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FORMAT OF THESIS 

This thesis presented in the Molecular of Plant-Microbe Interactions style and 

format allowing for independent chapters (Chapter II and Chapter III) to be suitable for 

submission to scientific journals. Two papers have been prepared from research data 

collected at Oklahoma State University to partially fulfill the requirements for the degree 

of Doctor of Philosophy. Each paper is complete in itself containing an abstract, 

introduction, results, discussion, materials and methods, acknowledgments and literature 

cited sections. 
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Introduction and Literature Review 
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Historical Perspective 

The root disease "take-all" is regarded as the most damaging disease affecting 

wheat (Triticum aestivum L.) worldwide (Yarham et al., 1989, McCay-Buis, 1993). 

Take-all effects crops worldwide, as evident in 1983 when the 1st International 

Workshop on take-all of cereals was convened consisting of 63 participates from 9 

countries (Homby, 1998). The global distribution includes; Argentina, Australia, 

Austria, Belgium, Canada, Chile, Czechoslovakia, Denmark, East Africa, England, 

France, Germany, India, Italy, Japan, Kenya, Morocco, Netherlands, New Zealand, 

Norway, Poland, Scotland, Spain, Sweden, Switzerland, Uruguay, United States, and 

Wales (Sprague, 1950). 

The name take-all was first used to describe the effect on crops in Australia in 

1870 (Butler, 1961 ). However, the first record of take-all effecting wheat was not 

recorded until 1912 in the United Kingdom (Massee, 1912). The pathogen responsible 

for take-all was previously, although erroneously, named Ophiobolus graminis (Sacc.). It 

was renamed in 1972 to Gaeumannomyces graminis (Sacc.) Arx & Olivier var. tritici 

Walker (Walker, 1972). The further taxonomic nomenclature as described in Mathre 

(1992) includes the following: division, Amastigomycota; subdivision, Ascomycotina; 

class, Ascomycetes; subclass, Hymenoascomycetidae I; order, Diaporthales; family, 

Diaporthaceae. 
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Take-All Disease 

Take-all disease of wheat is described as infecting root, crown, and foot tissues 

(Huber and McCay-Buis, 1993). Visual symptoms of wheat take-all include: stunted 

plants, yellowing leaves, decreased leaf area, reduction in secondary tiller formation and 

white-heads caused by premature ripening (Homby and Fitt, 1981) (Figure 1 ). 

Figure 1. Visual symptoms of take-al/ disease the Plant 
Pathology farm in Stillwater, OK, May 2000 

Light to dark brown or black lesions and necrotic tips are often seen in roots. 

Blacken roots are a good indication of severe take-all infection (Huber and McCay-Buis, 

1993) (Figure 2). 
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Figure 2. Below ground root symptoms of take-all disease in 
samples taken from the Plant Pathology farm at Stillwater, OK, 
May 2000 

The foot area is black in appearance by mycelium of the fungus and the majority 

of the roots are heavily melanized (Huber and McCay-Buis, 1993) (Figure 3). 

Figure 3. Below Ground Foot and Crown Symptoms Of Take-Al/ 
Disease In Experimental Field Stillwater, OK, May 2000 

Wheat can be infected at all stages of development in environmentally favorable 

conditions (Huber and McCay-Buis, 1993). The most severe symptoms of take-all occur 

in young plants infected just after planting (Ohio State University Fact Sheet, 1996) 
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Soil characteristics are an important consideration when assessing conditions 

favorable for take-all infection. The soil pH range for take-all survival is between 5.5 

and 8.5 (Homby, 1981). Take-all disease has been shown to be greater at pH >5.4 

because at pH < 5.4 Gaeumannomyces graminis is inhibited (Sivasithamparam and 

Parker, 1981). Soil temperature range for take-all infection is between 5.0 and 30.0°C 

with severe infection occurring between 12.0 and 20.0°C (Homby, 1981). Soil that is 

conducive to root growth and has adequate moisture is unfavorable to take-all infection 

(Catt et al., 1986). 

Deficiencies in both major and minor soil nutrients increase the risk for take-all 

infection (Homby, 1998). Adequate nitrogen, phosporus, potassium, sulphur, chloride 

and magnesium decrease while calcium and potassium increases the risk of take-all 

disease (Huber, 1981, Reis et al., 1982). In addition, Catt et al., (1986) reported an 

increase in take-all in soils high in exchangeable potassium. 

The form of nitrogen is also an important consideration when assessing the risk of 

take-all infection. When ammonium (NH/-N) was used rather than nitrate (N03--N), the 

risk of infection was decreased probably due to the decrease in rhizosphere pH 

(Trolldenier, 1985). Ammonium nitrogen is metabolized primarily into amino acids in 

the root whereas; nitrate nitrogen is translocated to the leaves where it is reduced to 

amino nitrogen and subsequent amino acids without affecting the rhizosphere. 

Of all of the minor nutrients, manganese is the most important when examining 

the risk of take-all. Increasing manganese was shown to decrease take-all disease (Huber 

and McCay-Buis, 1993). Manganese is an activator, not a component of many plant 

enzyme reactions ( deoxy-D-arabinoheptulosonate-7-phosphate synthase, phenylalanine 
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ammoma lyase, indoleacetic acid lyase, and lignin synthesis enzymes) (Huber and 

McCay-Buis, 1993). It affects nitrogen metabolism, respiration, photosynthesis and 

hormone metabolism, which subsequently effects root exudations and rhizosphere 

microorganisms (Homby, 1998; Huber and McCay-Buis, 1993). Schulze et al. (1995) 

tested the hypothesis that Ggt reduces plant defense systems by catalyzing the oxidation 

of Mn2+. Ggt was shown to oxidize Mn2+ (soluble), which is taken up by wheat roots to 

Mn4+ (insoluble), which is not utilized by wheat roots (Schulze et al., 1995). The 

hypothesis is that Ggt decreases plant defense response by oxidizing Mn2+ prior to 

infection of wheat roots (Schulze, 1995). This hypothesis is further supported by the 

synergistic relationship between manganese-oxidizing soil microbes and Ggt (Huber and 

McCay-Buis, 1993). In addition, copper, boron, and manganese are involved in the 

formation of phenolics that contain anti-fungal properties (Graham, 1983). Copper is 

also involved in formation of the plant disease resistant barrier lignin (Graham, 1983). 

Reis et al. (1982) also found that zinc and copper suppress take-all disease. 

Hosts I Pathogen Interaction 

In a review of wheat worldwide, Briggle and Curtis (1987) describe wheat as 

being grown under minimum temperatures of 3°C to maximum of 32°C with the optimum 

at 25°C. They further go on to describe wheat growth conditions having a minimum 

average yearly rainfall between 250 and 1750 mm. Most of the global wheat is harvested 

between the months of April and September in temperate regions of the northern 

hemisphere. Wheat yields have increased while area harvested has remained relatively 

stable from 1961 to 1985 (Briggle and Curtis, 1987). During the 1984-85 crop year 514.5 

Tg of wheat was produced, this is double the amount from 25 years earlier (Briggle and 
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Curtis, 1987). Developing countries during a ten-year period from 1971 to 1981, 

developing countries saw a 50% increase in wheat production compared to 35% in 

developed countries (Briggle and Curtis, 1987). 

Although the yield and growth of the above ground parts of the plant have 

received much attention, relatively little attention has been given to the below ground 

parts (Homby and Fitt, 1981). Reasons for this discrepancy may involve there being 

fewer wheat root diseases and root diseases are not as easily diagnosed as compared to 

the above ground diseases (Homby and Fitt, 1981 ). 

In order to follow the development of the wheat root diseases it is important to 

understand the root morphology (Figure 4 ). 

Figure 4. Cross-Section Diagram Of A Wheat Root (Fahn, 1990) 

A layer of epidermal cells that are slightly cutinized surrounds young wheat roots. 

Root hairs develop in the zone of maturation located behind the root tip. The layer of 
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cells located under the epidermis is the cortex. It consists of a seven to eight layers in 

seminal roots and fewer in crown roots. The innermost layer is the endodermis, which 

consists of a single layer of cells that surrounds the stele. The endodermis is a natural 

barrier to invasion by many root-invading fungi and this function increases with the age 

of the plant (Homby and Fitt, 1981 ). This is due to the sclerotization of cells of the 

endodermis, pericycle, and parenchyma of the stele. The stele is where the pericycle and 

central cylinder of xylem vessels and phloem bundles are located. The pericycle is a 

single layer of cells where later roots originate. The pericycle of older roots consists of 

thicker cell walls as compared to younger pericycle cells. Older cells also have thicker 

endodermis cells walls. However, in wheat roots along with other cereals, there is no 

secondary thickening because there is no cambium present. Moreover, some winter 

wheat varieties do develop thick nodal roots with a resistant exodermis and sclerotinized 

outer cortex cells. Root morphology is affected by soil temperature, moisture, aeration, 

nutrients, structure and microflora (Homby and Fitt, 1981 ). Changes in root morphology 

may not affect root function and wheat roots infected by soil fungi may not affect root 

growth (Homby and Fitt, 1981). 

The root disease take-all is regarded as the most damaging and important disease 

affecting wheat worldwide (Homby and Fitt, 1981, McCay-Buis, 1993). The infection is 

caused by the soil-borne fungus Gaeumannomyces graminis var. tritici (Ggt) and is semi­

host specific. Wheat is the most susceptible followed by triticale, barley and the 

relatively resistant rye (Scott, 1981, Wallwork, 1989). Ggt also affects wheat cultivars 

differently. Hard red winter wheat produced higher yields than the soft white winter 

wheat cultivars even-though they suffered from the same extent of take-all infection 
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(Huber and McCay-Buis, 1993). In a review by Huber and McCay-Buis (1993), it was 

suggested this difference in wheat cultivars was do to soft winter wheat having a higher 

nutrient requirement and a lower efficiency for partitioning vegetatively stored nutrients 

than hard red winter wheat. This implies that both market classes of wheat are 

susceptible, however hard red winter wheat are able to better tolerate the disease. 

Initially, Ggt infects roots by secreting cell wall degrading enzymes that allow 

numerous dark hyphae to penetrate the cell wall (Sivasithamparam and Parker, 1981 ). 

These cell wall degrading enzymes may include pectic, cellulolytic, hemicellulolytic and 

proteolytic (Homby and Fitt, 1981). Weste (1970) described Ggt as utilizing pectate, 

pectin, and cellulose as sole carbohydrate sources and that polygalacturonase, 

pectinmethylesterase and cellulases were produced respectively. Moreover, 

polygalacturonase was produced in advance of fungal hyphae growth shortly after 

inoculation; pectinmethylesterase was produced in about 5 days and cellulase in one 

week after inoculation. 

Hyaline branches invade cortical cells and colonize the stele. The phloem is 

subsequently destroyed, decreasing the translocation of photosynthates from the shoot. 

The last stage of Ggt infection results in the colonization of the xylem where Ca2+ and 

H20 uptake is affected. Moreover, in addition to the production of white-heads, the 

effect on shoots resembles water-stress. A time course of Ggt ascospore infection 

process in wheat roots has been described (Table I) (Weste, 1972). However, since 

ascospore infection is not a problem in the field, this artificial condition was changed to 

study mycelium infection (Weste, 1975) which is how Ggt invades the tissue in field 

grown plants. Weste (1975) subsequently used mycelium and the time course of 
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infection was changed. However, the first time period used by Weste (1975) was 2 days. 

It is therefore possible that ascospores and mycelium effect at about the same rate. Our 

preliminary data agree to some of the time course infections described by Weste (1975) 

and disagree with most of those described by Weste (1972). However, without an earlier 

time point it is hard to compare the results of this preliminary data with that of Weste 

(1975). Moreover, without using mycelium (Weste, 1972) it is difficult to compare 

ascospores to mycelium-infected data. 
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Table 1. Time course for Ggt infection (ascospores) of wheat 
roots in culture (Weste, 1972) 

Time after Root Hairs Epidermis Cortex Stele Whole Other 
inoculation Observations 
4 hours Collapsed at point 

of contact 
6 hours Penetration, cell 

wall damaged, 
granular diffusate 

8 hours Plasmolysed, bent, 
lignitubers 

10 hours Penetration 
15 hours First lesions, cells 

separated, walls 
tom, contents 
plasmolysed 

18 hours Shrivelled 
21 hours Lesions larger 

Lignitubers 
common 

I day Lesions extended 
into endodermis 

1 1/2 days Heavily infected, 
cell contents 
granular, walls 
fractured 

2 days Cell contents 
contracted to center 

6 days Cell layers 4-6 of I" 
seminal root 
penetrated 

8 days Lesions common Dark plugs in 
xylem, 
lignitubers 

11 days Penetrated Lesions large and Stem base 
numerous rotted 

15 days Suppressed or Eroded away Some entirely black. 
shriveled Lesions extensive. 

Cell contents 
disorganized 

21 days No autolysis of 
hyphae under 
gnotobiotic 
conditions 

63 days Plant Dying 

Take-all has been described to effect wheat, barley, rye, triticale, grasses, oats, 

and maize to differing extents. Although, each hosts is susceptible to different strains of 

Gaeumannomyces graminis (Homby, 1998). In addition to Ggt, there are three other 

strains of Gaeumannomyces graminis that are host specific. Gaeumannomyces graminis 

var. avenae (Gga) specifically infects oats (Avena sativa L.) (Mathre, 1992), 

Gaeumannomyces graminis var. graminis (Ggg) infects turf grasses and other grass 
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species (Mathre, 1992) and Gaeumannomyces graminis var. maydis (Ggm) specifically 

infects maize (Zea mays L.) (Yao et al., 1992, Yao, 1993). 

Oats are not infected by the wheat strain Ggt, however Gga infects them. It is 

believed that oats are not effected by Ggt do to the production of the root exudate 

avenacins (Asher, 1981). Avenacin is a tirterpenoglucosidic anti-fungal compound 

produced in the root cortex cells (Asher, 1981) of most oat species and localized in the 

root epidermal cells (Osbourn et al., 1994). The mechanism by which Gga effects oats is 

due to its ability to produce avenacinase which is an enzyme that is specific for avenacins 

produced by oat roots (Crombie et al., 1986; Osbourn et al., 1991). Bowyer et al., (1995) 

created mutants deficient in the saponin detoxifying enzyme avenacinase and found that 

Gga mutants did not infect oats. This suggests that the production of avenacinase is a 

determining factor for host range. 

Another proposed mechanism for Ggt infection susceptibility in wheat and not 

oats was examined by looking at cortical cell death (Yeates and Parker, 1986). Oats have 

less cortical cell senescence than wheat in response to Ggt (Yeates and Parker, 1986). 

Therefore, penetrating fungal hyphae may acquire less resistance or fewer root cellular 

defense response in wheat than in oats. 

Ggg is morphologically different in that it produces lobed hyphopodia whereas; 

Ggt and Gga produce simple hyphopodia (Walker, 1972). Ggg is the least pathogenic 

towards wheat (Mathre, 1992). This is do to Ggg being less able to cross the endodermal 

barrier in wheat than Ggt (Homby and Fitt, 1981 ). 

The maize take-all disease has recently been attributed to Gaeumannomyces 

graminis var. maydis (Yao, 1993). 
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There have been many studies into developing selective media for isolation and 

characterization of Gaeumannomyces graminis var. tritici from root tissue (Duffy and 

Weller, 1994). With the advancement of molecular techniques, DNA probes for 

mitochondrial DNA have been used for identification of Gaeumannomyces graminis 

species amongst other fungi and bacteria pathogenic in spring wheat (Henson, 1989). 

Henson (1992) used mitochondrial DNA primers from Ggt to identify all 

Gaeumannomyces graminis species. However, this study was not done in wheat root 

tissue. Thorton et al. (1997) characterized a monoclonal antibody (MAb) raised from a 

surface antigen from Ggt to differentiate between other fungi and Ggt. This surface 

antigen was characterized by exposing Ggt to phenolic compounds known to be released 

by wheat roots. This MAb only recognized the antigen produced by Gaeumannomyces 

graminis species and not other fungi. Polymerase Chain Reactions (PCR) has also been 

used in the detection of specific Ggt DNA segments from infected wheat root tissue 

(Schesser et al., 1991) and to identify Gaeumannomyces graminis species from other 

fungal species (Ward, 1995). Ribosomal DNA (rDNA) has also been used to classify 

Ggt, Gga, and Ggg by their phylogeny (Bryan et al., 1995). Based upon rDNA analysis, 

Ggt and Gga are more closely related (simple hyphopodia) while Ggg is more distant 

(lobed hyphopodia) (Bryan et al., 1995). Ribosomal DNA primers are also used to 

distinguish between Ggt and Gga in wheat root tissue (Bryan et al., 1995). Although 

there have been many reports of isolation and characterization of Gaeumannomyces 

graminis species there is no study on methods used to identify host gene expression after 

infection. The aim of this research is to characterize differential gene expression induced 

by Ggt infection of wheat. 
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Management 

Control of take-all has been suggested to increase yields up to 10% to 50% 

(Heim, et al., 1986). However, managing take-all has been confounded because, there 

are no genetic resistant hosts or effective chemical controls (Huber and McCay-Buis, 

1993). In order to implement management strategies for take-all it is important to know 

the high-risk conditions involved in its pathogenicity. The following table of high risk 

conditions was taken from Monsanto's Take-all website (1998) (table 2): 

Table 2. High Risk Conditions for Take-all Infection 

Soil Previous Cro:12 Cultivation Fertilization Climate 
Light aerated Wheat Short plowing Low nitrogen Autumn 
soils. to drilling time. levels. Wet 
Compacted Barley Early sowing Nitrate forms Winter 
heavy soils. date. of nitrogen. Mild 
Poor drainage I Pasture High seedling Manganese Spring 
structure. rates. deficiency. Cool I Moist 
High organic Set-aside Loose seedbed Low levels of Summer 
matter content. conditions. PandK Hot I Dry 
Alkaline soils. Oilseed Rape Poor weed 

control 
conditions. 

A more detailed table listing favorable and unfavorable conditions for the host, 

pathogen, biotic environment, and abiotic environment is given by Huber and 

McCay-Buis (1993). 

Land Management 

The best strategy for control of take-all is agronomic practice manipulation ( crop 

husbandry). The term "crop husbandry" includes rotation, drainage, soil 

management, cultivation technique, seedbed preparation, straw incorporation, sowing 

date, herbicide use, and fertilizer practice (Y arham et al., 1989). Take-all can be 
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avoided by growmg non-susceptible crops alternatively with susceptible crops 

(Homby, 1998). Ggt is a soil invader, in that it cannot survive indefinitely without a 

susceptible host (Bockus, 1987, Yarham et al., 1989). Ggt can survive by parasitizing 

volunteer wheat or grassy weeds or by saprophytic infestation of wheat crop residue 

left on the soil (Bockus, 1987, Homby, 1998). Take-all pathogens can survive up to 

three years in the soil without a susceptible host (Bockus, 1987). By following tillage 

practices to eliminate wheat crop residue and grassy weeds, the possibility for take-all 

infection can be decreased (Bockus, 1987). Monsanto's Take-all website (1998) 

suggested the following cultural practices to decrease take-all infection: 

I . A void continuous cereal cropping practices. 

2. A void early sowing of cereal crops. 

3. Avoid loose seedbed conditions. 

4. Reduce seedling rates, to avoid dense cropping 

5. Avoid high nitrogen applications 

6. Ensure high grass weed control in previous crops 

Chemical 

Chemical control of take-all is efficient but extremely costly. Fungicide spray has 

shown difficulty in targeting Ggt and soil fungicides have low activity soils that are 

more complex. Of all the chemical controls of take-all the most effective has been 

seed treatment with fungicide. Only a small amount of fungicide is needed (which 

makes it the best cost effective means of chemical control) with good accuracy 

(Homby, 1998). Latitude is a new seed treatment that has recently been developed by 

Monsanto (Monsanto, 1998). This new treatment uses 2 L of Latitude per tonne of 
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seed (200 mL I 100 kg). Latitude moves off the seed rapidly but slowly through the 

soil allowing a barrier to be produced around the roots. Latitude affects the energy 

production in the cells of the fungus without harming beneficial soil microbes. 

Biological 

Biological control has shown great promise in decreasing take-all in wheat. The 

most recognized biological control is Phialophora spp. which complexes with 

Gaeumannomyces graminis and suppresses the onset of take-all (Hornby, 1998). Spores 

of Phialophora are known to exist in some species of Gaeumannomyces (Walker, 1972). 

Phialophora radicicola var. graminicola occurs on all wheat crops but is prominent in 

wheat crops grown after grass (Slope et al., 1978). The population of Phialophora 

radiciola var. graminicola decreases rapidly when wheat is grown consecutively without 

crop rotation practices (Slope et al., 1978). 

