked soils (Figure 4). Summations of E1 with other 

PBASE fractions did not improve the regressions found between mortality in 

earthworms and E1. Conder and Lanno (2000) used a one-compartment first 

order kinetic model to estimate incipient lethal levels for E. fetida and showed 

that metal levels in 0.1 M CaN03)2 extractions related well to Cd, Pb and Zn 

mortality in earthworms exposed to a spiked artificial soil. However, the E1 

fraction (0.5 M CaN03)2 was not a good predictor of earthworm mortality for the 

Cd spiked soils in our study (Figure 4). Strong relationships were found between 

earthworm mortality and pore water concentrations for the Cd50 (p < 0.01, r = 

0.62), Cd300 (p < 0.01, r = 0.76), Pb (p < 0.01, r = 0.84), and Zn (p < 0.01, r = 

0.62) spiked soils (Figure 5). Strong relationships were also found between 

metal content in earthworms and E1 extractable metal for the Cd50 (p < 0.01, r = 

0.67), Cd300 (p < 0.01, r = 0.68), and the Pb (p < 0.01, r =0.65) spiked soils 

while a weaker relationship (p < 0.05, r = 0.44) was found between earthworm Zn 

and pore water Zn for the Zn spiked soils (Figure 6). Our results are similar to 

those . of Jannsen et al. (1997b) who investigated· relationships between 
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concentrations of metals in E. andrei and soil extractions in 20 Dutch field soils. 

Their study found significant relationships between log-transformed metal 

extracted by a weak electrolyte (0.01 M CaCl2) solution and log-transformed 

earthworm Cd (r = 0.69) and Pb (r = 0.50). They did not find a significant 

relationship between earthworm Zn and 0.01 M CaCl2 extractable Zn during their 

study (r = 0.17). Strong relationships were found between metal content in 

earthworms and pore water metal for the Cd300 (p < 0.01, r = 0.66) and the Pb 

(p < 0.01, r = 0.73) spiked soils (Figure 7). A weaker but significant relationship 

was found between metal content in earthworms and concentrations in pore 

water extracts for Zn (p < 0.05, r = 0.49) spiked soils. However, a poor 

relationship was found between earthworm Cd and pore water Cd (p > 0.05, r = 

0.03) for the Cd50 spiked soils. Jannsen et al. (1997b) reported significant 

relationships between log-transformed earthworm metal and log-transformed 

pore water metal for Cd (r = 0.64) and Pb (r = 0.52) but did not find a significant 

relationship between earthworm Zn and pore water Zn during their study (r = -

0.10). 

CONCLUSIONS 

The bioavailability of metals· in soils is related to extractability. The 

percentages of metal in soil extracted by the E 1 step of the PBASE varied 

between metals and among soils with the mean solubility of metals in the spiked 

soils being Cd > Pb = Zn. The percentages of metal extracted in the E1 step of 

the sequential procedure are comparable to those found by others in metal 

spiking studies. Pore water concentrations of spiked metals varied between 
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metals and among soils but were consistent with yield reductions reported in 

other spiking studies. 

Lettuce successfully germinated in both spiked and unspiked soils. There 

was little difference between germination in spiked and unspiked soils. It 

appears that germination in lettuce is not a sensitive indicator of metal toxicity for 

the spiked concentrations used in our study. Yield of lettuce grown was reduced 

on spiked soils as compared to unspiked soils. Yield reductions were similar to 

those reported in other studies. All three metals (Cd, Pb, Zn) bioaccumulated in 

lettuce and measured concentrations were equivalent to those found by other 

investigators. 

Mortality of earthworms varied by soils and metal. Significant mortality 

occurred in many of the Cd and Pb spiked soils at much lower concentrations 

than those reported by other spiking studies that utilized artificial soils possibly 

due to the effect of soil properties on toxicity. Earthworm mortality was low in the 

Zn spiked soils, consistent with the findings of other researchers. Metals 

accumulated in tissue of earthworms were similar to concentrations reported in 

other spiking studies. 

