TAXONOMIC INVESTIGATIONS OF OKLAHOMA FLORA

By
ADAM KEITH RYBURN
Bachelor of Science
Southwestern Oklahoma State University
Weatherford, Oklahoma
1998
Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of
DOCTOR OF PHILOSOPHY
December, 2003

TAXONOMIC INVESTIGATIONS OF OKLAHOMA FLORA

ACKNOWLEDGEMENTS

This work would not have been possible without the participation of many people. I am deeply indebted to my major advisor, Dr. Ronald J. Tyrl for his guidance, assistance, and friendship throughout my graduate studies at Oklahoma State University. Also, I thank my other dissertation committee members, Dr. Michael W. Palmer, Dr. Becky L. Johnson, and Dr. Mark E. Payton. Their suggestions and comments greatly improved this work. I am grateful to my committee members for their involvement and interest in my future as Biologist.

I thank all my colleagues in the Department of Botany, especially my fellow graduate students in Dr. Tyrl's Lab. Charriss Hayes and Raelene Crandall were both supportive and encouraging. Working with them has been a great pleasure and a valuable learning experience.

I have benefited greatly from funding awarded to me through the McPherson Summer Research Fellowship and the Distinguished Graduate Student Fellowship.

Also, I express gratitude to my family. Thank you Maranda and Addison, Mom, Dad, Aaron, Jennifer, Shannon, Pam, Randy and Marcia for remaining so patient throughout this process. Your helpful comments and enduring love made completion of this project possible.

TABLE OF CONTENTS

Chapter Page
1 A TAXONOMIC TREATMENT OF THE GENERA AND SPECIES OF THE SALICACEAE IN OKLAHOMA 1-1
Introduction 1-1
Methodology: Preparation of the Treatment 1-4
Taxonomic Treatment of the Salicaceae. 1-27
Populus 1-28
Populus alba 1-29
Populus deltoides 1-31
Salix 1-33
Salix amygdaloides 1-36
Salix caroliniana 1-38
Salix exigua 1-39
Salix humilis 1-41
Salix nigra 1-43
Literature Cited 1-47
2 MOLECULAR SYSTEMATIC INVESTIGATIONS OF ECHINACEA (ASTERACEAE: HELIANTHEAE) BASED ON NUCLEAR RIBOSOMAL ITS AND ETS SEQUENCES 2-1
Introduction 2-1
Methods and Materials 2-5
Results 2-14
Discussion 2-16
Literature Cited 2-28
3 POPULATION DYNAMICS OF ECHINACEA PALLIDA (ASTERACEAE) AT THE TALLGRASS PRAIRIE PRESERVE (OKLAHOMA) 3-1
Introduction 3-1
Methods and Materials 3-5
Results and Discussion 3-11
Literature Cited 3-22

Appendixes

A. Representative database sheet used in organizing field data of Echinacea pallida.3-26
B. Representative database sheet summarizing recorded variables.3-27
C. SAS input for logistic regression (LOGISTIC procedure)....3-28
D. Distribution of individual plants in each $10 \times 10 \mathrm{~m}$ site studied.3-29

LIST OF TABLES

Table Page
1.1 Herbaria from which specimens were borrowed and number of sheets of each taxon examined. 1-6
1.2 CHARS: a list of characters and their states used in DELTA program to generate taxon descriptions. 1-7
1.3 SPECS: characters defined as to type and used in DELTA program to generate taxon descriptions 1-20
1.4 ITEMS, measurements and observations of specimens coded using CHARS in DELTA program to generate taxon descriptions. 1-21
1.5 TONAT: instructions to generate word descriptions of taxa from CHARS in DELTA program. 1-26
2.1 Taxonomic treatments of Echinacea Moench. 2-4
2.2 Species included in phylogenetic analysis. 2-13
2.3 Aligned matrix of DNA sequences (5^{\prime} to 3^{\prime}) of ITS region of ingroup and outgroup taxa 2-20
3.1 Finite rate of increase λ and summed values of individuals 3-16
3.2 Numbers of individuals in vegetative (V), reproductive (R), and dead/missing (M) stage classes for each site during each year. 3-17
3.3 Summary of backward stepwise logistic regression results as explained in text. 3-18

LIST OF FIGURES

Figure Page
1.1 County distribution maps of Salicaceae in Oklahoma based on herbaria collections. 1-46
2.1 Distribution map of Echinacea Moench 2-3
2.2 Structure of $18 \mathrm{~S}-26 \mathrm{~S}$ nrDNA multigene family. 2-12
2.3 Strict consensus tree of the Echinacea and closely related taxa based on ITS data 2-27
3.1 Distribution map of Echinacea (with E. pallida) 3-4
3.2 Aerial photograph of the Tallgrass Prairie Preserve headquarters and adjacent area. 3-10
3.3 Transition from vegetative stage previous year to reproductive stage the following year 3-19
3.4 Transition from reproductive stage previous year to vegetative stage the following year. 3-20
3.5 Transition from reproductive stage previous year to dead (missing) plant the following year. 3-21

CHAPTER 1

A TAXONOMIC TREATMENT OF THE GENERA AND SPECIES OF THE SALICACEAE IN OKLAHOMA

INTRODUCTION

Considered by state taxonomists to be one of the more diverse in the United States, the vascular flora of Oklahoma comprises 173 families, 868 genera, and 2,540 species (Tyrl et al., 2003). This diversity of flora is related to the state's ecological and environmental diversity. Across the state, one finds considerable variation in precipitation, temperature, topology, geology, wind, and soils. One finds species representative of the eastern deciduous forest, central grasslands, the Rocky Mountains, the Chihuahuan and Sonoran Deserts, the Gulf Coastal Plain, and the Ozark Mountains.

For three decades, the most commonly used reference for the identification of the vascular plants of Oklahoma was U.T. Waterfall's (1969) Keys to the Flora of Oklahoma. As the title implies, it lacks the morphological descriptions of taxa needed to confirm identification of plants. For this information, one had to use descriptions appearing in taxonomic treatments for adjacent areas such as Gray's Manual of Botany (Gray, 1950), Manual of the Vascular Plants of Texas (Correll and Johnston, 1979), Flora of the Great Plains (Great Plains Flora Association, 1986), and Shinners \& Mahler's llustrated Flora of North Central Texas (Diggs et al., 1999). In addition, Waterfall's work has
become out dated with respect to revisions in classifications and changes in nomenclature.

This prompted a need for a modern, comprehensive treatment for the vascular plants of Oklahoma. As a result, the non-profit corporation Flora Oklahoma Incorporated was formed in 1983 (Tyrl et al., 2003). Foreseeing the. immediate need for students, professionals, and other individuals to use the keys and descriptions that will ultimately be published as Flora of Oklahoma, the project's editorial committee chose to release parts of the Flora as they were written. The key to families, titled Key to the Vascular Plants of Oklahoma, appeared in 1994. Three years later the family descriptions appeared in Key and Descriptions for the Vascular Plant Families of Oklahoma. Recent work has led to keys to the genera of all families as well as keys to many species. Numerous individuals have been asked by the committee to contribute their taxonomic expertise by writing treatments for the families, genera, and species. The treatment presented here is one such contribution.

The Salicaceae, or willow family, is traditionally recognized as consisting of the two genera Salix and Populus, although some taxonomists recognize the segregate genera Chosenia, and Toisusu because they differ greatly in pollen grain morphology from Salix and Populus (Argus, 1997). Absent from Australasia and New Guinea, the family is nearly cosmopolitan in distribution; with the majority of its members inhabiting the northern temperate and arctic regions (Watson and Dallwitz, 2000). These dioecious, spring-flowering trees
and shrubs typically inhabit wet or moist habitats throughout their geographic range. In Oklahoma, Populus and Salix are represented in every county.

Several species are cultivated for their ornamental value. The somewhat weak wood of many species is used as lumber, plywood, pulpwood, paper pulp, boxes, crates, food containers, matchsticks, matchboxes, and furniture stock (Tesky, 1992; Dirr, 1998; Little, 1998; Taylor, 2001). Members of the family commonly provide critical habitat for many wildlife and livestock species (Uchytil, 1989b; Tesky, 1992; Little, 1998; Taylor, 2001). They provide nesting habitat and cover for some nongame wetland bird species, forage for deer and livestock, and wood and shelter for many game birds and small mammals.

The objective of the work summarized in this chapter was to develop an understanding of the morphological circumscription of each species, clarify the nomenclatural history of each taxon, and write morphological descriptions and keys for identification to be incorporated in the Flora of Oklahoma.

METHODOLOGY: PREPARATION OF THE TREATMENT

Preparation of the family treatment began with an extensive literature review. Principal publications examined included those by Stephens (1973), Dorn (1976, 1994, and 1998), Eckenwalder (1977), Correll and Johnston (1979), Argus (1986, 1997), Great Plains Flora Association (1986), Newsholme (1992), Dirr (1998), Little (1998), and Diggs, Lipscomb, and O'Kennon (1999). Loans of specimens from state herbaria were requested (Table 1.1). These specimens were identified using available keys of Gleason and Cronquist (1963), Waterfall (1969), Correll and Johnston (1979), Great Plains Flora Association (1986), and Diggs, Lipscomb, and O’Kennon (1999). All specimens were annotated as a result of this work.

The morphological description of each species was written using DELTA (DEscriptive Language for TAxonomy), a computer program developed by Dallwitz and Paine (1986) that provides a standardized format for taxonomic descriptions. As the borrowed herbarium specimens were examined, a list of characters (each with appropriate states) was compiled in the DELTA format for CHARS (Table 1.2). A corresponding SPECS file was created, in which each character was defined as to type - unordered multistate (UM), ordered multistate (OM), integer numeric (IN), real numeric (RN), and text (TE) (Table 1.3).

The characters and their states of the herbarium specimens of each species were observed or measured, recorded on character data sheets, and subsequently coded in the DELTA format for ITEMS (Table 1.4). As ITEMS was
compiled, CHARS was revised as necessary. A TONAT file (Table 1.5) was used to generate natural language descriptions. These descriptions were subsequently edited in Microsoft Word into the format adopted by the editorial committee; they are presented in the following text. Abbreviation of author names is according to Brummitt and Powell (1992). The paragraphs of informational notes are lengthy for the purposes of this dissertation, but will be condensed by the editorial committee.

Table 1.1 Herbaria from which specimens were borrowed and number of sheets of each taxon examined.

	P. alba	P. deltiodes	S. amygdaloides	S. caroliniana	S. exigua	S. humulis	S. nigra	Total
OKLA	0	54	12	40	42	12	97	257
OKL	0	167	19	0	68	91	6	245
CAMU	9	9	6	4	0	11	49	
NWOSU	0	27	1	0	5	0	7	22
OCLA	2	27	1	7	19	3	47	106
DUR	10	41	7	1	9	15	4	46
NOSU	0	2	8	4	0	2	26	
CSU	2	13	44	4	3	0	14	38
Tota!	23	337	142	183	25	469	1223	

Zero indicates lack of Oklahoma specimens in loan.
Herbaria acronyms follow Holmgren and Holmgren (2003). OKLA = Oklahoma State University Herbarium in Stillwater, OK ; OKL = Robert Bebb Herbarium at the University of Oklahoma in Norman, OK; CAMU = Cameron University Herbarium in Lawton, OK; NWOSU = Northwestern State University Herbarium in Alva, OK; OCLA = University of Science and Arts of Oklahoma Herbarium in Chickasha, OK; DUR = Southeastern Oklahoma State University Herbarium in Durant, OK; NOSU $=$ Northeastern State University Herbarium in Tahlequah, OK; CSU = University of Central Oklahoma Herbarium in Edmond, OK.

Table 1.2 CHARS: a list of characters and their states used in DELTA program to generate taxon descriptions.

*SHOW: Salicaceae DELTA Character List.
*CHARACTER LIST
\#1. plants < habit> <MANDATORY>/

1. trees/
2. small trees/
3. shrubs/
\#2. plants <vegetative reproduction>/
4. solitary <implicit>1
5. colonial by rhizomes/
6. colonial by layering/
\#3. plants <height of trees>/
m tall/
\#4. bark <texture>/
7. smooth/
8. rough/
9. fissured <finely, etc.>/
10. furrowed <deeply, irregularly, etc.>/
\#5. bark <specific color or colors that serve to distinguish the taxon>/
\#6. stems <habit>|
11. erect/
12. decumbent/
\#7. twigs <specific color or colors that serve to distinguish the taxon>/
\#8. twigs <presence of indumentum>/
13. glabrous/
14. scabrous <rough to the touch with short, hard, rigid trichomes>/
15. scaberulous <minutely scabrous>1
16. pubescent <soft, short, dense trichomes>/
17. puberulent <minutely pubescent>/
18. velutinous <soft, short, dense, straight trichomes; velvety>/
19. tomentose <soft, short, dense, matted trichomes>/
20. villous <soft, long, dense, curly, ascending trichomes>/
21. sericeous <soft, long, dense or sparse, appressed, straight
trichomes; silky>/
22. lanate <soft, long, dense, matted, ascending, curly trichomes;woolly>/
23. pilose <soft, long, sparse, ascending, curly or straighttrichomes>/
24. arachnoid <soft, very long, dense, thin, loosely entangledtrichomes; cobwebby>/
25. hirsute <stiff, long, dense or sparse, erect or ascending,straight trichomes>1
26. hispid <stiff, long, tapered, dense or sparse, erect or
ascending, straight trichomes; bristly>/
27. strigose <stiff, long, sharp, bulbous base, dense or sparse, appressed, straight or curved trichomes>/
28. surfaces with glandular trichomes/
29. stellate <trichomes with branches radiating from base or separate hairs aggregated into star-like clusters>/
30. surfaces with barbed trichomes/

19: strigulose <dimunitive of strigose>/
20. hispidulous <diminutive of hispid>/
21. hirsutellous <diminutive of hirsute>/
\#9. terminal buds <presence of terminal buds>/

1. present/
2. absent/
\#10. terminal buds <shape> <Populus only>/
3. oblong/
4. conical/
5. ovoid/
6. lanceolate/
7. irregular/
\#11. terminal buds <bud scales; specific color or colors that distinguish the taxon> <Populus only>/
\#12. terminal buds <bud scales; presence of indumentum> <Populus only>/
8. glabrous/
9. scabrous <rough to the touch with short, hard, rigid trichomes>/
10. scaberulous <minutely scabrous>/
11. pubescent <soft, short, dense trichomes>/
12. puberulent <minutely pubescent>/
13. velutinous <soft, short, dense, straight trichomes; velvety>/
14. tomentose <soft, short, dense, matted trichomes>/
15. villous <soft, long, dense, curly, ascending trichomes>/
16. sericeous <soft, long, dense or sparse, appressed, straight trichomes; silky>/
17. lanate <soft, long, dense, matted, ascending, curly trichomes; woolly>/
18. pilose <soft, long, sparse, ascending, curly or straight trichomes>/
19. arachnoid <soft, very long, dense, thin, loosely entangled trichomes; cobwebby>/
20. hirsute <stiff, long, dense or sparse, erect or ascending, straight trichomes>/
21. hispid <stiff, long, tapered, dense or sparse, erect or ascending, straight trichomes; bristly>/
22. strigose <stiff, long, sharp, bulbous base, dense or sparse, appressed, straight or curved trichomes>/
23. surfaces with glandular trichomes/
24. stellate <trichomes with branches radiating from base or separate hairs aggregated into star-like clusters>/
25. surfaces with barbed trichomes/
26. strigulose <dimunitive of strigose>/
27. hispidulous <diminutive of hispid>/
28. hirsutellous <diminutive of hirsute>/
\#13. terminal buds <length> <Populus only>/ mm long/
\#14. lateral buds <shape>/
29. oblong/
30. conical/
31. triangular/
32. narrowly triangular/
33. ovoid/
34. lancelate/
35. irregular/
\#15. lateral buds <bud scales; specific color or color that serves to distinguish the taxon>/
\#16. lateral buds <bud scales; presence of indumentum>/
36. glabrous/
37. scabrous <rough to the touch with short, hard, rigid trichomes>/
38. scaberulous <minutely scabrous>/
39. pubescent <soft, short, dense trichomes>/
40. puberulent <minutely pubescent>/
41. velutinous <soft, short, dense, straight trichomes; velvety>/
42. tomentose <soft, short, dense, matted trichomes>/
43. villous <soft, long, dense, curly, ascending trichomes>/
44. sericeous <soft, long, dense or sparse, appressed, straight trichomes; silky>/
45. lanate <soft, long, dense, matted, ascending, curly trichomes; woolly>/
46. pilose <soft, long, sparse, ascending, curly or straight trichomes>/
47. arachnoid <soft, very long, dense, thin, loosely entangied trichomes; cobwebby>/
48. hirsute <stiff, long, dense or sparse, erect or ascending, straight trichomes>/
49. hispid <stiff, long, tapered, dense or sparse, erect or ascending, straight trichomes; bristly>/
50. strigose <stiff, long, sharp, bulbous base, dense or sparse, appressed, straight or curved trichomes>/
51. surfaces with glandular trichomes/
52. stellate <trichomes with branches radiating from base or separate hairs aggregated into star-like clusters>/
53. surfaces with barbed trichomes/
54. strigulose <dimunitive of strigose>/
55. hispidulous <diminutive of hispid>/
56. hirsutellous <diminutive of hirsute>/
\#17. lateral buds <apices>/
57. apices caudate/
58. apices acuminate/
59. apices acute/
60. apices rounded/
\#18. lateral buds <length>/
mm long/
\#19. blades <shape>/
61. linear/
62. ianceolate/
63. oblanceolate/
64. ovate/
65. obovate/
66. oblong/
67. deltoid
\#20. blades <width>/
mm wide/
\#21. blades <length>/mm long/
\#22. blade <apices>/
68. apices acute/
69. apices acuminate/
70. apices caudate/
71. apices obtuse/
\#23. blade <margins>/
72. margins entire/
73. margins serrate/
74. margins dentate/
75. margins revolute/
76. margins sinuate/
77. margins crenate/
\#24. blade <margins> <number of teeth per cm> <Salix only>/\#25. blade <of simple leaves; bases>/
78. bases rounded/
79. bases cuneate/
80. bases acute/
81. bases acuminate/
82. bases cordate/
\#26. adaxial surfaces <color or colors that characterize the abaxial surface of blades>/
\#27. adaxial surfaces <indumentum of abaxial surfaces of blades>/
83. glabrous/
84. scabrous <rough to the touch with short, hard, rigid trichomes>/
85. scaberulous <minutely scabrous>/
86. pubescent <soft, short, dense trichomes>/
87. puberulent <minutely pubescent>/
88. velutinous <soft, short, dense, straight trichomes; velvety>/
89. tomentose <soft, short, dense, matted trichomes>/
90. villous <soft, long, dense, curly, ascending trichomes>/
91. sericeous <soft, long, dense or sparse, appressed, straighttrichomes; silky>/
92. lanate <soft, long, dense, matted, ascending, curly trichomes;
woolly>/
93. pilose <soft, long, sparse, ascending, curly or straight
trichomes>/
94. arachnoid <soft, very long, dense, thin, loosely entangledtrichomes; cobwebby>/
95. hirsute <stiff, long, dense or sparse, erect or ascending, straight trichomes>1
96. hispid <stiff, long, tapered, dense or sparse, erect or ascending, straight trichomes; bristly>1
97. strigose <stiff, long, sharp, bulbous base, dense or sparse, appressed, straight or curved trichomes>1
98. surfaces with glandular trichomes/
99. stellate <trichomes with branches radiating from base or separate hairs aggregated into star-like clusters>/
100. surfaces with barbed trichomes/
101. strigulose <dimunitive of strigose>/
102. hispidulous <diminutive of hispid>/
103. hirsutellous <diminutive of hirsute>/
\#28. abaxial surfaces <color or colors that characterize the adaxial surface of blades>/
\#29. abaxial surfaces <indumentum of adaxial surfaces of blades>/
104. glabrous/
105. scabrous <rough to the touch with short, hard, rigid trichomes>/
106. scaberulous <minutely scabrous>/
107. pubescent <soft, short, dense trichomes>/
108. puberulent <minutely pubescent>/
109. velutinous <soft, short, dense, straight trichomes; velvety>/
110. tomentose <soft, short, dense, matted trichomes>1
111. villous <soft, long, dense, curly, ascending trichomes>/
112. sericeous <soft, long, dense or sparse, appressed, straight trichomes; silky>/
113. lanate <soft, long, dense, matted, ascending, curly trichomes; woolly>1
114. pilose <soft, long, sparse, ascending, curly or straight trichomes $>$ /
115. arachnoid <soft, very long, dense, thin, loosely entangled trichomes; cobwebby>/
116. hirsute <stiff, long, dense or sparse, erect or ascending, straight trichomes>/
117. hispid <stiff, long, tapered, dense or sparse, erect or ascending, straight trichomes; bristly>1
118. strigose <stiff, long, sharp, bulbous base, dense or sparse, appressed, straight or curved trichomes>1
119. surfaces with glandular trichomes/
120. stellate <trichomes with branches radiating from base or separate hairs aggregated into star-like clusters >1
121. surfaces with barbed trichomes/
122. strigulose <dimunitive of strigose>/
123. hispidulous <diminutive of hispid>1
124. hirsutellous <diminutive of hirsute>/
\#30. basilaminar glands <presence of basilaminar glands>/
125. present <implicit>/
126. absent/
\#31. basilaminar glands <number>/
\#32. petioles <specific color or colors that serve to distinguish the taxon> <Salix only>/
\#33. petioles <shape>/
127. terete/
128. flattened perpendicular to blade/