Another example of a biological control agent (BCA's) is the rhizosphere bacteria 

Pseudomonas jluorescens that produces the antibiotic Phenazine, which helps control 

take-all in wheat (Thomashow and Weller, 1988). A mutant of Pseudomonasjluorescens 

deficient in the ability to produce Phenazine was not inhibitory to the take-all fungus 

Gaeumannomyces graminis var. tritici (Thomashow et al., 1990). For reviews of 

Pseudomonas jluorescens control of root diseases in wheat, see Thomashow et al., (1990) 

and Weller et al. (2002). 
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Chapter II 

Infection Time-Course in Wheat Roots in Response to the 

Take-All Fungus (Gaeumannomyces graminis var. tritici) 
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Take-all [Gaeumannomyces graminis var. tritici (Ggt)] is regarded as the 

most damaging root disease affecting wheat worldwide. This study was conducted 

to develop and implement procedures for examining take-all infection in wheat 

roots under controlled conditions. 

A procedure for surface sterilization of seeds, growth conditions, and 

infection time course was developed. Seeds were sterilized by sonication in 1 % 

AgN03 with Tween 20 (30s), rinsed with sterile-deionized water, and placed on 

sterile filter paper in a cold room ( 4.5°C) without light for 48 hours. Imbibed seeds 

were then aseptically transferred to 1/SX Potato Dextrose Agar (PDA) at 25°C 

without light for 48 hours. Seedlings with roots approximately 2.0 to 3.0 cm long 

were transferred to 1/SX PDA without Ggt ( control), or with Ggt lawn and placed 

into a 25°C incubator without light for 12, 24, and 48 hours. 

A time course for infection wa~ determined with light microscopy. Results 

indicated that at 12 hours Ggt had colonized the root surface, at 24 hours root hairs 

were penetrated, and at 48 hours root hairs collapsed and the fungus penetrated the 

epidermis and cortex. Analysis of root length increase indicated that there was a 

40.9%, 32.2%, and 61.5% decrease in growth with Ggt at 12, 24, 48 hours, 

respectively, as compared to the controls. The time-course of infection and the root 

tissue obtained from this analysis will be used in a subsequent investigation to study 

differential gene expression in wheat roots infected with Ggt. 

Additional keywords: Ggt, wheat roots, infection, time course, microscopy. 
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The root disease Take-all [Gaeumannomyces gramm1s var. tritici (Ggt)] is 

regarded as the most damaging disease affecting wheat roots worldwide (Heim et al., 

1986, Yarham et al., 1989). Control of take-all has been suggested to increase yield up to 

10% to 50% (Heim, et al., 1986). Diseases that infect the above ground portion of the 

plant that affect yield and growth have received considerable attention with little attention 

being paid to the below ground root pathogens (Homby and Fitt, 1981 ). 

The study of root-rot diseases is complex due to soil type, nutrients, temperature, 

moisture, and pH affecting their pathogenicity. After being affected by the soil 

environment Ggt must reach the rhizosphere followed by the rhizoplane, epidermis, 

cortex, endodermis, and finally the vascular tissue. The Take-all fungus targets and 

eventually destroys the stelar. elements (Sivasithamparam, 1998). There have been few 

studies into the microscopic examination of this infection process in roots (Schulz et al., 

1995) and fewer still in looking at the whole infection process in young roots. The whole 

infection analysis being from colonization of the root surface to penetration of the stelar 

elements. 

In order to investigate the infection process a system has to be developed that 

provides the best environment for growth of the pathogen and the host and is conducive 

to the highest degree of infection. Research into the infection process has utilized the 

growth media Potato Dextrose Agar (PDA) (Broadfoot, 1933; Davies, 1935; Rengal et 

al., 1994; Schulze et al., 1995; Speakman, 1982; Speakman and Lewis, 1978) for growth 

and maintenance of Ggt cultures and/or seedlings. Studies have also utilize different 

temperatures (Henry, 1932; Walker, 1972), wheat cultivars (Rengal et al., 1994), 

nutrients (Schulze et al., 1995), sterilized soil (Henry, 1932), times of infection 
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(Speakman and Lewis, 1978; Weste, 1972 and 1975), inoculum placement (Kabbage and 

Bockus, 2002), media (Broadfoot, 1933; Mathre, 1992), optimum pH (Broadfoot, 1933), 

and surface sterilization (Davies, 1935; Speakman, 1982; Mathre, 1992). Although it is 

important to develop and utilize a controlled environment to decrease the physical and 

biological factors of the soil environment (Homby and Fitt, 1981 ), it is also important to 

remember in nature soil-borne diseases would consist of more than one microorganism 

(Broadfoot, 1933). 

This research was performed to develop a controlled system for infecting wheat 

roots with the Take-all fungus and to examine, at critical stages, the whole infection 

process. An infection time-course was utilized to determine the critical infection stages 

and this data will be used in a subsequent paper to determine differential gene expression 

in wheat roots infected by the Take-all fungus. 
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RESULTS 

Seeds of the hard red winter wheat cultivar "Jagger" were surface sterilized and 

aseptically grown on a lawn of Ggt as described below. Wheat roots placed on a lawn of 

Ggt (Figure 2 and 3) and grown under these conditions resulted in a significant (P<0.05) 

40.9%, 32.2%, and 6L5% decrease in growth of infected roots compared to non-infected 

controls at 12, 24, and 48 h, respectively (Figure 1). 

These time periods were chosen as the critical stages of infection for our system 

as a result of the microscopic analysis discussed later. In short, these time points 

represent the time in which the fungus is surrounding the root without penetration (12h), 

the fungus is penetrating root hairs (24 ), and the fungus penetrated the epidermis and 

colonized the cortex ( 48 h). The 72 and 96 hour time periods were used to take growth 

measurements for this study only and will not be used in the subsequent paper on 

differential gene expression. The Ggt infected roots had a 70% and 66% decrease in 

growth as compared to the controls (data not shown). At 72 hours the cortex was still 

being colonized however, the endodermis had not yet been penetrated. At 96 hours the 

endodermis had been penetrated and xylem vessels were colonized. No colonization or 

penetration of the phloem had occurred at 96 hours. A steady state growth rate was 

obtained beginning at 48 hours and continuing on through 96 hours for both the control 

and Ggt infected roots (data not shown). 

Squash mounts, epidermal peels and longitudinal sections were taken at each time 

period as described in Figure 1. It is important that a microscopic analysis be performed 

under these growth conditions in-order to ascertain the time-course of infection within 

this system. Initial time points of 12, 24, 48, 72, and 96 hours were obtained from the 
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literature (Weste, 1972 and 197 5). It should be noted that Weste (1972) used ascospores 

as means of infection and Weste (1975) used mycelium. In this proposal Ggt fungal 

mycelium was used to infect the wheat roots at all time periods as described in materials 

and methods. Microscopic examination at 12 hours reveled hyphae growth on the root 

surfaces with no penetration of the root surface ( data not shown), although infected roots 

at this time period showed a significant decrease in growth (Figure 1 ). Figure 2 shows 

the petri dish and seedlings of the control and the Ggt infected roots after 24 hours 

growth. At 24 hours root hairs were penetrated and fungal hyphae were continuing to 

grow on the root surface (Figure 3). Although the roots hairs were penetrated at this time 

period the percentage decrease in root length was less than that at 12 hours as compared 

to the control (Figure 1). Figure 4 shows the arrangement on the petri dish of seedlings 

grown for 48 hours on 1/5X PDA inoculated with or without Ggt. At 48 hours root the 

cortex was colonized with fungal hyphae (Figure 5 and 7), hairs were collapsing (Figure 

6 and 7) and hyphae penetrated the epidermis (Figure 7). At 96 hours, roots began to turn 

brown (Figure 8) and ectotrophic mycelium growth covered the seed and the crown tissue 

(Figure 9 and 11 ). Root tips were also turning brown (Figure 10) and this result is further 

supported by the 66% decrease in root growth at this time period ( data not shown). 

Tissue was also collected at the end of every experiment and placed on Ggt 

Selective media (SM-GGT3) (Juhnke et al., 1984). Figure 12 shows the characteristic 

branching pattern of Ggt coming from the root section taken from Ggt infected tissue and 

grown for 48 hours on SM-GGT3. This was done to ensure that the infection was due to 

Ggt and not attributed to any other contamination (Weste, 1975) and to maintain the 

isolates pathogenicity Naiki and Cook, 1983). The characteristic curling pattern of Ggt 
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hyphae can be clearly seen in the right had photograph of Figure 13. SM-GGT3 contains 

L-DOPA, which turns black in the presence of Ggt fungal hyphae (Figure 12 and 13). 

In order to use the most pathogenic isolate of Ggt, (HV-92, Jo-8, and RL-4; 

provided by Dr. Bockus from Kansas State University and two isolates taken from an 

experimental field at Oklahoma State University - Stillwater) were tested for their 

pathogenicity (Figure 14). Although the above ground portion of the seedling infected 

with HV-92 did not look any different than the control and other isolates, below ground it 

produced the classic Take-All symptoms (Figure 15) and was determined to be the most 

pathogenic isolate tested. This isolate was used in all experiments described in this 

paper. The crown and foot of the Ggt infected is black with mycelium growth, 

characteristic of severe take-all infection. 

This system also utilizes silver nitrate (AgN03) as the wheat seed surface 

sterilization method instead of the traditional bleach method . Initially, experiments 

were performed in-order to determine the strength of bleach to use to surface sterilize 

seeds (Figure 16). This is important because contamination free seeds are needed for up 

to 8 days (2 days cold room, 2 days at 25°C, and 4 days growth) without a negative effect 

on root growth. The bleach concentration that gave the best median root length was 25% 

followed by 50%. According to these results 25% would be the best to use because it 

was not significantly different from 50% and it gave about the same % contamination. 

The two highest concentrations tested 75% and 100% were clearly to strong because of 

the decreased median root length and the lowest % contamination. A follow-up 

experiment was performed using 25% bleach to test this procedure for growth up to eight 

days on this media. After four days 50% of the seeds where contaminated using 25% 
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bleach as a surface sterilizer. This was unacceptable and upon personal communication 

with Dr. Singleton 1 % silver nitrate was used. 

To see how long silver nitrate treated seeds would grow on 1/5X PDA with out 

signs of contamination seeds were surface sterilized and left on a 1/5X PDA and checked 

every day for 11 days. Through 11 days no contamination of media or seed was seen. 

The silver nitrate sterilized seeds were then left on 1/5 PDA for up to 3 weeks with no 

sign of contamination ( data not shown). This procedure of sterilizing, growing, and 

experimenting on wheat seedlings has proven successful and will be utilized in a 

subsequent paper on differential gene expression in wheat roots in response to infection 

by the Take-all fungus. 
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DISCUSSION 

Infection System. 

Ggt has been classified as a fungus whose effect on root function and shoot 

growth can be explained by stelar disruption (Homby and Fitt, 1981 ). In order to 

investigate the infection process of Ggt, a system had to be designed that would allow the 

examination of one microorganism on its host without interference from other sources 

either physical or biological. Henry (1932) determined that a sterilized system is needed 

because more infections occur in sterilized versus unsterilized soil due to the antagonistic 

nature of the micro-organisms to Ggt in the unsterilized soil. This investigation has 

created a controlled system that allows for an examination of this interaction in an 

atmosphere that is conducive to the growth of the pathogen and the host. This infection 

system has been used in a subsequent experiments on differential gene expression in 

wheat roots in response to infection by the Take-all fungus ( chapter III). 

Jagger wheat was chosen as the host because in 2000, it was the most popular 

wheat grown in the wheat producing areas of Oklahoma and Kansas (personal 

communication Dr. Guenzi). 

One of the most significant aspects of this infection system is the use of silver 

nitrate as a surface seed sterilizing agent. 1 % AgN03 was left for 11 days (Figure 17) up 

to three weeks on agar without contamination of the agar or the seedling ( data not 

shown). In addition, diluted concentrations of AgN03 have been described as not being 

toxic to Ophiobolus graminis (now named Gaeumannomyces graminis) (Davies, 1935). 

The question of what type of fungal form to use to infect the host was described 

by Weste (1975). She used ascospores to infect wheat roots initially (Weste, 1972) and 
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later switched to mycelium (Weste, 1975) because in nature Ggt invades as mycelium 

(Weste, 1975). Mycelium from the HV-92 isolate of Ggt was chosen as the pathogen in 

the infection analysis because it was determined to be the most pathogenic isolate of all 

isolated tested ( data not shown). This isolated produced the classic Take-all 

characteristic (Figure 15) such as, brown to black roots, black mycelium on the seed and 

base of stem (Massee, 1912). 

Potato Dextrose Agar (PDA) was chosen for the infection analysis due to studies 

that describe wheat roots (Schulze et al,. 1995) and Ggt (Speakman and Lewis, 1978) 

grown on PDA. This allows for optimum conditions for growth of not only the pathogen 

but for the host. 

Infecting wheat roots by placing the seedlings on a lawn of Ggt mycelium is a 

novel approach in that, instead of placing the fungus on the root via agar blocks (Rengel 

et al., 1994 and Weste 1975) the roots are being placed on the fungus. Wheat roots were 

placed directly on top of the Ggt fungal lawn, which caused decrease in growth as early 

as 12 hours (Figure 1). This is in agreement with Kabbag and Bockus (2002) whom 

found that the severity of infection by take-all is related to placement distance of the 

inoculum for the host. They found the most sever infection occurred when inoculum was 

placed at seed level in both greenhouse and field experiments. This system provides a 

way of infecting the whole root without regard for developmental regions of the root. In 

this way the whole root is treated equal. 

The infection system's temperature of 25°C was chosen based upon the work of 

Henry (1932). He found that the optimum temperature for infection of wheat and Ggt 

was between 15 and 27°C. 
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Once the infection analysis is over, confirmation is needed that the infection was 

due to Ggt and not to another organism (Weste, 1972). This is accomplished by using 

Ggt Selective Media (SM-GGT3)(Juhnke et al., 1984). It is important to re-isolate the 

fungus from the infected root tissue to confirm that Ggt was the cause of the infection and 

to maintain the pathogenicity of Ggt. SM-GGT3 has been described as the best way in 

which to isolate Ggt from wheat roots (Mathre, 2000). When Ggt fungal hyphae come 

into close proximity with L-DOPA a black color is formed (Juhnke et al., 1984) and the 

characteristic mycelium pattern of curling of the edges and the branching (Walker, 1972) 

can clearly be seen (Figure 12 and 13). Naikia and Cook (1983) described Ggt's ability 

to lose its pathogenicity if it was not periodically passed through a host. In addition to 

confirming that the infection was do to Take-all, re-isolation of the fungus from the host 

then serves another important purpose of maintaining the pathogenicity of the pathogen 

(Speakman, 1982). 

In summary, this system allows for optimum seed sterilization (Figure 17) and 

infection to occur between wheat roots and Ggt utilizing the optimum conditions for 

growth and infection of the host and pathogen. In addition, this system allows for 

confirmation that the infection is due to Ggt and to keep the pathogenicity Ggt throughout 

the experiments by isolation on Ggt selective media. 

Infection Analysis. 

There has been limited microscopic analysis of Ggt in wheat roots described in 

the literature (Clarkson, 1975; Homby and Fitt, 1981; Massee; 1912; Mathre, 2000; 

Rengel et al., 1994; Schulz et al., 1995; Speakman and Lewis, 1978, Walker, 1972; 

Weste, 1972 and 1975). This is the first microscopic analysis time-course to be 
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performed with both control and infected tissue analysis under an. optimized controlled 

environment for both the host and the pathogen. It was not in the scope of this research 

to do an exhaustive infection analysis but only to determine the approximate infection 

times for the fungus colonizing the root surface, penetration in to the root hairs and 

penetration of the epidermis and colonization of the cortex. With the enhancements to 

basic microscopy, such as, laser scanning confocal microscopy, immunocytohemical 

techniques, fluorescent probes, and green fluorescent protein (Gold et al., 2001) a more 

detailed time-course of Ggt infection into wheat roots should be pursued. 

It was important for a precise time-course to be performed within the scope of this 

system. The tissue harvested from this time-course was used in a subsequent paper 

examining differential gene expression in wheat root in response to infection by the 

Take-all fungus, at 12, 24, and 48 hours. Although four critical time periods were 

determined utilizing this novel system (12h, 24h, 48h, and 96 h) only the first three time 

periods were used for differential gene expression analysis. 

The early stages of growth of wheat has been described as when Ggt infection 

occurs (Massee, 1912). For a review of the components of the cereal root system 

structure and anatomy see Homby and Fitt (1981). By infecting roots early our hope was 

to increase the severity of infection and to determine the time that we could see the roots 

surface colonized with fungal mycelium but with no penetration present. 

With Jagger wheat and HV-92 isolate of Ggt, at 12 hours there was no penetration 

of root hairs or epidermis although the surface was colonized by fungal hyphae ( data not 

shown). Hyphae grow along the surface of the root with out penetration has been 

described by Weste (1972) as being due to utilization of root exudates in the rhizosphere 
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as an energy source prior to penetration . The fungal hyphae colonizing the root surface 

were approximately 6.25 µm wide which is in close proximity to the 7 to 10 µm 

described by Walker (1972). Moreover, throughout the microscopic examination, at no 

point was there hyphopodia present or infection cushions present on the roots which also 

agrees with Walker (1972). This is also in agreement with Homby and Fitt (1981) and 

Walker (1970) whom found that Ggt's penetration is not mechanical but is enzymatic. 

Since 1912, Ggt has been described as initially entering the wheat roots through 

root hairs (Massee, 1912). At 24 hours, the Ggt entered the root through the root hairs 

with no penetration of the epidermis (Figure 3). Using ascospores, Weste (1972) 

described Ggt penetration at the root hairs and intact epidermis. She described hyphae 

penetration at many points along the root surface, which came from runner hyphae along 

the root surface. She described the penetration at the root hairs as plasmolyzed, bent, 

contracted, twisted, shriveled, and collapsed. Although in agreement with the time of 

root hair penetration, we found significant decreases in growth (Figure 1) whereas Weste, 

(1972) did not find any growth differences. Rengel et al. (1994) described Ggt as 

penetration the stele at 24 hours in the take-all sensitive wheat cultivar Bayonet but, not 

in the more resistant cultivar C8MM. Ggt did not penetrate the stele until 96 hours in the 

scope of the paper (Figure 8). Based upon this finding, Jagger wheat used in this 

experiment may have a higher level of resistance than Bayonet. 

Weste (1975) used fungal mycelium and found that at 2 days lesions appeared, 

epidermis, cortex, and root hairs were penetrated. Moreover, Ggt entered the roots 

initially through the root hairs. This is in agreement with the results from this system in 

that at 48 hours root hairs, epidermis, and cortex were penetrated and colonized (Figure 
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4-7). Unlike no growth difference with ascospore infection (Weste, 1972), mycelium 

infection (Weste, 1975) caused a 50% decrease in growth at 2 days as compared to the 

controls. This is in agreement with the 61.3% decrease in growth at 48 hours in this 

system (Figure 1.) The roots were also covered with fungal hyphae at 48 hours and root 

growth may have decreased as a result of the collapsing root hairs (Figure 6 and 7). In 

addition, Speakman and Lewis (1978) also described Ggt as penetrating the epidermis 

and the cortex at 48 hours. Ggt will eventually erode the cortex and destroy the root 

system (Homby and Pitt, 1981 ). 

Clarkson et al. (1975) described rapid colonization of the cortex by fungal hyphae 

that caused dark brown to black discolorations. Moreover, the penetration into the stelar 

elements was slowed at the endodermis. Ggt hyphae eventually crossed the endodermis 

through plasmodesmata and rapidly colonized the stele. This is in agreement with the 

data presented here that the cortex was colonized by 48 hours (Figure 5) and it was not 

until 96 hours that the xylem was being colonized (Figure 8). Weste (1975) described 

black runner hyphae and brown stains on roots and embryonic areas of the seed were 

evident at 4 days as shown in this system (Figure 8 and 11 ). In comparing the results 

obtained in this research with those from Weste (1975), it is important to remember her 

first time point was 2 days. The time periods in this proposal are 12, 24, 48, 72, and 96 

hours. The observations made before 48 hours in this system could therefore be in 

agreement with Weste (1975) observations at 2 days. 

Differences in results from the previously described results from the literature 

could be attributed to Ggt being compatible with its host being dependent on the host and 

isolate of Ggt investigated (Weste, 1972). Research on soil-borne plant pathogens are 
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just now answermg the question of how the disease is affecting the physiological 

processes of the root (Homby and Fitt, 1981). This infection system and analysis was 

performed as a first step into understanding the infections process of Ggt and wheat roots. 