Significant relationships were not found between germination of lettuce in 

the spiked soils and soil extractions. Yield was not negatively correlated with the 

E1 step of the sequential extraction procedure. The E1 fraction of the sequential . 

extraction procedure was an accurate predictor of phytoavailable Cd, Pb, and Zn 

in spiked soils. Other researchers did not report a significant relationship 

between Pb content in soils and Pb extracted by 0.5 M Ca(N03)2. Perhaps 
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spiking of the soils resulted in increased amounts of soluble Pb as compared to 

other studies allowing significant relationships to be established. Additionally soil 

pore water was an accurate predictor of phytoavailable Cd, Pb, and Zn in spiked 

soils, which is consistent with other published studies. 

Strong relationships were found between mortality in earthworms and the 

E1 fraction of the sequential procedure for the Pb and Zn soils even though the 

E 1 step was not a good predictor of earthworm mortality for the Cd spiked soils. 

Yet significant relationships existed between metal content in earthworms and E1 

extractions in soil for the Cd, Pb and Zn spiked soils. The findings also 

concluded that there were strong relationships between earthworm mortality and 

soil pore water concentrations for the Cd, Pb and Zn spiked soils. Although 

much literature has been published suggesting that pore water extractions are 

related to mortality of organisms, this work has not been shown specifically 

between mortality in earthworms and soil pore water. Strong relationships were 

discovered between earthworm metal content and soil pore water extractions for 

the Cd300, Pb and Zn spiked soils but not for the Cd50 spiked soils. 

In summary, both the E1 fraction of the PBASE procedure and soil pore 

water extractions can be used to estimate phytoavailable Cd, Pb and Zn in 

spiked soils that display a wide range of properties. Additionally, our study shows 

that the E1 step can estimate the bioavailability of Cd, Pb and Zn to earthworms 

in soils with different properties potentially being useful in the prediction of 

earthworm mortality in Pb and Zn spiked soils. Pore water extractions can be 

used to accurately predict earthworm mortality in soils with different properties 
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that are spiked with Cd, Pb and Zn. Soil pore water concentrations may also be 

employed in the estimation of bioavailability of Cd, Pb and Zn to earthworms in 

soils with different properties. 
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Table 1. Physical and chemical properties of study soils. 
Soil Texture 

Soil pH oc CEC Al Fe Sand Silt Clay Class 
(%) (cmol/kg) (mg/kg) (mg/kg) (%) (%) (%) 

Canisteo A 7.5 3.00 30.5 1150 795 27.4 33.8 38.8 clay loam 
Dennis A 5.6 1.90 9.77 840 2880 40.3 35.9 23.8 loam 

Dennis B 6.1 0.80 14.6 1160 1280 18.2 36.8 45.0 clay 
Dougherty A 5.3 1.20 3.33 266 364 72.5 16.2 11.3 sandy loam 
Efaw A 4.0 1.20 4.57 836 804 32.5 50.0 17.5 silt loam 
Hanlon A 7.4 1.60 16.3 447 1530 60.0 22.5 17.5 sandy loam 
Haskell A 5.1 1.20 4.85 608 1820 23.2 65.5 11.3 silt loam 
Kirkland A 5.6 1.45 14.0 893 1580 16.9 51.8 31.3 silty clay loam 
Luton A 7.1 2.00 32.4 701 2390 3.80 24.9 71.3 clay 
MansicA 7.8 1.50 16.5 597 222 32.5 37.5 30.0 clay loam 

~ Mansic B 8.0 0.65 11.7 251 103 25.7 39.3 35.0 clay loam 
.i::,. 
co Osage A 6.6 2.60 28.3 989 5090 11.9 32.4 55.7 clay 

Osage B 6.8 2.00 27.5 1440 7900 3.80 34.9 61.3 clay 
Perkins A 4.5 0.85 3.01 531 604 65.0 25.0 10.0 sandy loam 
Pond Creek A 5.2 1.90 10.7 861 1450 15.0 56.2 28.8 silty clay loam 
Pond Creek B 6.0 0.80 12.5 770 1150 17.5 50.0 32.5 silty clay loam 
Pratt A 6.5 0.90 4.40 188 . 164 88.2 6.80 5.00 sand 
Pratt B 6.4 0.50 3.40 163 152 86.3 7.45 6.25 loamy sand 
Richfield B 7.7 1.10 22.4 710 395 12.5 46.2 41.3 silty clay 
Summit A 7.2 2.40 29.4 1350 2190 10.0 44.3 45.7 clay 
Summit B 7.0 1.25 27.6 982 983 6.9 36.3 56.8 clay 
Mean 6.4 1.47 15.6 749 1612 31.9 35.9 32.2 
Median 6.5 1.25 14.0 770 1150 23.2 36.3 31.3 
Minimum 4.0 0.50 3.01 163 103 3.80 6.80 5.00 
Maximum 8.0 3.00 32.4 1440 7900 88.20 65.5 71.3 



Table 2. Comparison of mean contaminant concentrations of unspiked study soils with baseline 
soils. All values are expressed as mg contaminant/kg soil. 

