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Chapter I: 

Introduction 

Despite intensive genetic selection and improved management practices, the 

number of pigs born per litter in the United States has not dramatically changed during 

the last 4 decades. Geisert and Schmitt [2000] suggested that potential litter size of pigs 

could be greater than 14 pigs per litter if all ovulated ova produced a live offspring. The 

prolificacy of US and European breeds has been scrupulously compared to the more 

reproductively prolific Meishan pigs of China, which consistently farrow larger litters 

than US and European breeds. Litter size difference between the breeds of pigs is 

thought to result from uniform trophoblastic elongation among littermates ofMeishan 

sows [Ford, 1997]. 

Similar to many other mammalian species, early porcine conceptus development 

is characterized by fertilization, cleavage, compaction, blastulation, hatching from the 

zona pellucida and implantation. However, porcine conceptuses also experience a unique 

morphological rearrangement of their trophectoderm on day 11 to 12 of gestation [Geisert 

and Yelich, 1997]. This process, termed rapid trophoblastic elongation, occurs 
' 

concurrently with the conceptus synthesis and release of estrogen, the maternal 

recognition signal. Trophoblastic elongation serves to establish a maternal-fetal interface 

with which the conceptus can initiate implantation and placentation. The uniqueness of 

this phenomena lies in the rapid rate ( 40 mm/h) and to what extent (> 1 meter) porcine 

conceptuses elongate. During this transformation, individual conceptuses acquire uterine 

space to ensure nutrient exchange with the dam and future survival. However, this short 

time period of conceptus development in the pig represents the majority of a 25-46% 
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embryonic mortality rate [Pope, 1994]. Among US and European pigs, the initiation of 

trophoblastic elongation in conceptuses can be variable among littermates, possibly 

leading to unequal allocation of uterine space and causing the demise of slightly less 

developed physiologically normal conceptuses. 

Trophoblastic elongation represents one of the most important stages of early 

development in swine subsequently having impacts on litter size, one of the most 

economically important traits affecting the pig industry., Therefore, the purpose of the 

following review of literature is to describe early conceptus development in the pig and 

assess the current knowledge of genes that may regulate trophoblastic elongation, 

maternal recognition and implantation. 
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Chapter II: 

Literature Review 

Porcine Embryonic Development 

Heuser and Streeter [1929] were the first to describe the morphological changes 

that occur during peri-implantation conceptus development in the pig. Cellular cleavage 

of the isolecithal ovum in mammals is a process of cell division in which several equal 

holoblastic divisions occur because of stored lipid sources within the cytoplasm. With 

each cleavage division there is a reduction in cell size. The first two cleavage divisions 

occur rapidly in pig zygotes as the embryo reaches the 4-cell stage of development within 

24 h after fertilization. Following the initial divisions, cleavage rate becomes slower 

although still occurring approximately every 24-26 h until the embryos reach the 8-16 

cell stage of development. During the early cleavage stages of development, particularly 

at the 4-cell stage of development, the blastomeres readily take up uridine and 

incorporate it into RNA [Tomanek et al., 1989]. These data indicate that maternal 

mRNA stored in the oocyte is depleted and the activation of the embryonic genome has 

commenced. Following the transition from the 4 to 8-cell stage, the embryos leave the 

oviduct and enter into the uterus. By day six following fertilization the embryos have 

undergone blastulation resulting in a defined trophectodermal cell layer and a thickening 

inner cell mass within the prominent blastocoele. On day 7 to 8 of gestation the 

blastocyst hatches from the zona pellucida and begins to expand in diameter with 

differentiation of the inner cell mass and active trophoblast proliferation. The conceptus, 

consisting of the embryo proper and its extraembyonic membranes, reaches a spherical 

diameter of2-3 mm by day 10 of gestation. Heuser and Streeter [1929] were the first to 
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describe the variation in conceptus morphologies that were present between days 11 to 12 

of gestation. Their classical paper presented photographs of spherical, tubular and 

filamentous conceptuses in the pig uterus. Following formation of filamentous 

conceptuses, the initial attachment of the conceptus trophectoderm to the uterine 

epithelium occurs on day 13 of gestation [Perry et al., 1981; Dantzer, 1985]. The 

allantois expands from the embryonic hindgut on day 14 and is as long as the embryo by 

day 17 [Friess et al., 1980]. The allantois continues to expand, completing full contact 

with the meter long chorion by day 19 of gestation. The chorion is completely 

vascularized by allantoic blood vessels by day 30 of gestation [Wislocky and Dempsey, 

1946]. In essence, between days 12 and 30 of gestation, porcine conceptuses expand 

throughout the uterine lumen and establish an absorptive surface for nutrient exchange 

with the dam. The extent to which conceptuses elongate on day 11 to 12 of gestation has 

profound effects on the subsequent length of their placenta. Generally, conceptuses 

developing the largest placenta acquire the greatest uterine surface contact and have the 

highest chances of survival to term. 

During late peri-implantation development, on approximately day 10 of gestation, 

a 3 mm spherical porcine conceptus will grow in diameter at a rate of 1 mm/4h through 

cellular hyperplasia [Geisert et al., 1982a]. Over the next 24-36 h, the conceptus will 

expand until it reaches an approximate 9-10 mm diameter [Geisert et al., 1982a; Pusateri 

et al., 1990]. On day 11 to 12 of gestation, the 9-10 mm spherical conceptuses undergo a 

rapid morphological transformation, termed trophoblastic elongation [Geisert et al, 

1982a]. Trophoblastic elongation is initiated concurrently with conceptus synthesis and 

release of the maternal recognition signal, estrogen [Geisert et al., 1982a; Bazer et al., 
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1986]. The unique phenomena of trophoblastic elongation in the pig is characterized by a 

IO mm spherical conceptus transforming first into a tubular morphology (15-25 mm), 

then rapidly elongating (40mm/h) until the conceptus becomes a thin filamentous form 

greater than 150 mm in length [Geisert et al., 1982a]. The transformation of the 

conceptus from a spherical to filamentous form occurs within 2 to 4 h. The elongation 

process is the result of cellular migration and remodeling of trophectodermal and 

endodermal cell layers, not cellular hyperplasia [Geisert et al., 1982a; Mattson et al., 

1990; Pusateri et al., 1990]. Mattson et al. [1990] proposed that the cytoskeletal 

rearrangement of filamentous actin (f-actin) was responsible for the dramatic and rapid 

change in morphology. In 1981, Perry likened the rapid formation of a filamentous 

conceptus to rolling a ball of plasticene between two hands, forcing expansion of the ends 

while reducing the diameter. Expansion of the conceptus within the length of the uterine 

horns is a critical process necessary for individual porcine littermates to establish ample 

placental surface area required for adequate nutrient exchange throughout gestation 

[Stroband and Van der Lende, 1990; Geisert and Yelich, 1997]. Trophoblastic elongation 

also serves to deliver conceptus estrogen secretion throughout the length of the uterine 

horn preventing luteolysis. The need for elongation to cover the uterine horns and deliver 

estrogen is noted by the demonstration that at least two viable conceptuses per uterine 

horn are required at the time of maternal recognition to prevent luteolysis during 

pregnancy [Polge et al., 1966; Dziuk, 1968]. Although little information is available 

regarding stimuli responsible for the initiation of rapid trophoblastic elongation, it has 

been established that trophoblastic elongation is regulated by the conceptus itself and is 

not a direct response to signals of maternal origin. This hypothesis was confirmed by 
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Morgan et al. [1987a] when they demonstrated that spherical conceptuses in uteri 

prematurely stimulated with exogenous estrogen do not undergo trophoblastic elongation 

until reaching 10 mm in diameter, when trophoblastic elongation normally commences. 

Furthermore, it is not unusual to recover viable spherical, tubular and filamentous 

conceptuses within the same litter [Anderson, 1978; Geisert et al., 1982a]. The presence 

of multiple morphological stages of conceptuses within a litter suggests that the maternal 

system does not trigger uniform elongation among all of the developing embryos. 

Embryonic Mortality in the Pig 

In 1923, Corner was the first to determine that the number of corpora lutea 

present on the ovaries is an accurate estimate of ovulation rate and could be utilized to 

determine the rate of embryonic mortality at various stages of gestation. Using this 

methodology, embryonic mortality has been determined to range from 20 to 46% by term 

[Pope, 1994]. 

Numerous factors contribute to the loss of developing conceptuses in the pig 

throughout the 114 days of gestation. Broadly, there are two time periods in which 

embryonic mortality occurs; peri-implantation, between days 10 and 18; and post

implantation, between days 18 and 114 days of gestation. The majority of embryonic 

mortality occurs during peri-implantation development [Stroband and Van der Lende, 

1990] in which the conceptuses commence a rapid morphological rearrangement of the 

trophoblast in an effort to acquire ample uterine lumenal surface area for development to 

term. Numerous factors are involved with the ability of the conceptus to undergo 

trophoblastic elongation and prepare for successful implantation. 
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Following fertilization and oviductal transport to the uterus, the first barrier to 

conceptus survival is the incompatibility of the uterine environment with regards to 

conceptus development. Conceptus-uterine asynchrony greater than 36 h has been 

demonstrated to cause conceptus death as early as day 8 of gestation [Geisert et al., 

1991]. Pope et al. [ 1990] have shown that transfer of additional day 6 embryos to a day 7 

pregnant uterus showed greater mortality and morphological variation of the day 6 

embryos compared to additional day 7 embryos transferred to day 6 pregnant uteri. This 

indicates that conceptuses lagging in development with respect to the uterine 

environment are less competitive to more advanced embryos and endure increased 

mortality rates. In addition to conceptus-uterine asynchrony, asynchronous development 

among littermates during peri-implantation development correlates to embryonic 

mortality of the less developed conceptuses. Pope et al. [1990] also indicated that both 

day 5 and day 7 conceptuses transferred to a uterus corresponding to day 6 of gestation 

could survive until at least day 60 of gestation. However, when both day 5 and 7 

conceptuses were transferred to the same uteri, day 7 conceptuses exhibited greater 

survival [Pope et al., 1990] indicating that through some mechanism the more advanced 

conceptuses govern the survival of less developed conceptuses. Collectively, these 

asynchrony studies indicate the ability of more developed conceptuses to produce factors 

that could alter endometrial secretions, producing a uterine environment that is unsuitable 

for appropriate growth of conceptuses lagging in development. 

Estrogen, the maternal recognition signal in the pig, is likely the conceptus factor 

that alters the uterine environment and causes the demise of less developed littermates. 

Treatment of gilts containing transferred embryos lagging 24 h in conceptus-uterine 
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synchrony with estrogen on day 11 resulted in halted conceptus development. However 

embryos synchronous to the uterus in gilts receiving the same treatment elongated and 

appeared phenotypically normal [Morgan et al., 1987b]. These data indicate survival 

. advantage possessed by more advanced conceptuses occurs through earlier production of 

estrogen that alters the uterine environment making it is unsuitable for the progression of 

less developed conceptuses. It is likely that conceptuses more advanced in development 

on day 11 can stimulate biochemical changes in the uterus via their own surge in estrogen 

production giving them a competitive advantage for the accumulation of uterine space 

and subsequent survival [Pope et al., 1990]. 

While it is apparent that estrogen is needed as a maternal signal, timing and extent 

of estrogen exposure can have dramatic effects on continued conceptus development and 

survival. Inappropriate timing of estrogen stimulation can result in total litter loss as 

occurs with estrogenic alfatoxins, such as zearalenone, found in moldy corn [Long and 

Diekman, 1984]. While it doesn't inhibit conceptus elongation, exogenous estrogen, 

given on days 9 and 10 of gestation ( 48 to 72 h prior to normal conceptus estrogen 

release) alters uterine glandular secretion and disrupts the glycocalyx covering the 

endometrial epithelial cell surface. Disruption of the uterine surface glycocalyx is closely 

associated with embryonic mortality on day 15 to 18 of gestation [Morgan et al., 1987a; 

Blair et al., 1991; Geisert et al., 1991]. The uterine glycocalyx (UG) generally thickens 

during attachment and early placentation in the pig, which occurs between days 13 and 

18 of gestation [Perry et al., 1981; Dantzer, 1985; Geisert et al., 1991]. However, the UG 

becomes somewhat reduced in areas ofplacentation compared to inter-attachment sites 

[Blair et al., 1991]. Premature administration of estrogen ( days 9 and 10) impairs the 
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thickening of the UG, actually causing it to completely slough off by day 16 of gestation. 

The loss of the UG prevents cell-cell interactions necessary for conceptus attachment 

resulting in conceptus mortality [Blair et al., 1991]. 

Another component that affects the outcome of litter size at term is uterine 

capacity. Uterine capacity is defined as the maximum number of fetuses the uterus can 

support throughout the length of gestation when potentially viable conceptuses are not 

limiting [Christenson et al., 1987]. In an effort to increase litter size, early studies 

focused on increasing the viable number of conceptuses at the onset of pregnancy by 

superovulating gilts. Superovulated gilts contain significantly more intact conceptuses at 

day 30 of gestation [Dziuk, 1968], however this advantage in litter size is lost by term, 

indicating that the limitations of uterine capacity occur some time after day 30 of 

gestation. The Meishan breed of pigs that originated from China are known for their 

prolific reproductive capabilities. Meishan pigs have a similar ovulation rate and number 

of viable conceptuses at day 12 of gestation compared to US and European breeds. 

However, by term, Meishans farrow at least 3 piglets more than US and European breeds 

[Ford, 1997]. The greater litter size at term has largely been attributed to the ability of 

Meishan conceptuses to develop smaller, more vascular placentas that enable them to 

acquire ample nutrient exchange while minimizing uterine space [Ford, 1997]. Placental 

efficiency (fetal weight/placental weight) is highly variable between and even within 

litters, however placental efficiency may provide an effective selection tool for litter size 

[Wilson and Ford, 2001]. Wilson et al. [1999] indicated that selecting individual 

littermates based on placental efficiency (fetal weight/placental weight) significantly 

increased litter size after only one generation of selection albeit the number of animals 

9 



involved in the study was relatively small. In a larger commercial study, Vonnahme et al. 

[2002] demonstrated that a significant positive correlation exists between ovulation rate 

and viable conceptus at day 25 but not at days 36 or 44 of gestation. The opposite 

relationship exists for uterine length, which is not significantly correlated to viable 

conceptuses at day 25 of gestation but is positively correlated by days 36 and 44. These 

data suggest that the limitation of uterine capacity begins to negatively effect litter size 

sometime between day 25 and 36 of gestation. Furthermore, Vonnahme et al. [2002] 

indicate that placental efficiency is positively correlated to viable conceptus at all days of 

gestation evaluated (days 25, 36 and 44). These data lend confirmation to the smaller 

study done previously by Wilson et al. [1999] suggesting that placental efficiency may be 

involved in the regulation of uterine capacity. These data further indicate the limitation 

of embryo survival is related to development of the placenta, which is initially established 

during conceptus elongation on day 12 of gestation. 

Maternal Recognition of Pregnancy 

Maternal recognition of pregnancy is defined as conceptus release of a chemical 

signal that functions to prolong the lifespan of the corpus luteum (CL) beyond the length 

of a normal estrous cycle [Geisert et al., 1990]. Maintenance of the CL sustains 

progesterone production and subsequently provides a uterine environment favorable for 

conceptus development to term. In the pig, the presence of corpora lutea on the ovaries is 

a required source of progesterone throughout gestation as ovariectomy at any stage of 

pregnancy results in abortion [Nara et al., 1981]. Perry et al. [1973, 1976] were the first 

to show that porcine conceptuses are physiologically capable of producing estrogens 
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from the metabolism of steroid precursor molecules. It was later established that in the 

pig, conceptus synthesis and release of estrogen is in fact the signal for maternal 

recognition [Bazer et al., 1982]. Synthesis and release of estrogen by the developing pig 

conceptus is biphasic, transiently peaking during trophoblastic elongation on day 11-12 

followed by a more sustained release of estrogen initiated on day 15-16 of gestation 

[Geisert et al., 1990]. Kidder et al. [1955] demonstrated that a single injection of 

estrogen to gilts after day 9 of the estrous cycle prolonged the lifespan of the corpora 

lutea. Gardner et al. [1963] lengthened the interestrous interval by administering 

exogenous estrogen on day 11-12 of the estrous cycle. Similar results were revealed by 

Geisert et al. [1987] who demonstrated an additional 7 days was added to the CL lifespan 

in response to exogenous estrogen given on day 12 of the estrous cycle. Ford et al. 

[1982a] extended CL survival when infusing estradiol valerate directly into the uterine 

lumen between days 11 and 15 of the estrous cycle. Similarly, King and Rajamahendran 

[1988] demonstrated implanting silastic beads impregnated with estrogen into the uterine 

lumen on day 10 was capable of inducing psuedopregnancy. Frank et al. [ 1977] induced 

psuedopregnancy in cyclic gilts by an average of 146 days (although highly variable) by 

injecting 5 mg of estradiol valerate daily during days 11 to 15 of the estrous cycle. 

Dhindsa and Dziuk [1968] showed that flushing conceptuses from the uterus before day 

18 would not extend the psuedopregnancy beyond day 30 as efficiently as flushing the 

conceptuses on or after day 18, indicating that important conceptus signals are secreted 

near day 18 of gestation. In an effort to more closely mimic physiological conceptus 

release of estrogen described by Geisert et al. [ 1982b ], an additional 2"d dose of estrogen 

administered between days 14-16 following the initial induction of exogenous estrogen 
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on day 11 to 12 of the estrous cycle prolongs the life of the corpora lutea greater than 60 

days [Geisert et al., 1987]. These data confirmed conceptus biphasic secretion of 

estrogen was necessary to establish pregnancy as prolonged psuedopregnancy (>60 days) 

could only be induced when estrogen was administered at both day 11 and days 14 

through 17, while a single injection at either time frame was incapable of inducing 

psuedopregnancy greater than 3 5 days [Geisert et al., 1987]. Because of its ability to 

induce psuedopregnancy when administered exogenously to cyclic gilts at time points 

temporally associated with normal conceptus estrogen release, estrogen has been largely 

accepted as the maternal recognition signal in the pig [Bazer et al., 1982]. 

The augmentation of uterine blood flow, necessary for conceptus survival, has 

been associated with increased estrogen content in the uterine lumen [Ford and 

Christenson, 1979; Ford et al., 1982b]. In addition to estrogen, prostaglandin E2 (PGE2), 

a vasodilator, also dramatically increases in uterine flushings during the time of 

conceptus elongation and maternal recognition of pregnancy [Geisert et al., 1982b]. 

Davis and coworkers [1983] demonstrated that porcine conceptuses have a significant 

increase in phospholipase A2 activity and prostaglandin production between day 7 and 14 

of gestation, particularly PGE's. PGE2 is known to accentuate the survival of the corpus 

luteum as indicated by its ability to increase both CL weight and progesterone production 

[Ford and Christenson, 1991]. It has also been suggested that the biphasic release of 

estrogen by porcine conceptuses regulates the movement ofprostaglandin F2a(PGF2a) in 

the uterine lumen [Bazer and Thatcher, 1977]. PGF2a, a vasoconstrictor synthesized and 

released by the uterine endometrium, is the luteolytic agent responsible for demise of the 

corpora lutea on day 15 of the estrous cycle in the pig [Moeljono et al., 1976]. 
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The endocrine/exocrine theory suggested by Bazer and Thatcher [ 1977] describes 

the regulation of PGF2a movement and is the proposed mechanism of estrogen action 

during porcine maternal recognition of pregnancy. During the estrous cycle and normal 

CL regression, the uterine endometrium functions as an endocrine tissue capable of 

releasing PGF2a into the uterine venous blood return. Release of PGF2a into the systemic 

vasculature permits delivery of the luteolysin to the CL via counter-current exchange 

with the ovarian artery and/or systemic delivery through the lungs resulting in luteolysis. 

The endocrine/exocrine theory states that estrogen of conceptus origin is responsible for 

redirecting the endometrial release of PGF2a from an endocrine to an exocrine secretion 

thereby sequestering PGF2a in the uterine lumen and eliminating its ability to function as 

a luteolysin. In most species, the lungs are capable of reducing the majority of PGF2a to 

its inactive metabolite, 15 keto-13,14 dihydro-prostaglandin F2a. However, due to the 

lowered enzymatic efficiency of porcine lungs to metabolize PGF2a, only 18% is reduced 

to the non-luteolytic metabolite following one passage through the lungs [Davis et al., 

1979], indicatingboth systemic and local luteolytic pathways exist in the pig. Because 

the porcine lungs are so inefficient in reducing PGF2a. to an inactive form, the importance 

of preventing the endocrine release of PGF2a is paramount. In non-pregnant animals, 

those not subjected to conceptus estrogen release, there is a sharp increase in plasma 

PGF2a between days 12 and 18 while total uterine PGF2a increases slightly during the 

same time frame [see review, Geisert et al., 1990]. In contrast, pregnant gilts that have 

been exposed to conceptus estrogen secretion, have lower plasma concentrations of 

PGF2a. and much greater total uterine PGF2a content compared non-pregnant gilts. Ford 

et al. [1982] infused 375 ng ofestradiol-17P directly into the uterine horns of cyclic gilts 
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every 6 hours on days 11 to 15 and reported lower concentrations of PGF2a. in the utero

ovarian vein of gilts receiving estrogen treatment compared to controls. This confirmed 

earlier work done by Frank et al. [1977] who injected i.m. 5 mg of estradiol valerate per 

day and demonstrated reduced PGF2 in the utero-ovarian veins. Collectively, these data 

support the endocrine/exocrine theory suggesting that indeed PGF2a. is sequestered in the 

uterine lumen and prevented from reaching peripheral plasma during pregnancy. 

Furthermore, these data suggest this phenomena occurs by the mechanistic actions of 

conceptus estrogen secretion. 

Because a systemic pathway for prostaglandin delivery to the corpora lutea exists, 

the inhibition of PGF2a. endocrine release throughout the majority of the uterine horns is 

paramount. The extensive length of the uterine horns and the necessity for estrogen 

signaling throughout the uterus requires at least two conceptuses in each uterine horn to 

maintain a viable pregnancy [Polge et al., 1966; Dziuk, 1968]. This requirement is likely 

due to the inability of fewer conceptuses to biologically inhibit the entire uterus from 

prostaglandin endocrine release. Also, the fact both uterine horns must contain 

conceptuses indicates the potency of systemic delivery of PGF2a. from one uterine horn to 

the contralateral CL. Trophoblastic elongation is the mechanism allowing pig 

conceptuses to adequately deliver estrogen throughout the entire length of the uterine 

horns promoting the survival of the CL. 
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Apposition and Attachment 

After conceptus elongation and release of estrogen for the maternal recognition of 

pregnancy signal, placental attachment in the pig is initiated between days 13 and 18 of 

gestation [Perry et al., 1981; Dantzer, 1985]. Porcine conceptuses are non-invasive in 

vivo and develop a diffuse, epitheliochorial type of placenta [King et al., 1982; Keys and 

King, 1990]. Integrins are thought to be an essential component contributing to 

successful apposition and attachment of the trophectoderm to the uterine epithelium. 

Surveyor et al. [ 1995] reported that the cell surface mucin, MUC-1, likely regulates 

uterine receptivity to conceptus attachment in mice via the prevention of integrin binding 

between the trophectoderm and uterine epithelium. Interestingly, uterine MUC-1 

expression is similar between the mouse [Braga and Gendler, 1993] and pig [Bowen et 

al., 1996] with respect to its appearance during the estrous cycle and steroid hormone 

regulation. MUC-1 expression in the pig is greatest between day O and 4 of the estrous 

cycle. Ovarian hormones regulate expression ofMUC-1 on the uterine epithelium, as it 

is virtually undetectable by day 10 in both cyclic and pregnant gilts [Bowen et al., 1996]. 

Both in vivo and in vitro MUC-1 expression is reduced in the uterine epithelium in 

response to progesterone stimulation [Bowen et al., 1996, 1997]. It appears that down

regulation of progesterone receptor in the epithelium on day 10 [Geisert et al., 1994] is 

associated with depletion ofMUC-1 expression. Loss ofMUC-1 in the uterine 

epithelium on day 10 opens the window for uterine receptivity for initiation of 

implantation during porcine pregnancy. 

Muc-4, another cell surface expressed mucin, is also decreased on the uterine 

epithelium during implantation in rodents [McNeer et al., 1998; Carraway and Idris, 
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2001]. However, unlike MUC-1, the expression of MUC-4 differs in the pig uterine 

epithelium compared to rodents. MUC-4 expression increases during the period of 

implantation and placental expansion in the pig [Ferrell et al., 2003]. Placentation in the 

pig is non-invasive while the conceptuses themselves are highly invasive ex utero. The 

coordinated increase in MUC-4 expression, which is temporally associated with the 

down-regulation ofMUC-1, may assist in controlling the proteolytic activity of porcine 

conceptuses and prevent invasive implantation in the pig. In contrast, invasive 

implantation in rodents may require the down-regulation of both MUC-1 and MUC-4. 