Subsequent analysis will be performed with tissue harvested from each time period on 

differential gene expression in wheat roots in response to infection by the take-all fungus 

in order to understand the molecular and physiological aspect of this infection process. 
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MATERIALS AND METHODS 

Growth and Infection Time Course. 

It is important to note that research on wheat roots due to fungal infection by 

Gaeumannomyces graminis var. tritici as well as other soil-borne fungi in the laboratory 

may not reflect the response of the plant in the field. This is due to the complexity of the 

soil environment versus that of an agar plate. Bateman and K wasna ( 1999) described that 

there were approximately 107 species in 50 genera of fungi present on wheat roots in a 

continuous wheat crop field in the United Kingdom. It is not the purpose of this research 

to determine the effects of different fungi on the host pathogen interaction with wheat and 

Ggt. It is however, the purpose to determine host specific gene expression and 

characterization induce specifically by Ggt. It is for this reason that we will eliminate all 

influences from other fungi from our experimental system. In addition, all experiments 

contained three replications and were repeated 3 to 4 times unless otherwise indicated. 

Isolate of Ggt, HV-92 (provided by Dr. William Bockus, Kansas State University) 

was stored as mycelial colonies on 1/5 strength Potato dextrose agar (PDA) plates 

incubated at 25.0+/-0.1°C. PDA (1/5X) is made by suspending 7.8 grams of PDA 

(Difeo) and 12.0 grams of agar (Difeo) in 1 Liter of deionized water (Milli-Q Water 

System, 18 MOhms). Boil this mixture with constant stirring to dissolve completely. 

Autoclave (Castle Steam Sterilizer M/C3522, MDT Biological Company) at 121-124°C 

at 15 psi for 20 minutes. Pour plates in the fume hood with the lid of the plates slightly 

off center to prevent condensation. Pour small plates with 25 mL each and large plates 

with 100 mL each of 1/5X PDA. The final pH should be 5.6 +/- 0.2. 
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Long-term storage of isolates was as 0.5 cm mycelium plugs in 20% autoclaved 

glycerol at -80°C (Mathre, 2000; Osbourn et al., 1991). Isolates removed from long term 

storage were grown by draining off the glycerol and plating the .5 cm diameter plug on 

1/5 strength PDA and kept at 25°C. Seedlings of the hard red winter wheat cultivar 

Jagger were surfaced sterilized by means of a modified procedure described previously 

by Juhnke et al. (1984). Seeds were surfaced sterilized for 30 seconds in 1 % silver nitrate 

(Sigma, ACS Reagent) and Tween 20 using a sonicator (la Sonic II, Model OCONX) and 

washed three consecutive times for 5 minutes each in autoclaved (Castle Steam Sterilizer 

M/C3522, MDT Biological Company) Milli-pore water (Milli-Q Water System, 18 

MOhms) with continuous stirring (NUOVA II Stir Plate). Seeds were placed on 

autoclaved filter paper and saturated (10 mL/ plate) with autoclaved Milli-pore water. 

Plates were incubated in the dark for 48 h at 4.2 ± 0.1 °C. Imbibed seeds were transferred 

crease-side down to 1/5 strength Potato Dextrose Agar (PDA, Difeo) and incubated in the 

dark for 48 hours at 25.0 ± 0.1°C (Percival Scientific Growth Chamber, I-36LL) (Mojedhi 

et al., 1990). Bacterial and fungal free seeds with seminal roots of 2.5 ± 0.5 cm were 

placed on a lawn of Gaeumannomyces graminis var. tritici grown on 1/5 strength PDA or 

on fresh 1/5 strength PDA and grown at 25.0 ± 0.1 °C for up to 4 days. Infected and non­

infected wheat root tissue from all experiments were harvested after growth 

measurements were taken. Tissue was harvested by cutting roots into a small petri dish 

containing 10 mL of RNAlater (Ambion) (to inhibit endogenous RNases) and vacuumed 

infiltrated for 10 minutes. The root tissue was then blotted dry with autoclaved filter 

paper, placed into a 15 mL centrifuge tube, flash frozen in liquid nitrogen (to inhibit 
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endogenous RNases), and stored at -80°C until needed. Using these growth conditions, 

we elucidated the time-course of infection by Ggt in this experimental system. 

Ggt Selective Media (SM-GGT3). 

Ggt Selective media (SM-GGT3) (Juhnke et al., 1984) is comprised of 39 g PDA, 

10 mg Dichloran, 10mg Metalaxyl, 25 mg HOE 00703 (1-(3,5-dichlorophenyl)-3-

methoxymethyl-pyrrolidin-2,4-dion), 100 mg streptomycin sulfate, 500 mg L-DOPA (L­

B-3,4-dihydroxylphenylalanine ), and 1 L distilled water. PDA, L-DOPA, and distilled 

water are the basic ingredients with the others being anti-microbials (antibiotics and 

antifungal agents) to prevent the growth of competing organisms. Tissue from infected 

roots were surface sterilized as described previously for seeds and plated out on the Ggt 

selective media and grown at 25°C for 48 hours. 

Microscopic Examination. 

Microscopic analysis of infection by Ggt was performed utilizing light 

microscopy (Olympus BH-2), dissecting microscopy (Olympus SZH-RFL2 Coaxial 

Fluorescence Attachment), and a mounted digital camera (Kodak Microscopy 

Documentation System, MDS 290, with lx universal adapter). At each time point three 

roots were picked at random and a squash mount, longitudinal section, and epidermal 

peel were taken and analyzed for fungal infection and penetration. 

Pathogenicity Tests. 

In order to use the most pathogenic strain of Ggt available, pathogenicity test 

were ran in Dr. Singleton's lab (modified from Dr. Bockus, personal communication). 

Briefly, 25 g of untreated whole oat grains (from Stillwater Mill) were placed in a 500 

mL flask and 25 g of water was added. The flask was capped with a cotton-plugged lid, 
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shaken to moisten the oats and incubated 2-16 h to allow the oats to imbibe much of the 

water. The flasks were shaken again immediately prior to autoclaving and autoclaved for 

60-90 minutes. The flask was then cooled in a laminar-flow hood to keep the lids sterile. 

The flasks were then inoculated with 3 to 4 cubes of agar cut from a fresh culture of Ggt 

growing on 1/5 PDA. Cubes were buried in the oats about 2 cm or more. The whole 

mixture was incubated at room temperature on a lab bench, shaking periodically ( every 4 

to 5 days) to help prevent clumping of kernels. After 2 to 3 weeks of incubation (when 

kernels are somewhat blackened from the fungus mycelium), the kernels were spread out 

on a shallow tray and air-dried in the lab. Air-dry inoculum will keep 3 to 6 months at 

25°C before it begins to lose its effectiveness; at 4°C it will keep substantially longer. 

Wheat seeds were planted on top of oats inoculated with different isolates of Ggt. 

As the roots of wheat seedlings grow they pass through the infected oats and become 

infected with Ggt. Wheat seedlings were grown for up to four weeks and assessed for 

fungal infection (Figure 14). 

Bleach Treatment. 

A growth response curve to bleach concentration was performed to determine the 

optimum bleach concentration to use that gives the best root growth increase and the least 

amount of contamination. Seeds were surface sterilized in 70% EtoH for 5 minutes 

followed by 0%, 25%, 50%, 75%, or 100% commercial bleach/Tween 20 for 15 minutes. 

Seeds were then rinsed in autoclaved Millipore water 10 times. 10 Seeds were plated on 

1/5X PDA (3 plates per bleach treatment). Placed in the cold room for 48 hours followed 

by 48 hours growth at 25°C. Median growth measurements were calculated using a 

standard mm ruler. 
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Figure 1. Wheat root length in control and Ggt infected (Lawn) seedlings at 12, 24, 
& 48 hours post-infection. Root length increase is determined by subtracting the 
initial length of the root from the final length. Letters represent significant 
differences (ANOV A: a0.05) at each time period. 
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Figure 2. Control and Ggt infected roots after 24 hours as described in materials 
and methods. 
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Control Ggt 

1 
Figure 3. Microscopic analysis of control and Ggt infected root hairs after 24 hours 
as described in materials and methods. Black lines (dashed) indicate the root hair. 
Red lines (solid) indicate Ggt hyphae. Hyphae are approximately 6.25 µm wide. 
Root hairs are approximately 12.5 µm wide. 
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Figure 4. Control and Ggt infected roots after 48 hours as described in materials 
and methods. 
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Figure 5. Microscopic analysis of control and Ggt infected cortical cells after 48 
hours as described in materials and methods. Hyphae are approximately 6.25 mm 
wide. Root hairs are approximately 12.5 mm wide. 
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Control Ggt 

Figure 6. Microscopic analysis of control and Ggt infected root hairs after 48 hours 
as described in materials and methods. 
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Figure 7. Microscopic analysis of Ggt infected root after 48 hours showing root hair 
collapse and hyphae growing along and into the epidermis. Root hair indicated with 
a green arrow. Yellow arrows show fungal hyphae in root hair, red arrows indicate 
runner hyphae along the epidermis and blue arrow indicated hyphae that 
penetrated the epidermis. Hyphae are approximately 6.25 µm wide. Root hairs re 
approximately 12.5 µm wide. 
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Figure 8. Control and Ggt infected seedlings after 96 hours as described in 
materials and methods. 
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Figure 9. Control and Ggt infected root hairs after 96 hours showing a close up 
view of the root hairs (control) and ectotrophic mycelium covering root (Ggt). 
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Control 

Figure 10. Control and Ggt infected root tips after 96 hours showing a close up 
view. Control view (left) taken with light from the bottom. Ggt infected root view 
(right) taken with light from the top only 
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Figure 11. Control and Ggt infected crown tissue after 96 hours showing a close up 
view. Control root (left) showing numerous root hairs. Ggt infected view (right) 
shows ectotrophic mycelium covering the roots. Arrow indicated browning of foot 
tissue. 
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Ggt Ggt 

Figure 12. Ggt infected root tissue on Ggt selective media for 48 hours. Left 
photograph was taken with light from above and below. Right photograph was 
taken with light from the bottom only in order to show hyphae. Hyphae are 
approximately 6.25 µm wide. Root hairs are approximately 12.5 µm wide. 
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Figure 13. Ggt mycelium on Ggt selective media for 48 hours. Left photograph was 
taken with light from above and below. Right photograph was taken with light 
from the bottom only in order to show hyphae. Hyphae are approximately 6.25 µm 
wide. Root hairs are approximately 12.S µm wide. 
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Figure 14. Pathogenicity test performed by "baiting" on different isolates to 
determine the most virulent isolate (Jo-8, Rl-4, and HV-92 provided by Dr. William 
Bockus, Kansas State University) (Ggt 1-4 isolated by Dr. Larry Singleton from the 
Plant Pathology Farm, Oklahoma State University). 
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Figure 15. Four week phenotypic examination of HV-92 (Ggt, Right) reveled classic 
Take-All symptoms as compared to the non-infected control (Left). Symptoms 
include blackening of the stem up to the fist internode and blackening of the roots 
and black mycelium on the seed. 
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transfer to 1/5 PDA from the cold room as described in material and methods. 
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Figure 17. Eleven-day-old Jagger wheat seed surfaced sterilized for 30 seconds in 
1 % AgN03 and grown for 11 days after transfer to growth chamber (25.0°C) 
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Chapter III 

Differential Gene Expression in Wheat Roots In Response 

to Infection by The Take-AU Fungus 
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Take-all [Gaeumannomyces graminis var. tritici (Ggt)J, is regarded as the 

most damaging root disease affecting wheat worldwide. Previous microscopic 

analysis indicated that at 12 h Ggt had colonized the root surface, at 24 h root hairs 

were penetrated, and at 48 h root hairs collapsed and the fungus penetrated the 

epidermis and cortex. 

At each time period, root tissue was sampled and forward and reverse 

normalized suppression-subtraction hybridization (SSH) cDNA libraries between 

infected and non-infected root tissues were constructed. A total of 802 colonies were 

picked at the 12 h time period (402 forward and 402 reverse), 750 colonies were 

picked at 24 h (356 forward and 394 reverse), and 938 colonies were picked at 48 h 

(475 forward and 463 reverse). 

cDNA microarrays were utilized to determine significant up and down 

regulated genes at each time period. Results indicated that 84.9% of all the 

differentially expressed genes were unclassified, 10.8% were involved in 

intermediate metabolism and bioenergetics, 2.2% were involved in electron 

transport, 1.6% were involved in information pathways, and 0.5% were involved in 

signal transduction. These genes were grouped into five response profiles based on 

k-means clustering. 

The differentially expressed genes obtained in this study provide insight into 

the infection process of this soilborne pathogen and its host roots . 

Additional keywords: Ggt, Gaeumannomyces, Take-all, SSH, Microarray, wheat. 
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The cereal root disease take-all which, is caused by the soilbome fungus 

Gaeumannomyces graminis var. tritici (Ggt), is regarded as the most damaging disease 

affecting wheat (Triticum aestivum L.) worldwide (Yarham et al., 1989, Huber and 

McCay-Buis, 1993). According to Homby (1998), different cereal species have differing 

resistance to Ggt, with wheat being the least resistance. In addition, although there are 

differing tolerance levels there is as yet no completely resistant cultivar of wheat to this 

root-rot pathogen. Therefore, a comparison of resistant to susceptible cultivars cannot be 

conducted. It is possible however to study the compatible interaction between Ggt and 

wheat. 

Suppression subtractive hybridization (SSH) (Diatchenke et al., 1996) technology 

has been extensively used in conducting studies on plant pathogenic fungi and will lead 

to a greater understanding of the interactions between plant and fungus (Gold et. al., 

2001). SSH cDNA libraries allow for the identification of differentially expressed genes 

and are based on the normalization and emichment of differentially expressed genes in a 

single round of hybridization (Ji et al., 2002). A gene expression pattern is the first step 

in the collection of information in functional genomic analyses (Cushman, 1999). 

Microarray analysis allows for the global monitoring of gene expression (Gold et. 

al., 2001; Leung and Cavalieri, 2003) and has been utilized in analyzing plant genes in 

developing seeds (Girke et al., 2000), brassinosteriod regulated genes in Arabidopsis 

(Goda et. al., 2002), mechanical wounding genes (Halitschke et. al., 2003), and genes 

regulated by jasmonic acid and wounding (Perez-Amador et. al., 2002). 

Many studies have been conducted to investigate the interaction between 

phytopathogenic fungi and their plant hosts. These studies have focused on a few genes 
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at once rather than the thousands now possible with microarrays. Such studies have 

found lipoxygenases in plants important for fungal resistance (Oliw, 2002), plant genes 

for growth of powdery mildew (Vogel, 2002), and enzymes needed by Ggt to infect 

wheat roots such as polygalacturonase, pectin methyl esterases and cellulases (Weste, 

1970a, 1970b, and 1978) [For a review of plant defense genes and DNA micro arrays see 

Reymond (2001)]. 

The purpose of this study is to understand on a molecular basis the interactions of 

wheat to three different time stages of infection by Ggt: 1. Ggt mycelium covering the 

root without penetrations (12 h); 2. Ggt hyphae penetration into root hairs (24 h); 3. Ggt 

hyphae penetration and colonization of the epidermis and cortex of wheat roots ( 48 h) 

(Discussed in Chapter 2). SSH library construction and microarray analysis were used to 

investigate this interactions. Six SSH cDNA libraries were created consisting of a 

forward (induced genes) and reverse (suppressed genes) libraries at each time period. 

These libraries were examined by sequencing to check the quality of the libraries and by 

microarray analysis to determine truly differentially expressed genes. Although, there are 

many different genes involved in the physiological processes in plant-pathogen 

interactions, it is the goal of this research to elucidate some of the more important 

contributors. 
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RESULTS 

RNA Isolation and Quantitation. 

Tissue harvested as previously described (Chapter 2) from infected and non­

infected wheat roots at 12, 24, and 48 h were homogenized in liquid nitrogen (to inhibit 

RNases) using a pre-frozen mortar and pestle treated with RNAzap (Ambion) (to 

decrease degradation by exogenous RNases). Total RNA was extracted using Fenozol™ 

(Active-motif). Fenozol consists of phenol, detergent, and chaotropic denaturants for 

isolation of total RNA in tissues that have polysaccharides, fatty acids, and proteins. 

Fenozol also protects against degradation of RNA by inhibiting RNases. Using this total 

RNA isolation method produced RNA purity readings on the spectrophotometer 

(A260/A280) of2.0 to 2.1 for all three time periods in infected and non-infected tissue. 

Isolation of mRNA from total RNA was accomplished by using mTRAP™ Total 

mRNA isolation kit (Active-Motif). This kit utilizes the Poly T PNA probe to capture the 

poly A mRNA. This probe is unique in that it captures mRNA with high secondary 

structures and shorter poly A tails. It also has a high affinity for mRNA, which allows 

decrease contamination by rRNA. The benefits of using Poly T PNA over oligo dT is 

that it allows hybridization to mRNA under low salt conditions, reduces rRNA and 

protein contamination, reduces genomic DNA contamination, and can hybridize to 

shorter poly A tails. Messenger RNA isolated by this method produced purities of 1.9 to 

2.0 for all three time periods in infected and non-infected root tissue. Messenger RNA 

isolated from wheat roots were between 0.32% and 0.95% of the total RNA. 

The total RNA and mRNA isolated were stored in RNA storage solution 

(Ambion) due to its ability to increase stability and integrity of RNA. 
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Suppression subtractive hybridization cDNA library. 

At each time period (12, 24, and 48 h), root tissue was sampled and forward and 

reverse normalized suppression-subtraction hybridization (SSH) cDNA libraries between 

infected and non-infected root tissues were constructed for a total of 6 libraries. The 

forward libraries use non-infected root tissue as the "driver" and the infected root tissue 

as the "tester". The results obtained from these libraries will determine potential up­

regulated (induced) genes. The reverse libraries use the non-infected root tissue as the 

"tester" and the infected root tissue as the "driver". The results of these libraries will 

determine potential down-regulated (suppressed) genes. 

A total of 802 white colonies were picked from blue/white screening, at the 12 h 

time period (402 forward and 402 reverse), 750 colonies were picked at 24 h (356 

forward and 394 reverse), and 938 colonies were picked at 48 h (475 forward and 463 

reverse). To ensure the quality of these colonies, growth was analyzed again by checking 

the growth at 600nm wavelength. A total of 784 colonies grew, at the 12 h time period 

(397 forward and 387 reverse), 691 colonies grew at 24 h (348 forward and 343 reverse), 

and 938 colonies grew at 48 h (475 forward and 463 reverse). This resulted in a loss of 

2.2%, 7.9%, and 0.0% colonies for 12, 24, and 48 h respectively as compared to the 

initial colony count. 

To further check the quality of these libraries, colony PCR was performed to 

ensure that all clones that grew had a single insert. Clones that did not contain an insert 

or that had two or more inserts were discarded. Only those clones that contained a single 

insert was kept and used in further analysis. A total of 667 clones had a single insert, at 

the 12 h time period (325 forward and 242 reverse), 506 had a single insert at 24 h (263 
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forward and 243 reverse), and 796 had a single insert at 48 h (372 forward and 424 

reverse). This resulted in a loss of 14.9%, 26.8%, and 15.1% clones for 12, 24, and 48 h 

respectively as compared to the number of colonies that grew at 600nm. 

Sequencing of SSH library. 

A total of 1869 clones were sent to the OSU core facility for plasmid preparation 

and then sent to KSU for sequence analysis. Out of the 1869 clones sent for sequencing a 

total of 1745 clones were sequenced. Moreover, 1006 were sequenced successfully 

which equates to 57.7% success rate of sequencing clones. All sequences were analyzed 

and their adapter sequences trimmed from 5' and 3" ends. Trimming reduced the number 

of clones from 1006 to 875 clones. This decrease was due to only finding one adapter 

sequence to trim, not finding any adapter sequences, and low quality sequencing reads. 

The 875 clones were processed based upon the libraries in which they came from 

(forward or reverse, 12, 24, or 48 h) and all together (for use with the microarray as 

discussed later). When blasted separately there were 442 contigs created however when 

blasted together there were 415 contigs were created. Meaning that the libraries taken all 

together had a 6.1 % similarity in contigs. This indicates that there is not much 

redundancy in the number of contigs between libraries. In addition, 74 more sequences 

was added after the analysis of the libraries. These 74 additional sequences were 

trimmed and blasted with the 875 trimmed clones from above. 

All sequences processed together resulted in 463 contigs and 3 7 6 (81 % ) of them 

were unclassified according to PipeOnline. Functional categories were assigned to the 

remaining 87 contigs. It should be noted that when describing functional categories some 

genes will be involved in more than one pathway. The breakdown of the functional 
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categories assigned to all libraries (not including unclassified contigs) were 12 % electron 

transport, 19% information pathway, 50% intermediate metabolism and bioenergetics, 

9% signal transduction, 1 % structure and function fo the cells, and 10% transmembrane 

transport. 