\#34. petioles <length>/

mm long/
\#35. petioles <presence of indumentum>1

1. glabrous/
2. scabrous <rough to the touch with short, hard, rigid trichomes>/
3. scaberulous <minutely scabrous>/
4. pubescent <soft, short, dense trichomes>/
5. puberulent <minutely pubescent>/
6. velutinous <soft, short, dense, straight trichomes; velvety>/
7. tomentose <soft, short, dense, matted trichomes>/
8. villous <soft, long, dense; curly, ascending trichomes>/
9. sericeous <soft, long, dense or sparse, appressed, straight trichomes; silky>/
10. lanate <soft, long, dense, matted, ascending, curly trichomes; woolly>/
11. pilose <soft, long, sparse, ascending, curly or straight trichomes>/
12. arachnoid <soft, very long, dense, thin, loosely entangled trichomes; cobwebby>/
13. hirsute <stiff, long, dense or sparse, erect or ascending, straight trichomes $>$ /
14. hispid <stiff, long, tapered, dense or sparse, erect or ascending, straight trichomes; bristly>1
15. strigose <stiff, long, sharp, bulbous base, dense or sparse, appressed, straight or curved trichomes>/
16. surfaces with glandular trichomes/
17. stellate <trichomes with branches radiating from base or separate hairs aggregated into star-like clusters>/
18. surfaces with barbed trichomes/
19. strigulose <dimunitive of strigose>/
20. hispidulous <diminutive of hispid>/
21. hirsutellous <diminutive of hirsute>/
\#36. stipules <if present, distinctive, general descriptors that serve to characterize the taxon>/
\#37. stipules <shape>/
22. linear/
23. lanceolate/
24. oblanceolate/
25. ovate/
26. obovate/
27. elliptic/
28. oblong/
29. reniform/
30. oval/
\#38. stipules <length>1
mm long/
\#39. stipules <indumentum>/
31. glabrous/
32. scabrous <rough to the touch with short, hard, rigid trichomes>/
33. scaberulous <minutely scabrous>/
34. pubescent <soft, short, dense trichomes>/
35. puberulent <minutely pubescent>/
36. velutinous <soft, short, dense, straight trichomes; velvety>/
37. tomentose <soft, short, dense, matted trichomes>/
38. villous <soft, long, dense, curly, ascending trichomes>/
39. sericeous <soft, long, dense or sparse, appressed, straight trichomes; silky>/
40. lanate <soft, long, dense, matted, ascending, curly trichomes; woolly>/
41. pilose <soft, long; sparse, ascending, curly or straight trichomes>/
42. arachnoid <soft, very long, dense, thin, loosely entangled trichomes; cobwebby>/
43. hirsute <stiff, long, dense or sparse, erect or ascending, straight trichomes>/
44. hispid <stiff, long, tapered, dense or sparse, erect or ascending, straight trichomes; bristly>/
45. strigose <stiff, long, sharp, bulbous base, dense or sparse, appressed, straight or curved trichomes>/
46. glandular/
47. stellate <trichomes with branches radiating from base or separate hairs aggregated into star-like clusters>/
48. surfaces with barbed trichomes/
49. strigulose <dimunitive of strigose>/
50. hispidulous <diminutive of hispid>/
51. hirsutellous <diminutive of hirsute>/
\#40. stipules <apices>/
52. apices caudate/
53. apices acuminate/
54. apices acute/
55. apices attenuate/
56. apices rounded/
57. apices obtuse/
\#41. stipules <margins>/
58. margins entire/
59. margins serrate/
60. margins serrulate/
61. margins dentate/
62. margins glandular/
\#42. catkins <flowering time and leaf development relationship>/
63. flowering before leaves/
64. flowering simultaneous with leaves/
65. flowering after leaves/
\#43. catkins <density> <Populus only>/
66. densely flowered <rachis not or partially visible>/
67. moderately flowered <rachis partially visible>/
68. loosely flowered <rachis clearly visible>/
\#44. catkins <length of catkins> <Populus only>/
mm long/
\#45. catkins <presence of indumentum on rachis>/
69. glabrous/
70. scabrous <rough to the touch with short, hard, rigid trichomes>/
71. scaberulous <minutely scabrous>1
72. pubescent <soft, short, dense trichomes>/
73. puberulent <minutely pubescent>1
74. velutinous <soft, short, dense, straight trichomes; velvety>/
75. tomentose <soft, short, dense, matted trichomes>/
76. villous <soft, long, dense, curly, ascending trichomes>/
77. sericeous <soft, long, dense or sparse, appressed, straight trichomes; silky>/
78. lanate <soft, long, dense, matted, ascending, curly trichomes; woolly>/
79. pilose <soft, long, sparse, ascending, curly or straight trichomes>/
80. arachnoid <soft, very long, dense, thin, loosely entangled trichomes; cobwebby>/
81. hirsute <stiff, long, dense or sparse, erect or ascending, straight trichomes>/
82. hispid <stiff, long, tapered, dense or sparse, erect or ascending, straight trichomes; bristly>/
83. strigose <stiff, long, sharp, bulbous base, dense or sparse, appressed, straight or curved trichomes $>$ /
84. surfaces with glandular trichomes/
85. stellate <trichomes with branches radiating from base or separate hairs aggregated into star-like clusters>1
86. surfaces with barbed trichomes/
87. strigulose <dimunitive of strigose>/
88. hispidulous <diminutive of hispid>/
89. hirsutellous <diminutive of hirsute>/
\#46. catkin bracts <specific color or colors that serve to distinguish the taxon> <Salix only>/
\#47. catkin bracts <shape>/
90. ovate/
91. obovate/
92. oblong/
93. oval/
94. fiabellate/
\#48. catkin bracts <length>/
mm long/
\#49. catkin bracts <indumentum>/
95. glabrous/
96. scabrous <rough to the touch with short, hard, rigid trichomes>/
97. scaberulous <minutely scabrous>/
98. pubescent <soft, short, dense trichomes>/
99. puberulent <minutely pubescent>/
100. velutinous <soft, short, dense, straight trichomes; velvety>/
101. tomentose <soft, short, dense, matted trichomes>/
102. villous <soft, long, dense, curly, ascending trichomes>/
103. sericeous <soft, long, dense or sparse, appressed, straight
trichomes; silky>/
104. lanate <soft, long, dense, matted, ascending, curly trichomes; woolly>/
105. pilose <soft, long, sparse, ascending, curly or straight trichomes>/
106. arachnoid <soft, very long, dense, thin, loosely entangled trichomes; cobwebby>/
107. hirsute <stiff, long, dense or sparse, erect or ascending, straight trichomes>/
108. hispid <stiff, long, tapered, dense or sparse, erect or ascending, straight trichomes; bristly>/
109. strigose <stiff, long, sharp, bulbous base, dense or sparse, appressed, straight or curved trichomes>/
110. surfaces with giandular trichomes/
111. stellate <trichomes with branches radiating from base or separate hairs aggregated into star-like clusters>/
112. surfaces with barbed trichomes/
113. strigulose <dimunitive of strigose>/
114. hispidulous <diminutive of hispid>/
115. hirsutellous <diminutive of hirsute>/
\#50. catkin bracts <apices> <Salix only>/
116. apices caudate/
117. apices acuminate/
118. apices acute/
119. apices attenuate/
120. apices rounded/
121. apices inequalateral/

\#51. catkin bracts <margins>/

1. margins entire/
2. margins erose/
3. margins ciliate/
4. margins toothed/
5. margins fimbriate/
\#52. catkin bracts <persistence> <Salix only>/
6. persistent/
7. deciduous after flowering/
\#53. staminate catkins <catkin and stem relationship> <Salix only>/
8. sessile on main branches/
9. borne on leafy lateral branchlets/
\#54. staminate catkins <catkin and stem relationship> <length of leafy branchlets> <Salix only>/ mm long/
\#55. staminate catkins <catkin density> <Salix only>/
10. densely flowered <rachis not or partially visible>/
11. moderately flowered <rachis partially visible>/
12. loosely flowered <rachis clearly visible>/
\#56. staminate catkins <length> <Salix only>/ mm long/
\#57. pedicels <length of pedicels> <Populus only>/ mm long/
\#58. floral disks <presence of floral disks>/
13. present <implicit>/
14. absent/
\#59. floral disks <width>/
mm wide/
\#60. stamens <number>/
\#61. anthers <color of anthers>1
\#62. anthers <straightness of anthers after dehiscence> <Salix>1
15. straight/
16. recurved <slightly or strongly>1
\#63. anthers <length of anthers> <Salix>1
mm long/
\#64. filaments <filament indumentum> <Salix>1
17. glabrous/
18. scabrous <rough to the touch with short, hard, rigid trichomes>/
19. scaberulous <minutely scabrous>/
20. pubescent <soft, short, dense trichomes>/
21. puberulent <minutely pubescent>1
22. velutinous <soft, short, dense, straight trichomes; velvety>1
23. tomentose <soft, short, dense, matted trichomes>/
24. villous <soft, long, dense, curly, ascending trichomes>1

9 . sericeous <soft, long, dense or sparse, appressed, straight trichomes; silky>/
10. lanate <soft, long, dense, matted, ascending, curly trichomes; woolly>1
11. pilose <soft, long, sparse, ascending, curly or straight trichomes>/
12. arachnoid <soft, very long, dense, thin, loosely entangled trichomes; cobwebby>1
13. hirsute <stiff, long, dense or sparse, erect or ascending, straight trichomes>/
14. hispid <stiff, long, tapered, dense or sparse, erect or ascending, straight trichomes; bristly>1
15. strigose <stiff, long, sharp, bulbous base, dense or sparse, appressed, straight or curved trichomes>1
16. surfaces with glandular trichomes/
17. stellate <trichomes with branches radiating from base or separate hairs aggregated into star-like clusters>/
18. surfaces with barbed trichomes/
19. strigulose <dimunitive of strigose>/
20. hispidulous <diminutive of hispid>/
21. hirsutellous <diminutive of hirsute>/
\#65. nectaries on adaxial surfaces <staminate catkins> <whether present on adaxial surface> <Salix only>1

1. present/
2. absent/
\#66. nectaries on adaxial surfaces < staminate catkins> <number on adaxial surface> <if present in 66> <Salix only>1
3. $1 /$
4. $2 /$
5. 3/
6. $4 /$
7. $5 /$
8. several/
\#67. nectaries on abaxial surfaces < staminate catkins> <whether present on abaxial surface>
<Salix only>/
9. present/
10. absent/
\#68. nectaries on abaxial surfaces < staminate catkins> <number on abaxial surface> <if present in 67> <Salix only>1
11. 1/
12. $2 /$
13. 3/
14. $4 /$
15. $5 /$
16. several/
\#69. pistillate catkins <catkin and stem relationship> <Salix only>/
17. sessile on main branches/
18. borne on leafy lateral branchlets/
\#70. pistillate catkins <catkin and stem relationship> <length of leafy branchlets if present> <Salix only>/
mm long/
\#71. pistillate catkins <catkin density> <Salix only>/
19. densely flowered <rachis not or partially visible>/
20. moderately flowered <rachis partially visible>/
21. loosely flowered <rachis clearly visible>/
\#72. pistillate catkins <length> <Salix only>/
mm long/
\#73. stipes <length of stipes> <Salix only>/ mm long/
\#74. stigmas <appearance of stigma> <Populus only>1
22. filiform/
23. flabellate with fimbriate margin/
\#75. stigmas <lobe number per stigma>/
24. 2-lobed/
25. 3-lobed/
26. 4-lobed/
\#76. stigmas <persistence>/
27. persistent after flowering/
28. deciduous after flowering/
\#77. styles <length> <Salix>/
mm long/
\#78. ovaries <shape in longitudinal section>/
29. hemispherical/
30. elliptical/
31. cylindrical/
32. ovoid/
33. obovoid/
34. clavatge/
35. pyriform/
\#79. ovaries <ovary indumentum>/
36. glabrous/
37. scabrous <rough to the touch with short, hard, rigid trichomes>/
38. scaberulous <minutely scabrous>/
39. pubescent <soft, short, dense trichomes>/
40. puberulent <minutely pubescent>/
41. velutinous <soft, short, dense, straight trichomes; velvety>/
42. tomentose <soft, short, dense, matted trichomes>/
43. villous <soft, long, dense, curly, ascending trichomes>/
44. sericeous <soft, long, dense or sparse, appressed, straight trichomes; silky>/
45. lanate <soft, long, dense, matted, ascending, curly trichomes; woolly>/
46. pilose <soft, long, sparse, ascending, curly or straight trichomes>/
47. arachnoid <soft, very long, dense, thin, loosely entangled trichomes; cobwebby>/
48. hirsute <stiff, long, dense or sparse, erect or ascending, straight trichomes>/
49. hispid <stiff, long, tapered, dense or sparse, erect or ascending, straight trichomes; bristly>/
50. strigose <stiff, long, sharp, bulbous base, dense or sparse, appressed, straight or curved trichomes>/
51. surfaces with glandular trichomes/
52. stellate <trichomes with branches radiating from base or separate hairs aggregated into star-like clusters>/
53. surfaces with barbed trichomes/
54. strigulose <dimunitive of strigose>/
55. hispidulous <diminutive of hispid>/
56. hirsutellous <diminutive of hirsute>/
\#80. capsules <length>/
mm long/
\#81. seeds <per carpel> <when applicable>/
57. 1/
58. $2 /$
59. 3/
60. 4/
61. 5/
62. $6 /$
63. $7 /$
64. $8 /$
65. $9 /$
66. 10/
67. 11/
68. numerous/
\#82. nectaries on adaxial surfaces <pistillate catkins> <whether present on adaxial surface> <Salix only>/
69. present/
70. absent/
\#83. nectaries on adaxial surfaces <pistillate catkins> <number on adaxial surface> <if present in 83> <Salix only>/
1.1/
71. $2 /$
72. 3/
73. 4/
74. 5/
75. several/
\#84. nectaries on abaxial surfaces <pistillate catkins> <whether present on abaxial surface> <Salix only>/
76. present/
77. absent/
\#85. nectaries on abaxial surfaces <pistillate catkins> <number on abaxial surface> <if present in 85> <Salix only>/
1.1/
78. $2 /$
79. 3/
80. $4 /$
81. 5/
82. several/
\#86. Taxonomy and nomenclature/
\#87. Distribution/
\#88. Ecology/
\#89. Economic and wildlife significance/

Table 1.3 SPECS: characters defined as to type and used in DELTA program to generate taxon descriptions. Um=unorder multistate, $\mathrm{OM}=$ ordered multistate, $\mathrm{IN}=$ integer numeric, $\mathrm{RN}=$ real numeric, $\mathrm{TE}=$ text.
*SHOW: Salicaceae DELTA Specifications.
*NUMBER OF CHARACTERS 89
*MAXIMUM NUMBER OF STATES 21
*MAXIMUM NUMBER OF ITEMS 9
*CHARACTER TYPES 1-2,OM 3,RN 5,TE 7,TE 10,OM 11,TE 13,RN 14,OM 15,TE 17,OM 18,RN 20-21,RN 24,RN 26,TE 27,OM 28,TE 29,OM 31,IN 32,TE 34,RN 36,TE 38,RN 39,OM 44,RN 46,TE 48,RN 49-50,OM 54,RN 55,OM 5657,RN 59,RN 60,IN 61,TE 63,RN 66,OM 68,OM 70,RN 71,OM 72-73,RN 75,OM 77,RN 80,RN 81,OM 83,OM 85,OM 86-89,TE
*NUMBERS OF STATES 1,3 2,3 4,4 8,21 10,5 12,21 14,7 16,21 17,4 19,7 22,4 $23,625,527,2129,2135,2137,939,2140,641,542,343,345,2147,549,21$ $50,651,555,364,2166,668,671,375,378,779,2181,1283,685,6$
*IMPLICIT VALUES 2,1 30,1 58,1
*DEPENDENT CHARACTERS
*MANDATORY CHARACTERS

Table 1.4 ITEMS, measurements and observations of specimens coded using CHARS in DELTA program to generate taxon descriptions.

*SHOW: Salicaceae DELTA Items.

*ITEM DESCRIPTIONS

Abstract

\# Populus <L. Cottonwood>/ 1,1 3,5-20 4, $1 / 4$ <deeply> 5 <grayish-white or gray to light brown> $7<$ orange-brown to olivebrown> 8,7 <densely white>/19,110,1/4 11<reddish-brown or tan to greenish-brown and resinous> 12,8-7<densely white>/1 13,5-15 14,1/6 15<reddish-brown or tan to greenish-brown and resinous> 16,8-7<densely white>/1 18,6-25 19,4/4-7 20,30-100 21,30-95 22,4-1/24 <sometimes> $23,5 / 625,1-526<$ green to dark green or grayish-green> $27,128<$ white to silver or green to grayish-green $>29,7<$ densely white $>/ 130,131,2<$ often $>33,1 / 234,15-10035,7<$ white $>/ 1$ $42,143,1 / 244,20-15045,8-7 / 147,1-2 / 548,1-349,8 / 151,3 \& 4<$ shallowly $>/ 5$ 57,0.5-8 58,1 59,0.54 60,6-80 74,1/2 75,2/3 78,4<or narrowly ovoid> 79,7/1 80,1.5-18 81,4-12 86<Typically a northern temperate genus of about 35 species, Populus occurs throughout Europe, Asia, tropical Africa, Central America, and North America, of which 11 species are recognized. In Oklahoma, only 2 species are found. Populus is the Latin word for "tree of the people." Common names of the genus include Aspen, Poplar, and Cottonwood. $>87<\ln$ Oklahoma, Populus is represented in every county. $>88<$ Members of this genus occupy a variety of habitats throughout their distribution in North America. These quick growing trees are often prized for their ornamental value and are easily propagated primarily by using stem cuttings. Many members of the genus are easily susceptible to damage by storms and strong winds, often diminishing their ornamental value. Members of this wind and insect pollinated genus typically flower in early spring.> $89<$ Populus provides critical habitat for many wildlife species that take advantage of cover and herbage. Many species of Populus are cultivated as ornamental trees and shrubs. The wood is used as lumber, veneer, plywood, fiberboard, pulpwood, paper pulp, boxes, crates, food containers, cutting boards, interior furniture parts, and agricultural implements.>

\# Populus alba <L. White or Silver Poplar>/

1,1 2,1-2 3,5-20 4,1<cracking or furrowing basally> 5<grayish-white> 7 <orange brown to olive brown> 8,7<dense white> 10,3 11 <reddish-brown> 12,8-7<densely white> 13,5-8 14,5 15 <reddish-brown> 16,8-7<densely white> 18,6-10 19,4 20,35-75 21,40-80 22,4-1 23,5<often 3-5 palmately lobed> 25,1-5<narrowly> 26 <green to dark green> 27,128 <white to silver> 29,7 <dense white> $31,2<$ often> $33,134,15-6035,7<$ white> $42,143,144,20-6045,7-847,1-2$ 48,1-3 49,8 51,3\&4<shallowly> 57,0.5-1 59,0.5-1.5 60,6-14 74,1 75,3 78,4<narrowly> 79,7 80,1.5-4 81,4-6 $86<P$. alba is a morphologically and biologically distinct species whose classification has not been changed since its description by Linnaeus. The common name "abeie" is sometimes used in reference to this taxon.> $87<$ The white poplar is indigenous to central and southern Europe, western Siberia, and central Asia. European immigrants introduced the tree to North America in 1748. The tree has since become naturalized in many parts of the continent including many areas of Oklahoma.> 88<lt is an aggressive tree species that can take over portions of natural areas by shading out native vegetation. The species outcompetes many native tree and shrub species because it can grow in a variety of soils, produces large seed crops, and can resprout easily thus forming dense groves that are hard to eradicate. The trees grow best in full sunlight in areas such as fields, forest edges, and the margins of wetlands. Local spread of white poplar is by vegetative means, through root sprouts.> $89<$ The wood of many Poplars has significant commercial value. It is widely used as a source of pulpwood and for the manufacture of matchsticks, matchboxes, and fruit and flower baskets. Introduced originally as shade and ornamental tree, it now has very little ornamental value due to its susceptibility to a wide variety of pest, insects, and diseases.>
\# Populus deltoides <Bartr. ex Marsh. Cottonwood>/
1,1 3,20-30 4,4<deeply> 5 <tan to yellow green when younger, gray to light brown when older> $7<0$ ive-brown to orange-tan> 8,1 10,4 11 <tan to greenish-brown,resionous> 12,1 13,6-15 14,6 $15<\tan$ to greenish-brown,resionous> 16,1 18,10-25 19,7 20,30-100 21,30-95 22,2-4 23,6 25,1-5 $26<$ green to grayish green>27,1 $28<$ green to grayish green>29,1 31,2<often>33,2 34,30-100 35,1 42,1 43,3 44,35-150 45,1 47,5 49,1 51,5 57,1-8 59,1-4 60,20-80 61 <reddish-brown> 74,2 75,2-3 78,4 80,6-18 81,12 86<: Morphologically variable, the species is divided by some taxonomist into three subspecies on the basis of pedicel length, appearance of leaf apex, and presence of basilaminar glands. Some taxonomic and nomenclatural confusion has been caused due to its ability to hybridize with other members of the genus. The binomial synonym P. sargentii is encountered in historic literature. The common name "Cottonwood" relates to the cottony appearance exhibited by the seeds.>
87<: One of eight species of Populus native to North America, P. deltiodes is distributed throughout the eastern half of the continent with its western most expansion reaching the foothills of the Rocky Mountains. P. deltiodes occurs in every county in Oklahoma.> 88<: Germination and seed establishment require barren soils. Such requirements have led to the dominance of floodplains and bottomland hardwood forest. It is not restricted to this habitat and has often been found in upland habitats as well.> 89<: The wood is used as a source for paper pulp, pallets, crates, and food containers. The inner bark has long been used medicinally for treatment of headaches, fevers, and inflammations. The active component is the natural glycoside salicin, a precursor of salicylic acid; which is used in making aspirin. Cottonwoods provide critical habitat for many wildlife and livestock species.>

\# Salix <L. Willow>1

1,1-3 2,1-2-3 3,1.5-20 4,1/3<finely>/4<deeply>/4<irregularly>5<reddish-brown or gray or light gray or dark brown to blackish>6,1/2 $7<$ yellowish-brown to dark brown or light yellow to reddishbrown to grayish brown or gray> $8,4<$ gray $>/ 7-8<$ becoming glabrous $>/ 19,214,1 / 215<$ reddishbrown or yellowish-brown or $\tan >16,5 / 9 / 1$ 17,3/4 18,1-4 19,1/2-1<-lanceolate>/4-2<ovate->/3-6$5<$ narrowly> 20,5-50 21,20-170 22,1/2-3 23,1/2<variously> 24,2-15 25,2/1-3/4 30,2 $32<$ tan or yellow or yellowish to reddish-brown> 26 <shiny dark green or yellow-green or green> $27,1 / 11$ <along midrib> 28 <glaucous or yellowish to pale green or green> 29,4 <densely short>/1/4/1<along midrib>34,1-20 35,7/8/11/1 36 <absent or present, in which they are persistent on vigorous twigs or minute or caducous> 37,8/4-2 38,1-12 39,4/16/1 40,3/6 41,2/5 42,1/2 45,8 <variously>/1<at time of abscission> 46 <yellowish or dark brown to purple> 47,4-3/1/2 48,1-3.5 49,4/8/11 50,5/3-5 51,1/2 52,1/2 53,1/2 54,2-25 55,1/2 56,10-95 60,2/3-7 61<yellow or purple> $62,1 / 2<$ slightly or strongly> 63,0.4-0.7 64,8/11/1 66,1-2 68,1-6 69,1/2 70,2-40 71,1/3 72,10-100 73,0.5-2.5 75,1/3 76,1/2 77,0.1-0.8 78,7/4<narrowly> 79,4/1 80,3-8 81,10-12 83,1 84,2 $86<$ Salix is the ancient common name of the willows. Comprising some 400 species of cold and temperate areas of the northern hemisphere, with few in the southern hemisphere, the genus is represented by about 90 species in North America and by only six species in Oklahoma.> 87<In Oklahoma, Salix is represented in every county. $>88<$ With the exception of S. humilis, members of the genus most commonly occur in bottomland habitats and wet areas in upland sites. Salix species require barren soils for germination and seedling establishment. Although willows are difficult to propagate in quantity by seed, rootstocks of young branches sprout prolifically, making this the usual method of artificial regeneration. $>89<A$ variety of wildife take advantage of cover and herbage provided by members of the genus. Many species of Salix are cultivated as ornamental trees and shrubs. The only North American species of any commercial importance is S. nigra, which is used for furniture stock, boxes, crates, doors, and pulp. Used medicinally for millennia as an effective painkiller and treatment for inflammation, the natural glycoside salicin, the precursor of salicylic acid, was isolated in 1829 from the inner bark of Salix. Today it is the basic ingredient of aspirin, although the synthesized acetylsalicylic acid is used rather than the natural form.>
\# Salix amygdaloides <Anderss. Peachleaf Willow>1
1,1 3,4-20 4,4<irregularly> 5 <dark brown> 6,1 7 <gray to light yellow> 8,1 14,2
$15<$ yellowish-brown> 16,1 17,3 18,2.5-4 19,2-4<-lanceolate> 20,10-50 21,20-100