Once the uterine environment is receptive to conceptus attachment following the 

down-regulation of MUC-1 on day IO of gestation in the pig, successful apposition and 

attachment requires the appropriate expression of both ligands and receptors between the 

· trophectoderm and the uterine epithelium. The primary uterine receptors responsible for 

trophectodermal binding are integrins. Integrins are cell surface glycoproteins [Hynes, 

1992] that consist of numerous a and 13 subunits, which play critical roles regulating 

conceptus attachment in the pig [see reviews Jaeger et al., 2001; Burghart et al., 1997]. 

The formation of an al3 heterodimer results in a membrane bound receptor with the 

ligand specificity depending upon the specific subunit combination making the dimer. At 

least five a (1, 3, 4, 5 and v) and three 13 (1, 3 and 5) subunits exist in the uterine 

epithelium of the pig [Bowen et al., 1996]. Of those, expression of a 1 and a3 is low, av 

and 133 are constitutively expressed, and expression of a4, a5 and 131 is greatest during 

the time of estrogen signaling and initial conceptus attachment [Bowen et al., 1996]. 

Bowen et al. [1996, 1997] demonstrated that in vitro and in vivo expression of a4, a5 and 

131 subunits is under progesterone regulation. Porcine conceptuses also express integrin 
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subunits a 1, a4, a5, ~ 1 and ~3 [Bowen et al., 1996]. The formation of integrin 

heterodimers during the time of apposition and attachment in the pig indicates the 

necessity for specific ligands. Two primary ligands for integrins are fibronectin and 

vitronectin. Fibronectin has been identified on the trophectoderm while vitronectin is 

expressed on both the trophectoderm and the uterine epithelium [Bowen et al., 1996]. 

Tua and Bazer [1996] identified oncofetal fibronectin in the porcine trophectoderm from 

days 12 to 15. Osteopontin and the transforming growth factor ~ latency-associated 

peptide are also likely to be involved in pig conceptus attachment as they both have the 

capability of binding integrin heterodimers [review Jaeger et al., 2001]. Osteopontin has 

been detected in the lumenal epithelium as early as day 15 of gestation, however it is 

expressed at much greater levels after day 25 of gestation [Garlow et al., 2002]. These 

data indicate that while osteopontin may be involved in initial attachment, it is much 

more likely to be involved in maintaining the intricate attachment between the conceptus 

and endometrium throughout gestation. 

Porcine Conceptus Gene Expression 

Efforts to identify genes regulating specific developmental events during early pig 

embryo genesis has resulted in the analysis of numerous messenger RN A transcripts 

theorized to be of critical developmental importance. While gene expression occurs 

during the earliest developmental stages, it is predominately under maternal regulation 

until the transition from a 4- to 8-cell embryo when major activation of the porcine 

embryonic genome occurs [Tomanek et al., 1989]. Numerous factors and genes are 

involved in the regulation of conceptus development prior to rapid trophoblastic 

17 



elongation [see review Maddox-Hyttel et al., 2001]. However, the intention of this 

review is to focus more specifically on genes affecting conceptus development during 

day 11 to 12 of gestation, the time of maternal recognition and rapid trophoblastic 

elongation. 

Following the activation of the embryonic genome and initiation of early 

development, it is estimated that expression of approximately 10,000 genes is necessary 

for successful embryogenesis [Niemann and Wrenzycki, 2000]. Due to the 

developmental importance and the subsequent impact trophoblastic elongation has on 

placental attachment, uterine capacity and subsequent survival of porcine conceptuses, 

research efforts have focused on identification of conceptus genes that may regulate 

trophoblastic elongation. During this endeavor, research studies have predominately 

targeted the discovery of genes that are of potential developmental importance and 

associated with rapid trophoblastic elongation that occurs between days 10 and 12 of 

gestation [Geisert et al., 1982a]. 

Geisert and Yelich [ 1997] suggested that the programming for trophoblastic 

elongation may occur as much as 24 h prior to elongation as the activation of conceptus 

estrogen synthesis occurs concurrently with first signs of mesodermal differentiation in 5 

mm spherical conceptuses. Mesodermal outgrowth and differentiation in the mouse 

embryo is dependent upon the appropriate expression of the transcription factor, 

brachyury [Herrman et al., 1990]. Porcine conceptus brachyury gene expression occurs 

simultaneous with the mesodermal outgrowth of 5 mm spherical conceptuses. 

Mesodermal outgrowth and brachyury expression is temporally associated with the gene 
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expression pattern of P450arom during porcine conceptus development [Yelich et al., 

1997a]. 

Trophoblastic elongation is largely associated with a dramatic increase in estrogen 

synthesis and release by porcine conceptuses [Geisert et al., l 982b~ Fischer et al., 1985]. 

Cytochromes P450 17a-hydroxylase (P45017a.) and aromatase (P450arom) are essential 

enzymes required for estrogen synthesis. Currently, there are three distinct P450arom 

isoforms in the pig, each of which is encoded by a unique gene [Graddy et al., 2000]. 

P450arom types I, II and III are specific to the porcine ovary, late gestation placental tissue 

[Corbin et al., 1995] and conceptus [Choi et al., 1996], respectively. Gene expression for 

both P45011a. and P450arom significantly increases during day 11 to 12 of gestation when 

filamentous conceptuses are forming [Yelich et al., 1997a]. The ability for conceptus 

release of estrogen to function in an autocine/paracrine fashion has recently been 

suggested by Kowalski et al. [2002] who isolated and demonstrated increasing expression 

of estrogen receptor ~ in elongating porcine conceptuses. Interestingly, Yelich et al. 

[1997a] could not detect estrogen receptor a gene expression in elongating conceptuses 

through R T-PCR. Moreover, immunocytochemical analysis indicated ERa expression in 

the uterine endometrium increases from day O until day 12 of the estrous cycle and 

pregnancy declining by day 15 [Geisert et al., 1993]. These data suggest that conceptus 

estrogen acts on both the conceptus and endometrium albeit through different receptor 

pathways. Thus, conceptus release of estrogen can execute separate and distinct 

autocrine and paracine functions that occur through different isoforms of ER within the 

conceptus and uterus. 
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Geisert et al. [1982b] demonstrated an increase in both PGF2a. and PGE2 in uterine 

flushings was temporally associated with the increasing conceptus release of estrogen. 

Guthrie and Lewis [1986] indicated that during elongation, porcine conceptuses increase 

the synthesis and release of prostaglandins. Phospholipase A2 (PLA2) is responsible for 

the cleavage and release of free arachidonic acid, which is subsequently converted to 

prostaglandins via the actions of cyclooxygenase-2 (COX-2). As expected, the activity of 

PLA2 and expression ofCOX-2 both increase in filamentous conceptuses [Davis et al., 

1983; Wilson et al., 2002]. The relationship between prostaglandin release and 

trophoblastic elongation is not known other than the temporal and spatial association 

between the two. However, prostaglandin production may be related to the remodeling 

of the trophoblast through the release of arachidonic acid, which permits membrane 

fluidity in the cell membrane phosholipid bilayer necessary for remodeling of the 

trophectoderm [Davis and Blair, 1993; Geisert and Yelich, 1997]. 

Insulin-like growth factors (IGFs), particularly IGF-1 and IGF-11, which may have 

significant impact on the growth and development of the pig conceptus, have been well 

characterized throughout early gestation. Endometrial secretion ofIGF-1 is elevated 

during the time oftrophoblastic elongation and declines shortly thereafter [Simmen et al., 

1992] while conceptus gene expression for IGF-1 increases steadily during pre-elongation 

stages peaking at day 12 of gestation [Letcher et al., 1989]. IGF-1 receptor gene 

expression is present throughout peri-implantation conceptus development, however 

there is no variation in expression throughout early development [Green et al., 1995]. The 

enhanced release ofIGF-1 by the endometrium is correlated with an increase in conceptus 

P450arom gene expression [Ko et al., 1994; Green et al., 1995] and has been suggested to 
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regulate conceptus ability to produce estrogen [Hofig et al., 1991]. Uterine IGF-I 

secretion, which is significantly greater in the uterine lumen of pregnant gilts on day 12 

of gestation compared to day 12 of the estrous cycle, may act in an autocrine/paracrine 

fashion to regulate uterine changes [Geisert et al., 2001]. Uterine receptivity to IGF-I 

occurs through the I GF-1 receptor that is copiously expressed in the uterine endometrium 

[Simmen et al., 1992]. Pig conceptuses also express IGF-II receptor [Chastant et al., 

1994] and its stimulation is likely associated with growth and development before and 

during the time of conceptus elongation. Endometrial release of IGF-II into the uterine 

lumen significantly increases from day 10 to 12 of gestation and is much greater on day 

12 of pregnancy compared to the equivalent day of the estrous cycle [Geisert et al., 

2001]. Both IGF-I and -II can possibly stimulate conceptus growth and development by 

acting through the IGF- II receptor in the conceptus [Czech, 1986]. IGF binding proteins 

(IGFBP) function to bind IGF thereby regulating the degree to which IGF is capable of 

biologically stimulating a target cell [Rechler, 1993]. Lee et al. [ 1998] demonstrated that 

IGFBPs were present in the pig uterine lumen before day 11 of gestation and became 

absent in the lumen after day 11 of gestation. The loss ofIGFBP-2 and -3 was not caused 

by a decrease in endometrial gene expression but rather through cleavage ofIGFBP-2 

and -3. Since the loss ofIGFBPs correlated with the time oftrophoblastic elongation, 

Lee et al [ 1998] suggested conceptus regulation ofIGFBP cleavage. However, Geisert et 

al. [2001] have indicated that the cleavage ofIGFBP-2 and -3 in the uterine lumen on day 

10 and 12 occurs in both pregnant and cyclic gilts likely through the protease activity of 

kallikrein and/or matrix metalloproteinases. Cleavage ofIGFBP-2 and -3 increases the 
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bioavailability ofIGF-I and -II at a time period when conceptus growth and steroid 

production is peaking. 

Epidermal growth factor (EGF) and transforming growth factor-alpha (TGFa.) are 

additional growth factors that can affect conceptus development. Interestingly, EGF and 

TGFa. serve as ligands for the same receptor, EGF receptor (EGF-R) [Burgress, 1989]. 

Porcine conceptus TGFa. gene expression is detected briefly during peri-implantation 

development from days 8 through 12 of gestation with maximal expression occurring on 

day 10. In contrast, conceptus EGF gene expression commences on day 15 of gestation 

and continues to increase into early organogenesis [Vaughan et al., 1992]. EGF-R is 

constitutively expressed in the conceptus from day 7 until at least day 22 of gestation 

[Vaughan et al., 1992]. While the gene expression profiles ofTGFa. and EGF differ 

drastically, it is likely that they both act via EGF-R and serve unique stimulatory roles 

affecting early conceptus development in the pig. In mouse conceptus development, 

TGFa. stimulates fluid uptake thereby regulating blastocoele expansion [Dardik and 

Schultz, 1991]. Blastocyst formation in the pig occurs on day 8 of gestation and may be 

under the partial regulation of TGFa. as the receptor is expressed as early as day 7. It is 

also highly possible that TGFa. could illicit similar effects in porcine conceptuses 

regulating membrane fluidity, which is necessary for commencement oftrophoblastic 

elongation [Geisert and Yelich, 1997]. However, EGF probably contributes most to 

early organ and placental development occurring from day 14 to 22 of gestation as 

indicated by its temporally associated gene expression. 

Another family of growth factors that have been extensively investigated during 

conceptus-maternal interfacing that occurs between days 10 and 14 of gestation are the 
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three transforming growth factor f3 isoforms (TGFf3-1, -2 and -3). In situ hybridization 

analysis indicated gene expression for all three TGFf3 isoforms tends to increase in the 

porcine conceptus trophectoderm and endoderm from days 10 to 14 of gestation while 

only TGFf3-2 increased in the embryonic ectoderm and mesoderm during days 12 to 14 

[Gupta et al., 1998]. Gene expression for all three TGFf3 isoforms increases in uterine 

' 
lumenal epithelium on days 10 to 14 of gestation [Gupta et al., 1998], which coincides 

with increasing estrogen synthesis and release into the uterine lumen during conceptus 

elongation [Geisert et al., 1982b]. Yelich et al. [ 1997b] evaluated conceptus TGFf3-2 and 

-3 gene expression during trophoblastic elongation and reported that TGFf3-2 was not 

detectable through R T-PCR. However, Y elich and coworkers [ 1997b] confirmed that 

TGFf3-3 gene expression increased during the period of rapid morphological change in 

conceptus development during days 10 to 12 of gestation. Immunostaining for 

TGFf3 receptors revealed both TGFf3 receptor type I and II are expressed in the peri

implantation pig conceptus during days 10-14 of gestation [Gupta et al., 1996]. Presence 

of the TGFf3 receptors indicates the ability of the conceptus to respond to TGFf3 

stimulation from conceptus or endometrial origin. 

Throughout the last decade retinol, the common form of vitamin A, has received 

thorough investigation regarding the effects it may have on conceptus development in 

pigs, particularly during days I 0-18 of gestation. Retinol likely plays integral roles 

orchestrating cell division, organogenesis and placental growth in all mammals [Roberts 

et al., 1993], however, when excessive, retinol can be embryotoxic [Thompson et al., 

1964]. Retinal, retinal, and retinoic acid, collectively termed retinoids, induce biological 

actions via retinoic acid receptors (RAR) a., (3, and y. Y: elich et al. [ 1997b] revealed that 
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all three RAR isoforms are expressed before, during and after rapid trophoblastic 

elongation. Both RARa and RARy continue to be expressed in day 15 porcine 

conceptuses [Hamey et al., 1994]. Roberts et al. [ 1993] reviewed the changes in uterine 

retinol and indicated its concentration in uterine flushings containing filamentous 

conceptuses during days 10-13 of gestation is 10-50 fold greater than uterine flushings 

during the same time frame only containing spherical conceptuses. Flushings containing 

spherical conceptuses had a concentration of retinol that was similar to that of uterine 

flushings from non-pregnant animals on day 11 to 12 of the estrous cycle. Vallet et al. 

[1996] published similar data indicating significantly higher RBP in the uterine lumen on 

day 13 compared to day 10 of gestation. Retinol transport from the uterine lumen to the 

conceptus is primarily under the regulation of retinol binding protein (RBP). RBP is a 

secretory product of the pig conceptus [Hamey et al., 1990] whose gene expression 

increases steadily as conceptuses develop from 4 mm spheres into more advanced 

filamentous conceptuses [Y elich et al., 1997b]. Furthermore, gene expression of RBP by 

the uterine endometrium of day 12 pregnant gilts is highly dependent on morphological 

stage of conceptus development [Trout et al., 1992]. Endometrium from gilts bearing day 

12 filamentous conceptuses had dramatically greater RBP gene expression than day 12 

endometrium in the presence of spherical conceptuses. Synchronization and timing of 

the gene expression for both RAR' s and RBP in the conceptus and endometrium suggests 

a significant dependency of conceptus development on retinol availability. Geisert and . 

Y elich [ 1997] proposed that conceptus secreted estrogen stimulates the endometrial 

release ofRBP resulting in the transport ofretinol to the conceptus cytoplasm where it is 

converted to retinoic acid (RA). Available RA stimulates conceptus RAR's inducing 
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extracellular matrix (ECM) remodeling, needed for trophoblastic elongation to occur, 

both directly, and indirectly through downstream stimulation of morphogens such as 

TGFj3's. 

During the past decade, cytokines are proving to be intimately involved with the 

regulation of conceptus development and the establishment of pregnancy in many 

species. Mathialagan et al. [1992] evaluated interleukin-6 (IL-6) gene expression in pig 

conceptuses and indicated that greatest expression occurred during the period of 

attachment and early placentation. A later study by Modric et al. [2000] reported that IL-

6 gene expression in the preimplantation conceptus peaked in day 12 filamentous 

conceptuses but gene expression was not detectable in day 14 conceptuses. The ability of 

IL-6 to induce an acute phase pro-inflammatory response is imitated, albeit to a lesser 

degree, by interleukin-I (IL-I) [Mantovani et al., 1998]. Using northern blotting, Tuo et 

al. [1996] demonstrated that IL-If3 is transiently expressed by porcine conceptuses 

between 11 and 13 days of gestation. Peri-implantation IL-I f3 gene expression has also 

been documented to increase prior to initiation ofblastocyst implantation in the mouse 

[Takacs and Kauma, 1996; Kruessel et al., 1997] and has been suggested as the initiator 

of conceptus-uterine cross-talk during early pregnancy in the human [Lindhard et al., 

2002]. The importance of a conceptus induced acute phase inflammatory response in the 

pig uterus is not well understood although its occurrence has been described by Geisert 

and Y elich [ 1997]. Inflammation is generally associated with the recruitment of immune 

cells. During pregnancy in the pig, stromal leukocyte populations are significantly 

greater at attachment sites opposed to between attachment sites [Engelhardt et al., 2002]. 

The majority of these leukocytes morphologically resembled lymphocytes suggesting 
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they were predominately T, Band/or natural killer (NK) cells. This initial contact, 

coupled with embryonic signals, invokes an acute phase inflammatory response by the 

uterus and likely results in the differentiation of undifferentiated T-helper (ThO) cells to 

either type 1 (Thl) or type 2 (Th2) cells. Thl mediated immunity is referred to as cell

mediated immunity and is generally associated with pregnancy failure [Raghupathy, 

1997] while humoral immunity mediated by Th2 is required for the successful 

establishment of pregnancy [Wegmann et al., 1993]. The necessity for the appropriate 

maternal Th cell repertoire at the site of attachment is to regulate the immunological 

response of the maternal immune system, permissive to the presence of a conceptus 

expressing paternal alloantigens [Mellor and Munn, 2000]. Immunological stimulation of 

the uterine milieu is unavoidable, however, the induced inflammation is necessary and 

not necessarily devastating to the conceptus as it stimulates counter regulatory responses 

limiting induced damage while encouraging shifts in the maternal T cell repertoire more 

suitable for a successful pregnancy [Mellor and Munn, 2000]. 

Colony stimulating factor-I (CSF-1) is an additional factor produced by the 

conceptus that is suspected to accentuate growth and differentiation. CSF-1 gene 

expression is present in conceptuses as early as days 10 to 12 of gestation. However, 

CSF-1 expression peaks at day 30 and continues to be expressed in fetal tissues 

throughout gestation [Tuo et al., 1995]. CSF-1 is thought to be responsible for the 

recruitment of macrophages to the site of implantation and involved in regulating 

placental development [Wood et al., 1997]. Osteopetrotic (op/op) mice lack the CSF-1 

gene [Wiktor-Jedrzejczak et al., 1990], which is required for successful female fertility. 

Pollard and coworkers[l 991] demonstrated that while op/op x op/op crosses resulted in 
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consistent infertility, pregnancies created by crossing heterozygous males ( +lop) with 

op/op females were partially salvaged. This indicates that the necessity for conceptus 

produced CSF-1 to either compensate or attenuate the CSF-1 production in the uterine 

endometrium. 

Leukaemia inhibitory factor (LIF) is a cytokine that has been proposed to regulate 

conceptus growth and development. Anegon et al. [ 1994] indicated that LIF is present in 

porcine uterine lumenal flushings on days 7-13 of the estrous cycle and peaks on day 12 

of gestation. LIF likely has direct effects on the conceptus as both pre- and post

elongation conceptuses express LIF receptor J3 [Modric et al., 2000]. Pregnancy specific 

endometrial gene expression ofLIF is detected in pregnant animals during the 

approximate time rapid trophoblastic elongation is initiated and could serve as a pathway 

for possible conceptus-uterine communication [ Anegon et al., 1994]. LIF receptor is also 

expressed in the mouse uterus on day 4, the time of blastocyst implantation [Ni et al., 

2002]. Interestingly, LIF receptor was not expressed in the uterus following progesterone 

priming although it was greatly increased following estrogen-mediated termination of 

delayed implantation [Ni et al., 2002]. Estrogen likely mediates similar effects in pigs as 

the transient increase in expression of LIF in the uterus occurs concurrently with 

increased conceptus estrogen production and LIF receptor expression. 

Steroids are also likely involved in the regulation of porcine conceptus 

development. Kowalski et al. [2002] detected estrogen receptor J3 gene expression in 

filamentous conceptuses suggesting the increasing estrogen release during the time of 

trophoblastic elongation may have autocrine/paracrine affects on the conceptus. Luteal 

production of progesterone may also affect conceptus development. Plasma 
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concentration of progesterone peaks by day 10 of gestation or the estrous cycle. 

Conflicting evidence exists on the expression progesterone receptor (PR) rnRNA by pig 

conceptuses. Ying et al. [2000] were not able to identify PR protein in day 6 conceptuses 

whereas two abstracts presented at annual research symposiums reported R T-PCR 

revealed PR gene expression in filamentous conceptuses [Dekaney et al., 1998; Kowalski 

et al., 2000]. However, Yelich et al. [1997a] were unable to amplify PR mRNA through 

RT-PCR in day 11 to 12 conceptuses ranging from 2 mm spheres to filamentous 

morphology. The occurrence of PR mRNA expression by the pig conceptus would 

suggest that maternal progesterone may induce responses by developing conceptuses 

resulting in the establishment of a communication pathway. 

While the information presented in this section provides valuable information 

regarding gene expression during early porcine conceptus development. Genes 

controlling trophoblastic elongation remain largely unknown. 

Statement of the Problem 

The unique changes that occur during early porcine conceptus development and 

the competition that exists between littermates striving for sufficient uterine contact has 

been well documented and indicates the necessity for synchronous conceptus 

development. The overall goal of researchers investigating porcine conceptus 

development is to determine the developmental genes, growth factors, attachment factors 

and nutrients that could possibly be manipulated to reduce the strikingly high rate of 

embryonic mortality that occurs during early gestation. It is widely accepted that 

developmentally advanced conceptuses commencing rapid trophoblastic elongation prior 
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to the elongation of the less developed conceptuses is a major contributor to peri

implantation conceptus mortality. Advanced conceptuses cause embryonic loss primarily 

because trophoblastic elongation is associated with the dramatic increase in conceptus 

estrogen synthesis and release resulting in an advanced uterine environment unsuitable 

for the development of less developed conceptuses. Secondly, conceptuses that initiate 

trophoblastic elongation first attain the most uterine lumenal space available limiting 

placental growth and uterine surface contact to conceptuses whose trophoblastic 

elongation is slightly delayed. 

Geisert and Schmitt [2000] suggested that artificially inhibiting trophoblastic 

elongation until all conceptuses within a litter are physiologically and developmentally 

capable of elongation will result in consistent placental space attained among Iittermates 

and also prevent uterine advancement beyond what all conceptuses can withstand. As 

well as their highly vascularized placentae, Ford [ 1997] indicated that the larger litter size 

in Chinese Meishan sows partially results from the uniform timing and length of 

trophoblast expansion that occurs in this breed of swine. 

Currently, the activation of genes that initiate trophoblast elongation in the pig has 

not been resolved. It would be expected that genes involved specifically with 

trophoblastic elongation would have low expression prior to transformation to ovoid and 

tubular morphology, high expression during rapid elongation, followed by a dramatic 

decline post-elongation. Therefore, the intention of the present research is to determine 

genes that are morphologically specific or differentially expressed throughout the 

initiation and duration of rapid trophoblastic elongation. 
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Approach 

With continued advancements in biotechnology, the ability to systematically 

characterize thousands of genes simultaneously is now available, particularly through the 

use of DNA microarrays. Unfortunately, at this time there is not currently a DNA 

microarray available for the pig conceptus. However, suppression subtractive 

hybridization (SSH) is a technique that enables the simultaneous analysis of thousands of 

genes facilitating the isolation and enrichment of differentially or uniquely expressed 

genes between different mRNA sources [Diatchenko et al., 1996]. SSH has previously 

been used to successfully characterize gene expression changes in the mouse oviduct in 

response to the presence of embryos [Lee et al., 2002], determine gene expression 

changes induced by specific factors in breast cancer cells [ Atalay et al., 2002] and to 

identify differentially expressed genes during bovine blastocyst hatching [Mohan et al., 

2002]. A schematic representation describing the molecular events occurring during the 

SSH procedure is depicted and described in figure 2.1. 

Utilization of SSH to compare gene expression between spherical, tubular and 

filamentous porcine conceptuses will facilitate the isolation and enrichment of 

differentially expressed transcripts during trophoblastic elongation. It is likely that 

dramatic gene expression changes during the specific onset of trophoblastic elongation 

are involved in regulating the mechanisms by which this phenomena occurs. 