Microarray analysis. 

Quality assurance checks were conducted prior to microarray hybridizations. A 

Syto61 stain showed that all spots were similar in size which corresponded to 

approximately the same amount of DNA was applied per spot. An initial check 

hybridization was also conducted to ensure that there would be no cross-hybridizing with 

the control spikes from the Arabidopsis control set and to ensure that the proper amount 

of mRNA was used in the labeling reactions. This test included a self on self which was 

conducted using control (non-infected) mRNA split and labeled with the Alexafluor 647 

and 543. The result was all yellow spots on the array showing that there was no 

difference in Alexafluors and that the right amount of mRNA was used. A total of 9 

microarrays were printed containing 3 from each time period (12, 24, and 48) and each 

spot on the array was printed in triplicate. This results in 9 readings per spot on each 

array. 

At 12 h, there were 161 significantly (a=0.05) differentially expressed genes of 

which, 107 were up-regulated (induced by the fungus) and 54 were down-regulated 

(suppressed by the fungus) (Figure IA). The up-regulated genes are located above the 

top blue line (> 2 fold difference in expression) and the down regulated genes are located 

below the bottom blue line(< 2 fold difference in expression) (Figures 1 A-C). At 24 h, 

there were no significantly differentially expressed genes (FigurelB). All the gene are 
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located in between the two line which indicates that they are genes located in both the 

infected and non-:infected root tissue. At 48 h there were 14 up-regulated genes and 3 

down-regulated significantly differently expressed genes (Figure 1 C). In total, there 

were 121 up-regulated differentially expressed genes and 57 down-regulated 

differentially expressed genes. 

In order to make sure that the differentially expressed genes were not due to bias 

in the Alexafluor dyes, a dye swap experiment was conducted with 24 hour control (non­

infected) mRNA labeled with Alexafluor 543 and 24 h Ggt (infected) mRNA labeled 

with Alexafluor 647 (Figure 28). Normal conditions are with 24 h control (non-infected) 

mRNA labeled with Alexafluor 647 and 24 h Ggt (infected) mRNA labeled with 

Alexafluor 643 (Figure 2A). This dye swap identified the same differentially expressed 

genes at approximately the same intensities (Fig. 2 A-B). 

Gene tree hierarchical cluster. 

The gene tree shows the results of hierarchical clustering in the form of a 

phylogenetic tree (Figure 3). The log ratio (the ratio of the signal to the control, not their 

logs), are plotted logarithmically with the normal level of expression equal to 1 (yellow 

color). Those genes that are expressed 2 fold greater are labeled red and those that are 

two fold less are labeled green. This cluster shows 180 transcripts in different response 

to fungal infection for non-infected and infected wheat roots. Each gene is represented 

by a single row of colored boxes, and each time point is represented by a single column. 

Gene tree non-hierarchical cluster. 

K-means cluster analysis of normalized intensity (log scale) for non-infected and 

infected wheat roots were organized in 5 clusters (Figure 4). Cluster one shows the trend 
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of genes being suppressed at 12 h followed by no change at 24 h and no change to 

slightly suppressed at 48 h. Cluster two shows 37 genes that are significantly down­

regulated at 12 hand up-regulated at 48 h. Cluster three shows 37 genes up-regulated at 

12 h and are differentially expressed thereafter. Cluster 4 has 29 genes that are 

significantly up-regulated at 12 h but were slightly down-regulated at 48 h. The final 

cluster has 23 genes that are significantly up-regulated at 12 h, not differentially 

expressed at 24 h, and were up-regulated again at 48 h. The normalized ratio = 1 no 

change in expression, normalized ratio > 1 induced (up-regulated) genes, normalized 

ratio < 1 suppressed ( down-regulated) genes. 

Pipe Online (Ayoubi et. al., 2001) was used to determine contig name and 

functional group as well as, assigning gene name (Table 1). This table shows assigned 

functional group categories to all of the known classified sequenced clones and is sorted 

based upon cluster number. 

An analysis of all 180 differentially expressed genes showing gene ID, 

normalized log ratio, HSP, the cluster number, GeneBank Index number, and the gene 

name associated with that number are listed (Table 2). The table is sorted based upon the 

cluster number as determined by k-means clustering (Figure 4) and analyzed by 

PipeOnline (Ayoubi et. al., 2001). Clones without a gene bank name have not been 

successfully sequenced. They will be re-sequenced at the OSU core facility from purified 

plasmid used to spot on the microarray. 

70 



DISCUSSION 

RNA from plant tissue. 

The RNA isolation method used for total and mRNA produced clean RNA based 

upon the A260/ A280 ratios of between 1.9 to 2.1. This exceeds the purity found in 

Phaseolus vulgaris roots of 1.8 for total RNA (Kiefer et al., 2000). The percentage of 

total RNA that was mRNA ranged from .32 to .95% and was comparable to the 0.26% 

found in onion epidermal cell (Zhou et al., 2000). This is below the 1-5% that was 

described by most text books and also by the instructions to the M-Trap kit (Active 

Motif). In addition, Murillo et al., (1995) described mRNA percentages from plant tissue 

as being as low as 0.25% to as high as 1.53% in maize depending on the type of tissue 

used. 

SSH Library. 

To understand the molecular aspects of the interactions between Ggt and wheat 

roots, genes involved in regulating changes in the host are of most interest (Gold et. al., 

2001). One problem associated with studying plant-fungal interaction is how to separate 

the fungal genes from the plant host genes. Gold et al. (2001) described that this 

separation is only important if the main focus of the study is on the fungus. The reason 

that this is not a problem when studying the host is because ratios of fungal mass to plant 

mass are low in infected tissue resulting in a very small amount of isolated mRNA will be 

fungal. Taken together with the knowledge that to be enriched by SSH PCR a given 

mRNA must be at least 0.1 % of the total mRNA (Ji et. al., 2002). This also causes 

another problem in that low abundance transcripts will not be enriched that may play a 

vital role in regulating cell and stress related processes. 
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The Ggt SSH library was constructed using pooled samples of root tissue, total 

RNA and mRNA from the individual time periods to decrease error and bias of the 

samples. Pooling decreases the biological component of variation (Churchill, 2002). 

From the PipeOnline analysis (Ayoubi et. al., 2001) the largest category from all 

time periods of this SSH library based upon standardized protein and enzyme name was 

NADH dehydrogenase with 9.73% of the classified clones (Table 1). NADH 

dehydrogenase is an important component of the electron transport chain. The next 

largest classification is h(+)-transporting ATP synthase and myo-inositol 4-o­

methyltransferase each with 7.08% of the classified clones (Table 1). ATP is synthesized 

from ADP and phosphate by the enzyme h(+)-transporting ATP synthase. Inositol 

triphosphate is a common response to stress in plants (Souza et. al., 2001 ). There were 

44 more categories of enzymes which all play a role in the cell maintenance or response 

to stress. There were 335 contigs that were created that had no classification in the 

PipeOnline system. The standard protein names I enzyme categories will not be 

discussed in detail here but rather they will be discussed in reference to significantly 

differentially expressed genes from the microarray analysis. 

Microarray analysis. 

Microarray analysis has been used for comparing differential expressed genes 

under an array of environmental or genetic conditions (Gold et. al., 2001). Churchill 

(2002) described 3 layers of variation that need to be addressed for a microarray 

experiment. These three layers are biological variation, technical variation, and 

measurement error. In preparing for the microarray analysis the biological variation was 

addressed above with the pooling of the samples. Technical variation was addressed by 
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using the same pool of mRNA for both the spotting and hybridization as well as using 

Arabidopsis control spikes. Dye swap experiment was performed to ensure that there 

was no dye bias in the hybridization of the array (Figure 2). Technical variation was also 

decreased due to a self on self experiment that showed equal intensity per spot and no 

cross-hybridization with control spots. The measurement error was addressed by using 2 

internal house keeping genes (actin and GAPDH) and 3 Arabidopsis control spikes to 

normalize the data by as well as the dye swap mentioned earlier to check for dye bias. 

The other way experimental error was accounted for was by using a t-test to identify 

genes with significant (P<0.05) differential expression. 

The largest number ofup or down regulated genes were found at 12 h followed by 

48 h (Figure 1 ). It is very interesting that at 24 h there were no differentially expressed 

genes. One reason for this my be that the absence of differentially expressed genes 

between the driver and tester during construction of the SSH library. As previously 

mentioned, enrichment of a given mRNA only occurs if it is at least 0.1 % of the mRNA 

(Ji et. al., 2002). The differentially expressed genes at 12 h may be induced or 

suppressed in response to volatile compounds which were shown to decrease root growth 

significantly without coming in contact with the root itself (data not shown). At 12 h the 

fungus had colonized the root surface and did not penetrate the epidermis. A more 

intensive investigation at earlier time points could provide useful information about early 

responses which do not envolve contact of the fungus with the root. At 48 h the root 

epidermis was penetrated and the cortex colonized. The fact that at 24 h there are no 

differentially expressed genes and only 17 differentially expressed genes at 48 h may be 

due to the nature of the compatible interaction of the fungus with the host. Ggt has been 
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described as failing to elicit or suppress changes in wheat roots upon infection 

(Speakman and Lewis, 1978). Ggt infected roots showed the same amount of 

lignification as uninfected roots (Speakman and Lewis, 1978). This could explain why 

no differentially expressed genes were shown at 24 h. The evolution of this disease has 

resulted in wheat not recognizing Ggt as a pathogen which results in the lack of a defense 

response. Weste (1972) suggested that the slow growth of intercellular mycelium and the 

lack of extracellular toxins are responsible for a pseudo-symbiotic relationship present in 

the early stages of Ggt infection. This relationship allows Ggt to exist in equilibrium 

with the host roots. 

Base upon the phylogenic tree (Figure 3) the majority of the differentially 

expressed genes at 12 hare up-regulated (induced) and these up-regulated genes are more 

similar based upon the phylogeny of the sample patterns over the time course. The 

majority of the genes suppressed at 12 hare induced at 48 hand again based upon the 

pattern are more similar (spaced closer together) on the tree. 

Based upon the same data that created the tree, k-means cluster analysis were 

organized in 5 clusters with the majority of the significantly expressed genes located in 

cluster 3. These genes were induced at 12 h but then were not differentially expressed at 

12 and 24 h. The smallest number of differentially expressed genes were found in cluster 

1 which represents the genes that are suppressed at 12 h and show no differential 

expression thereafter (Figure 4). An interesting pattern occurred in cluster 2 with genes 

suppressed at 12 h and induce at 48 h. 

The functional categories assigned to the k-means clusters (Table 1) showed that 

in cluster 1, 59% of the genes were unclassified, 6% were involved in electron transport, 
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6% were involved in information pathways, and 29% were involved in intermediate 

metabolism and bioenergetics. These genes include: a disulfide isomerase (contig 366) 

which plays a role in folding secretory proteins (Ciaffi et al., 2001); a DNA K-type 

molecular chaperone HSC71.0 (contig 119) which has been shown to be expressed 

during heat stress (DeRocher and Vierling, 1995); a 40S ribosomal protein S 13 ( contig 

14) which is a cytoplasmic ribosomal protein found in growing tissues such as the root tip 

(Joanin et al., 1993); phosphoglucomutase (contig 20) which mutants in this enzyme have 

been shown to decrease starch synthesis (Davies et al., 2003); an 0-methyltransferase 

( contig 323) which is responsible for methylation of phenolics, plays a role in lignin 

synthesis, chemical defense, & signaling and has also been shown to be involve in cold 

acclimation (NDong et al., 2003); and a glyoxalase I (contig 404) which has been shown 

to increase its polypeptide levels 2-3 fold in roots of NaCl, mannitol, and ABA treated 

and may be linked to increased demand for ATP in salt stressed plants (Espartero et al., 

1995). 

Cluster 2 showed 62% unclassified genes, 3% involved in electron transport, 5% 

were involved in information pathways, 27% were involved in intermediate metabolism 

and bioenergetics, and 3% were involved in signal 'transduction. These genes include: 

SNF-1 protein kinase (contig 11) (Hannappel et al., 1995) which plays a role in metabolic 

and transcriptional responses to nutritional and environmental stresses (Bradford et al., 

2003) and is similar to Camodulin like protein kinase (Halford et al., 2003); UMP/CMP 

kinase A and B (contigs 18 and 292, respectively) which levels have been shown to 

increase in seedling development and catalyzes the phosphoryl transfer from ATP to 

either UMP or CMP to form ADP and UDP or CDP (Zhou et al., 1998); an 0-
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methyltransferase (contigs 19 and 81) that has been found in salt-tolerant barley roots but 

not in salt-sensitive roots and its expression increased 1.5 times by salt stress and it is 

also involved in lignin biosynthesis (Sugimoto et al., 2003); putative ubiquinol 

cytochrome C reductase (contig 35) which is found in the mitochondrial respiratory chain 

of plants also called alternative oxidase (Robson and Vanlerberghe, 2002); a guanine 

nucleotide binding protein beta subunit ( contig 146) whose mRNA was found in rice 

plants particularly in roots (Iwasaki et al., 1995); a peroxidase (contig 223) which 

decreases lipid peroxidation in barley salt-stressed roots (Liang et al., 2003) and is 

involved in lignification during copper induced oxidative stress (Jouili and Ferjani, 

2003); an alpha-tubulin 2 (contig 226) whose decreased gene expression in specifically 

roots caused swelling of root tip and lateral root expansion in Arabidopsis and is also 

involved in formation of phragmoblast in interphase of mitosis (Bao et al., 2001 ); an 

adenine nucleotide translocator ( contig 405) that is responsible for taking ATP out and 

ADP in to mitochondria (Bathgate, 1989); a 40SrRibosomal protein S13 (contig 14) 

which functions as a cytoplasmic ribosomal protein found in growing tissues (Joanin et 

al., 1993). 

In cluster 3, 95% of the genes were unclassified, 1 % were involved in electron 

transport, and 4 % were involved in intermediate metabolism and bioenergetics. These 

genes include a DNA K-type molecular chaperone HSC71.0 (contig 119) which has been 

shown to be expressed during heat stress (DeRocher and Vierling, 1995); an alpha­

galactosidase (Lacz gene product) (contig 372) that converts lactose to galactose and 

glucose (unpublished); and a NADH dehydrogenase subunit 5 (contig 393) which is 

involved in the electron transport complex and fatty acid oxidation (Marschner, 1995). 
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All of the genes in cluster 4 were unclassified. In cluster 5, 92%, were 

unclassified, 4% were involved in both electron transport and intermediate metabolism 

and bioenergetics. These genes include: ferredoxin precursor (Wheat) ( contig 255) 

which was classified as both electron transport and intermediate metabolism and 

bioenergentics. It is involved in ferredoxin dependent glutamate synthase found in Maize 

roots in response to nitrate. Glutamate synthase plays a role in ammonia uptake, nitrate 

reduction, and nitrogen fixation which effects protein synthesis, nucleic acids, and other 

nitrogen containing compounds (Redinbaugh and Campbell, 1993). 

The experimentation and analysis discussed in this paper have. provided insight 

into the host-pathogen interaction between wheat roots and Ggt. A much more useful 

analysis into the infection process would be to compare a resistant and susceptible 

cultivar of wheat. However, at this tim~ there is no known resistance in wheat to the 

take-all fungus. In addition, whole root tissue was utilized in this study but with the 

advent of laser capture systems that allow for analysis of single root cells, a more precise 

study should be conducted. This would allow for a cell by cell analysis of the penetration 

and differential gene expression from plant roots in response to infection. 
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MATERIALS AND METHODS 

Infection System. 

The conditions for growth and infection of Jagger wheat roots and Ggt were 

described in a previous paper (Chapter II). In short, seeds were sterilized by sonication in 

1 % AgN03 with Tween 20, rinsed with sterile-deionized water, and placed on sterile 

filter paper in a cold room ( 4.5°C) without light for 48 h. Imbibed seeds were then 

aseptically transferred to 1/5X Potato Dextrose Agar (PDA) at 25°C without light for 48 

h. Seedlings with roots approximately 2.0 to 3.0 cm long were transferred to 1/5X PDA 

without Ggt ( control), or with a lawn of Ggt and placed into a 25°C incubator without 

light for 12, 24, and 48 h. 

A time course for infection was determined with light microscopy. Analysis of 

root length increase indicated that there was a 40.9%, 32.2%, and 61.5% decrease in 

growth with Ggt at 12, 24, 48 h, respectively, as compared to the controls. Results 

indicated that at 12 h Ggt had colonized the root surface, at 24 h root hairs were 

penetrated, and at 48 h root hairs collapsed and the fungus penetrated the epidermis and 

cortex. 

Root Tissue Harvest. 

Infected and non-infected wheat root tissue from all experiments were harvested 

after growth measurements were taken. Tissue was harvested by cutting roots into a 

small petri dish containing 10 mL of RNAlater™ (Ambion, Texas) (to inhibit 

endogenous RNases) and vacuumed infiltrated for 10 minutes. The root tissue was then 

blotted dry with autoclaved filter paper, placed into a 15 mL centrifuge tube, flash frozen 

in liquid nitrogen (to inhibit endogenous RNases), and stored at -80°C until needed. At 
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the end of each experiment, the tissue from all replicates (3 plates x 3 replicates per plate) 

within that experiment were combined prior to the flash freezing. 

Total and mRNA Isolation. 

Before beginning to extract RNA, it is important to ensure that all the precautions 

are taken to decrease degradation of the RNA by RNases (Ambion TechNotes (2002). 

Prior to extracting total RNA, root tissue from each experiment was combined 

with the appropriate condition from each replicated experiment (3 to 4 replications per 

treatment). This was to insure that there was sufficient mixing of the samples both within 

and between experiments and to decrease bias of the samples. 

Total RNA was isolated from wheat roots by first grinding the tissue (1 gram) in 

liquid nitrogen and then extracting the RNA with Fenozol™ (Active Motif, California). 

The sample was incubated at 50°C (5 min), debris pelleted at 12,000 x g (10 min) at 4°C, 

and then chloroform was added to the supernatant and vortexed (20 sec). The 

supernatant was incubated at room temperature (3 min), centrifuged 12, 000 x g (10 min) 

at 4°C and the aqueous top phase was transferred to a fresh tube were cold iso-propanol 

was added. RNA was precipitated by incubating at room temperature (10 min), 

centrifuging 12,000 x g (15 min) at 4°C and then discarding the supernatant. The pellet 

was washed with 70% ethanol, centrifuged 12,000 x g (5 min) at 4°C, air dried and 

resuspended in lX binding buffer (mTrapTM Total mRNA isolation kit, Active Motif, 

California) and stored at-80°C. 

The mRNA was isolated using mTrap™ Total mRNA isolation kit (Active Motif, 

California) per the manufactures instructions. Total RNA and mRNA concentrations 

and purities were determined by Beckman DU-65 spectrophotometer and 1 % 

79 



Agarose/Ethidium Bromide gel analysis. After determining the mRNA concentration, the 

mRNA was concentrated to 0.5 ug/uL for use in the subsequent SSH step. The mRNA 

was concentrated by a second round of precipitation with TouchDown™ precipitation 

reagent supplied with the mTrap™ Total mRNA isolation kit (Active Motif, California). 

After the second round of precipitation the mRNA was resuspended in RNA Storage 

Solution (Ambion, Texas) and stored at -80°C. 

Suppression Subtractive Hybridization (SSH). 

The SSH was accomplished by using the CLONTECH PCR-Select™ cDNA 

Subtraction Kit (CLONTECH, California) per the manufactures instructions, with the 

exception of 32 cycles of primary and 21 cycles of secondary PCR (personal 

communication CLONTECH representative). Each time period (12, 24, and 48 h) and 

the kit control (skeletal muscle cDNA provided by the manufacture) were utilized to 

create both forward and reverse subtractions. Two micrograms of root mRNA from each 

time period was used to begin the cDNA subtraction kit. Additional polymerase and 

positive/negative controls for PCR were used per the manufacture instructions in the 

Advantage™ cDNA PCR Kit & Polymerase Mix (CLONTECH, California). 

Cloning, Cryoplate Preparation, and Archive Storage of Subtracted PCR Products. 

In order to provide the most precise measurement of PCR product concentration 

from the subtraction described above, PicoGreenR dsDNA Quantitation Reagent and Kit 

(Molecular Probes, Oregon), a dsDNA quantitative fluorescent nucleic acid stain was 

utilized per the manufactures instructions. An initial volume of 5 uL duplicated ( 10 uL 

total) of PCR product used in the quantitation of dsDNA. 
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The subtracted and quantified cDNA populations were cloned and screened 

(blue/white) using QIAGEN PCR Cloningplus Kit (QIAGEN, California) per the 

manufactures instructions. The initial amount of PCR products needed to use in the 

ligation reaction of this kit were calculated (per manufactures recommendations) based 

upon and average insert size of 400 bp. 

