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Introduction 

Phytate (myo-inositol 1,2,3,4,5,6 hexa, dihydrogen phosphate or IP6) is 

the major form of phosphorus in cereal grains and oilseed meals (Reddy et al., 

1982). Approximately 60 to 70% of the phosphorus in corn and soybean meal is 

in the form of phytate (Nelson et al., 1968; NRC 1998). In ruminant animals, 

phytic P in feed is utilized by microorganisms in the rumen (Reid et al., 194 7). 

However, monogastric animals such as pigs and chicks can not utilize the 

phytate form of P efficiently due to the lack of endogenous phytase that 

hydrolyzes phytic P (Taylor, 1965; Peeler 1972). Therefore, inorganic sources of 

phosphorus have been routinely added to diets for non-ruminant animals to 

supply sufficient levels of dietary phosphorus, which can lead to significant 

amounts of phosphorus excreted to the environment. 

During the past decade, dietary phytase, myo-inositol hexaphosphate 

phosphohydrolases (EC 3.1.3.8 and EC 3.1.3.24 ), has been added to swine diets 

to improve phosphorus availability, and ultimately, to decrease the amount of 

phosphorus excreted to the environment (Lei et al., 1993; Cromwell et al., 1995; 

O'Quinn et al., 1997). 

Recently, environmental problems associated with phosphorus 

accumulation in soils have become a large issue confronting swine producers. 

Because of the high nutrient content of manure and its fertilizer value, land 

application has been the major means of handling manure. However, the overall 



quality of water can be negatively affected by land application of excess nitrogen 

and phosphorus (Correll, 1999). Excess phosphorus applications result in 

excess buildup of phosphorus in soil and in surface runoff water into streams, 

lakes, and rivers. Phosphorus is the most limiting nutrient for aquatic plant 

growth, so as the level of phosphorus in these bodies of water increases, so 

does the growth of algae and other aquatic vegetation (Pierzynski et al., 1994; 

Sharpley et al., 1994 ). Decomposition of such vegetation can lead to general 

deterioration of water quality, a process called "eutrophication" (Crenshaw and 

Johnson, 1995). For these reasons, the addition of dietary phytase with 

decreasing additions of inorganic phosphorus is beneficial. There are several 

types of phytase already available in the market, and new phytase sources are 

currently being developed. Most of the phytase in the market is produced by 

submerged microbial fermentation (SmF). Recently, solid-state fermentation 

(SSF) technology has been utilized as an alternative to produce microbial 

phytase. Therefore, the purpose of these experiments was to determine the 

effects of the addition of a solid-state fermented phytase complex to low available 

P, corn- and barley-soybean meal diets on growth performance, excretion and 

digestibility of nutrients (dry matter, P, N, and gross energy), bone traits, and 

tissue accretion rates in growing pigs. 
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CHAPTER I 

Literature Review 

General Review on Phosphorus 

Phosphorus is the most abundant mineral element in the animal body 

along with calcium. Phosphorus is an essential mineral for the animal (NF{C, 

1998). A major role of phosphorus involves mineralization of bone. Also, 

phosphorus is located in every cell in the body with important functions such as 

structural components of phospholipids in membranes, energy storage in form of 

phosphate diester bonds, osmotic balance, buffering, and activating enzymes via 

phosphorylation. Importantly, the formation or cleavage of phosphorus bonds is 

essential for energy transfer reaction within cells. 

Chemical properties. Phosphorus is the 15th element and has a molecular 

weight of 30.97. The primary source of Pis from rock phosphate [(Ca5(P04)3F or 

CaF23Ca3(P04)2]. 

All living matter contains P, but it exists as phosphate (P04). Pure 

phosphorus is too reactive to be found free in nature and ignites spontaneously 

when exposed to air. Thus, ortho-phosphates (P04) are the forms that are the 

base unit for metabolism. In biological systems, phosphate is maintained in a 

ratio of dibasic (HP04-
2, mw = 95.97) or monobasic (H2P04-1, mw = 95.97) ion 
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complexes depending on pH (pH =pKa + log (HP04-2 I H2P04-1
)). At pH 7.4, a 

pKa value for phosphate in physiological solution is 6.8 (Groff et al., 1995). 

Therefore, the concentration of HP04-
2 is four times greater than H2PO/ 1n 

physiological solution. Concentrations of P in intracellular and extracellulm fluid 

are less tightly regulated than Ca concentrations. Serum P concentration varies 

throughout the day and is influenced by age, sex, diet, pH, and hormones 

(Broadus, 1999). About 90% of serum Pis in an ionic form and only 10% is 

associated with proteins. 

Digestion, Absorption, and Transporl. Regardless of its dietary form, most 

phosphorus is absorbed in its inorganic form. Organically bound phosphorus is 

hydrolyzed enzymatically in the lumen of the small intestine and released as 

inorganic phosphate. Alkaline phosphatase functions at the brush border of the 

enterocyte to free phosphorus from its bound form. Although alkaline 

phosphatase can release the bound phosphorus, phosphorus associated with 

phytic acid is not bioavailable (Groff et al., 1995). 

The major sites of P absorption are distal segments of the small intestine. 

Net secretion of P was observed in the large intestine (Partridge, 1978). 

Phosphate is absorbed as inorganic P from both dietary inorganic sources and 

from organic sources after hydrolysis by phophatases in the enterocytes 

(Jongbloed, 1987), and as a structural part of organic compounds such as 

phospholipids. In terms of absorption mechanism, active, saturable and passive, 

nonsaturable transport systems are utilized for phosphate absorption in the small 
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intestine (Breves and Schroder, 1991 ). Vitamin Das calcitrol stimulates 

phosphate absorption with independent effects of vitamin Don Ca absorption 

(Crenshaw, 2001 ). Also, sodium is required for vitamin D-meditated P absorption 

(Crenshaw, 2001 ). A vitamin D-responsive, Na-P cotransport system has been 

identified in the small intestine of the rat and rabbit (Crenshaw, 2001 ). In addition, 

a Na-independent diffusion mechanism has been described for cellular P uptake 

(Crenshaw, 2001 ). Higher rates of active P absorption are found in the jejunum 

(160 nmol/cm2/h) than in the duodenum (40 nmol/cm2/h). There is very little 

absorption of P in the ileum (Crenshaw, 2001 ). 

Magnesium, aluminum, and calcium intake impair phosphorus absorption 

(Groff et al., 1995; Allen and Wood, 1994 ). Phosphorus absorption may be 

reduced by dietary magnesium and, conversely, a deficiency of luminal 

magnesium enhances the absorption of phosphate. Aluminum and calcium are 

thought to form a complex within the gastrointestinal tract to render each other 

unavailable for absorption (Allen and Wood, 1994 ). A wide calcium to 

phosphorus ratio lowers phosphorus absorption, resulting in reduced growth 

performance and bone calcification, especially when pigs are fed marginal levels 

of phosphorus (NRC, 1998). On the other hand, the ratio is less critical if the diet 

contains excess phosphorus. A suggested ratio of total calcium-to-total 

phosphorus ratio is between 1 :1 to 1.25:1 or 2:1 to 3:1 based on available 

phosphorus (Jongboed, 1987; Ketaren et al., 1989; Qian et al., 1996). 
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Homeostasis of phosphorus. Regulation of P homeostasis is dependent 

on mobilization of bone reserves and the regulation of renal excretion and 

intestinal absorption. When animals are fed marginal levels of P, the proportion 

of dietary P absorbed increases in the intestine, and renal P reabsorption is 

unregulated to minimize urinary loss of P (Groff et al., 1995). Parathyroid 

hormone (PTH), calcitonin (CT), and 1,25-(0H)2D3 are also involved in P 

homeostasis. Hyperphosphatemia is associated with decreased circulating 

levels of 1,25-(0H)2D3. Increases in circulating levels of 1,25-(0H)2D3 can lead 

to hypophosphatemia (Halick, 1999). 

Availability. Most inorganic forms of Pare highly available. The P in rock 

phosphate has the same availability as that of dicalcium phosphate, but rock 

phosphate contains high levels of fluorine (Kragstrup et al., 1989). 

Orthophosphoric acid (H3P04) must contain no more than 100 ppm fluorine, 

because fluorine is toxic to animals (Kragstrup et al., 1989). Animals fed raw 

rock phosphate may lead to fluorine toxicity (Kragstrup et al., 1989). Natural 

ingredients used in animal diets provide sufficient quantities of fluorine to meet 

minimum requirements (Nelson, 1983) 

The availability of plant sources of P is low due to phytate P in plant cells. 

Monogastric animals do not synthesize phytase at large quantities to break down 

phytate. Bioavailability ofphytic P from plant sources varies widely from 10 to 

60% (Crenshaw, 2001 ). These variations may be partially explained by intrinsic 

phytase activity in some feed ingredients. Therefore, the addition of exogenous 
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phytase to feeds may be beneficial for increasing bioavailability of P in plant 

sources. 

Functions. Phosphate is of prime importance in the development of 

skeletal tissue, which in itself accounts for 85% of the total phosphorus store. In 

bone, phosphorus is part of calcium phosphate (Ca3[P04]2) and the crystal, 

hydroxyapatite (Ca10[P04]6[0H]2), which is laid down on collagen in the 

ossification process of bone formation (Groff et al., 1995). Bone from mature 

animals consist of water (45%), ash (25%), protein (20%), and fat (10%) (Lian et 

al., 1999). Phosphorus accumulation in bone as crystals of hydroxyapatite 

(Ca10(P04)6 ) consists of Ca and Pin a nearly constant ratio of 2.2:1 (Lian et al., 

1999). One element will not be deposited or reabsorbed without the other. Bone 

ash consists of 36 to 39% Ca and 17 to 19% P (Hayes, 1976). The 

concentration of Ca and P in bone ash does not change in response to extreme 

shifts in nutrient intake, but the total amount of ash accumulation varies with 

nutrient status (Hayes, 1976). Certain forms of P play important roles in tbe 

inhibition of mineralization, especially, in soft tissue. Rusell and Rogers (1999) 

reported that pyrophosphate inhibited crystallization of Ca salts and formation of 

new hydroxyapatite crystals. 

Phosphorus that is not part of bone is found in either extracellular fluids 

or intracellularly. Within cells, phosphorus is involved in a host of processes. 

Phosphorus is of vital importance in intermediary metabolism of nutrients, 

contributing to the metabolic potential in the form of high-energy phosphate 
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bonds, such as ATP, and through the phosphorylation of substrates. 

Phosphorus is also an important component of the nucleic acids (DNA and RNA). 

Phosphorus alternates with pentose sugars to form the linear backbone of those 

macromolecules (Groff et al., 1995). 

Phosphate also functions in acid-base balance. Filtered phosphate reacts 

with secreted hydrogen ions, releasing sodium ions in the process: [Na2HP04 + 

H+ 7 NaH2P04 + Na+](Groff et al., 1995). This action increases pH. The sodium 

ion may be reabsorbed through the kidney tubule under the influence of 

aldosterone (Groff et al., 1995). Other functions of P include structural 

components of phospholipids and proteins, reactive ligand in active sites of 

enzymes and transport proteins, and osmotic balance. Also, phosphate i~; 

involved in both aerobic and anaerobic energy metabolism. Phosphate in bone 

serves as a reservoir to buffer changes in plasma and intracellular P. Recently, 

Kegley et al. (2001) reported that dietary P affects immune function. 

Requirements. The estimations of dietary requirements for maximum 

growth rate and feed efficiency of pigs from 3 to 120 kg have been published 

(NRC, 1998). These requirement estimations were determined by maximum 

growth rate and feed efficiency. In NRC (1998), traditional modeling procedures 

were not used to estimate the requirements for minerals and vitamins. Instead, 

estimates were made from empirical experiments. Exponential equations were 

then used to fit the midpoint of these weight groups by the equation: 
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Requirement= ea+ b(ln BW)+c (In BWJ2 

The individual coefficients (Table 1.1) for the prediction equation can be 

found in NRC (1998). The levels of Ca and P that result in maximum growth rate 

are not necessarily adequate for maximum bone mineralization. 

Table 1.1. Coefficients used in the growth model to predict Ca and P 
requirements for pigs of various body weightsa. 

Ca(%) 
P, total(%) 
P, available(%) 

a NRC, 1998 

a 
0.0658 
-0.2735 
-0.0557 

Coefficients 
b 

-0.1023 
-0.0262 
-0.4160 

C 

-0.0185 
-0.0244 
0.0050 

R2 
.99 
.99 
.99 

Estimates were made on a dietary concentration basis for six weifJht 

ranges of pigs (Table 1.2) and for gestating and lactating sows. Previous studies 

(Mahan et al., 1980, Crenshaw et al., 1981) indicate that the requirements for 

maximum bone strength and bone ash content are at least 0.1 percentage unit 

higher than that for maximum rate and efficiency of gain. 

Table 1. 2. Dietary P requirements of growing pigs allowed ad libitum 
access to feeda 

Body weight (kg) 
3-5 5-10 10-20 20-50 50-80 80-120 

Ca,% 0.90 0.80 0.70 0.60 0.50 0.45 
Total P, % 0.70 0.65 0.60 0.50 0.45 0.40 
Avail P, % 0.55 0.40 0.32 0.23 0.19 0.15 
Ca:total P 1.28:1 1.23: 1 1 .16: 1 1.20:0 1.11: 1 1.16:5 
Ca:avail. P 1.63: 1 2.00:1 2.18: 1 2.60:1 2.63:1 2:.00:1 

a NRC, 1998 
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Based on total ingredient costs, P is the most expensive mineral aclded to 

swine diets. Therefore, growth performance and feed efficiency are the b(3St 

response criteria to determine the P requirement, which helps to formulate diets 

on a least cost basis. However, because of the increased pressure to reduce the 

amount of P in excreta, the amount of total dietary P has to be reduced arid diets 

should be formulated based on an available P basis rather than total P. 

Deficiency Symptoms. Signs of phosphorus deficiency are similar to 

those of Ca or vitamin D deficiency, which include depressed growth and poor 

bone mineralization resulting in rickets in young pigs and osteomalacia in older 

pigs. A marginal deficiency of P affects growth and protein deposition 

(Vipperman et al., 197 4 ). Conditions involving sever diarrhea, malabsorption, or 

a decrease in renal P reabsorption may decrease serum, but not intracellular P 

levels (Crenshaw, 2001 ). Sows in Ca or P deficiency status exhibit a parnlysis of 

hind legs (posterior paralysis). This problem occurs most frequently in sows 

producing high levels of milk toward the end or just after the termination of 

lactation (NRG, 1998). Also, P deficiency causes disturbances in oxygen 

dissociation from hemoglobin due to a decrease in the formation of 2,3-

diphosphoglycerate, which regulates the release of oxygen from hemoglobin 

(Allen and Wood, 1994 ). Phosphorus deficiency has also been associated with 

myopathy, weakness, cardiomyopathy, and neurologic problems (Allen and 

Wood, 1994). 
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Toxicity Symptoms. Signs of P toxicity include an increased incidence of 

urinary calculi, osteodystrophia fibrosa, and metastatic calcification in soft tissue 

(NRG, 1998). Excess levels of Ca and P may reduce performance of pigs (Hall 

et al., 1991 ), and the effect is greater when the Ca: P ratio is increased. 

However, pigs can tolerate fairly high dietary levels of phosphorus if the Ca:P 

ratio is narrow. Excess P can be harmful if dietary Ca is marginal. 

Bioavailability of Phosphorus. In human studies, the true absorption 

efficiency of P from a mixed diet has been estimated to range from 70 to siO% 

(Groff et al., 1995). In swine, generally the purchased feed-grade phosphate 

source is considered to be 100% available regardless of whether it is dicalcium 

or mono-dicalcium phosphate (Baker, 2001 ). The estimated phosphorus 

bioavailability in commercial defluorinated phosphate was 85% (Coffey et al., 

1994) to 90% (Cromwell, 1992). 

Phosphorus in plant sources is relatively unavailable (Table 1.3) but some 

feed ingredients such as wheat and barley contain intrinsic phytase activity which 

may increase P bioavailability (Nelson, 1967). However, corn-soybean meal 

based diets are the most common in swine industry. Phosphorus bioavailability 

in a corn-soybean diet is considered to be about 25% due to phytate-P (Erdman, 

1979; Cromwell, 1992). Estimated P bioavailability in corn and soybean meal 

was 14% and 23 to 31 %, respectively, relative to mono-dicalcium phosphate 

(Cromwell, 1992). The P in high-moisture corn or grain sorghum is considerably 

more available than that in the dry grain (Ross et al., 1983). 
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Table 1.3. Phosphorus bioavailability in feedstuffsa 
Feedstuffs Bioavailability 

(relative to mono-dicalcium phosphate) 
Com 14% 
Low-phyate com 77% 
Soybean meal 23-31 % 
Wheat and wheat by-product 29- 49% 
Rice bran 25% 
Cottonseed meal 1 % 
Peanut meal 12% 
Dried whey, blood meal, fish meal 100% 
Meat and bone meal 67, 90% 

a Adapted from Cromwell (1992, 1998) and Traylor and Cromwell (1998). 
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CHAPTER II 

General Review on Phytate 

Phytic acid (Phytate, myo-inositol 1,2,3,4,5,6-hexakisphosphate) is the 

major storage form of phosphate and inositol in almost all seeds (Reddy et al., 

1982). Most of the phosphorus in cereal gains and oilseed meals exist as 

phytate-P (Table 2.1 ), which is not available to swine due to lack of endogenous 

enzyme activity. Phytate is a naturally-occurring compound. It complexe~; with 

protein as well as mono- and divalent cations. 

Table 2. 1 The concentration of phytate in feedstuffsa . 

Feed stuff 

Corn 
Sorghum 
Wheat 
Soybean meal 
Canola meal 
Sunflower meal 
Cottonseed meal 
Wheat middlings 
Rice polishings 

aAdapted from Ravindran et al. (1999) 

Phytate, g/kg 

7.44 
7.44 
5.67 
16.67 
26.24 
27.30 
32.98 
27.30 
27.66 

Phytate exist as a complex salt termed phytin in plant tissues (Cosgrove, 

1980; Reddy et al., 1982). The physiological roles for phytate include its role as 

a mineral storage compound, an energy source, an initiator of dormancy, and as 

a mineral storage site (Raboy, 1990). Phytin is widely distributed in plant seeds 
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and grains, as well as in other organs such as roots and tubers and vegetative 

tissue (Roberts and Loewus, 1968), pollen (Jackson et al., 1982), and 

reproductive structures (Helsper et al., 1984). Phytin content in the seed i-anges 

from 0.5 to 1.89% in cereals and from 0.4 to 5.2% in legumes and oilseeds 

(Reddy et al., 1982). This concentration of phytate-P may account for up to 88% 

of the total phosphorus in the seed. 

Phytate rapidly accumulates during the ripening period of seeds and 

cereals. It usually is localized to the aleurone particles in grains, to the aleurone 

layer in cereals, and to protein bodies in the endosperm and cotyledons of 

legumes and oilseeds (Pernollet, 1978). Also, the embryo, aleurone layer, 

endosperm, cotyledons, or scutellum have been identified as sites of phyt1n 

biosynthesis and localization (Pernollet, 1978). However, corn is an exception to 

the typical localization pattern seen in monocots. About 88% of phytic acid in 

corn is found in the germ rather than the aleurone layer. (Scott and Loewus, 

1986). 

Storage sites and form of phytate. Phytate exists as different complexes 

in different seeds. In corn, phytate is located primarily in the germ in a water 

soluble form. Complexation with proteins which were either water soluble or 

whose isoelectric point were above or below the pH of water would render 

solubility (Ravindran, 1996). Otherwise, in legumes, phytate has been shown to 

be associated with protein. Soybeans have no specific site of localization of the 

phytate molecule (deBoland et al., 1975). Phytate in peanuts is concentrnted in 
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substructures within the protein body membrane (Saia et al., 1977). Phytate in 

cereal grains is less well defined, but it is contained in significant concentrations 

both in the bran and germ, and thought to be in a Ca-Mg complex (Pomeranz, 

1973). Phytate in sesame seeds appears to be the most unique and leaf.t 

soluble of all seeds (Oberleas, 1983). In barley, phytate is found in the form of a 

Ca-Mg salt (Pomeranz, 1973). 

Effects of phytate on animal nutrition 

Phytase activity has been found in the intestine of a variety of animals: 

broiler and laying hens (Maenz and Classen, 1998), rats, rabbits, guinea pigs, 

hamsters (Cooper and Gowing, 1983), calves (Bitar and Reinhold, 1972), and 

pigs (Moser et al., 1982; Pointillart et al., 1984). In addition, Hu et al. (1996) 

reported that there was hydrolytic enzyme activity towards IP3, less for IP4, and 

least for IP5 and IP6 in the pig intestinal mucosa. Also, these authors found that 

the jejunum had the highest activity and the duodenal activity was higher than the 

ileal. Ketaren et al. (1993) suggested the introduction of microbial phytase to pig 

feeds is likely to increase the concentrations of IP3-IP5 in the small intestine 

relative to IP6. Recently, transgenic pigs have been shown to have significant 

levels of salivary phytase activity, and the transgenic pigs can utilize phytic acid 

in soybean meal (Golovan et al., 2001) 

Even though there is evidence of existence of intestinal phytase, 

monogastric animals (except the transgenic pigs) do not express sufficient 

endogenous phytase activity to breakdown the phytate molecule. So, the 
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phosphorus associated with the phytate molecule is not available for pigs. 

Therefore, inorganic sources of phosphorus are routinely added to meet the 

requirement of pigs for optimal growth. As a result, the unavailable form of 

phosphorus is excreted, which potentially can lead to environmental pollution 

problems. 

Pig manure contains large amounts of phosphorus (Table 2.2 and Figure 

2.1 ). One of the major reasons for this is that biologically unavailable phycate-P 

in feedstuffs is not digested and absorbed. 

Table 2.2. Average nitrogen and phosphorus contents of manure samples 
collected by Arkansas producers (Daniel et al., 1998) 

Nitrogen P205 Phosphorus N1P205 
~~~~~~~~~~~~~---'"--~~--='--'-~~~-'--~~~~ 

Broiler litter, lb/ton 56 54 23.6 ': .04 
Dairy manure, lb/1,000gal 6 4 1. 75 -, .50 
Swine manure, lb/1,000gal 14 13 5.68 '! .08 

~~~~~.............:;~_;_~_,,,._~~~~~--~~~~~~~~~~~ 

In the case this excreted phosphorus in the manure is not properly 

managed, it may be released to waterways via leaching through the soil or 

erosion, which may lead to eutrophication of waterways (Crenshaw and Johnson, 

1995). 
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Figure 2.1. Animal livestock manure production and phosphorus excretion 
in United States (adapted from Crenshaw and Johnson, 1995) 
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Phytic acid is the acid form of the anion . phytate. Phytate is crystalline 

and white, and it turns pink when irradiated (Harland and Oberleas, 1996). 

Phytate is present in all plants and behaves as a chelating agent. The phytate 

molecule was designed to claw (chelate) and hold minerals to be re leased as the 

growing plant matured. Ca, Co, Cu , Fe. Mg, Mn, Ni, Se, and Zn are repor ted to 

be chelated by phytic acid (Harland and Oberleas, 1996). This chelating agent 

(phytate) has received much attention because of its ability to bind minerals and 

amino acids from other feed ingredients and from biological fluids in the animal, 

which negatively affects the bioavailabi lity of nutrients for animals. 

Phytate:Protein Interactions. Phytate in plant cells complexes with protein 

as well as mono- and divalent cations (Ravindran 1996). Because of its anionic 
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properties, phytic acids can bind with amino acids and proteins at a pH that is 

below their isoelectric point. As a result, phytate forms strong complexes with 

some proteins which prevent proteolysis. Carmovale et al. (1988) reported that 

in vitro digestibility of protein was decreased by the addition of phytic acid to 

several protein sources (peas, whole flour, protein concentrate, protein isolate, 

lactoalbumin, casein, serum albumin and zein) after 1 hr at room temperature. 

This study indicates that phytic acid negatively affects protein digestibility in vitro. 

Mroz and Jongbloed (1998) proposed that the presence of phytate-rich di(~ts 

interferes with optimal amino acid utilization from intact proteins by formation of 

indigestible protein-phytate complexes, by inhibition of digestible enzymes, and 

by depressed absorption of nutrients from the small intestine. In vitro studies 

have shown that phytate inhibits many proteolytic enzymes because of th(~ 

formation of protein-phytate complexes (Caldwell, 1992). 

Phytate:Calcium Interactions. In the presence of phytate and added 

calcium, interference with mineral absorption occurred as a result of the 

formation of insoluble complexes (Sandberg et al., 1993). Dietary 

supplementation of calcium in rapeseed diets decreased phytate hydrolysis in the 

colon of pigs, but not in the stomach or small intestine (Sandberg et al., 1993). 

Phytate:Carbohydrate-Glycemic Index Interactions. A negative relation 

between phytate intake and glycemic index (blood glucose response) of cereal 

and legume foods consumed by healthy humans has been reported by Yoon et 
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al. (1983). In another study in humans, removal of phytate from navy bean flour 

increased glycemic index compared to that of whole bean flour (Thompson et al., 

1987). In vitro, when wheat or bean starch was incubated with Na phytate, 

hydrolysis of starch was retarded, but digestion was restored when Ca was 

added with the Na phytate (Yoon et al., 1983; Thompson et al., 1984). Phytate 

has been shown to inhibit a-amylase activity (Desphande and Cheryan, 1984) 

and to form Ca-phosphate-phytate complexes with carbohydrates (Thompson 

and Yoon, 1984). 

Phytate:Mineral Interactions. Phytate is a polyanionic species that under 

appropriate conditions may complex with a variety of cationic minerals: Cc=1, Zn, 

Cu, Mn, Mg, Co, and Fe (Oberleas and Harland, 1996), including several 

nutritionally important elements. Phytic acid binds approximately two thircls of 

intrinsic phosphorus in plant feedstuffs (Cosgrove, 1980), and forms insoluble 

complexes with dietary di- and trivalent cations (Erdman, 1979; Maga, 19B2). 

Phytate has been reported to suppress the availability of some cations such as 

calcium, iron, and zinc (Lonneral et al., 1989; Ali and Harland, 1991; Redcly et al., 

1997). Also, other studies have shown that phytate in the feedstuff negatively 

affected the utilization of phosphorus and calcium, and the addition of exogenous 

phytase diminished the adverse effect of phytate (Qian et al., 1996; Liu et al., 

1998, 2000; Cromwell et al., 1993). 
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Methods to Reduce/Destroy Phytate Molecules in Feedstuffs 

It is difficult to remove phytate without changing the structure of the 

protein, the nutrient content, the organoleptic, and solubility characteristic~;. 