Identification and characterization of gene expression patterns during rapid trophoblastic 

elongation in the pig will provide a better understanding of the events required to initiate 

elongation and identify new targets that may be crucial factors affecting successful 

implantation and embryonic survival. 
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Figure 2.1. Synthesized cDNA from tester and driver mRNA populations are 
digested with Rsal yielding blunt ended fragments. The tester population is divided 
into two separate groups each ligated to a separate adaptor. Two hybridizations are 
performed. The first hybridization consists of adding excessive driver cDNA to 
each of the two tester cDNA populations resulting in type a, b, c, and d molecules. 
High and low abundance genes uniquely expressed in the tester population are 
equalized (2°d order of hybridization kinetics) producing type a molecules while 
abundant genes produce type b molecules. Type c molecules are produced from 
tester and driver cDNA sequences annealing while d molecules represent self
annealing templates due to excessive driver concentration. The second 
hybridization is conducted by combining the two primary hybridization samples in 
the presence of additional driver cDNA yielding the similar molecules as the 
primary hybridization (a, b, c, and d) with the addition of the new enriched type e 
hybrids. Type e molecules are double-stranded cDNA sequences unique to the 
tester population and containing both adaptors. Finally, all hybridization products 
are subjected to PCR. Molecules a and d cannot be amplified due to lacking primer 
annealing sites. Type b molecules have identical adaptors on both the 5' and 3' 
ends resulting in the formation of a hairpin structure preventing exponential 
amplification. Type c molecules contain adaptors only on one end and can 
therefore only be amplified linearly. Hybridization product e is the only molecule 
that can be exponentially amplified using PCR because it contains both adaptors. 
These cDNA sequences (type e molecules) represent the differentially expressed 
genes present in the tester population compared to the driver cDNA population. 
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Chapter III. 

ANALYSIS AND CHARACTERIZATION OF DIFFERENTIAL GENE 

EXPRESSION DURING RAPID TROPHOBLASTIC ELONGATION IN THE PIG 

USING SUPPRESSION SUBTRACTIVE HYBRIDIZATION 

Abstract 

During late peri-implantation development, porcine conceptuses undergo a rapid 

(2-3 hrs) morphological transformation from a 10 mm spherical morphology to a thin 

filamentous form greater than 150 mm in length. Elongation of the conceptuses is 

important for establishing adequate placental surface area needed for embryo and fetal 

survival throughout gestation. Genes involved with triggering this unique transition in 

conceptus development are not well defined. Objective of the present study was to utilize 

suppression subtractive hybridization (SSH) to characterize the change in gene 

expression during conceptus transformation from spherical (8-9 mm) to tubular (15-40 

mm) to early filamentous (> 150 mm) morphology. Spherical, tubular, and filamentous 

conceptuses were collected from pregnant gilts and subjected to SSH. Forward and 

reverse subtractions were performed to identify candidate genes differentially expressed 

during spherical to tubular and tubular to filamentous transition. A total of 384 

transcripts were differentially screened to ensure unique expression. Of the transcripts 

screened, sequences were obtained for 142 that were confirmed to be differentially 

expressed among the various morphologies. Gene expression profiles during rapid 

trophoblastic elongation were generated for selected mRNAs using quantitative real-time 

RT-PCR. During the transition from tubular to early filamentous morphology, s

adenosylhomocysteine hydrolase and heat shock cognate 70 kDa expression were 
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significantly enhanced. A novel unknown gene was isolated and shown to be 

significantly up-regulated at the onset of rapid trophoblastic elongation and further 

enhanced in filamentous conceptuses. 

Introduction 

As in the majority of mammalian species, successful embryonic development in 

the pig requires temporally and spatially specific gene expression essential to placental 

and embryonic differentiation during early gestation. The importance of expressing the 

appropriate developmental transcripts during development of pig conceptuses is evident 

with prenatal mortality ranging from 20% to 46% by term [Pope, 1994]. The majority of 

prenatal mortality in the pig occurs during peri-implantation conceptus development 

[Stroband and Van der Lende, 1990]. The peri-implantation period is the most critical 

stage of conceptus development as a rapid morphological transformation of the 

trophoblast occurs just prior to conceptus attachment to the uterine surface [Geisert et al., 

1982a]. Rapid transformation of the trophoblast, termed trophoblastic elongation, occurs 

between days 11 to 12 of gestation. Trophoblastic elongation is initiated when a 

conceptus reaches a 9-10 mm spherical morphology and then rapidly transforms into a 

long filamentous thread greater than 150 mm in length within 2-3 hrs [Geisert et al., 

1982a]. The process of trophoblastic elongation is characterized by four distinct 

morphological stages (spherical, ovoid, tubular and filamentous). Elongation of the 

conceptus is a short-lived phenomenon that results from cellular remodeling and 

migration, rather than through cellular hyperplasia [Geisert et al., 1982a]. Secretion of 

the conceptus produced maternal recognition signal, estrogen, occurs simultaneously with 

rapid elongation of the trophoblastic membrane [Geisert et al., 1990, Bazer and Thatcher, 
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1977]. Conceptus release of estrogen induces an acute phase response by the 

endometrium that alters the uterine environment, which may be unfavorable for less 

developed littermates [Pope, 1994; Geisert and Yelich, 1997]. Because the pig has a 

diffuse epitheliochorial type of placentation, rapid trophoblastic elongation provides an 

essential biological function to satisfy the conceptus' necessity for maximal placental

uterine contact to ensure adequate downstream nutrient exchange throughout gestation 

[Stroband and Van der Lende, 1990]. 

It has been estimated that approximately 10,000 genes must be appropriately 

expressed for successful pre-implantation and early fetal development [Niemann and 

Wrenzycki, 2000]. A number ofmRNAs hypothesized to be involved with early porcine 

conceptus development have been evaluated. Yelich et al. [1997b] characterized gene 

expression for retinoic acid receptors (RAR) a, J3 and y as well as retinal binding proteins 

(RBP) during early porcine conceptus development and trophoblast elongation. Results 

indicate expression ofRARa and RBP increase during transition to the filamentous 

morphology. Estrogen receptor-J3 has been localized in the porcine conceptus and its 

expression appears to be enhanced during trophoblastic elongation [Kowalski et al., 

2002], which follows a pattern similar to aromatase expression [Yelich et al., 1997a]. 

At present, little information is available from screening the large number of 

genes that may be responsible for initiating rapid trophoblastic elongation. Due to the 

limited insight on the transcriptional regulation of this critical developmental process, the 

objective of the present investigation was to utilize suppression-subtractive hybridization 

(SSH) to characterize and analyze differentially expressed genes during rapid 

trophoblastic elongation in the pig. Identification and characterization of gene expression 
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patterns during rapid trophoblastic elongation in the pig will provide a better 

understanding of the events required for successful implantation and embryonic survival. 

Materials and Methods 

Conceptus Collection 

Research was conducted in accordance with and approved by the Oklahoma State 

Institutional Animal Care and Use Committee. Twenty-five crossbred, cyclic gilts were 

checked for estrus twice daily in the presence of an intact boar and naturally mated at the 

onset of the second estrus and again 24 hrs later. Gilts were hysterectomized between 

day 11 and 12 of gestation as previously described for our laboratory [Gries et al., 1989]. 

\ 

After removal of the uterine horns, conceptuses from each uterine horn were flushed into 

a sterile petri dish with 20 mL of physiological saline. Due to the limited time frame 

when conceptuses are in tubular transitional development (2-3 hrs) and difficulty in 

determining when tubular conceptuses are in the uterus following mating, one uterine 

horn was removed on day 11.5 of gestation in a subset of gilts. Conceptuses were flushed 

into a sterile petri dish from the uterine horn and evaluated to determine an appropriate 

time-delayed removal of the second horn corresponding to the predicted time conceptuses 

would be in a tubular morphology as described by Geisert et al. [1982a]. Morphology of 

conceptuses collected following flushing from the uterine horns was recorded and 

conceptuses of identical morphologies were transferred to cryogenic vials, snap-frozen in 

liquid nitrogen, and stored at -80°C until RNA was extracted. 
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RNA Isolation 

Total RNA was extracted from individual conceptuses and pools of conceptuses 

of identical morphologies as previously described in our laboratory [Yelich et al., 1997b]. 

Briefly, conceptuses were denatured for 15 min on ice using 500 µl of denaturing 

solution (4 M guanidine thiocyanate, 25 mM sodium citrate, pH 7.0, 0.5% sarcosyl, 0.1 

M 2-~-mercaptoethanol), 500 µl phenol (pH 5.1), 70 µl 2M sodium acetate (pH 4.0), and 

140 µl chloroform/iso-amyl-alcohol ( 49: 1 fresh dilution). The aqueous phase was 

recovered following centrifugation at 14 000 rpm for 20 min at 4°C and added to a tube 

containing 500 µl of chloroform, and centrifuged at IO 000 rpm for IO min at 4°C. The 

aqueous phase was recovered, placed in a sterile tube, and 7 µl ofRnaid binding matrix 

(BIO 101, LaJolla, CA) was added, vortexed briefly, and gently agitated for 25 min at 22-

250C. Following rotation, the suspension was centrifuged at 10 000 rpm for 2 min and 

the aqueous phase was discarded. The remaining pellet containing the glass beads bound 

to total RNA was washed three times using 250 µl of 50% RNA wash (BIO 101, LaJolla, 

CA) and 50% ethanol solution followed by centrifugation at IO 000 rpm for 2 min at 22-

250C. The pellet was dried at 22-25°C for IO min and re-suspended in 50 µl of nuclease

free H20. The resuspended solution was heated at 56°C for 5 min and centrifuged at 

10,000 rpm for 2 min. Approximately 40 µl of the aqueous phase containing the purified 

total RNA was transferred to a sterile tube and stored at -80°C. Isolated RNA 

concentrations were calculated based on absorbance at the 260 nm wavelength. Purity of 

RNA was determined from the 260:280 ratio. 
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Suppression Subtractive Hybridization 

Suppression Subtractive Hybridization was performed using the Clontech PCR

Select cDNA Subtraction Kit (K-1804-1, Clontech Laboratories Inc., Palo Alto, CA) as 

described previously [Mohan et al., 2002]. Forward and reverse subtractions were 

conducted for two different comparisons during trophoblast elongation. The first 

comparison was made between spherical (8-9 mm) and tubular (15-40 mm) morphologies 

allowing the isolation of gene products differentially expressed during the onset ofrapid 

trophoblastic elongation. The second comparison was made between tubular (15-40 mm) 

and filamentous (>150 mm) morphologies encompassing gene expression changes during 

the transitional completion when the conceptuses have began to cover the surface area of 

the uterine horns. Driver and tester cDNA was produced from 10 µg total RNA for each 

morphology of each comparison following the manufacturers' guidelines. Briefly, 

synthesized cDNA was digested with the restriction enzyme Rsal and the tester cDNA 

populations were divided into to two tubes and ligated to both adaptor 1 or adaptor 2R. 

Prior to ligation at 16° C overnight, 2 µI from each adaptor ligation for each tester 

population were combined to serve as an unsubtracted control and were diluted into 1 mL 

sterile water following ligation. The subtractive hybridization was performed by adding 

1.5 µI driver cDNA to each tube, one containing 1.5 µI of adaptor 1 and the other 

containing 1.5 µl adapter 2R-ligated tester cDNA (tester cDNA was approximately 30 

times less concentrated than driver cDNA) in 1 µI 4X hybridization buffer. Samples 

were denatured at 98° C for 1.5 min, then allowed to anneal at 68° C for 8 hours. 

Following the first hybridization, the two samples were combined simultaneously with 

the exces~ addition of 1 µl freshly denatured driver cDNA and hybridization was 
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continued at 68° C overnight. Products from the second hybridization were diluted in 

200 µl of dilution buffer (20 mM HEPES, pH 8.3; 50 mM NaCl and 0.2 mM EDTA) and 

heated at 68°C for an additional 7 min and stored at -20°C. 

PCR Amplification of Subtracted Products 

Two PCR amplifications were performed on the subtracted and unsubtracted 

tester products. Primary PCR amplifications were conducted for each tester using diluted 

subtracted products following the second hybridization or the diluted unsubtracted 

cDNA. One microliter of sample was added to 24 µl PCR master mix prepared using the 

reagents supplied in the kit, and cycling conditions commenced as follows: 75°C for 5 

min to extend the adaptors; 94°C for 25 sec; and 27 cycles at 94°C for 1 O sec, 66°C for 30 

sec, and 72°C for 1.5 min. Amplified products were diluted 10-fold in sterile water and 1 

µl of diluted primary PCR products were added to 24 µl of secondary PCR master mix 

containing nested primers, 1 and 2R, to ensure specific amplification of double-stranded 

templates containing both adaptors. Secondary PCR was performed at 94°C for 10 sec, 

68°C for 30 sec and 72°C for 1.5 min (cycle number varied between 12 and 27 cycles). 

Primary and secondary PCR products were analyzed on a 2% agarose gel (Figure 3 .1 ). 

Cloning of Subtracted cDNA Templates 

Following the secondary PCR amplification, subtracted products from each tester 

cDNA population were cloned into the PCR IV vector of the TOPO TA cloning kit 

(lnvitrogen, Carlsbad, CA) and used in the transformation of competent DH5a 

Escherichia coli cells. Colonies were grown overnight at 37°C on Luria Broth (LB) agar 
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· plates containing carbenicillin, X-gal (5-bromo 4-chloro 3-indoyl-~-D

galactopyranoside) and isopropyl-~-D-thio-galactopyranoside for blue/white colony 

screening. Ninety-six plasmids for each tester were randomly selected and plasmid DNA 

was extracted (Wizard SV96 Plasmid DNA Purification System, Promega Corporation, 

Madison, WI) and eluted into 100 µl sterile nuclease-free water. 

Differential Screening -

To confirm unique expression of the subtracted products all transcript clones were 

subjected to differential screening. Plasmid DNA was denatured by adding 250 µl 

denaturing solution (0.5 M NaOH, 1.5 M NaCl) and incubating for 10 min at 22-25°C. 

Equal amounts of denatured, subtracted cDNA from each tester were spotted on four 

separate, positively charged nylon membranes (Roche Applied Science, Indianapolis, IN) 

using the BioDot apparatus (BioRad, Hercules, CA) and neutralized with 200 µl 

neutralization solution (IM Tris-HCl, pH 8.0, I.SM NaCl). Following DNA spotting and 

neutralization, the membranes were washed by placing on filter paper saturated in 2X 

SSC for 2 min, removed from filter paper, UV cross-linked and stored at 4°C. 

Digoxigenin (DIG) labeled probes were created from subtracted and unsubtracted 

secondary PCR products using the DIG High Prime DNA Labeling and Detection Starter 

Kit (Roche Applied Science, Indianapolis, IN). Prior to DIG-labeling, PCR products 

were digested with Rsal for 6 hours at 37°C to remove adaptors and purified using PCR 

purification columns (Qiagen, Valencia, CA). Denatured template DNA (1 µg) was 

labeled with DIG at 16°C for 20 h. Labeling efficiency was determined by comparison to 

known concentrations of herring sperm DIG labeled DNA. The four membranes for each 
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Figure 3.1. Subtracted and unsubtracted PCR products following SSH comparing 
differential gene expression between spherical and tubular conceptuses, Lanel) DNA 
Ladder, Lane2) Spherical unsubtracted, Lane3) Spherical subtracted, Lane4) Tubular 
unsubtracted; and tubular vs. filamentous conceptuses, Lane5) Tubular subtracted, 
Lane7) Tubular unsubtracted, Lane8) Tubular subtracted, Lane9) Filamentous subtracted, 
LanelO) Filamentous unsubtracted. 
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subtracted tester were hybridized overnight at 42°C with 125 ng DIG labeled DNA 

diluted in 5 mL DIG Easy Hyb (25 ng/mL) from subtracted and unsubtracted template 

products of morphologies for each comparison. Immunological detection of 

hybridization was conducted in accordance with manufacturers' protocol (Roche Applied 

Science, Indianapolis, IN) and membranes were exposed to X-ray film (X-Omat LS, 

Kodak, Rochester, NY) to visualize template-probe binding. Binding intensities were 

quantified using a densitometer and differential gene expression of cloned template was 

confirmed when binding intensity was 5X greater when probed with labeled subtracted 

tester cDNA compared to the intensity of subtracted driver cDNA and a greater binding 

intensity when hybridized with unsubtracted tester cDNA compared to unsubtracted 

driver cDNA (Figure 3.2). Plasmids containing confirmed differentially expressed 

templates were re-cultured and plasmid DNA was extracted (Wizard Plus Mini-prep 

DNA Purification System, Promega Corporation, Madison, WI) and subjected to dideoxy 

chain termination sequencing (Applied Biosystems, Model 373A Automated Sequencer, 

Oklahoma State University Recombinant DNA/Protein Resource Facility). Basic Local 

Alignment Search Tool (BLAST) [Altschul et al., 1990] was used to confirm sequence 

homology of each differentially expressed template. 

Quantitative One-Step RT-PCR 

Quantitative analysis of clones of interest, specifically, ·s-adenosylhomocysteine 

hydrolase (SAHR), heat shock cognate 70 KO protein (HSC70), and one unknown 

transcript, OSU-Tl-50, were assayed using quantitative real-time RT-PCR [Hettinger et 

al., 2001]. Individual and small pools of conceptuses were evaluated at the four 
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Figure 3.2. Screening analysis confirming differential expression of 96 randomly 
selected tubular conceptus cDNA clones subtracted from a tubular vs. spherical 
hybridization. Each membrane is identically spotted and probed using DIG-labeled 
cDNA from the comparison: A) Tubular subtracted, B) Spherical subtracted, C) Tubular 
unsubtracted and D) Spherical unsubtracted. 

44 



A B 
• • lit • • • • • • • ·- .-. • • • • • • •,}J ·- I -....;.; 

'~ ;}:) • • • • • • • • • ' ~: ~ 

'i • • • • - • • • • • '--· 

• •• ·• • • • • • .0 • • 'l°'!c_• •>l!'.' '*' • 
- · . .s..: • • • • • • t;.· • • • • • ,:: . 

• • • • .. • • • Ci • -
. . ~ ·•· • {' 

• • • ; . • • ,-,j 

~ • • • t• ~ 

C D 
• ,.,---s-, .. • • • ,. • • * ~ u 

• •· E ii'' • • • () '.~ 

_J • • • • • • 0 ._,I, " • • • • ..- ~ .... _ ... 

~' 
,._ • • • ~;:;. 

~ 

0 • • . ; • • 'M-' 

it• •· 0 • • • • • - (_~ • 
• • • • 0 • • • r.;: 

• ., • • • 0 4 " 'f ._-·, ,.,,, 

45 



morphologically distinct stages; spherical (n=S), ovoid (n=2), tubular (n=5) and early 

filamentous (n=6). The PCR amplification was conducted using the ABI PRISM 7700 

Sequence Detection System (PE Applied Biosystems). The unknown transcript was 

evaluated using a dual-labeled probe designed to have a 5' reporter dye ( 6-F AM) and a 3' 

quenching dye (TAMRA). SAHH and HSC70 were evaluated using the SYBR green 

reporter assay kit available from Qiagen (Valencia, CA). Sequences of the primer and 

probe set used for amplification of the unknown transcript and the primers for SAHH and 

HSC70 are presented in Table 3.1. Fifty nanograms of total RNA were assayed for each 

sample in duplicate. Thermal cycling conditions using the dual labeled probe were 48°C 

for 30 min and 95°C for IO min, followed by 40 repetitive cycles of 95 °C for 15 sec and 

a combined annealing/extension stage, 60°C for 1 min. Cycling parameters using SYBR 

green detection were 50°C for 30 min followed by 95°C for 15 min then 40 repetitive 

cycles at 95 °C for 15 sec, 51 °C for 30 sec, 72 °C for 30 sec, and a fluorescent data 

acquisition step following a brief 15 sec incubation at 78.5 °C. Following PCR cycling 

with SYBR green a melting curve analysis was conducted using the following 

parameters: 95°C for 15 sec followed by 51 °C for 30 sec to 95° C for 15 sec with a ramp 

time of 19 min 59 sec. Continuous fluorescent data acquisition was collected during final 

ramp enabling the generation of the melting curve graph to confirm that detectable 

fluorescence was strictly from amplified target cDNA. l SS ribosomal RNA was assayed 

as a normalization control to correct for loading discrepancies. Following RT-PCR, 

quantitation of gene amplification was made by determining the cycle threshold (CT) 

based on the fluorescence detected within the geometric region of the semilog view of the 

amplification plot. Relative quantitation of target gene expression was evaluated using 
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Table 3.1. Primer and probe sequences used for real-time RT-PCR, reporting dye used for detection of amplified product and 
product size for s-adenosylhomocysteine hydrolase, heat shock cognate 70 kDa and the novel OSU-Tl-50. 
Target Primer Sequence Reporting Dye 

SAHH Forward 5'-TGTTGCTTTTATGTCTCTCTGG-3' SYBR Green 
Reverse 5'-GCTTGGCATTCTCTTAAACC-3' 

HSC70 Fonvard 5'-GTCTTCCTTGCTCAAACG-3' 
Reverse 5'-AACTCACAGGCATACCTCC-3' 

OSU-Tl-50 Forward 5'-TCACGGTTAGTGTCGCATGA-3' 
Reverse 5'-ACCCATGAACAGGTCCTGAA-3' 

SYBRGreen 

6-F AM-CGTGTTTCCTACGTTGGGCGTCC-T AMRA 
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Product Size(bp_) 

154 

164 
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the comparative CT method as previously described by Hettinger et al. [2001]. The ACT 

value was determined by subtracting the target CT of each sample from its respective 

ribosomal 18S CT value. Calculation of AACT involves using the highest sample ACT 

value as an arbitrary constant to subtract from all other ACT sample values (Table 3 .4). 

Fold-changes in gene expression of the target gene are equivalent to 2-Met_ 

Statistical Analysis 

Quantitative RT-PCR ACT values were analyzed using the PROC MIXED of the 

Statistical Analysis System [SAS User's Guide, 1985]. Since uterine flushings of a few 

gilts contained multiple morphological stages, which were utilized in the analysis of gene 

expression, gilt was initially included in the statistical model. However, given that gilt, 

as a random effect, did not significantly alter the variation due to the model and not all 

gilts were represented across all stages of development, gilt was deleted from the model. 

The statistical model used in the analysis tested only the fixed effect of morphology 

(spherical, ovoid, tubular, and filamentous). Significance (P < 0.05) was determined by 

probability differences of least squares means between morphologies on conceptus gene 

expression of s-adenosylhomocysteine hydrolase, heat shock cognate 70 kDa protein and 

OSU-Tl-50. Results are presented as arithmetic means± SEM. 

Results 

Suppression Subtractive Hybridization 

Following SSH, subtracted products were cloned and 96 template clones for each 

subtracted product of each comparison were randomly selected and differentially 
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screened. Screening indicated a total of 42 templates confirmed to be down-regulated 

and 18 up-regulated during the spherical to tubular transition. A total of 69 and 43 

templates were confirmed up and down-regulated, respectively, during the tubular to 

filamentous transition. In all, 142 templates were subjected to dideoxy chain termination 

sequencing. Information regarding the identity and homology of morphologically 

specific genes, during spherical to tubular and tubular to filamentous is presented in 

Tables 3.2 and 3.3. 

During the spherical to tubular transitions several genes were indicated using SSH 

to be down-regulated, such as thymosin-beta 4, mitochondrial cytochrome B, and FlFo

ATP synthase complex mRNA. Also, numerous mitochondrial DNA template clones 

were down-regulated during this transition. Several ribosomal RNA transcripts were 

detected to be up-regulated during the onset of rapid trophoblastic elongation as well as a 

novel gene, which is referred to as OSU-Tl-50. An approximate 200 base pair region of 

OSU-Tl-50 had significant homology (87%) to a region on human chromosome 8 

(GenBank accession #AC009682) but had no significant homology compared to over 5.8 

million non-human and non-mouse expressed sequence tags. 

Few genes, myeloid cell leukemia (Bcl-2 related protein) and several ribosomal 

genes were detected to be down-regulated during the tubular to filamentous transition. 

Numerous transcripts were up-regulated in the filamentous morphology including, pro

interleukin-1 J3, interleukin-I J3 (IL-I J3), s-adenosylhomocysteine hydro lase (SAHH), heat 

shock cognate 70 kDa protein (HSC70), metallopanstimulin-1 (MPS- I) and elfin. The 

three transcripts selected to be investigated using quantitative one-step real time R T-PCR 

were OSU-Tl-50, SAHH and HSC70. 
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Table 3.2. Identity, size and homology of porcine conceptus cDNA clones from spherical to 
tubular subtraction com2ared to known seguences in GenBank. 