Soil 
Canisteo A 
Dennis A 
Dennis B 
Dougherty A 
Efaw A 
Hanlon A 
Haskell A 
Kirkland A 
Luton A 
MansicA 
Mansic B 
Osage A 
Osage B 
Perkins A 
Pond Creek A 
Pond Creek B 
Pratt A 
Pratt B 
Richfield B 
Summit A 
Summit B 
Adriano 2001 

Mean Contaminant Concentration 
(unspiked soils) 

Cd 
< 0.50 
< 0.50 
< 0.50 
< 0.50 
< 0.50 
< 0.50 
< 0.50 
< 0.50 
< 0.50 
< 0.50 
< 0.50 
< 0.50 
< 0.50 
< 0.50 
< 0.50 
< 0.50 
< 0.50 
< 0.50 
< 0.50 
< 0.50 
< 0.50 

Pb 
6.61 
7.39 
13.7 
7.69 
11.6 
6.08 
7.34 
9.07 
12.3 
4.41 

< 2.50 
14.4 
14.3 
11.4 
10.0 
8.74 
2.88 
2.53 
12.6 
12.7 
7.6 

Zn 
55.4 
43.6 
56.8 
24.5 
38.7 
47.6 
26.5 
41.1 
150 
40.1 
34.8 
145 
134 
26.1 
48.0 
46.2 
28.2 
14.9 
64.3 
56.9 
58.1 
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Metal 
Pb 
Zn 

Baseline Soils 

Mean 
18.08 

54.0a 

Range 
2.0-2008 

10.0-300a 



Table 3. Mean contaminant concentrations of spiked soils. All values are 
expressed as mg contaminant/kg soil. 

Mean Contaminant Concentration 
(spiked soils) 

Soil Cd50a Cd3006 Pbc Zn° 
Canisteo A 42 306 1816 300 
Dennis A 48 312 1924 353 
Dennis B 46 315 1946 372 
Dougherty A 46 300 1843 312 
Efaw A 44 288 1842 296 
Hanlon A 48 293 1813 344 
Haskell A 53 315 1981 314 
Kirkland A 48 303 1878 340 
Luton A 51 326 1799 442 
Mansic A 45 291 2023 360 
Mansic B 47 309 1697 314 
Osage A 50 290 1821 441 
Osage B 48 306 1810 445 
Perkins A 48 295 1812 303 
Pond Creek A 46 285 1900 356 
Pond Creek B 4 7 306 1895 333 
Pratt A 54 308 2005 365 
Pratt B 40 324 1846 292 
Richfield B 44 278 1856 396 
Summit A 50 314 1943 363 
Summit B 54 309 1925 363 
Mean 48 304 1875 353 
Median 48 306 1856 353 
Minimum 40 278 1697 292 
Maximum 54 326 2023 445 
aNominal spiking concentration = 50 mg Cd/kg soil 
bNominal spiking concentration = 300 mg Cd/kg soil 
cNominal spiking concentration = 2000 mg Pb/kg soil 
dNominal spiking concentration = 300 mg Zn/kg soil 
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Table 4. Mean recovery, relative standard deviations, and detection limits for ten 
replicate analyses of metals in standard reference materials (SRM). 

SRM Contaminant Mean Recovery RSD Detection 
% % Limit 

Soil CRM020-050 Cd 99 0.63 0.50 
Pb 98 3.7 1.5 
Zn 99 2.5 0.50 

Spinach Leaves SRM 1570a Cd 94 2.6 0.50 
Zn 93 2.7 0.50 

Aquatic Plant BCR No. 60 Pb 95 2.6 1.5 

Lobster Hepatopancreas Cd 96 1.1 1.0 
TORT-2 

Pb 98 1.2 0.04 
Zn 102 3.2 0.25 

Detection limits are expressed as mg contaminant/kg soil, mg contaminant/kg plant 
tissue, or mg contaminant/kg earthworm tissue. 
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Table 5. Mean pore water concentrations of spiked soils. All values 
are expressed as mg contaminant/L solution. 