Grinding and milling processes can break down the phytate structure (Larsen, 

1993). Also, the pelleting process can damage the phytate structure in the 

feedstuffs (Larsen, 1993). Early studies showed that wheat stored at high 

moisture content and temperature increased inorganic phosphate and decreased 

phytate (Glass and Geddes, 1946). 

Thermo-process. The heating (dry or moist heat, baking, simmering, 

boiling, autoclaving) is effective to some degree. Through thermoprocessing, the 

phytate molecule can be hydrolyzed, thus rendering it less effective as a 

chelating agent with other nutrients such as minerals and amino acids (Bayley 

and Thomson, 1969; Bayley et al., 1975). 

Autoclaving and Roasting. This process can reduce phytate content in 

legumes dramatically with an increase in total phosphorus. The heat processing 

causes hydrolysis or decomposition of phytic acid. Consequently, the phcisphate 

group is released from phytate (Hernadez-Unzon and Ortega-Delgado, 1989). 

Fermentation. Sour-dough leavening .involves the use of microorg,=misms 

to improve the flavor, texture, aroma, and digestibility of foods. The production of 
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organic acids during the process lowers the pH of the seed and activates ihe 

phytase component (Harland and Oberleas, 1996) 

Malting Process. This process involves a series of steps like steeping, 

soaking, germination, and kilning that converts the hard insoluble grain of the 

cereal into soft, sweet kernels. Steeping allows the seed to absorb moisture and 

also activates the intrinsic phytase enzyme (Harland and Oberleas, 1996). 

Adequate moisture retention in the seed allows it to germinate and as a result 

hydrolytic enzymes are synthesized. Activation of phytase from the inacti11e form 

initiates phytate hydrolysis. However, germinated seeds not only contain phytase 

but also the enzymes necessary for synthesis of phytate and therefore some 

phytate is also synthesized during the process of germination. The most 

significant increase in protein content was observed for 120 hours in tap water, 

and the most appreciable decrease in phytate content occurred in seeds treated 

with 0.20 kGy dose (irradiation) and germinated for 120 hours. Kilning involves 

the drying and roasting/curing to bring out the color and flavor of the individual 

feeds. Irradiation and germination collectively as well as independently had a 

negative effect on the total phytate content of soybeans (Harland and Oberleas, 

1996) 

These methods are used for utilizing the naturally-occurring phytase in the 

feeds to hydrolyze the phytate. Most cereal grains (wheat, corn, barley, oats and 

rice) contain intrinsic phytase. All of these processes are time, temperature, and 

pH-dependent. 
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Chemical process. There was a significant reduction of phytate in 

soybean and cottonseed meals through the use of heat, enzyme, acid extraction, 

precipitation by divalent cations, and subsequent washing with a 1 N HCI solution 

(Han, 1988). These improvements are not of sufficient magnitude to be 

economically justified in most current feeding programs in the United States 

(Crenshaw, 2001) 

Enzymatical Process (Phytases). Microbial phytases, phytase-rich 

bacteria, and yeast are added to feeds to hydrolyze the phytate and minimize 

mineral binding. Different grains have different levels of intrinsic phytase activity 

with the highest levels in rye, followed by wheat, barley, and oats (Peers, 1953). 

Previous studies showed addition of microbial phytase improved bioavailability of 

phosphorus of pigs fed corn or sorghum-based diets (Cromwell et al., 1993; 

Jongbloed et al., 1992; O'Quinn et al., 1997; Kemme et al., 1999; Nasi et Eli., 

1999; Sand et al., 2001; Augspurger et al., 2003). 

Bioengineering in Plants. Some crops possess relatively high levels of 

endogenous phytase in their seeds. This was first shown by Mccance and 

Widdowson (1944) and Mollgaard (1946) who demonstrated that wheat, wheat 

byproducts (bran, middlings), rye, and to a lesser extent, barley, contain 

significant amounts of phytase. Studies (Cromwell and Coffey, 1993) show a 

considerably higher bioavailability of Pin wheat (50%), wheat middlings (41 %), 

22 



wheat bran (29%), and barley (30%) than that in corn (14%). Wheat bran 

phytase has also been shown to increase the utilization of P in other feed~;tuffs in 

the diet (Cromwell and Coffey, 1993). Biotechnology has now been used to 

insert a phytase gene into alfalfa (Ullah et al., 2002) and canola (McHughen, 

2000), which greatly increases their phytase content. A recent study by 

University of Wisconsin researchers showed that alfalfa leaf phytase was 

effective in increasing P digestibility and reducing P excretion (Saddoris e-c al., 

2003). Commercialization of crops with inserted phytase genes could be 

important in that it would be an alternative vehicle for supplying phytase to· 

nonruminant diets in order to reduce P excretion. 

Bioengineering in Pigs. University of Guelph researchers (Golovan et al., 

2001; Forsberg et al., 2002) have recently produced several lines of trans,Jenic 

pigs that have high levels of phytase in their saliva. In these studies, the true 

digestibility of soybean meal P by the transgenic pigs was very high (88 to 99%) 

and excretion of P was reduced by as much as 75% in weanling pigs (Figure 2.2). 

They attributed this dramatic response to the much larger amount of enzyme 

continuously present in the stomach of the transgenic pig due to the copious 

secretion of saliva when feed is consumed. Consequently, these transgenic pigs 

may have delivered as much as 200,000 phytase unit to the digestive tract during 

the consumption of 1 kg of feed. This is considerably more than the normal 

phytase supplementation of 300 to 1,000 units of phytase per kg of feed. 



Whether this new finding will become practical remains to be seen , but it certainly 

opens up a new biological approach for reducing P pollution in animal agriculture. 

Figure 2.2. Total fecal phosphorus content from non-transgenic pigs and 
transgenic pigs fed different levels of soybean meal as the sole source of 
dietary phosphorus. (adapted from Golovan et al., 2001) 
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CHAPTER Ill 

General Review on Phytase 

Justification for Phytase Use 

Both surface and ground water can be negatively affected by applying 

excess nutrients, especially phosphorus, to the soil. Phosphorus can be 

adsorbed onto soil particles and leach into ground water. Also, it can erocle into 

stream, lakes, and rivers. Phosphorus is the most limiting nutrient that requlates 

aquatic plant growth (Sharpley et al., 1994 ); therefore, phosphorus in water 

stimulates the growth of algae and other aquatic vegetation. Decomposition of 

such vegetation can lead to a general deterioration of water quality, a process 

called eutrophication (Crenshaw and Johanson, 1995). Therefore, the acldition 

of exogenous phytase can be beneficial. The addition of phytase to low P diets 

can reduce total dietary levels of P by improving the bioavailability of P, resulting 

in decreased P excretion. 

Definition of phytase 

Phytases (myo-inositol hexaphosphate phosphohydrolases) comprise a 

family of enzymes that catalyze the stepwide removal of inorganic 

orthophosphate from phytic acid as well as from a variety of natural and synthetic 

phosphorylated substrates accepted by nonspecific acid phosphatase (Ginson 
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and Ullah, 1990). Phytase activity from rice bran was one of the first enzymes 

exhibiting phosphomonoesterase activity to be characterized (Suzuki et al., 1907) 

and several comprehensive reviews on phytase have been reported (Cos(::irove, 

1980; Graf, 1986). 

Two classes of phytases (3-phytase and 6-phytase) are recognized by the 

International Union of Pure and Applied Chemistry and the International Union of 

Biochemistry (IUPAC-IUB). 3-Phytase (EC 3.1.3.8) initially removes 

orthophosphate from the 3-positon of phytic acid. 6-Phytase (EC 3.1.8.24) 

catalyzes the removal of orthophosphate from the 6-position of phytic acic. 

Successive dephosphorylations result in intermediates from inositol mono- to 

tetra-phosphate and free myo-inositol. The 3-phytases are characteristic of the 

phytase found in microorganism and the filamentous fungi (Nys et al., 1996; 

Pandey et al., 2001 ). The 6-phytases are found in plants such as wheat (:rving, 

1980). 

Phytases (6-phytase) in Plants 

Phytase activity has been found in variety of plants and feedstuffs (Table 

3.1 ). Plant phytases have a specific pH for optimum enzyme activity. Mo:st of 

the plant phytases (6-Phytase) have maximum enzyme activity at approximately 

pH 5.0 with values reported for wheat, wheat bran, barley, corn, and bean of pH 

5.2, 5.0, 5.2, 5.6 and 5.3, respectively (Radcliffe, 2000). The optimum pH for 

soybean phytase occurs between pH 4.5 and 4.8 (Nayini and Markakis, 1986). 
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The maximum activity of phytase activity has been observed at 50° C, witll a 

range of 45 to 57 °C (Irving, 1980). 

Table 3.1. Intrinsic phytase activity in feedstuffs (Adapted from Radcliffe, 
2000. 

Feed stuff 
Rye 
Triticale 
Wheat 
Barley 
Wheat Bran 
Corn 
Soybeans (heated) 
Soybean meal, 44% 
Soybean meal, 48% 
Canola meal 
Sorghum 
Wheat middling 

1 Pointillart ( 1994 ). 
2Eeckhout and De Paepe (1994 ). 

Microbial Phytases (3-phytase) 

Phytase activity, U/kg 
4,900 , 4, 132-6, 127 
1,5001, 1,475-2,0392 

700 1, 915-1,581 2 

400 1, 408-822 2 

1,2001, 1, 180-5,2082 

0-46 2 

0-188 2 

0-1202 

0-20 2 

161 1002 
' 

242 

1,9001 , 4,381 2 

Microbial phytase has been reported to have two peaks of activity c=1t pH 

2.5 and pH 5.0 to 5.5 (Shieh et al. 1969; Irving and Cosgrove, 1974; Siomons et 

al., 1990). Aspergillus phytase has 50% more activity at pH 2.5 comparecl to pH 

4.5 (Simons et al., 1990). Natuphos® (BASF) phytase has been reported to have 

more enzyme activity at pH 5.5 compared to pH 2.5 (Beudeker, 1990). Tr1ere 

was no phytase activity at pH 7 or higher. 

Currently, three microbial phytases are available on the market. Natuphos 

is phytase produced by Gist-Brocades (Dflft, The Netherland) and marketed by 

BASF (Mount Olive, NJ). Novo Nordisk (Bagsvaerd, Denmark) produces a 

genetically-modified phytase in Europe, which is marketed by Roche (Basel, 
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Switzerland) in the U.S. Also, Alltech, Inc (Nicholasville, KY) produces an:! 

markets a solid state fermented phytase (SSF Phytase) known as Allzyme®. 

Mode of Action 

Phytase is a phosphatase which is able to catalyze the hydrolysis of a 

phosphate-ester. Phytase can cleave off a phosphate group from the phytate 

molecule. There are many phosphatases. Some of them play an important role 

in the metabolism of plants and animals, such as ATP-ase. The phospharases 

can be classified as alkaline or acid depending on its optimal pH value. There are 

two main types of phytase known, as 3- and 6-phytase, which have differE:nt 

modes of action (Kies, 1996). For example, 3-phytase initiates the 

dephosphorylation of phytate at the 3-position (Figure 3. 1 ), whereas 6-phytase 

start the dephosphorylation at the 6-position (Kies, 1996). 

Figure 3.1. Chemical structure of phytate and mode of action of microbial 
phytase (Adapted from Nys et al., 1996). 
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The mechanism of removal phosphate from phytate is a ping-pong 

mechanism (Shute et al., 1988). This means a phosphate group is transforred 

from the substrate to the enzyme, and then from the enzyme to water. Phytases 

hydrolyze phosphate groups from phytate in a very specific way. Venekarnp et al. 

(1995) using NMR-techniques found that microbial phytase broke down pl1ytate 

in a certain order. Aspergillus phytase starts to hydrolyze the phosphate uroup at 

the 3 position. After cleaving off the phosphate group from the 3 position, 

phytase then catalyzes the stepwise hydrolysis of phosphate groups from the 4, 

5, 6 and 1 position, producing inositol phosphate-5 (IP5), IP4, IP3, IP2, and IP1 

(Venekamp et al., 1995). Aspergillus phytase cleaves off the last phosphate 

(position 2) group from IP1 at a very slow rate (Kies, 1996). However, some acid 

phosphatases are known to hydrolyze the phosphate group from IP1. Thorefore, 

the addition of acid phosphatases may be beneficial. However, Nasi et al. (1995) 

reported a lack of synergistic effect of the addition of acid phosphatase and 

microbial phytase on phosphorus digestibility. 

Site of phytase activity 

The optimal pH of phytase from Aspergillus ficuum has two respon:;e 

peaks at pH 5.0 to 5.5 and pH 2.5 (Shiel et al. 1969; Irving and Cosgrove, 1974; 

Simons et al., 1990). The variation of pH in the gastrointestinal tract of animals 

may affect the activity of phytase in the diets. The acidity of the stomach lumen 

ranges from pH 1.0 to 4.5 (Chessen, 1987), and the luminal pH of the 

gastrointestinal track increases from the duodenum to the terminal ileum. The 
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pH of the stomach digesta of pigs is 3.4 to 4.8, which is much lower than that in 

the small intestine (pH 6.4 to 7.2; Eidelsburger et al., 1992; Risley et al., 1992). 

The duodenal pH immediately following a meal was 5.7, after which it gradually 

decreased to pH 3.3 (Eidelsburger et al., 1992; Risley et al., 1992). It is 

generally accepted that the duodenal pH is approximately 4.8 (Eidelsburger et al., 

1992; Risley et al., 1992). The jejunum, which represents approximately Sl0% of 

the total length of the small intestine, has a mean pH of 5.5 to 6.9, while the 

ileum has a mean pH of 7.0 to 7.4 (Eidelsburger et al., 1992; Risley et al., 1992). 

Therefore, the stomach of pigs is the site of greatest phytase activity. An early 

study by Gueguen et al. (1968) reported that plant phytase from activated wheat 

bran hydrolyzed phytate-P mainly in the stomach of pigs. Lantzsch et al. (1992) 

reported that phytate-P from corn was mainly degraded in the stomach and 

upper small intestine. Other studies have shown that approximately 50% of the 

phytate-P from a corn-soybean meal diet was degraded in the stomach of pigs 

and an additional 9% in the duodenum and jejunum (Jongbloed et al., 1992). 

However, no phytase activity was detected in the ileum (Jongbloed et al., 1992). 

Also, Jongbloed et al. (1992) reported that 85% of added phytase activity (1,565 

U/kg) was detected in the duodenal digesta of growing and finishing pigs fed a 

corn-soybean meal diet. No phytase activity was observed in the ileal digesta. Yi 

and Kornegay (1996) reported that phytase activity in the digesta decreased from 

the stomach to the upper small intestine to the lower small intestine when 

phytase activity was measured 3 h after ingestion of feed. Phytase activity, as a 

percentage of the total dietary phytase activity, was found to be 51 % in the 
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stomach, 31 % in the upper small intestine, and 5% in the lower small intestine (Yi 

and Kornegay, 1996). Therefore, the pH of stomach digesta is favorable ior 

optimum phytase activity; however, the pH in the lower small intestine is not 

favorable for phytase activity. 

In chickens, Liebert et al. (1993) reported that 25 to 50% of added phytase 

activity was detected in the contents of the crop and that 10 to 25% of adcled 

phytase activity was detected in the proventriculus when 500 or 1,000 PU/kg was 

added to corn-soybean meal diets. No phytase activity was detected in the small 

intestine of the chicken. This study indicates the main sites of phytase arn the 

crop and the proventriculus. 

Sources of Phytase 

Dietary phytase can be produced from several sources of plant, animals, 

and microorganisms. Microbial phytase is the major source of exogenous 

phytase in commercial production and commonly used in feed industry. The 

source and fermentation methods are listed in Table 3.2. 

Bacterial phytase. Several bacterial strains (wild and genetically modified) 

such as Lactobacil/us amylovorus, E. coli, B. subtilis, B. amyloliquefaciens, 

Klebsiella sp., etc., have been utilized for phytase synthesis. Sreeramulu et al. 

(1996) evaluated 19 strains of lactic acid-producing bacteria of the genera 

Lactobacillus and Streptococcus for the production of extra-cellular phytase. 

Also, phytase was produced from E.coli .. Sunitha et al. (1999) optimized the 
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medium for recombinant phytase production by E. coli BL21 using response 

surface methodology. A genetically modified B. subtilis produced extra-cellular 

phytase and the yield was 100-fold higher than the wild type B. amyloliquofaciens 

DS11 (Kim et al., 1999). 

Yeast phytase. Phytase production using yeast cultures has generally 

been carried out in submerged fermentation systems. The strains used include 

Schwanniomyces caste/Ii, S. occdentalis, Hansenula polymorph, Arxula 

adeninivorans, Rhodotorula gracilis, etc. Mayer et al. (1999) developed an 

efficient process for low-cost production of phytase using Hanenula polymorpha. 

Glucose or glucose syrups were used as the main carbon sources during 

fermentation. Compared with the process using glycerol the use of glucm;e led 

to a reduction of more than 80% in raw materials cost. In addition, exceptionally 

high concentrations of active enzyme were obtained in the medium, with phytase 

representing over 97% of the total accumulated protein. 

Fungal phytase. Several types of fungal cultures are employed for the 

production of phytase in submerged fermentation (SmF) or solid-state 

fermentation (SSF) systems. Ahmad et al. (2000) used a maize starch-based 

medium for the production of phytase in SmF using Aspergillus niger. Activity of 

the enzyme was found to be 0.075 phytase units per min per ml of the crude 

culture filtrate at pH 5.5 and 40 °C. Extra-cellular phytase produced by 

Aspergil/us sp. showed a five-fold higher activity in liquid culture when cornpared 
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with cultures of A. ficcum NRRL3135. Solid state fermentation also has been 

used for phytase production using strains of Aspergillus sp. Ebune et al. ( 1995a) 

used canola meal for phytase production by A. ficcum. Optimum substra·:e 

moisture was 64%. Age of the inoculum has a profound effect on enzymE 

synthesis by the culture. Alasheh and Duvnjak (1995) found 53% to 60% 

moisture as the optimum when a strain of A. carbonarius was used on canola 

meal. 

Table 3.2. Source and production methods of microbial phytasea 
Micro-organism Method Substrate 

Bateria 

Bacillussp. 

B. amyloliquefaciens 

B. amyloliquefaciens 

B. subtilis 

Enterobacter sp. 

E.coli 

Lactobacillus amylovorus 

Yeasts 

Arxula adeninivorans 

Hansenula polymorpha 

Schwanniomyces castellii 

Fungi 

Aspergillussp. 

A. carbonarius 

A. ficuum 

A. ficuum 

A. niger 

A. niger 

a Adopted from Pandey et al. (2001) 
b Submerged fermentation method 
c Solid State fermentation method 

SmFb 

SmF 

SmF 

SmF 

SmF 

SmF 

SmF 

SmF 

SmF 
SSFC 

SSF 

SmF/SSF 

SmF 

SmF/SSF 

Maltose 

Complex medium 

Complex medium 

Complex medium 

Glucose 

Complex medium 

Glucose 

Wheat bran, cotton flour 

Complex medium 

Canola meal 

Canola meal 

Glucose, canola meal 

Maize starch 

Complex/wheat bran 



Production techniques for microbial phytase 

Phytase can be produced from a host of microorganisms including 

bacteria, yeast, and fungi. During the past several decades, the use of 

filamentous fungi for the production of commercial enzymes has dramatically 

increased, and phytase is no exception. Submerged fermentation (SmF) nas 

largely been employed as the production technology. Recently, solid state 

fermentation (SSF) has been used for microbial phytase and has gained interest 

for the production of primary and secondary metabolites (Pandey, 1991, 1992, 

1994 ). 

Techniques of SmF as well as SSF have been used for the production of 

phytases. Type of strain, culture conditions, nature of the substrate, and 

availability of the nutrients are critical factors affecting the yield and should be 

taken into consideration for selecting a particular production technique. For 

example, a filamentous fungus in SmF is exposed to hydrodynamic force~. but in 

SSF, the surface of the solid particles acts as the matrix for culture (Pandey, 

1994 ). Papagianni et al. (1999) investigated qualitative relationships between 

medium composition, Aspergillus niger morphology, and phytase production in 

SmF and SSF. These authors found that media composition and fungal 

morphology greatly affected phytase production in submerged fermentaticn and 

the addition of wheat bran and a slow releasing organic phosphate source 

enhanced Aspergillus niger growth and phytase production. 
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Submerged fermentation method (SmF) 

Approximately 90% of all industrial enzymes are produced by a 

submerged fermentation process. In this process, the microbes (fungi or 

bacteria) are submerged in nutrient-rich liquid media contained in a batch 

fermenter. The conditions inside the fermenter (pH, temperature, and oxygen) 

are tightly controlled to maximize microbial growth. When the fermentation 

process is terminated, enzyme-rich liquid media is dried, processed, and 

standardized. The attractive feature of this process is high production rate when 

genetically-modified organisms are used (Filer, 2001 ). 

Solid State fermentation method (SSF) 

Background. The use of filamentous fungi for production of commercial 

products has increased over the decades and the production of enzymes by 

submerged fermentation has been established. Recently, solid state 

fermentation (SSF) methods have generated more attention because they offer 

several economical and practical advantages which include higher product 

concentration, improved product recovery, very simple cultivation, decrea~;ed 

water output, lower capital investment, and lower plant operation costs (Becerra 

and Gonzales, 1996). In the SSF system, microbes ferment a solid substrate. 

Solid state fermentation is not a new concept, and its history can be traced back 

to bread making in ancient Egypt (Filer, 2001 ). Also, the Japanese used a SSF 

method make dietary protein from waste material (Filer, 2001 ). Composting, 

silage production, cheese ripening, and mushroom cultivation are modern 
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examples of SSF process. Solid state fermentation has been used widely in Asia 

in the production of certain foods and beverages, such as sake and soy sauce 

(Filer, 2001 ). However, the SSF process has not been considered as a method 

for the production of enzymes. 

In a review, Pandey et al. (2000) discussed the potential of SSF for the 

development of bioprocesses such as bioremediation and biodegradation of 

hazardous compounds, biological detoxification of agro-industrial residue~;, 

biotransformation of crops and crop-residues for nutritional enrichment, 

biopulping, and production of value added products, such as biologically active 

secondary metabolites, including antibiotics, alkaloids, plant growth factors, 

enzymes, organic acids, biopesticides, and aromatic compounds. The SSF 

system, which during the past two decades was termed as 'low-technology' 

systems appears to be promising for the production of value-added 'low volume

high cost' products such as biopharmaceuticals (Pandey et al., 2000). Use of 

agro-industrial residues offers potential advantages of SSF system. 

Procedure of SSF system. Establishing a SSF system begins with the 

screening, selection, isolation, and propagation of a microbial culture that 

produces large amounts of the desired enzyme. In some cases, it produces 

more than 400 times the normal amount (Filer, 2001 ). The selected cultures are 

used to inoculate the SSF system. Production of the microbes used to inoculate 

the system is done on a small scale. 
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Bacteria, yeast, and fungi that can grow on solid substrates are viable 

candidates. However, filamentous fungi, such as Aspergil!us niger, have the 

greatest advantages in SSF systems that produce enzymes for feed appli,:ations. 

The next step is the preparation of the substrate. The solid state ferment,1tion 

process can utilize minimally processed by-products such as wheat or rice bran, 

and other inexpensive, readily available materials such as soyflour as a 

substrate. Often the ratio of protein:carbohydrate source is the determining 

factor in enzyme yield (Filer, 2001 ). The substrate must be heat and pressure 

sterilized to destroy any harmful microbes especially yeast and their spores. The 

moisture content of the substrate is adjusted to 45 to 50% (Filer, 2001 ). One of 

the important features of SSF is the low free moisture content of the substrate. 

Most of the water is bound to the substrate which maximizes the exposure of the 

microbes to air. By this process, microbial activity is stimulated. Consequently, 

the production rate of an enzyme is high. In addition, the low moisture recluces 

drying time and energy costs during downstream processing (Filer, 2001 ). 

The selected microbial culture is seeded into the sterilized substrate and 

mixed to create a material called "koji", a Japanese term. Usually, 500 ml_ of 

starter culture can inoculate 1 ton of substrate. The koji is loaded into a reactor 

and allowed to ferment. There are three basic types of reactors: tray, packed

bed, and agitated (Filer, 2001 ). 

The tray reactor is the most widely used. It consists of a series of ]5 x 20 

cm sterilized stainless steel trays. Thin layers of culture are covered, placed on a 

stainless steel rack, and housed in a controlled environment (90% humidity). To 
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produce feed-grade phytase, the fermentation process usually takes 5 to 7 days. 

After the fermentation is complete, the material is dried, ground, standardized, 

and packaged. Alternatively, the fermented material can be extracted to produce 

a liquid enzyme product. A facility with 10,000 trays can make a sufficient 

quantity of enzyme in one year to supplement 6 to 8 million tons of feed Wiler, 

2001 ). 

Packed-bed and agitated reactors are being developed to increase 

enzyme production capacity. However, over-heating, aeration, and condensation 

inside the vessel are challenges. Also, in deep-bed systems, certain layers could 

become deficient in oxygen (Filer, 2001 ). 

Advantages of using SSF system. There is evidence that enzyme~ 

produced through solid-state fermentation are qualitatively different from tnose 

produced by submerged fermentation. Solid state fermentation systems tnat use 

non-genetically modified microbes often produce high activities of the des;red 

enzymes as well as lower but substantial activities of other enzymes, known as 

"side activities" (Filer, 2001 ). For example, an SSF-phytase product had 

measurable protease and beta-glucanase activity (Filer, 2001) (Table 3.3). 

Microbial feed-grade SSF phytase has greater stability during storage than 

SmF phytase. A glucosidase produced by SSF was found to be more he3t

tolerant than a traditional phytase (SmF phytase). Also, SSF protease had a 

significantly greater protein digestion capacity than one produced by submerged 

fermentation process (Filer, 2001 ). 
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Table 3.3. Enzyme activities of phytase produced by SSF and SmFa 

Enzyme 
Phytase (PU/g) 
a-amylase (FAU/g) 
~-glucanse (BGU/g) 
Protease (HUT/g) 
Xylanase (XU/g) 
Cellulase (CMCU/g) 

Submerged fermentation 
1,900 

aAdapted from Filer (2001 ). 
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Solid-state fermentation 
1,900 
300 

2,700 
9,300 
500 
390 



Effects of Exogenous Phytase on Swine 

In corn and soybean meal diets, about two-thirds of the phosphoru:; is 

bound as phytic acid and is poorly available to pigs because pigs can not utilize 

phytate-P in feedstuffs (NRC 1998). Thus, inorganic phosphorus such as 

dicalcium phosphate is routinely added to rations to supply sufficient phosphorus 

for proper growth. Adding inorganic sources.of phosphorus can satisfy th1:! 

animal's requirement, but indigestible phytate-P is still excreted to the 

environment. However, the amount of excreted P can be significantly decreased 

by inclusion of microbial phytase in the diets, which releases P from phytate 

(Table 3.4). 