Base Pairs GenBank 
Clone submitted to Accession 

Exeression Pattern ldentit~ Number BLAST Number Homolog~ 

Down-Regulated 

F1Fo-ATP synthase complex OSU-S-6 313 S70448 Bovine 93% (205/220) 

NM_006476 Human 93% (204/219) 

BC031384 Mouse 92% (128/139) 

Similar to keratin 18 OSU-S-14* 324 BC009754 Human 87% (134/154) 

Thymosin Beta 4 OSU-S-7* 308 BC022857 Human 91 % (158/173) 

X16053 Mouse 84% (140/167) 

NM_031136 Rat 85% (122/143) 

16S Ribosomal RNA OSU-S-31 427 AY011178 Pig 99% (374/375) 

Mitochondrial Cytochrome B OSU-S-54 241 AJ314556 Pig 98% (182/185) 

Complete Mitochondrial DNA OSU-S-11* 679 AF304203 Pig 99% (678/679) 

Up-Regulated 

28S Ribosomal RNA 0SU-T1-3* 436 X00525 Mouse 100% (350/350) 

M11167 Human 100% (350/350) 

16S Ribosomal RNA 0SU-T1-7* 250 AY011178 Pig 99% (212/214) 

18S Ribosomal RNA 0SU-T1-8* 342 AF102857 Pig 99% (293/294) 

X00686 Mouse 99% (293/294) 

X03205 Human 99% (293/294) 

Unknown 0SU-T1-50 702 AC009682 Human 87% (179/206) 

* Indicates transcripts with multiple clones sequenced 
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Table 3.3. Identity, size and homology of porcine conceptus cDNA clones from tubular to 
filamentous subtraction compared to known sequences in GenBank. 

Expression Pattern 

Down- Regulated 

Up-Regulated 

Identity 

16S Ribosomal RNA 

Myeloid Cell Leukemia 

(Bcl-2Related Protein) 

Pro-interleukin-1 p 
lnterleukin-1 p 

Clone 
Number 

OSU-T2-19* 

OSU-T2-40* 

OSU-F-1 * 

OSU-F-2* 

Base Pairs 
submitted to 

BLAST 

242 

636 

723 

684 

S-adenosylhomocysteine hydrolase OSU-F-3* 452 

Heat Shock Cognate Protein 70kD OSU-F-7* 650 

Ribosomal protein BS 

Metallopanstimulin-1 

Elfin 

{PDZ and LIM domain 1) 

OSU-F-21 

OSU-F-30 

OSU-F-54* 

442 

382 

540 

* Indicates transcripts with multiple clones sequenced 
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GenBank 
Accession 

Number Homology 

AY011178 Pig 100% (182/182) 

AF144096 Rat 96% (227/236) 

AJ307006 Pig 93% (151/163) 

BC005427 Mouse 91 % ( 465/510) 

NM_021960 Human 88% (175/199) 

X74568 Pig 97% (319/328) 

M86725 Pig 90% (623/686) 

AB028216 Dolphin 87% (427/492) 

M37211 Cow 84% ( 448/531) 

X54796 Sheep 83% (418/501) 

U92481 Horse 85% (298/349) 

NM_000576 Human 85% (280/329) 

AJ422131 Pig 99% (355/356) 

BC010018 Human 88% (238/272) 

NM_016661 Mouse 83% (66/79) 

AF352832 Human 91% (501/546) 

X53335 Cow 92% (482/522) 

NM_024351 Rat 90% (493/546) 

M19141 Mouse 89% ( 479/534) 

NM_031706 Rat 92% (260/281) 

NM_001012 Human 92 % (260/281) 

NM_009098 Mouse 91 % (263/289) 

L19739 Human 94% (244/259) 

NM_020992 Human 85% (321/379) 



Real Time RT-PCR Quantification 

Messenger RNA expression profiles of SAHR, HSC70 and OSU-Tl-50 were 

generated using the ABI PRISM 7700 Sequence Detection System (PE Applied 

Biosystems). Following amplification, CT, dCT and ddCT values were calculated as 

described previously in Material and Methods (Table 3 .4). 

Based on normalization with 18S ribosomal RNA, SAHR mRNA expression was 

greater (P < 0.01) in filamentous conceptuses compared to all other morphologies 

evaluated (Table 3.4). There was an approximately 7-fold increase of SAHH gene 

expression in filamentous conceptuses compared to spherical conceptuses (Figure 3.3). 

HSC70 gene expression was also significantly enhanced (P < 0.001) in filamentous 

conceptuses (Table 4), which displayed an approximate 10-fold increase in gene 

expression compared to spherical, ovoid and tubular morphologies (Figure 3.4). Gene 

expression for OSU-Tl-50 was greater (P < 0.004) in tubular conceptuses compared to 

spherical while filamentous conceptus expression was greater (P < 0.01) compared to all 

other morphologies evaluated (Table 3 .4). When compared to spherical conceptuses, 

gene expression for OSU-Tl-50 was approximately 11 and 104-fold greater in tubular 

and filamentous morphologies, respectively (Figure 3.5). 
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Table 3.4. Quantitative RT-PCR analysis comparing gene expression across morphologies during rapid trophoblastic elongation for 
three of the transcripts identified using suppression subtractive hybridization: s-adenosylhomocysteine hydrolase, heat shock cognate 
70 kDa, and an unknown transcript identified bv its clone number, OSU-Tl-50 

J 

Average Average 
Transcript Morphology Target cT· 18S rRNA cT· L\Ci'11 MCi 

SAHR Spherical 23.48 ± 0.23 17.47 ± 0.10 6.01 ± 0.21a -0.20 

Ovoid 23.62 ± 0.82 17.78 ± 0.24 · 5.84 ± 0.58a -0.37 

Tubular 23.20 ± 0.51 16.99 ± 0.14 6.21 ± 0.51a 0.00 

Filamentous 20.72 ± 0.55 17.24 ± 0.12 3.47 ± 0.58b -2.76 

HSC70kD Spherical 20.86 ± 0.28 17.47 ±0.10 3.38 ± 0.25c 0.00 

Ovoid 21.02 ± 0.80 17.78 ± 0.24 3.24 ± 0.57c -0.15 

Tubular 20.17 ± 0.52 16.99 ± 0.14 3.18 ± 0.48c -0.21 

Filamentous 17.35 ± 0.46 17.24 ± 0.12 0.11 ± 0.48d -3.27 

OSU-Tl-50 Spherical. 33.22 ± 0.48 17.47 ± 0.10 15.75 ± 0.64e 0.00 

Ovoid 32.60 ± 1.01 17.78 ± 0.24 14.82 ± l.22ef -0.93 

Tubular 29.21 ± 0.63 16.99 ± 0.14 12.22 ± 0.80f -3.53 

Filamentous 26.30 ± 0.57 17.24 ± 0.12 9.05 ± 0.80g -6.69 
* CT = Cycle Threshold. Indicates cycle number in which amplification crosses the threshold set in the geometric portion of 
amplification curve. 
:j: L\CT= Target transcript CT- 18S ribosomal CT: Normalization of CT for target gene relative to ribosomal 18S RNA CT. 
<J[ Statistical analysis of normalized expression levels between morphologies. Values with different superscripts for each of the target 
genes differ significantly: ab(P < 0.01), cd(P < 0.001), ef(P < 0.004), eg(P < 0.001), and fg(P < 0.01). 
§ L\L\CT = Mean L\CT - highest mean L\CT value: The mean value for the morphology with highest L\CT (lowest expression levels for 
target) was used as a calibrator to set the baseline for comparing mean differences in the L\CT values across all morphologies. 
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Figure 3.3. Fold difference in conceptus produced gene expression for s
adenosylhomocysteine hydrolase detected using one-step real-time RT-PCR (2-8 pools or 
individual conceptuses/morphology). The fold differences in gene expression were 
calculated as described in Materials and Methods. 
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Figure 3.4. Fold difference in conceptus produced gene expression for heat shock 
cognate 70 kDa detected using one-step real-time RT-PCR (2-8 pools or individual 

. conceptuses/morphology). The fold differences in gene expression were calculated as 
described in Materials and Methods. · 
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Figure 3.5. Fold difference in conceptus produced gene expression for the novel gene, 
OSU-Tl-50 detected using one-step real-time RT-PCR (2-8 pools or individual 
conceptuses/morphology). The fold differences in gene expression were calculated as 
described in Materials and Methods. 
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Discussion 

During early porcine development a rapid morphological transformation of the 

conceptus from a spherical (9-10 mm) to filamentous (> 150 mm) morphology is required 

to establish adequate placenta to uterine contact necessary for survival [Stroband and Van 

der Lende, 1990]. Characterization of the specific subset of genes regulating peri

implantation conceptus development and trophoblastic elongation in the pig provides 

valuable information concerning key developmental events essential to embryonic 

survival after trophoblastic elongation [Pope, 1994]. 

Previous information regarding genes critical to development in early pig 

pregnancy is limited. Using semi-quantitative RT-PCR Yelich et al. [1997a] evaluated 

peri-implantation gene expression profiles for l 7a-hydroxylase, aromatase, brachyury 

and leukemia inhibitory factor receptor, all of which are more greatly expressed in 

filamentous conceptuses. Messenger RNA for retinoic acid receptor a, retinal binding 

protein and transforming growth factor f3-3 is also increased in filamentous conceptuses 

[Yelich et al., 1997b]. Using a ribonuclease protection assay, Wilson et al. [2002] 

indicated enhanced cyclooxygenase-2 expression was specific to filamentous 

conceptuses. An autocrine effect of conceptus estrogen synthesis has been suggested as 

filamentous conceptuses have greater gene expression for estrogen receptor f3 compared 

to its spherical and tubular counterparts [Kowalski et al., 2002]. 

Suppression subtractive hybridization allowed isolation of candidate genes 

expected to be differentially expressed during rapid trophoblastic elongation. 

Differentially expressed genes identified using SSH striking particular interest were 

interleukin- I f3 (IL- I f3) and metallopanstimulin-1 (MPS- I), both of which are suspected to 
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be up-regulated in the elongated conceptus. MPS-I expression is notable in proliferating 

cells and has been identified as a nuclear protein that binds to DNA [Fernandez-Pol et al., 

1994]. Further analysis indicates cells stimulated with transforming growth factor beta I 

(TGF-P I) exhibit a 8-fold increase in MPS-I gene expression [Fernandez-Pol et al., 

1993]. TGF-Pl and its receptors are localized in the trophectoderm of porcine 

conceptuses between days 10-14 of gestation [Gupta et al., 1996]. MPS-I may have roles 

in transcriptional-mediation of the embryonic response to TGF-P I having effects on 

continued intra-uterine elongation. IL- Ip was the most predominant clone sequenced 

during SSH and was also the most abundant clone represented when mapping expressed 

sequence tags derived from a porcine early embryonic cDNA library in a study by Smith 

et al. [200 I]. We have more thoroughly examined and confirmed IL- Ip gene and ligand 

expression in developing conceptuses as well as the endometrium [Ross et al., 2003a]. 

Changes in conceptus IL- Ip gene expression and ligand release in the uterine horn 

dramatically increase during the process of elongation [Ross et al., 2003a]. Increase in 

IL-Ip gene expression was specific to the conceptus as endometrial expression was 

unchanged between cyclic and pregnant gilts. Following completion of conceptus 

elongation, IL- IP gene expression and secretion rapidly decline and expression levels are 

more than 2000-fold lower in day 15 compared to day 12 filamentous conceptuses [Ross 

et al., 2003a]. It is possible IL-1 P plays an important role in triggering conceptus 

elongation and initiating uterine-conceptus "cross-talk" in the pig. 

In the present study, three transcripts; OSU-Tl-50, SAHH and HSC70 were 

confirmed to be differentially expressed analogous to the pattern predicted using SSH. 

Although no confirmed identity was found in GenBank, the novel gene, OSU-T 1-50 
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displayed a very dynamic enhancement of gene expression during trophoblastic 

elongation. When compared to spherical conceptuses there was almost a 12-fold increase 

in mRNA expression for OSU-Tl-50 in tubular conceptuses while expression in 

filamentous conceptuses increased over 100-fold. Given the substantial increase in gene 

expression and temporal relationship to conceptus development, OSU-Tl-50 may play an 

important role in trophoblastic elongation. Future studies will attempt to identify the 

gene and its translated protein to determine the biological function during conceptus 

development. 

Gene expression of SAHH was similar between spherical, ovoid and tubular 

conceptuses, but there was a near 7-fold increase in gene expression in filamentous 

conceptuses. SAHH may have significant impact on the conceptuses ability to use folates 

during this transitional stage of development. Folates have long been known to be an 

essential requirement for developing embryos, predominately during neurulation [Van 

der Put, 2000]. Vall et and coworkers [ 1998] have previously shown the increase in 

maternal folate binding protein activity occurs in the uterine lumen of cyclic and pregnant 

gilts between days 10-12 post-estrus. The increase of folate in the uterine lumen is 

temporally associated with the increase in conceptus SAHH gene expression. 

S-adenosylhomocysteine (SAH) is the resultant product following the release of a 

methyl group from s-adenosylmethionine (SAM), a universal methyl donor [Cantoni, 

1975]. Methyl donation from SAM has crucial developmental impacts governing DNA 

methylation [Fenech, 2001] as well as methylation of amino acids, proteins, 

carbohydrates and polysaccharides [Cantoni, 1975]. S-adenosylhomocysteine hydrolase 

is the only known enzyme capable of SAH hydrolysis. The breakdown of SAH, which is 
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reversible, results in the release of free homocysteine which is converted to methionine 

while being used as a substrate for the reduction of 5-methylenetetrahydrofolate (5-

MTHF) to tetrahydrofolate (THF). Elevated levels of methionine can then be used in the 

synthesis of SAM while THF has downstream effects on uracil to thymidine conversions 

involved with DNA repair and synthesis [Fenech, 2001]. 

SAHH functions as a protective enzyme for adenosine toxicity by preventing 

nuclear accumulation of SAH [Hershfield and Kredich, 1978] and may explain the 

nuclear localization of SAHH in cells that are transcriptionally active in Xenopus 

embryos [Radomski et al., 1999]. Vanaerts et al. [1994] demonstrated that high 

concentrations of homocysteine are associated with embryotoxicity during early gestation 

in rats. These authors suggest the toxicity may be associated with the reverse hydrolysis 

ofhomocysteine to SAH resulting in the dramatic reduction of the SAM/SAH ratio to a 

point where methylation reactions are inhibited. Miller and co-workers [1994] have 

revealed that the lethal nonagouti (ax) mutation in mice is characterized by deletion of the 

SAHH gene resulting in embryonic death prior to implantation. Addition of an inhibitor 

to SAHH, 3-deazaaristeromycin, inhibits inner cell mass proliferation and differentiation 

during in vitro development of non-mutant embryos [Miller et al., 1994]. 

As in other species, SAHH is likely a biological regulator of the SAM/SAH ratio 

controlling the occurrence of transmethylation reactions to the degree of which they are 

necessary for successful porcine conceptus development. Establishment of the maternal

fetal interface is extremely competitive among littermates in early swine gestation. 

Advanced conceptuses, those that elongate first, have a much greater advantage with 

regards to acquiring ample placental:uterine contact and also limit the available uterine 
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capacity for those conceptuses lagging in development [Stroband and Van der Lende, 

1990]. While gene expression for SAHH was present at all stages evaluated, an 

approximate 7-fold increase in relative expression for this transcript over a 2-3 hour time 

period is noteworthy. It is possible that increased expression of SAHH by filamentous 

conceptuses serves as a protective function at the level of the nucleus by reducing SAH to 

homocysteine thereby maintaining the SAM/SAH ratio at appropriate levels for SAM

mediated transmethylation reactions to occur. Increased SAHH expression by advanced 

conceptuses suggests there would also be increased homocysteine released into the 

uterine lumen that may have an embryo-toxic effect on neighboring conceptuses lagging 

in development. 

Gene expression for HSC70 was similar in spherical, ovoid and tubular 

conceptuses followed by a I 0-fold increase in filamentous conceptuses. Gene expression 

changes for HSC70 during early development have previously been associated with 

neurulation in Xenopus [Lang et al., 2000] and chick [Rubio et al., 2002] embryos. 

Negative mutations ofHSC70 in the nervous system of Drosophila larvae resulted in both 

developmental defects and lethality [Elefant and Palter, 1999]. The increased HSC70 

gene expression during trophoblastic elongation is temporally associated with neural tube 

development in pig conceptuses. 

Traditionally, heat shock proteins are known for their function during cellular 

stress as molecular chaperones responsible for the folding, re-folding and transport of 

. newly synthesized proteins. HSC70 is a constitutively expressed member of the 70 kDa 

heat-shock protein (HSP70) family. Members of the HSP70 family have also been 

proposed to be involved with HSP90 chaperones regulating signal transduction pathways 

64 



[Richtner and Buchner, 2001]. Unlike HSP70, HSC70 does not exhibit increased gene 

expression when exposed to heat stress or other agents such as sodium arsenate in the 

gastrula and neurula Xenopus embryo [Ali et al., 1996]. Tsang [1993] suggested 

because of their ability to bind and transport folded and un-folded cellular proteins, 

HSP70 family members may function as a cross-linker to couple cellular proteins to the 

cytoskeletal matrix. Association ofHSP70 with the cytoskeleton suggests that conceptus 

produced HSC70 may be directly involved with the complex process of conceptus 

remodeling during trophoblastic elongation. 

Through the method of SSH, we have detected several genes that may serve a 

vital role in differentiation, neurulation, as well as attachment and maintenance of 

pregnancy in the pig. Detection and confirmation ofIL-lP, SAHH, HSC70 and OSU-Tl-

50 as being differentially expressed during the period of rapid trophoblastic elongation 

contributes important information towards understanding the mechanisms involved with 

this essential biological event in the pig. 
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Chapter IV. 

CHARACTERIZATION OF THE INTERLEUKIN-I~ SYSTEM DURING 
PORCINE TROPHOBLASTIC ELONGATION AND EARLY PLACENTAL 

ATTACHMENT 

Abstract 

The establishment and maintenance of pregnancy in the pig involves intricate 

communication between the developing conceptuses and maternal endometrium. 

Conceptus-uterine communication is generally established during trophoblastic 

elongation when the conceptus synthesizes and releases estrogen, the maternal 

recognition signal in the pig. We recently identified IL-IP as a gene that is differentially 

expressed during rapid trophoblastic elongation in the pig. The objective of the current 

investigation was to determine conceptus and endometrial changes in gene and ligand 

expression of IL-IP and other genes regulating the IL-IP system during peri-implantation 

development. Using quantitative real time RT-PCR, gene expression of IL-IP, IL-I 

receptor antagonist (IL-IRant), IL-I receptor type I (IL-IRTI) and IL-I receptor 

accessory protein (IL-IRAP) was analyzed in developing peri- and post-implantation 

conceptuses, as well as uterine endometrium collected from cyclic and pregnant gilts. 

Conceptus IL- Ip gene expression was significantly greater during the period of rapid 

trophoblastic elongation compared to earlier spherical conceptuses followed by a 

dramatic decrease in post-elongated day 15 conceptuses. IL-IRTl and IL-IRAP gene 

expression in conceptuses was greater in filamentous day 12 and 15 conceptuses 

compared to earlier morphologies while IL- I Rant gene expression was unchanged by 

conceptus development. The uterine lumenal content of IL- IP increased during the 
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process oftrophoblastic elongation on day 12. Uterine IL-lf3 content declined on day 15, 

reaching a nadir by day 18 of pregnancy. IL-lf3 gene expression in porcine conceptuses 

was temporally associated with an increase in endometrial IL-lRTI and IL-IRAP gene 

expression in pregnant gilts. Endometrial IL-1 f3 and IL-1 Rant gene expression were 

lowest during days 10 to 15 of the estrous cycle and pregnancy. The temporal expression 

of IL-1 f3 during conceptus development and the initiation of conceptus-uterine 

communication suggests conceptus IL-1 f3 synthesis plays an important role in porcine 

conceptus trophoblastic elongation and the establishment of pregnancy in the pig. 

Introduction ° 

On approximately day 12 of pregnancy, porcine conceptuses initiate attachment to 

the uterine lumenal surface following a rapid morphological rearrangement of the 

trophoblast [Geisert et al., 1982a]. The rapid alteration in morphology, termed 

trophoblastic elongation is initiated when a conceptus becomes an approximate 9-10 mm 

sphere. Upon reaching this spherical diameter, the conceptus rapidly transforms into a 

long filamentous thread greater than 150 mm in length within 2-3 h [Geisert et al., 

1982a]. Rapid elongation of the trophoblast is not regulated by cellular mitosis [Geisert 

et al., 1982a; Pusateri et al., 1990] but rather occurs through cellular remodeling of the 

trophectoderm and endoderm layers [Geisert et al., 1982a; Mattson et al., 1990]. This 

dramatic transformation in structural morphology coincides with the elevated estrogen 

synthesis and release by the conceptus [Geisert et al., 1982b] which is required for the 

establishment of pregnancy in the pig. 

Although the biological mechanisms involved with the initiation oftrophoblastic 

remodeling are largely unknown, a few genes proposed to be involved with the rapid 
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transformation of porcine conceptuses have been investigated. Gene expression for 

retinoic acid receptors (RAR) a, B and y, as well as retinal binding proteins (RBP) has 

been evaluated during porcine conceptus development and trophoblastic elongation 

[Yelich et al. l 997b]. Results from a semi-quantitative PCR evaluation of gene 

expression indicated RARa and RBP increase during transition to the filamentous 

morphology. Porcine conceptus expression of growth factors such as transforming 

growth factor-a, epidermal growth factor and interleukin 6 have been reported [Vaughan 

et al., 1992, Mathialagan et al., 1992, Anegon et al., 1994, Modric et al., 2000]. 

Pregnancy specific endometrial expression of LIF is initiated during the period of 

conceptus elongation and could effect conceptus development since peri-implantation 

porcine conceptuses express LIF-receptor p [Anegon et al., 1994; Modric et al., 2000]. 

Conceptus aromatase gene expression also increased during trophoblastic elongation 

[Yelich et al., 1997a] and may have an autocrine effect on development through the 

increase in conceptus estrogen receptor p expression [Kowalski et al., 2002]. Conceptus 

elongation is largely associated with increased prostaglandin production [Geisert et al., 

1986]. Interestingly, conceptus cyclooxygenase-2 (COX-2) gene expression increases in 

filamentous conceptuses following rapid trophoblastic elongation [Wilson et al., 2002]. 

Recently, interleukin- I B (IL-I B), a pro-inflammatory cytokine, was identified 

through utilization of suppression subtractive hybridization (SSH) as a gene differentially 

expressed during the process of rapid trophoblastic elongation [Ross et al., 2003b]. It is 

possible that IL- I B serves an important role in trophoblastic elongation and initiation of 

placental-uterine interfacing needed for the establishment of pregnancy. Previously, Tuo 

et al. [ 1996] reported that conceptus IL- I B gene expression was high during porcine peri-
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implantation development on days 10-12 of pregnancy. Peri-implantation expression of 

IL-1 J3 has also been documented to increase prior to initiation of blastocyst implantation 

in the mouse [Takacs and Kauma, 1996; Kruessel et al., 1997], and suggested as the 

initiator of conceptus-uterine cross-talk during pregnancy in the human [Lindhard et al., 

2002]. Many of the endometrial responses evoked by porcine conceptuses during 

trophoblastic elongation and subsequent adhesion to the uterine apical surface resemble 

the IL-1 mediated acute-phase responses induced during inflammation of tissue [Geisert 

and Y elich, 1997]. 

The present study was undertaken to evaluate changes in gene expression of IL- I 

family members to better understand the role ofIL-lJ3 in embryonic development and 

establishment of pregnancy in pigs. Gene expression for IL-1 J3, IL-1 receptor type 1 (IL

lRTl ), IL-1 receptor accessory protein (IL-lRAP) and IL-I receptor antagonist (IL

lRant) was analyzed in peri- and post-implantation conceptuses as well as from the 

endometrium of cyclic and pregnant gilts. Uterine lumenal content of IL-1 J3 was also 

quantitated during the estrous cycle and early pregnancy. The study was designed to 

specifically target uterine lumen IL- I J3 fluctuation occurring during conceptus transition 

from spherical to filamentous morphology. 

Materials and Methods 

Animals 

Research was conducted in accordance with and approved by the Oklahoma State 

Institutional Animal Care and Use Committee. Cyclic, large white gilts of similar age (8-

10 mo) and weight (100-130 kg) were checked for estrous behavior twice daily in the 

69 



presence of an intact boar. Onset of estrus was designated day O of the estrous cycle. 

Gilts assigned to be bred were naturally mated with fertile boars at the onset of their 

second estrus ( day O of estrous cycle) and again 24 h later. 