22,2-3 23,2<finely> 24,6-15 26 <yellowish-green> 27,128 <pale yellow to thickly white glaucous> 29,1 32 <yellowish> 25,2-1 34,5-20 35,1-7<sparsely, adaxially> $36<$, if present, minute and caducous or sometimes persistent on vigorous twigs> 37,8 38,3-12 41,2 42,2 45,8<densely> $46<$ pale yellow> 47,2-3 48,1.5-3 49,8 50,6<slightly> 51,1 52,2 53,2 54,10-20 55,2 56,25-60 60,3761 <yellow> 62,2<slightly> 63,0.5-0.6 64,11 66,1 67,2 69,2 70,4-40 71,3 72,25-70 73,1-2.5 $75,1 / 376,177,0.4-0.678,779,180,4-1281,983,184,286<$ The synonyms S. wrightii, S. nigra var. wrightii, and S. nigra var. amygdaloides are encountered in historical literature. $>87<A$ native species, S. amygdaloides is distributed across the continent with the exception of the SE $1 / 4$ of the United States. In Oklahoma, populations are restricted to the western panhandle.>88<A prolific seed producer, S. amygdaloides requires barren soils for germination and seed establishment.
Germination is rapid, usually within 12 to 24 hours after dispersal if a moist seedbed is reached. Adapted to a variety of soil types, S. amygdaloides is characteristically encountered in the moist, fertile sandy or alluvium soils of riparian areas such as banks of streams and rivers. S. amygdaloides is characteristic of early stages of succession. The trees are shade intolerant therefore they persist only along a river's edge where repeated flooding prevents other species from being established. Because of the soil-binding properties, the species helps stabilize streambank and protect them from erosion. Flowering occurs in April and May and fruiting follows in late May and early June.> 89<Like many members of the species, S. amygdaloides contains the glycoside salicin, a precursor of salicylic acid (aspirin), which has been used medicinally for millennia as an effective painkiller and treatment of inflammation. It belongs to a structurally complex riparian vegetation community that provides an array of habitats and supports many different species of animals.>
\# Salix caroliniana <Michx. Carolina Willow>/
1,1 3,1.5-10 4,3<finely> 5 <light gray> 6,1 7 <reddish to grayish-brown> 8,1-4<gray> 14,2 $15<$ reddish-brown> 16,9<sparsely> 17,3 18,1.5-4 19,2 20,7-20 21,50-170 22,2 23,2 24,6-12 25,2-1 26 <shiny dark green> 27,1-11<along midrib> 28 <thickly, white glaucous>29,1/4<along veins> $32<$ yellowish to reddish-brown>34,3-8 35,7-11<sparsely, adaxially> $36<$ persistent on vigorous twigs> $37,838,2-739,16$ <usually, adaxially> 40,6-3 41,2 42,2 45,8-1<at time of abscission> 46 <yellowish> 47,2-1<broadly>48,1-2 49,8 50,3-5 $51,252,253,254,4-2555,2$ 56,35-95 60,6<rarely 4 or $5>61$ <yellow> 62,1-2<strongly> 63,0.4-0.6 64,11 66,1-2 68,1-2 69,2 70,6-40 71,3 72,45-100 73,1-2 75,1 76,1 77,0.3-0.8 78,7 79,1 80,3-6 81,10-12 83,1 84,2 86<The synonyms S. Iongipes, S. nigra var. longipes, S. wardii, and S. occidentalis are encountered in historical literature. Closely related to the black willow, S. caroliniana has been known to hybridize with S. nigra when ranges intersect> $87<A$ native species, S. caroliniana is found from south Pennsylvania to south Florida, west to central Texas and north to southeast Nebraska. In Oklahoma, populations occur in northeast and southeast as well as isolated populations in southcentral and southwest part of the state.> 88<Classified as an obligate wetland species, S. caroliniana occurs in wet soils of rocky stream banks and other wet areas. Flowering occurs in late March and April and fruiting typically follows in May. $>89<S$. caroliniana provides cover for birds and small mammals. The wood of this tree is used in making toys, charcoal, and furniture.>
\# Salix exigua <Nutt. var. interior (Rowlee) Cronq. Sandbar Willow, Coyote Willow>/ 1,3 2,2 3,4-6 4,1-3<slightly>5<gray> 6,1 7 <light yellow to reddish-brown> 8,7/8<becoming glabrous> 14,1 15 <reddish-brown> 16,9<becoming glabrous> 17,4 18,1-4 19,1 20,3-10 21,45$10022,123,3$ <remotely or irregularly> 24,2-5 25,4 26<yellowish-green> 27,1-9<sparsely> $28<$ yellowish to pale-green> 29,1-9<sparsely> 32<yellowish-brown> 34,1-5 35,1 36<absent> 42,2 45,8<sparsely to densely>46<yellowish>47,3-2 48,1.5-3.5 49,11 50,3-5 51,2 52,2 53,2 54,2-25<1st catkins, $40-180 \mathrm{~mm}$ long on later catkins> $55,156,20-5060,261<$ reddish becoming yellow> 62,2<strongly to slightly> 63,0.4-0.7 64,8 66,2 68,2 71,3 72,35-70 73,0.4-1.5 75,3 76,2 77,0.1-0.2 78,7-4<narrowly> 79,1/9<long silky when mature> 80,5-8 81,12 83,1 84,2 86<S. exigua is divided by some taxonomists into a number of varieties on the basis of indumentum type, leaf shape, and the number of teeth on blade margins. One such variety is S. exigua var. interior. Although some classifications treat S. exigua and S. interior as separate species, the classification presented here follows that of Cronquist (1964), Argus (1986) and Dorn (1998) in
which S. interior is treated as a variety. Variety interior, considered the eastern phase of the Salix exigua complex by Argus (1986), differs from variety exigua, the western phase, in having leaves that are less densely sericeous, more distinctly toothed, and more conspicuously veined. In addition the catkins are more loosely flowered and capsules longer. The specific epithet, exigua, is the Latin term meaning small or short, referring to the usually small size of the plant.>87<A native species, S. exigua is distributed across the western two thirds of the continent. In Oklahoma, populations occur across the state.> $88<S$. exigua requires barren soils for germination and seed establishment. Unlike the other members of the genus in Oklahoma, S. exigua can reproduce vegetatively by sprouting from underground shoot buds in a process called suckering. Characteristic of early seral communities, S. exigua is commonly found in association with other members of the family, namely Populus deltoides and Salix nigra. S. exigua is characteristically encountered in the moist, fertile sandy or alluvium soils of riparian areas such as banks of streams and rivers but can occasionally be found in periodically wet areas in upland sites. Flowering can typically occur twice during a growing season, the first in April and May, then again during mid to later times during the summer. $>89<$ Like many members of the species, S. exigua contains the glycoside salicin, a precursor of salicylic acid (aspirin), which has been used medicinally for millennia as an effective pain killer and treatment of inflammation. S. exigua is used for erosion control along streambanks, lakeshore, and riparian area development and restoration. A common forage species for deer, S. exigua also provides wood and shelter for many game birds.>

\# Salix humilis <Marsh. Prairie Willow>/

1,3 2,3 3,1-3 5<reddish-brown> 6,2 7<yellowish brown to dark brown> 8,4<gray> 14,1 15 <reddish-brown> 16,5 17,4 18,2-5 19,3-5-6<narrowly> 20,5-20 21,30-85 22,1 23,1-4$2<$ remotely or irregularly> 24,7-13 25,2 26<shiny dark green> 27,1 28<glaucous> 29,4<densely short> $32<\tan >34,2-835,7 / 11 / 836<$ foliaceous on vigorous twigs, minute rudiments, or absent on older twigs> 37,2-4 38,3-7 39,4 40,3 41,2<sparsely> 42,145,8<sparsely> 46<dark brown to purple> 47,3-4 48,1-2 49,8 50,5 51,1 52,1 53,1<with 2 or 3 leafy bracts $>55,156,10-4060,2$ 61 <purple> 62,1 63,0.4-0.6 64,1-11<sparsely> 66,1 68,2 71,1 72,10-60 73,0.5-2 75,1/3 76,1 77,0.2-0.4 78,7-4<narrowly> 79,4 80,4-7 81,12 83,1 84,2 86<Some taxonomists recognize two varieties of S. humilis, based on leaf shape and abaxial leaf appearance. $>87<$ A native species, S. humilis occurs in southeastern Canada and distributed through the eastern part of the Great Plains, south to Texas. In Oklahoma, populations occur in the southeastern part of the state.> $88<$ As its common name, "prairie willow" suggests, S. humilis is found in upland prairies and savannas, especially in sandy soils. $>89<$ The species provides cover for small and medium sized mammals and deer and livestock occasionally eat the herbage.>
\# Salix nigra <Marsh. Black Willow>/
1,1 3,2-20 4,4<deeply>5<dark brown to blackish>6,1 7<light reddish-brown to darker grayishbrown> 8,1-4 14,2 15<tan> 16,1 17,3 18,1.5-2.5 19,2-1<-lanceolate> 20,7-20 21,40-150 22,2 23,2 24,7-13 25,3-2-1 26 <green> 27,1-11<sparsely along midrib> 28<green> 29,1-11<sparsely along midrib> 32 <yellowish-brown> 34,3-10 35,11<sparsely adaxially>36<caducous or sometimes persistent on vigorous twigs> 37,4-2 38,1-8 40,3 41,5 42,2 45,8-1<at time of abscission> $46<$ yellowish $>47,248,1-349,4$ 50,3-5 51,1 52,2 53,2 54,4-15 55,2 56,15-70 60,6 <rarely 4 or $5>61$ <yellow> 62,1-2<strongly> 63,0.4-0.6 64,11 66,1 68,2-3 69,2 70,5-35 71,1 72,30-100 73,0.5-2 75,3 76,1 77,0.2-0.4 78,7 79,1 80,3-5 81,10-12 83,1 84,2 86<Some taxonomists recognize numerous varieties of S. nigra, based on petiole length, blade shape, and blade width. S. nigra has been known to hybridize with S. amygdaloides (Salix x glatferteri Schnedider) when ranges intersect in other states, although this has not been encountered in collections of Oklahoma.> $87<$ A native species, S. nigra is distributed across the eastern half of the continent. In Oklahoma, populations occur across the state, except for the panhandle.> $88<$ Along with Populus deltoides, S. nigra occurs as a codominant in many early seral floodplain communities where it often forms gallery forest with distinct cohorts of different heights. S. nigra requires barren soils for germination and seed establishment. Due to the distance that can be traveled by the largely wind dispersed cottony diaspore, it is not restricted to bottomland habitat and has often been found in upland habitats, such as ditches, drainages, and other period wet
areas, where conditions for germination and seedling establishment are favorable. Salix nigra is very intolerant of shade. Very susceptible to fire damage, S. nigra has the ability to sprout from the base following fire. Flowering occurs in late March and April and fruiting typically follows in May.> 89<Like many members of the species, S. nigra contains the glycoside salicin, a precursor of salicylic acid (aspirin), which has been used medicinally for millennia as an effective pain killer and treatment of inflammation. S. nigra is the largest and only commercially important willow of about 90 species native to North America. Once used extensively for artificial limbs because of its light weight, the wood holds its shape well and does not splinter. The most common uses of the wood today is for furniture stock, boxes, crates, doors, and pulp. Rated fair in nutritional value, S. nigra is a food source for birds, deer, small mammals, and some livestock. S. nigra, along with associated species Populus deltoides, are commonly used as nesting habitat and cover by some non-game wetland bird species. Honeybees are common spring visitors, obtaining substantial amounts of pollen from flowers.>

Table 1.5 TONAT: instructions to generate word descriptions of taxa from CHARS in DELTA program.
*SHOW: Translate into natural language
*HEADING: Salicaceae DELTA
*LISTING FILE TONAT.LST *PRINT FILE TONAT.PRT
*DATA BUFFER SIZE 6000
*INPUT FILE SPECS.TXT
*SPECIAL STORAGE
*TRANSLATE INTO NATURAL LANGAUGE
*OMIT TYPSETTING MARKS
*REPLACE ANGLE BRACKETS
*OMIT CHARACTER NUMBERS
*OMIT INAPPLICABLES
*ITEM SUBHEADINGS
*LINK CHARACTERS 1-3 4-5 7-8 9-13 14-18
19-21 22-25 26-27 28-29 30-31 32-35 36-41
42-45 46-52 53-56 58-59 61-63 65-66 67-68
69-72 74-76 78-79 82-83 84-85
*INPUT FILE CHARS.TXT
*PRINT HEADING
*INPUT FILE ITEMS.TXT

TAXONOMIC TREATMENT OF THE SALICACEAE

SALICACEAE C.F.B. de Mirabel Willow Family

Plants trees or shrubs; dioecious. Leaves simple; alternate; venation pinnate; stipules present, persistent or caducous. Inflorescences catkins; axillary; bracts present, small or scale like, often deciduous. Flowers produced before or simultaneously with leaves; imperfect, staminate and pistillate similar; perianths absent or in 1-series. Sepals absent or modified into cup-like disk or 1 or 2 glands. Petals absent. Androecia bilaterally symmetrical. Stamens 1 or 2 to numerous; free or fused by filaments. Pistils 1; compound, carpels 2 or 4; sessile or short stipitate; stigmas 2 or 4, 2-lobed or not lobed; styles short or absent; ovaries superior; locules 1; placentation parietal or rarely basal. Nectaries absent or present. Fruits capsules. Seeds numerous; comose.

The family is represented in Oklahoma by 2 genera and 7 species. Its distribution is almost cosmopolitan with greatest diversity in north temperate and arctic regions. Ours are typically found in wet or moist habitats. The inner bark of both genera contains the precursor of aspirin and acetametaphin which has been used medicinally for headaches, fevers, and as an anti-inflammatory for thousands of years (Tyrl et al., 2003).

1. Leaves deltoid or ovate. Terminal buds present. Axillary bud scales 3-7. Bract margins fimbriate or laciniate. .. Populus
2. Leaves lanceolate or falcate or elliptic or linear or oblanceolate. Terminal buds absent. Axillary bud scales 1. Bract margins entire. Salix

Populus C. Linnaeus Cottonwood

Plants trees; 5-20 m tall. Bark smooth or deeply furrowed; grayish-white or gray to light brown. Twigs orange-brown to olive-brown; densely white tomentose or glabrous. Terminal buds present; oblong or lanceolate; reddish-brown or tan to greenish-brown and resinous; villous to densely white tomentose or glabrous; 515 mm long. Lateral buds oblong or lanceolate; reddish-brown or tan to greenish-brown and resinous; villous to densely white tomentose or glabrous; 625 mm long. Blades ovate or ovate to deltoid; $30-100 \mathrm{~mm}$ wide; $30-95 \mathrm{~mm}$ long; apices obtuse to acute or acuminate; margins sinuate or crenate; bases rounded to cordate; adaxial surfaces green to dark green or grayish-green; glabrous; abaxial surfaces white to silver or green to grayish-green; densely white tomentose or glabrous. Basilaminar glands present or absent. Petioles terete or flattened perpendicular to blades; 15-100 mm long; white tomentose or glabrous. Catkins flowering before leaves; densely or moderately flowered; 20150 mm long; villous to tomentose or glabrous; bracts ovate to obovate or flabellate; 1-3 mm long; villous or glabrous; margins ciliate and shallowly toothed or fimbriate. Pedicels $0.5-8 \mathrm{~mm}$ long. Floral disks present; $0.5-4 \mathrm{~mm}$ wide.

Stamens 6-80. Stigmas filiform or flabellate with fimbriate margins; 3-lobed or 4lobed. Ovaries ovoid or narrowly ovoid; tomentose or glabrous. Capsules 1.5-18 mm long. Seeds 4 to numerous.

Populus is a Latin word meaning "of the people." Other common names of the genus are aspen and poplar. Principally a northern temperate genus of about 35 species, Populus occurs throughout Europe, Asia, tropical Africa,

Central America, and North America (Dirr, 1998), where 11 species are recognized (Schreiner, 1974; USDA, 2003). In Oklahoma, only two species occur, but the genus is present in every county (Figure 1.1a-b). Rapid growing, trees are often prized for their ornamental value and are easily propagated, primarily via stem cuttings. They are, however, susceptible to damage by storms and strong winds, which diminishes their ornamental value (Taylor, 2001). Their wood is used for lumber, veneer, plywood, fiberboard, pulpwood, paper pulp, boxes, crates, food containers, cutting boards, interior furniture parts, and agricultural implements (Young and Young, 1992; Dirr, 1998; Taylor, 2001). Populus provides critical habitat for many wildlife species that take advantage of cover provided or consume the herbage (Little, 1998; Taylor, 2001; Tyrl et al., 2002). Members of this wind pollinated genus typically flower in early spring with fruiting and seed dispersal soon following.

1. Leaves ovate; abaxial surfaces white tomentose. Petioles terete. Catkin rachises tomentose. Capsules 3-5 mm long. P. alba
2. Leaves deltoid; abaxial surfaces glabrous. Petioles flattened. Catkin rachises glabrous. Capsules 15-20 mm long. \qquad P. deltiodes

Populus alba L. White Poplar, Silver Poplar. Plants trees; solitary to colonial by rhizomes; 5-20 m tall. Bark smooth cracking or furrowing basally; grayishwhite. Twigs orange brown to olive brown; densely white tomentose. Terminal buds ovoid; reddish-brown; villous to densely white tomentose; 5-8 mm long. Lateral buds ovoid; reddish-brown; villous to densely white tomentose; 6-10 mm long. Blades ovate; 35-75 mm wide; 40-80 mm long; apices obtuse to acute;
margins sinuate often 3-5 palmately lobed; bases rounded to narrowly cordate; adaxial surfaces green to dark green; glabrous; abaxial surfaces white to silver; densely white tomentose. Basilaminar glands 2. Petioles terete; 15-60 mm long; white tomentose. Catkins flowering before leaves; densely flowered; 20-60 mm long; tomentose to villous; bracts ovate to obovate; 1-3 mm long; villous; margins ciliate and shallowly toothed. Pedicels $0.5-1 \mathrm{~mm}$ long. Floral disks $0.5-$ 1.5 mm wide. Stamens 6-14. Stigmas filiform; 4-lobed. Ovaries narrowly ovoid; tomentose. Capsules $1.5-4 \mathrm{~mm}$ long. Seeds 4 to 6.
P. alba is a morphologically and biologically distinct species whose classification has not been changed since its description by Linnaeus. The common name "abele" is sometimes used in reference to this taxon. Indigenous to central and southern Europe, western Siberia, and central Asia, P. alba was introduced in North America in 1748 by European immigrants (Dirr, 1998). The taxon has since naturalized in many regions of the continent, including areas of Oklahoma (Figure 1.1a). Because of its ability to grow in a variety of soils, produce large seed crops, and form dense groves via root sprouts, it is an aggressive species that can take over portions of natural areas by outcompeting many native tree and shrub species. When shoots are cut or damaged it resprouts easily, thus making established colonies difficult to eradicate (Glass, 1990; Little, 1998). The trees grow best in full sunlight in fields, at forest edges, and at the margins of wetlands. The wood of P. alba has significant commercial value. It is widely used as a source of pulpwood and for the manufacturing of matchsticks, matchboxes, and fruit and flower baskets. Introduced originally as a
shade and ornamental tree, it now has little ornamental value due to its susceptibility to a wide variety of pest, insects, and diseases (Dirr, 1998). Flowering occurs in March and April, with fruiting and seed dispersal following in late April and May.

Populus deltoides Bartr. ex Marsh. Cottonwood, Eastern Cottonwood. Plants trees; 20-30 m tall. Bark deeply furrowed; tan to yellow green when younger gray to light brown when older. Twigs olive-brown to orange-tan; glabrous. Terminal buds lanceolate; tan to greenish-brown resinous; glabrous; 6-15 mm long. Lateral buds lanceolate; tan to greenish-brown resinous; glabrous; $10-25 \mathrm{~mm}$ long. Blades deltoid; 30-100 mm wide; 30-95 mm long; apices acuminate to obtuse; margins crenate; bases rounded to cordate; adaxial surfaces green to grayish green; glabrous; abaxial surfaces green to grayish green; glabrous. Basilaminar glands 0-2. Petioles flattened perpendicular to blade; 30-100 mm long; glabrous. Catkins flowering before leaves; loosely flowered; 35-150 mm long; glabrous; bracts flabellate; glabrous; margins fimbriate. Pedicels 1-8 mm long. Floral disks 1-4 mm wide. Stamens 20-80; anthers reddish-brown.

Stigmas flabellate with fimbriate margins; 3 to 4-lobed. Ovaries ovoid. Capsules 6-18 mm long. Seeds numerous.

Morphologically variable, the species is divided by some taxonomists into three subspecies on the basis of pedicel length, appearance of leaf apex, and presence of basilaminar glands (Eckenwalder, 1977; Cooper and Van Haverbeke, 1990). Some taxonomic and nomenclatural confusion exists due to its ability to hybridize with other members of the genus (Great Plains Flora

Association, 1986; Dirr, 1998). The synonym P. sargentii is encountered in the older literature (Gleason and Cronguist, 1963). The common name "cottonwood" reflects the cottony appearance exhibited by the masses of comose seeds. One of eight species of Populus native to North America, P. deltiodes is distributed primarily throughout the eastern half of the continent, but extends into the southwestern part of the United States (Eckenwalder, 1977; Little, 1979). Populus deltoides occurs in every county in Oklahoma (Figure 1.1b). Often forming gallery forests of distinct cohorts of differing heights, P. deltiodes requires barren soils for germination and seed establishment (Schreiner, 1974). Such requirements result in its codominance with Salix nigra in floodplains and bottomland hardwood forests (Cooper and Van Haverbeke, 1990; Tyrl et al, 2002). Due to the distance that the wind dispersed seeds can travel, it is not restricted to bottomland habitats and is often found in upland habitats, such as ditches, drainages, and other periodically wet areas, where conditions for germination and seedling establishment are favorable (Taylor, 2001). Although difficult to propagate in quantity by seed, rootstocks of young branches sprout prolifically, making this the usual method of artificial regeneration (Dirr, 1998). Cottonwoods provide important habitat for many wildlife and livestock species. The wood is used for pallets, crates, food containers, and paper pulp (Taylor, 2001). The pulp produces a very high-grade gloss paper (Cooper and Van Haverbeke, 1990). The inner bark has long been used medicinally for treatment of headaches, fevers, and inflammations. The active component is the natural glycoside salicin, a precursor of salicylic acid, which is used in making aspirin
(2002; Duke 1983). An important component of windbreak plantings in the Great Plains, P. deltiodes is frequently used as an ornamental to provide quick, yet rather temporary, esthetic and protective effects (Cooper and Van Haverbeke, 1990). Flowering occurs from early March through April, with fruiting and seed dispersal soon following in mid May through July.

Salix C. Linnaeus Willow

Plants shrubs to trees; solitary to colonial by rhizomes or by layering; $1.5-20 \mathrm{~m}$ tall. Bark smooth or finely deeply or irregularly furrowed; reddish-brown or gray or light gray or dark brown to blackish. Stems erect or decumbent. Twigs yellowish-brown to dark brown or light yellow to reddish-brown to grayish-brown or gray; gray pubescent or tomentose to villous becoming glabrous or glabrous. Terminal buds absent. Lateral buds oblong or conical; reddish-brown or yellowish-brown or tan; puberulent or sericeous or glabrous; apices acute or rounded; 1-4 mm long. Blades linear or lanceolate to linear-lanceolate or ovate to ovate-lanceolate or oblanceolate to oblong to narrowly obovate; $5-50 \mathrm{~mm}$ wide; 20-170 mm long; apices acute or acuminate to caudate; margins entire or variously serrate; 2-15 teeth per cm; bases cuneate or rounded to acute or acuminate; adaxial surfaces shiny dark green or yellow-green or green; glabrous or pilose along midribs; abaxial surfaces glaucous or yellowish to pale green or green; densely short pubescent or glabrous or pubescent or glabrous along midribs. Basilaminar glands absent. Petioles tan or yellow or yellowish to reddish-brown; 1-20 mm long; tomentose or villous or pilose or glabrous. Stipules absent or present, when present persistent on vigorous twigs or minute
or caducous; reniform or ovate to lanceolate; 1-12 mm long; pubescent or glandular or glabrous; apices acute or obtuse; margins serrate or glandular. Catkins flowering before or simultaneous with leaves; variously villous or glabrous at time of abscission; bracts yellowish or dark brown to purple; oval to oblong or ovate or obovate; 1-3.5 mm long; pubescent or villous or pilose; apices rounded or acute to rounded; margins entire or erose; persistent or deciduous after flowering. Staminate catkins sessile on main branches or borne on leafy lateral branchlets 2-25 mm long; densely or moderately flowered; 10-95 mm long. Stamens 2 or 3-7; anthers yellow or purple; straight or slightly or strongly recurved; 0.4-0.7 mm long; filaments villous or pilose or glabrous. Nectaries on adaxial surfaces 1 to 2 ; on abaxial surfaces 1 to several. Pistillate catkins sessile on main branches or borne on leafy lateral branchlets $2-40 \mathrm{~mm}$ long; densely or loosely flowered; 10-100 mm long. Stipes $0.5-2.5 \mathrm{~mm}$ long. Stigmas 2 or 4 -lobed; persistent or deciduous after flowering. Styles $0.1-0.8 \mathrm{~mm}$ long. Ovaries pyriform or narrowly ovoid; pubescent or glabrous. Capsules 3-8 mm long. Seeds 10 to numerous. Nectaries on adaxial surfaces 1; on abaxial surfaces absent.

Salix is derived from the Celtic word sallis, the ancient common name for willows, which is derived from 'sal' meaning 'near', and 'lis' meaning 'water' (Warren-Wren, 1973). A taxonomically confusing genus due to a high degree of morphological variability, Salix comprises some 400 species in cold and temperate areas of the northern hemisphere, with only few species in the southern hemisphere (Dorn, 1976; Burnsfeld et al., 1992; Argus, 1997). The
genus is represented in North America by about 90 species (USDA, 2003) and in Oklahoma by six species, where it is present in every county (Figure 1.1c-g). With the exception of S. humilis, members of the genus most commonly occur in bottomland habitats or wet areas in upland sites (Stephens, 1973). Plants require barren soils for germination and seedling establishment (Brinkman, 1974; Pitcher and McKnight, 1990). Although willows are difficult to propagate in quantity by seed, rootstocks of young branches sprout prolifically, making this the usual method of artificial regeneration (Tesky, 1992). A variety of wildilife species take advantage of cover and herbage provided by members of the genus (Uchytil, 1989b; Tesky, 1992; Little, 1998). Many species of Salix are cultivated as ornamental trees and shrubs. The only North American species of any commercial importance is S. nigra, which is used for furniture stock, boxes, crates, doors, and pulp (Pitcher and McKnight, 1990; Tesky, 1992). Used medicinally for millennia as an effective painkiller and treatment for inflammation, the natural glycoside salicin, the precursor of salicylic acid, was isolated in 1829 from the inner bark of Salix. Today it is the basic ingredient of aspirin, although synthesized acetylsalicylic acid is used rather than the natural form (Pitcher and McKnight, 1990; Newsholme, 1992). Members of this wind and insect pollinated genus typically flower in early spring.