Mean Contaminant Concentration 
(spiked soils} 

Soil Cd50 Cd300 Pb Zn 
Canisteo A 0.04 0.25 0.74 0.22 
Dennis A 1.44 12.5 4.48 13.7 

Dennis B 0.16 3.50 2.73 0.38 
Dougherty A 4.70 53.3 31.9 107 
Efaw A 9.19 76.4 56.1 73.5 
Hanlon A 0.45 3.65 1.32 2.72 
Haskell A 4.86 51.9 21.5 71.9 
Kirkland A 1.29 16.0 3.16 16.1 
Luton A 0.08 1.21 0.53 0.31 
Mansic A 0.06 0.46 0.75 0.23 
Mansic B 0.01 0.08 0.15 0.19 
Osage A 0.16 1.21 1.70 2.05 
Osage B 0.27 2.38 0.64 0.45 
Perkins A 17.2 120 92.1 122 
Pond Creek A 1.82 13.3 13.2 37.8 
Pond Creek B 0.43 8.98 7.21 1.63 
Pratt A 2.73 41.2 90.8 81.6 
Pratt B 3.93 68.8 124 60.5 
Richfield B 0.20 2.02 0.75 0.30 
Summit A 0.09 0.74 0.46 0.18 
Summit B 0.03 1.25 0.17 0.17 
Mean 2.34 22.8 21.6 28.2 
Median 0.43 3.65 2.73 2.05 
Minimum 0.01 0.08 0.15 0.17 
Maximum 17.2 120 124 122 
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Table 6. Mean germination (%) for three replicates of lettuce grown on unspiked 
and spiked soils. 

Spiked Soils 
Soil UnspikedSoils Cd50 Cd300 Pb Zn 
Canisteo A 78.3 78.3 66.7 75.0 68.3 
Dennis A 72.5 86.7 58.3 90.0 73.3 
Dennis B 85.0 78.3 73.3 83.3 75.0 
Dougherty A 77.5 80.0 75.0 95.0 78.3 
Efaw A 62.5 78.3 78.3 83.3 81.7 
Hanlon A 83.3 86.7 62.5 80.0 86.7 
Haskell A 55.0 86.7 68.3 90.0 78.3 
Kirkland A 71.7 80.0 68.3 80.0 75.0 
Luton A 76.7 83.3 91.7 83.3 88.3 
MansicA 80.0 78.3 80.0 66.7 90.0 
Mansic B 86.7 70.0 61.7 86.7 81.7 
Osage A 76.7 91.7 65.0 90.0 83.3 
Osage B 91.7 83.3 68.3 88.3 90.0 
Perkins A 50.0 85.0 66.7 82.5 95.0 
Pond Creek A 83.3 91.7 75.0 85.0 80.0 
Pond Creek B 71.7 80.0 56.7 83.3 76.7 
Pratt A 81.7 95.0 60.0 83.3 91.7 
Pratt B 86.7 80.0 66.7 92.5 88.3 
Richfield B 81.7 81.7 76.7 83.3 85.0 
Summit A 86.7 71.7 61.7 66.7 93.3 
Summit B 88.3 93.3 78.3 90.0 83.3 
Mean 77.5 82.9 69.5 83.7 83.0 
Median 80.0 81.7 68.3 83.3 83.3 
Minimum 50.0 70.0 56.7 66.7 68.3 
Maximum 91.0 95.0 91.7 95.0 95.0 
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Table 7. Mean yield (g) for lettuce grown on unspiked and spiked soils. 
Spiked Soils 