Collection of endometrial tissue and conceptuses 

Cyclic and pregnant gilts (4 animals/status per day) were hysterectomized through 

midventral laporatomy as previously described by Gries et al. [1989]. Cyclic gilts were 

hysterectomized on days 0, 5, 10, 12, 15 and 18 of the estrous cycle while pregnant gilts 

were hysterectomized on days 10, 12, 15 and 18 of gestation. Immediately following 

removal, each uterine horn was flushed with 20 mL of a physiological saline and 

conceptuses were removed from pregnant gilts. Conceptus morphology was recorded 

and pools of conceptuses of identical morphologies were transferred to cryogenic vials, 

snap-frozen in liquid nitrogen and transferred to -80°C for long-term storage. Uterine 

flushings were transferred to a 50 mL conical tube and centrifuged at 1000 rpm for 1 min 

to remove cell debris. Uterine flushings were stored at -80°C until utilized in an IL-1 f3 

ELISA protein assay. Following conceptus removal, one uterine horn was cut along its 

anti-mesometrial border, and endometrium (5-10 g) was removed with sterile scissors. 

Endometrium was snap-frozen in liquid nitrogen and stored at -80°C until analyzed. 

Collection of Elongating Porcine Conceptuses 

Since the 9-10 mm spherical to filamentous transition occurs within a short period 

oftime (2-3 h), collection of tubular conceptuses required utilization of a unilateral 

hysterectomy procedure previously described by Geisert et al. [1982a]. For that reason, 

fifteen additional pregnant gilts were utilized to collect conceptuses during the 
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transitional period between day 11 and 12 of gestation. Conceptuses flushed from the 

uteri were separated based on morphological development stage (i.e. spherical, ovoid, 

tubular, filamentous). Conceptuses and uterine flushings were collected and stored at -

80°C as described above. 

RNA Isolation 

Total RNA was extracted from conceptus pools following the extraction method 

previously described by our laboratory [Ross et al., 2003b]. Conceptuses were denatured 

for 15 min on ice using 500 µI of denaturing solution (4 M guanidine thiocyanate, 25 mM 

sodium citrate, pH 7.0, 0.5% sarcosyl, 0.1 M 2-f3-mercaptoethanol), 500 µl phenol, 70 µl 

2M sodium acetate (pH 4.0), and 140 µI chloroform/iso-amyl-alcohol (49: 1 fresh 

dilution). The aqueous phase was recovered following centrifugation at 14 000 rpm for 

20 min at 4°C and added to a tube containing 500 µl of chloroform, and centrifuged at 10 

000 rpm for 10 min at 4°C. The aqueous phase was recovered, placed in a sterile tube, 

and 7 µI ofRnaid binding matrix (BIO 101, LaJolla, CA) was added, vortexed briefly, 

and gently agitated for 25 min at 22-25°C. Following rotation, the suspension was 

centrifuged at 10,000 rpm for 2 min and the aqueous phase was discarded. The 

remaining pellet containing the glass beads bound to total RNA was washed three times 

using 250 µI of 50% RNA wash (BIO 101, LaJolla, CA) and 50% ethanol solution 

followed by centrifugation at 10 000 rpm for 2 min at 22-25°C. The pellet was dried at 

22-25°C for 10 min and resuspended in 50 µI of nuclease-free H20. The resuspended 

solution was heated at 56°C for 5 min and centrifuged at 1 O 000 rpm for 2 min. 

Approximately 40 µl of the aqueous phase containing the purified total RNA was 
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transferred to a sterile tube and stored at -80°C. Endometrium tissue total RNA was 

extracted using the TRizol reagent (Invitrogen, Carlsbad, CA) according to 

manufacturers recommendations as previously described [Vonnahme et al., 1999]. 

Approximately 500 mg of endometrium was homogenized in 5 mL TRizol reagent using 

a Virtishear homogenizer (Virtis Company Inc., Gardiner, NY). RNA pellets were 

rehydrated in nuclease-free H20 and stored at -80°C. RNA content was estimated 

spectrophotmetrically and purity determined by the 260:280 ratio. 

Quantitative 1-Step RT-PCR 

Quantitative analysis ofIL-1~, IL-lRTl, IL-lRAP and IL-lRant mRNA were 

assayed using quantitative real-time RT-PCR and a fluorescent reporter as previously 

described [Hettinger et al., 2001]. Endometrial tissue was assayed in addition to pools 

(2-7) of conceptuses at the four morphologically distinct stages during rapid trophoblastic 

elongation; spherical (n=8), ovoid (n=2), tubular (n=5), and filamentous (n=6), and 

during late peri-implantation development; day 15 (n=2) and 18 (n=5). The PCR 

amplification was conducted using the ABI PRISM 7700 Sequence Detection System 

(PE Applied Biosystems, Foster City, CA). The transcripts were evaluated using dual

labeled probes designed to have a 5' reporter dye {6-FAM) and a 3' quenching dye 

(TAMRA). One hundred nanograms of total RNA were assayed for each sample in 

duplicate. Thermal cycling conditions were 48°C for 30 min and 95°C for 10 min, 

followed by 40 repetitive cycles of95 for 15°C sec and 60°C for I min. I8S ribosomal 

RNA was assayed as a normalization control to correct for loading discrepancies for all 

samples assayed. GenBank accession numbers representing full-length cDNA sequences 

or expressed sequence tags used to generate primer and.probe sequences for the 
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amplification oflL-1~, IL-IRTI, IL-IRAP and IL-lRant are presented in Table 4.1. 

-Primer and probe sequences generated for IL- IP using the available porcine GenBank 

sequence (accession# M86725) efficiently amplified endometrial IL-IP. However, 

amplification of conceptus IL- Ip gene expression with the primers and probe was not 

exponential. The amplification profile of conceptus IL-Ip indicated there were 

mismatches between the primer/ probe set and conceptus IL-I~ mRNA. The IL-IP 

cDNA sequence previously isolated in our laboratory has 90% homology to the known 

porcine IL-Ip sequence (GenBank accession # M86725). The region in which the 

primers arid probe were constructed ( exon number 5) to amplify IL-I~ was not totally 

homologous (81 % ) between the porcine lung IL-Ip in GenBank and conceptus sequence 

isolated using SSH [Ross et al., 2003]. The partial IL-I~ cDNA sequence isolated in our 

laboratory from conceptus tissue represented exons 4, 5, 6 and 7 of pro-interleukin-IP 

(GenBank accession# X74568) containing 97, 99, 97 and 96 percent homology, 

respectively. A second set of primers and probe were designed in exon number 7 using 

the isolated IL-Ip cDNA sequence from conceptuses (Table 4.1 ). 

The difference between the ability to amplify endometrial but not conceptus IL

Ip with the original primer/probe design suggests the possibility that an alternate form of 

IL- Ip may exist. However, a comparison between porcine endometrial and conceptus 

IL-IP sequences needs to be evaluated. Template amplification was quantified by 

determining the threshold cycle (CT) based on the fluorescence detected within the 

geometric region of the semilog plot. In the geometric region, one cycle is equivalent to 

the doubling of the PCR target template. Using the comparative CT method [Hettinger et 
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Table 4.1. Primer and probe sequencesfo_!_ IL-I~, IL-IRTI, IL-IRAP and IL-IRant used for real time quantitative RT-PCR 

Tar.9.et 
lnterleukin-113 

Endometriala 

lnterleukin-113 
Conceptusa 

Primers 
5'-TGCCAACGTGCAGTCT ATGG-3' 
5'-TGGGCCAGCCAGCACT AG-3' 

5'-GGCCGCCAAGAT AT AACTGA-3' 
5'-CCCTCTGGGTATGGCTTIC-3' 

Probe 
5'-TGCAAACTCCAGGACAAAGACCACAAATC--3' 

5'-ITCACCATGGAAGTCCTCTCTCCCT AA--3' 

lnterleukin-1 Receptor Type I 5'-AATGCACTTCCTAGGCTITCTG-3' 5'-CCTGAAITGCCCTGGCCTGCTA-3' 

lnterleukin-1 Receptor 
Accessory Protein 

lnterleukin-1 Receptor 
Antagonist 

5'-GGAACAGGATGTGGTGACAA-3' 

5'-AAATGCCAAAGGGGAGGIT-3' 
5'-TGCTGTGTGCATCCAIT ACC-3' 

5'-ITCCTCCITITCCTGITCCA-3' 
5'-GCATCCTGCAAGGTCTCTTI-3' 

5'-ACAGACCGGCCAAGGTGAAACAGA-3' 

5'-CTCAGAGACTGCCTGCCACCCCT-3' 

Product 
Size 

~ 
70 

68 

GenBank 
Accession# 

M86725 

Unpublished 
Sequence 

65 81182393 

66 BE013056 

67 L38849 

lnterleukin-113 5'-CCCCTCAGACAGTACAAGACAA-3' 5'-CCCAGTTAAGCCTGCGTCITCAGAGC-3' 67 AB027296 
Converting Enzyme 5'-AGCITGAGGCTCCCTCITG-3' 

aDue to sequence homology differences in conceptus and endometrial IL-I~, a dual-labeled probe and primer set was designed 
specifically for each tissue type. 
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al., 2001] relative quantification and fold gene expression differences were determined 

for different conceptus stages (Table 4.2) and endometrial status during days of the 

estrous cycle and early pregnancy (Tables 4.3 and 4.4). 

Enzyme Linked Immunosorbent Assay 

IL- I J3 protein content in uterine lumenal flushings of day 12 and 15 cyclic gilts 

and pregnant gilts with spherical, ovoid, tubular, day 15 and 18 conceptuses was 

quantified using a commercially available ELISA (R&D Systems, Minneapolis, MN). 

The assay employs the quantitative sandwich enzyme immunoassay technique using a 

monoclonal antibody specific to porcine IL- I J3 pre-coated onto a microplate. Due to 

concentrations that exceeded the standard curve, a number of samples were diluted with 

calibrator diluent RD6-33 (R&D Systems, Minneapolis, MN) to place the samples within 

the sensitivity of the assay (10-2500 pg/mL). All samples, standards and controls were 

assayed in duplicate. The assay was conducted according to the manufacturers 

recommendations (R&D Systems, Minneapolis, MN). Briefly, 50 µl of assay diluent was 

added to each well followed by the addition of I 00 µI of standard, control, or sample 

(stock or diluted). The plate was gently tapped for I min and incubated at 22-25°C for 2 

h. Following incubation, each well was washed five times using 400 µl of wash buffer. 

The plate was tapped dry and 200 µl of porcine IL- I J3 conjugate was added and allowed 

to incubate for 2 hat 22-25°C. Washes were repeated as above and 120 µI of substrate 

solution (I part stabilized hydrogen peroxide: I part stabilized tetramethylbenzidine) was 

added and allowed to incubate at 22-25°C for an additional 30 min. Following binding 

of substrate, 120 µl of stop solution was added and optical density of each well was 
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determined within 30 min using the VMax Kinetic Microplate Reader (Molecular 

Devices, Sunnyvale, CA) set at 450 nm with a correction wavelength of 562 nm. IL-IP 

concentrations were calculated based on the generated standard curve. The intraassay 

coefficient of variation of the IL-IP ELISA was 4.8 %. 

Statistical Analysis 

Quantitative RT-PCR i\CT values were analyzed using PROC MIXED of the 

Statistical Analysis System [SAS User's Guide, 1985]. Analysis of conceptus gene 

expression tested for the fixed effect of morphology. The analysis of endometrial gene 

expression tested for the effect of status, day and status x day interaction. The effect of 

status, day and status x day interaction was evaluated for IL- Ip protein in uterine 

flushings from day 12 and 15 pregnant and cyclic gilts. The fixed effect of conceptus 

morphology was tested for IL-Ip protein in uterine flushings from pregnant uteri during 

trophoblastic elongation (day 11-12), day 15 and 18. Significance (P < 0.05) was 

determined by probability differences ofleast squares means. Satterthwaite's 

approximation was used for means with heterogeneous variance to calculate the effective 

degrees of freedom for the error term [ Steel et al., 1996]. Results are presented as 

arithmetic means ± SEM. 

Results 

Quantitative RT-PCR 

To investigate possible mechanisms of IL-IP action during trophoblastic 

elongation and attachment to the uterine surface, gene expression profiles were generated 
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from conceptus and uterine endometrium mRNA for IL-113, IL-lRTl, IL-lRAP and IL

lRant using quantitative real time RT-PCR. Conceptus gene expression was evaluated in 

spherical, ovoid, tubular and filamentous conceptuses collected between days 10-12 of 

pregnancy as well as during the period of attachment to the surface on day 15 and 18 of 

gestation. Uterine endometrium from cyclic gilts ( days 0, 10, 12, 15 and 18 of estrous 

cycle) and pregnant gilts (days 10, 12, 15 and 18) were evaluated to determine gene 

expression during the estrous cycle and critical time-points during early pregnancy. 

Interleukin-1 f3 

A significant difference (P < 0.0001) in IL-113 gene expression between morphological 

variants during porcine trophoblast development was detected using quantitative RT-PCR 

(Table 4.2). Selectively comparing fold differences in IL-113 gene expression only during 

the period of trophoblastic elongation (Figure 4.1, insert), there was an approximate 2-

fold increase in IL-113 gene expression during conceptus transition from spherical to 

tubular conceptuses, which increased to 6-fold in filamentous conceptuses. Comparing 

all morphologies evaluated, greatest IL-113 gene expression was detected in day 12 

filamentous conceptuses, which was over 2000-fold greater compared to conceptuses 

collected on day 15 and 18 of pregnancy (Figure 4.1 ). IL-I 13 gene expression was 

extremely low in day 15 and 18 conceptuses as spherical conceptuses expressed over 

300-fold greater IL-113 compared to post-elongation conceptuses (Figure 4.1). No 

significant status or day x status interaction was detected in endometrial IL- I f3 gene 

expression (Table 4.3). However, there was a tendency for a day effect (P < 0.06) as 
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Table 4.2. Quantitative RT-PCR analysis comparing gene expression oflL-lf3, IL-1 
Receptor Antagonist, IL- I Receptor Type I and IL-1 Receptor Accessory in 
conceptuses during rapid trophoblastic elongation and late peri-implantation 
development. 

Average Average 
Target Morphology Target CT* 18S rRNA CT* L\Cl,1 L\L\CT§ 

lnterleukin-1 ~ Spherical 19.12± 0.37 16.89± 0.21 2.23 ± 0.33° -8.57 

lnterleukin-1 
Receptor 
Antagonist 

Ovoid 18.59 ± 1.08 16.54 ± 0.43 2.05 ± 0.65bc -8. 75 
Tubular 17.29±0.44 16.21 ±0.14 1.08±0.33b -9.72 
Filamentous 16.02±0.36 16.38±0.05 -0.37±0.39a -11.17 
Day 15 27.00 ± 0.06 16.20 ± 0.00 10.80 ± 0.07d 0.00 
Day 18 26.08 ± 0.50 16.21 ± 0.13 9.87 ± 0.47d -0.94 
Spherical 32.60± 0.52 16.89± 0.21 15.71 ± 0.49 -1.79 
Ovoid 33.08 ± 2.60 16.54 ± 0.43 16.54 ± 2.18 -0.97 
Tubular 31.86±1.71 16.21±0.14 15.65±1.58 -1.85 
Filamentous 32.63 ± 0.78 16.38 ± 0.05 16.25 ± 0.79 -1.25 
Day15 33.70±0.11 16.20±0.00 17.50±0.11 0.00 
Day 18 31.15 ± 0.40 16.21 ± 0.13 14.94 ± 0.39 -2.56 

lnterleukin-1 Spherical 31.61 ± 0.19 16.89± 0.21 14. 72 ± 0.23b -1.60 
Receptor Type I Ovoid 30.72 ± 0.98 16.54 ± 0.43 14.17 ± 1.41abc -2.15 

lnterleukin-1 
Receptor 
Accessory 
Protein 

Tubular 32.53 ± 0.26 16.21 ± 0.14 16.32 ± 0.34° 0.00 
Filamentous 28.58 ± 0.66 16.38 ± 0.05 12.20 ± 0.69a -4.12 
Day 15 29.01 ± 0.02 16.20 ± 0.00 12.81 ± 0.01a -3.51 
Day 18 29.64 ± 0.36 16.21 ± 0.13 13.43 ± 0.30a -2.89 
Spherical 30.41± 0.37 16.89± 0.21 13.52 ± 0.31° -1.39 
Ovoid 30.30 ± 0.09 16.54 ± 0.43 13.76 ± 0.52°d -1.15 
Tubular 31.12 ± 0.23 16.21 ± 0.14 14.91 ± 0.32d 0.00 
Filamentous 29.05 ± 0.46 16.38 ± 0.05 12.67 ± 0.48bc -2.24 
Day 15 26.56 ± 0.08 16.20 ± 0.00 10.36 ± 0.07a -4.55 
Day 18 28.39 ± 0.45 16.21 ± 0.13 12.18 ± 0.35b -2.73 

* CT = Cycle Threshold. Indicates cycle number in which amplification crosses the 
threshold set in the geometric portion of amplification curve. 
t L\CT = Target transcript CT - 18S ribosomal CT: Normalization of CT for target 
gene relative to ribosomal 18S RNA CT. 
,i Statistical analysis of normalized expression levels between morphologies. Values 
with different superscripts for each of the target genes differ significantly (P < 0.05). 
§ L\L\CT = Mean L\CT - highest mean L\CT value: The mean value for the morphology 
with highest L\CT (lowest expression levels for target) was used as a calibrator to set 
the baseline for comparing mean differences in the L\CT values across all 
morphologies. · 

78 



Figure 4.1. Fold gene expression changes ofIL-1~ in porcine conceptuses during rapid 
trophoblastic elongation and late peri-implantation development generated using 
Quantitative I-Step RT-PCR. Gene expression for day 15 conceptuses was set as the 
baseline and fold gene expression was calculated as described in Materials and Methods. 
The inset depicts fold differences in IL- I~ gene expression during rapid trophoblastic 
elongation (dayl 1-12) by setting gene expression of spherical conceptuses as the 
baseline. 
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gene expression for IL-1 ~ was greater during estrus and early di estrus ( day 5) compared 

to the later days of the estrous cycle and early pregnancy (Figure 4.2). 

Interleukin-I Receptor Type I 

Conceptus IL-1 RTl gene expression was affected (P < 0.003) by morphological 

stage of development (Table 4.2). IL-lRTl expression was lowest in tubular conceptuses 

compared to all other morphologies (Table 4.2). Similar to IL-1 ~ gene expression, 

filamentous conceptuses expressed greater IL-lRTl mRNA when compared to spherical 

and tubular conceptuses (Table 4.2). IL-lRTl mRNA expression was approximately 6-

fold greater in day 12 filamentous conceptuses compared to spherical conceptuses and 

approximately 17-fold greater than tubular conceptuses (Figure 4.3). 

A day x status interaction (P < 0.0001) was detected in endometrial IL-lRTl gene 

expression (Table 4.4). Endometrium from day 12 of gestation contained greater (P < 

0.04) mRNA levels oflL-lRTl compared to all other days of the estrous cycle and 

pregnancy (Table 4.4). Endometrial IL-lRTl gene expression was enhanced 2 to 4-fold 

on day 12 of pregnancy compared to all days of estrous cycle and pregnancy (Figure 4.4). 

Interleukin-I Receptor Accessory Protein 

Conceptus IL-lRAP gene expression was affected (P < 0.0001) by morphological stage 

of development (Table 4.2). IL-lRAP gene expression increased and was maintained 

following trophoblastic elongation (Figure 4.3). The greatest IL-lRAP mRNA 

expression occurred in day 15 conceptuses compared to all other morphologies evaluated 

while tubular conceptuses contained the lowest IL-lRAP mRNA (Table 4.2). Compared 
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Table 4.3. Quantitative R T-PCR analysis of endometrial gene expression of IL-1 ~ and 
IL-1 Receptor Antagonist during the estrous cycle and early pregnancy. 

Target 
lnterleukin-1 f3 

lnterleukin-1 
Receptor 
Antagonist 

Average Average 
Day Status Target C/ 18S rRNA CT* 

0 Cycling 25.72 ± 1.07 17.05 ± 0.20 8.67 ± 1.24 -4.24 
5 Cycling 26.57 ± 1.79 16.94 ± 0.09 9.63 ± 1.88 -3.28 

10 Cycling 26.92 ± 0.63 16.80 ± 0.13 10.13 ± 0.75 -2.79 
10 Pregnant 28.42 ± 1.29 16.49 ± 0.08 11.93 ± 1.35 -0.98 
12 Cycling 28.32 ± 0.69 16.65 ± 0.17 11.67 ± 0.71 -1.24 
12 Pregnant 29.29 ± 0.47 16.39 ± 0.02 12.91 ± 0.47 0.00 
15 Cycling 28.85 ± 0.59 16.41 ± 0.05 12.44 ± 0.64 -0.47 
15 Pregnant 28.52 ± 0.68 16.47 ± 0.08 12.06 ± 0.63 -0.85 
18 Cycling 27.52 ± 0.36 16.65 ± 0.26 10.87 ± 0.10 -2.04 
18 Pregnant 28.27 ± 0.51 16.60 ± 0.33 11.68 ± 0.49 -1.24 
0 Cycling 27.13 ± 0.88 17.05 ± 0.20 10.08 ± 1.06a -6.45 
5 Cycling 27.84 ± 1.55 16.94 ± 0.09 10.91 ± 1.64ab -5.63 

10 Cycling 30.07 ± 0.86 16.80 ± 0.13 13.27 ± 0.96bc -3.26 
10 Pregnant 32.40 ± 1.02 16.49 ± 0.08 15.91 ± 1.06°d -0.62 
12 Cycling 31.09±0.71 16.65±0.17 14.43±0.81°d -2.10 
12 Pregnant 32.41 ± 0.24 16.39 ± 0.02 16.02 ± 0.26°d -0.51 
15 Cycling 32.94 ± 0.63 16.41 ± 0.05 16.53 ± 0.65d 0.00 
15 Pregnant 30.56 ± 0.67 16.47 ± 0.08 14.09 ± 0.60c -2.44 
18 Cycling 29.75±0.24 16.65±0.26 13.10±0.49bc -3.43 
18 Pregnant 31.75±0.63 16.60±0.33 15.15±0.46°d -1.38 

* CT= Cycle Threshold. Indicates cycle number in which amplification crosses the 
threshold set in the geometric portion of amplification curve. 
t L\CT = Target transcript CT - 18S ribosomal CT: Normalization of CT for target gene 
relative to ribosomal 18S RNA CT. 
,r Statistical analysis of normalized expression levels between days and statuses. There 
was a day x status interaction (P < 0.03) for endometrial IL-lRant gene expression. 
Values with different superscripts within the analysis of each target gene differ 
significantly (P < 0.05) 
§ ddCT = Mean L\CT - highest mean L\CT value: The mean value for the day/status with 
the highest L\CT (lowest expression levels for target) was used as a calibrator to set the 
baseline for comparing mean differences in the L\CT values across all days and statuses. 
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Figure 4.2. Fold gene expression changes ofIL-1~ in endometrium from cyclic and 
pregnant gilts generated using Quantitative I-Step RT-PCR. Gene expression levels for 
day 12 pregnant endometrium was set as the baseline and fold gene expression was 
calculated as described in Materials and Methods. 
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Figure 4.3. Fold gene expression changes of IL- I Receptor Type I and Receptor 
Accessory Protein in porcine conceptuses during rapid trophoblastic elongation and late 
peri-implantation development generated using Quantitative I-Step RT-PCR. Tubular 
gene expression was set as the baseline for both transcripts and fold gene expression was 
calculated as described in Materials and Methods. 
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Table 4.4. Quantitative R T-PCR analysis of endometrial gene expression for IL- I 
Receptor Type 1 and IL- I Receptor Accessory Protein during the estrous cycle and early 
pregnancy. 