1. Plants producing catkins before leaves. Stems decumbent. Staminate and pistillate catkins borne on main stems. Leaves obovate or oblanceolate
S. humilis
2. Plants producing catkins simultaneously with leaves or after leaves are formed. Stems erect. Staminate and pistillate catkins borne on leafy lateral twigs. Leaves linear or lanceolate or ovate.
3. Leaf surfaces similar, both green; abaxial surfaces not glaucous.
4. Plants trees; not rhizomatous. Leaves lanceolate to linear-lanceolate; margins with 7-13 teeth per cm. Stamens 4-6
S. nigra
5. Plants shrubs; rhizomatous. Leaves linear; margins with 2-6 teeth per cm. Stamens 2 . S. exigua var. interior
6. Leaf surfaces different; adaxial surfaces green or yellowish green; abaxial surfaces white or whitish green glaucous.
7. Adaxial leaf surfaces dark green. Margins of catkin bracts erose. Plants of eastern $3 / 4$ of state. \qquad S. caroliniana
8. Adaxial leaf surfaces yellow green. Margins of catkin bracts entire. Plants of western Panhandle.
S. amygdaloides

Salix amygdaloides Anderss. Peachleaf Willow. Plants trees; 4-20 m tall. Bark irregularly furrowed; dark brown. Stems erect. Twigs gray to light yellow; glabrous. Lateral buds conical; yellowish-brown; glabrous; apices acute; 2.5-4 mm long. Blades lanceolate to ovate-lanceolate; $10-50 \mathrm{~mm}$ wide; $20-100 \mathrm{~mm}$ long; apices acuminate to caudate; margins finely serrate; 6-15 teeth per cm; bases cuneate to rounded; adaxial surfaces yellowish-green; glabrous; abaxial surfaces pale yellow to thickly white glaucous; glabrous. Petioles yellowish; 5-20 mm long; glabrous to sparsely tomentose adaxially. Stipules if present minute and caducous or sometimes persistent on vigorous twigs; reniform; 3-12 mm long; margins serrate. Catkins flowering simultaneous with leaves; densely villous; bracts pale yellow; obovate to oblong; $1.5-3 \mathrm{~mm}$ long; villous; apices slightly inequalateral; margins entire; deciduous after flowering. Staminate catkins borne on leafy lateral branchlets $10-20 \mathrm{~mm}$ long; moderately flowered; 25-60 mm long. Stamens 3-7; anthers yellow; slightly recurved; 0.5-0.6 mm long;
filaments pilose. Nectaries on adaxial surfaces 1; on abaxial surfaces absent.
Pistillate catkins borne on leafy lateral branchlets 4-40 mm long; loosely flowered; 25-70 mm long. Stipes 1-2.5 mm long. Stigmas 2 or 4-lobed; persistent after flowering. Styles $0.4-0.6 \mathrm{~mm}$ long. Ovaries pyriform; glabrous. Capsules 4-12 mm long. Seeds 9. Nectaries on adaxial surfaces 1; on abaxial surfaces absent.
S. amygdaloides is sometimes referred to as the almondleaf willow, which more appropriately recognizes the origin of the specific epithet which stems from Amygdalus, the genus for almond (Warren-Wren, 1973). The synonyms S. wrightii, S. nigra var. wrightii, and S. nigra var. amygdaloides are encountered in the older literature. S. amygdaloides hybridizes with S. nigra (Salix x glatferteri Schnedider) where their distributions overlap (Stephens, 1973; Tesky, 1992); this phenomenon, however, has not been reported in Oklahoma populations. A native species, S. amygdaloides is distributed across the continent with the exception of the southeast quarter of the United States (Little, 1971; USDA, 2003). In Oklahoma, populations are restricted to the western end of the Panhandle (Figure 1.1c). A prolific seed producer, germination is rapid, usually 12 to 24 hours after dispersal if a moist seedbed is reached (Brinkman, 1974). Adapted to a variety of soil types, S. amygdaloides is characteristically encountered in the moist, fertile sandy or alluvial soils of riparian areas (Froiland, 1962; Dorn, 1977). The tree willow of the Panhandle, it is characteristic of early stages of succession and is usually associated with Populus deltoides. Trees are shade intolerant, persisting only along a river's edge where repeated flooding
prevents other species from being established. Because of its soil-binding properties, the species helps stabilize streambanks and protect from erosion (Uchytil, 1998a). It contributes to the structural complexity of riparian communities and thus provides an array of habitats that support many different species of animals (Stevens and Dozier, 2001). Flowering occurs in April and May and fruiting follows in late May and early June.

Salix caroliniana Michx. Carolina Willow. Plants trees; 1.5-10 m tall. Bark finely fissured; light gray. Stems erect. Twigs reddish to grayish-brown; glabrous to gray pubescent. Lateral buds conical; reddish-brown; sparsely sericeous; apices acute; 1.5-4 mm long. Blades lanceolate; $7-20 \mathrm{~mm}$ wide; $50-170 \mathrm{~mm}$ long; apices acuminate; margins serrate; 6-12 teeth per cm ; bases cuneate to rounded; adaxial surfaces shiny dark green; glabrous to pilose along midribs; abaxial surfaces thickly white glaucous; glabrous or pubescent along veins. Petioles yellowish to reddish-brown; 3-8 mm long; tomentose to sparsely pilose adaxially. Stipules persistent on vigorous twigs; reniform; 2-7 mm long; usually glandular adaxially; apices obtuse to acute; margins serrate. Catkins flowering simultaneous with leaves; villous to glabrous at time of abscission; bracts yellowish; obovate to broadly ovate; 1-2 mm long; villous; apices acute to rounded; margins erose; deciduous after flowering. Staminate catkins borne on leafy lateral branchlets 4-25 mm long; moderately flowered; 35-95 mm long. Stamens 6 rarely 4 or 5 ; anthers yellow; straight to strongly recurved; 0.4-0.6 mm long; filaments pilose. Nectaries on adaxial surfaces 1 to 2; on abaxial surfaces 1 to 2. Pistillate catkins borne on leafy lateral branchlets 6-40 mm
long; loosely flowered; 45-100 mm long. Stipes $1-2 \mathrm{~mm}$ long. Stigmas 2 -lobed; persistent after flowering. Styles $0.3-0.8 \mathrm{~mm}$ long. Ovaries pyriform; glabrous. Capsules $3-6 \mathrm{~mm}$ long. Seeds 10 to numerous. Nectaries on adaxial surfaces 1; on abaxial surfaces absent.

The synonyms S. longipes, S. nigra var. longipes, S. wardii, and S. occidentalis are encountered in the older literature (Argus, 1986; USDA, 2003). Closely related to S. nigra, S. caroliniana has been known to hybridize with it where their ranges intersect in the Gulf Coastal Plains region (Diggs et al., 1999). This phenomenon, however, apparently is not seen in populations of the Ozarks (Argus, 1986). A native species, S. caroliniana is found from southern Pennsylvania to southern Florida, west to central Texas, and north to southeastern Nebraska (Little, 1971; Argus, 1986). Populations occur primarily in eastern Oklahoma, with isolated populations in the Arbuckle and Wichita mountains (Figure 1.1d). Classified as an facultative wetland species (Reed; 1988), S. caroliniana occurs in wet soils of rocky stream banks and other wet areas. Flowering occurs in late March and April and fruiting typically follows in May.

Salix exigua Nutt. var. interior (Rowlee) Cronq. Sandbar Willow, Coyote Willow. Plants shrubs; colonial by rhizomes; 4-6 m tall. Bark smooth to slightly fissured; gray. Stems erect. Twigs light yellow to reddish-brown; tomentose or villous becoming glabrous. Lateral buds oblong; reddish-brown; sericeous becoming glabrous; apices rounded; 1-4 mm long. Blades linear; 3-10 mm wide; 45-100 mm long; apices acute; margins remotely or irregularly dentate; 2-6 teeth
per cm; bases acuminate; adaxial surfaces yellowish-green; sparsely sericeous to glabrous; abaxial surfaces yellowish to pale-green; sparsely sericeous to glabrous. Petioles yellowish-brown; 1-5 mm long; glabrous. Stipules absent. Catkins flowering simultaneous with leaves; sparsely to densely villous; bracts yellowish; oblong to obovate; 1.5-3.5 mm long; pilose; apices acute to rounded; margins erose; deciduous after flowering. Staminate catkins borne on leafy lateral branchlets 2-25 mm long on 1st catkins and 40-180 mm long on later catkins; densely flowered; 20-50 mm long. Stamens 2 ; anthers reddish becoming yellow; strongly to slightly recurved; 0.4-0.7 mm long; filaments villous. Nectaries on adaxial surfaces 2; on abaxial surfaces 2. Pistillate catkins loosely flowered; 35-70 mm long. Stipes 0.4-1.5 mm long. Stigmas 4-lobed; deciduous after flowering. Styles 0.1-0.2 mm long. Ovaries pyriform to narrowly ovoid; glabrous or long silky sericeous when mature. Capsules $5-8 \mathrm{~mm}$ long. Seeds numerous. Nectaries on adaxial surfaces 1; on abaxial surfaces absent.
S. exigua is divided by some taxonomists into a number of varieties on the basis of indumentum type, leaf shape, and the number of teeth on blade margins. One such variety is S. exigua var. interior. Although some classifications treat S. exigua and S. interior as separate species (Burnseld et al., 1992; USDA, 2003), the classification presented here follows that of Cronquist (1964), Argus (1986) and Dorn (1998) in which S. interior is treated as a variety. Variety interior, considered the eastern phase of the Salix exigua complex by Argus (1986), differs from variety exigua, the western phase, in having leaves that are less
densely sericeous, more distinctly toothed, and more conspicuously veined. In addition the catkins are more loosely flowered and capsules longer.

The specific epithet exigua means small or short, referring to the usually small size of the plants. A native species, S. exigua is distributed across the western two-thirds of the continent (Brinkman, 1974; Little, 1971). In Oklahoma, populations occur across the western two-thirds of the state, as well as isolated populations in eastern Oklahoma (Figure 1.1e). Unlike other members of the genus in Oklahoma, the species can reproduce vegetatively by sprouting from underground shoot buds in a process called suckering (Uchytil, 1989b). Characteristic of early seral communities, S. exigua is commonly associated with other members of the family, namely Populus deltoides and Salix nigra. The species is characteristically encountered in the moist, fertile, sandy or alluvial soils of riparian areas such as banks of streams and rivers, but can occasionally be found in periodically wet areas in upland sites. It is used for erosion control along streambanks, lakeshores, and for development and restoration of riparian areas. A common forage species for deer, S. exigua also provides shelter for many game birds (Stevens et al., 2000). Flowering typically occurs twice during the growing season, first in April and May and again mid to late summer.

Salix humilis Marsh. Prairie Willow. Plants shrubs; colonial by layering; 1-3 m tall. Bark reddish-brown. Stems decumbent. Twigs yellowish-brown to dark brown; gray pubescent. Lateral buds oblong; reddish-brown; puberulent; apices rounded; 2-5 mm long. Blades oblanceolate to obovate to narrowly oblong; 5-20 mm wide; 30-85 mm long; apices acute; margins entire to revolute to remotely or
irregularly serrate; 7-13 teeth per cm; bases cuneate; adaxial surfaces shiny dark green; glabrous; abaxial surfaces glaucous; densely short pubescent. Petioles tan; 2-8 mm long; tomentose or pilose or villous. Stipules foliaceous on vigorous twigs minute rudiments or absent on older twigs; lanceolate to ovate; 3-7 mm long; pubescent; apices acute; margins sparsely serrate. Catkins flowering before leaves; sparsely villous; bracts dark brown to purple; oblong to oval; 1-2 mm long; villous; apices rounded; margins entire; persistent. Staminate catkins sessile on main branches with 2 or 3 leafy bracts; densely flowered; 10-40 mm long. Stamens 2; anthers purple; straight; 0.4-0.6 mm long; filaments glabrous to sparsely pilose. Nectaries on adaxial surfaces 1; on abaxial surfaces 2.

Pistillate catkins densely flowered; 10-60 mm long. Stipes $0.5-2 \mathrm{~mm}$ long. Stigmas 2 or 4-lobed; persistent after flowering. Styles $0.2-0.4 \mathrm{~mm}$ long. Ovaries pyriform to narrowly ovoid; pubescent. Capsules 4-7 mm long. Seeds numerous. Nectaries on adaxial surfaces 1; on abaxial surfaces absent.

Some taxonomists recognize two varieties of S. humilis, based on leaf shape and abaxial leaf appearance. A native species, it occurs throughout the eastern part of the Great Plains, from southeastern Canada south to Texas (Stevens and Dozier, 2000). In Oklahoma, populations occur in the southeastern part of the state (Figure 1.1f). As its common name "prairie willow" suggests, S. humilis is found in upland prairies and savannas, especially in sandy soils (Stephens, 1973). The species provides cover for birds and small and mediumsized mammals and deer and livestock occasionally eat the herbage (Stevens and Dozier, 2000). Flowering occurs in April and May.

Salix nigra Marsh. Black Willow. Plants trees; 2-20 m tall. Bark deeply furrowed; dark brown to blackish. Stems erect. Twigs light reddish-brown to darker grayish-brown; glabrous to pubescent. Lateral buds conical; tan; glabrous; apices acute; 1.5-2.5 mm long. Blades lanceolate to linear-lanceolate; 7-20 mm wide; 40-150 mm long; apices acuminate; margins serrate; 7-13 teeth per cm; bases acute to cuneate to rounded; adaxial surfaces green; glabrous to sparsely pilose along midribs; abaxial surfaces green; glabrous to sparsely pilose along midribs. Petioles yellowish-brown; 3-10 mm long; sparsely pilose adaxially. Stipules caducous or sometimes persistent on vigorous twigs; ovate to lanceolate; 1-8 mm long; apices acute; margins glandular. Catkins flowering simultaneous with leaves; villous to glabrous at time of abscission; bracts yellowish; obovate; 1-3 mm long; pubescent; apices acute to rounded; margins entire; deciduous after flowering. Staminate catkins borne on leafy lateral branchlets $4-15 \mathrm{~mm}$ long; moderately flowered; $15-70 \mathrm{~mm}$ long. Stamens 6 rarely 4 or 5 ; anthers yellow; straight to strongly recurved; 0.4-0.6 mm long; filaments pilose. Nectaries on adaxial surfaces 1; on abaxial surfaces 2 to 3 . Pistillate catkins borne on leafy lateral branchlets $5-35 \mathrm{~mm}$ long; densely flowered; 30-100 mm long. Stipes $0.5-2 \mathrm{~mm}$ long. Stigmas 4 -lobed; persistent after flowering. Styles $0.2-0.4 \mathrm{~mm}$ long. Ovaries pyriform; glabrous. Capsules 35 mm long. Seeds 10 to numerous. Nectaries on adaxial surfaces 1; on abaxial surfaces absent.

Some taxonomists recognize numerous varieties of S. nigra, based on petiole length, blade shape, and blade width. S. nigra hybridizes both with the closely related S. amygdaloides (Salix x glatferteri Schnedider) and S. caroliniana where their ranges intersect (Argus, 1986). S. nigra is the largest and most widespread tree species of the genus. A native species, it is distributed. across the eastern half of the continent (Little, 1971; Duncan and Duncan, 1988). In Oklahoma, populations occur across the state, except for the western Panhandle (Figure 1.1g). Salix nigra occurs with Populus deltoides as a codominant in many early seral floodplain communities where it often forms gallery forests with distinct cohorts of differing heights. Due to the distances that the wind dispersed comose seeds travel, it is not restricted to bottomland habitats and is often found in upland sites such as ditches, drainages, and other periodically wet areas, where conditions for germination and seedling establishment are favorable (Argus, 1986). Very susceptible to fire damage, S. nigra has the ability to sprout from the shoot base following fire (Adams et al., 1982). It is the only commercially important willow of the 90 species native to North America (Pitcher and McKnight, 1990). Once used extensively for artificial limbs because of its light weight, the wood holds its shape well and does not splinter. The most common uses of the wood today are for furniture stock, boxes, crates, doors, and pulp (Pitcher and McKnight, 1990; Tesky, 1992). Rated fair in nutritional value, S. nigra is a food source for birds, deer, small mammals, and some livestock. Plants are commonly used as nesting habitat and cover by some nongame wetland bird species. Honeybees are common
spring visitors and obtain substantial amounts of pollen from the staminate flowers (Tesky, 1992). Flowering occurs in late March and April with fruiting and seed dispersal following in May.

Figure 1.1 County distribution maps of Salicaceae in Oklahoma based on herbaria collections. a) Populus alba, b) P. deltiodes, c) Salix amygdaloides, d) S. caroliniana, e) S. exigua, f) S. humilis, g) S. nigra.

LITERATURE CITED

Adams, D. E., R. C. Anderson, and S. L. Collins. 1982. Differential response of woody and herbaceous species to summer and winter burning in an Oklahoma grassland. Southwestern Naturalist. 27:55-61.

Argus, G. W. 1986. The genus Salix (Salicaceae) in the Southeastern United States. Systematic Botany Monographs 9:1-70.

Argus, G. W. 1997. Infrageneric classification of Salix (Salicaceae) in the New World. Systematic Botany Monographs 52:1-121.

Brinkman, K. A. 1974. Salix L. Willow. in C. S. Schopmeyer, ed. Seeds of Woody Plants in the United States. Agriculture Handbook, 450. U.S. Department of Agriculture, Forest Service, Washington, DC. Pages 746750.

Brummitt, R. K. and C.E. Powell. 1992. Authors of Plant Names. Royal Botanical Gardens, Kew, Surrey. United Kingdom.

Burnsfeld, S. J., D. E. Soltis, and P. S. Soltis. 1992. Evolutionary patterns and process in Salix sect. Longifoliae: Evidence from chloroplast DNA. Systematic Botany 17:239-256.

Cooper, D. T. and D. F. Van Haverbeke. 1990. Populus deltoides. in R. M. Burns and B. H. Honkala, eds. Silvics of North America: Volume 2. Hardwoods.

Agriculture Handbook 654. U.S. Department of Agriculture, Forest Service, Washington, DC.

Correll, D. S. and M.C. Johnston. 1979. Manual of the Vascular Plants of Texas. The University of Texas at Dallas, Richland, Texas.

Cronquist, A. 1964. Salix in C. L. Hitchcock, A. Cronquist, M. Ownbey, and J.W. Thompson. Vascular Plants of the Pacific Northwest. Part 2. University of Washington Press, Seattle, WA. Pages 37-71.

Dallwitz, M. J. and T.A. Paine. 1986. User's Guide to DELTA System: A General System for Processing Taxonomic Descriptions. CSIRO Division of Entomology, Canberra, Australia.

Diggs, G. M., B. L. Lipscomb, and R. J. O'Kennon. 1999. Shinners \& Mahler's Illustrated Flora of North Central Texas. Botanical Research Institute of Texas., Fort Worth, TX.

Dirr, M. A. 1998. Manual of Woody Landscape Plants: Their Identification, Ornamental Characteristics, Culture, Propagation and Uses. Fifth Edition. Stipes Publishing L.L.C., Champaign, IL.

Dorn, R. D. 1976. A synopsis of American Salix. Canadian Journal of Botany 54:2769-2789.

Dorn, R. D. 1977. Willows of the Rocky Mountain states. Rhodora 79:390-429.

Dorn, R. D. 1994. North American Salix (Salicaceae): typifications and notes.

> Dorn, R. D. 1998. A taxonomic study of Salix section Longifoliae (Salicaceae). Brittonia 50:193-210.

> Duke, J. A. 1983. Populus deltoides Bartr. ex. Marsh. in J. A. Duke, ed. Handbook of Energy Crops. Center for New Crops and Plants Products, Purdue University. West Lafayette, IN. www.hort.purdue.edu/newcrop/duke_energy/Populus_deltoides.html.

Duncan, W. H. and M. B. Duncan. 1988. Trees of the Southeastern United States. The University of Georgia Press, Athens, GA.

Eckenwalder, J. E. 1977. North American cottonwoods (Populus, Salicaceae) of sections Abaso and Aigeiros. Journal of the Arnold Arboretum 58:193208.

Froiland, S. G. 1962. The genus Salix (Willows) in the Black Hills of South Dakota. U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO.

Glass, W. 1990. White Poplar; Vegetation Management Guideline Vol.1, No. 25.
Illinois Nature Preserves Commission.

Gleason, H. A. and A. Cronquist. 1963. Manual of Vascular Plants of Northeastern United States and Adjacent Canada. D. Van Nostrand Company, Inc., Princeton, NJ.

Gray, A. 1950. Gray's Manual of Botany, Eighth edition. American Book Company, New York, New York.

Great Plains Flora Association. 1986. Atlas of the Flora of the Great Plains. University of Kansas Press., Lawrence, Kansas.

Holmgren, P. K. and N. H. Holmgren. 2003. Index Herbariorum, Part I: The Herbaria of the World, Eighth Edition. NYBG Press, The New York Botanical Garden, Bronx, New York. http://www.nybg.org/bsci/ih/ih.html.

Little, E. L. Jr. 1971. Atlas of United States Trees. Vol. 1. Conifers and Important Hardwoods. Misc. Publ. 1146. U.S. Department of Agriculture, Forest Service, Washington, D.C.

Little, E. L. Jr. 1979. Checklist of United States Trees (Native and Naturalized). Agriculture. Handbook. 541. U.S. Department of Agriculture, Forest Service, Washington, DC.

Little, E. L. Jr. 1998. Forest Trees of Oklahoma. Oklahoma Forestry Services, State Department of Agriculture, Oklahoma City, OK.

Newsholme, C. 1992. Willows: The Genus Salix. B.T. Batsford Ltd, London, UK.

Pitcher, J. A. and J.S. McKnight. 1990. Salix nigra. in R. M. Burns and B. H. Honkala, eds. Silvics of North America: Volume 2. Hardwoods. Agriculture Handbook 654. U.S. Department of Agriculture, Forest Service, Washington, DC.

Reed, Jr. P. B. 1988. National List of Plant Species That Occur in Wetlands: National Summary. U.S. Fish \& Wildlife Service Biological Report 88:1244.

Schreiner, E. J. 1974. Populus L. Poplar. Pages 645-655 in C. S. Schopmeyer, ed. Seeds of Woody Plants in the United States. Agriculture Handbook, 450. U.S. Department of Agriculture, Forest Service, Washington, DC.

Stephens, H. A. 1973. Woody Plants of the North Central Plains. The University Press of Kansas, Lawrence, KS.

Stevens, M., G. Fenchel, and C. Hoag. 2000. Coyote Willow, Salix exigua Nutt., Plant Guide. Natural Resource Conservation Service, United States Department of Agriculture, Washington D.C.

Stevens, M. and I. Dozier. 2000. Prairie Willow, Salix humulis Marsh., Plant Guide. Natural Resource Conservation Service, United States Department of Agriculture, Washington D.C.

Stevens, M. and I. Dozier. 2001. Peachleaf Willow, Salix amygdaloides Anderrs., Plant Guide. Natural Resource Conservation Service, United States Department of Agriculture, Washington D.C.

Taylor, J. L. 2001. Populus deltiodes. Fire Effects Information System, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. http://www.fs.fed.us/database/feis.

Tesky, J. L. 1992. Salix nigra. Fire Effects Information System, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. http://www.fs.fed.us/database/feis.

Tyrl, R. J., R. E. Masters, and T. G. Bidwell. 2002. Field Guide to Oklahoma Plants. Oklahoma State University, Stillwater, OK.

Tyrl, R. J., S. C. Barber, P. Buck, J. R. Estes, P. Folley, L. K. Magrath, C.E.S. Taylor, and R. A. Thompson. 2003. Keys and Descriptions for the Vascular Plants of Oklahoma. Flora Oklahoma Incorporated, Noble, OK.

Uchytil, R. J. 1989a. Salix amygdaloides. Fire Effects Information System, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. http://www.fs.fed:us/database/feis.

Uchytil, R. J. 1989b. Salix exigua. Fire Effects Information System, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. http://www.fs.fed.us/database/feis.

USDA, NRCS. 2003. The PLANTS Database, Version 3.5. National Plant Data Center, Baton Rouge, LA. http://plants.usda.gov.

Warren-Wren, S. C. 1973. The Complete Book of Willows. A.S. Barnes and Co., Inc., Cranbury, NJ.

Waterfall, U. T. 1969. Keys to the Flora of Oklahoma, 4th ed. Published by the author for sale by Student Union Bookstore., Oklahoma State University.

Stillwater, OK.

Watson, L. and M. J. Dallwitz. 2000. The Families of Flowering Plants: Descriptions, Illustrations, Identification, and Information Retrieval. http://biodiversity.uno.edu/delta/.