Soil Unspiked Soils Cd50 Cd300 Pb Zn 
Canisteo A 7.00 0.89 0.14 3.32 1.26 
Dennis A 6.87 4.60 1.20 1.26 2.00 
Dennis B 6.43 0.20 0.11 0.16 0.22 
Dougherty A 4.39 1.56 0.07 1.18 2.1 
Efaw A 5.58 4.16 0.14 2.75 3.85 
Hanlon A 8.05 3.05 0.11 3.18 3.00 
Haskell A 6.10 1.45 0.11 4.01 5.21 
Kirkland A 4.86 2.15 1.42 4.30 2.19 
Luton A 5.07 0.78 1.12 1.14 1.06 
MansicA 4.41 0.25 0.20 1.07 1.20 
Mansic B 3.59 0.12 0.25 0.13 2.08 
Osage A 6.99 2.87 3.41 3.10 5.61 
Osage B 5.44 3.07 3.01 4.08 3.28 
Perkins A 5.45 3.08 0.13 1.66 3.76 
Pond Creek A 8.01 4.55 2.23 6.45 5.65 
Pond Creek B 6.71 1.88 0.08 0.96 3.90 
Pratt A 6.03 2.02 0.08 0.23 5.16 
Pratt B 5.37 1.01 0.11 0.17 3.69 
Richfield B 5.21 1.91 0.20 0.94 1.37 
Summit A 8.27 0.22 0.11 0.29 2.18 
Summit B 4.35 0.73 0.20 1.63 0.87 
Mean 5.91 1.93 0.69 2.00 2.84 
Median 5.58 1.88 0.14 1.26 2.19 
Minimum 3.59 0.12 0.07 0.13 0.22 
Maximum 8.27 4.60 3.41 6.45 5.65 
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Table 8. Mean metal content in lettuce grown on unspiked and spiked soils. All values are expressed as mg metal/kg 
plant tissue. 

Unspiked Soils Spiked Soils 
Soil Cd Pb Zn Cd50 Cd300 Pb Zn 
Canisteo A 0.17 0.00 11.9 54.7 124 8.72 25.4 
Dennis A 0.89 0.00 24.9 60.4 242 88.7 333 
Dennis B 0.31 0.00 16.2 49.0 122 160 110 
Dougherty A 0.03 0.00 22.7 111 114 2040 
Efaw A 0.15 0.00 16.6 82.9 237 61.3 739 
Hanlon A 0.25 0.00 24.2 23.8 110 9.20 96.0 
Haskell A 0.00 0.00 24.8 77.3 37.7 598 
Kirkland A 0.14 0.00 16.8 52.3 50.4 190 
Luton A 0.24 0.00 22.3 39.9 57.8 16.5 28.5 
MansicA 0.00 0.00 12.2 76.0 68.0 60.2 26.4 

->. Mansic B 0.00 0.00 16.5 130 73.9 59.5 28.0 
tn Osage A 0.28 0.00 33.2 28.1 64.2 3.22 69.7 0, 

Osage B 0.34 0.00 33.8 28.9 67.7 15.3 64.3 
Perkins A 0.17 0.00 17.1 128 192 108 631 
Pond Creek A 0.12 0.04 20.3 57.4 237 43.1 249 
Pond Creek B 0.43 0.00 17.2 75.7 95.7 148 
Pratt A 0.19 0.00 18.2 74.2 403 233 743 
Pratt B 0.03 0.00 18.2 135 215 112 574 
Richfield B 0.16 0.00 18.6 47.9 251 37.8 38.9 
Summit A 0.21 0.00 23.6 76.6 68.6 30.2 25.6 
Summit B 0.00 0.00 14.5 43.1 116 13.4 18.4 
Mean 0.20 0.00 20.2 69.2 156 64.7 323 
Median 0.17 0.00 18.2 60.4 122 50.4 110 
Minimum 0.00 0.00 11.9 23.8 57.8 3.22 18.4 
Maximum 0.89 0.04 33.8 135 403 233 2040 



Table 9. Mean earthworm mortality(%) for unspiked and spiked soils. 
Spiked Soils 