Target 
lnterleukin-1 
Receptor Type I 

lnterleukin-1 
Receptor 
Accessory 
Protein 

Average Average 
Day Status Target CT* 18S rRNA C/ ~cTi,i ~~CT§ 

0 Cycling 22.39 ± 0.32 17.05 ± 0.20 5.34 ± 0.24°d -1.29 
5 Cycling 22.63 ± 0.16 16.94 ± 0.09 5.69 ± 0.14cde -0.94 

10 Cycling 21.24±0.34 16.80±0.13 4.45±0.36b -2.19 
1. O Pregnant 20.88 ± 0.19 16.49 ± 0.08 4.40 ± 0.17b -2.24 

I'· 

~ Cycling 21.92 ± 0.42 16.65 ± 0.17 5.26 ± 0.34°d -1.37 
12 Pregnant 19.91 ±0.22 16.39±0.02 3.52±0.20a -3.11 
15 Cycling 21.54±0.20 16.41 ±0.05 5.13±0.24bc -1.50 
15 Pregnant 22.45 ± 0.14 16.47 ± 0.08 5.98 ± 0.21de -0.65 
18 Cycling 22.01 ± 0.22 16.65 ± 0.26 5.37 ± 0.26°d -1.27 
18 Pregnant 23.23 ± 0.28 16.60 ± 0.33 6.63 ± 0.29e 0.00 
0 Cycling 23.60 ± 0.78 17.05 ± 0.20 6.55 ± 0.96bc -1.13 
5 Cycling 22.93 ± 0.78 16.94 ± 0.09 5.99 ± 0.87ab -1.69 

10 Cycling 23.18±0.27 16.80±0.13 6.38±0.37bc -1.30 
10 Pregnant 24.17 ± 0.45 16.49 ± 0.08 7.68 ± 0.48° 0.00 
12 Cycling 23.10 ± 0.33 16.65 ± 0.17 6.45 ± 0.43bc -1.23 
12 Pregnant 21.02 ± 0.29 16.39 ± 0.02 4.63 ± 0.28a -3.05 
15 Cycling 23.52 ± 0.37 16.41 ± 0.05 7.11 ± 0.35bc -0.57 
15 Pregnant 22.86 ± 0.23 16.47 ± 0.08 6.40 ± 0.28bc -1.28 
18 Cycling 23.88 ± 0.43 16.65 ± 0.26 7.23 ± 0.37bc -0.45 
18 Pregnant 22.59 ± 0.29 16.60 ± 0.33 5.99 ± 0.13ab -1.69 

* CT = Cycle Threshold. Indicates cycle number in which amplification crosses the 
threshold set in the geometric portion of amplification curve. 
t ~CT= Target transcript CT - l 8S ribosomal CT: Normalization of CT for target gene 
relative to ribosomal 18S RNA CT. 
,r Statistical analysis of normalized expression levels between day and status. There was 
a day x status interaction in gene expression levels of both IL-IRTI (P < 0.0001) and IL
IRAP (P < 0.03). Values with different superscripts within the analysis of each target 
gene differ significantly (P < 0.05) 
§ ~~CT = Mean ~CT - highest mean ~CT value: The mean value for the day/status with 
the highest ~CT (lowest expression levels for target) was used as a calibrator to set the 
baseline for comparing mean differences in the ~CT values across days of the estrous 
cycle and pregnancy. 
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Figure 4.4. Fold gene expression changes of IL-I Receptor Type I in endometrium from 
cyclic and pregnant gilts generated using Quantitative I-Step RT-PCR. Gene expression 
levels for day 18 pregnant endometrium was set as the baseline and fold gene expression 
was calculated as described in Materials and Methods. 
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to tubular conceptuses, IL-lRAP expression was approximately 5, 23 and 7-fold greater 

in filamentous (day 12), day 15 and 18 conceptuses, respectively (Figure 4.3). 

Evaluation of endometrial IL-lRAP gene expression (Table 4.4) detected a day x status 

interaction (P > 0.03). The highest IL-lRAP mRNA expression was detected in 

endometrium collected on day 12 of pregnancy (Table 4.4). IL-lRAP gene expression 

was enhanced 3 to 8-fold on day 12 of gestation (Figure 4.5). 

Interleukin-I Receptor Antagonist 

Conceptus gene expression for IL-lRant was not affected (P < 0.74) by 

morphological stage of development (Table 4.2). A day x status interaction (P < 0.03) 

was detected for endometrial IL-lRant gene expression (Table 4.3). Endometrial IL

lRant gene expression was greatest on day O of the estrous cycle (Table 4.3). IL-lRant 

endometrial gene expression was high during estrus and early diestrus ( day 5) rapidly 

declining during diestrus and early pregnancy (Figure 4.6). Differences in gene 

expression were approximately 50 to 90-fold greater on day O and 5 compared to 

endometrium during the time of peak conceptus IL- IP gene expression occurring on day 

12 of gestation (Figure 4.6). 

IL-1 f3 Protein 
Analysis oflL-1 p protein in uterine flushings of pregnant and cyclic gilts from 

days 12 and 15 of gestation or the estrous cycle indicated a status effect (P < 0. 003). The 

uterine concentration ofIL-lf3 was below the detectable range of the ELISA (10 pg/mL) 

in tlushings from all cyclic gilts while the concentration of IL-IP in uterine tlushings 

averaged 184 ± 50.3 
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Figure 4.5. Fold gene expression changes of IL- I Receptor Accessory Protein in 
endometrium from cyclic and pregnant gilts generated using Quantitative I-Step RT
PCR. Gene expression levels for day 10 pregnant endometrium was set as the baseline 
and fold gene expression was calculated as described in Materials and Methods. 
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Figure 4.6. Fold gene expression changes ofIL-1 Receptor Antagonist in endometrium 
from cyclic and pregnant gilts generated using Quantitative I-Step RT-PCR. Gene 
expression levels for day 15 cyclic endometrium was set as the baseline and fold gene 
expression was calculated as described in Materials and Methods. 
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and 112 ± 31.4 ng/mL on day 12 and 15 of pregnancy, respectively. When data were 

analyzed for pregnant gilts only, there was an effect (P < 0.003) of conceptus morphology 

in the uterine horn on the concentration ofIL-1 p protein in the uterine flushings. 

Concentration of IL-1 P in the uterine flushings from pregnant gilts increased during the 

transition from spherical (2.9 ± 1.0 ng/mL) to tubular (65.4 ± 10.7 ng/mL) morphology 

and peaked during the presence of day 12 filamentous conceptuses (Figure 4. 7). IL-1 p 

protein content in the uterine lumen declined slightly by day 15 and returned to 

concentrations similar to uteri containing spherical conceptuses on day 18 (5.9 ± 1.5 

ng/mL) of gestation (Figure 4.7). 

Discussion 

Interleukin- I, previously termed leukocyte endogenous mediator, was first 

identified as a mediator of the acute-phase inflammatory response [Mantovani et al., 

1998]. The ability of IL-1 p to invoke inflammation is dependent upon the expression of 

the vast members of the IL-1 system, which consists of two receptors; IL-IRTl 

(functional) and IL-1RT2 (pseudo-receptor), converting enzymes, receptor accessory 

proteins, and multiple isoforms ofreceptor antagonists [Mantovani et al., 1998]. The 

effects ofIL-1 as an inducer of the acute-phase response is similar, but to a lesser degree, 

to the actions ofIL-6 [Mantovani et al., 1998] that is also expressed in preimplantation 

pig conceptuses from days 11 to 21 of pregnancy [Mathialagan et al., 1992, Modric et al., 

2000]. IL-1 P gene expression in porcine conceptuses was first identified by Tuo et al. 

[ 1996]. The importance of IL-Ip in porcine conceptus development was suggested when 

IL-IP was identified as a gene differentially expressed during rapid trophoblastic 

95 



Figure 4. 7. IL- I~ protein content ± SEM detected in uterine flushings from pregnant 
gilts corresponding to morphological stage during the period rapid trophoblastic 
elongation (day 11-12) and late peri-implantation development (days 15 and 18). 
Morphologies with different superscripts are significantly different (P < 0.05). 
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elongation using SSH [Ross et al., 2003b]. IL-IP was the most abundantly expressed 

gene isolated using SSH and was one of the most abundant clones represented when 

mapping expressed sequence tags derived from a porcine early embryonic cDNA library 

in a study by Smith et al. [2001]. 

IL-1 p is a pro-inflammatory cytokine associated with implantation in the mouse 

[Takacs and Kauma, 1996; Kruessel et al., 1997] and has been suggested as the initiator 

of cross-talk between human embryos and the endometrium during initiation of 

implantation [Lindhard et al., 2002]. Deletion ofIL-lRTl in knockout mice results in 

only a slightly reduced litter size [Abbondanzo et al., 1996]. However, repeated 

injections ofIL-lRant into pregnant mice prior to implantation caused implantation 

failure [Simon et al., 1994a]. Regardless of the receptor pathway, these studies indicate 

. the importance for IL-1 p· signaling during implantation in the mouse. Detection of 

porcine conceptus IL-IP gene expression led us to investigate expression patterns ofIL

IP, IL-IRTI, IL-IRAP and IL-lRant in conceptuses and uterine endometrium during 

peri-implantation development and the establishment of pregnancy in the pig. 

The present study clearly demonstrates the presence of IL- Ip in the uterine lumen 

during the time of conceptus elongation and maternal recognition of pregnancy on day 12 

of gestation. Uterine lumenal content of IL- IP increased during the initiation of rapid 

trophoblastic elongation. Absence of IL-IP protein in the uterine lumen on days 12 and 

15 of the estrous cycle with the increase in conceptus IL- IP gene expression detected 

during trophoblastic elongation suggests the IL-Ip in the uterine lumen originates from 

peri-implantation conceptuses. Following the initial sharp increase in IL-IP on day 12, 

conceptus gene expression and release ofIL-1 P is greatly reduced by day 15 and 18 of 
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gestation. IL-1 p gene expression was more than 2000-fold less in day 15 conceptuses 

compared to day 12 filamentous conceptuses. Similarly, IL-IP protein availability in the 

uterine lumen is declining on day 15 and returned to pre-elongation concentrations by 

day 18 of gestation. This transient pattern of conceptus IL-Ip gene expression and 

protein secretion is temporally and spatially associated with IL-lRTl and IL-lRAP gene 

expression in elongated conceptuses ( days 12-15) and in endometrium from pregnant 

gilts on day 12 of gestation. Conceptus expression for IL-1 RT 1 and IL-1 RAP is greater 

in filamentous conceptuses compared to earlier morphologies and tends to decline in day 

18 conceptuses. 

IL-IP ligand binding to both IL-lRTl and IL-I RAP is needed to elicit a 

biological response [Cullinan et al., 1998] although as indicated above, IL-1 p may 

function through multiple receptors. The upregulation ofIL-lRTl gene expression in 

both the endometrium and conceptuses may be in part due to the actions of IL-1 p itself, 

which is known to upregulate the expression of its own receptor, IL-lRTl, in human 

endometrial stromal and glandular cells [Simon et al., 1994b]. Endometrial IL-lRTl and 

IL-1 RAP gene expression decreased following conceptus trophoblastic elongation and 

initial apposition to the uterine apical surface on day 12 of gestation whereas conceptus 

IL-lRTl and IL-lRAP gene expression continued to be elevated following conceptus 

expansion. Endometrial IL-lRTl gene expression during the time of blastocyst 

attachment to the uterine surface is similarly expressed with respect to implantation in the 

mouse [Reese et al., 2001] and human [Simon et al., 1993]. In contrast to the pig, IL-

1 RAP gene expression in human endometrium is constitutively expressed throughout the 
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menstrual cycle without significant variation although its presence is more intense in 

glandular and lumenal epithelium [Bigonnesse et al., 2001]. 

Based on temporal IL-1 RT 1, IL-1 RAP and IL-1 Rant gene expression, conceptus 

IL-1 p gene expression and presence in the uterine lumen likely induces biological actions 

in both the porcine conceptus and endometrium. IL-1 p is a potent stimulator of 

aromatase activity and subsequent estrogen (E2) synthesis in human cytotrophoblasts 

[Nestler, 1993] and also stimulates progesterone production in JEG-3 choriocarcinoma 

cells [Feinberg et al., 1994]. Aromatase gene expression is increased in day 12 

filamentous pig conceptuses compared to earlier morphologies [Yelich et al., 1997a]. 

Estrogen production in porcine conceptuses sharply increases during elongation on day 

12, declines rapidly on day 13 and then initiates a second more sustained increase on days 

16 to 25 of gestation [Geisert and Yelich, 1997]. Conceptus IL-IP gene expression and 

protein secretion is temporally associated with initiation of conceptus E2 production 

during the process of rapid trophoblastic elongation, suggesting IL-IP may be involved 

with the E2 increase in elongating conceptuses. However, conceptus IL-lRTl and IL-1 

RAP gene expression and continued IL-1 p presence in the uterine lumen through day 15 

suggests IL-1 p could have effects on conceptus and uterine function after trophoblastic 

elongation. Although the initial conceptus enhancement ofE2 synthesis may involve IL-

1 p, our data suggest the second sustained increase in porcine conceptus E2 release 

initiated on day 16 is mediated by an alternative mechanism, as IL-1 p gene expression is 

almost absent in day 15 and 18 conceptuses. 

IL-1 p, an inducer of phospholipase A2 [Kol et al., 1999], may also regulate the 

release of arachidonic acid from the phosholipid bilayer allowing membrane fluidity 

100 



necessary for remodeling of the trophectoderm during elongation and its conversion to 

prostaglandins needed for placental attachment during the establishment of pregnancy 

[Davis and Blair, 1993 ~ Geisert and Y elich, 1997]. IL- Ip induces cyclo-oxygenase-2 

(COX-2) gene expression in human endometrial stromal cells [Huang et al., 1998] and 

amnion-derived WISH cells [Albert et al., 1994]. Filamentous (day 12) porcine 

conceptuses express elevated levels ofCOX-2 mRNA [Wilson et al., 2002] temporally 

associated to the IL- Ip gene expression we report. While conceptus production of 

prostaglandins may not be necessary for inducing trophoblastic elongation [Geisert et al., 

1986], prostaglandins have been demonstrated to be essential for placental attachment 

and survival following elongation [Kraeling et al., 1985]. 

During attachment in the pig, the conceptus invokes an acute phase inflammatory 

response [Geisert and Yelich, 1997]. At this time, the formation of a conceptus-uterine 

extracellular matrix is essential. Tumor necrosis factor (TNF)-stimulated gene (TSG)-6 

gene expression is induced by TNFa. and IL-Ip [Lee et al., 1992] as well as prostaglandin 

E2 (PGE2) [Fujimoto et al., 2002]. TSG-6, which is strongly anti-inflammatory 

[Wisniewski et al., 1996], is thought to be involved in cumulus-oocyte matrix formation 

in mice because of its ability to bind to both hyaluronic acid (HA) and the heavy chain of 

inter-a-trypsin inhibitor (Ia.I) stabilizing the covalent bond between the two [Richards et 

al., 2002]. Ia.I has been reported in the porcine endometrium and hypothesized to assist 

in attachment of the conceptus to the uterine surface by stabilizing the uterine epithelial 

surface glycocalyx [Geisert and Yelich, 1997]. It is possible that conceptus IL-

IP production may initially stimulate TSG-6 production during conceptus elongation and 
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induces COX-2 expression for continued stimulation ofTSG-6 through placental PGE2 

release. 

The significance of the inflammatory response induced via IL-113 lies in the 

effects IL-113 may have on the regulation of the maternal T helper cell (TH) population at 

the fetal-maternal interface allowing a permissive response to conceptus antigens. In 

mice, shifting from predominately a THI population, which is not compatible with 

pregnancy [Raghupathy, 1997], to a TH2 population, is generally associated with 

successful pregnancies [Wegmann et al., 1993]. TH2 proliferation in mice requires IL-I 

expression by antigen-presenting cells [Weaver et al., 1988] and recurrent pregnancy loss 

in women has been linked to THI-type immunity to trophoblastic antigens due to 

polymorphisms in the IL-113 promoter region of the mother [Wang et al., 2002] 

suggesting that IL-113 may be involved in regulating a maternal immune response which 

is permissive to conceptus antigens in the pig. 

Utilizing quantitative real-time RT-PCR and a commercial ELISA assay we have 

clearly demonstrated changes in porcine conceptus IL-113 gene expression, synthesis and 

release during rapid trophoblastic elongation and its potential signaling pathways in both 

the uterine endometrium and conceptus. Based on current literature and the dynamic 

conceptus IL:..113 gene expression and synthesis temporally and spatially associated with 

IL-IRTI and IL-IRAP gene expression in the uterine endometrium, we suggest IL-113 is 

an imperative conceptus signaling component required for the establishment of a 

successful pregnancy in the pig. 
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Chapter V. 

Summary and Conclusion 

In the pig, the most notable pre-attachment conceptus developmental phenomena 

occurs on day 11-12 of gestation when a 9-10 mm spherical conceptus rapidly transforms 

into a long filamentous thread(> 150 mm) within 2-3 h [Geisert et al., 1982a]. Due to 

development of a non-invasive, diffuse, epitheliochorial type of placenta, rapid 

trophoblastic elongation is essential for individual littermates to acquire ample placental

uterine surface contact to attain adequate nutrition necessary to remain viable throughout 

gestation [Stroband and Van der Lende, 1990]. The limited time frame between rapid 

trophoblastic elongation and implantation represents the period when the majority of 

embryonic loss occurs in the pig [Pope, 1994]. 

Characterization of the specific subset of genes regulating peri-implantation 

conceptus development and trophoblastic elongation in the pig provides valuable 

information concerning key developmental events essential to embryonic survival during 

and after trophoblastic elongation. Determining and understanding the functional roles of 

genes involved with regulating rapid trophoblastic elongation and the ensuing effects 

their expression has on maternal recognition of pregnancy, attachment, and the 

maintenance of a successful pregnancy in the pig could result in future applications to 

manipulate reproduction in the pig. 

As presented previously, information regarding genes critical to development in 

early pig pregnancy is limited. Utilization of suppression subtractive hybridization in the 

present investigation allowed isolation of candidate genes expected to be differentially 

expressed during rapid trophoblastic elongation. Several mRNAs identified during this 
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endeavor had not been previously characterized during early porcine conceptus 

development. SAHR, HSC70, IL-I~ and the novel OSU-Tl-50 were confirmed to be 

differentially expressed using one-step real-time R T-PCR. Real-time R T-PCR proved to 

be an extremely sensitive and effective method to quantify differences in mRNA 

expression between varying developmental morphologies. 

Of specific interest in the present study was that significant sequence homology 

for OSU-Tl-50 was not contained in either the non-redundant or EST GenBank database 

ofNCBI. Of the 702 bp sequence BLAST searched, a 209 bp region contained 87% 

homology to uncharacterized sequence information gained during the sequencing of the 

human genome. Gene expression changes for OSU-Tl-50 are interesting due to the 

dramatic (I 00-fold) increase in gene expression occurring during the onset and 

continuation of trophoblastic elongation. These data indicate that OSU-T 1-50 is likely 

highly involved with the mechanisms controlling rapid trophoblastic elongation in the 

pig. It would be prudent to make efforts to further determine gene and protein expression 

for this novel molecule throughout development as well as the possible mechanisms 

through which it acts. 

HSC70 may be of crucial developmental importance as noted by its near 10-fold 

increase in gene expression in filamentous conceptuses compared to earlier 

morphological stages. Neurulation, gastrulation and early somite development in the 

inner cell mass begin coincidentally during elongation of the trophoblast on day 12 of 

gestation in the pig. Increased mRNA for HSC70 has been reported during neurulation in 

Xenopus [Lang et al., 2000] and chick [Rubio et al., 2002] embryos. Using Drosophila as 

a model, Elefant and Palter [ 1999] have shown interesting effects of negative mutations 
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ofHSC70 causing both developmental defects and lethality. Expression of two mutant 

HSC70 transcripts, endoplasmic reticulum hsc3 and cytoplasmic hsc4, in the nervous 

system of developing larvae resulted in severe behavioral abnormalities and subsequent 

death. Drosophila expressing mutant hsc4 in mesoderm/muscle cells had severe muscle 

pattern defects which was not noted in individuals expressing mutant hsc3 indicating that 

the cytoplasmic HSC70 has developmental impacts on muscle development. The 

transcript identified in the pig conceptus through SSH has not been classified as a 

cytoplasmic or endoplasmic reticulum HSC70. Regardless, it is interesting that the pig 

conceptus has increased HSC70 gene expression corresponding to the time of 

mesodermal outgrowth and somite development. The onset of neurulation in the pig 

conceptus at this time may also be dependant upon HSC70 gene expression. Using 

TUNEL and anti-HSC70 immunofluorescence, Rubio et al. [2002] have shown that 

HSC70 shows up predominantly in areas that have a high incidence of apoptosis but is 

not present in dying cells in the neurulating chick embryo. They confirmed this finding 

by showing that HSC70 antisense oligonucleotide treatment of neurulating embryos both 

in vitro and in ovo resulted in a higher incidence in apoptosis detected using TUNEL. 

Gene expression of SAHH was similar between spherical, ovoid and tubular 

conceptuses, however, there was nearly a 7-fold increase in filamentous conceptuses. 

SAHR is intricately involved in biochemical pathways regulating the use of folates for 

DNA methylation as well as RNA and DNA repair [Cantoni, 1975; Fenech, 2001]. 

Folates have long been known as essential requirements for developing embryos, 

predominately during neurulation [Van der Put, 2000]. Increased maternal folate binding 
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protein activity in the pig during the period oftrophoblastic elongation indicates a folate 

requirement at this stage of gestation [Vallet et al., 1998]. 

Deletion of the SAID-I gene through the nonagouti (ax) mutation in mice is 

characterized by embryonic death prior to implantation [Miller et al., 1994]. Addition of 

an inhibitor to SAID-I, 3-deazaaristeromycin, inhibits inner cell mass proliferation and 

differentiation during in vitro development of non-mutant embryos [Miller et al., 1994]. 

The nonagouti (ax) mutation may limit the ability of SAID-I to function as a protective 

enzyme known for preventing nuclear accumulation of SAH [Hershfield and Kredich, 

1978]. Accumulation of SAH, which has been shown to be embryotoxic in rats, is likely 

due to the reverse hydrolysis of homocysteine to SAH reducing the SAM/SAH ratio to a 

point where methylation reactions are inhibited [Vanaerts et al. 1994]. 

As in other species, SAID-I is likely a biological regulator of the SAM/SAH ratio 

controlling the occurrence of transmethylation reactions to the degree of which they are 

necessary for successful porcine conceptus development. Establishment of the maternal

fetal interface is extremely competitive among littermates in early swine gestation. It is 

possible that increased expression of SAID-I by conceptuses who elongate first may serve 

a protective function at the level of the nucleus maintaining the appropriate SAM/SAH 

ratio necessary for development to occur. However, increased SAID-I expression by 

advanced conceptuses suggests increased homocysteine release into the uterine lumen 

would occur that may have an embryo-toxic effect on neighboring conceptuses lagging in 

development and not producing adequate amounts of SAID-I. 

IL-1 J3 was the most predominant clone sequenced during SSH Changes in 

conceptus IL-1 J3 gene expression and ligand release in the uterine lumen dramatically 
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increase during the process of elongation. However the dramatic decline in IL- I B mRN A 

synthesis and protein secretion following elongation indicates that the necessity for IL-I B 

signaling is very short lived. Interestingly, the increase and decrease of IL-1 B synthesis 

and secretion by the porcine conceptus occurs simultaneously with onset and completion 

oftrophoblastic elongation. Furthermore, IL-IP signaling is temporally and spatially 

associated with the transient increase in epithelium IL-lRTl and IL-lRAP gene 

expression. IL-1 p has been suggested to be involved in implantation and conceptus 

uterine cross-talk in multiple species [Takacs and Kauma, 1996; Kruessel et al., 1997; 

Lindhard et al., 2002]. 

Repeated injections of IL-I Rant in pregnant mice prior to implantation causes 

implantation failure [Simon et al., 1994a] indicating the importance of IL-I B signaling. 

However, gene knockout ofIL-lRTl results only in a slightly reduced litter size in mice 

[Abbondanzo et al., 1996]. It is assumed that receptors other than IL-IR Tl are capable 

of mediating an IL-1 p biological action. 

In addition to the uterine epithelium, this transient pattern of conceptus IL-I B 

gene expression and protein secretion is also temporally and spatially associated with IL

IRTI and IL-IRAP gene expression in elongated conceptuses (greatest on days 12-15). 

Conceptus expression for IL-lRTl and IL-IRAP is greater in filamentous conceptuses 

compared to earlier morphologies and tends to decline by day 18 conceptuses. 

We have clearly documented the establishment of an IL-lB communication 

pathway between the conceptus and uterus during the time of trophoblastic elongation in 

the pig. The increased expression of IL-1 RT 1 and IL-1 RAP by both elongated 

conceptuses and endometrium form pregnant gilts on day 12 of gestation suggests that 
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conceptus IL-Ip may simultaneously serve more than one dynamic function. The 

potential functions of IL-1 p are vast. IL-1 p is known to induce aromatase gene 

expression and estrogen production [Nestler, 1993], phospholipase A2 gene expression 

[Kol et al., 1999], and cycoloxygenase-2 gene expression [Huang et al., 1998] in 

reproductive tissues of various species. All of these factors are known to be essential 

regulators of conceptus development in the pig. 

The inflammatory response invoked by the conceptus, most likely through the 

actions of the pro-inflammatory cytokine IL-IP, is possibly the most fundamental and 

essential mechanism caused by conceptus IL-Ip signaling to the uterine endometrium. 