Young, J. A. and C. G. Young. 1992. Seeds of Woody Plants in North America. Dioscorides Press, Portland, OR.

MOLECULAR SYSTEMATIC INVESTIGATIONS OF ECHINACEA (ASTERACEAE: HELIANTHEAE) BASED ON NUCLEAR RIBOSOMAL ITS AND ETS SEQUENCES

INTRODUCTION

Described by Conrad Moench in 1794 Echinacea is a North American genus comprising 4-9 species. It is distributed primarily in the Midwest (Figure 2.1). Taxonomists differ in their opinions as to its position in the Asteraceae (Snyder, 1991; Baskin et al., 1993). Using only morphological characters, Cox and Urbatsch (1990) and Bremer (1994) classify the genus in the subtribe Rudbeckiinae. Related genera of the tribe include Rudbeckia, Ratibida, and Dracopsis. In contrast, Urbatsch and coworkers (2000) using chloroplast DNA restriction site data, suggested Echinacea to belong in the Zinniinae. Related genera of this tribe are Heliopsis, Sanvitalia, and Zinnia.

Likewise, there are differences of opinion as to the number of species. In the last 40 years, taxonomists have followed the classification scheme of Ronald L. McGregor (1968) or Arthur Cronquist (1955, 1980); both of whom based their systems on morphological characters. McGregor recognized nine species and four varieties, whereas Cronquist circumscribed only four species and four varieties (Table 2.1). Binns and coworkers (2002a) recently proposed a revision of the genus based on a morphometric analysis. The results of their work agree with the scheme of Cronquist except for their recognition of E. pallida var.
tennesseensis as a distinct variety rather than an eastern outlier of E. pallida var. angustifolia as proposed by Cronquist (Table 2.1).

Advances in molecular biology, especiaily in the techniques of sequencing DNA, now permit from a molecular perspective an examination of the taxonomic position of Echinacea in the family and the relationship of its species. Thus the objective of this study was to construct a phylogeny of the genus using nucleotide sequence data from the internal transcribed spacer (ITS) and external transcribed spacer (ETS) regions of nuclear ribosomal DNA (nrDNA) to examine the monophyly and circumscription of Echinacea and its species, and possibly provide evidence in support of the classification proposed by McGregor (1968), Cronquist (1955, 1980), or Binns and coworkers (2002a). I present here an analysis of DNA sequences from the nine species recognized by McGregor (1968) and from six related genera in the Asteraceae.

Figure 2.1. Distribution of Echinacea Moench in North America (McGregor, 1968; Binns et al., 2002)

Table 2.1. Taxonomic treatments of Echinacea Moench. Synonyms are indented and placed in brackets.

a Suggested that plants might be formally recognized as a variety, but was not doing so at this time.
b Suggested that plants formerly recognized as E. tennesseensis are merely eastern outliers.

METHODS AND MATERIALS

The ITS and ETS regions are part of the 18S-26S nrDNA multigene family which includes the $18 \mathrm{~S}, 5.8 \mathrm{~S}$, and 26 S subunits. This multigene family is highly repeated in the plant nuclear genome, allowing for a high level of detection, amplification, cloning, and sequencing of nrDNA (Baldwin et al., 1995).

ITS is one of the most widely used sources of characters for phylogenetic studies of closely related plant taxa. Many of the present-day phylogenies, at least at the family and genus level, use nuclear sequences based on ITS (Savard et al., 1993; Sang et al., 1995a; Bayer et al., 1996; Bena et al., 1998; Prather and Jansen, 1998). Illustrative of this are recent publications presenting data attempting to resolve the phylogeny of many members of the Asteraceae (Baldwin et al., 1995; Sang et al., 1995b; Urbatsch and Jansen, 1995; Urbatsch et al., 2000).

The popularity of the ITS and ETS regions can be attributed to the relatively high rate of nucleotide substitution resulting in rapid sequence evolution. This allows for systematic comparison of relatively recently diverged taxa (Liston et al., 1996; Moritz and Hillis, 1996). Using these gene regions offers increased phylogenetic precision over that of restriction site mapping techniques typical of studies incorporating chloroplast DNA (Baldwin et al., 1995).

The ITS comprises two regions, ITS-1 and ITS-2, located on either side of the 5.8 S subunit, which exhibits very low levels of sequence variation (Figure
2.2). An appealing aspect of using ITS is that this region can be readily polymerase chain reaction (PCR) amplified and sequenced using universal primers. A limiting factor in using ITS to examine angiosperm phylogeny is that it provides a small amount of sequence data. Baldwin and coworkers (1995) report ITS region as varying from 565-700 base pairs (bp) in length, although I have encountered sequences as long as 900 bp . Excluding the 5.8 S nrDNA region ($163-165 \mathrm{bp}$), about 400-700 bp of ITS-1 and ITS-2 are phylogenetically informative.

Until recently, most of the nrDNA data used in phylogenetic studies involved only ITS, and the phylogenetic utility of ETS was relatively unexplored, with the exception of few plant groups (Andreasen and Baldwin, 2001). ETS is part of the larger intergenic spacer (IGS), which also includes the nontranscribed spacer (NTS) (Figure 2.2). ETS is longer than ITS-1 and ITS-2 combined, with products varying between 800 and $1,900 \mathrm{bp}$ in length for members of the Asteraceae (Linder et al., 2000). Its also appears to have the similar rapid evolution characteristic of the ITS region. Comparisons of ITS and ETS sequence data in the Calycadenia/Osmadenia complex by Baldwin and Markos (1998) suggested the evolutionary rate in ETS is 1.3 to 2.4 times faster than that of ITS. They concluded that ETS fulfills the need for additional nucleotide characters to augment the small number of sites present in ITS and predicted that ETS will prove useful in increasing resolution and support for nrDNA-based phylogenies. This has recently been the case in a number of phylogenetic studies involving members of the Asteraceae that incorporate sequence data
from the two gene regions, e.g., Clevinger and Panero (2000); Linder and coworkers (2000); Chan and coworkers (2002); Lee and coworkers (2002); and Markos and Baldwin (2002).

The major disadvantage of using ETS sequence data involves the amplification process. Exhaustive efforts to construct universal primers for ETS amplification by Baldwin and Markos (1998) and Linder and coworkers (2000) have yielded substantial primer possibilities for amplification of the ETS region over a wide range of taxa. Finding the best fitting primer for the taxa in question is a tedious process; one which this investigator was not spared.

Taxa Sampled. Seventeen taxa were examined in this study-the 11 taxa of Echinacea recognized by McGregor (1968), and 6 outgroup species (Table 2.2). Only one specimen of each taxon was used. The outgroup species are representative of the Rudbeckiinae and Zinniinae, the two subtribes in which Echinacea has been positioned (Cox and Urbatsch, 1990; Bremer, 1994; and Urbatsch et al., 2000). With the exception of Sanvitalia fruticosa, all of the outgroup taxa are native to North America north of Mexico and are typically found associated with species of Echinacea. Sanvitalia fruticosa is a Mexican and Central American genus of about seven species (Bremer, 1994).

Genomic DNA Extraction. Established molecular techniques were used to extract total genomic DNAs from the taxa (Table 2.2). Quality DNA was extracted from leaves of herbarium material $(20-40 \mathrm{mg})$, silica gel dried leaf material ($20-40 \mathrm{mg}$), and fresh material (approximately 100 mg). Many of the ITS regions of taxa were isolated using the 2 X CTAB protocol of Doyle and Doyle
(1987), whereas the ETS region of all taxa were isolated using plant DNA extraction kits-DNeasy Plant Mini Kit (Qiagen, Clarita, CA) and REDExtract-NAmp ${ }^{\text {TM }}$ Plant PCR Kit (Sigma-Aldrich, St. Louis, MO).

Sequences of ITS-1 and ITS-2 for Zinnia grandiflora (ZGU74397 and ZGU74446), Heliopsis helianthoides (HHU73154 and HHU74424), and Sanvitalia fruticosa (SFU74394 and SFU74443 were obtained from GenBank ${ }^{\circledR}$.

Polymerase Chain Reaction. Total genomic DNA (template DNA), primers, and the ready-to-use solutions-Taq PCR Master Mix (Qiagen, Clarita, CA) and REDExtract-N-Amp ${ }^{\text {TM }}$ Plant PCR Kit (Sigma-Aldrich, St. Louis, MO)—were used in the amplification of the ITS and ETS regions by the polymerase chain reaction (PCR). Appropriate primers were obtained from Integrated DNA Technologies (IDT, Coralville, IA). Primers ITS4 (5'-TCCTCCGCTTATTGATATGC-3') and ITS5 (5'-GGAAGTAAAAGTCGTAACAAGG-3') designed by White and coworkers (1990), were used in the amplification of the ITS region. PCR was conducted in a 9600 Perkin-Elmer thermal cycler using a modified protocol of Clevinger and Panero (2000). This protocol involved an initial denaturation of $95^{\circ} \mathrm{C}$ for 4 minutes followed by 33 cycles of $95^{\circ} \mathrm{C}$ for 45 seconds (denaturation), $48^{\circ} \mathrm{C}$ for 45 seconds (annealing of primers), and $72^{\circ} \mathrm{C}$ for 1 minute. The reaction was terminated with an 8 -minute primer extension at $72^{\circ} \mathrm{C}$ and then held at $4^{\circ} \mathrm{C}$.

Primers 18S-ETS (5'-ACTTACACATGCATGGCTTAATCT-3') and ETS-Hel-1 (5'-GCTCTTTGCTTGCGCAACAACT-3') (Baldwin and Markos, 1998) were used for amplification of the ETS region. PCR was conducted in a PTC-0150 Mini Cycler (MJ Research Inc., Waltham, MA) using the protocol of Baldwin and

Markos, (1998). This protocol involved an initial denaturation of $97^{\circ} \mathrm{C}$ for 1 minute followed by 40 cycles of $97^{\circ} \mathrm{C}$ for 10 seconds (denaturation), $55^{\circ} \mathrm{C}$ for 30 seconds (annealing of primers), and $72^{\circ} \mathrm{C}$ for 20 seconds, and concluding with $72^{\circ} \mathrm{C}$ for 7 minutes (for completion of primer extension). The final product was held at $4^{\circ} \mathrm{C}$.

Sequencing and Sequence Alignment. ITS nucleotide sequences of PCR products were determined using automated cycle-sequencing and an $A B I$ Prism 377 DNA Sequencer (Perkin-Elmer Applied Biosystems, Foster City, CA) at the University of Oklahoma. The sequences were assembled and edited using Sequencer ${ }^{\text {TM }} 4.0$ (Gene Codes Corp., Ann Arbor, MI).

All sequences were aligned using the program Clustal X (Thompson et al., 1997) with default settings. Afterwards it was necessary to make some manual adjustments to the alignment.

Sequences from this study that are new to science were submitted to GenBank ${ }^{(3)}$ using the protocols of the National Center for Biotechnology Information.

Phylogenetic Analyses. Sequences were imported into PAUP* 4.0 (Swofford, 2002), from which phylogenies were generated. Characters were equally weighted and their states were unordered. Parsimony analyses were carried out with gaps treated as missing data, and heuristic tree search options included RANDOM sequence addition for 500 replicates—each of which held 10 trees-, following tree bisection-reconstruction (TBR) branch swapping, MulTrees on, and steepest descent off.

Bootstrap analyses of 500 replicates were conducted to measure relative support for clades (Felsenstein, 1985); heuristic tree search options were simple sequence addition, TBR branch swapping, MulTrees on, and steepest decent off. In bootstrap analysis, multiple randomized matrices are constructed from the data by a random sampling of characters with replacement of the characters. From these matrices, most-parsimonious trees are constructed and used to form a consensus tree. The bootstrap values given indicate a 50% or higher representation of a branch in the parsimonious trees produced. Only those branches that receive a 50% or higher value are retained in the consensus tree, all others are collapsed (Judd et al., 2002).

To further evaluate the relative robustness of clades found in the most parsimonious trees, decay index values were determined. The decay value indicates how many extra steps are required to find a tree without a particular branch or clade. So the higher the decay value, the more robust a particular clade (Donoghue et al., 1992).

Robustness and topology of the trees were evaluated using the consistency index (Cl), the retention index (Rl), and the rescaled consistency index (RC). The consistency index measures homoplasy by dividing the minimum amount of evolutionary steps by the actual tree length. Cl falls between 0 and 1. The lower the Cl value, the more characters contradict the evolutionary tree (Wiley et al., 1991). In other words, the closer to one the better the topology. The retention index differs in that it accounts for multiple independent origination events for derived characters. This index equals the
maximum tree length minus the actual tree length, divided by the maximum length minus the minimum length (Judd et al., 2002). Not all characters may be contributing to the tree topology (e.g. autapomorphies). In cases like this the Cl may be an overestimate. This may be overcome by calculating a rescaled consistency index (RC), sometimes referred to in the literature as " Cl excluding uninformative characters." The RC is simply calculated by multiplying the Cl and RI. All three of these indices are indicators of the validity of the tree produced.

Figure 2.2. Structure of 18S-26S nrDNA multigene family (not drawn to scale). Taken from Markos and Baldwin (2002).

Table 2.2. Taxa examined, sources of leaf material, preparation methods, and DNA extraction methods. Classification follows McGregor (1968). Herbaria acronyms follow Holmgren and Holmgren (2003)

	ITS	ETS	
Taxa	Leaf Sourse /		
	DNA Extraction Method		
Echinacea angustifolia DC. var. angustifolia	OKL / CTAB ${ }^{\text {a }}$	Fresh / DNeasy	
Echinacea angustifolia DC. var. strigosa R.L. McGregor	OKL / CTAB	Fresh / XNAPS	
Echinacea atrorubens Nutt.	SiGel / CTAB	Fresh / DNeasy	
Echinacea laevigata S.F. Blake		KANU / DNeasy	
Echinacea pallida (Nutt.) Nutt.	OKLA / CTAB	Fresh / XNAPS	
Echinacea paradoxa (J.B.S. Norton) Britt. var. neglecta R.L. McGregor	OKL / CTAB	KANU / DNeasy	
Echinacea paradoxa (J.B.S. Norton) Britt. var. paradoxa	OKL / CTAB	KANU / DNeasy	
Echinacea purpurea (L.) Moench	OKL / CTAB	Fresh / DNeasy	
Echinacea sanguinea Nutt.	OKL / CTAB	KANU / DNeasy	
Echinacea simulata McGregor	MO / CTAB	KANU / DNeasy	$\stackrel{m}{\square}$
Echinacea tennesseensis (Beadle) Small	MO / CTAB	KANU / DNeasy	N
Dracopis amplexicaulis (Vahl) Cass.	SiGel / CTAB	Fresh / XNAPS	
Heliopsis helianthoides Sweet	GenBank ${ }^{\text {® }}$	KANU / DNeasy	
Ratibida columnifera (Nutt.) Wooton \& Standl.	SiGel / CTAB	Fresh / XNAPS	
Rudbeckia hirta L.	SiGel / CTAB	Fresh / XNAPS	
Sanvitalia fruticosa Hemsl.	GenBank ${ }^{\text {® }}$	KANU / DNeasy	
Zinnia grandiflora Nutt.	GenBank ${ }^{(1)}$	KANU / DNeasy	

OKL: Robert Bebb Herbarium, University of Oklahoma, Norman
OKLA: Oklahoma State University, Stillwater
MO: Missouri Botanical Garden, St. Louis
KANU: R.L. McGregor Herbarium, University of Kansas, Lawrence
${ }^{a}$ DNA extracted without regard for variety represented.

GenBank ${ }^{\circledR}$: sequences acquired from GenBank
SiGel: silica gel dried leaf material
Fresh: fresh leaf material
CTAB: $2 \times$ CTAB protocol of Doyle and Doyle (1987)
DNeasy: DNeasy Plant Mini Kit (Qiagen, Clarita, CA)
XNAPS: REDExtract-N-Amp ${ }^{\text {TM }}$ Plant PCR Kit (Sigma-Aldrich, St. Louis, MO)

RESULTS

ITS—Genomic DNA Extraction. High-quality DNA was extracted from the ITS region of all ingroup taxa and three of the six outgroup taxa (Dracopis amplexicaulis, Ratibida columnifera, and Rudbeckia hirta., in the spring of 2001. It should be noted that not all taxa recognized by McGregor (1968) were included as part of the ingroup taxa. DNA was extracted from Echinacea angustifolia without regard for the variety represented (i.e. var. angustifolia and strigosa). Also, DNA from E. laevigata was not obtained because of its limited availability due to its federally threatened status (U.S. Fish \& Wildlife Service, 1999). Herbarium material of E. laevigata has since been acquired but difficulty in extracting quality DNA for PCR amplification has hindered the efforts of including the species in this molecular systematic study up to now.

ITS-PCR, Sequencing, and Sequence Alignment. Primers ITS4 and ITS5 provided quality PCR amplification of the ITS region. Amplification of the 18S26 S nrDNA ITS region (ITS-1, 5.8S, and ITS-2 combined) and subsequent alignment resulted in an average fragment length of 867 base pairs (ranging from 804 bp in Ratibida columnifera to 918 bp in E. tennesseensis) for all taxa studied (Table 3). This included 165 bp for the 5.8 S subunit. Proper alignment of ITS-1 and ITS-2 sequences required the introduction of minimal gaps for most taxa, resulting in the total of 743 sites (414 for ITS-1, 329 for ITS-2).

ITS-Phylogenetic Analyses. Of the 918 characters, 647 were constant. The number of parsimony uninformative characters (autapomorphies) was 136, and the number of parsimony informative characters (synapomorphies) was 135.

The heuristic search of ITS sequences resulted in two most parsimonious trees requiring 416 evolutionary steps (a.k.a. tree length). The consensus tree, with a consistency index (Cl) of 0.803 , a retention index (RI) of 0.733 , and a rescaled consistency index (RC) of 0.588 , is presented in Figure 2.3. Support for the Echinacea clade—using bootstrap values-was very strong (100\%) while infrageneric branches were very weakly supported (56, 61, 52\%).

ETS—Extraction. Numerous unsuccessful attempts were made to amplify the ETS region of the 17 taxa. PCR product was obtained from only six: E. atrorubens, E. paradoxa var. paradoxa and var. neglecta, S. fruticosa, Rudbeckia hirta, and Ratibida columnifera. Because PCR product from the remaining taxa was not obtained, these six were not sequenced and included in the phylogenetic analysis. Inability to obtain amplified ETS product is most likely attributed to the existence of phenolics and polysaccharides in the 11 taxa.

These compounds are known inhibitors in extraction techniques (Michael Berg, Gnanambal Naidoo, personal communication; Couch and Fritz, 1990; Rether et al., 1993; Savolainen, 1995, and Buldewo and Jaufeerally-Fakim, 2002.)

DISCUSSION

Phylogenetic analysis of the ITS region for Echinacea has generated a well-supported cladistic hypothesis for the placement of the genus in the Zinniinae as suggested by Urbatsch and coworkers (2000) (Figure 2.3). Echinacea is monophyletic with 100% bootstrap support. This is supported by studies of Urbatsch and Jansen (1995) and Urbatsch and coworkers (2000) who looked at the phylogenetic affinities among the coneflower genera of the Asteraceae based on chloroplast DNA and ITS sequences.

The relationships among species of the genus, however, are not well defined. In this thesis, I had hoped to elucidate the relationships and provide evidence in support of one of the previously published treatments. ITS data by themselves do not provide overwhelming support for any of the three classification schemes. Low levels of intrageneric ITS variation illustrated by very small branch lengths-some as low as zero—as well as decay values of one, preclude detailed phylogenetic inferences and any consideration of classification would be premature until better resolution can be provided by complementary data (such as ETS). A number of observations can be drawn from the topology produced using only ITS data. They are the following with the caveat that they lack the traditional strong support associated with such analyses.

1. Representing the most basal taxon in the Echinacea clade and noticeably distant from the other species of the genus, the federally threatened
(U.S. Fish \& Wildlife Service, 1999) Echinacea tennesseensis appears to be a distinct taxon as recognized by McGregor (1968) (Figure 2.3). It does not appear to be an eastern outlier of E. angustifolia as suggested by Cronquist (1980) or a variety of E. pallida as proposed by Binns and coworkers (2002a). Work by Baskauf and coworkers (1994) on the relative genetic variability of E. tennesseensis and E. angustifolia revealed that E. tennesseensis has substantially less genetic variability than its widespread prairie relative, at both the species and population levels. My results agree with their observations.
2. The taxon recognized as E. paradoxa var. paradoxa by McGregor and E. atrorubens var. paradoxa by Binns and coworkers (2002a) appears to be a distinct taxon not related to other members of either species (Figure 2.3). Baldwin (1993) noted that useful phylogenetic information can be derived at the intraspecific level using ITS sequences. If this is indeed the case, one would expect these two varieties to be in the same clade. My ITS data also are supported by ecological and morphological differences. Restricted to the prairies and open wooded hillsides of the Arbuckle Mountains of southern Oklahoma, Echinacea paradoxa var. neglecta has the rose-colored ray florets typical of other members of Echinacea. In contrast, var. paradoxa is endemic to the west-central and southern portions of the Ozark Plateau in Missouri and Arkansas is the only member of the genus with yellow ray florets. Work done by Urbatsch and Jansen (1995) has provided chloroplast DNA data that suggests that the yellow pigmented rays unique to var. paradoxa are autapomorphic rather than pleisomorphic.
3. Cronquist's and Binns and coworkers' recognition of E. pallida with four varieties is not supported by the topology generated in this study (Figure 2.3). Only var. pallida and var. angustifolia show a close relationship. Interestingly, they are sister taxa to the morphologically quite different E. purpurea.
4. Likewise, Cronquist's and Binns and coworkers' recognition of E. atrorubens with three varieties is not supported by the topology (Figure 2.3). As noted above variety paradoxa pairs with E. pallida var. simulata and is quite different from both E. paradoxa and E. atrorubens. Variety atrorubens pairs with E. pallida var. sanguinea; and var. neglecta pairs with E. purpurea, and E. pallida var. pallida and var. angustifolia.
5. My ITS data provide support for the hypothesis of Binns (2001) that the parents of tetraploid $(2 n=44)$ E. pallida included one or more taxa from a complex that comprises E. atrorubens, E. paradoxa var. paradoxa, and var. neglecta. Sharp (1935), McGregor (1968) Binns (2001) believed Echinacea pallida to be the most recently derived taxon of the genus, albeit they differed in their opinions as to its origin. McGregor (1968) hypothesized that its origin was the result of stabilized introgression of an allopolyploid hybrid between E. sanguinea and E. simulata. Binns combined phytochemical, morphological, and geographical data in her hypothesis.

Future work will be an examination of the relationship among E. purpurea, E. angustifolia, and E. pallida, which have been touted for their putative medicinal benefits (Li, 1998; Sari et al., 1999). My ITS results suggest these three species are sister taxa (Figure 2.3). An interesting question is whether genetic material
from the $18 \mathrm{~S}-26 \mathrm{~S}$ nrDNA multigene family might code for the properties that have led the medicinal popularity of the genus. Numerous publications (Bauer and Wagner, 1985; Bauer et al., 1988; Bailey et al., 1999; Letchamo et al., 1999; Binns et al., 2000a; Binns et al., 2000b; Binns et al., 2000c) have cited phytochemicals such as phenolics, polysaccharides, and caffeic acid derivatives as the sources of Echinacea's medicinal properties. The use of the germplasm of Echinacea species to predict quantitative phytochemical markers is being evaluated by Benard Baum and his colleagues at the Eastern Cereal \& Oilseed Research Center in Ottawa, Ontario (Baum and Binns; 1999; Baum et al.; 2001). Future collaborations with this group may prove to be beneficial in achieving my goals.

I intend to continue my efforts to extract quality DNA and PCR product from the 11 taxa from which ETS sequences were not attained. I plan to employ the techniques of Couch and Fritz (1990), Rether and coworkers (1993), Savolainen (1995), and Buldewo and Jaufeerally-Fakim (2002). Once all ETS sequences are obtained and aligned, another phylogenetic analysis using both ETS and ITS data will be conducted. Results will hopefully elucidate relationships among the species and provide information on the relationship of Echinacea to other members of the family.