Soil UnspikedSoils Cd50 Cd300 Pb Zn 
Canisteo A 0.00 0.00 0.00 0.00 0.00 
Dennis A 0.00 0.00 0.00 46.7 0.00 
Dennis 8 0.00 0.00 3.33 0.00 0.00 
Dougherty A 0.00 0.00 0.00 20.0 10.0 
Efaw A 3.33 93.3 100 100 100 
Hanlon A 0.00 0.00 0.00 53.3 6.67 
Haskell A 0.00 6.67 3.33 60.0 43.3 
Kirkland A 6.67 0 6.67 53.3 40.0 
Luton A 3.33 0.00 0.00 0.00 0.00 
Mansic A 0.00 0.00 0.00 0.00 0.00 
Mansic 8 6.67 16.7 13.3 20.0 13.3 
Osage A 3.33 0.00 0.00 0.00 0.00 
Osage 8 0.00 0.00 6.67 0.00 0.00 
Perkins A 0.00 33.3 100 100 100 
Pond Creek A 0.00 6.67 30.0 56.7 6.67 
Pond Creek 8 3.33 0.00 3.33 46.7 0.00 
Pratt A 0.00 0.00 0.00 100 0.00 
Pratt 8 0.00 0.00 46.7 100 0.00 
Richfield 8 0.00 0.00 0.00 3.33 0.00 
Summit A 0.00 0.00 0.00 0.00 0.00 
Summit 8 0.00 3.33 3.33 0.00 0.00 
Mean 1.27 7.62 15.1 36.2 15.2 
Median 0.00 0.00 3.33 20.00 0.00 
Minimum 0.00 0.00 0.00 0.00 0.00 
Maximum 6.67 93.3 100 100 100 
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Table 10. Mean metal content in earthworms exposed to unspiked and spiked soils. All values are expressed as mg 
metal/kg earthworm. 

Unspiked Soils Spiked Soils 
Soil Cd Pb Zn Cd50 Cd300 Pb Zn 
Canisteo A 4.44 0.30 141 173 441 76.4 129 
Dennis A 8.77 0.40 164 322 598 176 151 
Dennis B 9.83 0.20 140 251 450 172 142 
Dougherty A 9.27 0.30 161 325 908 416 150 
Efaw A 0.00 1.90 105 148 77.4 105 64.9 
Hanlon A 8.66 0.20 149 198 466 183 155 
Haskell A 13.7 0.60 162 333 765 366 143 
Kirkland A 10.2 0.20 152 286 538 40.6 137 
Luton A 9.49 0.10 162 135 339 28.7 128 
MansicA 7.91 0.20 189 150 319 106 153 

~ Mansic B 9.74 0.40 141 85.8 331 195 135 
01 Osage A 12.5 0.20 183 169 705 38.8 139 -....J 

Osage B 5.59 0.20 156 196 383 38.3 139 
Perkins A 1.73 6.00 132 71.3 366 1030 38.2 
Pond Creek A 7.71 0.10 148 266 674 566 138 
Pond Creek B 7.18 0.10 123 719 867 423 135 
Pratt A 7.87 0.50 141 788 846 782 188 
Pratt B 5.51 0.40 122 1190 642 701 161 
Richfield B 7.33 0.10 140 241 434 261 139 
Summit A 11.8 0.50 171 267 497 126 164 
Summit B 1.49 0.10 132 232 444 83.1 130 
Mean 7.65 0.62 148 312 528 282 136 
Median 7.91 0.20 148 241 466 176 139 
Minimum 0.00 0.10 105 71.3 77.4 28.7 38.2 
Maximum 13.7 6.00 189 1190 908 1030 188 



Table 11. Correlation coefficients (r) for paired relationships between metal 
extracted from spiked soils by PBASE or Pore Water and lettuce metal content, 
germination or yield. 

Lettuce Metal Content 
Soil Cd50 Cd300 Pb Zn 
PBASE extracts 
E1 0.41b 0.62a 0.74a 0.71a 
E2 -0.65a -0.43b 0.49b 0.33 
E3 -0.31 -0.42b -0.70a -0.58a 
E4 -0.31 -0.44b -0.44b -0.68a 
IE1-2 0.33 0.40 0.74a 0.71a 

IE1-3 0.18 0.14 0.19 0.59a 

IE1-4 0.02 0.004 -0.12 -0.51 a 

Pore Water 0.43b 0.48b 0.55a 0.83a 

Soil Germination(%) 
PBASE extracts Cd50 Cd300 Pb Zn 
E1 0.33 -0.09 0.32 0.01 
E2 0.09 0.14 0.29 0.25 
E3 -0.36 0.01 -0.32 0.26 
E4 -0.30 0.30 -0.13 0.01 
IE1-2 0.39 -0.07 0.34 0.01 
IE1-3 0.25 -0.13 0.10 0.26 
IE1-4 0.19 -0.004 0.02 0.41 