Both estrogen and prostaglandin E2 are anti-inflammatory factors that could regulate a 

short-lived immune response to the conceptus. While a uterine immunological response 

to the conceptus is imperative, the transient presence of IL-IP is accompanied by 

conceptus secretion of estrogen and prostaglandin E2 . The significance of the 

inflammatory response induced via IL-IP, lies in the effects IL-1 P may have on the 

regulation of the maternal T helper cell (TH) population at the fetal-maternal interface 

allowing a permissive response to conceptus antigens. Shifting the maternal T-cell 

repertoire from predominately a THI population to a TH2 population is generally 

associated with successful pregnancies [Wegmann et al., 1993; Raghupathy, 1997]. TH2 

proliferation in mice requires IL-I expression by antigen-presenting cells [Weaver et al., 

1988] and recurrent pregnancy loss in women has been linked to THI-type immunity to 

trophoblastic antigens due to a polymorphism in the IL-IP promoter region of the mother 

[Wang et al., 2002]. These data suggest that IL-IP may be involved in regulating a 

maternal immune response which is permissive to conceptus antigens in the pig. The 
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necessity for the appropriate maternal TH cell repertoire at the site of attachment is to 

insure the maternal immune response is permissive to the presence of a conceptus 

expressing paternal alloantigens [Mellor and Munn, 2000]. During the initial contact 

between the conceptus and endometrium, inflammation is unavoidable, largely in part to 

IL-lf3. However, the induced inflammation is not necessarily devastating to the 

conceptus as it stimulates counter regulatory responses limiting immunological damage 

to the conceptus while encouraging shifts in the maternal T cell population lasting 

throughout pregnancy [Mellor and Munn, 2000]. 

Formation of a conceptus-endometrium extracellular matrix follows uterine 

immunological stimulation. IL-1 f3 may also be intricately involved regulating the 

courtship between the conceptus and uterine endometrium. Yang et al. [1999] 

demonstrated the ability ofIL-1 f3 to promote the production of extracellular matrix in 

cultured human peritoneal mesothelial cells by inducing the expression of fibronectin, a 

cell surface integrin-binding factor. The expression of fibronectin by porcine 

conceptuses is thought to be partially involved in conceptus attachment in the pig [Jaeger 

et al., 2001]. Tumor necrosis factor (TNF)-stimulated gene (TSG)-6 gene expression is 

inducible by TNFa and IL-lf3 [Lee et al., 1992] as well as PGE2 [Fujimoto et al., 2002]. 

TSG-6, which is strongly anti-inflammatory [Wisniewski et al., 1996], is thought to be 

involved in cumulus-oocyte matrix formation in mice because of its ability to bind to 

both hyaluronic acid (HA) and the heavy chain of inter-a-trypsin inhibitor (IaI) 

stabilizing the covalent bond between the two [Richards et al., 2002]. Ial has been 

reported in the porcine endometrium and hypothesized to assist in attachment of the 

conceptus to the uterine surface by stabilizing the uterine epithelial surface glycocalyx 
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[Geisert and Yelich, 1997]. Ia.I heavy chains -1, -2 and -4 are present in the uterine 

endometrium of pigs although gene expression is not different between days and 

pregnancy status (Geisert et al., unpublished data). However, both bikunin [Hettinger et 

al., 2001] and tissue kallikrein [Vonhamme et al., 1999] gene expression and enzymatic 

activity increase in the porcine endometrium during days 12 to 18 of pregnancy, and may 

be the responsible for the biological activity of the Ial heavy chains. It is possible 

conceptus IL-I J3 production may initially stimulat~ TSG-6 production during conceptus 

elongation and induce COX-2 expression for continued stimulation ofTSG-6 through 

placental PGE2 release. It is evident that IL- I J3 gene expression is elevated in 6 mm 

spherical conceptuses as even they express several hundred fold greater IL- I J3 compared 

to day 15 or 18 conceptuses. The stimuli inducing IL-I J3 gene expression in porcine 

conceptuses is open to speculation, however, based on current literature, the effect ofIL-

1 J3 signaling by porcine conceptuses is more discernable and should be discussed. A 

proposed hypothetical model predicting the actions ofIL-1J3 signaling during day 12 of 

gestation is presented in Figure 5 .1. 

Through the utilization of SSI:I, we have detected several genes that may serve 

vital roles in early conceptus development, attachment and the establishment of a 

successful pregnancy in the pig. The use of quantitative real-time RT-PCR confirmed the 

gene expression ofIL-lJ3, SAHR, HSC70 and OSU-Tl-50 as being differentially 

expressed during the period of rapid trophoblastic elongation contributing important 

information towards understanding the mechanisms involved with this essential 

biological event in the pig. 
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Figure 5. l. Proposed model to depict the interactions between the conceptus and the 
uterine endometrium occurring as a result of IL- IP on days 11 to 13 of gestation. 
Typically the degradation of mucin-1 (MUC-1) on the surface epithelium on day IO to 11 
of gestation indicates the opening of the implantation window and the capability of the 
uterine epithelium to receive conceptus signals, particularly IL-IP. Interleukin-I (IL-I) 
receptor type I (IL-IR T 1) and IL- I receptor accessory protein (IL- I RAP) complexes 
appear in the elongating conceptus and may result in increased expression of 
phospholipase A2 (PLA2), P450 aromatase (P450arom), cyclooxygenase-2 (COX-2), 
tumor necrosis factor stimulated gene-6 (TSG-6), as well as the extracellular matrix 
forming components, fibronectin and integrins. The increase of both PLA2 and P450arom 
may partially regulate conceptus elongation and growth. PLA2 functions to cleave 
arachidonic acid from the phospholipid bilayer, possibly increasing membrane fluidity 
essential for trophoblastic elongation to occur. P450arom is an essential enzyme 
converting androgen into estrogen, the maternal recognition signal in the pig which may 
also augment conceptus growth through estrogen receptor p mediated pathways. The 
transient increase in both IL-lRTl and IL-lRAP in the uterine epithelium on day 12, 
simultaneous with peak IL-1 p synthesis and release from the conceptus suggest a specific 
and necessary communication pathway. IL- Ip stimulation of endometrial tissue likely 
results in the recruitment of immune cells (IC's), as well as the stimulation of factors 
similar to what would be stimulated in the conceptus such as COX-2, TSG-6, fibronectin 
and integrins. The primary function of IL- I J3 signaling from the conceptus is the 
recruitment of maternal IC' s to the site of conceptus attachment. The immunological 
attack by epithelial IC's provoked by the conceptus is quickly called off with the 
dramatic reduction of endomtrial IL-1 RT I and IL- I RAP expression by day 13 coupled 
with the increase in anti-inflammatory TSG-6, as well as COX-2 mediated increase in 
prostaglandin E2 (PGE2), which is also highly anti-inflammatory. This model proposes 
that the recruitment ofIC's to the site of implantation in the pig is two-fold. First, to 
regulate the differentiation of T helper cells shifting the T cell repertoire from 
predominantly THI to TH2. Secondly, this short exposure of conceptuses paternal 
antigens will prevent a sustained immunological attack from the maternal immune system 
throughout the remainder of gestation. This sort of "crying wolf' by the conceptus 
ensures that similar, more sustained immunological responses at the site of implantation 
are prevented. Furthermore the expression of TSG-6 by both the conceptus and uterine 
epithelium functions to promote the preservation and buildup of the extracellular matrix 
by linking inter-a-trypsin inhibitor (Ia.I) heavy chains (H) 1 and 2, which are 
constitutively expressed by the epithelium, with hyaluronate on the conceptus 
trophectoderm. Also, IL- I J3 induction of integrin and fibronectin expression in both the 
conceptus and epithelium further stabilizes the extracellular matrix between the 
conceptus trophectoderm and uterine epithelium. Collectively, these events result in the 
establishment of immunologically safe contact between the conceptus and dam required 
for successful pregnancy. 
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Utilizing quantitative real-time RT-PCR and a commercial ELISA assay we have 

clearly demonstrated changes in porcine conceptus IL-1 p gene expression, synthesis and 

release during rapid trophoblastic elongation as well as the potential signaling pathways 

in both the uterine endometrium and conceptus. Based on current literature and due to 

the dynamic conceptus IL-1 p gene expression and synthesis temporally and spatially to 

IL-lRTl and IL-lRAP gene expression in the uterine endometrium, we suggest IL-lP 1s 

an imperative maternal signaling component required for the establishment of a 

successful pregnancy in the pig. 

This investigation has resulted in the isolation and characterization of expression 

patterns for numerous genes in the pig conceptus which appear to mediate trophoblastic 

elongation and establishment of pregnancy. While the proteins translated by the genes 

indicated in this study are ideal targets for understanding the underlying mechanisms 

controlling trophoblastic elongation and the establishment of pregnancy it would be 

precocious to conclude the exact functions of the indicated genes without further 

investigation. Techniques such as immunocytochemistry, fluorescent in situ 

hybridization, and protein antibody arrays would lend great support identifying the 

location and expression patterns of proteins encoded by the genes characterized in this 

study. However, understanding the expression patterns and localization of translated 

proteins will not significantly add to our understanding of the necessity of the appropriate 

gene expression and its impacts on trophoblastic elongation and establishment of 

pregnancy in the pig. 

Recently, Fire et al. [1998] injected double-stranded RNA into C. elegans 

resulting in the inhibition of endogenous gene expression of the specific gene 
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corresponding to the sequence of the injected dsRNA. This intriguing discovery is now 

termed RNA interference (RNAi). RNAi is mainly the result of two key enzymes 

endogenously present in all cells. While it is a naturally occurring, the exact explanation 

for this phenomena is not fully understood, it is thought to occur as a mechanism 

responsible for maintaining the integrity of an individual organisms genome. The two 

major enzymes responsible for creating RNAi, DICER and RISC, function to degrade 

dsRNA in the cell and destroy normally expressed mRNA in the cell containing the 

identical sequence, respectively [see review Kennedy, 2002]. The utilization of RNAi to 

study early development in the pig has recently been demonstrated by Cabot and Prather 

[2003]. These researchers injected dsRNA into single cell and two-cell porcine embryos 

and evaluated the early effects of silencing the effects of a specific gene. However the 

impact of RNAi via dsRNA injections typically only last for 4 to 5 cell divisions and the 

effects of injecting dsRNA this early may not be detectable by day 11 to 12 of gestation. 

Recently, Tuschl [2002] described using plasmid DNA transfection to cause the 

permanent endogenous expression of dsRNA in mammalian cells. Using this approach, it 

may be possible to expand RNAi to silence genes that are suspected to be involved with 

trophoblastic elongation and maternal recognition of pregnancy on day 11 to 12. 

Because of the extensive cost associated with genetically deleting genes in large 

mammalian species, RNAi provides a much more cost effective means to systematically 

assess the phenotypic consequence when expression for a specific gene is inhibited. By 

doing so, one could irrefutably determine the mechanism and effects that expression of a 

specific gene has in porcine conceptus development. This knowledge would provide 

research directions for investigators interested in controlling this aspect of pig 
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reproduction with hopes of reducing the high embryonic mortality rate in the pig and 

subsequently increasing litter size. 
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RNA Extraction using RNaid Kit 

Solutions: 
• Denaturing Solution(DS): 

4 M Guanidine Thiocyanate 
25 mM Sodium Citrate pH 7 
.5 % Sarcosyl 

• . Active Denaturing Solution: 
5 ml Denaturing Solution 
36 µl .1 M, 2-beta mercaptoethanol 

Procedure: 

1. Add 500 µl Active DS, to embryo prep, vortex, then add in the following 
order: 

a. 500 µl phenol (pH 5.1), vortex, 
b. 70 µl 2 M sodium acetate, pH 4.0, vortex, 
c. 140 µl chloroform:iso-amyl-alcohol (49:1, fresh dilution), vortex 

2. Final vortex (15 sec.), cool on ice for 15 minutes 
3. Spin@ 15,000 rpm for 20 min. at 4° C 
4. Recover lysate ( - 400 µI, upper clear solution) 

Note: Recover all lysates with a long tipped pipette tip to prevent 
contamination 

5. Add 500 µI chloroform:iso-amyl-alcohol, vortex. 
6. Centrifuge at 15,000 rpm for 10 minutes at 4°C 
7. Recover lysate ( - 250 µI upper clear solution) 

. 
*Prepare .5 ml RNaid washing cone.+ .5 ml 100 % EtOH per tube being extracted* 

8. Add 7 µI of glass beads (RNaid Kit, BI0101, Catalog# 1007-200), vortex 
lightly 

9. Gently agitate at RT for 10- 25 minutes 
10. Centrifuge at 15,000 rpm for 5 minutes at RT 
11. Discard supernatant. 
12. Add 300 µI washing solution mix (50:50 EtOH: Rnaid Wash cone.) 
13. Mix gently with pipette until pellet is fully broken 
14. Centrifuge at 15,000 rpm for 3 min at RT 
15. Discard supernatant 

**Repeat steps 12-15 at least once, up to three times (using 200 µI wash) to ensure all 
salt is discarded** 
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16. Carefully remove all liquid from the tube 
17. Dry pellet for 5 minutes 
18. Add 50 µl DEPC H20 
19. Break up pellet via pipetting action 
20. Incubate at 56° C for 5 min in an air incubator 
21. Centrifuge at Max speed for 5 min. at RT 
22. Remove upper 50 µl and discard remaining glass bead pellet 
23. Centrifuge 50 µl at max speed for 5 min at RT 
24. Remove upper 40 µl and use for RNA stock. STORE at -80° C. 
25. Save bottom 10 µl to run electrophoresis gel. 
26. Add 1 µl of RNA stock to 49 µl of TE Buffer to spectrophotometrically 

estimate quantity. 
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Suppression Subtractive Hybridization 

RNA analysis 
After total and poly A+ RNA isolation, examine the RNA's integrity by electrophoresing 
samples on a agarose/EtBr gel. Total mammalian RNA typically exhibits two bright 
bands, which correspond to ribosomal 28S and 18S RNA at -4.5 and 1.9 kb, respectively, 
with a ratio of intensities of about 1.5-2.5: I. If the ratio is <I: 1, test all RNA isolation 
reagents for RNases or find another source of tissue or cells for RNA isolation. 
Mammalian poly A+ RNA appears as a smear from 0.5-12 kb with weak ribosomal RNA 
bands at approximately 1.9 and 4.5 kb. Poor quality RNA will cause high background in 
the subtraction procedure and should not be used. 

Reagents: 
First Strand Synthesis 

AMV Reverse Transcriptase (20 units/µl) 
cDNA Synthesis Primer (IOµM)-(5'-TTTTGTACAAGCTT30N1N-3') 
5X First-Strand Buffer 

250 mM Tris-HCI (pH 8.5) 
40 mM MgCh 
150 mM KCI 
5 mM Dithiothreitol 

Second Strand Synthesis 
20X Second-Strand Enzyme Cocktail 

(DNA polymerase I, 6 units/µl; RNase H, 0.25 units/µl; E. coli 
DNA ligase, 1.2 units/µ}) 

5X Second-Strand Buffer 
500 mM KCI 
50 mM Ammonium sulfate 
25 mM MgCh 
0.75 mM P-NAD 
100 mM Tris-HCI (pH 7.5) 
0.25 mg/mL BSA 

T4 DNA Polymerase (3 units/µl) 

Rsa I Digestion 
1 OX Rsa I Restriction Buffer 
Rsa I (10 units/µ}) 

Adaptor Ligation 
T4 DNA Ligase (400 units/µl; contains 3mM ATP) 
5X DNA Ligation buffer 

250 mM Tris-HCI (pH 7.8) 
50 mM MgCh 
10 mM DTT 
0.25 mg/mL BSA 
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Adaptor 1 ( 10 µM) 
(5 '-CT AAT ACGACTCACT AT AGGGCTCGAGCGGCCGCCCGGGCAGGT-3 ') 

Adaptor 2R (lOµM) 
(5'-CT AAT ACGACTCACT AT AGGGCAGCGTGGTCGCGGCCGAGGT-3 ') 

Hybridization Buffer 
Dilution Buffer 

20 mM 
50 mM 
0.2 mM 

PCR Amplification 

Hybridization 

HEPES-HCl (pH 8.3) 
NaCl 
EDTA (pH 8.0) 

PCR Primer 1 ( 10 µM) 
Nested PCR Primer 1 
Nested PCR Primer 2R 

(5'-CTAATACGACTCACTATAGGGC-3') 

(5'-TCGAGCGGCCGCCCGGGCAGGT-3') 

(5 '-AGCGTGGTCGCGGCCGAGGT-3 ') 

Control Reagents 
G3PDH 5' Primer 
G3PDH 3' Primer 

General Reagents 

(5 '-ACCACAGTCCATGCCATCAC-3 ') 

(5'-TCCACCACCCTGTTGCTGTA-3') 

dNTP mix (10 mM each of dATP, dCTP, dGTP, dTTP) 
20X EDT A/Glycogen Mix (0.2 M EDT A; 1 mg/mL glycogen) 
NHiOac (4 M) 
Sterile H20 
70%EtOH 
95%EtOH 
Phenol:Chloroform:Isoamyl Alcohol (25:24: 1) 

1. Melt Phenol 
2. Equilibrate with an equal volume of sterile TNE buffer (50 mM 

Tris [pH 7.5], 150 mM NaCl, 1 mM EDTA) 
3. Incubate the mixture at room temperature for 2-3 hours. 
4. Remove and discard the top layer. 
5. Add an equal volume of chloroform:isoamyl alcohol (24:1) to 

the remaining layer. Mix thoroughly. Remove and discard the 
top layer. 

6. Store the bottom layer of phenol:chloroform:isoamyl alcohol at 
4°C away from light for a maximum of two weeks. 

Chloroform:isoamyl alcohol (24: 1) 
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Protocol: 
A. First-Strand cDNA Synthesis 

1. For each tester and driver, combine the following components in a sterile 0.5-ml 
microcentrifuge tube. (Do not use a polystyrene tube): 

Poly A+ RNA (2 µg) 2-4 µl 
cDNA Synthesis Primer (10 µM) 1 µl 

2. Incubate the tubes at 70°C in a thermal cycler for 2 min. 
3. Cool the tubes on ice for 2 min. 
4. Briefly centrifuge the tubes. 
5. Add the following to each reaction tube: 

5X First-Strand Buffer 2 µl 
dNTP Mix (10 mM each) 1 µl 
Sterile H20 1 µl 
AMY Reverse Transcriptase (20 units/µl) 1 µl 

6. Gently vortex and briefly centrifuge the tubes. 
7. Incubate the tubes at 42°C for 1.5 hr in an air incubator. 

Note: Do not use a water bath or thermal cycler (unless it has a heated lid). 
Evaporation could reduce the reaction mixture volume, reducing the 
reaction efficiency. 

8. Place the tubes on ice to terminate first-strand cDNA synthesis and immediately 
proceed to Section B. 

B. Second-Strand cDNA Synthesis 
Perform the following procedure with each first-strand tester and driver cDNA. 
1. Add the following components to the first-strand synthesis reaction tubes 

( containing 10 µl): 
Sterile H20 48.4 µl 
5X Second-Strand Buffer 16.0 µl 
dNTP Mix (10 mM) 1.6 µl 
20X Second-Strand Enzyme Cocktail 4.0 µl 

2. Mix contents and briefly spin tubes. The final volume should be 80 µI. 
3. Incubate tubes at 16°C (water bath or thermal cycler) for 2 hr. 
4. Add 2 µl (6 units) ofT4 DNA Polymerase. Mix contents well. 
5. Incubate the tube at 16°C for 30 min in a water bath or thermal cycler. 
6. Add 4 µl of 20X EDT A/Glycogen Mix to terminate second-strand synthesis. 
7. Add 100 µl of phenol:chloroform:isoamyl alcohol (25:24: 1 ). 
8. Vortex thoroughly, and centrifuge the tubes at 14,000 rpm for 10 min at room 

temperature. 
9. Carefully remove the top aqueous layer and place in a clean (sterile) 0.5-ml 

microcentrifuge tube. Discard the interphase and lower phase. 
10. Add 100 µl of chloroform:isoamyl alcohol (24: 1) to the aqueous layer. 
11. Repeat steps 8 and 9. 
12. Add 40 µI of 4 M NH40Ac and 300 µl of95% ethanol. 

Note: Proceed immediately with precipitation. Do not store tubes at -20°C. 
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Prolonged exposure to this temperature can precipitate unwanted salts. 
13. Vortex thoroughly and centrifuge the tube at 14,000 rpm for 20 min at room 

temperature. 
14. Remove the supernatant carefully. 
15. Overlay the pellet with 500 µl of70% ethanol. 
16. Centrifuge the tube at 14,000 rpm for 10 min. 
17. Remove supernatant carefully and repeat steps 15-16 twice. 
18. Carefully remove supernatant and air-dry the pellet for about 10 min to evaporate 

residual ethanol. 
19. Dissolve precipitate in 50 µl ofH20. 
20. Transfer 6 µl to a fresh microcentrifuge tube. Store this sample at -20°C until 

after Rsa I digestion for agarose gel electrophoresis to estimate yield and size 
range of ds cDNA products synthesized (refer to Clonetech User Manual, 
Sections V.A and V.B for expected results). 

21. Proceed to Section C. 

C. Rsa I Digestion 
Perform the following procedure with each experimental ds tester and driver cDNA. 
This step generates shorter, blunt-ended ds cDNA fragments, which are optimal for 
subtraction and necessary for adaptor ligation in Section F. 

1. Add the following reagents into the tube: 
ds cDNA 
1 OX Rsa I Restriction Buffer 
Rsa I ( 10 units/ µl) 

2. Mix by vortexing and centrifuging briefly. 
3. Incubate at 37°C for 3-4 hr. 

43.5 µl 
5.0 µl 
1.5 µl 

4. Set aside 5 µl of the digest mixture to analyze the efficiency ofRsa I digestion as 
described in Section V.B. 

5. Add 2. 5 µl of 20X EDT A/Glycogen Mix to terminate the reaction. 
6. Add 50 µl of phenol:chloroform:isoamyl alcohol (25:24: 1). 
7. Vortex thoroughly. 
8. Centrifuge the tubes at 14,000 rpm for 10 min to separate phases. 
9. Remove the top aqueous layer and place in a clean 0.5-ml tube. 
10. Add 50 µl of chloroform:isoamyl alcohol (24: 1) and vortex thoroughly. 
11. Centrifuge the tubes at 14,000 rpm for 10 min to separate phases. 
12. Remove the top aqueous layer and place in a clean 0.5-ml tube. 
13. Add 25 µl of 4 M NH40Ac and 187.5 µl of95% ethanol. 

Note: Proceed immediately with precipitation. Do not store tubes at -20°C. 
Prolonged exposure to this temperature can precipitate unwanted salts. 

14. Vortex the mixture thoroughly. 
15. Centrifuge the tubes for 20 min at 14,000 rpm at room temperature. 
16. Remove the supernatant carefully. 
17. Gently overlay the pellets with 200 µl of 70% ethanol. 
18. Centrifuge at 14,000 rpm for 5 min. 
19. Remove supernatant carefully and repeat steps 17-18 twice. 
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20. Remove the supernatant carefully and air-dry the pellets for 5-10 min. 
21. Dissolve the pellet in 6.5 µ1 ofH20 and store at -20°C. 

These 6.5- µ1 samples of Rsa I digested cDNA will serve as your 
experimental driver cDNA. In the next section, these samples will be 
ligated with adaptors to create your tester cDNAs for forward, control, and 
reverse (if applicable) subtractions. 

22. Spectrophotometrically estimate the yield of each digested cDNA. Yield of each 
sample should be equal and having a minimum of 300 ng/µl ( dilute most 
concentrated samples to have equal concentration as the least concentrated sample 
as long as the minimum concentration remains above 300 ng/µ1. 

23. Check your Rsa I digested cDNA from Step 4 using agarose/EtBr gel 
electrophoresis, as described in Section B (refer to Clonetech User Manual, 
Section V.B for expected results). Proceed to Section D to finish preparing your 
experimental tester cDNAs. 

D. Adaptor Ligation 
Each cDNA is aliquotted into two separate tubes: one aliquot is ligated with Adaptor 
1 (Tester 1-1 and 2-1), and the second is ligated with Adaptor 2R (Tester 1-2 and 2-
2). After the ligation reactions are set up, portions of each tester tube are combined so 
that the cDNA is ligated with both adaptors (Unsubtracted tester control 1-c and 2-c). 
Each Unsubtracted tester control cDNA serves as a positive control for ligation, and 
later serves as a negative control for subtraction. Note: Through the rest of the 
procedure, be sure to label tubes using the nomenclature described in this User 
Manual. Labeling the tubes of intermediate products with the step number in which 
they were created may prove helpful as well. Adaptors will not be ligated to the 
driver cDNA. 

1. Dilute 1 µl of each Rsa I-digested experimental cDNA (Step E.21) with 5 µ1 of 
sterile H20. 

Prepare your adaptor-ligated tester cDNA: 
2. Prepare a ligation Master Mix by combining the following reagents in a 0.5-ml 

microcentrifuge tube. To ensure that you have sufficient Master Mix, prepare 
enough for all ligations plus one additional reaction. 

per rxn: 
Sterile H20 3 µl 
5X Ligation Buffer 2 µl 
T4 DNA Ligase (400 units/µl) 1 µ1 

Note: The ATP required for ligation is in the T4 DNA Ligase (3 mM 
initial, 300 µM final). 