Table 3.4. Potential reduction in excretion of nitrogen and phosphorus by 
various nutritional strategies in swine. 
Strategy 
Formulation closer to requirements 
Reducing feed spillage/waste 

Pelleting 
Fine particle size (700-1,000um) 
Use of highly digestible feed ingredients 
Reduced variability by quality control 
Reduced protein/amino acid 
supplementation 
Low-phytate corn 
Phytase/low P 
Phytase/low phytate corn 
Phytase/enzyme cocktail 
Phytase/1,25(0H)2D3 
Phytase/probiotics 
Cellulase, Xylanases, Pentosanase, ~
glucanse 
Phase feeding 
Split-sex feeding 
Reducing micromineral/organic minerals 
Adapted from Ferket et al. (2002). 
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Reduction in nutrient excretion 
---

10 - 15% for N and P 
1.5% for all nutrients for every 1 % 
reduction 
5% for N, P, Zn, Cu 
5% for N, P, Zn, Cu 
5% for N and P 
10-20% for P; 20-40% for N 
9% for every reduction in dietary 
CP 
25-50% for P 
2-5% for N, Zn; 20 - 30% for P 
2-5% for N, Zn; 20 - 40% for P 
2-5% for N, Zn; 20 - 40% for P 
2-5% for N, Zn; 20 - 60% for P 
2-5% for N, Zn; 20 - 40% for P 
5% for N, P 

5-10% for N, P 
.5-8% for N 
Up to 50% for Zn, Cu, Mn 



The magnitude of the response to microbial phytase has been shown to 

be influenced by the source of phosphorus, dietary level of available phosphorus, 

the amount of phytase added, and the ratio of Ca to P (Lei et al, 1994; Liu et al., 

1998;Qian et al., 1996; and Kornegay, 1996). Also, previous studies indicate 

microbial phytase releases calcium (Mroz et al., 1993; Radcliffe et al., 19S5), zinc 

(Lei et al., 1993a; Pallauf et al., 1994 ), and some amino acids (Kemme et al., 

1995) that may be bound to phytic acid. 

Effects of Microbial Phytase on P Utilization by Swine. Approximately 60 

to 70% of the P in plant sources that are commonly used in pig diets is 

associated with phytate. Phytate-P is not available for absorption (Cromw(:)11, 

1992; Ravindran et al., 1994, 1995). An early study by Nelson et al. (196B) 

demonstrated that the addition of phytase can release P from phytate. During 

the past decades, dietary phytase has been extensively studied. Addition of 

microbial phytase has been shown to catalyze the hydrolysis of the phytate 

molecule, releasing P from phytate (Jongbloed et al., 1992, 1996; Cromwell et 

al., 1993b; Kornegay 1995). 

Dietary microbial phytase has been added to a variety of feedstuffs and 

has been shown to improve bioavailability of P in different types of diets. 

Supplemental microbial phytase improves the bioavailability of P in corn

(Cromwell et al., 1995), oat- (Bruce and Sundstol, 1995), wheat-, triticale 

(Dungelhoef et al., 1994 ), and barley-based (Campbell and Bedford, 1992; Valaja 

et al., 1998; Nasi et al., 1999) diets for swine. Microbial phytase also has been 
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shown to affect growth performance of pigs fed low P diets by increasing average 

daily gains, primarily due to an increased feed intake (Simons et al., 1990: Beer 

and Jongbloed, 1992; Kornegay and Qian, 1996; Yi et al., 1996). In other 

studies, the addition of microbial phytase decreased P excretion by 25 to :50% by 

increasing P digestibility or retention and by decreasing the total level of F in the 

diets (Simons et al., 1990; Jongbloed et al., 1992; Cromwell et al., 1993b; 

Kornegay and Qian, 1996; Yi et al., 1996). Also, increases in bone breaking 

strength or shear force have been observed in several studies with pigs when 

microbial phytase was added to low P diets (Cromwell et al., 1993; Korneqay and 

Qian, 1996; Yi et al., 1996; Radcliff and Kornegay, 1998; Park et al. , 200:\abc). 

These results indicate dietary microbial phytase improves P utilization in tl1e diet. 

The recent phytase studies were summarized in Table 3.5. 

Phytase and Low-Phytate Feedstuffs.· The addition of dietary phytc=1se to 

conventional corn-soybean meal diets and the use of low-phytate corn and low

phytate soybean meal are both very effective means of improving P utilization 

and reducing P excretion (Table 3.4 ). Previous studies have shown that the 

combination of phytase and low-phytate feed ingredients is even more efft~ctive 

in improving P utilization and reducing P excretion in pigs. Studies by Pierce and 

Cromwell (1999ab) with low-phytate corn and normal soybean meal and more 

recently by Xavier et al. (2003abc) with low-phytate corn and low-phytate 

soybean meal have clearly shown that phytase is effective when included in diets 

consisting of low-phytate feedstuffs. For example, P bioavailability was 
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increased from 35% in a 3:1 blend of conventional corn and soybean meal to 

64% when phytase was added (Xavier et al., 2003a); whereas, adding ph'/tase to 

a 3:1 blend of low-phytate corn-soybean meal increased P bioavailability from 

79% to 90%. The greater numerical improvement in P bioavailability from 

phytase addition to the conventional versus the low-phytate corn-soybean meal 

mix is attributed to the conventional feedstuffs having more substrate (phytate) 

upon which the enzyme can act. On the other hand, phytase seemed to be 

equally effective in degrading the phytate P in the two types of corn-soybean 

meal mixes in that it converted approximately one-half of the unavailable f) to an 

available form. In these studies, feeding pigs low-phytate corn-soybean meal 

diets with phytase reduced P excretion by 62 to 68% compared with contr81s fed 

conventional corn-soy diets without phytase (Xavier et al., 2003bc). 

Calcium Effects on Phytase. The greater the calcium content of the diet 

the poorer the efficiency of phytase activity (Fisher, 1992; Lei et al., 1994; 

Sebastian et al., 1996). Calcium is thought not only to precipitate phytate but 

also to interact with soluble substrate, as a result reducing the susceptibility of 

the subtrate to enzymatic attack (Sebastian et al., 1996). Use of chelator~;, such 

as citrate, which removes the calcium from soluble phytate complexs, are 

possible methods to increase the apparent activity of phytase (Zyla et al., 1996; 

Boling et al., 1998; Maenz et al., 1999). Not only the absolute calcium c0t1tent 

but its ratio to phosphorus content in the diet affect phosphorus absorption (Liu et 

al., 1998,2000; Qian et al., 1996). In addition, vitamin D has been shown to 
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affect phytate utilization. Increasing vitamin D and decreasing calcium imoroved 

phytate utilization even in the absence of phytase addition (Edwards, 199;~ and 

Fisher, 1992). 

Phytase Effects on Weanling Pigs. The effectiveness of Aspergillu 3 niger 

phytase in improving the utilization of phytate-P in corn-soybean meal diets (Lei 

et al., 1993; Leunissen and Young, 1992; Adeloa et al., 1995; Radcilffe et al., 

1998; Roberson, 1999; Zhang et al, 2000), semipurified diets (Kornegay et al., 

1996), and pearl millet soybean meal diets (Murry et al., 1997) for weanling pigs 

has been reported. The effect was linear over a range of dietary phytase activity 

from Oto 750 PU/g of corn-soybean meal diets (Lei et al., 1993a). Anoth,3r 

study by Lei et al. (1993b) indicated that supplements of 1,200 PU/g maximized 

utilization of phytate-P and possibly removed the need for inorganic P 

supplementation. A recent study showed that supplementing phytase 

(1,000PU/kg) to the low P diets, significantly improved average daily gain. A 

significant additional effect was observed when acetic acid was added to the diet 

(Valencia et al., 2002). Also, these authors reported that the apparent 

digestibility of P and Ca were increased by phytase or acetic acid, and by 

phytase and acetate supplementation, but average daily feed intake was not 

different among treatments. This study showed that an additional effect of acetic 

acid combined with phytase in promoting better mineral digestibility. The 

improved performance observed in this study seems to support the hypothesis 

that young weanling pig may be unable to adequately digest certain nutrients. 
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Due to the lack of adequate levels of hydrochloric acid in the stomach (Jongbloed 

et al., 1992), addition of citric acid can improve both protein digestion and 

enhance phytase activity by lowering gastric pH. In this study, phosphorus 

excretion decreased by 44% with the addition of phytase (up to 1,000 PU/kg) and 

it was further reduced to 51 % when acetic acid (1 %) was also added with 

phytase. However, Radcliffe et al. (1998) reported the additions of citric acid and 

phytase to weanling pigs were each beneficial, but no synergistic effect was 

found. These authors also observed that phytase addition (up to 750 PU(<g) did 

not affect performance, but linearly increased rib shear force, shear energy, dry 

bone weight, ash weight, ash percentage, and Ca and P digestibility. The 

addition of citric acid reduced dietary pH and stomach pH, and improved J\DG, 

feed efficiency, and Ca digestibility. 

In low phytate corn, Sand et al. (2001) reported that the percentage of P 

digested and retained was improved and fecal P excretion lowered by feeding 

low phytate corn. In this study, the addition of 600 phytase units per kg to high 

available P corn-based diets further improved P digestibility and reduced 1=> 

excretion in pigs. This study indicated that formulation of diets with low phytate 

corn with dietary phytase can maximize P utilization and minimize P excrEtion. 

Effects of Phytase on Growing- Finishing pigs. During the past decade, 

numerous experiments have been conducted which demonstrated that diEitary 

microbial phytase can partly render phytate-P available to growing-finishing pigs 

(Jougbloed et al, 1992, 2000; Cromwell et al., 1993b, 1995; Harper et al., ·1997; 
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Kemme et al., 1997, 2000) . A number of studies clearly show a consistent 

positive effect of microbial phytase on P and Ca bioavailability. The addition of 

microbial phytase to corn-soybean meal diets for growing-finishing pigs he.is been 

shown to increase the availability of P and Ca (Jougbloed et al, 1992; Cromwell 

et al., 1993b, 1995; Harper et al., 1997; Kemme et al., 1997; Jongbloed et al., 

2000 ). The addition of microbial phytase to feed usually results in the 

enhancement of the digestibility of phytate-P up to 40% (Jongbloed et al., 1996) 

indicating 60% of the phytate-P is still unavailable to pigs. Jongbloed (19n7) 

reported that lowered intestinal pH increases the solubility of P and phytate and 

improves P absorption in the small intestine. In addition to their effect on 

intestinal pH, supplementary organic acids can also bind various cations E1long 

the intestine and may act as chelating agents (Radvindran and Kornegay, 1993). 

The efficacy of microbial phytase is shown to be pH-dependent (Simons et 

al., 1990) and the highest activity was observed at two pH optima (5.0 to E>.5 and 

2.5). A large portion of digesta leaves the pig stomach shortly after feeding and 

has a pH that is too high for optimal microbial phytase (Jongbloed et al., 1992). 

Therefore, feed acidification may reduce the rate of gastric emptying (Mayer, 

1994 ). Kemme et al. (1999) reported that supplementation of a grower-finisher 

diet with 3% lactic acid not only had a positive effect on the digestibility of total P, 

but also a synergistic interactive effect with phytase. Similar effects were 

reported by Jongbloed et al. (2000). However, Radcliff et al. (1998) repor,:ed that 

addition of citric acid (1.5 or 3.0%) improved P digestibility, but there was ,10 

significant interaction between microbial phytase and citric acid. 
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Effects of Phytase on Amino Acids. Mroz and Jongbloed (1998) pr:::>posed 

that the presence of phytate-rich diets interferes with optimal amino acid 

utilization from intact protein by formation of indigestible protein-phytate 

complexes, by inhibition of digestive enzymes, and by depressed absorption of 

nutrients from the small intestine. The effect of dietary phytase on crude protein 

or amino acid utilization by pigs seems to be inconsistent. Radcilffe et al. (1999) 

reported that the addition of microbial phytase has been shown to increas,a 

availability of amino acids. However, Traylor et al. (2001) reported that acldition 

of phytase up to 1,500 PU/kg did not improve ilea! digestibility of amino acids 

provided by soybean meal, but improved Ca and P utilization by growing pigs fed 

soybean meal based diets. Also, Nasi et al. (1995) reported that addition of 

1,000 PU/kg did not improve apparent total tract digestibility of crude protoin 

when pigs were fed a barley-rapeseed meal-based diet. Other studies (K13taren 

et al., 1993; Mroz et al., 1994) have shown that protein deposition and (or) 

protein retention were increased with microbial phytase. 

In terms of energy utilization, Johnston (2000) reported that the addition of 

microbial phytase increased GE digestibility in pigs fed a corn-soybean meal diet. 

Also, Williams (2001) reported that phytase increased starch digestibility i11 pigs 

fed corn-soybean meal diets. However, a recent study by Shelton et al. (2003) 

showed that the addition of 500 PU/kg did not have an effect on average daily 

gain, daily feed intake, gain:feed, longgissimus muscle area, 10th-rib fat depth, or 

energy availability. 
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Table 3.5. Summary of recent phytase experiments. 

Reference Initial Diets Phytase Activity ADG ADFI G/F Digestibility Bone Others 
BW 

Augspurger 8.4 kg Corn-SBM E.coli 400 i NA i NA i .108 %P was 
etal. , 2003 Phytase Fibula released by 

Ash 400 PU 

Traylor et 25 kg Semi- Natuphos 500-1500 NA NA NA No effect on NA 
al, 2001 (canulati purified (Aspergillus App & ileal 

on) niger) AA dig. 
i Ca, P 

Sands et 9.25 kg Corn-SBM Natuphos 600 i NS NS i Ca NA j Plasma P 
al. , 2001 14 kg w/high aP (Aspergi/lus retention , P 

niger) digestibility 
Stahal et 11 .0 kg Corn-SBM Yeast 300 -1 ,200 i NS NS NA NA T Plasma P 
al.,2000 (P=.15) 

i:.. Matsui et 10.5 kg Corn-SBM Yeast or 1,000- 4,000 T NS NS NA j tibial j serum P, 
,0 al. , 2000 Aspergillus (yeast) (Yeast< density, (yeast had 

niger 1000 (Asp.) Aspergil tibial P less stability) 
lus) 
4,000 
(Y) = 
1,000 
(A) 

j 101h rib Zhang et 9.0 kg Corn-SBM Aspergillus 250,500, i NS i i OM , P, Ca No toxic at 
al.,2000 niger 2,500 2,500 PU 
Kemme et 37kg Maize- Aspergillus 900 + 30g/kg NA NA NA i OM, P, Ca, NA 
al. , 1999 (Cannula SBM niger +Lactic (lactic acid) Mg, N, amino 

ted pigs) acid acid (no 
interaction) 

Nasi et al. , 36 kg Maize-, Trichoderma 1100 + (500, NA NS NS i Ash , P NA i P retention , 
1999 barley- reesei + 4800, 7900, T Ca 

SBM (acid 19300) retention 
phosphase) (Maize-SBM) 

Han et al. , 9.9kg Corn- Natuphos 1,200 i i i NA i MT 1 Plasma P 
1998 12.3 kg SBM-WM Cereal (WM) 300+WM+cit strength 

10.7k ric acid 1.5% 



Table 3.5 (Continued) 

Reference Initial Diets Phytase Activity ADG ADFI G/F Digestibi lity Bone Others 
BW 

Liu et al. , 23 kg Corn-SBM Natuphos 500 w/Ca:tP i NS t t P, Ca t MC 
1998 (Aspergillus strength, 

niger) ash 
Radcliffe et 7.4 kg Corn-SBM Natuphos 250,500,750 NS NS NS t OM, P, Ca t 101\ib, 
al., 1998 n=96 (Aspergillus + citric acid ash 

9.6 kg niger) 
n=96 

O'Quinn et 50 kg Sorghum- Natuphos 300, 500 t t NS t ilea I total P, NS carcass 
al. , 1997 80 kg SBM Ca CP, fat water 

(300 was 
No effects on optimum} 
OM, GE, N 
dig. 

~ 
Liu , et al., 18.7 kg Corn-SBM Natuphos 250,500 t t t ! fecal P NA 

0 1997 (40%), 
49% 
w/soaking 

t 101h rib Harper et 18.6 kg Corn-SBM Natuphos 250, 500 t t t growing j P No effects on 
al. , 1997 29.5 kg phase, No effects carcass 

overall Ca,DM 
Kemme et 10 kg Corn.WM, Aspergil/us 500 t t T t P, NA 
al., 1997 30 kg SBM, niger growing growing- t Ca except 

Sows Tapioca finish ing sow 
meal finishing 

Murry et al. , 10.9 kg Pearl microbial 700, 1,000 l NS l ! fecal P t bone t serum P 
1997 Millet-SBM trend N, Ca mineral trend Zn 

Zn dens it 



Table 3. 5. (Continued) 

Reference Initial Diets Phytase Activity ADG ADFI G/F Digestibility Bone Others 
BW 

Han et al. , 10 kg Corn-SBM Aspergillus 1,000 T NS NS T retained P, T MC- T serum P 
1997 51 kg ficuum N, Ca MT 

Cereal strength 
(WM) 

i 101hrib , Yi et al., 7.5 kg semipurified Natuphos 350,700,10 i i or NS i i P 
1996 n=96 (Aspergillus 50,1400 MC 

niger) 
Cromwell et 38.3 kg Corn-SBM Allzyme(As 500 NS NS l NA i MT- i aP (23%) 
al. , 1995 13.0 kg pergillus 250,500, l l l ! P excretion MC, made aP 

n = 115 niger) 1,000, femur 
2,000 

Cromwell et 24.2 kg Corn-SBM Natuphos 250, 500, l l NS NA i MT- i aP (29%) 
al., 1995 21 .6 kg (Aspergillus 1,000 l l NS ! P excretion MC, made aP 

lJl 
15.3 kg niger) l l i femur 

0 n = 162 ash 
Adeola et al. , 9.4 kg Corn-SBM Natuphos 1,500 + Zn l NS i l Ca, P, Cu, NA l Plasma P, 
1995 n = 48 (.63% tP) (Aspergil/us 100ppm Zn (w/Zn + Mg, Zn(w/o 

niger) phytase) Zn) 
Lei, et al., 7.61 kg Corn-SBM Aspergil/us 750, 1,050 NS NS NS ! fecal P NA 
1993 6.39 kg niger 1,250 (55%) 

n = 62 1,350 
Cromwell et 26.4 kg Corn-SBM FINASE(As 250, 500, l l i NA i MT, i aP (43%) 
al., 1993 33.6 kg pergi/lus 1000 i NS NS MC, made aP 

18.6 kg niger) T l NS Femur 
20.7 kg 
n=225 



Phosphorus Equivalency Value of Microbial Phytase 

In order for swine producers to efficiently use microbial phytase as a 

supplement, accurate equivalency values of phytase for Pis important. Ideally, 

in studies designed to develop equivalency values, multiple levels of P should be 

fed without added phytase and multiple levels of phytase should be fed at a low 

level of dietary P in order to develop response equations for both P and phytase. 

These response equations can be set equal to one another and solved to 

determine the P equivalency of phytase. In general, linear response (Y =a+ bX) 

or an asymptotic curve (Y = a(1-be-kx)), where Y = response and X = the level of 

P or phyase, have provided the best fits for phytase and P responses in corn

soybean meal based diets (Kornegay et al., 1998). However, Jongbloed et al. 

(1996) reported that a logistic curve provided a better fit to the response of P and 

phytase in a Dutch practical diet. The P equivalency value for pigs fed 500 

PU/kg reported in literature range from 0.06 to 0.25% available P (Table 3.6). 

Factors which may influence these estimates include the basal level of P, 

the response criteria used, and most importantly the ratio of Ca: total P. 

Phosphorus absorption has been shown to be impaired if the Ca to P ratio is too 

wide (NRC, 1998). Qian et al. (1996) reported that there was a negative effect of 

widening Ca to P ratio in excess of 1.2:1 on microbial phytase efficacy in pigs, 

which may be the result of poorer P absorption due to a wide Ca to P ratio rather 

than a decrease in phytase effectiveness. Excess Ca may also bind to the 

phytate molecule, making it insoluble and therefore unavailable for exposure to 

phytase in the gastrointestinal tract. 
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Table 3.6. Phosphorus equivalency of phytase in Corn-Soybean meal diets 
Response Criteria Equation 
ADG Y= 4.062-3.865e·0·00095x 

y = 3.362 - 3.380e·0.002666X 
Y = 0.0654 - 0.0741 e·O.OOS39X 
Y = 0.084 + 0.002X 
y = 1.19 - 1 .25 e·0.0050X 
y = 0.277 - 0.274 e·0.000797X 
Y = 0.0977- 0.0988 e·0.0035X 
Y = 0.176 + 0.00213X 
Y = 0.033 + 0.0032X 

101h rib ash, % Y = 1.848 - 1.926 e·0·0045x 
Y = 1 .629 - 1 .806 e·0.0035X 

101h rib strength Y = 0.348 - 0.357 e·0·00052x 
Y = -0.0243 + 0.0014X 

Metacarpal ash, % Y = 1.112- 0.1118 e·0·0029x 
Y = 0.1127 - 0.1184 e·0.00095X 

Metacarpal strength Y = 0.0057 + 0.000005X 
Y = 0.0862 - 0.0891 e·0.0014X 
Y = 0.00097 + 0.00149X 
Y = 0.0788 + 0.002X 

P Digestibility Y = 2.631 - 2.965 e·0·00105x 
Y = 1 .564- 1. 735 e·0.00284X 
Y = -0.087Ln(-6.718 + 7.713 e· 
0.000199X) 

Y = -0.464Ln(0.888 - 0.0014 X) 
Y = 0.1552 - 0.1489 e·0.00195X 
Y = -0. 112 + 0. 003 7X 
Y = -0.22 + 0.0038X 

a The P equivalency value for pigs for 500 PU/kg 
b Kornegay and Qian, 1996 
c Harper et al., 1997 
d Radcliffe and Korenegay, 1998 
e Skaggs, 1999 
f Rice et al., 1999 

.17 5 

.25 b 

.06 C 

.10 d 

.11 d 

.09 e 

.08 e 

.12 t 

.16 t 
.17 b 

.13 b 

.11 C 

.07 d 

.09 e 

.04 e 

.03 e 

.04 e 

.08 t 

.09 t 
.12 b 

.11 b 

.12 C 

.08 d 

.10 e 

.18 t 

.17 t 

In studies by Kornegay and Qian (1996), Jongbloed et al. (1996), and Yi 

et al. (1996b) only two levels of P were fed, and the response of various criteria 

to P was assumed to be linear. The Ca:P ratio was 2:1 in studies by Kornegay 

and Qian (1996) and Yi et al. (1996b). However, in a study by Jongbloed et al. 
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(1996) the Ca:P ratio ranged from 1.94 to 2.5: 1. Harper et al. (1997) used three 

levels of P and maintained a Ca:P ratio at 1.2:1 to 1.4:1 in all growing-finishing 

diets. These authors found that 500 PU of microbial phytase released 0.96 g of 

P/kg of diet. For weaning pigs, Radcliffe and Kornegay (1998) determined the P 

equivalency value of microbial phytase. The addition of microbial phytase to a 

low P diet improved ADG, rib shear force, ash, and digestibility of P. In this study 

500 PU/kg of diet was equivalent to 0.84 g of P/kg of diet (.084% P). 

Data from 52 experimental have been used to estimate the P equivalency 

value of dietary microbial phytase (Kornegay et al., 1998). These authors used 

data from these experiments to generate a response curve for P digestibility, 

digested P (g/kg), and P excretion as influenced by phytase and P. The addition 

of dietary phytase increased P digestibility, but the magnitude of this response is 

dependent on diet type, total P content of the diet, phytate P content of the diet, 

Ca:P ratio, and age and physiological status of the pig. The actual data was 

plotted to generate the curve. For basal diets, with no added phytase, P 

digestibility ranged from 8.4 to 63%. This wide range is due to the inclusion of 

plant feedstuffs with intrinsic phytase activity in some studies, differences in the 

Ca:P ratio, differences in the inclusion level of inorganic P, and differences in the 

phytate P level of the diet. This variation continues as phytase is added to the 

diets and causes the relatively poor fit (r2=.47) of the response curve calculated 

in this review. However, if the equation and observed value are adjusted by 

calculating the percentage unit improvement in P digestibility as phytase is added 

to the diet, then the variation is decreased. Based on the review by Kornegay et 
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al. (1998), 500 PU of phytase/kg of diet will release 0.75 g of P. If this number is 

divided by the estimated bioavailability of inorganic P (76.7%) then 500 PU/kg 

can replace 0.98 g of P from the inorganic P source, which is in agreement with 

the value from Harper et al (1997) and Radcliffe and Kornegay (1998). 

In summary, phytate content in feed ingredients varies. The availability of 

phytate to exogenous microbial phytase hydrolysis varies from ingredient to 

ingredient (Ravindran et al., 1999). For practical purposes, a significant safety 

margin needs to be employed in estimation of the phosphorus contribution as a 

result of phytate hydrolysis induced by microbial phytase. The consequence of 

overestimation for the benefit of the phytase are dramatic. van Tuijl (1998) 

reported the estimates of P release as a result of the addition of phytase seems 

to be over-optimistic when translated into a commercial production system. 

Nevertheless, the benefit in reducing pollution is clear. 
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CHAPTER IV 

Experiment 1 

Effects of a Solid-State Fermented Phytase on Growth Performance, 
Phosphorus Excretion, Bone traits and Tissue Accretion Rates of Growing 

Pigs fed Low P, Corn-Soybean Meal Based Diets 

ABSTRACT: Forty-two barrows (avg BW = 19.9 kg) were used in a 33-d study 

to determine the effects of the addition of a solid-state fermented phytase 

complex (Allzyme SSF; Alltech, Inc) to low P, corn-soybean meal diets on growth 

performance, P excretion, bone traits, and tissue accretion rates. Pigs were 

blocked by weight and ancestry, and randomly allotted to one of seven dietary 

treatments (6 pigs/trt). A basal diet consisted of corn and soybean meal and was 

adequate in all nutrients, except Ca and P. This diet contained 0.34% total P 

(0.07% available P), all of which was provided by corn and soybean meal. 