Cloned cells were picked by blue/white screening (per QIAGEN PCR Cloningplus 

Kit recommendations) with sterile toothpicks and placed in cryoplates containing 1 mL of 

Terrific Broth (47.6 g Terrific Broth, 4 mL Glycerol, and 996 mL sterile water) with 100 

µg/mL ampicillin in a 96 well culture block. Plates were covered with aluminum tape 

and incubated for 22 hat 37°C with shaking (250 rpm). Glycerol stocks were made by 

placing 90 µL of overnight culture in 90 µL of 30% glycerol (long term storage) or 90 µL 

80% glycerol (working stock) and storing them at -80°C and 4°C, respectively. In 

addition to the stock solutions, 180 uL of the overnight culture was analyzed for growth 

at 600 nm wavelength using a Bio-Tek microplate reader (OSU Core Facility). 

Colony PCR. 

Colony PCR was performed to insure that each clone that showed growth at 600 

nm as described previously, did in fact contain an insert. Colony PCR was performed by 

a modified cDNA array instructions (PCR-Select Differential Screening Kit Users 

Manual, CLONTECH, California). In summary, 1 µL of the overnight culture was added 

to 19 µL of PCR master mix [2.0 µL 1 OX PCR reaction buffer (100 mM Tris, pH 8.0, 

500 mM KCl, 25 mM MgC12, 1% Triton X-100), 0.6 µLeach of Primer 1 and Primer 2R 

(10 µM; provided in CLONTECH PCR-Select™ cDNA Subtraction Kit, CLONTECH, 

California), 0.4 uL dNTP (2.5 mM/dNTP; provided in CLONTECH PCR-Select™ 
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cDNA Subtraction Kit, CLONTECH, California), 0.4 µL Taq Polymerase, and 15.0 µL 

Milli-Pore water] for a total volume of 20 µL. The following PCR parameters were 

utilized for each plate: denature 94°C (30 sec) followed by 28 cycles of denature 95°C 

(30 sec) and annealing 68°C (3 minutes). The final PCR products were stored at -20°C. 

A 2% agarose/ethidium bromide gel in IX TAE was ran using 5 uL of each PCR product. 

The gel was analyzed by exposing it to ultraviolet light and looking for a single insert. 

Those clones that contained one insert were then isolated and consolidated from the other 

clones that contained no insert or multiple inserts, for use in plasmid preparation and 

purification. 

Plasmid Preparation. 

Bacterial transformed colonies from -80°C stock corresponding to those colonies 

with single inserts only were grown in cryoplates as described previously (SEE Cloning, 

Cryoplate Preparation, and Achieve Storage of Subtracted PCR Products). For 

preparation of plasmids used for microarray analysis LB Broth was used in the cryoplates 

whereas for plasmid isolation for sequencing, TB broth was used. Plasmid preparation 

for DNA sequencing of clones ( described below) was accomplished by in house alkaline 

lysis protocol by the Oklahoma State University Recombinant DNA/Protein Resource 

Facility (Janet Rogers). Plasmid preparation for microarray analysis (described below) 

was performed in collaboration with the Samuel Roberts Noble Foundation Plant Biology 

Division (Dr. Gonzales). In short, bacterial cryoplate solution (10 uL) was placed in 1 

mL LB broth and incubated at 37°C for 22 h. This solution was pelleted, the supernatant 

removed, and the pellets frozen at -80°C and transported on blue ice bags to the Noble 

Foundation, Ardmore OK. Plasmids were isolated by an in house automated protocol 
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usmg Biomek 2000 

(http://www.noble.org/plantbio/Genomics/ProtocolBiomek.htm). 

preparation was resuspended in 100 µL ddH20. 

DNA Sequencing. 

robots 

The final plasmid 

Plasmids isolated and purified from the Oklahoma State University Recombinant 

DNA/Protein Resource Facility (described above) were packaged on dry ice and 

transported to the DNA Sequencing and Genotyping Facility, Department of Plant 

Pathology, Kansas State University, Manhattan, KS (Dr. John Fellers). DNA sequencing 

was performed using the ABI 3700 (Perkin-Elmer) and an in house protocol 

(http://www.oznet.ksu.edu/pr_dnas/services.htm). DNA sequenced PCR samples were 

generated from plasmids using standard Ml3R (CAGGAAACAGCTATGACC) and/or 

SP6 (GATTTAGGTGACACTATAG) primers (provided by Dr. John Fellers). 

Sequence data obtained from Kansas State University was analyzed by Blastx and 

functional groups using PipeOnline 2.0 (Ayoubi et al., 2002). 

Microarray Printing. 

Purified PCR products were prepared from plasmids isolated from the Noble 

Foundation, Ardmore OK by an in house protocol. In short, 2 mL of resuspended 

plasmid preparation (described previously) was placed in 200 mL of TE followed by 2 

mL of plasmid/TE being placed in 200 mL of filtered (0.22 mm) autoclaved ddH20. 

One mL of diluted plasmid was placed in 24 mL PCR mix which contained 1 OX buffer 

and Yiledase poly HotStart Taq from Stratagene (California) and dNTPs from Idaho 

Technology (Idaho). M13R (TCACACAGGAAACAGCTATGAC, MW 6,721.4, TM 
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56.2°C) and Ml3F (TGTAAAACGACGGCCAGT, MW 5,532.7, Tm 55.2°C) were 

designed in house. PCR parameters were as follows: 

1. 92°C for 2:00 min 

2. 10 cycles at: 

a. 95°C for 20 sec 

b. 52°C for 20 sec 

C. 72°C for 1 :45 min 

3. 25 cycles at: 

a. 95°C for 20 sec 

b. 49°C for 20 sec 

C. 72°C for 5 :20 min 

4. 72°C for 7:00 min 

PCR products were purified by Arrayit™ Brand 96-Well PCR Purification Kit 

(Telechem International, Inc.) according to the manufactures instructions. Purified PCR 

products were dried 0/N in a speedvac and transported back to Oklahoma State 

University on blue ice until microarray printing proceeded. 

Dried PCR products were resuspended in 15 µL filtered (0.22 µm) autoclaved 

nanopure H20 and shaken at room temperature for 2 h at 100 rpm to make sure pellet was 

dissolved. An additional 15 µ L of ArrayitTM Brand Products Micro Spotting Plus 2X 

Solution was add and mixed. Ten µ L of this IX solution was transferred to Genetix 384 

well plates and placed at -20°C. The remainder of the IX PCR products mix were 

archived in 384 well plates at-80°C. 

Printing of the microarray was accomplished by using the following parameters: 
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1. Printing of the m1croarrays were accomplished usmg Arrayer (Cartesiam 

Technology, CA) software and Generation III Array Spotter (Amersham 

Biosciences Corp.). 

2. Seventy-five Coming GAPS II Coated (amino-silane) Slides (25 x 75 mm) 

(Corning Inc, New York) were printed due to their uniform spot morphology 

and their ability to retain maximum signal strength. 

3. Each spot was replicated 3 times per slide. There were 4608 (2304 spots for 

Ggt only) individual spots printed 3 times on each slide for a total of 13, 824 

(6,912 for Ggt only) spots per slide. There were 48 sub arrays containing 288 

(144 for Ggt only) spots each with a 17 x 17 spot configuration using a 4 x 4 

pin configuration. 

4. Printing was performed using Arrayer Software and according to Coming 

GAPS II slides protocol. 

5. AFGC Microarray Control Set [Distributed by the Nottingham Arabidopsis 

Stock Centre (http://arabidopsis.org.uk)] was used according to the 

manufactures instructions. In short, 8 transgene controls were used as 

negative controls, all 10 spiking controls were used as negative controls and 3 

(Spl, 5, and 9) were used as positive control spikes. Amplification control 

products were purified according to the manufacture protocol and utilizing 

QIAquickRPCR purification kit (Qiagen), RiboprobeR System - T3 in vitro 

transcription kit (Promega),transcription clean-up by Rneas~ mini kit 

(Qiagen), and quantification measured by A260. A total of 3.5 ug each of the 
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spike controls used were obtained by this method ( only 1 ng per hybridization 

is needed). 

4. Wheat actin (provided by Dr. Mike Anderson, OSU) and a wheat GAPDH 

(provided by Sathyanarayana Elavarthi, OSU) primers were used to create 

positive controls for normalizing the data on the microarray. Using 

unsubtracted cDNA from 24 hour control and infected root tissue, the 

following PCR conditions were used to isolate the actin and GAPDH cDNA. 

M13R and M13F primers were used under the following conditions: 

a. 92°C for 2:00 min 

b. 10 cycles at: 

1. 95°C for 20 sec 

11. 52°C for 20 sec 

111. 72°C for 1 :45 min 

C. 25 cycles at: 

1. 95°C for 20 sec 

11. 49°C for 20 sec 

111. 72°C for 5 :20 min 

d. 72°C for 7 :00 min 

6. After drying 0/N at 80°C a SYT0-61 stain was performed to check the print 

quality according to the manufactures instructions (Molecular Probes, CA). 

Microarray Hybridization. 

Microarray hybridizations were performed using Genisphere 3DNA Array 350 

Expression Array Detection Kit for Microarrays utilizing Alexa Fluor 546 and 647 kit 
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(Genisphere, Inc. Pennsylvania) and LifterSlips™ (25 x 60 mm) (Erie Scientific, New 

Hampshire) according to the manufactures instructions. Poly(A)+RNA (200 

ng/hybridization) was used to prepare the cDNA for hybridization according to the 

manufactures instructions. The cDNA was concentrated by using Millipore MicroconR 

YM-30 Centrifugal Filter according to the manufactures instructions with the exception 

that 7 µL of lX TE buffer was used to elute cDNA off of membrane in the finale step. 

The following exceptions were used based upon the protocols used at Oklahoma 

State University Recombinant DNA/Protein Resource Facility and Genesphere, Inc.. The 

2X formamide based hybridization buffer was heated at 65°C prior to use. Volume of 

hybridization mixture was adjusted to 81 µL due to LifterSlipsTM (25 x 60 mm) being 

used. All hybridizations were performed at 42°C and post hybridization washes were 

done at room temperature. Glass cover slips (25 x 60 mm) were used in 3 DNA 

hybridizations. The 3DNA hybridization mix was incubated at 75-80°C and then at 42°C 

prior to hybridization. A volume of 30 µL of hybridization mix per hybridization was 

used for the 25 x 60 glass slides. 3DNA hybridizations were performed at 42 °C. Post 

3DNA hybridization washes occurred at room temperature. 

The control (non-infected) cDNA was labeled with the green or 546 Alexafluor 

and the Ggt (infected) cDNA was labeled with the red or 647 Alexafluor. As discussed 

in the materials and methods infection system three time points (12, 24, and 48 h) were 

chosen for analysis by microarray. At each time period there were three microarrays 

printed in triplicate for a total of 27 replicate spots per PCR product printed. For quality 

assurance a self on self (no spike) hybridization was performed to check for cross 

hybridization with Arabidopsis controls discussed previously. This hybridization was 
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performed on 24 hour control (non-infected) cDNA labeled with Alexafluor 546 and 647. 

This should produce all yellow spots corresponding to no bias in dye and should not 

hybridize to controls. A dye swap (with spike) experiment was performed to ensure no 

bias in dye labeling and to ensure no cross hybridization with spikes to other control 

spots. This experiment was performed by labeling 24 h control (non-infected) cDNA 

with Alexafluor 546 and Ggt (infected) cDNA with Alexafluor 64 7 and hybridizing to the 

array and at the same time under the same conditions switch the dyes and hybridize to 

another array. The dye swap should produce the same yellow color with the same 

intensity at the same location as the initial experiment and the . green and red colors 

should be switched in the dye swap as compared to the initial experiment. 

Microarray Analysis. 

Scanning of the m1croarrays was conducted usmg ScanArray Scanner and 

ScanArray Express Software. Signal extraction and spot quantification were performed 

by GenePix Pro 4.0 (Axon Instruments, CA). Initial normalization was based on 2 house 

keeping genes Actin and GAPDH and 3 Arabidopsis control spikes (discussed 

previously). By utilizing 5 different controls the two Alexaflours were brought into equal 

intensities which produced a yellow color. 

Pre-normalized microarray data was analyzed by GeneSpring vers10n 6 

(GeneSpring Inc., CA). The following parameters were conducted in order to analyze the 

m1croarrays: 

Gene lists were created initially to include all PCR products on the microarray 

(All genes). This was further reduced to include only the Ggt genes that had pre­

normalize values greater than 150 (Gaeumannomyces Raw Data 150). Further reduction 

88 



was conducted by a resulting t-test p-value 0.05 with the addition of a multiple testing 

correction (Benjamini and Hochberg False Discovery Rate) which is less stringent and 

will decrease the occurrence of false positives (Gaeumannomyces t-test p-value less that 

0.05 with default multiple test to decrease false positives). The number of genes were 

furthered filtered into individual gene list for Gaeumannomyces that had at-test p-value 

less than 0.05 and were 2 fold higher or lower (up and down regulated genes) base on the 

natural log ratio of control signal to raw (infected) signal at 12, 24, and 48 h. 

Experiments were created using Genesphere and using a normalization per spot I 

per chip Lowess which is the same as per pin and per block Lowess. Normalization by 

this method performs an intensity dependent (Lowess) normalization and divides the 

signal channel by the control channel. It uses 20% of the data for smoothing. Since we 

have in our data files (.gpr) the block, row, and column that each spot came from this 

normalization will be the same as doing a pin to pin and block to block normalization. 

K-means clustering was conducted using the natural log normalized gene list with 

t-test p-value <0.05 with multi test (Benjamini and Hochberg False Discovery Rate), with 

a raw value higher than 150 and with a greater or less than two fold change from the log 

ratio of infected to control values. The minimum cluster size was 10 with minimum 

correlation of 0.95. These constraints will use only the significant up and down regulated 

genes with a raw score of at least 150 and the log ratio of the raw and control to make the 

cluster tree. Five trees were constructed using these parameters. 

List of genes fitting the above criteria were constructed and the sequence data 

were matched with their corresponding gene list and analyzed and interpreted using 

PipeOnline (Ayoubi et al., 2002) into functional groups. 
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Fig. 1. Scatter plot comparing the spot intensities in hybridizations with probes from non-infected (control) (x axis) and infected (raw) 

(y axis) wheat root tissue. Data from images of both alexafluor dyes log of ratio mode graphs normalized values (the ratio of the 

signal to the control, not their logs), and spaces them logarithmically. The color bar on the right indicates the level of expression with 

the normal expression level of 1 equal to yellow. Blue lines indicate two fold difference levels (above the top blue line is equal to >2 

fold difference and below the bottom blue line is equal to <2 fold difference in expression . 

(A) Scatter plot of signal intensities of 12 hour non-infected and infected wheat roots. 

(B) Scatter plot of signal intensities of 24 hour non-infected and infected wheat roots. 

(C) Scatter plot of signal intensities of 48 hour non-infected and infected wheat roots. 
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Figure 2. Dye swap experiment performed on 24 hour rep 2 and 3 shows no bias due to the dye used and shows the same intensity of 

spots between microarrays. A Shows control cDNA labeled with Alexafluor 543 (green) and Ggt cDNA labeled with Alexafluor 647 

(red) . Yellow color is in response to equal expression of control and Ggt labeled cDNA. B. Shows control cDNA labeled with 

Alexafluor 647 (red) and Ggt cDNA labeled with Alexafluor 543 (green). 
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Fig 3. The gene tree shows the results of hierarchical clustering in the form of a 
phylogenetic tree. Genes having similar expression patterns are clustered together. Genes 
shown have at-test p-value less than 0.05 and the expression level log of ratio graphs 
normalized values (the ratio of the signal to the control, not their logs), and spaces them 
logarithmically. The color bar on the left indicates the level of expression with the 
normal expression level of 1 equal to yellow. The parameters used: Similarity Measure 
Standard Correlation, Only annotate with standard lists, on 180 transcripts in different 
response to fungal infection for non-infected and infected wheat roots. The color 
saturation reflects the magnitude of the log expression ratio (infected/non-infected) for 
each transcript. Due to space limitation the clone name, GenBank ID, and annotation are 
described in Table 2. Transcripts are grouped into patterns according to their expression 
profiles of induced (red) and suppressed (green) at different time points. Each gene is 
represented by a single row of colored boxes, and each time point is represented by a 
single column. 
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Fig. 4. Normalized intensity (log scale) of cluster analysis by k-mean for non-infected 
and infected wheat roots. The normalized intensity value (y-axis) represents the 
normalized log ratio of expression of all genes present in each cluster. The expression 
ratios (y axis) of transcripts for differentially expressed genes are presented by bars for 
each time period and are colored according to cluster number. Normalized ratio = 1 no 
change in expression, normalized ratio > 1 induced genes, normalized ratio < 1 
suppressed genes. 
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Table 1. Gene name, k-means cluster, pipe-online contig name, functional group classification, and gene name of 
differentially expressed genes from in infected and non-infected roots at 12, 24, and 48 h found in the Gaeumannomyces 
graminis var. tritici microarray analysis. 

Gene Bank 
Index Name Cluster ContigName Functional Group GeneName 

gil12056117 G2F2A5 1 366 electron transport disulfide isomerase [Triticum turgidum subsp. durum] 
intermediate metabolism and 

gil27777630 GlF1D5 1 323 bioenergetics [Secale cereale] 

gil629641 G2FlG12 1 119 information pathways dnaK-type molecular chaperone HSC71.0 - garden pea 
intermediate metabolism and 

gjj18076790 G1F2Fll 1 20 bioenergetics [Triticum aestivum] 
intermediate metabolism and 

gil18076790 GlF2F7 1 20 bioenergetics [Triticum aestivum] 
intermediate metabolism and 

gjj4126809 G2RlG4 1 404 bioenergetics [Oryza sativa (japonica cultivar-group)] 
intermediate metabolism and 

gij464705 G1F3G9 1 14 bioenergetics . 40S RIBOSOMAL PROTEIN Sl3 [Zea mays] 

gil575292 G1F3C4 2 11 sianal transduction protein kinase rHordeum vulgare subsp. vulgarel 

gil21554004 G2R3B4 2 35 electron transport ubiciuinol--cytochrome-c reductase f Arabidopsis thaliana 1 
intermediate metabolism and 

gij21554004 G2R3B4 2 35 bioenergetics ubiquinol--cytochrome-c reductase [ Arabidopsis thaliana] 
intermediate metabolism and 

gil464705 G2R1Cll 2 14 bioenergetics 40S RIBOSOMAL PROTEIN Sl3 [Zea mays] 
Guanine nucleotide-binding protein beta subunit-like protein (GPB-LR) 

Oi11346109 G2F3C4 2 146 information pathways (RWD) 

intermediate metabolism and Guanine nucleotide-binding protein beta subunit-like protein (GPB-LR) 
gil1346109 G2F3C4 2 146 bioenergetics (RWD) 

gil6683811 G1F2All 2 18 information pathways UMP/CMP kinase a fOryza satival 
intermediate metabolism and 

gil6683811 G1F2All 2 18 bioenergetics UMP/CMP kinase a [Oryza sativa] 
intermediate metabolism and 

gil27777630 G2R2F8 2 19 bioenergetics [Secale cereale] 



intennediate metabolism and 
Jil22168 G2R1F5 2 405 bioenerg nucleotide translocator [Zea mays] 

intennecliate metabolism and 
Jil23452335 G2R2H9 2 226 bioenergetics rGossypium hirsutum] 

intennecliate metabolism and 
::,1127777630 G2R3B2 2 19 bioenergetics [Secale cereale] 

Jil6683813 G2R2Fl 2 292 information pathways UMP/C:MP kinase b r0ryza satival 
intennediate metabolism and 

Jll6683813 G2R2Fl 2 292 bioenergetics UMP/CMP kinase b [Oryza sativa] 
intennediate metabolism and 

Jil27777630 G2R3D7 2 81 bioenenretics [Secale cereale] 
intennediate metabolism and 

Jil27261094 G2R3A4 2 223 bioenergetics peroxidase rorvza sativa (iaoonica cultivar-group)] 
intennecliate metabolism and 

::iil629641 G2FlC4 3 119 bioenergetics dnaK-type molecular'chaperone HSC71.0 [Pisum sativum] -8 intennediate metabolism and 
Jil1899163 GlR2G4 3 372 bioenergetics gene product [unidentified cloning vector] 

NP_008518.1IND5_15045 NADH dehydrogenase subunit 5 [Rhipicephalus 
Jil5835703 G3F3Dll 3 393 electron transport sanl!Uineus] 

intennediate metabolism and NP _008518.llND5_15045 NADH dehydrogenase subunit 5 [Rhipicephalus 
gil5835703 G3F3Dll 3 393 bioenergetics saniruineus] 

Jil19569591 G2R3D3 5 255 electron transnort ferredoxin precursor fTriticum aestivuml 
intennecliate metabolism and 

~ 

Jil19569591 G2R3D3 5 255 bioenergetics ferredoxin precursor [Triticum aestivum] 
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Table 2. Cluster analysis of infected and non-infected wheat roots based upon k-means cluster in Figure 4. Normalized log ratio is 
calculated by infected/non-infected normalized ratio and plotted on a log scale. The HSP is the alignment score as determined by Pipe 
Online (Ayoubi et. al., 2001). The cluster number was determined by GeneSpring software. In addition the contig name the gene 
name associated with that number are listed. The table is sorted based upon the cluster number and on the lowest normalized log ratio 
for each cluster at 12 hours. 