3. For each experimental tester cDNA and for the control skeletal muscle tester 
cDNA, combine the reagents in Table I in the order shown in 0.5-ml 
microcentrifuge tubes. Pipet mixture up and down to mix thoroughly. 
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TABLE I: SETTING UP THE LIGATION REACTIONS 
Tube# 1 2 

Tester 1-1 Tester 1-2* 
Component: (µI) (ul) 
Diluted Tester cDNA 2 2 
Adaptor 1 ( 10 mM) 2 -
Adaptor 2R ( 10 mM) - 2 
Master Mix 6 6 
Final Volume 10 10 
*Use the same setup for Tester 2-1 and 2-2. 

4. In a fresh microcentrifuge tube, mix 2 µl of Tester 1-1 and 2 µl of Tester 1-2. 
After ligation is complete, this will be your Unsubtracted tester control 1-c. Do 
the same for each additional experimental tester cDNA. After ligation, 
approximately 1/3 of the cDNA molecules in each Unsubtracted tester control 

. tube will bear two different adaptors. 
5. Centrifuge tubes briefly, and incubate at 16°C overnight. 
6. Stop ligation reaction by adding 1 µl of EDT A/Glycogen Mix. 
7. Heat samples at 72°C for 5 min to inactivate the ligase. 
8. Briefly centrifuge the tubes. Preparation of your experimental and control 

Adaptor-Ligated Tester cDNAs and your Unsubtracted tester controls is now 
complete. 

9. Remove 1 µl from each Unsubtracted tester control (1-c, 2-c, 3-c) and dilute into 
1 ml ofH20. These samples will be used for PCR (Section G). 

10. Store samples at -20°C. 
Perform the ligation efficiency analysis, which is described in Section V. C of the 
Clontech User Manual. Following the ligation of adaptors conduct this test to determine 
if appropriate ligation of adaptors occurred. The G3PDH primers available in the kit do 
not work well with pig cDNA. PCR parameters may need to be optimized. If this 
analysis fails, you may wish to proceed throughout the remainder of the protocol as the 
limiting reagents have already been used. It is possible that hybridization will work 
effectively even if the analysis of ligation fails. 

E. First Hybridization 
Important note: Perform the ligation efficiency analysis (Section V.C of Clontech User 
Manual) before proceeding with the hybridizations described below. If your ligation 
did not work well, you should repeat the ligation before performing the hybridizations. 
In the following procedure, an excess of driver cDNA is added to each tester cDNA, and 
the samples are heat denatured and allowed to anneal. The remaining ss cDNAs 
(available for the second hybridization) are dramatically enriched for differentially 
expressed sequences, as non-target cDNAs present in the tester and driver cDNA form 
hybrids. Important: Before you begin the hybridization, make sure the 4X 
hybridization buff er has been allowed to warm to room temperature for at least 15--
20 min. Be sure there is no visible pellet or precipitate before using the buffer. If 
necessary, heat the buffer at 37°C for -10 min to dissolve any precipitate. 
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1. For each of the experimental subtraction, combine the reagents in Table II 
(below) in 0.5-ml tubes in the order shown. 

2. Overlay samples with one drop of mineral oil and centrifuge briefly. 
3. Incubate samples in a thermal cycler at 98°C for 1.5 min. 
4. Incubate samples at 68°C for 8 hr,* then proceed immediately to Section F. 

* Samples may hybridize for as little as 6 hr, or as much as 12 hr. Do not 
let the incubation exceed 12 hours. 

TABLE II: SETTING UP THE FIRST HYBRIDIZATION 
Hybridization Hybridization 

Component Sample 1 ( ul) Sample 2 (ul) 
Rsa I-digested driver cDNA 1.5 1.5 
Adaptor 1-ligated Tester 1-1 1.5 -
Adaptor ZR-ligated Tester 1-2 - 1.5 
4X Hybridization Buffer 1.0 1.0 
Final Volume 4.0 4.0 

F. Second Hybridization 
The two samples from the first hybridization are mixed together, and fresh denatured 
driver DNA is added to further enrich for differentially expressed sequences. New hybrid 
molecules are formed which consists of differentially expressed cDNAs with different 
adaptors on each end. Important: Do not denature the primary hybridization samples at 
this stage. Also, do not remove the hybridization samples from the thermal cycler for 
longer than is necessary to add fresh driver. Repeat the following steps for each 
experimental tester cDNA. 

1. Add the following reagents into a sterile tube: 
Driver cDNA (Step IV.E.21) 1 µI 
4X Hybridization Buffer 1 µl 
Sterile H20 2 µl 

2. Place 1 µl of this mixture in a 0.5-ml microcentrifuge tube and overlay it with 1 
drop of mineral oil. 

3. Incubate in a thermal cycler at 98°C for 1.5 min. 
4. Remove the tube of freshly denatured driver from the thermal cycler. 

Use the following procedure to simultaneously mix the driver with hybridization samples 
1 and 2 (prepared in Section IV.G; see Table II). This ensures that the two hybridization 
samples mix together only in the presence of freshly denatured driver. 

a. Set a micropipettor at 15 µl. 
b. Gently touch the pipette tip to the mineral oil/sample interface of the tube 

containing hybridization sample 2. 
c. Carefully draw the entire sample partway into the pipette tip. Don't worry if a 

small amount of mineral oil is transferred with the sample. 
d. Remove the pipette tip from the tube, and draw a small amount of air into the 

tip, creating a slight air space below the droplet of sample. 
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e. Repeat steps b-d with the tube containing the freshly denatured driver. The 
pipette tip should now contain both samples separated by a small pocket of 
air. 

f. Transfer the entire mixture to the tube containing hybridization sample 1. 
g. Mix by pipetting up and down. 

5. Briefly centrifuge the tube if necessary. 
6. Incubate reaction at 68°C overnight. 
7. Add 200 µ1 of dilution buffer to the tube and mix by pipetting. 
8. Heat in a thermal cycler at 68°C for 7 min. 
9. Store at -20°C. 

G. PCR Amplification 
Differentially expressed cDNAs are selectively amplified during the reactions described 
in this section. Prior to thermal cycling, you will fill in the missing strands of the adaptors 
by a brief incubation at 75°C; this creates the binding site for PCR Primer 1. In the first 
amplification, only ds cDNAs with different adaptor sequences on each end are 
exponentially amplified. In the second, nested PCR is used to further reduce background 
and to enrich for differentially expressed sequences. A minimum of seven PCR reactions 
are recommended for: (I) your forward-subtracted experimental cDNA, (2) the 
unsubtracted tester control (1-c), (3) your reverse-subtracted experimental cDNA, (4) the 
unsubtracted tester control for the reverse subtraction (2-c). 

Notes: 
• All cycling parameters were optimized using a Perkin-Elmer GeneAmp PCR 
Systems 2400/9600. If a different type of thermal cycler is used, the cycling 
parameters must be optimized for that machine. 
• If you do not use Advantage cDNA Polymerase Mix, you can use Taq DNA 
polymerase alone; however, 3-5 more cycles will be needed in primary and 
secondary PCR. You must also use a hot start. You can perform hot start as 
follows: (I) Prepare the primary PCR Master Mix without Taq Polymerase. (2) 
Mix PCR samples and heat the reaction mix to 75°C for I min. (3) Quickly add 
the necessary amount ofTaq polymerase. (4) Incubate the reaction at 75°C for 
5 min. (5) Perform PCR as described in step 8 below. 

I. Prepare the PCR templates: 
a. Aliquot I µl of each diluted cDNA (i.e., each subtracted sample from 

Step 1.F and the corresponding diluted Unsubtracted tester control 
from Step D) into an appropriately labeled tube. 

b. Aliquot 1 µl of the PCR control subtracted cDNA (provided in the kit) 
into an appropriately labeled tube. 

2. Prepare a Master Mix for all of the primary PCR tubes plus one additional tube. 
For each reaction planned, combine the reagents in Table III in the order shown: 
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TABLE III: PREPARATION OF THE PRIMARY PCR MASTER MIX 
Amount per* 

Reagent Reaction (ul) 
Sterile H20 19.5 
I OX PCR reaction buffer 2.5 
dNTP Mix (IO mM) 0.5 
PCR Primer I (10 µM) 1.0 
SOX Advantage cDNA Polymerase Mix 0.5 
Total Volume 24.0 

* Prepare Master Mix for one additional reaction. 

5. Mix well by vortexing, and briefly centrifuge the tube. 
6. Aliquot 24 µ1 of Master Mix into each of the reaction tubes prepared in step 1. 
7. Incubate the reaction mix in a thermal cycler at 75°C for 5 min to extend the 

adaptors. (Do not remove the samples from the thermal cycler.) 
Note: This step "fills in" the missing strand of the adaptors and thus creates 
binding sites for the PCR primers. 

8. Immediately commence thermal cycling: 

• 94°c 25 sec 
27 cycles: 

• 94°c 10 sec 

• 66°C 30 sec 

• 12°c 1.5 min 

9. Analyze 8 µ1 from each tube on a 2.0% agarose/EtBr gel run in IX TAE buffer. 
(See Section II.D for expected results.) Alternatively, you can set these 8- µ1 
aliquots aside and run them on the same gel used to analyze the secondary PCR 
products (step 16). 

10. Dilute 3 µI of each primary PCR mixture in 27 µI ofH20. This diluted primary 
PCR product will be used in the PCR Select Differential Screening procedure (if 
applicable). 

11. Aliquot I µI of each diluted primary PCR product mixture from Step 9 into an 
appropriately labeled tube. 

12. Prepare Master Mix for the secondary PCR plus one additional reaction by 
combining the reagents in Table IV in the order shown: 
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TABLE IV: PREPARATION OF THE SECONDARY PCR MASTER MIX 
Amount per 

Reagent reaction (ul) 
Sterile H20 18.5 
1 OX PCR reaction buffer 2.5 
Nested PCR Primer 1 (10 mM) 1.0 
Nested PCR Primer 2R (lOmM) 1.0 
DNTP Mix (10 mM) 0.5 
SOX Advantage cDNA Polymerase Mix 0.5 
Total Volume 24.0 

* Prepare Master Mix for one additional reaction. 

13. Mix well by vortexing, and briefly centrifuge the tube. 
14. Aliquot 24 µl of Master Mix into each reaction tube from step 10. 
15. Immediately commence thermal cycling: 

10-12 cycles: 
• 94°C 10 sec 
• 68°C 30 sec 
• 72°C 1.5 min 

16. Analyze 8 µl from each reaction on a 2.0% agarose/EtBr gel run in IX TAE 
· buffer. (See Section V.D of Clontech User Manual for expected results. The 

number of cycles for the secondary PCR may vary. Depending on the number of 
differentially expressed genes the optimal number of cycles for the 2°dary PCR 
will result distinctive bands with limited background when visualized using a 2% 
agarose gel. 

17. Store reaction products at -20°C. 

The PCR mixture is now enriched for differentially expressed cDNAs. In addition, 
differentially expressed transcripts that varied in abundance in the original mRNA sample 
should now be present in roughly equal proportions. Refer to Sections V.D and V.E 
(Clontech User Manual) for Analysis of Results: It is strongly recommend that you 
perform this subtraction efficiency test. 

The uncloned subtracted mixture is an ideal hybridization probe for screening libraries of 
genomic DNA, full-length cDNA, YAC, BAC, or cosmid clones (Diatchenko et al., 
1996). For all other applications, you should clone the products to make a subtracted 
cDNA library. The cDNAs can be directly inserted into a T/A cloning vector. 
Alternatively, use the Not I (Sma I, Xma I) site on Adaptor I and the Eag I site on 
Adaptor 2R for site-specific cloning, or use the Rsa I site at the adaptor/cDNA junction 
for blunt-end cloning. 
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Topo Cloning Subtracted Products 

LB Agar Plates 
1. Q.S. 8 grams of LB Agar (Fisher Scientific, Catalog# BP1425-500) to 200 

mL using distilled H20 
2. Autoclave 
3. Let cool at RT 
4. When temperature is approximately 45-55°C add the following and make sure 

is evenly distributed: 
a. Kanamycin (final concentration of 50 µg/mL) or ampicillin (final 

concentration of 100 µg/mL) or carbenicillin (final concentration of 
100 µg/mL) 

b. IPTG (final concentration of 0.1 mM) 
c. Xgal (final concentration of 20 µg/mL) 

5. Evenly pour agar into 100 x 150 mm plates. 

Conduct cDNA cloning of PCR amplified subtracted products using the TOPO TA 
Cloning Kit for Sequencing, PCR-IV Vector (lnvitrogen, Catalog #45-0030) manual with 
the following considerations: 

1. Use TOPlO chemically competent E.coli. 
2. Use .5 to 4 µl of2"dary PCR product. 

(Note: This PCR reaction must be fresh without any freeze thaw cycles 
which reduces the 3' A overhangs necessary for successful cloning). 

3. Make the TOPO cloning reaction 30 minutes at RT instead of 5 minutes. 
4. During the One Shot chemical transformation, step #6, the outgrowth period 

may need to last 1.5 to 2.0 hours. 
5. Spread varying volumes (25 to 100 µl) oftransfected E. coli cells onto agar 

plates to determine best colony density formation. 
6. Incubate overnight at 37°C. 
7. Store plate at +4°C (not long term) wrapped in parafilm to prevent 

dehydration. 
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Plasmid Culture 

Terrific Broth 
• Add 47.6 grams Terrific Broth (Difeo, Catalog# 243820) into 1 liter of ddH20, 

dissolve using stir plate and autoclave. 
• Cool at RT and store a~ +4°C up to 1 month 
• Just before use add Kanamycin (final concentration of 50 µg/mL) or ampicillin 

(final concentration of 100 µg/mL) or carbenicillin (final concentration of 100 
µg/mL) 

Randomly select 96 clones containing template inserts and inoculate both a 96 deep-well 
culture plate (2 mL cultures) and a second plate containing 1 mL cultures to be used for 
freezing back stock cultures. (A single toothpick used to pick a single colony can 
inoculate both plates). 

Culture at 3 7°C for 16-18 h. Cloudy appearance should be visible indicating successful 
growth. 

Stock cultures: combine 800 ml and glycerol (30 % final concentration) into an 
appropriately labeled cryovial, vortex and store at -80°C 

Plasmid Extraction: Spin the 96 well plate at 2000 RPM for 30 min bringing 
cells into a pellet, pour off broth leaving the pellet in the plate, and proceed 
following the manufacturer's protocol accompanying the Wizard® SV96 Plasmid 
DNA Purification System (Promega, Catalog #A2255). Use sterile, nuclease-free 
H20 to elute the DNA, which can be stored at +4°C (not long term) until used for 
differential screening. 
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Differential Screening 

Solutions: 
Denaturation Solution 
15 mL SM NaCl 
35 mL I.SM NaOH or (5 mL SM NaOH +30 mL ddH20) 

Neutralization Solution 
15 mL SM NaCl 
35 mL IM Tris-HCI pH 7.5 

20X SSC 
175.3 gNaCl 
88.2 gNaOAc 
800 mL ddH20 
--pH to 7.5, QS to 1 liter, and autoclave 

Membrane Spotting Procedure: 
1. Pre-wet a 8.5 x 11.5 cm nylon, positively charged membrane (Roche, Catalog 

# 1417240) in ddH20. 
2. Denature DNA in the 96 well elution plate (from plasmid DNA extraction 

protocol) by adding 250 µl of the Denaturation solution and incubate for 5-10 
min at RT. 

· 3. Place membrane in the BioRad BioDot apparatus per assembly protocol. 
4. Rehydrate the membrane using 100 µl. Apply vacuum. 
5. Apply 77 µl of denatured DNA per well, per membrane (For SSH: 4 

membranes per tester population, -60 µl of sample per well in SV96 well 
prep, and 250 ml of denaturation solution). 

6. Apply a gentle vacuum until solution is pulled through membrane. 
7. Rinse the wells with 200 µI neutralization solution, incubate 5-10 min. Apply 

gentle to full vacuum. 
8. Remove the membrane and rinse by setting on blotting paper soaked in IX 

SSC for -1 min. 
9. UV cross-link membrane and store at +4°C. 

Probe Labeling 
. 1. Conduct 6-8 2°dary PCR reactions per the SSH protocol. 

2. Run a small-aliquot on a 2% agarose gel to ensure appropriate amplification. 
3. Combine all tubes and purify using PCR purification kit (Qiagen, Catalog 

#28104) per the manufacturers protocol, resuspending the purified product in 
50 µl of sterile, nuclease free H20. 

4; Add 2.5 µl ofRsal and 5.8 µl of lOX Rsal buffer, vortex, briefly centrifuge 
and incubate in a 37°C water bath for 3 h (this is to remove adaptors which if 
labeled would cause a lot of background as the templates spotted on the nylon 
membrane also contain the adaptors). 
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5. Purify the digested PCR product as in step #3 except eluting DNA in only 30 
ml of nuclease free water to increase concentration. 

6. Spectrophotometrically estimate the quantity of purified tester DNA (this 
needs to be at least 62. 5 ng/µI with at least 16 µI total volume). 

7. Label DNA using the DIG High Prime DNA Labeling and Detection Starter 
Kit II (Roche, Catalog# 1585614) and the accompanying protocol. 

a. The labeling reaction should last for 20 h to maximize labeled DNA 
yield 

8. Determine labeling efficiency according to protocol to estimate concentration 
of labeled DNA. 

Hybridization 
1. Conduct the hybridization, stringency washes, and immunological detection 

following the product protocol. 
a. The purpose of four identically spotted membranes representing each 

subtracted tester product is to simultaneously "probe" those 96 
templates with the following four DIG labeled probes, which were also 

--isolated during the SSH procedure: forward subtracted, forward 
unsubtracted, reverse subtracted and reverse unsubtracted. 

2. Following immunological detection expose to X-ray film (Kodak, X-Omat) 
for 10 s to I min (depending on signal intensity), develop film, and determine 
genes confirmed differentially expressed. 

a. The exposure time for each of four identical membranes must be the 
same as signal intensities between them will be compared. 

b. Genes that are confirmed differentially expressed should have 5 times 
the signal intensity when probed with forward subtracted labeled DNA 
compared to when probed with reverse subtracted DNA. Also signal 
intensity should be greater when probed with forward unsubtracted 
labeled DNA compared to reverse unsubtracted labeled DNA. 
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Sequencing 

Plasmids containing genes confirmed differentially expressed through differential 
screening should be re-cultured using frozen plasmid stock described above. 

1. Two to four mL cultures of terrific broth ( described in plasmid culture 
section) should be inoculated using frozen plasmid stock corresponding to the 
templates differentially expressed. 

2. Culture at 37°C 16-18 h. 
3. Extract plasmid DNA using Wizard Plus Minipreps (Promega, Catalog# 

A 7500) and the accompanying protocol. 
4. Subject plasmid DNA to dideoxy chain termination sequencing using the M13 

reverse pnmer. 
a. Sequences longer than 700 bp may need to be sequenced again using 

M13 forward primer to obtain additional sequence information. 
5. Sequencing can be done by the Oklahoma State University Recombinant 

DNA/Protein Resource Facility. 
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Quantitative RT-PCR 

Taqman Probe Assay 

Designing dual-labeled probe and primer set: 

1. Guidelines for designing both primers and probes: 
a. Select the probe first and design the primers as close as 

possible to the probe without overlapping it (amplicons of 50-
150 base pairs are strongly recommended). 

b. Keep the G/C content in the 30-80% range for both the primers 
and the probe. 

c. Avoid runs of an identical nucleotide. This is especially true 
for guanine, where runs of four or more Gs should be avoided. 

2. Guidelines specific for designing Probe: 
a. When using Primer Express® software the Tm should be 68-

700C (-8-10°C higher than the Tm of the primers) . 
b. No G on the 5' end. 
c. Select the strand that gives the probe more C than G bases. 
d. Design the Probe to have 6-FAM as the 5' reporting dye and to 

have T AMR.A as the 3' quenching dye. 
-Multiple reporting dyes must be used if multiplexing, 
however FAM is the most stable dye and should be used 
whenever assaying for a single target gene within a single 
reaction. 

3. Guidelines specific for designing Primers: 
a. When using Primer Express® software the Tm should be 58-

600C (-8-I0°C below the Tm of the probe). 
b. The five nucleotides at the 3' end should have no more than 

two G and/or C bases. 
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Master Mix (Using Qiagen's QuantiTect™ Probe RT-PCRKit, Catalog# 204443) 

Component Volume/Rxn Final 
Concentration 

2X QuantiTect Probe RT-PCR Master 12.5 µl IX 
Mix 
Forward Primer (10 µM) 1.0 µl 400nM 
Reverse Primer (10 µM) 1.0 µ1 400nM 
Dual-Labeled Probed (10 µM) 0.5 µ1 200nM 
QuantiTect Probe Reverse Transcriptase 0.25 µ1 0.25 µVrxn 
Mix 
Nuclease-free H20 7.75 µ1 --
Total RNA (20 to 50 ng/µl) 2 µl 40 to 100 ng/rxn 
Total Volume 25.0 µl 25.0 µl 
Note: Primer and probe concentrations may vary depending on the abundance of 
the target sequence. Also primer and probe concentrations can be greatly reduced 
if using 18s ribosomal RNA to normalize gene expression. 

Cycling Parameters (Using ABI's 7700 Sequence Detection System) 

Step Reverse Hot Start Reverse PCR Amplification 
Transcription Transcriptase 45 Repetitive Cycles 

Activation Denature Anneal/Extension 
Time 30 min 15 min 15 sec 1 min 
Temperature 50°C 95°c 95°c 60°C 

*Flourescent data must be acquired during the combined annealing/extension steps. 
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SYBR Green Assay 
Designing primer set for SYBR Green Assay: 

1. Keep the G/C content in the 30-80% range for both the primers and the probe. 
2. Avoid runs of an identical nucleotide. This is especially true for guanine, 

where runs of four or more Gs should be avoided. 
3. Tm should be 58-60°C. 
4. The five nucleotides at the 3' end should have no more than two G and/or C 

bases. 

Master Mix (Using Qiagen's QuantiTect™ SYBR® GreenRT-PCRKit, Catalog# 
204243) 

Component Volume/Rm Final 
Concentration 

2X QuantiTect SYBR Green RT-PCR 12.5 µ1 lX 
Master Mix 
Forward Primer (10 µM) 2.5 µl 1.0 µM 
Reverse Primer (10 uM) 2.5 µ1 1.0 µM 
QuantiTexct SYBR Green Reverse 0.25 µ1 0.25 µ1/rxn 
Transcriptase Mix 
Nuclease-free H20 5.25 µ1 --
Total RNA (20 to 50 ng/µ1) 2 µ1 40 to 100 ng/rxn 
Total Volume 25.0 ul 25.0 µl 

Note: Primer concentrations may vary depending on the abundance of the target 
sequence. 

Cycling Parameters (Using ABI's 7700 Sequence Detection System) 

Step Reverse Hot Start PCR Amplification 
Transcription Reverse 45 Re:Petitive Cycles 

Transcriptase Denature/ Anneal/ Extension/ Data 
Activation Acquisition 

Time 30min 15 min 15 sec 1 min I 30 sec I 15 sec 
Temperature 50°C 95°c 95°c 50-60°c I 12°c I xoC* 
*Flourescent data must be acquired during the data acquisition step. The temperature for 
this step is variable and depends on the Tm of product being amplified. A melting curve 
analysis must be ran immediately following the PCR run to determine the Tm of primer 
dimmers and the amplified gene product to determine what the data acquisition 
temperature should be set at and to ensure that fluorescence being detected is from the 
desired PCR product and not primer-dimers. 
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Mt· C e tmg urve An l . p a1ys1s arameters : 
Step Denature Anneal Denature 

Time 15 sec 30 sec 15 sec 
Temperature 95°c 50-60°C* 95°c 
*Following the annealing step, the ramp time for the machine should be set at maximum 
(19 min:59 sec) with data acquisition occurring throughout the ramp from annealing to 
denature. This multicomponent data can then be exported and used to create a melting 
curve plotting the change in fluorescence over time as shown below: 

3 OE-01 

2 . OE - 0 --------t---+---------+------H-

60 
58.5 

70 90 

This melting curve analysis indicates that a primer-dimer has a Tm at - 69°C indicated by 
the two green peaks representing two No Template Controls . The remaining reactions, 
containing template, produce peaks at - 79°C indicating the Tm of the product. Therefore 
the data acquisition temperature should be set at - 78°C so that the fluorescence detected 
during that stage is strictly from the formation of the double-stranded target molecule and 
not from any primer-dimers, which are completely denatured by - 72°C. 
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