Treatments were the basal, the basal plus monosodium phosphate (MSP) to 

provide 0.05, 0.10, and 0.15% added available P, and the basal plus enzyme to 

provide 250, 500, and 1,000 PU/kg. All diets were formulated to 0.95% total 

lysine and a Ca:total P ratio of 1.2:1. Pigs were housed individually in metabolic 

chambers with ad libitum access to feed and water. There were two 5-d total 

collection periods (d 10-15 and d 25-30) during the 33-d study. At the end of the 

33-d study, all pigs were killed and the femurs and 3rd/4th metacarpals and 

metatarsals (MM) were extracted. The remainder of the carcass was ground for 
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ash and P analysis. Average daily gain and G:F increased (linear, P < 0.05) with 

addition of MSP or SSF. However, ADFI was not affected (P > 0.29) by either 

addition of MSP or SSF. The addition of 500 or 1,000 PU/kg to the low P, corn

soybean meal diet increased ADG and G:F similar to that for the highest level of 

MSP. Dry matter, N, and energy digestibility were not different (P > 0.10) among 

treatments, but digestibility of P increased (linear, P < 0.01) with addition of MSP 

or SSF. Compared to the basal diet, additions of SSF decreased P excretion 

(3.06 vs 2.48, 2.36, 1.68 g/d) by 19.3, 23.3, and 45.4%, respectively. Bone 

breaking strength (BS) of MM and femurs and ash (%) increased (linear, P < 

0.01) with increasing MSP or SSF. Based on average BS and ash, addition of 

250, 500, or 1,000 PU/kg was equivalent to 0.066, 0.120, and 0.140% available 

P, respectively. For the carcass, the contents(%) and accretion rates of water, 

protein, and fat were not affected (P > 0.10) by either MSP or SSF. The content 

(%) and accretion of P and ash increased (linear, P < 0.01) with addition of MSP 

and SSF. The increase in bone strength and carcass P associated with 

increasing SSF was similar to that for MSP addition. These data indicate that the 

addition of a solid-state fermented phytase improves growth performance and P 

utilization, and markedly reduces P excretion of pigs fed low P, corn-soybean 

meal diets. 

Key Words: Pigs, Phytase, Bone strength, Phosphorus excretion 
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Introduction 

Phytate (myoinositol 1,2,3,4,5,6 hexa, dihydrogen phosphate) is the major 

form of P in cereal grains and oilseed meals (Reddy et al., 1982). Approximately 

60 to 70% of the P in corn and soybean meal is in the form of phytate (Nelson et 

al., 1968; NRC 1998). Monogastric animals such as pigs and chicks can not 

utilize phytate P efficiently due to the lack of endogenous phytase that hydrolyzes 

phytic P (Taylor, 1965; Peeler 1972). Therefore, inorganic sources of P have 

been routinely added to diets for non-ruminant animals to supply sufficient levels 

of P which can lead to significant amounts of P excreted to the environment. 

Recently, environmental concerns related to excess P excretion have become a 

major issue confronting swine industry. Due to these concerns, decreasing 

addition of inorganic P and the addition of dietary phytase may necessary to 

reduce concerns related to P excretion. Many efforts have been made to 

decrease P excretion by improving P bioavailability in the feedstuff. Dietary 

phytase has been added to swine diets to improve P utilization and decrease the 

amount of P excretion into the environment (Jongbloed 1987; Lei et al., 1993; 

Cromwell et al., 1995; O'Quinn et al., 1997). 

There are several types of phytase already available in the market and 

new phytase sources are being developed. Most of the phytase in the market is 

produced by submerged microbial fermentation (SmF). Recently, solid-state 

fermentation (SSF) technology has been used as an alternative to produce 

phytase. Therefore, the purpose of this study was to determine the effects of the 

addition of a solid-state fermented phytase complex (Allzyme SSF; Alltech, Inc) 
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to low P, corn-soybean meal diets on growth performance, P excretion, bone 

traits, and tissue accretion rates in growing pigs. 

Materials and Methods 

Animals, Diets, and Treatments. A total of 42 barrows (Crossbred, 

Yorkshire, Hampshire) with an average BW of 19.9 kg were used in a 33-d study 

to investigate the effects of phytase addition on growth performance and bone 

strength of pigs fed corn-soybean meal-based diets. Pigs were blocked by body 

weight and allotted randomly to one of seven dietary treatments in a randomized 

complete block design. 

All diets were corn-soybean meal based (Table 4.1 ). Diet 1 served as the 

basal diet and was composed of corn and soybean meal. Corn and soybean 

provided 0.34% total P and 0.07% available Pin the basal diet. Monosodium 

phosphate (MSP) was added to the basal diet in increasing amounts to provide 

0.05, 0.10, and 0.15% available P (Diet 2 to 4 ). Diets 5 to? were as Diet 1 with 

additions of 250, 500, or 1,000 phytase units (PU)/kg of diet. All experimental 

diets were formulated to contain 0.95% lysine. All nutrients met or exceeded 

NRC (1998) standards except Ca and P. The Ca: total P ratio in all diets was 

fixed at 1.2: 1. 

In this experiment, pigs were individually housed in metabolic chambers in 

an environmentally-controlled room. The chambers were specially designed for 

the total, but separate collection of feces, urine, and wasted feed. Each chamber 
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had a galvanized steel mesh floor and one stainless steel self-feeder and one 

nipple waterer. Beneath the floor, a five-quart plastic container was used to 

collect urine. All pigs were allowed ad libitum access to feed and water. All diets 

were fed in meal form. 

Collection and Analyses. There were two 5-d collection periods (d 10 to 

15 and d 25 to 30) during the 33-d study. Feces were collected every morning 

during the collection periods from the 1-mm screen under the chamber. The 

collected feces were immediately weighed and placed in a plastic bag, and 

frozen (-20 °C). At the same time, refused feed was collected and weighed. 

Initially, frozen fecal samples were dried in a forced-air oven for 4 d at 

55°C before grinding. Partially dried feces and diets were ground through a 1-

mm screen using a Wiley Mill (Standard Model No.3; Arthur H. Thomas Co., 

Philadelphia, PA). Dry matter content of diets and feces were determined by 

drying at 100°C for 24 h (AOAC, 1998). Nitrogen content was determined by the 

Kjeldahl procedure (AOAC, 1998) using an automated analyzer (FOSS Tecator, 

2020 Digestor, 2400 Kjeltec Analyzer; Hoganas, Sweden). Total phosphorus 

content in feces and diets was determined by a gravimetric quinolinium 

molybdophosphate method (AOAC, 1998). 

At the end of the experiment, all pigs were slaughtered. Following 

scalding, scraping, and evisceration, the hot carcass was weighed. The front 

and rear feet were removed and frozen (-20 °C). Also, the femurs from each pig 

were excised and placed in a plastic bag and frozen (-20 °C). Later, the feet 
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were allowed to thaw and autoclaved at 120 °C and 15 psi for approximately 7 

min. Following autoclaving, the MC and MT were extracted and cleaned of 

extraneous tissue, and frozen. Later, the MC and MT were allowed to thaw 

overnight before breaking strength analyses. Breaking strength of the MC and 

MT were determined using an lnstron Universal Testing Machine (Model 4502, 

lnstron, Canton, MA) by procedures of Cromwell et al. (1972). Bones were 

placed on supports 3.8 cm apart for the MC and MT, and 8.1 cm apart for 

femurs. Breaking strength was defined as the amount of force (kg) required to 

break the bone when placed in a horizontal position. The breaking strength of 

MC and MT were averaged. The marrow from the fourth MC of the right foot of 

each pig was removed and the bones were soaked in petroleum ether for 24 h to 

remove fat. After fat extraction, the bones were dried overnight at 100 °C, 

weighed, and ashed for 48 hat 600 °C. Both femurs from each pig were 

cleaned of all extraneous tissues and weighed. The outside diameter of the 

femurs was measured at the midshaft by averaging two measurements taken 90° 

to each other, using a caliper. Breaking strength of the femurs were performed 

as previously described for the MC and MT. 

At the start of the experiment, 6 pigs were initially slaughtered for the 

determination of initial body composition. At the end of the experiment, all pigs 

were weighed and slaughtered at the Oklahoma State University meat lab. The 

carcasses were weighed and placed in box and stored at -20 °C for grinding and 

lab analyses. The carcasses were cut into small pieces with a band saw and 

ground three times through a 64-mm screen using a commercial meat grinder 
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(Auto Grinder, Model 801 GHP, Astria, OR). During the grinding process, dry ice 

was added to prevent water loss. After grinding, approximately 500 g of well

mixed sample was collected in a plastic container and stored in a -20 °c freezer. 

Carcass sub-samples were freeze-dried (Virtis Freezemobile 12SL;Gardiner, 

NY). The frozen carcass sub-samples were ground using the same procedure 

for feed and feces. Nitrogen and phosphorus content in the carcass was 

determined by the same procedures described in feed and feces analysis. 

Accretion Rate. Accretion rates of the chemical components (water, 

protein, lipid, phosphorus and ash) of the carcass were determined by a 

"comparative slaughter" procedure as described by Carter and Cromwell (1998). 

Six pigs from the same contemporary group as the experimental pigs were 

harvested at the start of experiment for the determination of initial body 

composition. The weight of the pigs used to estimate initial carcass composition 

ranged from 14.5 to 25.5 kg BW. The carcasses from the initial pigs were 

processed the same as that described for the experimental pigs. Carcass 

composition was regressed on BW for each of the initial pigs to obtain a 

prediction equation to estimate the initial carcass composition for each of the 

experimental pigs based on its initial BW. Accretion rates of the chemical 

components (water, protein, lipid, phosphorus and ash) were determined by 

subtracting the estimated initial composition from the final composition and 

dividing by the number of days on test for each pig. 
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Statistical Analyses. Data were analyzed as a randomized complete block 

design using procedures described by Steel et al. (1997) with initial BW as the 

blocking criterion. The model included the effects of block (rep), treatment, and 

block x treatment (error). The model for digestibility included the effects of block 

(rep), treatment, period and treatment x period. The effects of MSP and phytase 

supplementation were tested for linearity and curvilinearity using orthogonal 

polynomial contrasts. For the four levels of phytase, polynomial coefficients for 

unequally spaced treatments were generated using the ORPAL matrix function of 

the IML procedure of SAS. In addition, a nonorthogonal contrast was used for 

testing treatments between SSF phytase and control diet. In all cases, pig 

served as the experimental unit. 

Results 

Analyzed total P contents in the diets were 0.37, 0.43, 0.48, 0.52, 0.37, 

0.37, and 0.37% for the 7 dietary treatments, respectively. These were 

somewhat higher than the calculated value; however, the incremental increase in 

P was similar to calculated values. All diets without SSF phytase had similar 

levels of total P content. 

Growth Performance. Average daily gain was increased (linear, P < 0.03) 

by the addition of monosodium phosphate (Table 4.2). Among the pigs fed diets 

with SSF phytase, ADG was linearly increased (P < 0.05) as SSF phytase 

increased from O to 1,000 units/kg. Adding 500 or 1,000 PU/kg of SSF phytase 

to the basal diets increased ADG and gain:feed by 17% and 9%, respectively, 
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compared with basal diet. However, with increasing phytase level from 500 to 

1,000 PU/kg, there was no further improvement in ADG. Average daily feed 

intake for 33 d was not affected (P > 0.29) by addition of monosodium phosphate 

or SSF phytase. Compared with pigs fed the basal diet, ADG (P < 0.03) and 

gain:feed (P < 0.08) for pigs fed SSF phytase supplemented diets was greater. 

Excretion and Digestibility. There was no interaction (P > 0.5) between 

treatment and period; therefore, the data were pooled. Excretion and absorption 

of dry matter, energy, and nitrogen were not affected (P > 0.89) by either the 

addition of monosodium phophate or SSF phytase (Table 4.3). Among the pigs 

fed monosodium phosphate, the amount of P excretion was similar, but percent 

P excretion relative to P intake was decreased by addition of monosodium 

phosphate. For the pigs fed SSF phytase, the amount of P excretion via feces 

decreased (linear, P < 0.01) as SSF phytase increased. The level of 1,000 

PU/kg improved P digestibility by 26% units compared to the basal diet. Also, 

supplementation of SSF phytase linearly decreased (P < 0.01) P excretion. 

Compared with the basal diet, P excretion via the feces was dramatically reduced 

by 22.8% and 45.9% with addition of 500 and 1,000 PU/kg, respectively. Also, 

digestibility of P was improved linearly (P < 0.01) from 44% to 70% when SSF 

phytase was added up to 1,000 unit/kg of diet. 

Bone characteristics. For bone breaking strength, the addition of 

monosodium phosphate to the basal diet increased (P < 0.01) breaking strength 
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of the metacarpals, metatarsals, and femurs (Table 4.4). When SSF phytase 

was added, bone (metacarpal, metatarsal and femurs) breaking strength also 

increased (linear, P < 0.01 ). Pigs fed diet supplemented with 1,000 PU/kg had 

the maximum bone breaking strength. However, adding SSF phytase from 500 

to 1,000 PU/kg did not increase bone breaking strength as much as from Oto 

500 PU/kg. Metacarpal-metatarsal and femur breaking strengths of pigs fed the 

basal diet with monosodium phosphate and SSF phytase were regressed based 

on total P and available P intake. The bone breaking strength fit very well (R2 = 

0.99) when linearly regressed based on total P (Figure 4.1 ). Compared with the 

basal diet, pigs fed diets containing SSF phytase had greater (P < 0.01) bone 

breaking strength and ash. 

For physical characteristics of the bone (Table 4.4 ), the weight of 

metacarpals (P < 0.06), metatarsals (P < 0.01 ), and femurs (P < 0.01) were 

increased by addition of monosodium phosphate. Also, the addition of SSF 

phytase increased (linear, P < 0.01) bone weight (metacarpal, metatarsal, and 

femurs). The diameter of the femurs was increased by the addition of MSP (P < 

0.02) and dietary SSF phytase supplementation (P < 0.04). Ash content in the 

metacarpals increased (linear, P < 0.01) with increased level of monosodium 

phosphate and SSF phytase. 

Carcass composition and accretion. For carcass composition (Table 4.5), 

the percentages of water, protein (N x 6.25) and fat were not affected (P > .66) 

by addition of MSP or SSF phytase. However, the percentages of ash and P 
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were increased (linear, P < 0.01) by addition of MSP or SSF phytase. Accretion 

rates (g/d) of water, protein, and fat were similar (P > 0.10) among the dietary 

treatments. However, the accretion rates of P and ash increased (linear, P < 

0.01) as MSP or SSF phytase increased. The accretion rates of P and ash for 

pigs fed diets with SSF phytase were greater (P < 0.01) than that for pigs fed the 

basal diet. 

Discussion 

The natural storage form of Pin almost all plants exists as phytate 

(Cosgrove, 1980). About 60 to 70% of the Pis organically bound in the form of 

phytate in cereal grains, grain by-products, and oilseed meals (Lelson et al., 

1968; Lolas et al., 1976), which is poorly available to the pig (Taylor, 1965; 

Peeler, 1972; Cromwell, 1979) due to lack of phytase activity. Therefore, 

inorganic Pis routinely added to feeds to supply sufficient P for growth, which 

cause excretion of unavailable P to the environment. During the past decade, 

microbial dietary phytase has been developed and utilized in the feed industry. 

Yet, nutritionists are looking for cheaper and better sources of phytase. 

In terms of production method, most of dietary microbial phytases in the 

market are produced by the submerged fermentation method. Also, genetically 

modified microbes are commonly used to produce large volumes of commercial 

dietary phytase. An early study by Han et al. (1987) demonstrated that 

cultivation of microbes on a solid substrate was an economical method for 

phytase production. Recently, increased interest has been given to SSF 
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methods and this method has been applied to produce commercial scales of 

microbial phytase because of their biological, practical and economical 

advantages, which includes higher product concentration, improved product 

recovery, simplicity of cultivation equipment, decreased wastewater output, lower 

capital investment, and lower plant operation cost (Becerra and Gonzalez, 1996). 

Another advantage is that the phytase complex from SSF has a significant 

amount of side enzyme activity such as ~-glucanase, protease, xylanase, 

cellulase (Filer, 2001 ), which is an attractive advantage from a nutritional 

standpoint. 

As we expected, P digestibility was dramatically improved by addition of 

SSF phytase. Among the pigs fed MSP, the amount of daily fecal P excretion 

was similar, but P excretion based on% P intake was decreased as MSP 

increased. Also, supplementation of SSF phytase decreased daily fecal P 

excretion. Addition of 500 and 1,000 PU/kg reduced fecal P excretion by 22.8% 

and 45.9%, respectively, compared with the basal diet. Note that pigs fed the 

highest levels of SSF phytase (1,000 PU/kg) had similar ADG and gain:feed with 

those fed highest level of added available P from MSP. Also, digestibility of P 

was improved linearly from 44% to 70% as SSF phytase increased up to 1,000 

PU/kg of diet. These results are similar with previous studies with SmF phytase 

(Cromwell, 1995, 1996). 

Addition of SSF phytase up to 1,000 PU/kg improved bone breaking 

strength. Similar results consistently have been found in previous research (Han 

et al.,1997, 1998; Liu et al., 1998; Cromwell et al., 1993, 1995; O'Quinn et al., 
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1997, Zhang et al, 2000). Even though there was a linear increase in P 

digestibility, a quadratic improvement in bone breaking strength by SSF phytase 

was observed which is somewhat different than other studies. Ca:total P was 

fixed at 1.2:1 in this study. Phytase was added to the basal diet from 250 to 

1,000 PU/kg with fixed Ca (0.41%) levels. It seems Ca might have been limited 

for bone mineralization in this experiment. A previous study showed that 

excessively wide Ca:total P ratio decreased P absorption, and growth 

performance of weanling (Qian et al., 1996) and growing-finishing pigs (Liu et al., 

1994, 1998). Also, previous studies indicated that Ca:total P ratio had positive 

effects on phytase. Liu et al. (2000) reported that lowering Ca:total P ratio in 

diets containing phytase from 1.5:1 to 1.0:1 increased the apparent absorption 

(% and g/d) of P in the small intestine, but Ca absorption was not affected. 

Therefore, when formulating diets with dietary phytase, lowering Ca:total P ratio 

is critical for maximizing P absorption and effects of phytase. However, in other 

studies, Ca levels were fixed at the NRC standard with decreased total P levels 

(Cromwell et al., 1993, 1995) resulting in wide Ca:total P ratios (1.66: 1 to 1.88: 1 ). 

Even though there were positive phytase effects on P absorption, the intensity of 

phytase might be diminished by relatively high Ca content in diets. 

Because SSF phytase contains significant side enzyme activity (Filer, 

2001) the addition of SSF phytase complex has the potential to improve 

digestibility of other nutrients besides P. Phytic acid is known to inhibit enzymes 

such as a-amylase, trypsin, tyrosinase, and pepsin (Erdman and Poneros, 1989; 

Dvorakova, 1998; and Ebune et al., 1995). Thus, addition of phytase can 
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improve digestibility of nutrients resulting in greater growth (Liu et al., 1998). In 

our experiment, ADG and gain:feed were increased when SSF phytase (up to 

1,000 units/kg) was added to low P, corn-soybean meal diets. Adding 500 

units/kg phytase to the basal diet dramatically increased ADG, and from 500 to 

1,000 PU/kg there was no further improvement. Average daily feed intake was 

not affected by addition of MSP or SSF phytase, which is similar to previous 

studies with phytase from SmF (Cromwell, 1995ab, 1998). However, other 

studies have not shown improvements in gain:feed (Lei et al., 1993; Han et al. 

1997; Radcliffe et al. 1998). The increased level from Oto 500 PU/kg 

dramatically increased gain:feed ratio, but there was little further improvement 

from 500 PU/kg to 1,000PU/kg, indicating 500 PU/kg is the optimum level for 

growth performance. Similar responses have been reported in previous studies 

(Cromwell et al, 1995ab; O'Qunn, 1997; and Harper et al., 1997). 

Also, we did not find any improvement in digestibility of dry matter, protein, 

and energy. In this study, we fed a corn-soybean meal diet which was relatively 

low in fiber content, and pigs can readily utilize the nutrients from this type of diet. 

In agreement, a recent study by Traylor et al. (2001) reported that the addition of 

phytase did not improve the utilization of amino acids provided by soybean meal. 

These data indicate the addition of SSF phytase to low P, corn-SBM 

based diets improves the utilization of phytate P in corn and soybean meal. 

Based on our results, it seems that 500 PU/kg is the optimum level when pigs are 

fed corn-SBM based diet without inorganic P addition. Addition of SSF phytase 

up to 1,000 PU/kg improved P bioavailability resulting in improved growth, bone 
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strength, and decreased P excretion. Similar results have been found in 

previous research with SmF phytase from mutant and recombinant-derived 

phytase (Joongbleod et al., 1992; Lei et al., 1993; Cromwell et al., 1993, 1994; 

O'Quinn et al., 1997, Zhang et al, 2000). Addition of microbial phytase, mostly 

from submerged fermentation, improved the bioavailability of Pin corn-soybean 

meal diets (Zhang et al., 2000; Han et al., 1997; Liu et al., 1998; Cromwell et al., 

1993, 1995a, b) and P equivalency value of phytase (500 PU/kg) based on bone 

breaking strength ranged from 0.27 to 0.93 g/kg (Skaggs, 1999; Rice et al., 

1999). In our study, 1.74 g/d of P was liberated from corn and soybean meal by 

the addition of SSF phytase (500 PU/kg), which was equivalent to 0.11 % 

available Pin the diet (Table 4.6) based on average bone strength and ash 

content. These data indicate solid state fermented phytase is similar or better 

than that from submerged fermentation. Based on equivalency values of 250, 

500, and 1,000 PU/kg were used to generate prediction equation of SSF phytase 

(Figure 4.2). The prediction equation of P equivalence value of SSF phytase was 

Y= -2E-07x2 + 0.0003X (Y=available P, X= phytase activity, PU/kg). By using 

this equation, the P equivalency value can be predicted from Oto 1,000 PU/kg, 

which can be used in formulating diets with SSF phytase. 

This study shows the addition of SSF phytase to low P, corn-soybean 

diets have similar effects that have been found in previous studies with SmF 

phytase, which indicate that the solid-state fermentation method is an alternative 

way to produce a quality microbial phytase. 
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Implications 

In the present study, the addition of 1,000 PU/kg to low P, corn-soybean 

meal diets maximized growth performance, phosphorus utilization, and bone 

traits. Yet, 500 PU/kg was equivalent to 0.11% P and appear to be the optimum 

level for growing pigs fed low P, corn soybean meal diets. This study indicate 

that the solid state fermented phytase method can be used as an alternative way 

to produce microbial dietary phytase. 
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Table 4.1. Com position of experimental diets, as-fed basis {Exp.1) 
Diet 

Total P, % 0.34 0.39 0.44 0.49 0.34 0.34 0.34 
Available P, % 0.07 0.12 0.17 0.22 0.07 0.07 0.07 
SSF phytase, PU/kg 0 0 0 0 250 500 1,000 
Corn 72.07 72.07 72.07 72.07 72.07 72.07 72.07 
Soybean meal 25.25 25.25 25.25 25.25 25.25 25.25 25.25 
Corn Starch 1.16 0.78 0.39 0.00 1.14 1 .11 1.06 
Monosodium phosphate 0.00 0.21 0.43 0.66 0.00 0.00 0.00 
Limestone 0.82 0.99 1.16 1.32 0.82 0.82 0.82 
Sodium chloride 0.25 0.25 0.25 0.25 0.25 0.25 0.25 
TM & Vit premixa 0.25 0.25 0.25 0.25 0.25 0.25 0.25 
Antibioticb 0.20 0.20 0.20 0.20 0.20 0.20 0.84 
SSF Phytasec 0.00 0.00 0.00 0.00 0.03 0.05 0.10 

..J 

Calculated analysis 
ME, kcal/kg 3,364 3,349 3,334 3,318 3,364 3,364 3,364 
Lysine,% 0.95 0.95 0.95 0.95 0.95 0.95 0.95 
Ca,% 0.41 0.47 0.53 0.59 0.41 0.41 0.41 
Total P, %d 0.34 0.39 0.44 0.49 0.34 0.34 0.34 
Available P, % 0.07 0.12 0.17 0.22 0.07 0.07 0.07 
Ca:Total P 1.21 1.21 1.20 1.20 1.21 1.21 1.21 
Added phytase activity, PU/kg 0 0 0 0 250 500 1,000 

a Provided the following per kg of diet: 5,506 IU of vitamin A, 551 IU of vitamin D, 33 IU of vitamin E, 3.6 g of vitamin K 
(as menadione), 221 µg of biotin, 137 mg of choline, 33.04 mg of niacin, 24.78 mg of panthothenic acid (as d-
pantothenate), 5.51 mg of riboflavin, 27.55 µg of vitamin 812, 1.66 mg of folacin, 100 mg of Zn, 2 mg of Mn, 100 mg of 
Fe, 10 mg of Cu, .30 mg of I, and .30 mg of Se. 
b Provided 55 mg of chlortetracycline per kilogram of diet. 
c Solid-state fermented phytase (Allzyme® SSF; Alltech, Inc) contains 1,000 PU/g of product 
d Analyzed total P were 0.37, 0.43, 0.48, 0.52, 0.37, 0.37, and 0.37 %, respectively. 



.J 
,J 

Table 4.2. Effects of monosodium phosphate and solid-state fermented phytase on growth 
performance of pigs fed low P, corn-SBM based diets3 • 

Diet 
Total P, % 0.34 0.39 0.44 0.49 0.34 0.34 0.34 
Available P, % 0.07 0.12 0.17 0.22 0.07 0.07 0.07 
SSF phytase, PU/kg 0 0 0 0 250 500 1,000 

ADG, kg bea 0.635 0.671 0.743 0.720 0.691 0.742 0.741 

ADFI, kg 1.47 1.43 1.54 1.47 1.47 1.55 1.52 

Gain:feed be 0.45 0.47 0.48 0.49 0.47 0.48 0.49 

a Least squares means for 6 pigs/trt 
b Linear effect of added monosodium P (P < 0.05) 
e Linear effect of added phytase (P < 0.05) 
ct None vs SSF phytase (P < 0.01) 

SE 
0.027 

0.05 

0.01 



Table 4.3. Effects of monosodium phosphate and solid-state fermented phytase on nutrient 
digestibilit~ of eigs fed low P, corn-SBM based dietsa (DM basis}. 