Table 2.3. Aligned matrix of DNA sequences (5^{\prime} to 3^{\prime}) of ITS region of ingroup and outgroup taxa. ITS1, 1-414; 5.8S, 415-579; and ITS2, 580-918

	10	20	30	40	0
Echinacea angustifolia					
E. atrorubens ------------------------GGGCG-CGTGGGCGGTTCGCTGC					
E. pallida					
E. paradoxa var. neglecta					
E. paradoxa var. paradoxa -------------------------------GACGTGGGCGGTTCGCTGC					
E. purpurea					
E. sanguinea					
E. simulata					
E. tennesseensis	TTAAGGCCCG	GT	TGG	GGC	TGC
Dracopis amplexicaulis -------------------CCCTTTTGGCGACGTGGGCGGTTCGCTGC					
Heliopsis helianthoides					
Ratibida columnifera					
Rudbeckia hirta					
Sanvitalia fruticosa					
Zinnia grandiflora					
	60	70	80	90	0
E. angustifolia CCGCGACGTCGCGAGAA-TTCCACTGAACCTTATCATTTAGAGGAAGGAG					
E. atrorubens	C-GCGACGTC	-тT	ACCI	ttag	GGAG
E. pallida	CCGCGACGTC	Att	ACCT	ttag	GGAG
E. paradoxa var. neglecta	CCGCGACGTC	Att	ACCT	TTA	gGAg
E. paradoxa var. paradoxa	CCGCGACGTC	-тTC	ACCT	ttag	gGAg
E. purpurea	C-GCGACGTC	-TT	ACCT	ttag	GGAG
E. sanguinea	CCGCGACGTC	Att	ACCT	ttag	gGAg
E. simulata	CCGCGACGTC	-тT	ACCT	TTAG	GGAG
E. tennesseensis	CCGC-ACGTC	-тT	ACCT	ttag	GGAG
Dracopis amplexicaulis	CGGCGACGTC	Att	ACCT	ttag	GGAG
Heliopsis helianthoides					
Ratibida columnifera	CGGCGACGTC	-TT	ACCT	ttag	GGAG
Rudbeckia hirta	TGGCGACGTC	-tT	ACCT	ttag	GGAG
Sanvitalia fruticosa					
Zinnia grandiflora					
	0	120	130	140	50
E. angustifolia	AAGTCGTAAC	CCG	ACCT	GGAt	TCGA
E. atrorubens	AAGTCGTAAC	CCG	ACCT	GGAT	TCGA
E. pallida	AAGTCGTAAC	CCG	ACCT	GGAT	TCGA
E. paradoxa var. neglecta	AAGTCGTAAC	CCG	ACCT	GGAT	TCGA
E. paradoxa var. paradoxa	AAGTCGTAAC	CCG	ACCT	GGAT	TCGA
E. purpurea	AAGTCGTAAC	CCG	ACCT	GGAT	GA
E. sanguinea	AAGTCGTAAC	CCG	ACCT	GGAt	ICGA
E. simulata	AAGTCGTAAC	CCG	ACCT	GGGAt	TCGA
E. tennesseensis	AAGTCGTAAC	CCG	ACCT	GGA	TCGA
Dracopis amplexicaulis	AAGTCGTAAC	CCG	ACCT	GGAt	TCGA
Heliopsis helianthoides					
Ratibida columnifera	AAGTCGTAAC	CCG	ACCT	GGAt	TCGA
Rudbeckia hirta	AAGTtGTAAC	CCG	ACCT	GGAt	TCGA
Sanvitalia fruticosa					TCGA
Zinnia grandiflora					cGA

		320	330	340	
. angustifolia	T-AACAACCCCC-GGCACAAAATGTGCCAAGGAAAACAAAACTTAAAGGG				
E. atrorubens	T--AACAACCCCC-GGCACAACATGTGCCAAGGAAAACAAAACTTAAAGGG				
E. pallida	T-AACAACCCCC-GGCACAAAATGTGCCAAGGAAAACAAAACTTAAAGGG				
E. paradoxa var. neglecta	T-AACAACCCCC-GGCACAAAATGTGCCAAGGAAAACAAAACTTAAAGGG				
E. paradoxa var. paradoxa	T-AACAACCCCC-GGCACAACATGTGCCAAGGAAAACAAAACTTAAAGGG				
E. purpur	T-AACAACCCCC-GGCACAAAATGTGCCAAGGAAAACAAAACTTAAAGGG				
E. sanguinea	T-AACAACCCCC-GGCACAACATGTGCCAAGGAAAACAAAACTTAAAGGG				
E. simulata	T-AACAACCCCC-GGCACAACATGTGCCAAGGAAAACAAAACTTAAAGGG				
E. tennesseensis	T-AACAACCCCC-GGCACAACATGTGCCAAGGAAAACAAAACTTAAAGGG				
Dracopis amplexicaulis	TTAACAACCCCC-GGCACGGAATGTGCCAAGGATANCATAACTTGAAGTG				
Heliopsis helianthoides	T-AACAACCCCC-GGCACAACACGTGCCAAGGAAAACAAAACATAAAGGG				
Ratibida columnifera	T-AACAACCCCC-GGCACGGAATGTGCCAAGGAAAAGTAAACATGAAGGG				
Rudbeckia hirta	T-AACAACCCCCCGGCACGGCATGTGCCAAGGAAAACTAAAATTGAAGTA				
Sanvitalia fruticosa	T-AACAACCCCC-GGCAGAACACGTGCCAAGGAAAACATAACTTAAAGGG				
Zin	T-AACAACCCCC-GGCACAACACGTGCCAAGGAAAACTAAACTAAAAGGG				
	36	37	380	390	400
angustifola	-CTTGTGCTGTTATGCCCCGTCA-TTGGTGTGCATACTGTGCGTTGCTTC				
E. atrorubens	-CTTGTGCTGTTATGCCCCATCA-TTGGTGTGCATACTGTGCGTTGCTTC				
E. pallida	-CTTGTGCTGTTATGCCCCGTCA-TTGGTGTGCATACTGTGCGTTGCTTC				
E. paradoxa var. neglecta	- -CTTGTGCTGTTATGCCCCGTCA-TTGGTGGGCATACTGTGCGTTGCTTC				
E. paradoxa var. paradoxa	-CTTGTGCTGTTATGCCCCGTCA-TTGGTGTGCATACTGTGCGTTGCTTC				
E. purpurea	-CTTGTGCTGTTATGCCCCGTCA-TTGGTGTGCATACTGTGCGTTGCTTC				
E. sanguinea	- CTTGTGCTGTTATGCCCCGTCA-TTGGTGTGCATACTGTGCGTTGCTTC				
E. simulata	-CTTGTGCTGTTATGCCCCGTCA-TTGGTGTGCATACTGTGCGTTGCTTC				
tenn	- CTTGTGCTGTTATGCCCCGTCA-TTGGTGTGCATACTGTGCGTTGCTTC				
Dracopis amplexicaulis	-CCCGTGCTATTACGCCCCGTTT-GCGGTGTGCGCATTGTGTGTGGCTC-				
Heliopsis helianthoides	-CCTGTGCCATTACGCCCCGCTT-GCGGTTTGTGCAATGCA-GTGGCTTC				
Ratibida columnifera	-CATGTGCTATTGCGCCCCGCTG-GCGGTGTGCGCATTGTACCTTGCTTC				
Rudbeckia h	- CACGTACTGTTATGACCCGTTT-GCGGTGTGATTATGGTTGTGT-CTTC				
Sanvitalia fruticosa	-CCCGTGCTATTATGCCC-GTCA-CCGGTGTGCGTGTTGTGCGTGGCTTC				
Zinnia grandiflora	- CCCGTGCTCCTGCGCCCCGTTT-ACGGTGTGCGTATTGTTCGTCGGTTC				
	410	420	430	440	450
E. angustifolia	TTTTGTAAACTTTAAACGACTCTCGGCAACGGATATCTCGGCTCACGCAT				
E. atrorubens	TTTTGTAAACTTTAAACGACTCTCGGCAACGGATATCTCGGCTCACGCAT				
E. pallida	TTTTGTAAACTTTAAACGACTCTCGGCAACGGATATCTCGGCTCACGCAT				
E. paradoxa var. neglecta	TTTTGTAAACTTTAAACGACTCTCGGCAACGGATATCTCGGCTCACGCAT				
E. paradoxa var. paradoxa	TTTTGTAAACTTTAAACGACTCTCGGCAACGGATATCTCGGCTCACGCAT				
E. purpurea	TTTTGTAAACTTTAAACGACTCTCGGCAACGGATATCTCGGCTCACGCAT				
E. sanguinea	TTTTGTAAACTTTAAACGACTCTCGGCAACGGATATCTCGGCTCACGCAT				
E. simulata	TTTTGTAAACTTTAAACGACTCTCGGCAACGGATATCTCGGCTCACGCAT				
E. tennesseensis	TTTTGTAAACTTTAAACGACTCTCGGCAACGGATATCTCGGCTCACGCAT				
Dracopis amplexicaulis	-TTTATAAA-TTATAACGACTCTCGGCAACGGATATCTCGGCTCACGCAT				
Heliopsis helianthoides	-TTTG-AAACTT--AACGACTCTCGGCAACGGATATCTTGGCTCACGCAT				
Ratibida columnifera	TTT-GTAAACATATAACGACTCTCGGCAACGGATATCTCGGCTCACGCAT				
Rudbeckia hirta	TTC-A-AAACTAATAACGACTCTCGGCAACGGATATCTTGGCTCACGCAT				
Sanvitalia fruticosa	TTTTGTAAACTTA-AACGACTCTCGGCAACGGATATCTTGGCTCACGCAT CTTTGTGAACTT--AACGACTCTCGGCAACGGATATCTTGGCTCACGCAT				
Zinnia grandiflora					

	460	470	480	490	50
angustifolia	CGATGAAGAACGTAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCC				
E. atrorubens	CGATGAAGAACGTAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCC				
E. pallida	CGATGAAGAACGTAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCC				
E. paradoxa var. neglecta	CGATGAAGAACGTAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCC				
E. paradoxa var. paradoxa	CGATGAAGAACGTAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCC				
E. purpurea	CGATGAAGAACGTAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCC				
E. sanguinea	CGATGAAGAACGTAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCC				
E. simulata	CGATGAAGAACGTAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCC				
E. tennesseensis	CGATGAAGAACGTAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCC				
Dracopis amplexicaulis	CGATGAAGAACGTAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCC				
Heliopsis helianthoides	CGATGAAGAACGTAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCC				
Ratibida columnifera	CGATGAAGAACGTAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCC				
udbeckia hirta	CGATGAAGAACGTAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCC				
Sanvitalia fruticosa	CGATGAAGAACGTAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCC				
Zinnia	CGATGAAGAACGTAGCAAAATGCGATACTTGGTGTGAATTGCAGAATCCC				
	510	520	530	540	550
E. angustifolia	TGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCGAAGCCATCCGGTTG				
E. atrorubens	GTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCGAAGCCATCCGGTTG				
E. pallida	GTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCGAAGCCATCCGGTTG				
E. paradoxa var. neglecta	GTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCGAAGCCATCCGGTTG				
E. paradoxa var. paradoxa	GTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCTGAAGCCATCCGGTTG				
E. purpurea	GTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCGAAGCCATCCGGTTG				
E. sanguinea	GTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCGAAGCCATCCGGTTG				
E. simulata	GTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCGAAGCCATCCGGTTG				
E. tennesseensis	GTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCGAAGCCATCCGGTTG				
Dracopis amplexicaulis	GTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCGAAGCCATCTGGTTG				
Heliopsis helianthoides	GTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCGAAGCCATCTGGTTG				
Ratibida columnifera	GTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCGAGGCCATCTGGTTG				
Rudbeckia hirta	GTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCGAAGCCATCTGGTTG				
Sanvitalia fruticosa	GTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCGAAGCCATCTGGTTG				
Zinnia grandiflora	GTGAACCATCGAGTTTTTGAACGCAAGTTGCGCCCGAAGCCATCTGGTTG				
	560	570	580	590	0
E. angustifolia	AGGGCACGTCTGCCTGGGCGTCACGCATCAC---GTTGCCCCCCA-----				
E. atrorubens	AGGGCACGTCTGCCTGGGCGTCACGCATCAC---GTTGCCCCCCA-----				
E. pallida	AGGGCACGTCTGCCTGGGCGTCACGCATCAC-- GTTGCCCCCCA--- -				
E. paradoxa var. neglecta	AGGGCACGTCTGCCTGGGCGTCACGCATCAC---GTTGCCCCCCA - - - -				
E. paradoxa var. paradoxa	AGGGCACGTCTGCCTGGGCGTCACGCATCAC---GTTGCCCCCCA----				
E. purpurea	AGGGCACGTCTGCCTGGGCGTCACGCATCAC---GTTGCCCCCCA-----				
E. sanguinea	AGGGCACGTCTGCCTGGGCGTCACGCATCAC---GTTGCCCCCCA --- - -				
E. simulata	AGGGCACGTCTGCCTGGGCGTCACGCATCAC---GTTGCCCCC				
E. tennesseensis	AGGGCACGTCTGCCTGGGCGTCACGCATCAC---GTTGCCCCCC-----				
Dracopis amplexicaulis	AGGGCACGTCTGCCTGGGCGTCACGCATCAA---ATCGCCCTCAMCAA-G				
Heliopsis helianthoides	AGGGCACGTCTGCCTGGGCGTCACGCATC----- TTGCCCCAACC---				
Ratibida columnifera	AGGGCACGTCTGCCTGGGCGTCACGCATCTC---ATCGCCCCCCAC---C				
Rudbeckia hirta	AGGGCACGTCTGCCTGGGCGTCACGCATCAT---GTCGCTTCTA---- -				
Sanvitalia fruticosa	AGGGCACGTCTGCCTGGGCGTCACGCATC---- GTTGCCACACA --- -				
Zinnia grandiflora	AGGGCACGTCTGCCTGGGCGTCACGCATC----ATCGCCCCACC--- -				

	0	620	63	64	650
E. angustifolia	AA-CATCT---ATTTAGATGTT-CTG-GTT---GGGSCGGAGATTGGTC				
E. atrorubens	AA-CATCT---ATTTAGATGTT-CTG-GTT----GGGGCGGAGATTGGTC				
E. pallida	AA-CATCT---ATTTAGATGGT-CTG-GTT----GGGGCGGAGATTGGTC				
E. paradoxa var. neglecta	AA-CATCT---ATTTAGATGKT-CTG-GTT----GGGGCGGAGATTGGTC				
E. paradoxa var. paradoxa	AA-CATCT---ATTTARATGTT-CTG-GTT----GGGGCGGAGATTGGTC				
E. purpur	AA-CATCT---ATTTAGATGTT-CTG-GTT----GGGGCGGAGATTGGTC				
E. sanguinea	AA-CATCT---ATTTȦGATGTT-CTG-GTT----GGGGCGGAGATTGGTC				
E. simulata	-AGCATCT-- ATTTAGATGTT-CTG-GTT----GGGGCGGAGATTGGTC				
E. tennesseensis	AAGCATCT---ATTTAAT-GTT-CTG-GTT---GGGGCGGAGATTGGTC				
Dracopis amplexicaulis	AA-TATCAA--TATGSGGTGTT-TTT-GTT----GTGGCGGATATTGGTC				
Heliopsis helianthoides	AAGCATCCCTTTCAGTGATGCTTAT--GTT----GGGGCGAAGATTGGTC				
Ratibida columnifera	AACCAGCCC--ATCTTGG-GTTGCTT-TTTTTTGGGGGCGGATGTTGGTC				
Rudbeckia hirta	TGTCAACCC--ATCTTGG-GTTGTTT-TGT----GGGGCGGATATTGGTC				
San	AA-AAAT-A-TCATTAGATGTTTTT--GTT---GCGGCGGAGATTGGTC				
Zinnia grandifl	AACTTCT-ATTTCAAAGATGTGTTG--GTC----GGGGCGGAGATTGGTC				
	660	670	680	690	700
E. angustiola	TCCCGTGCCACTT-GC-ATGGTTGACCTAAATATGAGTCTC-CTCA-C-G				
E. atrorubens	TCCCGTGCCACTT-GC-ATGGTTGACCTAAATATGAGTCTC-CTCA-C-G				
E. pallida	TCCCGTGCCACTT-GC-ATGGTTGACCTAAATATGAGTCTC-CTCA-C-G				
E. paradoxa var. neglecta	TCCCGTGCCACTT-GC-ATGGTTGACCTAAATATGAGTCTC-CTCA-C-G				
E. paradoxa var. paradoxa	TCCCGTGCCACTT-GC-ATGGTTGACCTAAATATGAGTCTC-CTCA-C-G				
E. purpurea	TCCCGTGCCACTT-GC-ATGGTTGACCTAAATATGAGTCTC-CTCA-C-G				
E. sanguinea	TCCCGTGCCACTT-GC-ATGGTTGACCTAAATATGAGTCTC-CTCA-C-G				
E. simulata	TCCCGTGCCACTT-GC-ATGGTTGACCTAAATATGAGTCTC-CTCA-C-G				
E. tennesseensis	TCCCGTGCCACTT-GC-ATGGTTGACCTAAATATGAGTCTC-CTCA-C-G				
Dracopis amplexicaulis	TCCTGTGCCCATG-GT-GTGGTTGGCCTAAATAGGAGTCGCGCTCT-C-G				
Heliopsis helianthoides	TCCCATG-TGCATTCT-ATGGTTGCCCTAAATTTGAGTATC-CTCTTCAG				
Ratibida columnifera	TTCCGTGCCCATG-GC-GTGGTTGGCCTAAATAGGAGTCGC-CTCT-T-G				
Rudbeckia hirta	TCCTGTGCTATTG-GT-GCGGTTGGCCTAAATAGGAGCTGC-ATCT-T-G				
Sanvitalia fruticosa	TCCCGTGC-ATTTTGC-GTGGTTGACCTAAATGTGAGTCTC-CTCA-C-G				
Zinnia grandiflora	TCCCGCGC-CCGC-GC-GTGGTTGGCCTAAATAGGAGTCTC-CTCA-C-G				
	710	720	730	740	0
. angustifolia	AGAGACGCACGGCTAGTGGTGGTTGATAACACAGTCGTCTCGTGCCGTAC				
E. atrorubens	AGAGACGCACGGCTAGTGGTGGTTGATAACACAGTCGTCTCGTGCCGTAC				
E. pallida	AGAGACGCACGGCTAGTGGTGGTTGATAACACAGTCGTCTCGTGCCGTAC				
E. paradoxa var. neglecta	AGAGACGCACGGCTAGTGGTGGTTGATAACACAGTCGTCTCGTGCCGTAC				
E. paradoxa var. paradoxa	AGAGACGCACGGCTAGTGGTGGTTGATAACACAGTCGTCTCGTGCCGTAC				
E. purpurea	AGAGACGCACGGCTAGTGGTGGTTGATAACACAGTCGTCTCGTGCCGTAC				
E. sanguinea	AGAGACGCACGGCTAGTGGTGGTTGATAACACAGTCGTCTCGTGCCGTAC				
E. simulata	AGAGACGCACGGCTAGTGGTGGTTGATAACACAGTCGTCTCGTGCCGTAC				
E. tennesseensis	AGAGACGCACGGCTAGTGGTGGTTGATAACACAGTCGTCTCGTGCCGTAC				
Dracopis amplexicaulis	AGTGACGCATGACTAGTGGTGGTTGATATGACAGTCGTCTCGTGTCGTGT				
Heliopsis helianthoides	AG-AACGCACGGCTAGTGGTGGTTGATAACATAGTCATCTTGTGATGTGC				
Ratibida columnifera	AGTGACGCACGACTAGTGGTGGTTGATAAGACAGTCGTCTCGTGTCGCGT				
Rudbeckia hirta	AATGACGCAATACTAGTGGTGGTTGATAATACAGTCGTCTCGTGTCTTGT				
Sanvitalia fruticosa	AGAGACGCACGGCTAGTGGTGGTTGATAACACAGTCGTCTCGTGTTGTGC				
Zinnia grandiflora	AGAGTCGCACGACTAGCGGTGGTTGATAACACAGTCGTCTCGTGTCCTGT				

	760	770	780	790	
E. angustifolia	GGTTATGTTTGTGAGTGTCTAGACTTGTGAAAAACC-TGACGCGTCGTCT				
E. atrorubens	GTTTATGTTTGTGAGTGTCTAGACTTGTGAAAAACC-TGACGCGTCGTCT				
E. pallida	GTTTATGTTTGTGAGTGTCTAGACTTGTGAAAAACC-TGACGCGTCGTCT				
E. paradoxa var. neglecta	GTTTATGTTTGTGAGTGTCTAGACTTGTGAAAAMCC-TGACGCGTCGTCT				
E. paradoxa var. paradoxa	GTTTATGATTGTGAGTGTCTAGACTTGTGAAAAACC-TGACGCGTCGTCT				
E. purpurea	GTTTATGTTTGTGAGTGTCTAGACTTGTGAAAAACC-TGACGCGTCGTCT				
E. sanguinea	GTTTATGTTTGTGAGTGTCTAGACTTGTGAAAAACC-TGACGCGTCGTCT				
E. simulata	GTTTATGTTTGTGAGTGTCTAGACTTGTGAAAAACC-TGACGCGTCGTCT				
E. tennesseensis	GTTTATGTTTGTGAGTGTCTAGACTTGTGAAAAACC-TGACGCGTCGTCT				
Dracopis amplexicaulis	GTTTTCATTCYTGAGTCAA-ATTCTCTTAACCTACCAAGATGTGTTGTCT				
Heliopsis helianthoides	GTTTTCATCCGTGTGTGGCTTTACTTTTAAAGAACCCA-ATGCGTTGTCT				
Ratibida columnifera	GTTTTCATTCTTRAGT-CAGACGCTCTTAACATACCAAGATGCGTTGTCT				
Rudbeckia hirta	GTTTTCATTCTCGAGT-TAGATGCTCTTAACCTACAATGATGTGTTGTCT				
Sanvitalia fruticosa	GTTTT-G-CCGTGAGTGTTTAGACTCGTAAAAAACC-CGACGCGTTGTCC				
Zinnia grandiflora	GCTTTCATTCGTGAGGGAAGATACTCGTATACAAACCCGACGCGCTGTCT				
	810	820	830	840	0
E. angustifolia	TCAGATGATG	TCGC	AGGT	GGAC	CTGA
E. atrorubens	TCAGATGATGCTTCGATCGCGACCCCAGGTCAGGCGGGACTACCCGCTGA				
E. pallida	TCAGATGATGCTTCGATCGCGACCCCAGGTCAGGCGGGACTACCCGCTGA				
E. paradoxa var. neglecta	TCAGATGATGCTTCGATCGCGACCCCAGGTCAGGCGGGACTACCCGCTGA				
E. paradoxa var. paradoxa	TCAGATCATGCTTCGATCGCGACCCCAGGTCAGGCGGGACTACCCGCTGA				
E. purpurea	TCAGATGATGCTTCGATCGCGACCCCAGGTCAGGCGGGACTACCCGCTGA				
E. sanguinea	TCAGATGATGCTTCGATCGCGACCCCAGGTCAGGCGGGACTACCCGCTGA				
E. simulata	TSAGATGATGCTTCGATCGCGACCCCAGGTCAGGCGGGACTACCCGCTGA				
E. tennesseensis	TGAGATGATGCTTCGATCGCGACCCCAGGTCAGGCGGGACTACCCGCTGA				
Dracopis amplexicaulis	TATGATGACGCTTCGATCGCGACCCCAGGTCAGGCGGGACTACCCGCTGA				
Heliopsis helianthoides					
Ratibida columnifera	TGTGACGACGCTTCGATCGCGACCCCAGGTCAGGCGGGG-T----------1-1				
Rudbeckia hirta	TGTGATGATGCTTCGATCGCGACCCCAGGTCAGGCGGGACTACCCGCTGA				
Sanvitalia fruticosa					
Zinnia grandiflora					
	860	870	880	890	900
E. angustifolia	GTTTAAGCATATCAATAAGCGGAGGAAAAGAAACTTAC-------------				
E. atrorubens	GTTTAAGCATATCAATAAGCGGAGGAAAAGAAACTTACAAGGA--------				
E. pallida	GTTTAAGCATATCAATAAGCGGAGGAAAAGAAACTTACAAG---...- -				
E. paradoxa var. neglecta	GTTTAAGCATATCAATAAGCGGAGGAAAAGAAACTTACA-G--...-- -				
E. paradoxa var. paradoxa	GTTTAAGCATATCAATAAGCGGAGGAAAAGAAACT-GCAAGGAT-----				
E. purpurea	GTTTAAGCATATCAATAAGCGGAGGAAAAGAAACTTACAAGGATTCC---				
E. sanguinea	GTTTAAGCATATCAATAAGCGGAGGAAAAGAAACTTACAAGGATTCCCTT				
E. simulata					
E. tennesseensis	GTTTAAGCATATCAATAAGCGGAGGAAAAGAAACTTACAAGGATTCC-TT				
Dracopis amplexicaulis	GTTTAAGCATATCAATAAGCGGAGGAAAAGAAACKTACTAGGATA----				
Heliopsis helianthoides					
Ratibida columnifera					
Rudbeckia hirta	GTTTAAGCATATCAATAAGCGGAGGAAA-G-AACTTTCAGGGTTCCC-TT				
Sanvitalia fruticosa					
Zinnia grandiflora					

	910	
E. angustifolia		[860]
E. atrorubens		[866]
E. pallida		[871]
E. paradoxa var. neglecta		[888]
E. paradoxa var. paradoxa		[858]
E. purpurea		[870]
E. sanguinea		[871]
E. simulata		[857]
E. tennesseensis	AATAACGGGGAACCGAAC	[918]
Dracopis amplexicaulis		[875]
Heliopsis helianthoides		[653]
Ratibida columnifera		[804]
Rudbeckia hirta	ATACG	[869]
Sanvitalia fruticosa		[672]
Zinnia grandiflora		[673]

Figure 2.3. Strict consensus tree of the Echinacea and closely related taxa based on ITS data. Bootstrap support (\%) is shown above branches and decay index below. Upper name of pairs is that of McGregor (1968), lower name of pairs in parentheses is that of Cronquist $(1955,1980)$ and Binns and coworkers (2002a).