Normalized Log Ratio 
Name 12 Hour 24Hour 48Hour Clustei ContigName HSP GeneName 
G2F2A5 0.126 0.934 1.057 1 366 921 disulfide isomerase [Triticum turgidum subso. duruml 
G1FlB6 0.135 1.149 1.127 1 447 No homology 

G1F1D5 0.176 1.025 0.894 1 323 389 rseca1e cereale 1 
G2F1G12 0.178 1.071 0.884 1 119 172 dnaK-type molecular chaperone HSC71.0 - JPisum sativuml 
G1FB8 0.186 1.018 0.521 1 92 394 rorvza sativa (iaponica cultivar-group)l 

NO 
G1F2Fll 0.206 0.84 DATA 1 20 194 ITriticum aestivuml 
G1F2F4 0.209 1.207 0.632 1 22 No homolo£?V 
G2R2H3 0.233 1.079 0.64 1 90 664 svnthetase [Triticum. monococcum] 

G1F2F7 0.238 0.872 1.137 1 20 194 [Triticum aestivuml 
G2R1G4 0.263 1.303 0.768 1 404 409 fOryza sativa (iaoonica cultivar-group)] 

G1F3H2 0.287 1.028 0.938 1 16 270 fOryza sativa (iaoonica cultivar-groun)l 
G2F2D10 0.29 0.491 0.131 1 365 No homolol!V 

G1F3G9 0.307 0.874 0.77 1· 14 263 40S RIBOSOMAL PROTEIN S13 fZea maysl 
G1F2Hl 0.33 1.068 0.722 1 47 255 svnthetase fTriticum monococcum 1 
G2F2C5 0.476 1.104 0.689 1 7 No homolol!V 

AU032852(Sl5362),AU070591(S5037) correspond to a region of the predicted gene 
G1F3H9 0.488 1.188 0.54 1 438 401 Oryza sativa (iaoonica cultivar-group)] 

G1F3A6 0.628 0.97 0.936 1 335 206 608 RIBOSOMAL PROTEIN L36 rorvza sativa (ianonica cultivar-l!l'OUD)] 
GlFlHl 0.179 1.312 2.46 2 334 680 tratfslationallv controlled tumor protein [Triticum aestivum] 

G2R3D5 0.198 1.082 1.952 2 90 664 svnthetase fTriticum monococcuml 
G2R2G8 0.209 1.186 1.311 2 61 417 protein [Triticum aestivum] 



NO 
GlF3D12 0.216 1.235 DATA 2 92 394 [Oryza sativa (jap0nica cultivar-group)] 

G1F2C6 0.222 0.831 1.292 2 353 No homology 

G1F3C4 0.223 1.136 1.891 2 11 765 !protein kinase fHordeum vulgare subsp. vulgare] 

G2R3B4 0.225 1.051 2.398 2 35 319 ubiquinol--cytochrome-c reductase [ Arabidopsis thaliana] 

NO 
G1F2C3 0.228 1.099 DATA 2 407 442 [Orvza sativa (jap0nica cultivar-,grouo)] 

G2RlC9 0.315 1.162 1.828 2 382 183 protein 119 [Triticum aestivum] 

G2F2Dll 0.318 0.961 1.677 2 364 No homology 

G1F4C7 0.33 1.154 1.635 2 16 270 [Oryza sativa (iaponica cultivar-group)] 

G2R1Cll 0.331 1.085 1.945 2 14 263 40S RIBOSOMAL PROTEIN S13 [Zea mays] 

G2F3C4 0.337 0.93 1.407 2 146 838 Guanine nucleotide-binding protein beta subunit-like protein (GPB-LR) (RWD) 

G2F3D6 0.346 1.274 2.612 2 360 No homology 

- G1FlB8 0.347 1.082 1.908 2 332 No homology 
0 
N GlF2All 0.348 0.971 1.789 2 18 86 UMP/CMP kinase a [Oryza sativa] 

G2R2F8 0.356 1.12 3.505 2 19 162 f Secale cereale l 

G2RlF5 0.376 1.121 1.665 2 405 108 nucleotide translocator [Zea mays] 

G2R2H9 0.379 1.228 1.157 2 226 178 fGossypium hirsutuml 
AAD26879.1-gene_id:T30G6.9-strong similarity to unknown protein [Arabidopsis 

GlF3F2 0.382 1.028 1.296 2 55 348 thaliana] 

G3F2Gll 0.417 1.054 1.157 2 395 203 40S ribosomal protein [Triticum aestivum] 

G2R2E8 0.424 1.004 1.408 2 295 No homology 

G2R3B2 0.426 1.077 2.043 2 19 162 rsecale cerealel 

G2F2D12 0.433 1.026 1.637 2 363 No homology 

G2R2Fl 0.435 1.011 2.573 2 292 813 UMP/CMP kinase b fOrvza satival 

GlF1F6 0.442 0.933 1.146 2 446 363 carboxvlase/oxvgenase large subunit [Hordeum marinum subsp. marinum] 

G2Fl04 0.443 1.058 1.265 2 368 179 cvtoolasmic ribosomal orotein 118 rorvza satival 

G2R3D7 0.449 l.025 2.354 2 81 176 Secale cereale] 

G2R3B3 0.457 0.992 1.609 2 57 No homology 

G2R3A4 0.468 1.138 1.864 2 223 102 peroxidase [Oryza sativa (japonica cultivar-group)] 



G2RlC3 0.502 1.038 1.432 2 359 No homology 
G2F1C10 0.509 1.064 l.309 2 182 No homology 

G1F4C4 0.515 1.177 1.359 2 414 No homology 

G1F4C9 0.556 0.944 1.509 2 82 No homology 

G2R2Fll 0.573 0.969 1.369 2 287 No homology 
G2F3D11 0.61 l.13 1.111 2 45 No homology 

G2R3D10 0.668 1.059 3.958 2 400 136 40S RIBOSOMAL PROTEIN S8 fOryza sativa (iaponica cultivar-group)l 
G3R1G12 1.325 0.99 0.994 3 105 No homology 
G2F1C4 1.336 0.929 1.021 3 119 172 dnaK-type molecular chaperone HSC71.0 - [Pi.sum sativuml 
G1F2Cll L454 1.184 0.996 3 347 No homology 

G2F2G8 1.598 0.949 1.14 3 N.D. 
G2R3C7 1.599 0.903 1.028 3 22 No homology 
G1F2F5 1.769 1.337 1.095 3 92 394 Oryza sativa (iaoonica cultivar-grouo)l -0 w G2R1H9 1.975 0.899 1.157 3 403 No homology 

G3R4H12 2.015 1.077 1.178 3 105 No homology 

G1R2B8 2.067 0.935 1.053 3 99 No homology 

G1R2C2 2.099 1.009 0.913 3 99 No homology 

G3R4H10 2.099 1.145 1.077 3 105 No homology 

G3R4F3 2.112 0.999 1.03 3 101 No homology 

G3F4C7 2.131 1.129 0.999 3 N.D. 

G3F2B5 2.16 1.146 1.201 3 398 No homology 

G1R2B9 2.168 0,956 1.052 3 89 No homology 

G2R1F7 2.232 1.005 1.229 3 68 188 NP 181994.ll ALG6, ALG8 eivcosyltransferase family [Arabidopsis thaliana] 

G1R3B9 2.244 1.007 0.983 3 N.D. 
GlFlDll 2.265 1.032 1.09 3 321 No homology 

G2F2F7 2.271 0.993 1.041 3 362 No homology 

G3R2Fll 2.3 1.087 0.995 3 101 No homology 

G3F1D8 2.359 0.956 1.012 3 27 No homology 

G1R2H4 2.36 1.099 1.084 3 N.D. 



G1R3B3 2.362 0.957 1.039 3 N.D. 
G1R3B12 2.393 1.019 0.998 3 N.D. 
G2R3B9 2.44 0.958 1.166 3 214 No homology 
G2R1A5 2.47 0.879 1.069 3. 23 No homology 

G1R2G4 2.498 1.064 1.002 3 372 81 Imme product runidentified clonirur vectorl 
G3R4C8 2.517 1.087 1.131 3 101 No homology 
G2R2F4 2.534 1.091 0.966 3 401 No homology 
G1R2Dll 2.599 0.993 0.983 3 89 No homology 
G3F2Bl2 2.607 1.073 L093 3 97 . No homology 
G3R2E2 2.743 0.956 1.355 3 103 477 NP 040703.ll rfreolication, viral strand synthesis protein rcoliphage phiX1741 
G3R3C7 2.75 1.041 1.138 3 101 No homology 
G1R2Al0 2.761 1.066 1.411 3 374 No homology 
G2R1Cl0 2.768 1.048 1.219 3 276 No homology -~ G1F3H5 2.853 1.116 1.237 · 3 435 No homology 
G3R2D8 2.857 1.119 1.381 3 96 294 NP 0407 48.1 I gene E protein rEnterobacteria phaire S 131 
G3F2G6 2.859 1.062 0.97 3 104 No homoloov 

G3F4Cl2 2.883 1.242 1.071 3 391 No homolof!V 
G3F3D9 2.912 1.126 1.048 3 27 No homolof!V 
G3R4Cl2 2.915 1.125 1.053 3 103 477 NP 040703 .11 rf replication. viral strand synthesis Protein [Coliohage phiXl 7 41 
G2RlB4 2.975 1.119 1.18 3 24 No homolo1ZV 
G3R1Hl0 · 2.98 1.018 1.292 3 N.D. 

G1R2D4 3.028 1.206 1.034 3 4 No homology 
GlR2ClO 3.058 1.134 0.968 3 171 No homology 

G3F2C12 3.076 1.057 1.16 3 397 No homology 

G1R2G2 3.127 0.998 0.875 3 94 No homology 
G3F4A11 3.158 0.977 1.307 3 104 · No homology 

G3R2Bl 3.178 1.056 1.194 3 101 No homology 
G2F2F12 3.19 0.85 0.944 . 3 2 No homology 

G3F2H4 3.203 1.012 0.971 3 97 No homology 



...... 
0 
VI 

G3F2B4 
G3F2G5 
GlR2B4 
G1R2D5 
G3R1El2 
G3F4D7 
G2R1H4 
G1RlH5 
G1F1D4 
G2F2A12 
G2F1El0 
G1R1H9 
G2RlB6 
G3F3E4 
G2F1A7 
G3R1D12 
GlR3BlO 
G3F4D6 
G1R2D6 
G3F2A2 
G3F3Dl1 
G3F4D5 
01R1Hl2 
G2F2H6 
G2R2B5 
G1R2C3 
GlRlBl 
G2FlH9 
G2R1G7 

3.256 
3.278 
3.286 
3.312 
3.336 
3.455 
3.549 
3.577 
3.619 
3.674 
3.68 

3.682 
3.79 

3.958 
3.983 . 
4.072 
4.123 
4.273 
4.36 

4.377 
4.397 
4.443 
5.529 
1.473 
1.552 
1.887 
1.917 
2.102 
2.171 

0.942 1,221 
1.105 0.96 
1.127 1.169 
1.101 1.068 
0.971 1.342 

1 1.041 
1.078 1.038 
1.01 1.1 

1.136 0.882 
0.988 1.343 
1.075 0.94 
1.029 0.995 
1.093 1.394 
0.982 0.88 
0.869 1.043 
1.091 0.866 
1.17 1.041 
1.18 1.429 

1.206 1.118 
1.108 0.95 
1.327 1.392 
1.051 1.047 
1.486 0.961 
0.936 0.88 
0.972 0.754 
0.945 0.778 
0.928 0.738 
1.087 0.556 
0.849 0.81 

3 103 477 NP 040703 .11 rf replication, viral strand synthesis protein r Coli phage phiXl 7 4] 
3 394 No homology 
3 373 117 XP 236501.21 similar to CG9346-PA IRattus norvegicusl 
3 4 No homology 

3 101 No homology 
3 104 No homology 
3 N.D. 
3 376 No homology 
3 85 No homology 
3 113 No homology 
3 182 No homology 
3 375 No homology 
3 280 No homology 
3 392 No homology 
3 15 No homology 
3 N.D. 

3 371 No homology 
3 388 No homology 
3 N.D. 
3 103 477 NP 040703.ll rfreplication, viral strand svnthesis protein [Coliphage phiX1741 
3 393 192 NP 008518.1IND5 15045 NADH dehydrogenase subunit 5 IRhioicephalus saruruineusl 
3 389 No homology 
3 377 No homology 
4 N.D. 
4 402 No homology 
4 99 No homology 
4 420 No homology 
4 367 No homology 
4 24 No homology 



G2F2Hll 2.184 1.005 0.844 4 361 No homology 
G1R2Hl 2.201 1.022 0.757 4 310 No homology 

G3FlH9 2.222 0.928 0.842 4 N.D. 
G1R2B10 2.23 0.946 0.865 4 99 No homology 

G1R3D10 2.427 1.23 0.639 4 369 No homology 
GlRlHll 2.439 0.907 0.573 4 378 No homology 
G2R2F3 2.448 0.925 0.835 4 N.D. 
G1R3C7 2.456 1.136 0.568 4 N.D. 

NP_ 604475. ll Putative RNA dependent RNA polymerase [ Atkinsonella hypoxylon 
G2F2B7 2.475 0.785 0.858 4 111 218 partitivirus 1 
G1RlD3 2.494 1.154 0.603 4 380 No homology 

G3F2Dl0 2.556 1.095 0.839 4 396 No homology 
G1R1D7 2.682 1.042 0.692 4 N.D. -0 
G3F4C5 2.696 0.957 0.794 4 390 No homology 

O'I GlRlDl 2.93 1.115 0.672 4 445 No homology 
G1R3C9 3.062 1.155 0.614 4 370 No homology 
G3R3B12 3.189 0.936 0.772 4 96 294 NP 040748.ll gene E protein IBnterobacteria phage S13l 
GlRlGlO 3.222 1.094 0,585 4 379 . No homology 

GlR1B8 3.236 0.993 0.635 4 381 No homology 
G2R2F6 3.268 0.935 0.693 4 290 No homology 

G1R3B7 3.484 0.979 0.581 4 181 No homology 

G3F2D7 3.544 0.847 0.675 4 104 No homology 

G3F3D5 3.572 1.208 0.738 4 N.D. 
G2R1E6 3.992 1.041 0.763 4 406 No homology 

G3R4F6 1.182 1.062 1.078 5 105 No homology 

G3R3D6 1.262 1.062 1.214 5 105 No homology 

G2R3D3 1.346 0.999 1.353 5 255 275 ferredoxin precursor [Triticum aestivum] 

G2R1Fll 1.404 0.978 1.962 s 9 No homology 

G3R2D6 1.582 1.113 1.285 s 101 No homology 
G2R3C2 1.95 1.002 2.314 s 210 No homology 



G2F2A2 2.053 1.121 1.621 5 6 176 r Arabidoosis thaliana l 
G3R4F7 2.054 0.947 1.351 5 96 294 NP 040748.112ene E orotein [Enterobacteria phage S13] 

G2R3D9 2.119 1.044 2.341 5 399 No homology 

G2R3D4 2.178 1.136 2.103 5 17 No homology 

G2R2E6 2.244 1.12 2.051 5 296 416 rorvza sativa <iaoonica cultivar-l!l'Ouo)l 

G2R2H5 2.45 1.096 1.429 5 N.P. 

G2F2E3 2.458 1.176 1.502 5 53 Nohomoloiro 

G3FIB10 2.496. 1.046 2.593 5 N.D. 

G3R3G9 2.704 0.92 1.855 5 105 No homology -

G3R3A7 3.031 0.854 1.608 5 105 No homolo!!V 

G3R2F9 3.055 1.042 2.098 5 N.D. 

G3R5A8 3.246 1.06 2.162 5 N.D. 

G3R4B5 3.378 0.968 1.657 5 101 No homology -s G3R2F2 3.397 1.043 2.047 5 101 No homology 

G2R2H12 3.513 1.147 1.71 5 N.D. 

G3F1Hl 3.565 1.106 1.658 5 104 No homology 

G3R1H2 4.212 1.17 2.273 5 N.D. 



APPENDIX 

108 



APPENDIX I. Volatile Compounds 

In additon, these growth conditions were utilized to examine the possible effects 

of volatile compounds coming from the fungus that may effect root growth without actual 

physical contact between the root and the fungus. This was accomplished by plating out 

seedlings as previously described, with the exception that the seedlings would not be 

placed on a lawn of Ggt. A small petri dish was placed in the center of the larger petri 

dish and l/5X PDA was added to the same height in both plates. The agar was allowed 

to solidify and a 1 cm plug of Ggt was inoculated in the smaller plate at the center of the 

larger plate. Once the Ggt covered the small plate, seedlings were placed around the 

outside of the small petri dish so that the roots would not be impeded in their growth and 

not come in contact with the fungus. The petri dishes were wrapped with parafilm and 

the roots were allowed to grow for 12, 24, and 48 hours. The results in figure 1 showed 

no significant growth difference at 12 hours between control and volatile roots. At 24 

hours, the volatile experimental conditions resulted in a significant 16.5% decrease in 

growth as compared to the controls. At 48 hours, this difference grew to 24.4% decrease 

in growth in the volatile experimental conditions as compared to the controls. 
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Figure 1. Growth analysis of control (non-infected), Ggt lawn, and volatile 

experiments. 
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The root tissue from these volatile experiments were harvested as previously described 

for future analysis. The observed growth inhibition under the volatile experimental 

conditions was further investigated to answer the question as to whether or not volatile 

compounds were being released from the fungus that could effect root growth indirectly. 

That is, by plating the fungus in a small petri dish in the center of a larger petri dish 

where the seedlings were grown we could physically separate the direct contact of the 

fungus to the wheat roots and thus measure growth as an effect of possible volatile 

compounds. Ethylene is a known root growth inhibitor and it has been shown under 

abiotic stress conditions that ethylene does cause a decrease in root growth. It is not 

known if Ggt produces ethylene or even if it does is it enough to decrease root growth. 
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Ethylene measurements where taken from Ggt cultures grown on 1/5X agar slates in 30 

mL glass test tubes. A 1 cm plug of Ggt was placed on the agar and allowed to grow 

across the surface of the slant. The tubes were then sealed and two head space samples 

were taken at 4 and 24 hours. The samples were taken using a 1 mL syringe and a 26 

gauge needle which was inserted into the cap and a 1 mL sample was drawn from the 20 

mL of head space in the test tube. This sample was then injected into the gas 

chromatograph (GC) which consists of a 1/8" x 5" stainless steel column packed with 

activated alumina 60/80 mesh, 90°C isothermal, 100°C injector, 150°C flame ionization 

detector (FID), and 30 mL I min flow rate of helium at 52 psi pressure. Prior to measure 

ethylene from Ggt cultures, a standard curve was established using ethylene 

concentrations of 0, 2.5, 5, 7.5, and 10 ppm ethylene, with a R2 value of 0.989. In 

addition, control tubes were utilized to insure that no ethelyne was being evolved from 

the agar or the cap. Measurements indicated no ethylene evolution in the control tubes or 

the Ggt culture tubes at 4 and 24 hours. It is possible although not checked that the wheat 

roots themselves produced ethylene and inhibited root growth due to another 

undetermined volatile compound coming from the fungus. This experiment was repeated 

three times with the same results. 
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APPENDIX II. Fenozol Total RNA Isolation Protocol 
For 1.5 grams FW I tube 

Purpose: To extract total RNA from infected (Ggt) and non-infected (Control) 
wheat root tissue. 

TODAYS DATE: 

CONTROL TISSUE: FW I TUBE (g): 

INFECTED TISSUE: FW I TUBE (g): 

Ctrl Ggt 

Get liquid nitrogen 

Prepare 0.1 % diethyl pyrocarbonate (DEPC) 

Add 1 mL DEPC (located in white fridge Dr. Guenzi's lab in brown 

bottle) to 1 Liter Millipore water (18Mohm) and stir under the fume hood 

for 1 hr. Use CMS magnetic stirrer (CMS#244-793) speed set@ middle 

of second dash line. 