Diet 
Total P, % 0.34 0.39 0.44 0.49 0.34 0.34 0.34 
Available P, % 0.07 0.12 0.17 0.22 0.07 0.07 0.07 
SSF ~hytase, PU/kg 0 0 0 0 250 500 1,000 SE 
Phosphorus 

Intake, g/d 5.50 6.02 7.66 7.66 5.49 5.83 5.68 0.21 
Feces, g/d d 3.06 2.98 3.42 3.00 2.48 2.36 1.68 0.15 
Absorbed, g/d cdg 2.43 3.16 4.24 4.66 3.02 3.48 4.01 0.15 
Digestibility, % cdg 44.07 49.67 55.75 60.72 54.75 59.45 70.54 1.61 
Excretion, % cdg 55.9 50.3 44.2 39.2 45.2 40.5 29.5 1.6 

Dry matter 
Intake, g/d 9 1327.9 1280.6 1449.3 1351.8 1339.9 1426.9 1394.1 45.1 
Feces, g/d 9 157.3 157.7 187.3 157.4 161.7 161.8 163.9 8.9 

.J Absorbed, g/d 1170.6 1122.9 1262.0 1194.4 1178.2 1265.0 1230.2 39.1 ,.) 

Digestibility, % 88.10 87.63 87.27 88.32 87.94 88.64 88.23 0.44 
Energy 

Intake, kcal/d 5,906 5,631 6,335 5,911 5,939 6,307 6,069 265 
Feces, kcalg/d 9 773 772 912 756 803 807 841 55 
Absorbed, kcal/d 9 5,133 4,858 5,423 5,154 5,137 5,501 5,227 229 
Digestibility, % 86.92 86.23 85.81 87.19 86.50 87.24 86.09 0.63 

Nitrogen 
Intake, g/d 44.1 42.2 48.9 44.9 45.0 50.0 46.6 1.6 
Feces, g/d 9 7.2 7.2 8.7 7.2 7.5 7.4 7.5 0.4 
Absorbed, g/d t 37.0 35.0 40.3 37.8 37.5 42.6 39.1 1.3 
Digestibility, % 83.78 82.68 82.62 84.11 83.12 85.31 84.01 0.67 

a Least squares means for 6 pigs/trt 
b Linear effect of monosodium P (P < 0.05), c Linear effect of monosodium P (P < 0.01 ); 
d Linear effect of SSF phytase (P < 0.01 ), e Quadratic effect of monosodium P (P < 0.05) 
t Quadratic effect of SSF phytase (P < 0.05), 9 None vs SSF phytase (P < 0.01) 



Table 4.4. Effects of monosodium P and solid-state fermented phytase on bone characteristics of 
pigs fed low P, corn-SBM based dietsa. 

Diet 
Total P, % 0.34 0.39 0.44 0.49 0.34 0.34 0.34 
Available P, % 0.07 0.12 0.17 0.22 0.07 0.07 0.07 
SSF phytase, PU/kg 0 0 0 0 250 500 1,000 SE 
Breaking strength, kg 

Metacarpalcehi 38.2 46.9 54.1 69.2 48.9 59.5 63.7 2.3 
Metatarsaicegi 33.2 45.6 56.3 70.1 48.1 59.2 67.2 3.7 
Femurcehi 113.6 140.48 196.8 236.4 164.1 212.5 219.6 10.2 

Metacarpal ash, %cegi 47.37 48.91 50.33 52.51 49.57 51.49 52.21 0.57 
Metacarpal ash, gcehi 2.10 2.33 2.71 3.11 2.57 2.95 2.99 0.08 
Bone weight, g 

._J Metacarpal bf 64.2 58.7 64.8 67.3 60.9 65.8 65.2 1.7 ... 
Metatarsal cei 73.0 75.2 78.4 83.9 77.9 81.3 82.7 1.7 
Femur cei 159.3 159.1 167.7 181.6 161.5 177.7 180.4 3.6 

Femur diameter, mm bct 19.2 19.5 19.4 20.8 19.4 20.6 20.5 0.4 

a Least squares means for 6 pigs/trt 
b Linear effect of monosodium P (P < 0.05) 
c Linear effect of monosodium P (P < 0.01) 
ct Linear effect of SSF phytase (P < 0.05) 
e Linear effect of SSF phytase (P < 0.01) 
t Quadratic effect of monosodium P (P < 0.05) 
9 Quadratic effect of SSF phytase (P < 0.05) 
.h Quadratic effect of SSF phytase (P < 0.01) 
'. None vs SSF Phytase (P < 0.01) 
J None vs SSF Phytase (P < 0.05) 



Table 5.5. Effects of monosodium P and solid-state fermented phytase on carcass composition and 
tissue accretion rates for growing eigs fed low P, corn-SBM based dietsa 

Diet 
Total P, % 0.34 0.39 0.44 0.49 0.34 0.34 0.34 
Available P, % 0.07 0.12 0.17 0.22 0.07 0.07 0.07 
SSF phytase, PU/kg 0 0 0 0 250 500 1,000 SE 
Carcass composition, % 

Water 63.57 64.48 63.14 64.02 64.88 62.44 63.51 0.52 
Protein (N x 6.25) 18.91 18.65 19.02 18.76 18.64 19.06 19.07 0.26 
Fat 15.63 14.64 15.85 14.75 15.35 16.37 15.04 0.64 
Ash bee 1.88 2.09 2.36 2.45 2.13 2.37 2.47 0.07 
p bee 0.33 0.37 0.41 0.46 0.38 0.41 0.44 0.01 

Accretion rate, g/d 
Water 256.0 271.0 290.8 280.3 273.6 280.4 276.0 12.5 

.J 
Protein (N x 6.25) 132.2 128.5 142.5 133.6 131.5 141.3 137.0 5.2 " 
Fat 106.5 96.5 116.4 100.9 104.6 119.0 104.8 8.5 
Ashbcde 10.6 12.4 16.3 16.2 13.1 16.0 16.3 0.7 
p bcde 1.46 1.77 2.33 2.63 1.88 2.32 2.44 0.13 

a Least squares means for 6 pigs/trt 
b Linear effect of monosodium P (P < 0.01) 
c Linear effect of SSF phytase (P < 0.01) 
d Quadratic effect of SSF phytase (P < 0.05) 
0 None vs SSF Phytase (P < 0.01) 



Table 4.6. Improvements of P digestibility by addition of solid-state 
fermented phytase in corn-SBM based diets. 

SSF Phytase, PU/kg 

Item 250 500 1,000 
Feed Intake, kg/d 1.4 7 1.55 1.52 

Total P intake, g/d 3 4.99 5.29 5.17 

Assuming no phytase 

Available P intake, g/db 1.03 1.09 1.06 

Unavailable P intake, g/dc 3.96 4.20 4.11 

Available of P, % 20 20 20 

Resulting from phytase based on MC-MT 
strength 

Available P intake, g/dd 1.93 2.68 3.07 

Unavailable P intake, g/d 8 3.06 2.61 2.10 

Available of P, %f 38.7 50.7 59.4 

Unavailable P made available, %9 22.7 37.9 48.9 

Available P liberated by phytase, g/dh 0.90 1.59 2.01 

Equivalent to available P in diet, %i 0.06 0.10 0.13 

Resulting from phytase based on femur 
strength 

Available P intake, g/dd 2.00 2.88 3.01 

Unavailable P intake, g/d8 2.99 2.41 2.16 

Available of P, %f 40.0 54.4 58.2 

Unavailable P made available, %9 24.5 42.6 47.4 

Available P liberated by phytase, g/dh 0.97 1.79 1.94 

Equivalent to available P in diet, %i 0.07 0.12 0.13 

Resulting from phytase based on average 
BS 

Available P intake, g/dd 1.98 2.81 3.03 

Unavailable P intake, g/d 8 3.01 2.48 2.14 

Available of P, %f 39.7 53.1 58.6 

Unavailable P made available, %9 24.0 41.0 47.9 

Available P liberated by phytase, g/dh 0.95 1.72 1.96 

Equivalent to available P in diet, o/oi 0.07 0.11 0.13 
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Resulting from phytase based on MC ash, g 

Available P intake, g/dd 

Unavailable P intake, g/de 

Available of P, %t 

Unavailable P made available, %9 

Available P liberated by phytase, g/dh 

Equivalent to available P in diet, %i 

Resulting from phytase based on P 
accretion, g/d 

Available P intake, g/dd 

Unavailable P intake, g/de 

Available of P, %t 

Unavailable P made available, %9 

Available P liberated by phytase, g/dh 

Equivalent to available Pin diet, %i 

Average i 

Available P intake,% 
Unavailable P made available by phytase, 
% 

2.15 

2.84 

43.1 

28.3 

1.12 

0.08 

1.84 

3.15 

36.8 

20.5 

0.81 

0.06 

39.9 

24.3 

3.01 

2.28 

56.9 

45.7 

1.93 

0.12 

2.66 

2.63 

50.3 

37.4 

1.57 

0.10 

53.4 

41.4 

3.12 

2.05 

60.3 

47.9 

2.06 

0.14 

2.87 

2.30 

55.5 

44.0 

1.81 

0.12 

59.1 

46.6 

Available P liberated by phytase, g/d 0.96 1.74 1.94 

Equivalent to available P in diet, % 0.07 0.11 0.13 

a Total dietary P content in diet(%) x average daily feed intake (g/day). 
b Total P intake x available P content(%) in corn-soybean meal (20% from 
NRC, 1998). 
c Total P intake - available P intake. 
d Based on the standard regression for MSP. 
e Total P intake - available P intake from the standard regression. 
t Available P intake/total P intake x 100. 
9 Additional available P intake/original unavailable P intake x 100. 
h Value from d - value from b (i.e. 1.93- 1.03 = 0.90). 
i Available P liberated by phytase /average daily feed intake x 100. 
i Average of bone breaking strength and ash content in metacarpals. 
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Figure 4.1. Metacarpal-metatarsal breaking strength (BS) of pigs fed low P, 
corn-SBM based diets 
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Figure 4.2. Available P liberated by solid-state fermented phytase based 
average bone breaking strength of pigs fed corn-SBM based diets 
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CHAPTERV 

EXPERIMENT 2 

Effects of a Solid-State Fermented Phytase on Growth Performance, Bone 
Traits and Phosphorus Digestibility of Growing Pigs Fed Corn-Soybean 

Meal Diets Containing Wheat Middlings 

ABSTRACT: A total of 24 barrows was used in a 35-d study to determine the 

effects of the addition of a solid-state fermented phytase complex (Allzyme SSF; 

Alltech, Inc) to low available P, corn-soybean meal (SBM) diets containing 20% 

wheat middlings (WM) on growth performance, bone traits, and P utilization. 

Pigs were blocked by weight and ancestry, and randomly allotted to one of four 

dietary treatments (6 pigs/trt). A basal diet consisted of corn, SBM, and WM 

(20%) and was adequate in all nutrients, except available P. This diet contained 

0.50% total P (0.13% available P), all of which was provided by corn, SBM, and 

WM. Diets 2 and 3 were the basal plus SSF to provide 250 and 500 phytase 

units (PU)/kg, respectively. The positive control diet (PC) was corn-SBM-based 

with 20% corn starch (0.50% total P, 0.24% available P). All diets were 

formulated to 0.77% digestible lysine and a Ca:total P of 1.2:1. Pigs were 

housed individually with ad libitum access to feed and water. During the 35-d 

study, there were two 5-d periods (d 10 to15 and d 25 to 30) for collection of 

feces and urine. Phytase did not affect (P > 0.61) ADG or ADFI, but increased (P 

< 0.04) gain:feed. Digestibility of P increased (P < 0.03) with SSF addition, 

resulting in a 10% reduction in P excretion for pigs fed 500 PU/kg. However, 
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digestibility of other nutrients (dry matter, protein, gross energy) were not 

affected (P > 0.10) by addition of SSF phytase to diets containing wheat 

middlings. Compared to the positive control, pigs fed 20% wheat middlings had 

approximately 26% greater (P < 0.01) dry matter excretion and 7 .6% unit lower 

digestibility (P < 0.01 ). Bone breaking strength and ash (%) increased (P < 0.01) 

with SSF phytase complex. However, pigs fed PC had greater (P < 0.01) 

average daily gain, gain:feed, bone strength and ash compared with those fed 

diets containing WM. These data suggest that the addition of a solid-state 

fermented phytase improves P utilization of corn-soybean meal diets containing 

wheat middlings for growing pigs, but digestibility of other nutrients was not 

improved by SSF phytase complex. 

Keyword: Pigs, Phytase, Bone 

Introductions 

Phytate (myoinositol 1,2,3,4,5,6 hexa, dihydrogen phosphate) is the major 

form of Pin cereal grains and oilseed meals (Reddy et al., 1982). Approximately 

60 to 70% of the P in corn and soybean meal is in the form of phytate (NRC 

1998). Pigs cannot utilize phytate due to the lack of endogenous phytase that 

hydrolyzes phytic P (Peeler 1972). Supplemental microbial phytase improves the 

bioavailability of Pin corn- (Cromwell et al., 1995), oat- (Bruce and Sundstol, 

1995), wheat-, triticale (Dungelhoef et al., 1994 ), and barley-based (Campbell 

and Bedford, 1992; Valaja et al., 1998; Nasi et al., 1999) diets for swine. Many of 

the phytases used in previous studies were produced by submerged microbial 
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fermentation method. Also, most of the commercial microbial phytases on the 

market are produced by submerged fermentation. However, recently, the solid

state fermentation method (SSF) has been used in the production of dietary 

microbial phytase. A previous study in our lab (Exp. 1) reported that the addition 

of SSF phytase complex to low P, corn-soybean based diets improved P 

bioavailability, growth performance, and bone traits. Besides phytase activity, 

solid fermentation systems can utilize non-genetically modified microbes that 

often produce substantial activities of other enzymes, known as "side activities", 

such as a-amylase, ~-glucanse, protease, xylanase, and cellulase (Filer, 2001 ). 

Therefore, the objectives of this experiment were to determine the effects of the 

addition of a solid-state fermented phytase complex to low P, corn-soybean meal 

diets containing high fiber (wheat middlings) on growth performance, nutrient 

digestibility, and bone traits in growing pigs. 

Material and Methods 

Animals, Diets, and Treatments. A total of 24 crossbred barrows with an 

average initial BW of 20 kg were used in a 35-d study to investigate the effects of 

addition of SSF phytase complex (Allzyme SSF; Alltech, Inc) on nutrient 

digestibility and growth performance of growing pigs fed corn-soybean meal 

based diets containing 20% wheat middlings. Pigs were blocked by initial body 

weight and randomly allotted to one of four dietary treatments in a randomized 

complete block design. There were 6 replications per treatment. 
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The basal diet (Table 5.1) was corn-soybean meal based with 20% wheat 

middlings (WM). This diet contained 0.77% apparent digestible lysine, 0.50% 

total P, 0.13% available P, and 3,262 kcal/kg ME. Diets 2 and 3 were as Diet 1 

with addition of 250 or 500 phytase units/kg of diet. Diet 4 (PC) was as Diet 1 

with 20% corn starch replacing the wheat middlings (0.50 % total P and 0.25 % 

available P). This diet was formulated to serve as a positive control. All 

experimental diets were formulated based on apparent ilea! digestible lysine. All 

other nutrients met or exceeded NRC (1998) standards. The Ca: total P ratio in 

all diets was 1.2:1. 

In this experiment, pigs were individually housed in metabolic chambers in 

an environmentally-controlled room. The chambers were specially designed for 

the total, but separate collection of feces, urine, and wasted feed. Each chamber 

had a galvanized steel mesh floor and one stainless steel self-feeder and one 

nipple waterer. Beneath the floor, a five-quart plastic container was used to 

collect urine. All pigs were allowed ad libitum access to feed and water. All diets 

were fed in meal form. 

Collection and Analyses. There were two 5-d collection periods (d 10-15 

and d 25-30). Feces were collected every morning from the 1-mm screen under 

the chamber. The collected feces were immediately weighed and placed in 

plastic bags and stored frozen (-20 °C) until the samples were analyzed. At the 

same time, refused diets were collected and weighed. For urine collection, 10 

ml of 6N-HCL were added to each urine collection container to prevent N loss as 
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ammonia. All urine was collected daily. Urine volume was measured and a sub

sample was collected in a 100 ml container and frozen at -20 °C until lab 

analyses were performed. 

Initially, frozen fecal samples were dried in a forced-air oven for 4 d at 

55°C before grinding. Partially dried feces and diets were ground through a 1-

mm screen using a Wiley Mill (Standard Model No.3; Arthur H. Thomas Co., 

Philadelphia, PA). Dry matter content of the diets and feces was determined by 

drying at 100 °c for 24 h (AOAC, 1998). Nitrogen content was determined by the 

Kjeldahl procedure (AOAC, 1998) using an automated analyzer (FOSS Tecator, 

2020 Digestor, 2400 Kjeltec Analyzer; Hoganas, Sweden). Total phosphorus 

content in the diets and feces was determined by a gravimetric quinolinium 

molybdophosphate method (AOAC, 1998). Gross energy content in feed and 

fecal samples was determined by bomb calorimetry (Parr 1261 lsoperibol 

Calorimeter; Molin, IL). Diets and fecal samples were placed overnight at 500 °c 

in a muffle furnace (Sybron, Dubuque, IA) for determination of ash. 

At the end of the experiment, all pigs were slaughtered at the Oklahoma 

State University Meat Lab. Following scalding, scraping, and evisceration, the 

hot carcass was weighed. The front and rear feet were removed and frozen (-

200C). Also, the femurs from each pig were excised and placed in a plastic bag 

and frozen (-20°C). Later, the feet were allowed to thaw and autoclaved at 120 

°C and 15 psi for approximately 7 min. Following autoclaving, the MC and MT 

were extracted and cleaned of extraneous tissue, and frozen. Later, the MC and 

MT were allowed to thaw overnight before breaking strength analyses. 
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Breaking strength of the MC and MT were determined using an lnstron 

Universal Testing Machine (Model 4502, lnstron, Canton, MA) by procedures of 

Cromwell et al. (1972). Bones were placed on supports 3.8 cm apart for the MC 

and MT, and 8.1 cm apart for femurs. Breaking strength was defined as the 

amount of force (kg) required to break the bone when placed in a horizontal 

position. The breaking strength of MC and MT were averaged. For fat-free bone 

ash content, the marrow from the fourth MC of the right foot of each pig was 

removed and the bones were placed in a soxhelt containing petroleum ether for 

48 h to allow for lipid extraction. After lipid extraction, the bones were dried 

overnight at 100° C, weighed, and ashed for 48 hat 600° C. Both femurs from 

each pig were cleaned of all extraneous tissues and weighed. The outside 

diameter of the femurs was measured at the mids haft by averaging two 

measurements taken 90° to each other, using a caliper. Breaking strength of the 

femurs was performed as previously described for the MC and MT. 

Statistical Analyses. Data were analyzed as a randomized complete block 

design using procedures described by Steel et al. (1997), with initial BW as the 

blocking criterion. The model included the effects of block (rep), treatment, and 

block x treatment (error). The effects of phytase supplementation were tested for 

linearity and curvilinearity using orthogonal polynomial contrasts. Also, 

comparisons between the positive control (PC) and diets containing wheat 

middlings (WM) were tested. In all cases, pig served as the experimental unit. 
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Results 

Growth Performance. Pigs fed the positive control diet had greater (P < 

0.01) average daily feed intake, average daily gain, and feed efficiency compared 

to those fed diets containing 20% wheat middlings (Table 5.2). Among the pigs 

fed wheat middlings, there were numeric increases in average daily gain, but 

those differences were not significant (P > 0.22). Average daily feed intake was 

similar (P > 0.10) among treatments. For efficiency of gain, the addition of SSF 

phytase to diets containing wheat middlings improved gain:feed (linear, P < 

0.04). When 500 PU/kg was added to diets containing wheat middlings, 

gain:feed was 5.1 % greater than pigs fed 20% wheat middlings without SSF 

phytase. Even though there was improvement in growth performance for pigs by 

500 PU/kg SSF phytase, those pigs had lower growth performance than those 

fed the positive control diet. 

Nutrient Digestibility and Excretion. Phosphorus intake was similar (P > 

0.10) among the pigs fed diets containing wheat middlings (Table 5.3). The 

amount of phosphorus in the feces was decreased (linear, P < 0.05) by addition 

of SSF phytase from Oto 500 PU/kg. The addition of 500 PU/kg reduced fecal 

phosphorus excretion by approximately 10% compared with diets containing 

wheat middlings without SSF phytase. Phosphorus digestibility increased as 

SSF phytase level increased (linear, P<0.01 ). The pigs fed 500 PU/kg had 7.1 % 

unit greater phosphorus digestibility compared with diets containing wheat 

middlings without SSF phytase. 
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Dry matter intake, dry matter excretion, or digestibility were not affected (P 

> 0. 10) by addition of SSF phytase to diets containing wheat middlings. 

Compared to the positive control, pigs fed 20% wheat middlings had 

approximately 26% greater (P < 0.01) dry matter excretion and 7.6% units lower 

digestibility (P < 0.01 ). There was no effect (P > 0.22) of SSF phytase on gross 

energy digestibility. Pigs fed the positive control diet had greater (P < 0.01) 

energy digestibility compared to those fed diets containing 20% wheat middlings. 

Nitrogen excretion and digestibility were not affected (P > 0.45) by the addition of 

SSF phytase. Pigs fed the positive control diet had greater (P < 0.01) nitrogen 

digestibility than those fed diets containing wheat middlings. 

Bone Characteristics. Bone breaking strength of the metacarpals and 

metatarsals (Table 5.4) and femurs was increased (linear, P < 0.01) by the 

addition of SSF phytase. Also, fat-free metacarpal ash content(%) increased 

(linear, P < 0.01) with SSF phytase. The addition of 500 PU/kg dramatically 

improved average bone breaking strength by 28%. Pigs fed the positive control 

diet had greater bone strength (P < 0.01) and fat-free MC ash content (P < 0.01) 

compared to those fed diets containing wheat middlings. Bone (femur, MT, MC) 

weights and femur diameter were not affected (P > 0.58) by the addition of SSF 

phytase. However, pigs fed the positive control diet had heavier bone weights 

and greater femur diameter (P < 0.05) compared with pigs fed diets containing 

20% wheat middlings. 
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Discussion 

Approximately 60 to 70% of the P in plant sources that are commonly fed 

to pigs is associated with phytate (NRC, 1998). Phytate-P is not available for 

absorption (Cromwell, 1992; Ravindran et al., 1994, 1995). An early study 

demonstrated phytase can release this type of phosphorus (Nelson et al., 1968). 

A number of studies have reported that the addition of microbial phytase 

catalyzed the hydrolysis of the phytate molecule, releasing P from phytate 

(Jongbloed et al., 1992, 1996; Cromwell et al., 1993; Kornegay 1995). Also, 

several phytase experiments have been conducted with different types of grain 

sources. Supplemental microbial phytase improves the bioavailability of P in 

corn- (Cromwell et al., 1995), oat- (Bruce and Sundstol, 1995), wheat-, triticale 

(Dungelhoef et al., 1994 ), and barley-based (Campbell and Bedford, 1992; Valaja 

et al., 1998; Nasi et al., 1999) diets for swine. Also, studies have shown that the 

addition of cereal phytase from wheat middlings improved phytate P utilization by 

growing pigs (initial average BW of 9.9 kg) (Han et al., 1998). These authors 

reported that pigs fed diets containing 15% wheat middlings exhibited greater 

growth performance, plasma inorganic P concentration, bone strength, and 

mobility score than pigs fed low-P, corn-soybean meal diets. Also, these authors 

reported that pigs fed 15% wheat middlings had similar levels of plasma 

inorganic P to pigs fed diets supplemented with 1,200 PU/kg. Similar results 

have been reported by Han et al. (1997). 

In our study, the addition of microbial phytase (SSF phytase) did not 

improve ADG of pigs fed diets containing 20% WM. Pigs fed the positive control 
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had greater growth performance compared with pigs fed diets containing 20% 

WM. The addition of 500 PU/kg increased gain:feed by 5.1 %. Even though 

there was improvement in growth performance of pigs by SSF phytase complex, 

the growth performance of pigs fed 500PU/kg did not reach the levels of growth 

performance observed in pigs fed the positive control diets. Previous studies 

with corn-soybean meal diets have shown that the addition of microbial phytase 

improved growth performance of pigs fed low P diets by increasing ADG with 

increased daily feed intake (Simons et al., 1990; Beer and Jongbloed, 1992; 

Kornegay and Qian, 1996; Yi et al., 1996b). The results found in our study 

indicate that the fiber content in the diet had a negative effect on growth 

performance of pigs and the addition of SSF phytase complex may not overcome 

the negative effects of fiber. 

The amount of phosphorus in the feces was decreased when SSF 

phytase levels increased from Oto 500 PU/kg. The addition of 500 PU/kg 

reduced fecal phosphorus excretion by approximately 10% compared with wheat 

middling diets without SSF phytase complex. The pigs fed 500 PU/kg had a 

7.1 % unit higher phosphorus digestibility compared to pigs fed control diet. A 

previous study in our lab (Exp. 1) suggested that the addition of SSF phytase 

complex at 1,000 PU/kg decreased total daily P excretion by 45%. In other 

studies, the addition of microbial phytase decreased P excretion by 25 to 50% by 

increasing P digestibility or retention and by decreasing the total level of P in the 

diet (Simons et al., 1990; Jongbloed et al., 1992; Cromwell et al., 1993; Kornegay 

and Qian, 1996; Yi et al., 1996). Also, total P digestibility is improved in pigs fed 
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diets containing phytase-rich cereals, such as wheat, triticale, and barley or 

barley by-products (Stober et al., 1980; Newton et al, 1983; Pointillart et al., 

1987; Helander and Partanen, 1994 ). The previous study in our lab (Exp.1) 

reported that the addition of SSF phytase (500 PU/kg of diet) improved total P 

digestibility of growing pigs fed a low P, corn-soybean meal diet and the 

equivalency value of 500 PU/kg was 0.11 % Pin the diet. The present results 

indicate the magnitude of effect of SSF phytase complex in diets containing 

wheat middlings is relatively lower than that found in a low P, corn-soybean meal 

diet. Even though wheat middlings have intrinsic phytase activity (Pointillart, 

1994 ), the addition of SSF phytase to diets containing 20% wheat middlings did 

not reach the level of P digestibility of pigs fed the positive control diet. These 

results suggest that the fiber content in wheat middlings may negatively affect 

microbial phytase activity in the gastrointestinal tract. Calvert (1991) proposed 

that fiber in diets may have negative effects on dietary phytase activity. 