LITERATURE CITED

Andreasen, K. and B. G. Baldwin. 2001. Unequal evolutionary rates between annual and perennial lineages of checker mallows (Sidalcea, Malvaceae): evidence from 18S-26S rDNA Internal and External Transcribed Spacers. Molecular Biology and Evolution 18:936-944.

Bailey, D. T., S.L. Richheimer, Z. Liu, G. Jayatilake, and C. Mannila. 1999. HPLC Anaylsis of Echinacea Phenols and Amides. 1999 AHPA International Echinacea Symposium, June 3-5, 1999. Kansas City, MO.

Baldwin, B. G. 1993. Molecular systematics of Calycadenia (Compositae) based on ITS sequences of nuclear ribosomal DNA: chromosomal and morphological evolution reexamined. American Journal of Botany 80:222238.

Baldwin, B. G., M.J. Sanderson, J.M. Porter, M.F. Wojciechowski, C.S. Campbell, and M.J. Donoghue. 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Annals of Missouri Botanical Garden 82:247-277.

Baldwin, B. G. and S. Markos. 1998. Phylogenetic utility of the external transcriber spacer (ETS) of 18S-26S rDNA: congruence of ETS and ITS trees of Calycadenia (Compositae). Molecular Phylogenetics and Evolution 10:449-463.

Baskauf, C. J., D. E. Mccauley, and W. G. Eickmeier. 1994. Genetic analysis of a
rare and a widespread species of Echinacea (Asteraceae). Evolution 48:180-188.

Baskin, J. M., K.M. Snyder, and C.C. Baskin. 1993. Nomenclatural history and taxonomic status of Echinacea angustifolia, E. pallida, E. tennesseensis (Asteraceae). SIDA 15:597-604.

Bauer, R. and H. Wagner. 1985. Echinacea species as potential immunostimulatory drugs. Pages 253-321 in H. Wagner, Hiroshi Hikino, and Norman R. Farnsworth, eds. Economic and Medicinal Plant Research, Vol. 5. Academic Press, Inc., Orlando, FL.

Bauer, R., I.A. Khan, and H. Wagner. 1988. TLC and HPLC analysis of Echinacea pallida and E. angustifolia roots. Planta Medica 54:426-430.

Baum, B. R., J. F. L. S. Mechandra, S.E. Binns, and J.T. Arnason. 2001. Predicting quantitative phytochemical markers in single Echinacea plants or clones from their DNA fingerprints. Phytochemistry 56:543-549.

Baum, B. R. and Shannon E. Binns. 1999. The Echinacea germplasm enhancement project, DNA fingerprinting, and intellectual property protection. 1999 AHPA International Echinacea Symposium, June 3-5, 1999. Kansas City, MO.

Bayer, R., L. Hufford, and D. E. Soltis. 1996. Phylogenetic relationships in Sarraceniaceae based on rbcL and ITS sequences. Systematic Botany 21:121-134.

Bena, G., M. F. Jubier, I. Olivieri, and B. Lejeune. 1998. Ribosomal External and Internal Transcribed Spacers: combined use in the phylogenetic analysis of Medicago (Leguminosae). Journal of Molecular Evolution 46:299-306.

Binns, S. E., B. R. Baum, and J. T. Arnason. 2002a. A Taxonomic Revision of Echinacea (Asteraceae: Heliantheae). Systematic Botany 27:610-632.

Binns, S. E., J. Hudson, S. Merali, and J. T. Arnason. 2002b. Antiviral activity of characterized extracts from Echinacea spp. (Heliantheae: Asteraceae) against herpes simplex virus (HSV-I). Planta Medica 68:780-3.

Binns, S. E., J. F. Livesey, J. T. Arnason, and B. R. Baum. 2002c. Phytochemical variation in Echinacea from roots and flowerheads of wild and cultivated populations. Journal of Agricultural and Food Chemistry 50:3673-3687.

Binns, S. E. 2001. The Taxonomy and Phytochemistry of the Genus Echinacea. Ph.D. dissertation. Unversity of Ottawa, Ottawa, Ontario.

Bremer, K. 1994. Asteraceae: Cladistics and Classification. Timber Press, Inc., Portland, OR.

Buldewo, S. and Y.F. Jaufeerally-Fakim. 2002. Isolation of clean and PCRamplifiable DNA from Anthurium andreanum. Plant Molecular Biology Reporter 20:71a-71g.

Chan, R., B. G. Baldwin, and R. Ornduff. 2002. Cryptic Goldfields: A molecular phylogenetic reinvestigation of Lasthenia californica sensu lato and close
relatives (Compositae: Heliantheae sensu lato). American Journal of Botany 89:1103-1112.

Clevinger, J. A. and J. L. Panero. 2000. Phylogenetic analysis of Silphium and subtribe Engelmanniinae (Asteraceae: Heliantheae) based on ITS and ETS sequence data. American Journal of Botany 87:565-572.

Couch, J. A. and P.J. Fritz. 1990. Isolation of DNA from plants high in polyphenolics. Plant Molecular Biology Reporter 8:8-12.

Cox, P. B. and Lowell E. Urbatsch. 1990. A phylogenetic analysis of the coneflower genera. Systematic Botany 15:394-402.

Cronquist, A. 1955. Vascular Plants of the Pacific Northwest, Part 5: Compositae. University of Washington Press, Seattle.

Cronquist, A. 1980. Vascular Flora of the Southeastern United States, Volume I. The University of North Carolina Press, Chapel Hill, NC.

Donoghue, M. J., R. G. Olmstead, J. F. Smith, and J. D. Palmer. 1992. Phylogenetic relationships of Dipsacales based on rbcL sequences. Annals of the Missouri Botanical Garden 79:333-345.

Doyle, J. J. and J.L. Doyle. 1987. A rapid DNA isolation prodecure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11-15.

Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791.

Holmgren, P. K. and N. H. Holmgren. 2003. Index Herbariorum, Part I: The Herbaria of the World, Eighth Edition. NYBG Press, The New York Botanical Garden, Bronx, New York. http://www.nybg.org/bsci/ih/ih.html.

Judd, W.S., C.S. Campbell, E.A. Kellogg, P.F. Stevens. 2002. Plant Systematics: A Phylogenetic Approach. 2nd Edition. Sinauer Associates, Sunderland, Mass.

Lee, J., B. G. Baldwin, and L. D. Gottlieb. 2002. Phylogeny of Stephanomeria and related genera (Compositae: Lactuceae) based on analysis of 18S26S nuclear rDNA ITS and ETS sequences. American Journal of Botany 89:160-168.

Letchamo, W., J. Livesey, T.J. Arnason, C. Bergeron, and V.S. Krutilina. 1999. Cichoric acid and isobutylamide content in Echinacea purpurea as influenced by flower developmental stages. Page 494-498 in J. Janick, ed. Perspectives on New Crops and New Uses. ASHS Press, Alexandria, VA.

Li, T. S. C. 1998. Echinacea: cultivation and medicinal value. HortTechnology 8:122-129.

Linder, C. R., L. R. Goertzen, B. V. Heuvel, J. Francisco-Ortega, and R. K. Jansen. 2000. The complete external transcribed spacer of 18S-26S rDNA: amplification and phylogenetic utility at low taxonomic levels in Asteraceae and closely allied families. Molecular Phylogenetics and

Evolution 14:285-303.

Liston, A., W. A. Robinson, and J. M. Oliphant. 1996. Length variation in the nuclear ribosomal DNA Internal Transcribed Spacer region of nonflowering seed plants. Systematic Botany 21:109-120.

Markos, S. and B. G. Baldwin. 2002. Structure, molecular evolution, and phylogenetic utility of the 5 ' region of the External Transcribed Spacer of 18S-26S rDNA in Lessingia (Compositae: Asteraceae). Molecular Phylogenetics and Evolution 23:214-228.

McGregor, R. L. 1968. The taxonomy of the genus Echinacea (Compositae). University of Kansas Science Bulletin 48:113-142.

Moench, C. 1794. Methodas plantas. 780 pages.

Moritz, C. and D.M. Hillis. 1996. Molecular Systematics: Contexts and controversies. Pages 1-16 in D. M. Hillis, C. Moritz, and B.K. Mable, eds. Molecular Systematics. 2nd Edition. Sinauer Associates, Sunderland, Mass.

Prather, L. A. and Robert K. Jansen. 1998. Phylogeny of Cobaea (Polemoniaceae) based on sequence DNA data from the ITS region of nuclear ribosomal DNA. Systematic Botany 23:57-72.

Rether, B., G. Delmas, and A. Laouedj. 1993. Isolation of polysaccharide-free DNA from plants. Plant Molecular Biology Reporter 11:333-337.

Ryburn, A. K. 2003. Molecular Systematic Investigations of Echinacea (Asteraceae: Heliantheae) Based on Nuclear Ribosomal ITS and ETS Sequences. in A. K. Ryburn, ed. Taxonomic Investigations of Oklahoma Flora. Ph.D. dissertation. Oklahoma State University, Stillwater, OK.

Sang, T., D. J. Crawford, and T. F. Stuessy . 1995a. Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proceedings of the National Academy of Sciences 92:6813-6817.

Sang, T., Daniel J. Crawford, Tod F. Stuessy, and Mario Silva O. 1995b. ITS sequences and the phylogeny of the genus Robinsonia (Asteraceae). Systematic Botany 20:55-64.

Sari, A. O., M.R. Morales, and J.E. Simon. 1999. Echinacea angustifolia: An Emerging Medicinal. Page 490-493 in J. Janick, ed. Perspectives on new crops and new uses. ASHS Press, Alexandria, VA.

Savard, L., M. Michaud, and J. Bousquet. 1993. Genetic diversity and phylogenetic relationships between birches and alders using ITS, 18 S rRNA, and rbcL gene sequences. Molecular Phylogenetics and Evolution 2:112-118.

Savolainen, V., P. Cuenoud, R. Spichiger, M.D.P. Martinez, M. Crevecoeur, and J-F Manen. 1995. The use of herbarium specimens in DNA phylogenetics:
evaluation and improvement. Plant Systematics and Evolution 197:87-98.

Sharp, W. M. 1935. A critical study of certain epappose genera of the Heliantheae-Verbesininae of the natural family Compositae. Annals of the Missouri Botanical Garden 22:51-152.

Snyder, K. M. 1991. The comparative ecology of the narrow endemic Echinacea tennesseensis (Asteraceae: Heliantheae) and two geographically widespread congeners: a greenhouse study and literature review. M.S. thesis. University of Kentucky, Lexington, KY.

Swofford, D. L. 2002. Phylogenetic Analysis Using Parsimony (and Other Methods) 4.0 Beta. Sinauer Associates, Inc., Sunderland, Massachusetts.

Thompson, J. D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24:4876-4882.
U.S. Fish \& Wildlife Service. 1999. Threatened and Endangered Species System (TESS). Division of Endangered Species, http://endangered.fws.gov.

Urbatsch, L. E., B. G. Baldwin, and M. J. Donoghue. 2000. Phylogeny of the coneflowers and relatives (Asteraceae: Heliantheae) based on nuclear rDNA Internal Transcribed Spacer (ITS) sequences and chloroplast DNA restriction site data. Systematic Botany 25:539-565.

Urbatsch, L. E. and R. K. Jansen. 1995. Phylogenetic affinities among and within the coneflower genera (Asteraceae: Heliantheae), a chloroplast DNA analysis. Systematic Botany 20:28-39.

White, T. J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pages 315322 in M. Innis, D. Gelfand, J. Sninsky, and T. White, eds. PCR Protocols: A Guide to Methods and Application. Academic Press, San Diego, CA.

Wiley, E. O., D. Siegel-Causey, D.R. Brooks, and V.A. Funk. 1991. The Complete Cladist. A Primer of Phylogenetic Procedures. Museum of Natural History, University of Kansas Special Publication No. 19, Lawrence, KS.

CHAPTER 3

POPULATION DYNAMICS OF ECHINACEA PALLIDA (ASTERACEAE) AT THE TALLGRASS PRAIRIE PRESERVE (OKLAHOMA)

INTRODUCTION

Commonly known as pale purple coneflower, Echinacea pallida is one of the more widespread species of the New World genus (Figure 3.1). It occurs from the Prairie Peninsula of lowa and Illinois to the eastern one-third of the lower Great Plains, as well as the Ozark and Ouachita Mountains of Oklahoma, Missouri, and Arkansas and reaches its southern most distribution in southwestern Louisiana (McGregor, 1968; McKeown, 1999; Binns et al., 2002). Although small populations have been recorded in a number of eastern statessome as disjunct as northeastern Maine-these populations are probably adventive; their occurrence no doubt a result of cultivation because of the medicinal value of the taxon (McGregor, 1968).

The geographic distribution of E. pallida reflects its specific habitat requirements. Populations are restricted to rocky prairies, open wooded hillsides, and cedar glades, all of which must have calcareous, well-drained soils (McGregor, 1968). Many such sites exist throughout the Great Plains, most commonly in the area known as the tallgrass prairie.

Echinacea pallida differs from the other members of the genus in that it typically has light purple to pink or white, highly reflexed ray florets and dark
brown disk florets that are subtended by brown or darkly colored receptacular bracts. Stems are typically 30-90 cm tall, and the distinctly 3-nerved, hirsute leaves are $10-30 \mathrm{~cm}$ long and $1-4 \mathrm{~cm}$ wide. The most important distinguishing character for this species is pollen grain color. It is the only member of the genus with white pollen, and the specific epithet actually refers to the color of these pollen grains rather than the light colored ray florets.

Containing a variety of compounds such as alkaloids, polysaccharides, glycoproteins, caffeic acid derivates, flavonoids, and essential oils, Echinacea is an extremely popular medicinal taxon (Bauer et al. 1988; Bauer and Wagner, 1985, Small and Catlig, 1999). Echinacea pallida is one of three species in the genus being studied as a medicinal plant. Its economic and medicinal value is well documented (Bauer et al., 1988; Schulthess et al., 1991; Li, 1998; Small and Catlig, 1999).

The popularity of this medicinal genus has led to an increase in cultivation as well as a rapid decrease in the wild populations of its species because of indiscriminant extirpation of plants by collectors (Ladd and Oberle, 1995). Devastation of natural populations of E. pallida increases the need for a better understanding of its biology. Previous work on the genus has focused on E. tennesseensis and E. laevigata, designated as endangered by the U.S. Fish and Wildlife Service (1999). Echinacea angustifolia and E. purpurea also have been investigated in field studies by Leuszler (1996) and Hurlburt (1999). Echinacea pallida has not been studied, especially with respect to it's population biology. Thus the purpose of this study was to provide information about the population
dynamics of Echinacea pallida. Using methods employed by population dynamics, the following objectives were addressed:

1) To determine whether the population of Echinacea pallida at the Tallgrass Prairie Preserve (TGPP) is stable, increasing, or decreasing.
2) To determine the variables most likely contributing to the transformation of vegetative individuals into reproductive ones and vice-versa.
3) To determine the variables most likely contributing to the mortality of individuals at the TGPP.

Figure 3.1 Distribution map of Echinacea. The shaded portion indicates the distribution of the genus. Diagonal lines designate the distribution of Echinacea pallida.

METHODS AND MATERIALS

Field Site Description

This study was conducted in the bison (Bos bison) grazing area of the Tallgrass Prairie Preserve in Osage County, Oklahoma ($36.8481^{\circ} \mathrm{N}, 96.4219^{\circ} \mathrm{W}$). This native tallgrass prairie of approximately 15,800 ha has been owned and managed by The Nature Conservancy since 1989. Approximately 90% of the site is grassland which contains a diverse assemblage of plant species (Palmer, 2003). Approximately 80% of the prairie vegetation is dominated by C_{4}. warmseason grasses including Andropogon gerardii (big bluestem), Schizachyrium scoparium (little bluestem), Sorghastrum nutans (Indian grass), Sporobolus compositus (composite dropseed), and Panicum virgatum (switch grass). Other common species include members of the Asteraceae-Erigeron philadelphicus (Philadelphia fleabane), Coreopsis grandiflora (largeflower tickseed), Rudbeckia hirta (Black-eyed Susan), and Ratibida columnifera (Mexican hat)—, FabaceaeMimosa quadrivalvis (sensitive briar), Amorpha canescens (lead plant), Dalea candida (white prairie clover), and Dalea purpurea (purple prairie clover)-, as well as other species such as Eryngium yuccifolium (rattlesnake master), Linum sulcatum (grooved flax), and Asclepias tuberosa (butterfly milkweed). Much of the remaining area of the TGPP is forested predominantly by Quercus stellata (post oak) and Quercus marilandica (blackjack oak) (Arévalo, 2002).

The TGPP is managed to restore a remnant of the tallgrass prairie landscape in Oklahoma (Hamilton, 1996). Many studies on the tallgrass prairie stress the importance of fire and bison grazing in determining species
composition and structure (Collins, 1989; Collins, 1990; Fahnestock and Knapp, 1994). Prescribed burns are conducted throughout the year-dormant spring burns (March-April), late growing season burns (July-September), and dormant fall burns (October-November). Burn locations are randomly selected according to the fuel load of the vegetation (Hamilton, 1996).

We selected one population of Echinacea pallida located just north of the preserve's headquarters, in an area where bison grazing and fire have been restored (Figure 3.2). A $100 \times 100 \mathrm{~m}$ area was established. Within this area, seven $10 \times 10 \mathrm{~m}$ sites were randomly selected and permanently marked at their corners with rebar and aluminum caps. These sites were identified by a four digit number which symbolized the Cartesian coordinates with respect to the 100 X 100 m study area. The first two digits signified placement along the X axis and the last two along the Y axis (e.g., XXYY). Within each site, one hundred $1 \times 1 \mathrm{~m}$ quadrats were established and used to map the location of each plant observed.

Data Collection

The population was studied each year from 1997 to 2000 from about the first of June to mid July, the peak flowering period for this prairie species. We monitored the population at the individual plant level. The location of each plant was marked by an aluminum tag driven into the ground beside it by a galvanized nail. The number of the plant and its Cartesian coordinates with respect to the $10 \times 10 \mathrm{~m}$ sites were recorded and placed on each tag. The following characters were measured and recorded: number of leaves, length of each leaf, number of
flowering heads per plant (if present), and height of each flowering head (if present). These measurements were recorded using a handheld microcassette recorder, transcribed later onto field data sheets, and then entered into a Microsoft® Excel spreadsheet (Appendix A). Incidence of pathogens, fungal infection, and herbivory was not recorded for individuals of the population.

Data Analysis

Assuming that the population was closed, i.e., no immigration or emigration occurring, the following equation was used to determine its current status $\left(N_{t}\right)$ with respect to its status one year earlier $\left(N_{t-1}\right)$:

$$
\begin{equation*}
N_{t}=N_{t-1}+B-D \tag{3.1}
\end{equation*}
$$

B is the number of births-or new individuals-and D, the number of deaths (Akcakaya et al., 1999).

We summarized the dynamics of the population by calculating the finite rate of increase or λ (lambda). Lambda was calculated by the equation:

$$
\begin{equation*}
\lambda=N_{t} / N_{t-1} \tag{3.2}
\end{equation*}
$$

A population is considered stable when $\lambda=1$, increasing when $\lambda>1$; and decreasing when $\lambda<1$ (Silvertown and Doust, 1993).

The following variables were calculated for each plant: sum of leaf lengths, maximum leaf length, number of flowering heads (if present), sum of stem heights (if present), maximum stem heights (if present). The status of each plant was recorded each year as either vegetative (basal rosette of leaves), reproductive (having one or more flowering heads), or missing (dead or not
found). From this information it was possible to construct a database (Appendix B) that allowed us to describe the status of each plant from year to year.

In order to examine the variables most likely contributing to the transformation of vegetative individuals into reproductive ones and vice-versa, as well as those variables most likely contributing to the mortality of individuals at the site, we employed backward stepwise logistic regression using the LOGISTIC procedure in SAS 8.2 (SAS Institute, Cary, NC). Logistic regression, like most regression analyses, is a valuable tool in that it allows us to find the best fitting, yet biologically most reasonable model to describe the relationship between a response or dependent variable and a set of independent variables (Lemeshow and Hosmer, 1998). Unlike other regression models, such as linear regression, logistic regression requires that the response or dependent variables be recorded in a binary fashion. In a backward stepwise logistic regression, the analysis begins with a large model consisting of all independent variables and then eliminates the least significant ones until only the significant ($\alpha=.05$) remains (Menard, 1995).

The following equation is the model used to illustrate the relationship between a single dependent variable and the independent variables:

$$
\begin{equation*}
P(Y=1)=\frac{e^{\alpha+\beta_{1} \chi_{1}+\beta_{2} \chi_{2}+\beta_{3} \chi_{3} \ldots \ldots \beta_{K} \chi_{\kappa}}}{1+e^{\alpha+\beta_{1} \chi_{1}+\beta_{2} \chi_{2}+\beta_{3} \chi_{3} \ldots \ldots \beta_{K} \chi_{K}}} \tag{3.3}
\end{equation*}
$$

where $P(Y=1)$ is the probability that the dependent variable is equal to $1, e$ is the natural log base (2.718), α is the intercept or constant, β is the value of independent variable, and X is the estimate of the independent variable (given in a SAS output).

The dependent variables used in the analyses were those of the stage of the life cycle (vegetative, reproductive, and missing) from one year to the next. The independent variables were the size characteristics cited above (number of leaves, sum of leaf lengths, maximum leaf length, number of flowering heads, sum of stem heights, maximum stem heights). The squared values of the size characteristics also were included in the analyses to allow for nonlinearity. Appendix C illustrates the input file used for the LOGISTIC procedure.

Figure 3.2 Aerial photograph of the Tallgrass Prairie Preserve headquarters and adjacent area. Inset is an outline of the study area containing the seven randomly selected sites.

RESULTS AND DISCUSSION

Population Status

During the four-year period, 8,038 recordings were made during the data collection process. A majority of the individuals studied (73\%) were located at two sites-0351 (44\%) and 0074 (29\%). There were 2,813 new plants encountered at the seven randomly selected sites. Of these, 1,299 were mapped and tagged in 1997; 313 in 1998; 679 in 1999; and 504 in 2000. Appendix D illustrates the distribution of individuals present at each site over the four-year period.

The number of new individuals in the population was considerably higher than those that died in nearly all sites during all years (Table 3.1). An overall increase in the population size of E. pallida was seen-662 individuals (N_{2000} N_{1997})-from the time the study began until it ended, resulting in a λ value of 1.53. An increase in individuals at every site was seen in every growing season (1997-1998, 1998-1999, and 1999-2000) except at 0351 in 1999-2000 $(\lambda=$ 0.74). At this site, a large number of individuals died. Because it encompasses the highest percentage (44\%) of individuals in the entire population, it caused a slight decrease in the population during 1999-2000 $(\lambda=0.97)$.

These results agree with those of Arévalo and coworkers (2003a) who concluded the population is still in a state of change and has not yet reached a steady state.

Transition Analyses Using Logistic Regression

Although the study sites showed differences in numbers of individuals, all possessed similar size structure and flowering patterns in each study period. Considerable differences are seen in the ratio of vegetative to reproductive individuals observed during 1998 and 2000 versus 1997 and 1999 (Table 3.2). Throughout the four-year period, the total number of vegetative (V) individuals recorded were 5,559, reproductive (R) individuals 1,647, and those that died or were missing (M), 832. Logistic regression involving stage classes as dependent variables and plant size characters as independent variables provided the following results (Table 3.3).