Pore Water 0.07 -0.01 0.23 0.34 

Soil Yield 
PBASE extracts Cd50 Cd300 Pb Zn 
E1 0.41 6 -0.03 -0.16 o.5r 
E2 -0.19 -0.03 -0.03 0.26 
E3 -0.52a 0.35 0.08 -0.42b 
E4 -0.54a 0.05 -0.27 -0.20 
IE1-2 0.34 -0.36 -0.16 0.57a 

I:E1-3 -0.06 -0.18 -0.32 0.51a 
IE1_4 -0.26 -0.25 -0.22 -0.28 

Pore Water 0.47b -0.28 -0.30 0.46b 
a p < 0.01 
bp < 0.05 
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Table 12. Correlation coefficients (r) for paired relationships between metal 
extracted from spiked soils by PBASE or Pore Water and earthworm mortality or 
earthworm concentration. 

Earthworm Mortality 
Soil Extract Cd50 Cd300 Pb Zn 

PBASE extracts 
E1 0.08 0.36 0.86a 0.54a 
E2 -0.25 -0.44 0.36 0.24 
E3 -0.19 -0.37 -0.70a -0.34 
E4 -0.25 -0.39 -0.75a -0.54a 
1£1-2 0.05 0.31 0.71a 0.54a 

LE1-3 -0.26 0.03 0.16 0.51b 

LE1-4 -0.36 -0.09 -0.30 -0.33 

Pore Water 0.62a 0.76a 0.84a 0.62a 

Earthworm Concentrationc 
Soil Extract Cd50 Cd300 Pb Zn 

PBASE extracts 
E1 0.67a 0.68a 0.65a 0.44b 
E2 -0.33 -0.52b 0.51b 0.52b 
E3 -0.48b -0.67a -0.58a -0.13 
E4 -0.24 -0.67a -0.52b -0.47b 

LE1-2 0.68a 0.64a 0.68a 0.45b 

LE1-3 0.70a 0.24 -0.41 0.58a 

LE1-4 0.62a 0.09 -0.57a -0.17 

Pore Water 0.03 0.66a 0.73a 0.49b 
a p < 0.01 
bp < 0.05 
csoils with 100% mortality were not used in the regression analysis for 
earthworm concentration. 
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Figure 1. Mean distribution of Cd, Pb, and Zn in PBASE fractions 
E1-E4 expressed as as percentage of the sum of PBASE. Values 
at top of graph represent the mean sum of PBASE for 22 soils. 
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Figure 4. Linear regression of mean earthworm motality vs. mean E1 extractable metal. 
**p < 0.01. 

1400 

250 



~ 
~ 

~ 
ni 
t::: 
0 
2 
E 
L.. 

0 s: 
.c 
t::: 
C1l 
UJ 

->,. 

CJ) 
.t:,.. -~ 0 -

£ 
ni 
t::: 
0 
2 
E 
L.. 

0 s: 
.c 
t::: 
C1l 

UJ 

100 ·--- 140 

Cd50 • 1301 Pb 90 
_....., 120 -

80 ~110 

70 ~100 ~ • • ...... • 
y = 3.19x - 0.35, r = 0.62** ro 90 y = 0.88x + 17.6, r = 0.8 

60 1s 80 

50 2 70 

40 E 60 f: • • 
L.. 50 

• 0 •• 
30 S: 40 .c 
20 t::: 30 

C1l UJ 20 ..,,. • 10 
10 

o .------. o 
o 2 4 6 8 10 12 14 16 18 20 o 10 20 30 40 50 60 70 80 90 100 110 120 130 140 

120 110 -

110 Cd300 100 1 Zn • • 
100 • • -~ 90 

0 

90 -
80 

-~ 80 

y = 0.84x + 1.68, r = 0.76** ni 70 ~ y = 0.47x + 0.64, r = 0.62** 
70 t::: 

0 60 
60 2 

E 50 
50 • 0 40 ~ • • 40 s: 
30 • .C 30 

t 
20 C1l 

UJ 
20 

10 • • • 1:~-.•--0-~ • .. 
o 10 20 30 40 50 60 70 80 o 10 20 30 40 50 60 70 80 90 100 110 120 130 

Pore Water Metal (mg/L) Pore Water Metal (mg/L) 
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**p < 0.01 
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*p < 0.05, **p < 0.01. 
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