Prepare Poly T PNA 

Add 200 uL HPLC Water (provided with kit) in bottle supplied in kit. Mix 

and store at -20oC 

Prepare Touchdown Precipitant Reagent 

Add 20 mL of 100% Ethanol (located in white freezer Dr. Guenzi' s lab) to 

bottle supplied with kit. Mix and store at -20oC. 

Soak all plasticware overnight in DEPC treated water and autoclave poor 

off water. 

Root tissue (1.5 g) treated with RNA later and frozen in liquid nitrogen 

stored at -80oC 

Mortar and pestle wrapped in aluminum foil and frozen at -20oC 
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Tum on water-bath to 50oC (Dr. Guenzi's lab) 

Grind tissue in mortar and pestle with liquid nitrogen 

New nygen 40 mL centrifuge tubes 

Write label for new tubes (Waste #1) 

Place homogenized tissue into waste #1 tube *Place tube in liquid nitrogen 

if many samples are being homogenized* 

Add 24.0 mL Fenozol located in glass fridge in metal tin with tap on it. 

Incubate centrifuge tube containing Fenozol in water-bath set@ 50oC for 

5 minutes 

Tum water-bath temperature to 65oC (Dr. Guenzi's lab) 

Centrifuge both tubes in Sorval Superspeed RX2-B automatic refrigerated 

centrifuge located in Dr. Anderson's lab set@ 12,000 x g, 4oC for 10 

minutes 

New nygen 40 mL centrifuge tubes 

Write label for new tubes (Waste #2) 

Pour supernatant into waste #2 tube 

Set waste tube # 1 aside 

Add 6.0 mL chloroform to remove lipids (located in fume hood Dr. 

Guenzi' s lab) to supernatant tube 

Vortex waste tube #2 for 20 seconds using Thermolyne Maxi-MixII vortex 

set @ 10 with continuous shake 

Styrofoam 40 mL test-tube rack 

Incubate @room temperature (approx. 20oC) for 3 minutes 

113 



Centrifuge both tubes in Sorval Superspeed RX2-B automatic refrigerated 

centrifuge located in Dr. Anderson's lab set@ 12,000 x g, 4oC for 10 

minutes 

New nygen 40 mL centrifuge tubes 

Write label for new tubes (Final RNA 740 uL) 

Pour supernatant (top aqueous phase) into Final RNA 740 uL tube 

Set waste tube #2 aside 

Add 7 .5 mL Isopropanol (2-propanol) to top aqueous phase located in 

white freezer in Dr. Guenzi' s lab 

Incubate @ room temperature ( approx. 20oC) for 10 minutes 

Mix tubes gently on vortex set @#7 for 30 sec (Dr. Guenzi's lab) 

Centrifuge both tubes in Sorval Superspeed RX2-B automatic refrigerated 

centrifuge located in Dr. Anderson's lab set@ 12,000 x g, 4oC for 15 

minutes 

2 new 15 mL centrifuge tubes treated with RNase Zap (Ambion) 

Write label for new tubes (Waste #3a and #3b) 

Pour supernatant !!Carefully!! into 15 mL waste tube #3a and #3b 

Set waste tube #3a and #3b aside 

Add 21 mL 70% Ethanol (Make up 100 mL 70% Ethanol by adding 70 

mL HPLC grade 100% pure Ethanol located under the fume hood in Dr. 

Guenzi's lab add 30 mL DEPC treated water) to pellet located in white 

freezer in Dr. Guenzi's lab 
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Centrifuge tubes in Sorval Superspeed RX2-B automatic refrigerated 

centrifuge located in Dr. Anderson's lab set@ 12,000 x g, 4oC for 5 

minutes 

2 new 15 mL centrifuge tubes treated with RNase Zap (Ambion) 

Write label for new tubes (Waste #4a and #4b) 

Remove solution by pouring off slowly and place in waste tubes #4a and 

#4b) 

Set waste tubes #4a and #4b aside 

Air dry pellet (pellet contains total RNA) 

Dilute 2X buffer to IX (1 mL 2X buffer:1 mL DEPC water) 

Add 1000 uL of IX Binding Buffer to resuspend pellet 

Vortex briefly (30 sec) set on #7 (Dr. Guenzi's lab) 

Incubate @ 65oC in water-bath for 10 minutes 

Vortex briefly (30 sec) set on #7 (Dr. Guenzi's lab) 

* *If mixing tubes, do so now after vortexing* * 

100 uL quartz micro cuvette 

Place 10 uL resuspended pellet solution in spectrophotometer cuvette and 

add 90 uL IX Binding Buffer (dilution D=IO) 