The transition from a vegetative plant to a reproductive one the following year was best explained by maximum leaf lengths ($p<0.0001$), maximum leaf lengths squared ($p=0.0020$), and number of leaves ($p=0.0021$). As illustrated in Figure 3.3, the smaller the maximum leaf lengths, the less likely a vegetative plant was to be recruited to a reproductive stage the next year. As maximum leaf lengths increase, so too did the likelihood the plant to make the transition from a vegetative stage of its life cycle to a reproductive one. The same can be said for number of leaves. Individuals with fewer leaves were less likely than those with more leaves to make a transition to a reproductive stage the following year.

The transition from a reproductive plant to a vegetative one the following year was best explained by maximum leaf lengths ($p<0.0001$) and maximum leaf lengths squared $(p=0.0004)$. The likelihood of a reversion is illustrated in Figure 3.4, a plot of the probability of individuals remaining reproductive as a function of
maximum leaf lengths. The data clearly suggest that the greater the maximum leaf lengths of a reproductive individual, the higher the probability of that individual to remain in a reproductive stage and not revert to a vegetative stage the following year.

Mortality is as an important part of the dynamics of a population as the establishment of viable offspring. Because of this, it is important to know what variables might suggest when individuals will reach the end of their life cycle. The transition of an individual from a reproductive plant to a dead (missing) plant the following year was best explained by maximum leaf lengths $(p=0.0097)$. The probability of individuals remaining reproductive as a function of maximum leaf lengths is shown in Figure 3.5. The results suggest that as maximum leaf lengths of reproductive individuals increase, so too does the likelihood of these individuals to remain reproductive and not succumb to mortality before the next growing season.

The transition of an individual from a vegetative stage to a dead (missing) plant the following year was best explained by maximum leaf lengths ($p<0.0001$) and maximum leaf lengths squared $(p<0.0001)$. The results suggest that vegetative plants with smaller maximum leaf lengths will most likely not return the next year. This result agrees with the trend found in the raw data. It appears that once a vegetative individual has reached a maximum leaf length of about 10 cm , its chances of remaining a part of the population increases.

Possible environmental variables affecting the population dynamics of E. pallida at the TGPP

One might hypothesize that a variety of environmental conditions could be affecting the population of E. pallida at the TGPP and contributing to the results of this study. Some of these environmental variables were examined by Arévalo and coworkers (2003a\&b). They did not find a strong relationship between soil composition and chemistry and population features. Likewise, climatic parameters (mean monthly average temperature, total precipitation, and mean monthly soil temperature) also were considered. These parameters, acquired from a Mesonet station (Oklahoma Climatological Survey, 2002) located less than 500 m from the study site, were not clearly related with the differences among the transition probabilities during the study (Arévalo et al., 2003b).

Arévalo and coworkers (2003b) suggested that the difference in numbers of vegetative and reproductive plants in 1998 and 2000 from those in 1997 and 1999 are a result of the prescribed fire regime instituted at the TGPP. Their results suggest that E. pallida exhibits a dynamic response to fire, i.e., producing a large number of reproductive individuals in the growing season after fall fires (1997 and 1999) and smaller numbers of reproductive individuals when fire is absent (1998 and 2000). In years without fire, there was more competition for adequate solar radiation due to accumulation of litter and grass biomass from the previous growing season. This resulted in an increase in leaf biomass per plant, both in terms of surface area and number of leaves, as well as a decrease in the number of flowering heads. Although the effect of fire in reproductive dynamics
of prairie plaṇts has been extensively reported (Dudley and Lajha, 1993; Hamilton, 1996; Hurlburt, 1999; Vickery, 2002), especially with respect to survivorship in different species (Maret and Wilson, 2000), reversion of the size during those years has not been documented as a common response. Arévalo and coworkers (2003b) considered a regular rate of fire an intrinsic factor of the population dynamic of E. pallida that facilitates the maintenance of the population.

It should clearly be determined what effect fire has on the population with demographic parameters. Altering the current method of fire management may result in a non sustainable population of Echinacea pallida. If current management practices on the preserve are maintained, populations of E. pallida will persist.

Table 3.1 Finite rate of increase λ and summed values of individuals new to the population (B), those that died (D), and total number of individuals for each site in a given year $\left(N_{t}\right)$.

Site	1997	1998			$\begin{aligned} & 1997- \\ & 1998 \end{aligned}$	1999			$\begin{aligned} & 1998- \\ & 1999 \end{aligned}$	2000			$\begin{aligned} & 1999- \\ & 2000 \end{aligned}$	$\begin{gathered} \text { Overall } \\ \text { population } \\ \text { status } \\ (1997-2000) \lambda \end{gathered}$
	N_{t}	B	D	N_{t}	λ	B	D	N_{t}	λ	B	D	N_{t}	λ	
0074	373	81	5	449	1.20	229	64	614	1.37	168	131	651	1.06	1.75
0351	691	82	10	763	1.10	245	114	894	1.17	78	306	666	0.74	0.96
1371	2	0	0	2	1.00	1	0	3	1.50	2	0	5	1.67	2.50
1834	0	1	0	1		0	0	1	1.00	2	0	3	3.00	
4387	26	10	0	36	1.38	32	3	65	1.81	21	9	77	1.18	2.96
5979	127	87	0	214	1.69	133	32	315	1.47	123	80	358	1.14	2.82
7065	80	70	3	147	1.84	39	32	154	1.05	110	43	221	1.44	2.76
Totals	1299	331	18	1612	1.24	679	245	2046	1.27	504	569	1981	0.97	1.53

Table 3.2 Numbers of individuals in vegetative (V), reproductive (R), and dead/missing (M) stage classes for each site during each year.

1997			1998			V	1999		V		
Site	V	R	V	R	M	V	R	M	V	R	M
0074	181	192	441	8	5	398	218	64	702	17	131
0351	349	342	737	26	10	498	406	114	725	59	306
1371	1	1	2	0	0	1	2	0	5	0	0
1834	0	0	1	0	0	0	1	0	3	0	0
4387	7	19	35	1	0	38	27	3	79	1	9
5979	37	90	210	4	0	218	97	32	385	5	80
7065	26	54	144	3	3	83	72	32	253	2	43
	601	698	1570	42	18	1236	823	245	2152	84	569

Table 3.3. Summary of backward stepwise logistic regression results as explained in text. Estimates and intercepts generated using SAS 8.2 (SAS Institute, Cary, NC).

Transition from vegetative to reproductive individual	Significant independent variables $(a=0.05)$	Estimate used for equation 3.3
maximum leaf lengths	$\mathrm{p}<0.0001$	0.3926
maximum leaf lengths squared	$\mathrm{p}=0.0020$	-0.00462
number of leaves	$\mathrm{p}=0.0021$	0.0334
	intercept	-5.9648
Transition from reproductive to vegetative individual	Significant independent variables ($a=0.05$)	Estimate used for equation 3.3
maximum leaf lengths	p<0.0001	0.7476
maximum leaf lengths squared	$\mathrm{p}=0.0004$	-0.0146
	intercept	-10.6814
Transition from reproductive to dead individual	Significant independent variables ($a=0.05$)	Estimate used for equation 3.3
maximum leaf lengths	$\mathrm{P}=0.0097$	-0.0844
	intercept	2.1684
Transition from reproductive to dead individual	Significant independent variables ($\alpha=0.05$)	Estimate used for equation 3.3
maximum leaf lengths	$\mathrm{p}<0.0001$	-0.2245
maximum leaf lengths squared	$\mathrm{p}<0.0001$	0.00828
	intercept	-0.1642

Figure 3.3 Transition from vegetative stage previous year to reproductive stage the following year. Constructed from logistic model (Equation 3.3).

Figure 3.4 Transition from reproductive stage previous year to vegetative stage the following year. Constructed from logistic model (Equation 3.3).

Figure 3.5 Transition from reproductive stage previous year to dead (missing) plant the following year. Constructed from logistic model (Equation 3.3).

LITERATURE CITED

Akcakaya, H. R., Mark A. Burgman, and Lev R. Ginzburg. 1999. Applied Population Ecology using RAMAS EcoLab. Sinauer Associates, Inc., Sunderland, MA.

Arévalo, J. R. 2002. Distribution of trees and saplings at the edge of cross timbers forests, Oklahoma, USA. Natural Areas Journal 22:99-107.

Arévalo, J. R., A.K. Ryburn, and S.D. Jaiswal. 2003a. Temporal changes in the spatial structure of a population of Echinacea pallida at the Tallgrass Prairie Preserve, Oklahoma. Southwestern Naturalist. Manuscript in review.

Arévalo, J. R., A.K. Ryburn, and S.D. Jaiswal. 2003b. Temporal changes in the structure of a population of Echinacea pallida. Tallgrass Prairie Preserve, Oklahoma. Journal of Vegetation Science. Manuscript in review.

Bauer, R. and H. Wagner. 1985. Echinacea Species as Potential Immunostimulatory Drugs. Pages 253-321 in H. Wagner, Hiroshi Hikino, and Norman R. Farnsworth, eds. Economic and Medicinal Plant Research, Vol. 5. Academic Press, Inc., Orlando, FL.

Bauer, R., I.A. Khan, and H. Wagner. 1988. TLC and HPLC analysis of Echinacea pallida and E. angustifolia roots. Planta Medica 54:426-430.

Binns, S. E., B. R. Baum, and J. T. Arnason. 2002. A taxonomic revision of Echinacea (Asteraceae: Heliantheae). Systematic Botany 27:610-632.

Collins, S. L. 1989. Experimental analysis of patch dynamics and community heterogeneity in tallgrass prairie. Vegetatio 85:57-66.

Collins, S. L. 1990. Patterns of community structure during succession in tallgrass prairie. Bulletin of the Torrey Botanical Club 117:397-408.

Dudley, J. L. and K. Lajtha. 1993. Effects of prescribed burning on nutrient availability and primary production in sandplain grasslands. American Midland Naturalist 130:286-298.

Fahnestock, J. T. and A. K. Knapp. 1994. Plant responses to selective grazing by bison: Interactions between light, herbivory and water stress. Vegetatio 72:175-185.

Hamilton, R. G. 1996. Using fire and bison to restore a functional tallgrass prairie landscape. Pages 208-214 in Transcript of the 61st North American Wildlife and Natural Resource Conference.

Hurlburt, D. P. 1999. Population Ecology and Economic Botany of Echinacea angustifolia, A Native Prairie Medicinal Plant. Doctoral Dissertation. Univeristy of Kansas, Lawrence, KS.

Ladd, D. and Frank Oberle. 1995. Tallgrass Prairie Wildflowers. Falcon Publishing Inc., Helena, Montana.

Lemeshow, S. and David W. Hosmer Jr. 1998. Logistic Regression. Pages 2316-2327 in P. Armitage and Theodore Colton, eds. Encyclopedia of

Biostatistics. John Wiley \& Sons, Ltd., Chichester, UK:

Leuszler, H. K., Vincent J. Tepedino, and Diane G. Alston. 1996. Reproductive biology of purple coneflower in southwestern North Dakota. The Prairie Naturalist 28:91-102.

Li, T. S. C. 1998. Echinacea: Cultivation and Medicinal Value. HortTechnology 8:122-129.

Maret, M. P. and M. V. Wilson. 2000. Fire and seedling population dynamics in western Oregon prairies. Journal of Vegetation Science 11:307-314.

McGregor, R. L. 1968. The taxonomy of the genus Echinacea (Compositae). University of Kansas Science Bulletin 48:113-142.

McKeown, K. A. 1999. A Review of the Taxonomy of the Genus Echinacea. Pages 482-489 in J. Janick, ed. Perspectives on new crops and new uses. American Society for Horticultural Science Press, Alexandria, VA.

Menard, S.W. 1995. Applied Logistic Regression Analysis. Sage University Paper series on Quantitative Applications in Social Sciences. No. 107. Sage University Publications, Inc. Thousand Oaks, CA.

Oklahoma Climatological Survey. 2002. Mesonet Climatological. Data Summary (Foraker). Oklahoma Climatological Survey, College of Geological Sciences, University of Oklahoma, Norman, Oklahoma.

Palmer, M. W. 2003. The Vascular Flora of the Tallgrass Prairie Preserve, Osage

 County, Oklahoma. Unpublished manuscript.Schulthess, B. H., E. Giger, and T. W. Baumann. 1991. Echinacea - Anatomy, Phytochemical Pattern, and Germination of the Achene. Planta Medica 57:384-388.

Silvertown, J. W. and J.L. Doust. 1993. Introduction to Plant Population Biology. Blackwell Science Ltd., Malden, MA.

Small, E. and Paul M. Catling. 1999. Canadian Medicinal Crops. National Research Council of Canada, Ottawa.

U.S. Fish \& Wildlife Service. 1999. Threatened and Endangered Species System (TESS). Division of Endangered Species, http://endangered.fws.gov.

Vickery, P. 2002. Effects of prescribe fire on the reproductive ecology of northern blazing star Liatris scariosa var. novae-angliae. American Midland Naturalist 148:20-27.

Appendix A. Representative database sheet used in organizing field data of Echinacea pallida. site $=0074,0351,1371,1834,4387,5979$, and 7065; year $=$ 1997-2000; plant ID $=1-2236 ; x$ and $y=$ Cartesian coordinates with respect to 10 X 10 m site; quad \# = 1 X 1 m quadrat within each site ($1-100$); stage (life cycle stage at time of data collection) $=\mathrm{R}$ (reproductive/flowering), V (vegetative), M (missing/dead); fh \# = number of heads; L1-L200 = leaf lengths; FH1-FH15 = stem heights.

site	year	plant ID	x	y	quad\#	stage	fh\#	L1	L2	L3	L4	L5	L6	L7	FH1	FH 2
1371	1997	1	36	588	6	R	1	9	7	13	5	15	2	3	28	
1371	1998	1	36	588	6	V	0	16	12	4	3	25	12	12		
1371	1999	1	36	588	6	R	4	14	13	14	12	10	11	12	64	58
1371	2000	1	36	588	6	V		16	17	15	13	14	13	13		
1371	1997	2	182	219	13	R	1	8	7	6	9	10	11	12	49	
1371	1998	2	182	219	13	V	0	6	6	12	7	6	8	13		
1371	1999	2	182	219	13	V		30	29	18	18	15	19	23		
1371	2000	2	182	219	13	V		16	25	27	36	33	35	35		
7065	1997	3	41	511	6	R	3	6	9	11	11	9	11	8	51	53
7065	1998	3	41	511	6	V	0	7	8	10	17	18	11	15		
7065	1999	3	41	511	6	R	2	17	16	17	14	14	13	12	61	72
7065	2000	3	41	511	6	V		6	21	13	26	21	21	24		
7065	1997	4	41	311	6	R	1	4	3	5	5	8	5	3	41	
7065	1998	4	41	311	6	V	0	10	10	4						
7065	1999	4	41	311	6	R	1	14	13	12	11	11	10	8	46	
7065	2000	4	41	311	6	V		10	14	5	5	2	15	8		
7065	1997	5	9	590	7	V	0	12	9	11	12	12	12	12		
7065	1998	5	9	590	7	V	0	7	12	10	8	12	12	6		
7065	1999	5	9	590	7	R	1	13	12	13	14	13	11	11	69	
7065	2000	5	9	590	7	V		9	6							
7065	1997	6	6	662	7	V	0	12	12	11						
7065	1998	6	6	662	7	V	0	5	13	12			-			
7065	1999	6	6	662	7	V		21	22	19	17	11				
7065	2000	6	6	662	7	M										
7065	1997	7	15	756	8	R	2	10	9	11	12	10	7	9	50	59
7065	1998	7	15	756	8	V	0	4	3	8	8	6	6	7		
7065	1999	7	15	756	8	R	1	14	13	14	13	11	11	10	61	25
7065	2000	7	15	756	8	V		8	12	26	8	16	23	29		
7065	1997	8	38	770	8	R	2	9	9	12	11	8	9	3	45	38
7065	1998	8	38	770	8	V	0	11	17	6	16	8	5			
7065	1999	8	38	770	8	R	2	15	15	16	15	16	16	17	59	47
7065	2000	8	38	770	8	M										
7065	1997	9	45	752	8	R	4	10	8	10	11	14	10	11	55	61
7065	1998	9	45	752	8	V	0	11	18	18	18	9	11	16		
7065	1999	9	45	752	8	R	3	16	15	14	13	12	10	11	65	68
7065	2000	9	45	752	8	V		8	13	25	15	12	32	27		
7065	1997	10	67	799	8	R	2	7	7	7	8	9	9	6	45	43
7065	1998	10	67	799	8	V	0	5	7							
7065	1999	10	67	799	8	M										

Appendix B. Representative database sheet summarizing recorded variables. site $=0074,0351,1371,1834,4387,5979$, and 7065; year $=1997-2000$; plant ID $=1-2236$; stage this year (life cycle stage at time of data collection) $=R$ (reproductive/flowering), V (vegetative), M (missing/dead); stage previous year (life cycle stage year prior to data collection if applicable) $=R$ (reproductive/flowering), V (vegetative), M. (missing/dead).

site	year	plant ID	stage this year	stage following year	sum leaf length (cm)	max leaf length (cm)	number of leaves	sum stem heights (cm)	max stem height (cm)	number of stems
4387	1999	1713	V	V	23	9	3	0	0	0
4387	1999	1714	V	V	69	15	5	0	0	0
4387	1999	1715	V	V	21	11	2	0	0	0
4387	1999	1716	V	V	14	10	2	0	0	0
4387	1999	1717	V	V	13	9	2	0	0	0
4387	1999	1718	V	V	59	14	5	0	0	0
4387	1999	1719	V	V	35	10	4	0	0	0
4387	1999	1720	V	D	34	14	4	0	0	0
4387	1999	1721	V	V	63	15	7	0	0	0
4387	1999	1722	V	V	37	15	3	0	0	0
4387	1999	1723	R	V	181	17	15	67	67	1
4387	1999	1724	V	V	16	10	2	0	0	0
4387	1999	1725	V	V	18	11	2	0	0	0
4387	1999	1726	V	V	18	9	2	0	0	0
4387	1999	1727	V	V	55	11	6	0	0	0
4387	1999	1728	V	V	47	12	5	0	0	0
4387	1999	1729	R	V	110	14	12	54	54	1
4387	1999	1730	V	V	44	16	4	0	0	0
5979	1997	83	R	V	109	13	15	60	60	1
5979	1998	83	V	V	11	6	2	0	0	0
5979	1999	83	V	V	147	24	8	0	0	0
5979	1997	84	V	V	38	10	5	0	0	0
5979	1998	84	V	V	53	22	3	0	0	0
5979	1999	84	V	V	90	18	6	0	0	0
5979	1997	85	R	V	204	13	26	47	47	1
5979	1998	85	V	R	13	6	3	0	0	0
5979	1999	85	R	V	119	14	11	96	50	2
5979	1997	86	R	V	70	9	15	47	47	1
5979	1998	86	V	D	8	4	2	0	0	0
5979	1997	87	R	V	172	17	16	58	58	1
5979	1998	87	V	R	90	25	5	0	0	0
5979	1999	87	R	V	511	21	44	215	76	3
5979	1997	88	V	V	57	15	5	0	0	0
5979	1998	88	V	D	25	15	2	0	0	0
5979	1997	89	V	V	21	8	3	0	0	0
5979	1998	89	V	D	12	5	3	0	0	0
5979	1997	90	V	V	30	12	3	0	0	0
5979	1998	90	V	R	32	13	4	0	0	0
5979	1999	90	R	V	116	12	14	46	46	1
5979	1997	91	R	V	79	14	10	47	47	1
5979	1998	91	V	V	98	20	10	0	0	0
5979	1999	91	V	V	73	10	8	0	0	0
5979	1997	92	R	V	82	10	12	61	61	1

Appendix C. SAS input for logistic regression (LOGISTIC procedure).
DATA ONE;
INFILE 'C:IDOCUMENTS AND SETTINGSUADMINISTRATORIMY DOCUMENTSUECHINACEA STUFFIRYBURN2.PRN'; INPUT PLANTID YEAR SITE STAGETHIS\$ STAGEFOLLOW\$ SUMLEAFLEN MAXLEAFLEN NOLEAVES SUMSTEMHT MAXSTEMHT NOSTEMS;

```
SUMLEAFLEN2 = SUMLEAFLEN**2;
MAXLEAFLEN2 = MAXLEAFLEN**2;
NOLEAVES2 = NOLEAVES**2;
SUMSTEMHT2 = SUMSTEMHT**2;
MAXSTEMHT2 = MAXSTEMHT**2;
NOSTEMS2 = NOSTEMS**2;
```

DATA TWO;
SET ONE;
IF STAGETHIS = 'V';
DATA TWOVR;
SET TWO;
IF STAGEFOLLOW = 'V' OR STAGEFOLLOW = 'R';
PROC LOGISTIC;
TITLE 'PREVIOUS STAGE = V';
MODEL STAGEFOLLOW = SUMLEAFLEN SUMLEAFLEN2 MAXLEAFLEN MAXLEAFLEN2 NOLEAVES NOLEAVES2
SUMSTEMHT SUMSTEMHT2 MAXSTEMHT MAXSTEMHT2 NOSTEMS NOSTEMS2 /SELECTION = BACKWARD;
DATA TWOVD;
SET TWO;
IF STAGEFOLLOW = 'V' OR STAGEFOLLOW = ' D';
PROC LOGISTIC;
TITLE 'PREVIOUS STAGE = V';
MODEL STAGEFOLLOW = SUMLEAFLEN SUMLEAFLEN2 MAXLEAFLEN MAXLEAFLEN2 NOLEAVES NOLEAVES2
SUMSTEMHT SUMSTEMHT2 MAXSTEMHT MAXSTEMHT2 NOSTEMS NOSTEMS2 /SELECTION = BACKWARD;
DATA THREE;
SET ONE;
IF STAGETHIS = 'R';
DATA THREERV;
SET THREE;
IF STAGEFOLLOW = 'R' OR STAGEFOLLOW = 'V';
PROC LOGISTIC;
TITLE 'PREVIOUS STAGE = R';
MODEL STAGEFOLLOW = SUMLEAFLEN SUMLEAFLEN2 MAXLEAFLEN MAXLEAFLEN2 NOLEAVES NOLEAVES2
SUMSTEMHT SUMSTEMHT2 MAXSTEMHT MAXSTEMHT2 NOSTEMS NOSTEMS2 /SELECTION = BACKWARD;
DATA THREERD;
SET THREE;
IF STAGEFOLLOW = 'R' OR STAGEFOLLOW = ' D ';
PROC LOGISTIC;
TITLE 'PREVIOUS STAGE = R';
MODEL STAGEFOLLOW = SUMLEAFLEN SUMLEAFLEN2 MAXLEAFLEN MAXLEAFLEN2 NOLEAVES NOLEAVES2
SUMSTEMHT SUMSTEMHT2 MAXSTEMHT MAXSTEMHT2 NOSTEMS NOSTEMS2 /SELECTION = BACKWARD;

RUN;

Appendix D. Distribution of individual plants in each $10 \times 10 \mathrm{~m}$ site studied. Mapping is based on Cartesian coordinate system.

Appendix D Continued.

CURRICULUM VITAE
 ADAM K. RYBURN

Candidate for the Degree of
Doctor of Philosophy

Thesis: Taxonomic Investigations of Oklahoma Flora
Major Field: Plant Sciences/Botany

EDUCATION

1999 - Present Oklahoma State University, Stillwater, OK Pursuing Doctoral Degree in Plant Sciences/Botany, to be conferred December , 2003

1993-1998 Southwestern Oklahoma State University, Weatherford, OK Bachelor of Science/Biological Science
1990-1993 Anadarko High School, Anadarko, OK
PROFESSIONAL EXPERIENCE
Visiting A ssistant Professor
Presently Department of Botany / Oklahoma State University
Teading A ssociate
1999 - Present Department of Botany / Oklahoma State University
Teadring A ssistant
1999-2003 University of Oklahoma Biological Station, Lake Texoma, OK
Researd A ssistant
2002 Department of Botany / Oldahoma State University
Researds A ssistant
1999-2000 Department of Botany / Oklahoma State University
Teadring Assistant
1998-1999 Department of Biological Sciences / Southwestern Oklahoma State University (SWOSU)

AWARDS RECEIVED
OSU Phoenix Award Finalist for Outstanding PhD Candidate, 2003
OSU Distinguished Graduate Student Fellowship, 2001-present
OSU Leadership Legacy Recipient, 2000
Outstanding Teaching Assistant, College of Arts and Sciences, 2000 (OSU)
Southwestern Oklahoma State University Outstanding Biology Student of the Year, 1997, 1998
Who's Who Among American College Students, 1997 (SWOSU)
Mary Miller Award for Outstanding Field Research Student, 1996 (SWOSU)