Bone breaking strength of the metacarpals and metatarsals and femurs 

was increased by addition of SSF phytase. Also, fat-free metacarpal ash content 

(%) increased with SSF phytase. There was dramatic improvement in average 

bone breaking strength by 28%, but pigs fed the positive control diet had greater 

bone strength and fat-free MC ash content compared with pigs fed diets 

containing 20% wheat middlings. A previous study in our lab, Park et al. (Exp. 1) 

reported that the addition of SSF phytase complex to low P corn-soybean meal 

diets improved bone traits. Also, similar results have been found in previous 

studies with corn-soybean meal diets supplemented with microbial phytase 
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(Cromwell et al., 1993; Kornegay and Qian, 1996; Yi et al., 1996b; Radcliff and 

Kornegay, 1998). 

Digestibility of dry matter, energy, and nitrogen was not improved by SSF 

phytase complex, which indicates the side enzyme activity in SSF did not 

improve nutrient utilization by pigs fed diets containing 20% wheat middlings. 

However, pigs fed the positive control diet had greater nutrient digestibility and 

lower nutrient excretion than pigs fed diets containing 20% wheat middlings. 

These results may be explained by the fiber content in wheat middlings (Calvert, 

1991 ). The phytase complex levels used in our study may not overcome the 

negative effect of fiber in wheat middlings. 

In summary, the addition of SSF phytase complex to low P, corn-soybean 

meal diets containing 20% wheat middlings improved growth performance, 

phosphorus utilization, and bone traits. However, as mentioned above, the 

magnitude of effect of SSF phytase was relatively lower than that found in corn

soybean meal based diets, suggesting the fiber content in the diet may diminish 

the enzyme activity in the gastrointestinal tract. 

Implications 

The addition of a solid-state fermented phytase complex to low P, corn

soybean meal based diets containing 20% wheat middlings improved feed 

efficiency and bone strength of pigs. The amount of daily P excretion was 

reduced by 9.6% by the addition of 500 PU/kg in diets. Because wheat middlings 
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contain relatively high intrinsic phytase activity, the magnitude of response to 

dietary phytase might be lower than that previously observed for corn-soybean 

meal diets. Except for P, other nutrients were not affected by the addition of SSF 

phytase complex. These data indicate that the addition of a solid-state 

fermented phytase complex only improves P utilization of corn-soybean meal 

diets containing wheat middlings for growing pigs. The fiber content in the diet 

may negatively affect nutrient utilization and microbial phytase activity. Further 

research is needed to elucidate the effects of fiber on dietary phytase activity. 
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Table 5.1. Composition of Diets (as-is) 

Total P, % 
Available P, % 
Phytase, PU/kg 
Corn 
Soybean meal 
Wheat middlings 
Corn starch 
Dicalcium phosphate 
Limestone 
Sodium chloride 
Vitamin & mineral premix a 

Antibiotic b 

Lysine-HCL 
L-threonine 
SSF Phytase be 

Calculated analysis 
ME, kcal/kg 
Crude protein, % 
App. dig. Lysine, % 
Ca,% 
Total P, %d 
Available P, % 
Added phytase activity, 
PTU/kg of diet 

0.50 
0.13 

0 
55.01 
22.89 
20.00 

0.05 

1.34 
0.25 
0.25 
0.20 
0 
0 
0 

3,261 
18.6 
0.77 
0.60 
0.50 
0.13 
0 

Dietary treatments 
0.50 
0.13 
250 
55.01 
22.89 
20.00 

0.025 

1.34 
0.25 
0.25 
0.20 
0 
0 
0.025 

3,260 
18.6 

0.77 
0.60 
0.50 
0.13 

250 

0.50 
0.13 
500 
55.01 
22.89 
20.00 

1.34 
0.25 
0.25 
0.20 
0 
0 
0.05 

3,259 
18.6 
0.77 
0.60 
0.50 
0.13 

500 

0.50 
0.25 

0 
55.01 
22.89 

19.41 
1.02 
0.78 
0.25 
0.25 
0.20 
0.11 
0.02 
0 

3,429 
15.3 

0.77 
0.60 
0.50 
0.25 
0 

a Provided the following per kg of diet: 5,506 IU of vitamin A, 551 IU of vitamin D, 
33 IU of vitamin E, 3.6 mg of vitamin K (as menadione), 221 µg of biotin, 137 mg 
of choline, 33.04 mg of niacin, 24.78 mg of panthothenic acid (as d
pantothenate), 5.51 mg of riboflavin, 27.55 µg of vitamin 812 , 1.66 mg of folacin, 
100 mg of Zn, 2 mg of Mn, 100 mg of Fe, 10 mg of Cu, .30 mg of I, and .30 mg 
of Se. 
b Provided 55 mg of chlortetracycline per kilogram of diet. 
c Solid-state fermented phytase complex (Allzyme® SSF; Alltech, Inc) contains 
1,000 PU/g of product. 
d Analyzed total P were 0.49, 0.49, 0.49, and 0.51, respectively. 
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Table 5.2. Effects of SSF phytase complex on growth performance a 

Dietary treatments 
Total P, % 0.50 0.50 0.50 
Available P, % 0.13 0.13 0.13 
Phytase, PTU/kg O 250 500 
ADG, g c 590 629 637 
ADFI, g c 1,263 1,286 1,294 
Gain/feed, g/kg be 467 470 491 

a Least squares means for 6 pigs/trt 
b Linear effect of SSF phytase (P < 0.05) 
cwM vs PC (P < 0.01) 

94 

0.50 
0.25 

0 
746 

1,453 
515 

SE 
26 
46 
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Table 5.3. Effects of SSF phytase complex on nutrient digestibility of pigs 
fed low P, corn-SBM based diets containing wheat middlings (OM basis} ab 

Dietary treatments 
Total P, % 0.50 0.50 0.50 0.50 
Available P, % 0.13 0.13 0.13 0.25 
Phytase, PTU/kg 0 250 500 0 SE 
Phosphorus 
Intake, g/d 6.66 6.71 6.87 8.97 0.28 
Feces, g/d c 4.17 3.89 3.77 3.52 0.15 
Absorbed, g/d 2.49 2.82 3.10 5.45 0.28 
Digestibility, % de 37.2 41.9 44.3 60.3 1.9 
Dry matter 
Intake, g/d e 1,196 1,253 1,231 1,521 55 
Feces, g/d e 215 224 224 156 12 
Absorbed, g/d 980 1,029 1,007 1,364 48 
Digestibility, % e 81.9 82.5 81.7 89.6 0.5 
Energy 
Intake, kcal/de 5,129 5,459 5,364 6,515 243 
Feces, kcal/de 978 1,060 1,061 742 58 
Absorbed, kcal/d e 4,151 4,399 4,303 5,773 214 
Digestibility, % e 80.9 80.7 80.1 88.4 0.4 
Nitrogen 
Intake, g/d e 41.2 42.7 42.3 47.1 1.9 
Feces, g/d e 8.9 9.2 9.4 7.2 0.7 
Absorbed, g/d e 32.3 33.5 32.9 39.9 1.5 
Digestibilitl'., % e 78.3 78.7 77.7 84.4 0.9 

a Least squares means for 6 pigs/trt, 
b Data were pooled (no period x treatment interaction) 
c Linear effect of SSF phytase (P < 0.05) 
d Linear effect of SSF phytase (P < 0.01) 
e WM vs CS (P < 0.01) 
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Table 5.4. Effects of SSF phytase complex on bone characteristics of pigs 
fed low P, corn-SBM based diets containing wheat middlings a 

Dietary treatments 
Total P, % 
Available P, % 
Phytase, PTU/kg 

0.50 
0.13 

0 

0.50 0.50 
0.13 0.13 
250 500 

Breaking strength, kg 
Metacarpal ce 

Metatarsal ce 

Femur be 

Average bone strength ce 

Metacarpal ash, % ce 

Metacarpal ash, g c 

Bone weight, g 

41.6 
33.3 

140.2 
71.7 
49.1 

2.2 

47.5 
43.8 
171.1 
87.5 
50.9 
2.3 

Metacarpal d 56.6 55.0 
Metatarsal e 68.5 66.6 
Femur 8 161.9 158.4 

Femur diameter 8, mm 19.1 19.2 
a Least squares means for 6 pigs/trt 
b Linear effect of SSF phytase (P < 0.05) 
c Linear effect of SSF phytase (P < 0.01) 
d WM vs CS (P < 0.05) 
e WM vs CS (P < 0.01) 
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52.2 
45.9 

177.5 
91.9 
51.9 

2.4 

56.2 
70.3 

168.1 
18.7 

0.50 
0.25 

0 

69.1 
67.9 

256.3 
130.1 
54.9 

3.0 

61.5 
75.6 

180.7 
20.6 

SE 

2.6 
3.3 

12.2 
4.9 
0.5 
0.1 

2.0 
2.3 
3.2 
0.6 



CHAPTER VI 

EXPERIMENT 3 

Effects of a Solid-State Fermented Phytase on Phosphorus and Energy 
Digestibility of Growing Pigs Fed Barley-Soybean Meal Based Diets 

ABSTRACT: A total of 24 barrows was utilized in a 21-d digestibility study to 

determine the effects of the addition of a solid-state fermented phytase complex 

(Allzyme SSF; Alltech, Inc) to low available P, barley-soybean meal diets on 

growth performance, and P and energy digestibility. Pigs were blocked by weight 

and ancestry, and randomly allotted to one of four dietary treatments (6 pigs/trt). 

A basal diet consisted of barley and soybean meal and was adequate in all 

nutrients, except available P. This diet contained 0.42% total P (0.11 % avail. P), 

all of which was provided by barley and SBM. Diets 2, 3, and 4 were the basal 

plus SSF to provide 250, 500, and 1,000 phytase units (PU)/kg, respectively. All 

diets were formulated to 0.77% digestible lysine and a Ca:total P of 1.2:1. Pigs 

were housed individually. Experimental diets were fed at 3.0 x maintenance with 

ad libitum access to water. There was a 7-d period (d 14 - 21) for collection of 

feces and urine. The addition of SSF phytase complex increased (linear, P < 

0.05) average daily gain and gain:feed ratio. Digestibility of phosphorus, dry 

matter, organic matter, ash, gross energy, and nitrogen increased (linear, P < 

0.05) with SSF phytase complex. Compared with the basal diet, digestibility of 
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phosphorus for pigs fed 1,000 PU/kg was 38.7% greater. These results indicate 

the addition of SSF phytase complex to low P, barely-soybean meal diets 

improved the nutrient digestibility of growing pigs with a dramatic decrease in P 

excretion. 

Keyword: Pigs, Phytase, Digestibility 

Introductions 

Phytate (myoinositol 1,2,3,4,5,6 hexa, dihydrogen phosphate) is the major 

form of P in cereal grains and oilseed meals (Reddy et al., 1982). Approximately 

70% of the P in cereal grains and oilseed protein supplements is organically 

bound in the form of phytate, which reduces phosphorus availability to pigs 

(Kornegay 1996; NRC 1998). Pigs cannot utilize phytate due to the lack of 

endogenous phytase that hydrolyzes phytic P (Peeler 1972). Thus, improving 

phytate utilization can reduce the need for inorganic P supplementation in feed, 

resulting in reduced P excretion in manure. 

Addition of dietary microbial phytase improves P utilization and decreases 

P excretion (Lei et al., 1993; Cromwell et al., 1995; O'Quinn et al., 1997). Most 

of the experiments evaluating phytase were conducted using corn-soybean meal 

based diets. Also, many of the microbial phytases are produced by submerged 

microbial fermentation. Recently, solid-state fermentation (SSF) has been used 

to produce dietary microbial phytase. By using the SSF system, phytase from 

solid fermentation systems also contains substantial activities of other enzymes, 

known as "side activities", such as a-amylase, ~-glucanse, protease, xylanase, 
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and cellulase (Filer, 2001 ). A previous study in our lab (Exp. 1) reported that the 

addition of SSF phytase to low P, corn-soybean based diets improved P 

utilization, growth performance, and bone traits. However, other nutrients were 

not affected by the addition of the SSF phytase up to 1,000 PU/kg. Because 

nutrient digestibility is relatively high in corn-soybean meal diets, the potential to 

improve digestibility of energy, protein, and dry matter is minimal. On the other 

hand, barley is known to have a lower feeding value for swine as compared with 

corn. Thus, there is greater potential to improve nutrient digestibility in barley 

based diets. Therefore, the objectives of this study were to determine the effects 

of the addition of a solid-state fermented phytase complex to low P, barley

soybean meal diets on growth performance, nutrient excretion and digestibility of 

growing pigs. 

Material and Methods 

Animals, Diets, and Treatments. Twenty four crossbred barrows with an 

average BW of 24.3 kg were used in a 21-d study to investigate the effects of 

addition of SSF phytase complex (Allzyme SSF; Alltech, Inc) on growth 

performance and nutrient digestibility of growing pigs fed barley-soybean meal 

based diets. Pigs were blocked by initial body weight and randomly allotted to 

one of four dietary treatments in a randomized complete block design. There 

were 6 replications per treatment. 

The experimental diets (Table 6.1) were fed in meal form. The basal diet 

was barley-soybean meal containing 0.77% apparent digestible lysine, 0.50% 
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total P, 0.11 % available P, and 2,960 kcal/kg ME. Diets 2 to 4 were as Diet 1 

with addition of 250, 500, or 1,000 phytase units/kg of diet. All experimental diets 

were formulated based on apparent ileal digestible lysine. All other nutrients met 

or exceeded NRC (1998) standards. The Ca: total P ratio in all diets was 1.2:1. 

In this experiment, pigs were individually housed in metabolic chambers in 

an environmentally-controlled room. The chambers were specially designed for 

the total, but separate collection of feces, urine, and wasted feed. Each chamber 

had a galvanized steel mesh floor and one stainless steel self-feeder and one 

nipple waterer. Beneath the floor, a five-quart plastic container was used to 

collect urine. 

All pigs were fed at 3.0 x maintenance with ad libitum access to water. 

Pigs were individually fed at 0700 and 1800. The pigs were weighed weekly for 

calculation of the next week's feed allowance and ADG and gain:feed ratio. 

Feed intake was determined by the following equation (NRC, 1998): 

106 x BW 0
·
75 x 3.0 /ME content of the diet 

Collection and Analyses. During a 7-d collection period (d 14 to 21), feces 

were collected every morning from the 1-mm screen under the chamber. The 

collected feces were immediately weighed and placed in plastic bags and stored 

frozen (-20 °C) until the samples were analyzed. At the same time, refused feed 

also was collected and weighed. 
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Initially, all feces from 7-d collection were dried in a forced-air oven for 4 d 

at 50°C. Partially-dried fecal samples and diet samples were then ground in a 

Wiley Mill (Standard Model No.3; Arthur H. Thomas Co., Philadelphia, PA) 

equipped with a 1-mm screen. Dry matter content of diets and feces was 

determined by drying at 100°C for 24 h (AOAC, 1998). Nitrogen content was 

determined by the Kjeldahl procedure (AOAC, 1998) by automated analyzer 

(FOSS Tecator, 2020 Digestor, 2400 Kjeltec Analyzer; Hoganas, Sweden). Total 

phosphorus content was determined by a gravimetric quinolinium 

molybdophosphate method (AOAC, 1998). Gross energy content in feed and 

fecal samples were determined by bomb calorimetry (Parr 1261 lsoperibol 

Calorimeter; Molin, IL). For ash content, diets and fecal samples were ashed 

overnight at 500°C in a muffle furnace (Sybron, Dubuque, IA). 

Statistical Analyses. Data were analyzed as a randomized complete block 

design using procedures described by Steel et al. (1997), with initial BW as the 

blocking criterion. The model included the effects of block (rep), treatment, and 

block x treatment (error). The effects of phytase supplementation were tested for 

linearity and curvilinearity using orthogonal polynomial contrasts. For the four 

levels of phytase, polynomial coefficients for unequally spaced treatments were 

generated using the ORPAL matrix function of the IML procedure of SAS. In 

addition, a nonorthogonal contrast was used for comparisons between diets 

containing SSF phytase and control diet. In all cases, pig served as the 

experimental unit. 
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Results 

Growth Performance. The addition of SSF phytase complex increased 

(linear, P < 0.05) ADG and gain:feed ratio (Table 6.2). Compared with the basal 

diet, pigs fed 1,000 PU/kg had 19.2% and 25.5% greater ADG and gain:feed, 

respectively. Feed intake was not affected (P > 0.10) by dietary treatment. 

Nutrient Excretion and Digestibility. During the 7-d collection period, feed 

intake increased with increased (linear, P < 0.01) levels of SSF phytase complex. 

Total phosphorus intake (Table 6.3) was linearly increased (P < 0.01) with SSF 

phytase levels due to the higher feed intake. Daily fecal phosphorus excretion 

was decreased (linear, P < 0.01) by 16.8% with SSF phytase (Figure 6.1 ), 

resulting in increased phosphorus digestibility. Pigs fed 1,000 PU/kg had 

approximately 63% greater phosphorus digestibility compared with that of pigs 

fed the diet without SSF phytase (Figure 6.2). Also, ash digestibility was 

increased (linear, P < 0.01) by the addition of SSF phytase. Pigs fed the diet 

supplemented with 1,000 PU/kg SSF phytase complex had much greater ash 

digestibility (63.76%) compared with pigs fed the diet without SSF phytase 

complex (51.93%). 

Dry matter intake was increased (linear, P < 0.01) by the addition of SSF 

phytase. Dry matter excretion of pigs fed SSF phytase complex was higher (P < 

0.05) than that of pigs fed control diet due to higher feed intake. However, dry 

matter digestibility was increased (linear, P < 0.01) by the addition of SSF 
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phytase complex. When 1,000 PU/kg was added to diet, dry matter digestibility 

increased by 3.2% units, compared with the diet without SSF complex. 

Organic matter intake increased (quadratic, P < 0.05) with SSF phytase 

complex level. Due to the increased organic matter intake, the fecal excretion of 

organic matter increased (quadratic, P < 0.01) with SSF phytase. However, 

digestibility of organic matter increased (linear, P < 0.01) by the addition of SSF 

phytase complex. Pigs fed the diet containing SSF phytase complex (1,000 

PU/kg) had 2.6% units greater organic matter digestibility, compared with pigs 

fed the control diet. 

Digestibility of gross energy and nitrogen were improved (P < 0.01) by the 

addition of SSF phytase complex. Compared with pigs fed the diet without SSF 

phytase complex, pigs fed 1,000 PU/kg had 2.6% and 4.1 % unit greater 

digestibility of energy and nitrogen, respectively. Digestible energy in the diet 

73.5 kcal/kg greater for the diet containing 1,000 PU/kg compared with control 

diet (Table 6.4 ). 

Discussion 

Diets fed to pigs normally contain a high amount of phytate, which has a 

low digestibility (NRC 1998). The bioavailability of P from barley for pigs was 

reported to be about 30% (Kornegay, 1996). Phytate also combines with protein 

forming phytate-protein complex thus making the protein less available (Mroz 

and Jongbloed, 1998; Caldwell, 1992). Most of the experiments on phytase were 

conducted using corn-soybean meal based diets. Also, phytase used in most of 
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previous studies were produced by submerged fermentation process. The 

phytase produced from submerged fermentation usually contained only phytase 

activity (Filer, 2001 ). However, the phytase produced from the solid-state 

fermentation process contains significant activity of a-amylase, !3-glucanase, 

protease, xylanase and cellulose as well as phytase (Filer, 2001 ); therefore, the 

addition of SSF phytase complex might be beneficial for other nutrients besides 

phosphorus. 

In the present study, the addition of SSF phytase complex to barley 

soybean meal diets increased ADG and gain:feed ratio. Feed intake was not 

significantly different among the dietary treatments. Similar results were 

observed in previous studies from our lab (Exp.1 and Exp.2) using corn soybean 

meal diets with or without wheat middlings. Also, another study showed that pigs 

fed low P, barley-soybean meal diets supplemented with 500 PU/kg had similar 

growth performance compared to those fed an adequate P diet (Grandhi, 2000a). 

Another study by Grandhi (2000b) showed that the addition of carbohydrase to a 

hulless barley diet improved feed efficiency. Also, Baidoo et al., (1997) reported 

an improvement in feed efficiency in growing pigs fed hulless-barley diets 

supplemented with a mixture of different enzymes (!3-glucanse, xylanase, 

amylase, and pectinase). In corn-soybean meal diets, Jongbloed et al (1996) 

reported that the addition of phytase overcame the adverse effect of feeding low 

P diets on pig growth performance in 11 different experiments. 

The phytase used in our experiment was produced by a solid-state 

fermentation (SSF) process. The SSF phytase contains significant activity of a-
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amylase, ~-glucanase, protease, xylanase and cellulose. Phytic acid is able to 

inhibit a-amylase, trypsin, tyrosinase and pepsin (Nair et al., 1991; Caldwell, 

1992). Therefore, the degradation of phytate by the addition of dietary phytase 

complex could enhance digestibility of other nutrients as well as phosphorus. In 

a previous study from our lab (Exp.1 ), the addition of SSF phytase complex to 

low P, corn-soybean meal diets dramatically decreased fecal excretion of 

phosphorus, resulting in an increase in digestibility of phosphorus, but there was 

no improvement in digestibility of other nutrients by SSF phytase complex. Due 

to the high digestibility of corn-soybean meal diets, the potential for improvement 

in the digestibility of other nutrients by enzymes might be minimal. 

In our study, the feeding level was limited at 3.0 x maintenance. However, 

during the 7-d total collection period, feed intake was increased with SSF 

phytase complex. Pigs fed basal diets had the lowest feed intake. The reason for 

the lower feed intake is unclear. As a result, the amounts of daily nutrient 

excretion were increased with SSF phytase complex, except for P excretion. 

Even though P intake increased, the daily P excretion decreased due to a 

dramatic increase in P digestibility by SSF phytase. Nevertheless, the 

digestibility of each nutrient was significantly increased by the addition of SSF 

phytase complex. The addition of SSF phytase complex (up to 1,000 PU/kg) to 

low P, barley-soybean meal diets improved digestibility of P, dry matter, organic 

matter, nitrogen, and gross energy. Phosphorus digestibility was improved by 

38.7% when 1,000 PU/kg of SSF phytase was added to a low P, barley-soybean 

meal diet. Also, ash digestibility was increased by the addition of SSF phytase 
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complex. Grandhi (2000a) reported that the addition of microbial phytase (500 

PU/kg) decreased the excretion of Pin pigs fed barley-soybean meal diets. In 

this study, the reduction in total P excretion was 26.8% compared to an adequate 

P diet. 

Previous studies in our lab (Exp. 1 and Exp. 2) have shown no beneficial 

effect of SSF phytase on dry matter digestibility of pigs fed corn-soybean meal 

based diets or corn-soybean meal diets containing 20% wheat middlings. 

However, the beneficial effects of SSF phytase complex were observed in this 

study with barley. These results indicate that the addition of SSF phytase 

complex is more beneficial for energy and protein, but not for Pin relatively low 

quality feed (low available P, low energy, high fiber content, etc.). A similar 

response was also observed in organic matter excretion and digestibility. 

However, previous studies showed that the addition of phytase did not improve 

digestibility of organic components in barely, corn-soybean meal or tapioca, 

hominy feed-soybean meal diets (Graham, 1989; Nasi and Helander, 1994; 

Simons et al., 1990; Jongbloed et al., 1992). The enzyme used in those studies 

contained only phytase. However, Nasi et al. ( 1995) reported that the addition of 

1,000 PU/g of phytase complex to a barley-rapeseed meal diet significantly 

improved ash digestibility (54.9%) compared with the unsupplemented diet 

(52%). The phytase used in their study contained protein, starch, and pectin

degrading enzymes. These authors also found improved protein digestibility. 

Digestibility of energy and nitrogen were improved by the addition of SSF 

phytase complex. Similar results were found by Nasi et al. (1995) who reported 
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that the addition of phytase complex improved crude protein digestibility of 

barley-rapeseed meal diets. However, a previous study from our lab (Exp.1 and 

Exp.2) suggested that the addition of SSF phytase to low P, corn -soybean meal 

diets did not improve digestibility of gross energy or nitrogen. These results 

indicate the response and magnitude of phytase effect varies with different types 

of feedstuffs. 

Implications 

The addition of a solid-state fermented phytase complex to low P, barley

soybean meal based diets improved feed efficiency and nutrient digestibility by 

growing pigs. Digestibility of total P was dramatically increased by the addition 

of SSF phytase complex (up to 1,000 PU/kg). Also, dry matter, energy and 

protein digestibility were increased by the addition of SSF phytase complex. 