Place 100 uL IX Binding Buffer for blank 

Beckman DU-65 Spectrophotometer located in Dr. Dillwith's lab 

Control Tube A260 A280 ;A260/ A280 
~~~~- -~~~~ ~~~~-

G gt Tube A260 ;A280 ;A260/ A280 ___ _ 

**The purity of RNA should be between 1.9 and 2.1 ** 
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Ctrl Tube RNA concentration by (A260)(0.04ug/uL)D = ____ ug/uL 

Ggt Tube RNA concentration by (A260)(0.04ug/uL)D = ug/uL 

**NOTE that the A260 should be greater than 0.05 to give an accurate 

RNA concentration** 

Control RNA yield (concentration)(volume of RNA solution is equal to 1000 uL) 

~ ___ ug/uL)(lOOO uL) = ug Total RNA 

Ggt RNA yield (concentration)(volume of RNA solution is equal to 1000 uL) 

~ __ ug/uL)(l 000 uL) = ____ ug Total RNA 

Corrected Control RNA yield (concentration)(volume 990 uL due to -10 uL for 

spec) ug/uL)(990 uL) = ug Total RNA 

Corrected Ggt RNA yield ( concentration)(volume 990 uL due to -10 uL for spec) 

~ ___ ug/uL)(990 uL) = ug Total RNA 

**Tubes can be stored here @-80oC until mRNA Isolation** 
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APPENDIX III. M-TRAP TOTAL mRNA Isolation Protocol 

Purpose: To isolate mRNA from Total RNA obtained with the Fenozol extraction 

protocol. 

TODAYS DATE: 

CONTROL TISSUE: Total RNA A260/ A280: ------ ------

INFECTED TISSUE: Total RNA A260/A280: 

Ctrl Ggt 

------

**M-TRAP TOTAL mRNA Kit** 

Turn on water-bath to 70oC (Dr. Guenzi's lab) 

Turn on small water-bath to 95oC (Dr. Guenzi's lab) 

Get 2 RNAse-free 1.7 mL tubes from kit 

Label new tubes (initial RNA) 

Add Control Total RNA ug = ___ uL [No more than 500 ug total RNA 

and no more than 1.5 mL total solution (Total RNA+ Binding Buffer)] 

Add Ggt Total RNA ug = uL [No more than 500 ug total RNA 

and no more than 1.5 mL total solution (Total RNA+ Binding Buffer)] 

Add 15 uL of Poly T PNA mix to each tube (mix located in -20oC in clear 

box label Tim S.) 

Vortex briefly (30 seconds) set@#7 Dr. Guenzi's lab 

Incubate tubes at 70oC in water-bath for 5 minutes 

Turn temperature of water-bath to 75oC 
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Centrifuge samples for 5 seconds using Jovan Centrifuge set @ 14,000 

located in Dr. Guenzi's lab use slots #7 (Ctrl) and 17 (Ggt) with front of cap down 

Incubate @RT for 15 minutes with gentle shaking (rocking platform Lab­

line instruments Junior Orbit Shaker set at 1500 rpms SN#0184-0129 located in 

Dr. Singleton's lab) 

Add 60 uL steptavidin beads to each tube (beads located in 4oC glass 

fridge in bag labeled Tim S.) 

Incubate @room temperature (approx. 20oC) for 45 minutes on rocking 

platform Lab-line instruments Junior Orbit Shaker set at 1500 rpms SN#Ol84-

0129 located in Dr. Singleton's lab 

SKIP SKIP Centrifuge both tubes with Jovan centrifuge located in Dr. Guenzi's lab set 

@ 14,000 for 5 minutes @RT 

! ! !Use magnet only, Do not use centrifuge with beads!! When using 

magnet, set on magnet until solution is clear, this is approximately one minute. 

Set tubes in magnet (Magnetight Separation Stand, Novagen) 

New 2.0 mL micro-centrifuge tubes 

Label tubes (Waste # 1) 

Remove hybridization buffer with 1 mL pipette ! ! !KEEP TUBES ON 

MAGNET!!! MOST DANGER IN LOSING YIELD!!!! and place in waste tube 

# 1 set waste tube # 1 aside 

Resuspend the steptavidin beads in 750 uL wash buffer supplied with kit 

by vortexing gently @ setting #7 for 30 sec. 
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SKIP SKIP Centrifuge both tubes with Jovan centrifuge located in Dr. Guenzi's lab set 

@ 14,000 for 5 minutes @RT 

Set tubes in magnet (Magnetight Separation Stand, Novagen) 

New 2.0 mL micro-centrifuge tubes 

Label tubes (Waste #2) 

Remove wash buffer ! !carefully!! with 1 mL pipette and place in waste 

tube #2 and set waste tube #2 aside 

Resuspend the steptavidin beads in 100 uL wash buffer supplied with kit 

Add 2 units or 2 uL [1 unit/uL; concentration ofDNASE in stock] RNase­

free DNase (DNase I Amplification Grade, 20oC in purple box labeled DNA 

marker 

Incubate @room temperature (approx. 20oC) for 10 minutes 

SKIP SKIP Centrifuge both tubes with Jovan centrifuge located in Dr. Guenzi's lab set 

@ 14,000 for 3 minutes 

Set tubes in magnet (Magnetight Separation Stand, Novagen) 

New 2.0 mL micro-centrifuge tubes 

Label tubes (Waste #3) 

Remove solution with 200 uL pipette set @ 100 uL and place in waste 

tube #3 and set waste tube #3 aside 

Resuspend the steptavidin beads in 750 uL wash buffer supplied with kit 

SKIP SKIP Centrifuge both tubes with Jovan centrifuge located in Dr. Guenzi's lab set 

@ 14,000 for 5 minutes 

Set tubes in magnet (Magnetight Separation Stand, Novagen) 
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New 2.0 mL micro-centrifuge tubes 

Label tubes (Waste #4) 

Remove wash buffer ! !carefully!! with 1 mL and place in waste tube #4 

and set waste tube #4 aside 

Resuspend the steptavidin beads in 750 uL wash buffer supplied with kit 

SKIP SKIP Centrifuge both tubes with Jovan centrifuge located in Dr. Guenzi' s lab set 

@ 14,000 for 5 minutes 

Set tubes in magnet (Magnetight Separation Stand, Novagen) 

Remove wash buffer ! !carefully!! and place in waste tube#4 and set waste 

tube #4 aside 

** FIRST ELUTION OF mRNA ** 

Resuspend the steptavidin beads in 75 uL DEPC-H20 and.ensure that 

beads are evenly distributed. 

Incubate@ 75oC for 2 minutes in water-bath (this step is to elute of the 

mRNA from the Poly T PNA Probe) 

SKIP SKIP Centrifuge tubes with Jovan centrifuge located in Dr. Guenzi's lab set@ 

14,000 for 5 minutes @RT 

Set tubes in magnet (Magnetight Separation Stand, Novagen) 

****mRNA****NOW IN SUPERNATANT**** 

New 1. 7 mL micro-centrifuge tubes 

Label tubes (Final mRNA) 

Carefully transfer supernatant to the sterile 1. 7 mL microcentrifuge tube 

(This is the mRNA sample!!!). 
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** SECOND ELUTION OF mRNA ** 

Add 75 uL DEPC-H20 to the steptavidin beads for second time 

Incubate@ 75oC for 2 minutes in water-bath 

Turn temperature of water-bath to 70oC 

SKIP SKIP Centrifuge tubes with Jovan centrifuge located in Dr. Guenzi's lab set@ 

14,000 for 5 minutes @RT 

Set tubes in magnet (Magnetight Separation Stand, Novagen) 

Carefully remove supernatant and place in the same 1. 7 mL 

microcentrifuge tube with the supernatant previously removed (tube labeled Final 

mRNA) (This is the mRNA sample!!!). 

Place 1. 7 mL microcentrifuge tube with steptavidin beads in it aside ( tube 

labeled initial RNA) 

Tube should contain 150 uL solution containing mRNA (combining both 

supernatants) (75 +75 = 150) (Visual Check). 

Heat@ 95oC for 3 minutes in water-bath to inactivate DNase 

Turn off 95oC water-bath after this step 

Add 5 volumes or 750 uL (150x5=750uL) of Touchdown Precipitation 

Reagent supplied with kit 

SKIP SKIP ***Special circumstances sometimes will arise that produce an expected 

yield less than 1.0 ug mRNA. If this is suspected then add 10 volumes of TD 

precip reagent instead of 5 volumes add vortex and then place @ -80oC instead of 

4oC for 20 minutes*** 
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Vortex Inverted for 10 seconds using Thermolyne vortex set on 10 and 

continuous located in Dr. Guenzi's lab 

Place tubes in 4oC fridge (Glass fridge in Dr. Guenzi's lab) for 20 minutes 

Centrifuge tubes @14,000 x g for 20 minutes @4oC (located in cold 

room) (should see pellet, very small) may need to use black background 

New 2.0 mL micro-centrifuge tubes 

Label tubes (Waste #5) 

Remove as much Touchdown Precipitation Solution as possible (place in 

waste tube#5, and set waste tube #5 aside) leaving pellet and approx. 10 uL 

solution in tube 

Add to each tube 200 uL pure-Ethanol located in freezer in Dr. Guenzi's 

lab in box labeled Tim S. 

Vortex briefly 30 sec using Thermolyne vortex set on 7 located in Dr. 

Guenzi's lab (should see pellet floating around) 

room) 

Start spectrophotometer located in Dr. Dillwith's lab 

Centrifuge both tubes @14,000 x g for 20 minutes @4oC (located in cold 

New 2.0 mL micro-centrifuge tubes 

Label tubes (Waste #6) 

Remove 200 uL pure-Ethanol and place in waste tube #6, and set waste 

tube #6 aside, leaving pellet and approx. 10 uL solution in tube 

Air-Dry pellet for 10 minutes or until ethanol evaporates 

Resuspend pellet in 30 uL of RNA Storage Solution; Ambion 
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**DO NOT FORGET** Heat @ 70oC for 10 minutes in water-bath (Dr. 

Guenzi' s lab) 

Vortex briefly (30 Seconds) using Thermolyne vortex set on? located in 

Dr. Guenzi' s lab 

* *If mixing tubes, do so now after vortexing* * 

100 uL quartz micro cuvette 

Place 10 uL resuspended pellet solution in spectrophotometer cuvette and 

add 90 uL RNA storage solution, Ambion (dilution D=IO) 

***NOTE: if NOT mixing tubes, use 5 uL ofresuspended pellet in 95 uL 

RNA storage solution, Ambion (D=25) *** 

Place 100 uL RNA storage solution, Ambion for blank 

Beckman DU-65 Spectrophotometer located in Dr. Dillwith's lab 

Control Tube A260 ;A280 ; A260/ A280 -----

Ggt Tube A260 ____ ;A280 ____ ; A260/A280 ___ _ 

**The purity of RNA should be between 1.9 and 2.1 ** 

Ctrl Tube mRNA concentration by (A260)(0.04ug/uL)D = ____ ug/uL 

Ggt Tube mRNA concentration by (A260)(0.04ug/uL)D = ug/uL 

**NOTE that the A260 should be greater than 0.05 to give an accurate 

RNA concentration** 

**NOTE: for the calculations below, the uL used depends on whether or 

not tubes were mixed together after resuspension of mRNA. If tubes were not 

mixed this value is equaled to 30 uL * * 
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Control RNA yield (concentration)(volume of RNA solution is equal to_ uL) 

'-___ ug/uL)L uL) = ____ ug mRNA RNA 

Ggt RNA yield (concentration)(volume of RNA solution is equal to_ uL) 

'----ug/uL)L uL) = ____ ug mRNA RNA 

Corrected Control RNA yield (concentration)(volume _uL due to-_ uL for 

spec) '-___ ug/uL)l_uL)= ___ ugmRNARNA 

Corrected Ggt RNA yield ( concentration)(volume uL due to - uL for - -

spec) '-___ ug/uL)l_uL) = ___ ugmRNA RNA 

After determining the concentration of mRNA in the sample, the 

concentration of the mRNA must be concentrated down to 0.5 ug/uL for use in 

the next step of cDNA synthesis. To do this, the mRNA must be reprecipitated 

with TD precipitation reagent. 

** Also, If adding mRNA from previous experiments to concentrate all 

mRNA do so at this step and readjust the amount of TD precipitation reagent 

needs** 

Add 5 volumes of Touchdown Precipitation Reagent supplied with kit. 

***This amount depends on what the volume ofmRNA used to resuspend 

previously minus the amount of solution used for the spec reading. For example, 

if30 uL was resuspended and 5 uL were used for spec. Then you would add 5 

volumes or 125 uL (25 uL x 5 volumes= 125 uL) to the 25 uL for a total solution 

amount of 150 uL)*** 

Vortex Inverted for 10 seconds using Thermolyne vortex set on 10 and 

continuous located in Dr. Guenzi' s lab 
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Place tubes in 4oC fridge (Glass fridge in Dr. Guenzi's lab) for 20 minutes 

Centrifuge tubes @14,000 x g for 20 minutes @4oC (located in cold 

room) (should see pellet, very small) may need to use black background 

New 2.0 mL micro-centrifuge tubes 

Label tubes (Waste #7) 

Remove as much Touchdown Precipitation Solution as possible (place in 

waste tube #7, and set waste tube #7 aside) leaving pellet and approx. 10 uL 

solution in tube 

Add to each tube 200 uL pure-Ethanol located in freezer in Dr. Guenzi's 

lab in box labeled Tim S. 

Vortex briefly 30 sec using Thermolyne vortex set on 7 located in Dr. 

Guenzi's lab (should see pellet floating around) 

room) 

Centrifuge both tubes @14,000 x g for 20 minutes @4oC (located in cold 

New 2.0 mL micro-centrifuge tubes 

Label tubes (Waste #8) 

Remove 200 uL pure-Ethanol and place in waste tube#8, and set waste 

tube #8 aside, leaving pellet and approx. 10 uL solution in tube 

Air-Dry pellet for 10 minutes or until ethanol evaporates 

Resuspend pellet in appropriate amount of RNA storage solution, Ambion. 

***This amount depends on what concentrations were obtained with the first 

round of precipitation. The final concentration needs to be 0.5 ug/uL *** 
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CALCULATIONS: 

Control 

___ ug mRNA * 1.0 uL I 0.5 ug = ___ uL RNA storage sol. 

Ggt 

___ ug mRNA * 1.0 uL I 0.5 ug = uL RNA storage sol. 

**DO NOT FORGET** Heat@ 70oC for 10 minutes in water-bath (Dr. 

Guenzi' s lab) 

Vortex briefly (30 Seconds) using Thermolyne vortex set on 7 located in 

Dr. Guenzi's lab 

mRNA can be stored @-80oC at this point until cDNA synthesis is 

performed. 

**Finished mRNA isolation and concentration** 

Run Agarose Gel Analysis of Total RNA **Should see a smear** 

***PROCEED WITH CLONETECH SSH KIT- cDNA synthesis reaction*** 
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APPENDIX IV. CLONTECH PCR-Select cDNA Synthesis Protocol 

Purpose: To produce ds cDNA from mRNA obtained from M-Trap Isolation 

previously described. 

First Strand cDNA Synthesis: 

Date: 

Tester ---- Concentration (ug mRNA/ uL) A260/A280 
---- -----

Driver ---- Con cent ration (ug mRNA/ uL) A260/A280 ----

Concentration (ug mRNA/ uL) A260/A280 __ N_/_A __ Kit Ctrl ----

Test Driver Ctrl Instructions are per tube 

Get Ice 

New 0.5 mL microcentrifuge tubes 

New tube labels (Waste #1) 

Add 0.5 to 2 ug poly A+ RNA (No more than 2 to 4 uL) (Human 

skeletal muscle poly A+ RNA control supplied in kit and kept @ -

80°C) (green tube) 

Add 1 uL cDNA synthesis primer (10 uM) (in kit, green tube) 

Total Volume Calculation (uL) 

Qs with sterile water (in kit, clear tube) to 5 uL 

Mix contents by briefly vortexing (30 sec) set@# 7 Dr. Guenzi's 

lab 

Spin briefly (5 sec) in microcentrifuge in Dr. Guenzi's lab 
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Incubate tubes @ 70°C for 2 minutes in a thermal cycler (MJ 

Research Inc. PTC-1001m, located in Dr. Guenzi's lab) 

Cool tubes on ice for 2 minutes 

Spin briefly (5 sec) in microcentrifuge in Dr. Guenzi's lab 

Add 2 uL SX first-strand buff er (in kit, green tube) 

Add 1 uL dNTP (10 mM each) (in kit, clear tube) 

Add 1 uL sterile water (in kit, clear tube) 

Add 1 uL AMV reverse transcriptase (20 units I uL) (in kit, 

green tube) 

Check total volume should be 10 uL (visual) 

Gently vortex briefly (5 sec) (setting #7, Dr. Guenzi's lab) 

Spin briefly (5 sec) in microcentrifuge in Dr. Guenzi's lab 

Incubate tubes @ 42°C for 1.5 h (90 min) in an air incubator 

(located on 3rd floor plant path). DO NOT USE WATER BATH 

OR THERMAL CYCLER DO TO EVAPORATION!! 

Place tubes on ice to terminate first-strand cDNA synthesis and 

proceed immediately to second-strand cDNA synthesis. 
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Second-Strand cDNA Synthesis: 

Test Driver Ctrl Instructions are per tube 

Add 48.4 uL Sterile-Water (in kit, clear tube) 

Add 16.0 uL 5X Second-Strand Buffer (in kit, pink tube) 

Add 1.6 uL dNTP (10 mM) (in kit, clear tube) 

Add 4.0 uL 20X Second-Strand Enzyme Cocktail (in kit) 

Mix contents by vortex (30 sec) set@#7 (Dr. Guenzi's lab) 

Spin briefly (5 sec) in microcentrifuge in Dr. Guenzi's lab 

Check the total volume and it should be 80 uL (visual) 

Incubate tubes@ 16°C for 2 hours in thermal cycler (water bath in 

core facility) 

Add 2 uL (6 units)T4 DNA polymerase (in kit, pink tube) 

Mix contents by vortex (30 sec) set@#7 (Dr. Guenzi's lab) 

Incubate tubes@ 16°C for 30 minutes in thermal cycler (water 

bath in core facility) 

Add 4 uL of 20X EDTA I glycogen (in kit, clear tube) 

Mix contents to terminate second-strand synthesis by vortex (30 

sec) set @#7 (Dr. Guenzi's lab) 

Add 100 uL ofphenol:chloroform:isoamyl alcohol (25:24:1) 

(located in glass fridge 4oC, Dr. Guenzi's lab) 

Thoroughly vortex (1 minute) (setting #7, Dr. Guenzi's lab) 

Centrifuge @ 14,000 rpm for 10 minutes @ room temperature 

(microcentrifuge located in Dr. Guenzi's lab) 
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New 0.5 mL microcentrifuge tubes 

New tube labels (Waste #2) 

Carefully remove the top aqueous layer (little less than 100 uL) 

and place in a clean (sterile) 0.5 mL microcentrifuge tube (Waste 

#2) 

Store the interphase and lower phase (Waste #1) at-20oC 

Add 100 uL of chloroform:isoamyl alcohol (24:1) to the aqueous 

layer (located under fume hood in Dr. Guenzi's lab) 

Thoroughly vortex (1 minute) (setting #7, Dr. Guenzi's lab) 

Centrifuge @ 14,000 rpm for 10 minutes @ room temperature 

(microcentrifuge located in Dr. Guenzi's lab) 

New 0.5 mL microcentrifuge tubes 

New tube labels (Final ds cDNA 44 uL) 

Carefully remove the top aqueous layer and place in a clean 

(sterile) 0.5 mL microcentrifuge tube (Final ds cDNA 44 uL) 

Store the interphase and lower phase (Waste #2) at-20oC 

Add 40 uL of 4 M NH40ac ( clear tube in kit) 

Add 300 uL of95% ethanol (Make up 1 mL; 950 uL HPLC grade 

pure Ethanol+ 50 uL autoclaved milli-pore water) 

**Precede immediately with precipitation. DO NOT store tubes at 

-20°C do to prolonged exposure to this temperature can precipitate 

unwanted salts. 

Thoroughly vortex (1 minute) (setting #7, Dr. Guenzi's lab) 
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Centrifuge@ 14,000 rpm for 20 minutes @room temperature 

(microcentrifuge located in Dr. Guenzi's lab) 

New 0.5 mL microcentrifuge tubes 

New tube labels (Waste #3) 

Remove supernatant carefully and place in waste tube #3 and store 

waste tube at -20°C **Pellet is ds cDNA ** Use black background 

to visualize the pellet 

Overlay the pellet with 500 uL 80% ethanol (Make up 2 mL; 1600 

uL HPLC grade pure Ethanol+ 400 uL autoclaved milli-pore 

water) 

Centrifuge@ 14,000 rpm for 10 minutes @room temperature 

(microcentrifuge located in Dr. Guenzi's lab) 

New 0.5 mL microcentrifuge tubes 

New tube labels (Waste #4) 

Remove supernatant carefully and place in waste tube and store 

waste tube at -20°C **Pellet is ds cDNA ** Use black background 

to visualize the pellet 

Air dry the pellet for approx. 10 minutes to evaporate residual 

ethanol **Pellet is ds cDNA ** Use black background to visualize 

the pellet 

Dissolve pellet in 50 uL sterile-water ( clear tube in kit) 

Vortex for 30 seconds set@#7 Dr. Guenzi's lab **No pellet 

should be visible** 
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digestion 

New 0.5 mL microcentrifuge tubes 

New tube labels (Final ds cDNA 6 uL) 

Transfer 6 uL of dissolved precipitate to a fresh 0.5 mL 

microcentrifuge tube (Final ds cDNA 6 uL) and store this tube@ 

-20°C until after Rsa I digestion for agarose gel electrophoresis to 

estimate yield and size range of ds cDNA products synthesized 

Be sure this label is on final tube (Final 44 uL) 

Store the ds cDNA @ -20°C until ready to proceed with Rsa I 
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APPENDIXV. Rsa I Digestion 

Purpose: To create blunt-ended ds cDNA fragments, necessary for adaptor ligation. 

Rsa I is a four base cutting restriction enzyme. 

Date: 

Driver Tester Kit 

__ Name of tissue used (Ctrl, Ggt and 12, 24, 48 h) 

List Tube Labels Here (Name of Final 44 uL ds cDNA tube) 

Turn on incubator to 3 7°C in soils lab 

New 0.5 ml microcentrifuge tubes 

List Tube Labels Here (Waste #1) 

__ Add 43.5 uL ds cDNA (Taken from 44 uL ds cDNA leaving 

0.5 uL stored @ -20°C) 

__ Add 5.0 uL 10X Rsa I restriction buffer (Pink tube in kit@-

200C) 

__ Add 1.5 uL Rsa I (10 units I uL) equal to 15 units (Pink tube 

in kit @ -20°C) 

Total volume should be 50.0 uL (visual check) 

Mix by vortexing set @#7 for 30 seconds 

Centrifuge briefly (5 sec) to spin down tube contents 

Incubate @37°C for 1.5 hours (Air incubator in soils lab) 

New 0.5 ml microcentrifuge tubes 

List Tube Labels Here (Rsa I digest 5.0 uL) 
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Place 5.0 ul of reaction mixture in new tube to analyze 

efficiency of Rsa I digestion 

Store the 5.0 ul @-20°C until needed for analysis 

Total volume should be 45.0 ul (visual check) 

__ Add 2.5 ul of 20X EDTA I Glycogen mix to terminate 

reaction (Clear tube in kit @ -20°C) 

__ Total volume should be 47.5 ul (visual check) 

__ Add 50 ul phenol:chloroform:isoamyl alcohol (25:24:1) 

(In clear fridge@ 4°C) 

__ Total volume should be 97.5 ul (visual check) 

__ Vortex thoroughly for 1 minute set @#7 

Centrifuge tubes@ 14,000 rpm@ RT for 10 minutes to 

separate phases (Dr. Guenzi's lab) 

New 0.5 ml microcentrifuge tubes 

List Tube Labels Here (Waste #2) 

Place top phase in new centrifuge tube (Waste #2) and set 

aside bottom and interphase waste tube (Waste #1) 

__ Add 50.0 ul chloroform:isoamyl alcohol (24:1) (In 

flammable cabinet under fume hood) to top phase solution 

that was placed in the new tube in the previous step. 

__ Vortex thoroughly for 1 minute set @#7 

Centrifuge tubes@ 14,000 rpm@ RT for 10 minutes to 

separate phases (Dr. Guenzi's lab) 
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New 0.5 ml microcentrifuge tubes 

List Tube Labels Here (Final Rsa I Digest 5.5 uL) 

Place top aqueous phase in new centrifuge tube (Final Rsa 

I Digest 5.5 uL) and set aside bottom and interphase 

waste tube (Waste #2) 

__ Add 25 uL 4M NH40Ac (Clear tube in kit -20°C) 

__ Add 187.5 uL of 95% Ethanol (Make 1000 uL by adding 950 

uL 200 proof Ethanol and 50 uL sterile autoclaved milli-pore 

water) 

*NOTE PRECEED IMEDIATEL Y WITH PRECEPITATION. 

DO NOT STORE TUBES@ -20°C DUE TO 

PRECIPITATION OF SAL TS* 

__ Vortex thoroughly for 1 minute set @#7 

__ Centrifuge tubes@ 14,000 rpm @ RT for 20 minutes to 

separate phases (Dr. Guenzi's lab) 

New 2.0 ml microcentrifuge tubes for waste 

List Waste Tube Labels Here (Waste #3) 

Remove supernatant carefully and place in waste tube #3 

and set waste tube #3 aside (should see small white pellet, 

may need to use black background)**PElLET is ds 

FRAGMENTED cDNA** 
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__ Add 200 ul 80% Ethanol overlaid on pellet (Make 1000 ul 

by adding 800 ul 200 proof Ethanol and 200 ul sterile 

autoclaved milli-pore water) 

Centrifuge tubes@ 14,000 rpm@ RT for 5 minutes (Dr. 

Guenzi's lab) 

New 2.0 ml microcentrifuge tubes for waste 

List Waste Tube Labels Here (Waste #4) 

Remove supernatant carefully and place in waste tube #4 

and set waste tube #4 aside (should see small white pellet, 

may need to use black background)**PELLET IS ds 

FRAGMENTED cDNA** 

__ Air dry pellet for 10 minutes 

__ Dissolve pellet in 5.5 ul of sterile water (clear tube supplied 

with kit) 

Store tubes @-20°C **Called Clontech and they confirmed 

storing the samples at this stage and said it was a good 

stopping point** 

__ These 5.5 ul samples will serve as experimental driver 

cDNA and control skeletal muscle driver cDNA 

Check 5.0 ul of Rsa I digested cDNA (using the 5.0 ul held 

back in earlier steps in the Rsa I digestion protocol 
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Using 1% agarose I ethidium bromide in 1X TAE buffer 

gel electrophoresis, described in section V.B of the 

Clontech manual. 

Check 2.5 ul of non-digested cDNA yield and size range of 

ds cDNA products synthesized (This is from the 6.0 ul held 

back in the cDNA synthesis protocol) 

Run 1 % Agarose I Ethidium Bromide Gel Analysis of ds 

cDNA 

**PROCEED TO ADAPTOR LIGATION** 
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APPENDIX VI. Adaptor Ligation 

Purpose: To provide 2 adaptors for use by the PCR primer once the recessed ends 

have been filled. Two tester populations are created with different adaptors, but the 

driver cDNA has no adapter. 

Date: -----

Driver Tester 

____ Name of experimental condition tissue used (Ctrl, Ggt, Kit, 12h, 24h, 

48h) 

____ **Adaptors will not be ligated to the driver cDNA** 

Preparing Diluted Tester cDNA 

____ New 0.5 mL microcentrifuge tubes 

Labels for new tubes 

__ Add 1.0 uL of Rsa I-digested experimental cDNA (from 5.5 uL Rsa I 

fragmented ds cDNA leaving 4.5 uL) 

____ Add5.0 uL sterile water (located in kit) 

Total volume should be 6.0 uL 

Preparation of master ligation mix 

____ New 0.5 mL microcentrifuge tube 

Labels for new tubes --

-- __ Add 45.0 uL I 15 reactions (3.0 uL I reaction) sterile water (supplied with 

kit) 

__ Add 30.0 uL I l 5 reactions (2.0 uL I reaction) 5X Ligation Buffer 

(supplied with kit@ -20°C in light blue colored tube) 
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____ Add 15.0 uL I 15 reactions (1.0 uL I reaction) T4 DNA Ligase (400 units I 

uL) (Supplied with kit@ -20°C in light blue colored tube) 

____ **This is the master ligation mix for 15 reactions, This mix will be used 

for Kit Ctrl, Ctrl 12h, Ggt 12h, Ctrl 24h, Ggt 24h, Ctrl 48h, Ggt 48h, and 

One Additional Reaction. Kit Ctrl, Ctrl 48h, Ggt 48h are covered in this 

protocol. See Additional sheets for other experimental conditions** 

Preparation of adaptor-ligated tester cDNA 

____ Set-up the ligation reaction by the following table: 

Non-Infected Non-Infected Ggt Ggt 

12 hours 12 hours 12 hours 12 hours 

Component T-2-1 T-2-2 T-3-1 T-3-2 

Diluted Tester 2.0uL 2.0uL 2.0uL 2.0uL 

cDNA 

Adaptor 1 2.0uL 2.0uL 

(10 uM) 

Adaptor2R 2.0uL 2.0uL 

(10 uM) 

Master Mix 6.0uL 6.0uL 6.0uL 6.0uL 

Total Volume 10.0 uL 10.0 uL 10.0 uL 10.0 uL 

____ Diluted tester cDNA comes from 6 .0 uL (prepared earlier in this 

protocol) leaving 2.0 uL per tube of diluted tester cDNA 

____ Vortex thoroughly set@#7 for 1 minutes for all 6 tubes (Dr. Guenzi's lab) 
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NIA New 0.5 mL microcentrifuge tube 

NI A Labels for new tubes --

NIA Add 2.0 uL ofT-2-1 to new tube (leaving 8.0 uL) 

NIA Add 2.0 uL ofT-2-2 to same tube (leaving 8.0 uL) 

NIA ** After ligation is complete this is the unsubtracted tester control label 

T-2-C (Total volume 4.0 uL)** 

NIA __ New 0.5 mL microcentrifuge tube 

NI A Labels for new tubes -----

NIA __ Add2.0uLofT-3-1 tonewtube(leaving8.0uL) 

NIA Add 2.0 uL ofT-3-2 to same tube (leaving 8.0 uL) 

NI A **After ligation is complete this is the unsubtracted tester control label 

T-3-C (Total volume 4.0 uL)** 

____ **After ligation, approximately 113 (33%) of the cDNA molecules 
in each unsubtracted tester control tube will have 2 different adaptors** 
____ **Should have the following tubes and amounts according to this 

table**: 

Label T-2-1 T-2-2 T-2-C T-3-1 T-3-2 T-3-C 

uL 8.0 8.0 4.0 8.0 8.0 4.0 

--Centrifuge briefly (5 seconds) all 9 tubes (Dr. Guenzi's lab) 

____ Incubate in 16°C water bath (Core Facility) overnight (12 h?) 

__ Start water bath@ 72°C (Dr. Guenzi's lab) 

____ Add 1.0 uL 20X EDTA I Glycogen mix to each tube to stop ligation 

reaction (provided with kit in clear tube) 
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____ Vortex briefly (30 seconds) set@#7 (Dr. Guenzi's lab) 

____ Heat all tubes in water bath set @ 72°C earlier for 5 minutes to inactivate 

the ligase (Dr. Guenzi' s lab) 

____ Centrifuge briefly (5 seconds) all tubes (Dr. Guenzi's lab) 

____ **Adapter-Ligated Tester cDNAs (T-2-1, T-2-2, T-3-1, T-3-2) and 

Unsubtracted Tester Controls (T-2-C, T-3-C) are now complete** 

NIA New 1.7 mL microcentrifuge tube 

NI A Labels for new tubes 

NIA Add 1.0 uL T-2-C to new tube (leaving 4.0 uL) 

NI A Add 1000.0 uL sterile water (provided with kit) 

__ NI A This tube is for PCR, store @ -20°C until after 2nd hybridization step 

NIA __ New 1.7 mL microcentrifuge tube 

NI A Labels for new tubes ---

NI A __ Add 1.0 uL T-3-C to new tube (leaving 4.0 uL) 

NI A __ Add 1000.0 uL sterile water (provided with kit) 

NI A __ This tube is for PCR, store @ -20°C until after 2nd hybridization step 

____ Store all tubes @ -20°C 

---- **Proceed when ready to Ligation Efficiency Analysis** 
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APPENDIX VII. Analysis of Adaptor Ligation 

Purpose: To determine if at least 25% of the cDNAs have adapters on both ends. 

Date: -----

Ctrl 12h Ggt 12h Kit Ctrl 

______ Labels of Ligated cDNA to be used (should be 9uL per tube 

in each) 

______ 6 new 0.5 mL microcentrifuge tubes 

Labels for new tubes 

______ Place 200 uL autoclaved Millipore water in each tube 

______ Place 1 uLofLigatedcDNAintoappropriatetube(eg. T-1-1 

into D-1-1) 

______ Total volume should be 201 uL (visual check) 

12 new 0.5 mL microcentrifuge tubes 

Labels for new tubes 
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______ Add the following reagents in order to appropriate tube: 

Reagent Cl C2 C3 C4 Gl G2 G3 G4 Kl K2 K3 K4 

Diluted 1 1 1 1 1 1 

Ligated 

Adapter 1 

(D-2-1, D-3-

1, D-1-1) 

Diluted 1 1 1 1 1 1 

Ligated 

Adapter2R 

(D-2-2, D-3-

2, D-1-2) 

Primer 1 1 1 1 

G3PDH3' 

(lOuM) 

Clear Tube 

SSH Kit 

Primer 1 1 

G3PDH 5' 

(lOuM) 

Clear Tube 

SSH Kit 
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Primer Actin 1 1 1 1 1 1 1 1 

3' (2uM) 

Primer Actin 1 1 1 1 

5' (2uM) 

PCRPrimer 1 1 1 1 1 

1 (lOuM) 

Yellow Tube 

SSH Kit 

Total 3 3 3 3 3 3 3 3 3 

Volume (uL) 

** Actin Primer 3' - 21 bp - Tm 66.9 - GC 43%** From Dr. Anderson 

** Actin Primer 5' - 33 bp - Tm 83.4- GC 54%** From Dr. Anderson 

1 new 0.5 mL microcentrifuge tube 

Label for new tube 
~~~~~~~~~ 
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_________ Prepare master mix for each reaction (12) plus 1 additional 

reaction (Total 13) as follows: 

Reagent 1 Reaction 13 Reactions 

(uL) (uL) 

Sterile-water 18.5 240.5 

Not Autoclaved ONLY Milli-pore 

1 OX PCR Reaction Buffer 2.5 32.5 

Lt. Blue Tube Advantage Kit 

dNTP mix (1 OmM) 0.5 6.5 

Pink Tube Advantage Kit 

SOX Advantage cDNA Polymerase 0.5 6.5 

Mix 

Green Tube Advantage Kit 

Total Volume (uL) 22 286 

_________ Vortex Master Mix (1 min) set@#7 Dr. Guenzi's lab 

Briefly centrifuge (5 sec) Dr. Guenzi's lab ---------

- _____ Add 22 uL Master Mix to each reaction tube ( eg. Cl-C4, 

Gl-04, Kl-K4) 

______ Vortex each tube (1 min) set @ #7 Dr. Guenzi's lab 

------ Briefly centrifuge (5 sec) Dr. Guenzi's lab 
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------ DO NOT overlay each tube with mineral oil. (Use Hot 

Bonnet, on Thermal Cycler) 

------ Incubate all 12 tubes in thermal cycler (PT-100) Dr. Guenzi's 

lab set@ 75°C for 5 minutes to extend adaptors. 

**DO NOT REMOVE SAMPLE FROM THERMAL 

CYCLER** 

______ **The 75°C incubation "fills in" the missing strand of the 

adaptors, thus creating binding sites for PCR primers** 

______ Immediately commence the following thermal cycler 

schedule: 

______ Program Name on Thermal Cycler= LIGSSH 

------

20 Cycles Temperature Time 

Step 1 94.0 °C 30 sec 

Step 2 65.0 °C 30 sec 

Step 3 68.0 °C 2.5 min 

Analyze 5 uL from each reaction on a 2.0% 

Agarose/Ethidium Bromide gel run in 1 % TAE buffer as 

follows: 
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**Should see a bands identical in intensity of within 25% 

intensity with each reaction tube (eg. Cl & C2 should be the 

same or 25 % less of each other same with tube pairs C3 & C4 

etc .... )** 
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