However, such improvements were not observed in previous studies utilizing 

corn-soybean meal. Therefore, these data indicate that the addition of a solid

state fermented phytase complex improves nutrient digestibility as well as P 

utilization of pigs fed barley-soybean meal diets. Also, this study suggests the 

addition of SSF phytase complex to low quality feedstuffs is more beneficial for 

nutrient utilization of pigs. 
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Table 6.1. Composition of experimental diets, as fed basis (Exp.3) 

Total P, % 
Available P, % 
Phytase, PTU/kg 
Barley 
Soybean meal 
Corn Starch 
Limestone 
Sodium chloride 
Vitamin premix a 

Trace mineral premix8 

Antibiotic b 

SSF Phytase c 

Calculated analysis 
ME, kcal/kg 
Lysine, % (App. Dig.) 
Ca,% 
Total P, % 
Available P, %ct 

Ca:Total P 
Added phytase activity, 
PTU/kg of diet 

0.47 
0.11 

0 
76.51 
21.57 

0.10 
1.07 
0.25 
0.15 
0.15 
0.20 

2,960 
0.77 
0.50 
0.42 
0.11 
1.2:1 
0 

Dietary treatments 
0.47 
0.11 
250 

76.51 
21.57 

0.08 
1.07 
0.25 
0.15 
0.15 
0.20 
0.025 

2,959 
0.77 
0.50 
0.42 
0.11 
1.2:1 

250 

0.47 
0.11 
500 
76.51 
21.57 

0.05 
1.07 
0.25 
0.15 
0.15 
0.20 
0.05 

2,958 
0.77 
0.50 
0.42 
0.11 
1.2:1 

500 

0.47 
0.11 
1,000 
76.51 
21.57 

1.07 
0.25 
0.15 
0.15 
0.20 
0.10 

2,956 
0.77 
0.50 
0.42 
0.11 
1.2:1 

1,000 

a Provided the following per kg of diet: 5,506 IU of vitamin A, 551 IU of vitamin 
D, 33 IU of vitamin E, 3.6 mg of vitamin K (as menadione), 221 µg of biotin, 137 
mg of choline, 33.04 mg of niacin, 24.78 mg of panthothenic acid (as d
pantothenate), 5.51 mg of riboflavin, 27.55 µg of vitamin B12, 1.66 mg of folacin, 
100 mg of Zn, 2 mg of Mn, 100 mg of Fe, 10 mg of Cu, .30 mg of I, and .30 mg 
of Se. 
b Provided 55 mg of chlortetracycline per kilogram of diet. 
c Solid-state fermented phytase complex (Allzyme® SSF; Alltech, Inc) contains 
1,000 PU/g of product 
ct Analyzed total P were 0.44, 0.44, 0.44, and 0.43, respectively. 
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Table 6.2. Effects of SSF phytase complex on growth performancea 
Dietary treatments 

Total P, % 0.47 0.47 0.47 
Available P, % 0.11 0.11 0.11 
Phytase, PTU/kg 0 250 500 
ADG, g 5 555 550 638 
ADFI, g 1,307 1,210 1,284 
Gain/feed, g/kg be 380 432 450 

a Least squares means for 6 pigs/trt 
b Linear effect of SSF phytase (P < 0.05) 
c None vs SSF Phytase (P < 0.05) 
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0.47 
0.11 
1,000 
662 

1,187 
477 

SE 
34 
40 
30 



Table 6.3. Effects of SSF phytase on phosphorus, dry matter, organic 
matter, and ash digestibility of pigs fed low P, barley-SBM based diets (DM 
basis} ab 

Dietary treatments 
Total P, % .47 .47 .47 .47 
Available P, % .11 .11 .11 .11 
Phytase, PTU/kg 0 250 500 1,000 SE 
Phosphorus 
Intake, g/d bde 4.43 5.05 5.73 5.52 .22 
Feces, g/d bd 2.91 2.71 2.61 2.43 .09 
Absorbed, g/d bde 1.53 2.35 3.12 3.09 .19 
Digestibility, % bde 34.28 45.86 54.43 55.96 1.97 
Dry matter 
Intake, g/d bde 902.9 1037.4 1150.7 1139.5 45.7 
Feces, g/d e 216.6 240.4 243.1 237.6 9.2 
Absorbed, g/d bde 686.3 796.6 907.6 901.9 41.5 
Digestibility, % ce 75.97 76.54 78.84 79.16 .87 
Organic Matter 
Intake, g/d bde 840.5 964.2 1066.9 1057.1 42.4 
Feces, g/d e 186.6 209.4 212.1 207.8 8.3 
Absorbed, g/d bde 653.8 754.8 854.9 849.3 38.7 
Digestibility, % c 77.76 78.04 80.09 80.36 .83 
Ash 
Intake, g/d bde 62.4 72.9 83.7 82.4 3.2 
Feces, g/d 30.0 31.1 31.0 29.8 1.0 
Absorbed, g/d bde 32.5 41.8 52.8 52.6 2.9 
Digestibility, % bde 51.93 56.79 62.87 63.76 1.65 

a Least squares means for 6 pigs/trt, 
b Linear effect of SSF phytase (P < 0.01) 
c Linear effect of SSF phytase (P < 0.05) 
d Quadratic effect of SSF phytase (P< 0.05) 
e None vs SSF phytase (P < 0.05) 
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Table 6.4. Effects of SSF phytase on energy and nitrogen digestibility of 
pigs fed low P, barley-SBM based diets (DM basis) ab 

Total P, % 
Available P, % 
Phytase, PTU/kg 
Gross Energy 

Intake, kcal/d bcte 

Feces, kcal/d e 

Absorbed, kcal/d be 

Digestibility, % b 

Digestible Energy 
kcal/kg 

Nitrogen 
Intake, g/d bcte 

Feces, g/d de 

Absorbed, g/d bcte 

Digestibility, % b 

.47 

.11 
0 

3,968.2 
996.3 

2971.9 
74.86 

3290.1 

30.38 
7.86 

22.52 
74.07 

Dietary treatments 
.47 .47 
.11 .11 
250 500 

4,564.6 4,982.2 
1128.1 1138.9 
3436.4 3843.3 

75.01 77.09 

3301.6 3337.9 

36.40 40.24 
9.50 9.40 

26.91 30.84 
73.69 76.51 

a Least squares means for 6 pigs/trt, 
b Linear effect of SSF phytase (P < 0.01) 
c Linear effect of SSF phytase (P < 0.05) 
ct Quadratic effect of SSF phytase (P< 0.05) 
e None vs SSF phytase (P < 0.05) 
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.47 

.11 
1,000 

4,947.7 
1115.5 
3832.2 

77.47 

3363.6 

40.60 
8.88 

31.72 
78.18 

SE 

200.1 
46.1 

179.1 
.95 

41.5 

1.6 
.48 

1.43 
1.23 



Figure 6.1. Reduction in daily fecal P excretion by the addition of SSF 
phytase complex. 
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Figure 6.2. Improvement in P digestibility by the addition of SSF 
phytase complex. 
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CHAPTER VII 

Summary and Conclusion 

Corn-soybean meal diets are the most common diets for pigs. Phytate is 

the major form of phosphorus in cereal grains and oilseed meals. Approximately 

60 to 70% of the phosphorus in corn and soybean meal is in the form of phytate. 

Pigs can not utilize the phytate-P efficiently due to the lack of endogenous 

phytase that hydrolyzed phytic P. Therefore, inorganic sources of phosphorus 

have been routinely added to diets for swine feed to supply sufficient levels of 

available phosphorus. This routine feed management can satisfy the 

requirement for animal growth, but it causes significant amounts of phosphorus 

excretion to the environment. 

During the past decade, dietary microbial phytase has been added to 

swine diets to attempt to improve digestibility of phytate-P in feedstuffs for less P 

excretion to the environment. Because of the high nutrient content of manure 

and its fertilizer value, land application has been the major means of handling 

manure. Excess phosphorus application results in excess buildup of phosphorus 

in soil and in surface runoff water into streams, lake, and rivers. Phosphorus is 

the most limiting nutrient that regulate aquatic plant growth, so as the level of 

phosphorus in these bodies of water increases, so does the growth of algae and 

other aquatic vegetation. For these reasons, the addition of dietary phytase with 
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decreasing additions of inorganic phosphorus is beneficial for both animals and 

the environment. 

There are several kinds of phytase already available in the market and 

new phytase sources are currently being developed. Most of phytase in the 

market are produced by submerged microbial fermentation (SmF). Recently, 

solid-state fermentation (SSF) technology has been utilized as an alternative to 

produce microbial phytase. This type of phytase also contains substantial 

activities of other enzymes, known as "side activities", such as a-amylase, 13-

glucanse, protease, xylanase, and cellulase. Due to its side enzyme activity, the 

addition of SSF phytase complex might be beneficial for other nutrients as well 

as P utilization by pigs. Therefore, the purpose of our studies was to determine 

the effects of the addition of a solid-state fermented phytase complex on growth 

performance, nutrient utilization, bone traits and tissue accretion rates in growing 

pigs fed different types of feeds. 

To accomplish our objectives, ninety barrows were used in 3 different 

experiments. In Exp. 1, forty-two barrows (avg BW = 19.9 kg) were used in a 33-

d study, utilizing low P, corn-soybean meal diets. In Exp. 2, a total of 24 barrows 

was used in a 35-d study utilizing low P, corn-soybean meal diets containing 20% 

wheat middlings. For Exp. 3, twenty four barrows were utilized in a 21-d study 

with low available P, barley-soybean meal diets. 

For growth performance, the addition of SSF phytase complex (250 to 

1,000 PU/kg) did not affect ADFI in Exp.1 and 2. However, in Exp. 3, ADFI 

increased with SSF phytase complex. The reason for increased feed intake is 
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unclear. The addition of SSF phytase complex improved gain:feed ratio in all 

three experiments. In Exp.1, the addition of 500 or 1,000 PU/kg to the low P, 

corn-soybean meal diet increased gain:feed similar to that for the adequate P 

diet. These results indicate that the addition of SSF phytase complex is 

beneficial for growth performance of growing pigs fed low P diets. 

Phosphorus utilization was improved by the addition of SSF phytase 

complex in all three experiments. However, the magnitude of improvement was 

somewhat different among experiments with different types of feed (Figure 7.2). 

In Exp 1, daily fecal P excretion was dramatically decreased by the addition of 

SSF phytase complex, and digestibility of Palso improved by the addition of SSF 

phytase. Compared to the basal diet, additions of SSF decreased P excretion 

(3.06 vs 2.48, 2.36, 1.68 g/d) by 19.3, 23.3, and 45.4%, respectively. In Exp. 2, 

fecal P excretion was reduced by 10% when 500 PU/kg was added to diets 

containing 20% wheat middlings, which is lower than that found in Exp 1. (23.3% 

reduction in P excretion). In Exp. 3, even though higher feed intake during 

collection period was observed, the amount of daily fecal P excretion was 

reduced by 16.8% and digestibility of P was increased by 62%. The results from 

all three experiments indicate the addition of SSF phytase improves phytate-P in 

corn or barley-soybean diets. In the barley soybean meal diets, the improvement 

in P digestibility by SSF phytase complex is more prominent (Figure 7.2). 
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Figure 7.1. Improvements in phosphorus digestibility(%) by the 
addition of SSF phytase complex (500PU/kg) to different diets in 
Exp.1 (corn-SBM), Exp. 2 (corn-SBM-20% WM) and Exp. 3{barley
SBM). 

70 

34.8% 

59.4% 

19.0% 

Exp.1 Exp.2 Exp. 3 

Bone traits were measured in Exp. 1 and 2. In both experiments, bone 

breaking strength (BB) of metacarpal and metatarsal and femurs and ash (%) 

increased with increasing SSF phytase complex. In Exp.1, based on average BS 

and ash, addition of 250, 500, or 1,000 PU/kg was equivalent to 0.066, 0.120, 

and 0.140% available P, respectively. For the carcass, the contents(%) and 

accretion rates of water, protein, and fat were not affected by SSF phytase 

complex. However, the content(%) and accretion of P and ash increased with 

addition of SSF phytase complex. The increase in bone strength and carcass P 

associated with increasing SSF was similar to that for diets containing adequate 

P. These results from Exp 1 and 2 indicate that the addition of a solid-state 

fermented phytase improves P bioavailability. 

117 



As mentioned in the previous chapter, SSF phytase also contains 

substantial activities of other enzymes, known as "side activities", such as a

amylase, ~-glucanse, protease, xylanase, and cellulase. Due to the side activity, 

digestibilities of other nutrients were measured in the all three experiments. 

Unlike P utilization, the addition of SSF phytase complex up to 1,000PU/kg did 

not improve digestibility of dry matter, nitrogen, or gross energy besides 

phosphorus (Exp. 1 and 2). In Exp.1, low P corn-soybean meal diets were fed 

with or without SSF phytase complex. Due to the high digestibility of dry matter 

and N in corn-soybean meal diet, there was no further improvement in dry 

matter, N, or energy digestibility. Therefore, in Exp. 2, a fiber source was added 

to corn-soybean meal diets to determine if the side enzymes improve digestibility 

of other nutrients. To accomplish these objectives, 20% wheat middlings was 

added to the basal diets. However, the addition of SSF phytase complex (500 

PU/kg) did not improve utilization of dry matter, Nor gross energy. In Exp. 3, 

barely was used as basal grain source to formulate a relatively poor quality diet 

in terms of P and energy. As we expected, the addition of SSF phytase complex 

improved the digestibility of dry matter, organic matter, ash, protein, especially, 

gross energy. The results found in three experiments indicate the effects of SSF 

phytase complex on nutrient utilization varies depending on type of feed. In 

addition, these data suggest the addition of SSF phytase is more beneficial for 

pigs fed barley-soybean meal diets. 

In conclusion, the addition of SSF phytase improves growth performance 

and P utilization of pigs fed corn or barley soybean meal diets. However, the 
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beneficial effect of side enzyme in SSF phytase only is found with relatively low 

quality feed. Further study is needed to elucidate the effects of fiber on dietary 

phytase activity. 
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Appendix Table 1 

Pigs means for average daily gain, average daily feed intake, average daily 
dry matter intake, and gain:feed (Experiment 1). 

PEN 
2 
3 
4 
5 
6 
7 
8 
10 
11 
12 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
23 

TRT 
C 
G 
E 
F 
B 
D 
F 
C 
G 
B 
D 
E 
A 
G 
B 
D 
E 
C 
F 
A 
A 

REP 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 

ADG,g 
816.33 
785.60 
611.51 
809.01 
749.03 
731.48 
735.86 
749.03 
746.10 
620.29 
713.92 
712.46 
593.96 
670.03 
617.37 
649.55 
684.66 
573.48 
816.33 
604.20 
604.20 

ADFl,g 
1769.91 
1645.70 
1434.50 
1731.01 
1673.48 
1554.43 
1548.09 
1495.19 
1549.68 
1517.25 
1577.91 
1598.14 
1430.87 
1557.48 
1482.32 
1532.71 
1548.25 
1419.06 
1708.46 
1457.13 
1457.13 

Trt A: Corn-soybean meal diets+ 0% monosodium phosphate 
Trt B: Corn-soybean meal diets+ 0.21 % monosodium phosphate 
Trt C: Corn-soybean meal diets+ 0.43% monosodium phosphate 
Trt D: Corn-soybean meal diets + 0.66% monosodium phosphate 
Trt E: Corn-soybean meal diets + 250 SSF phytase 
Trt F: Corn-soybean meal diets + 500 SSF phytase 
Trt G: Corn-soybean meal diets+ 1,000 SSF phytase 
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G:F 
461.23 
477.37 
426.29 
467.36 
447.59 
470.57 
475.34 
500.96 
481.46 
408.83 
452.45 
445.80 
415.10 
430.20 
416.49 
423.79 
442.22 
404.12 
477.82 
414.65 
414.65 



Table 1. (continued) 
PEN TRT REP ADG,g ADFl,g G:F 

1 B 4 812.32 1570.70 517.17 
2 E 4 806.99 1629.86 495.13 
3 D 4 744.30 1452.31 512.49 
4 C 4 924.37 1751.21 527.85 
5 F 4 781.65 1602.30 487.83 
6 G 4 730.96 1486.43 491.76 
7 A 4 733.63 1487.83 493.08 
9 E 5 661.60 1344.99 491.90 
10 B 5 678.94 1287.18 527.46 
11 C 5 708.28 1521.90 465.40 
12 D 5 817.66 1533.58 533.17 
14 F 5 708.28 1376.46 514.57 
16 G 5 689.61 1290.29 534.46 
17 A 6 585.57 1219.42 480.20 
18 G 6 825.66 1587.55 520.09 
19 F 6 606.91 1354.87 447.95 
20 D 6 670.94 1187.48 565.01 
21 C 6 688.28 1272.54 540.87 
22 E 6 668.27 1248.94 535.07 
23 B 6 550.89 1057.77 520.80 

Trt A: Corn-soybean meal diets + 0% monosodium phosphate 
Trt B: Corn-soybean meal diets + 0.21 % monosodium phosphate 
Trt C: Corn-soybean meal diets + 0.43% monosodium phosphate 
Trt D: Corn-soybean meal diets + 0.66% monosodium phosphate 
Trt E: Corn-soybean meal diets+ 250 SSF phytase 
Trt F: Corn-soybean meal diets+ 500 SSF phytase 
Trt G: Corn-soybean meal diets + 1,000 SSF phytase 
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Appendix Table 2 

Analysis of variance for average daily gain, average daily feed intake, 
average daily dry matter intake, and gain:feed (Experiment 1}. 

Mean Sguares 
Source df ADG, g ADFI, g G:F, g/kg 
Total 39 
Error 28 4627.0285 12178.670 779.40911 
Repetition 5 17927 .25234 112751.2533 8617.34742 
Treatment 6 8670.95296 15801.4631 841.41201 

Linear MSP 1 25821.06021 22108.69521 4146.4 75130 
Quadratic MSP 1 4417.71282 10525.95371 164.742245 
Cubic MSP 1 4890.38156 18879.94340 26.418884 

Linear SSF 1 28485.05649 34028.23491 3138.816136 
Quadratic SSF 1 10067.65700 23817.96661 371.593744 
Cubic SSF 1 474.78773 4173.34237 97.349603 
None vs SSF 1 1534.41947 9541.05680 79.893803 
C.V., % 9.58 7.41 5.83 
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Appendix Table 3 

Pigs means for average dry matter intake, excretion, absorbed, and 
digestibility (Experiment 1 ). 

Pen TRT BLK Period OM-intake OM-Exe OM-abs OM-dig 
1 A 1 1 1639.02 186.59 1452.43 88.62 
2 C 1 1 1432.91 156.39 1276.52 89.09 
3 G 1 1 1251.91 129.92 1121.99 89.62 
4 E 1 1 1296.32 119.00 1177.32 90.82 
5 F 1 1 1430.70 161.13 1269.57 88.74 
6 B 1 1 1411.44 146.99 1264.45 89.59 
7 0 1 1 1313.25 144.84 1168.41 88.97 
9 F 2 1 1327.65 121.79 1205.86 90.83 
10 C 2 1 1261.51 153.23 1108.28 87.85 
11 G 2 1 1374.12 142.96 1231.16 89.60 
12 B 2 1 1275.84 141.95 1133.89 88.87 
14 0 2 1 1439.04 134.58 1304.46 90.65 
15 E 2 1 1213.64 130.68 1082.96 89.23 
16 A 2 1 1325.25 153.33 1171.92 88.43 
17 G 3 1 1238.78 121.26 1117.52 90.21 
18 B 3 1 1178.76 126.77 1052.00 89.25 
19 0 3 1 1326.61 137.29 1189.32 89.65 
20 E 3 1 1300.05 153.69 1146.36 88.18 
21 C 3 1 1166.76 136.86 1029.90 88.27 
22 F 3 1 1439.27 170.47 1268.80 88.16 
23 A 3 1 886.34 100.18 786.16 88.70 
1 A 1 2 1719.98 194.60 1525.38 88.69 
2 C 1 2 1680.23 191.16 1489.07 88.62 
3 G 1 2 1506.23 188.01 1318.22 87.52 
4 E 1 2 1432.86 163.19 1269.68 88.61 
5 F 1 2 1638.94 177.90 1461.04 89.15 
6 B 1 2 1411.25 157.26 1253.99 88.86 
7 0 1 2 1465.07 159.95 1305.11 89.08 
9 F 2 2 1263.58 136.72 1126.86 89.18 
10 C 2 2 1522.83 204.09 1318.74 86.60 
11 G 2 2 1466.18 164.59 1301.59 88.77 
12 B 2 2 1335.13 161.56 1173.57 87.90 
14 0 2 2 1365.92 120.60 1245.32 91.17 
15 E 2 2 1378.01 187.66 1190.35 86.38 
16 A 2 2 1237.44 131.98 1105.46 89.33 
17 G 3 2 1488.13 223.86 1264.27 84.96 
18 B 3 2 1230.42 133.33 1097.10 89.16 
19 0 3 2 1398.92 163.84 1235.08 88.29 
20 E 3 2 1436.10 176.84 1259.26 87.69 
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Table 3. {continued) 

Pen TRT BLK Period OM-intake OM-Exe OM-abs OM-dig 
21 C 3 2 1233.47 134.76 1098.71 89.07 
22 F 3 2 1721.68 169.57 1552.11 90.15 
23 A 3 2 1271.82 133.40 1138.42 89.51 
1 B 4 1 1419.12 183.52 1235.60 87.07 
2 E 4 1 1434.70 188.83 1245.87 86.84 
3 0 4 1 1280.81 156.56 1124.25 87.78 
4 C 4 1 1726.94 279.39 1447.55 83.82 
5 F 4 1 1425.45 212.31 1213.14 85.11 
6 G 4 1 1240.95 185.93 1055.02 85.02 
7 A 4 1 1305.77 186.97 1118.81 85.68 
9 E 5 1 1221.19 193.67 1027.52 84.14 
10 B 5 1 1266.11 217.41 1048.69 82.83 
11 C 5 1 1665.47 261.03 1404.44 84.33 
12 0 5 1 1330.95 206.16 1124.79 84.51 
14 F 5 1 1310.86 128.30 1182.57 90.21 
15 A 5 1 1300.56 186.78 1113.77 85.64 
16 G 5 1 1031.58 129.29 902.29 87.47 
17 A 6 1 1096.42 175.00 921.41 84.04 
18 G 6 1 1655.67 195.59 1460.08 88.19 
19 F 6 1 1080.44 142.15 938.29 86.84 
20 0 6 1 1063.45 150.45 913.00 85.85 
21 C 6 1 1095.12 134.30 960.82 87.74 
22 E 6 1 1043.15 130.12 913.03 87.53 
23 B 6 1 866.48 115.10 751.38 86.72 
1 B 4 2 1713.27 212.66 1500.60 87.59 
2 E 4 2 1685.37 205.09 1480.28 87.83 
3 0 4 2 1469.04 151.71 1317.34 89.67 
4 C 4 2 1551.69 177.56 1374.13 88.56 
5 F 4 2 1643.54 209.57 1433.98 87.25 
6 G 4 2 1461.21 201.63 1259.58 86.20 
7 A 4 2 1381.42 145.83 1235.59 89.44 
9 E 5 2 1377.76 172.78 1204.98 87.46 
10 B 5 2 1145.07 151.20 993.87 86.80 
11 C 5 2 1783.06 280.48 1502.58 84.27 
12 0 5 2 1523.36 227.47 1295.89 85.07 
14 F 5 2 1463.93 151.25 1312.68 89.67 
15 A 5 2 1498.32 187.57 1310.75 87.48 
16 G 5 2 1379.70 128.18 1251.53 90.71 
17 A 6 2 1273.18 105.90 1167.28 91.68 
18 G 6 2 1634.78 155.56 1479.22 90.48 
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Table 3. (continued) 

Pen TRT BLK Period OM-intake OM:.Exc OM-abs 
19 F 6 2 1375.60 160.49 1215.11 
20 0 6 2 1245.30 135.06 1110.23 
21 C 6 2 1271.84 138.37 1133.47 
22 E 6 2 1259.59 118.75 1140.83 
23 B 6 2 1114.79 145.08 969.71 

Trt A: Corn-soybean meal diets+ 0% monosodium phosphate 
Trt B: Corn-soybean meal diets + 0.21 % monosodium phosphate 
Trt C: Corn-soybean meal diets + 0.43% monosodium phosphate 
Trt 0: Corn-soybean meal diets + 0.66% monosodium phosphate 
Trt E: Corn-soybean meal diets + 250 SSF phytase 
Trt F: Corn-soybean meal diets+ 500 SSF phytase 
Trt G: Corn-soybean meal diets + 1,000 SSF phytase 

146 

OM-dig 
88.33 
89.15 
89.12 
90.57 
86.99 



Appendix Table 4 

Analysis of average dry matter intake, excretion, absorbed, and digestibility 
{Experiment 1 ). 

Mean Squares 
Source df Intake Feces Absorbed Digestibility 

g/d g/d g/d % 
Total 83 
Error 65 25062.369 1018.2214 19172.976 2.8712675 
Repetition 5 140947.1643 6343.40044 103787. 7979 15.77065619 
Treatment 6 42069.4562 1360.88954 32437.8200 2.44594643 
Period 1 438001.3086 1131.53440 394609.4544 12 .435504 76 
Treatment x Period 6 4607.4497 518.24423 3225.7279 2.18002421 

Linear MSP 34626.0315 527.859020 26603.41380 0.05133375 
Quadratic MSP 7556.8574 2757.452419 1184.84813 6.83275208 
Cubic MSP 139502.8711 4716.978000 92915.58128 0.99717042 

Linear SSF 1 37148.2434 217.771262 31679.05620 0.39775129 
Quadratic SSF 1 20090.6930 32.108335 18517.60510 0.68772875 
Cubic SSF 1 20305.9047 23.171659 21701.61655 2.08409274 
None vs SSF 1 31301.2761 235.980803 26103.24923 0.24420069 

C.V.,% 11.58 19.47 11.51 1.92 
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Appendix Table 5 

Pigs means for average daily phosphorus intake, excretion, absorption, 
and digestibilit~ (Experiment 1 }. 

Intake Feces Absorbed Digestibility, 
Pen TRT BLK Period g/d g/d g/d % 

1 A 1 1 6.93 3.57 3.36 48.48 
2 C 1 1 7.69 2.91 4.78 62.18 
3 G 1 1 5.09 1.49 3.60 70.74 
4 E 1 1 5.26 1.83 3.43 65.16 
5 F 1 1 5.82 2.05 3.76 64.69 
6 B 1 1 6.57 2.40 4.17 63.49 
7 D 1 1 7.73 2.86 4.88 63.03 
9 F 2 1 5.40 2.11 3.28 60.84 
10 C 2 1 6.77 2.96 3.81 56.30 
11 G 2 1 5.59 1.33 4.26 76.25 
12 B 2 1 5.94 2.43 3.51 59.13 
14 D 2 1 8.48 2.75 5.73 67.59 
15 E 2 1 4.88 2.38 2.50 51.27 
16 A 2 1 5.61 3.19 2.42 43.09 
17 G 3 1 5.04 1.04 4.00 79.32 
18 B 3 1 5.48 2.71 2.78 50.62 
19 D 3 1 7.81 3.05 4.77 61.01 
20 E 3 1 5.28 2.29 2.99 56.59 
21 C 3 1 6.26 2.13 4.13 65.93 
22 F 3 1 5.85 2.60 3.25 55.62 
23 A 3 1 3.75 2.08 1.67 44.66 
1 A 1 2 6.96 3.79 3.17 45.52 
2 C 1 2 8.89 4.07 4.82 54.21 
3 G 1 2 6.27 1.90 4.38 69.77 
4 E 1 2 5.90 2.22 3.68 62.35 
5 F 1 2 6.70 2.29 4.41 65.79 
6 B 1 2 6.64 2.75 3.88 58.49 
7 D 1 2 8.04 2.93 5.11 63.50 
9 F 2 2 5.17 2.17 3.00 57.96 
10 C 2 2 8.05 4.01 4.04 50.17 
11 G 2 2 6.11 2.51 3.59 58.87 
12 B 2 2 6.28 1.55 4.73 75.34 
14 D 2 2 7.50 2.12 5.38 71.76 
15 E 2 2 5.67 3.00 2.67 47.15 
16 A 2 2 5.01 2.66 2.34 46.81 
17 G 3 2 6.20 1.97 4.23 68.19 
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Table 5. (continued} 
Intake Feces Absorbed Digestibility, 

Pen TRT BLK Period g/d g/d g/d % 
18 8 3 2 5.79 2.92 2.87 49.54 
19 D 3 2 7.68 3.51 4.17 54.26 
20 E 3 2 5.91 2.78 3.13 52.99 
21 C 3 2 6.52 2.53 3.99 61.23 
22 F 3 2 7.04 2.93 4.11 58.43 
23 A 3 2 5.15 2.99 2.16 41.89 
1 8 4 1 6.64 3.14 3.49 52.62 
2 E 4 1 5.89 2.38 3.51 59.65 
3 D 4 1 7.12 2.77 4.35 61.09 
4 C 4 1 9.04 4.81 4.22 46.74 
5 F 4 1 5.73 2.31 3.43 59.79 
6 G 4 1 5.00 1.60 3.40 67.99 
7 A 4 1 5.39 3.16 2.23 41.34 
9 E 5 1 5.01 2.79 2.22 44.28 
10 8 5 1 5.92 3.92 2.00 33.73 
11 C 5 1 8.72 4.19 4.53 51.94 
12 D 5 1 7.40 3.72 3.67 49.66 
14 F 5 1 5.27 1.90 3.37 63.89 
15 A 5 1 5.36 3.37 2.00 37.22 
16 G 5 1 4.16 1.32 2.84 68.35 
17 A 6 1 4.52 3.02 1.50 33.17 
18 G 6 1 6.67 1.94 4.73 70.86 
19 F 6 1 4.35 2.04 2.30 52.96 
20 D 6 1 5.91 2.82 3.09 52.33 
21 C 6 1 5.73 2.72 3.01 52.50 
22 E 6 1 4.28 2.18 2.10 49.03 
23 8 6 1 4.05 2.32 1.73 42.74 
1 8 4 2 8.17 4.22 3.95 48.35 
2 E 4 2 6.95 3.12 3.83 55.14 
3 D 4 2 8.39 2.70 5.69 67.87 
4 C 4 2 8.19 3.55 4.64 56.62 
5 F 4 2 6.83 2.70 4.12 60.39 
6 G 4 2 5.90 2.03 3.87 65.61 
7 A 4 2 5.78 3.02 2.76 47.79 
9 E 5 2 5.68 2.80 2.88 50.75 
10 8 5 2 5.46 2.79 2.67 48.96 
11 C 5 2 9.41 4.13 5.28 56.12 
12 D 5 2 8.70 4.10 4.60 52.86 
14 F 5 2 6.08 2.41 3.67 60.33 
15 A 5 2 6.27 3.86 2.41 38.41 
16 G 5 2 5.58 1.36 4.22 75.61 
17 A 6 2 5.32 2.10 3.22 60.53 
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Table 5. {continued} 
Intake Feces Absorbed 

Pen TRT BLK Period g/d g/d g/d 
18 G 6 2 6.61 1.66 4.95 
19 F 6 2 5.71 2.70 3.01 
20 D 6 2 7.11 2.58 4.53 
21 C 6 2 6.71 3.01 3.70 
22 E 6 2 5.19 1.94 3.25 
23 B 6 2 5.32 3.14 2.17 

Trt A: Corn-soybean meal diets + 0% monosodium phosphate 
Trt B: Corn-soybean meal diets+ 0.21 % monosodium phosphate 
Trt C: Corn-soybean meal diets + 0.43% monosodium phosphate 
Trt D: Corn-soybean meal diets + 0.66% monosodium phosphate 
Trt E: Corn-soybean meal diets + 250 SSF phytase 
Trt F: Corn-soybean meal diets + 500 SSF phytase 
Trt G: Corn-soybean meal diets + 1,000 SSF phytase 
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Digestibility, 
% 

74.90 
52.69 
63.69 
55.10 
62.68 
40.87 



Appendix Table 6 

Analysis of variance for average daily phosphorus intake, excretion, 
absorption, and digestibilit~ (Experiment 1} 

Mean Squares 
Source df Intake Feces Absorbed Digestibility 

g/d g/d g/d % 
Total 83 
Error 65 0.5425315 0.28544952 0.33851084 44.069653 
Repetition 5 3.18483357 0.90137619 1.86153905 137.250177 
Treatment 6 11.31378016 3.95040833 7.22066230 802.877301 
Period 1 8.97026786 0.95147143 4.06560000 31.721719 
Treatment x Period 6 0.08633730 0.10365754 0.01034167 26.455838 

Linear MSP 1 39.349880167 0.06767042 36.18490042 1730.106602 
Quadratic MSP 1 0.83213333 0.13975208 0.28366875 26.048533 
Cubic MSP 1 4.63148167 1.85328375 0.62730375 17.205615 

Linear SSF 1 0.33943709 11.21120218 15.44642255 4205.431034 
Quadratic SSF 1 0.21107291 0.10455163 0.60402160 86.810096 
Cubic SSF 1 0.38113990 0.36201700 0.00011519 42.112171 
None vs SSF 1 0.24337778 7.27201111 10.16015625 2757.562656 

C.V., % 11.76 19.84 16.28 11.70 
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Appendix Table 7 

Pigs means for average daily nitrogen intake, excretion, absorption, and 
digestibility (Experiment 1 ). 

Intake Feces Absorbed Digestibility 
Pen TRT BLK Period g/d g/d g/d % 

1 A 1 1 53.72 8.09 45.63 84.93 
2 C 1 1 46.39 6.47 39.92 86.06 
3 G 1 1 40.94 6.28 34.66 84.66 
4 E 1 1 42.54 5.25 37.29 87.66 
5 F 1 1 46.83 6.88 39.95 85.32 
6 B 1 1 45.84 6.53 39.31 85.76 
7 D 1 1 42.56 6.15 36.42 85.56 
9 F 2 1 43.46 5.44 38.01 87.47 
10 C 2 1 40.84 6.96 33.88 82.96 
11 G 2 1 44.93 6.33 38.60 85.91 
12 B 2 1 41.43 6.82 34.62 83.55 
14 D 2 1 46.64 5.61 41.03 87.98 
15 E 2 1 39.82 6.05 33.77 84.80 
16 A 2 1 43.44 7.64 35.80 82.42 
17 G 3 1 40.51 5.63 34.88 86.11 
18 B 3 1 38.28 5.61 32.67 85.35 
19 D 3 1 42.99 5.85 37.15 86.40 
20 E 3 1 42.66 6.98 35.68 83.64 
21 C 3 1 37.77 6.51 31.26 82.77 
22 F 3 1 4 7.11 7.21 39.90 84.69 
23 A 3 1 29.05 4.11 24.94 85.84 
1 A 1 2 56.22 8.15 48.07 85.51 
2 C 1 2 54.15 8.28 45.87 84.71 
3 G 1 2 49.70 8.65 41.05 82.60 
4 E 1 2 47.52 7.14 40.38 84.97 
5 F 1 2 54.15 7.81 46.33 85.57 
6 B 1 2 45.76 6.81 38.95 85.11 
7 D 1 2 47.80 6.86 40.94 85.64 
9 F 2 2 41.74 6.04 35.71 85.54 
10 C 2 2 49.08 9.21 39.87 81.23 
11 G 2 2 48.38 7.35 41.03 84.81 
12 B 2 2 43.30 6.85 36.45 84.18 
14 D 2 2 44.57 5.64 38.93 87.35 
15 E 2 2 45.70 8.34 37.36 81.75 
16 A 2 2 40.44 5.92 34.52 85.36 
17 G 3 2 49.10 10.13 38.97 79.36 
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Table 7 (continued}. 
Intake Feces Absorbed Digestibility 

Pen TRT BLK Period g/d g/d g/d % 
18 B 3 2 39.90 5.70 34.20 85.72 
19 D 3 2 45.65 7.42 38.23 83.75 
20 E 3 2 47.63 8.34 39.28 82.48 
21 C 3 2 39.76 6.16 33.60 84.52 
22 F 3 2 56.88 7.00 49.88 87.69 
23 A 3 2 41.57 5.54 36.03 86.68 
1 B 4 1 47.84 8.54 39.30 82.15 
2 E 4 1 49.28 8.43 40.86 82.90 
3 D 4 1 43.88 6.93 36.95 84.22 
4 C 4 1 61.22 12.34 48.88 79.84 
5 F 4 1 53.45 9.25 44.20 82.69 
6 G 4 1 42.24 8.67 33.57 79.48 
7 A 4 1 44.50 9.08 35.41 79.59 
9 E 5 1 41.95 9.07 32.88 78.38 
10 B 5 1 42.68 10.21 32.47 76.07 
11 C 5 1 59.04 12.41 46.64 78.99 
12 D 5 1 45.60 9.78 35.82 78.55 
14 F 5 1 49.16 6.34 42.82 87.11 
15 A 5 1 44.32 8.47 35.85 80.90 
16 G 5 1 35.11 4.51 30.60 87.14 
17 A 6 1 37.36 8.01 29.35 78.55 
18 G 6 1 56.35 8.81 47.55 84.37 
19 F 6 1 40.52 6.30 34.22 84.46 
20 D 6 1 36.43 6.30 30.14 82.72 
21 C 6 1 38.82 5.64 33.18 85.46 
22 E 6 1 35.83 6.08 29.75 83.04 
23 B 6 1 29.21 5.61 23.60 80.79 
1 B 4 2 57.21 9.70 47.51 83.04 
2 E 4 2 57.28 9.64 47.64 83.17 
3 D 4 2 49.58 7.63 41.95 84.62 
4 C 4 2 53.89 9.20 44.70 82.94 
5 F 4 2 61.12 10.46 50.66 82.89 
6 G 4 2 49.42 9.18 40.24 81.42 
7 A 4 2 46.46 6.78 39.68 85.40 
9 E 5 2 46.82 8.01 38.81 82.88 
10 B 5 2 38.24 7.12 31.12 81.37 
11 C 5 2 61.93 13.83 48.10 77.67 
12 D 5 2 51.41 11.35 40.06 77.93 
14 F 5 2 54.44 7.83 46.61 85.62 
15 A 5 2 50.40 8.67 41.72 82.79 
16 G 5 2 46.67 6.13 40.54 86.87 
17 A 6 2 42.82 5.39 37.43 87.41 

153 



Table 7 (continued}. 
Intake Feces Absorbed 

Pen TRT BLK Period g/d g/d g/d 
18 G 6 2 55.29 8.10 47.19 
19 F 6 2 51.16 7.86 43.29 
20 D 6 2 42.03 6.44 35.59 
21 C 6 2 44.17 6.96 37.21 
22 E 6 2 42.81 6.23 36.58 
23 B 6 2 37.23 7.41 29.82 

Trt A: Corn-soybean meal diets + 0% monosodium phosphate 
Trt B: Corn-soybean meal diets + 0.21 % monosodium phosphate 
Trt C: Corn-soybean meal diets+ 0.43% monosodium phosphate 
Trt D: Corn-soybean meal diets + 0.66% monosodium phosphate 
Trt E: Corn-soybean meal diets+ 250 SSF phytase 
Trt F: Corn-soybean meal diets+ 500 SSF phytase 
Trt G: Corn-soybean meal diets + 1,000 SSF phytase 
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Digestibility 
% 

85.35 
84.63 
84.69 
84.24 
85.45 
80.10 



Appendix Table 8 

Analysis of variance for average daily nitrogen intake, excretion, 
absorption, and digestibilit~ {Experiment 1 }. 

Mean Sguares 
Source df Intake Feces Absorbed Digestibility 

g/d g/d g/d % 
Total 39 
Error 28 29.379604 2.2032804 75.098734 5.2674575 
Repetition 5 181.6985219 17.06496762 106.1791279 28.9818898 
Treatment 6 88.8185714 3.34678254 72.7209024 9.9542159 
Period 1 461.2617333 6.90263333 355.0218583 3.7592012 
Treatment x Period 6 7.4845444 1.76240000 4.9223833 6.6983317 

Linear MSP 1 47.4014817 1.26005042 33.3238538 0.44118375 
Quadratic MSP 1 12.5460750 7.57635208 0.6279187 19.01341875 
Cubic MSP 1 223.4554017 10.86727042 135. 7360004 0.37052042 

Linear SSF 1 52.2087780 0.42497546 43.2804287 1.82556123 
Quadratic SSF 1 111.6427877 0.13508678 103.9776913 7.26382059 
Cubic SSF 1 74.5322727 0.25038841 83.3270700 15.09984530 
None vs SSF 1 80.4011111 0.72250000 65.9479340 1.94602500 

C.V.,% 11.79 19.77 11.67 2.74 
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Appendix Table 9 

Pigs means for average daily gross energy intake, excretion, absorption, 
and digestibilit~ (Ex~eriment 1 }. 

Intake Feces Absorbed, Digestibility 
Pen TRT kcal/d kcal/ct kcal/ct % 

1 A 1 7441.6 893.4 6548.2 87.99 
2 C 1 6836.8 826.5 6010.4 87.91 
3 G 1 5992.7 821.3 5171.4 86.29 
4 E 1 6080.9 675.6 5405.3 88.89 
5 F 1 6796.2 835.6 5960.5 87.70 
6 B 1 6199.9 728.0 5471.9 88.26 
7 D 1 6094.5 702.3 5392.1 88.48 
9 F 2 5737.0 611.4 5125.6 89.34 
10 C 2 6114.8 851.2 5263.6 86.08 
11 G 2 6171.2 768.7 5402.5 87.54 
12 B 2 5734.9 743.2 4991.7 87.04 
14 D 2 6152.9 620.6 5532.3 89.91 
15 E 2 5774.5 822.4 4952.1 85.76 
16 A 2 5677.4 719.5 4957.9 87.33 
17 G 3 5924.8 913.8 5011.1 84.58 
18 B 3 5291.7 648.4 4643.3 87.75 
19 D 3 5978.7 719.7 5259.0 87.96 
20 E 3 6096.5 799.4 5297.0 86.89 
21 C 3 5271.2 657.2 4614.0 87.53 
22 F 3 6998.3 824.0 6174.3 88.23 
23 A 3 4781.2 573.0 4208.3 88.02 
1 B 4 6892.9 987.6 5905.3 85.67 
2 E 4 6878.9 977.8 5901.1 85.79 
3 D 4 5990.4 734.5 5255.9 87.74 
4 C 4 7135.0 1123.4 6011.5 84.25 
5 F 4 6771.0 1095.3 5675.7 83.82 
6 G 4 5892.7 1009.8 4882.9 82.86 
7 A 4 5999.0 852.0 5147.0 85.80 
9 E 5 5730.0 929.1 4800.9 83.79 
10 B 5 5305.8 906.7 4399.2 82.91 
11 C 5 7504.7 1358.6 6146.1 81.90 
12 D 5 6218.0 1078.4 5139.6 82.66 
14 F 5 6121.9 727.1 5394.8 88.12 
15 A 5 6248.3 920.6 5327.8 85.27 
16 G 5 5258.4 656.9 4601.5 87.51 
17 A 6 5290.0 681.2 4608.8 87.12 
18 G 6 7175.6 880.1 6295.6 87.74 
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Table 9. (continued} 
Intake Feces Absorbed, 

Pen TRT Rep kcal/d kcal/d kcal/d 
19 F 6 5418.7 745.6 4673.1 
20 D 6 5029.5 685.1 4344.4 
21 C 6 5151.0 659.2 4491.8 
22 E 6 5076.9 614.1 4462.7 
23 B 6 4359.8 622.4 3737.4 

Trt A: Corn-soybean meal diets + 0% monosodium phosphate 
Trt B: Corn-soybean meal diets+ 0.21 % monosodium phosphate 
Trt C: Corn-soybean meal diets + 0.43% monosodium phosphate 
Trt D: Corn-soybean meal diets + 0.66% monosodium phosphate 
Trt E: Corn-soybean meal diets + 250 SSF phytase 
Trt F: Corn-soybean meal diets + 500 SSF phytase 
Trt G: Corn-soybean meal diets + 1,000 SSF phytase 

157 

Digestibility 
% 

86.24 
86.38 
87.20 
87.90 
85.72 



Appendix Table 10 

Analysis of variance for average daily gross energy intake, excretion, 
absorption, and digestibilit}' {Experiment 1 }. 

Mean Sguares 
Source df Intake Feces Absorbed Digestibility 

g/d g/d g/d % 
Total 41 
Error 30 422525.13 18447.520 315598.47 2.4090951 
Repetition 5 1371579.374 93518.7048 984700.051 13.21341952 
Treatment 6 367060.177 17183.7794 268207.980 1.88927222 

Linear MSP 1 154657.200 2452.55208 118095.5021 0.04485333 
Quadratic MSP 1 33525.375 36200.43375 51.3338 6.44806667 
Cubic MSP 1 1335419.008 57137.85208 840097.0021 0.68101333 

Linear SSF 1 133915.895 13450.40358 62500.1930 1.51215459 
Quadratic SSF 1 248601.126 70.20859 240186.7546 0.99819901 
Cubic SSF 1 212908.611 629.75785 236750.0562 2.03074879 

None vs SSF 1 178373.690 8643.93347 108430.4835 0.43555556 
C.V.,% 10.80 16.77 10.79 1.79 
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Appendix Table 11 

Pigs means for metatarsal (MT), metacarpal (MC), and femur strength 
{Experiment 1 ). 

Pen TRT Re1:2 MT,kg MC, kg MT-MC,kg Femur, kg 
1 A 1 29.0 43.2 36.1 115.2 
2 C 1 65.9 55.7 60.8 225.6 
3 G 1 68.4 69.2 68.8 232.9 
4 E 1 55.7 52.0 53.8 164.9 
5 F 1 58.6 62.2 60.4 200.5 
6 B 1 59.2 59.0 59.1 146.4 
7 D 1 82.4 69.1 75.7 233.7 
9 F 2 61.8 69.9 65.9 226.1 
10 C 2 55.5 57.1 56.3 194.3 
11 G 2 74.3 71.4 72.8 225.0 
12 B 2 45.4 51.7 48.6 155.1 
14 D 2 78.6 79.9 79.3 285.0 
15 E 2 49.5 51.4 50.4 194.0 
16 A 2 37.0 41.1 39.1 116.2 
17 G 3 57.6 53.3 55.4 229.3 
18 B 3 42.0 41.7 41.9 150.1 
19 D 3 65.6 68.7 67.1 233.0 
20 E 3 52.3 48.7 50.5 193.1 
21 C 3 57.4 49.1 53.2 181.2 
22 F 3 50.3 46.2 48.2 202.6 
23 A 3 40.6 39.7 40.2 154.2 
1 B 4 49.9 50.8 50.4 162.6 
2 E 4 56.8 60.2 58.5 161.2 
3 D 4 77.0 72.8 74.9 270.0 
4 C 4 51.7 47.1 49.4 185.8 
5 F 4 52.4 63.5 58.0 199.9 
6 G 4 55.6 62.8 59.2 201.3 
7 A 4 39.1 43.7 41.4 118.5 
9 E 5 36.7 41.8 39.3 124.9 
10 B 5 39.9 39.9 39.9 108.7 
11 C 5 61.6 66.2 63.9 218.4 
12 D 5 59.2 63.7 61.5 193.3 
14 F 5 69.1 54.9 62.0 222.4 
15 A 5 23.3 26.0 24.7 69.2 
16 G 6 54.6 55.5 55.0 164.7 
17 A 6 28.0 31.9 29.9 107.8 
18 G 6 90.8 66.5 78.7 265.3 
19 F 6 62.8 60.2 61.5 223.7 
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Table 11. (continued} 
Pen TRT Rep MT,kg MC, kg MT-MC,kg 
20 D 6 57.9 60.9 59.4 
21 C 6 45.5 49.1 47.3 
22 E 6 37.4 39.3 38.4 
23 B 6 37.3 38.0 37.6 

Trt A: Corn-soybean meal diets+ 0% monosodium phosphate 
Trt B: Corn-soybean meal diets+ 0.21 % monosodium phosphate 
Trt C: Corn-soybean meal diets+ 0.43% monosodium phosphate 
Trt D: Corn-soybean meal diets+ 0.66% monosodium phosphate 
Trt E: Corn-soybean meal diets+ 250 SSF phytase 
Trt F: Corn-soybean meal diets + 500 SSF phytase 
Trt G: Corn-soybean meal diets+ 1,000 SSF phytase 
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Femur, kg 
203.2 
175.5 
146.6 
120.0 



Appendix Table 12 

Analysis of variance for metatarsal (MT), metacarpal (MC), and femur 
strength (Experiment 1 }. 

Mean Sguares 
Source df MT,kg MC, kg MT-MC,kg Femur, kg 
Total 41 
Error 30 81.980349 34.918746 46.274429 572.26778 
Repetition 5 111.593571 183.222524 137.595095 1500.41467 
Treatment 6 1010.943016 689.609127 837.839286 12252.46111 

Linear MSP 1 4501.8750000 3118.140750 3773.286750 54153.50533 
Quadratic MSP 1 1.706667 51.920417 18.200417 238.14000 
Cubic MSP 1 8.533333 29.900083 17.864083 637.56300 

Linear SSF 1 3532.150707 2029.897415 2723. 760738 34970.61884 
Quadratic SSF 1 400.201679 334.683672 366.963103 8365.28400 
Cubic SSF 1 0.236717 12.907883 4.272045 376.36480 

None vs SSF 1 2858.940139 1722.845000 2251.205000 32729.61125 
% 16.73 10.90 12.56 13.04 
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Appendix Table 13 

Pigs means for weights of metatarsal (MT), metacarpal (MC), and femur 
strength and femur diameter (Experiment 1 }. 

Femur Fem Dia, 
Pen TRT Rep MT Wt,g MC Wt,g Wt,g mm 

1 A 1 76.8 64 180.0 21.3 
2 C 1 84.2 66.3 171.4 19.7 
3 G 1 83.3 66.9 181.6 19.8 
4 E 1 86.5 67.1 177.1 19.2 
5 F 1 90 75.4 200.9 21.7 
6 B 1 78.7 66.5 165.9 20.6 
7 D 1 86.8 67.7 199.2 22.5 
9 F 2 91.7 71.4 198.4 21.7 
10 C 2 79.4 62.1 167.4 18.8 
11 G 2 82 63.9 175.8 19.1 
12 B 2 80 63.4 165.3 21.2 
14 D 2 85 68.1 191.6 23.0 
15 E 2 81.8 57.3 164.8 20.2 
16 A 2 69.1 65.5 165.8 18.8 
17 G 3 78.7 61.8 171.7 21.9 
18 B 3 77.5 56.8 156.1 18.6 
19 D 3 83.6 64.5 175.2 20.1 
20 E 3 71.1 57.9 154.3 19.4 
21 C 3 78.7 60.5 164.3 19.0 
22 F 3 70.3 56.6 158.7 19.9 
23 A 3 69.7 56 148.9 17.0 
1 B 4 74.9 60.5 184.0 20.5 
2 E 4 79.4 62.5 171.3 19.8 
3 D 4 84 72.8 188.1 21.0 
4 C 4 78.3 74.5 184.3 21.1 
5 F 4 78.9 72 178.5 20.8 
6 G 4 88.3 76.1 197.0 20.9 
7 A 4 83.9 68 157.7 20.9 
9 E 5 73.1 63.7 160.1 19.8 
10 B 5 74.8 57.7 158.6 19.2 
11 C 5 73.1 66.3 167.0 19.7 
12 D 5 79.5 66.7 170.4 19.9 
14 F 5 79.3 62.2 167.2 20.1 
15 A 5 65.3 69.2 139.4 17.7 
16 G 5 85.5 55.6 179.3 21.1 
17 A 6 73.9 57.1 152.9 18.7 
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Table. 13 {continued} 
Femur 

Pen TRT Rep MTWt,g MC Wt,g Wt,g 
18 G 6 78.8 61.6 165.9 
19 F 6 77.6 57.4 162.5 
20 D 6 84.4 64.2 165.3 
21 C 6 76.7 58.9 151.7 
22 E 6 75.7 56.8 141.3 
23 B 6 65.3 47.3 124.5 

Trt A: Corn-soybean meal diets+ 0% monosodium phosphate 
Trt B: Corn-soybean meal diets + 0.21 % monosodium phosphate 
Trt C: Corn-soybean meal diets + 0.43% monosodium phosphate 
Trt D: Corn-soybean meal diets+ 0.66% monosodium phosphate 
Trt E: Corn-soybean meal diets + 250 SSF phytase 
Trt F: Corn-soybean meal diets + 500 SSF phytase 
Trt G: Corn-soybean meal diets + 1,000 SSF phytase 
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Fem Dia, 
mm 
19.4 
19.6 
18.6 
18.6 
18.1 
17.2 



Appendix Table 14 

Analysis of variance for weights of metatarsal (MT), metacarpal (MC), and 
femur {FM} strength and femur diameter {Ex~eriment 1 }. 

Mean Sguares 
Source df MTWt,g MCWt,g FM Wt,g FMDia, mm 
Total 39 
Error 28 19.402683 15.953540 77.14086 1.07155841 
Repetition 5 87.2485714 151.4460952 1017.049667 4.87753952 
Treatment 6 93.8532540 52.2799206 616.924147 2.80783175 

Linear MSP 1 378.0750000 99. 00833333 1976.814187 8.17452000 
Quadratic MSP 1 17.3400000 77.04166667 227.858438 1.08375000 
Cubic MSP 1 0.4083333 60.20833333 0.858521 1.07163000 

Linear SSF 1 278.3003387 15.36303626 1681.727438 6.469880760 
Quadratic SSF 1 51.8585333 1.18572637 206.440358 2.02626313 
Cubic SSF 1 0.0458305 61.27 453235 252.898078 1.48153256 

None vs SSF 1 256.5112500 0.64222222 1031.715312 5.12000000 
C.V., % 5.58 6.28 5.19 5.20 
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Appendix Table 15 

Pigs means for fat-free metacarpal ash weight and percentage ash 
(Experiment 1 ). 

Pen TRT Rep Ash Wt. %ash 
1 A 1 2.39 49.30 
2 C 1 3.22 53.51 
3 G 1 3.01 52.39 
4 E 1 2.93 52.07 
5 F 1 3.35 52.12 
6 B 1 2.95 51.65 
7 D 1 3.18 53.01 
9 F 2 3.28 51.89 
10 C 2 2.71 52.62 
11 G 2 3.15 53.87 
12 B 2 2.51 50.49 
14 D 2 3.52 55.11 
15 E 2 2.88 51.93 
16 A 2 2.02 48.50 
17 G 3 2.94 53.91 
18 B 3 2.22 49.55 
19 D 3 3.03 53.30 
20 E 3 2.23 50.66 
21 C 3 2.43 51.35 
22 F 3 2.64 52.54 
23 A 3 2.07 46.85 
1 B 4 2.47 48.83 
2 E 4 2.55 49.25 
3 D 4 3.29 52.38 
4 C 4 2.92 44.27 
5 F 4 2.94 50.01 
6 G 4 3.18 50.34 
7 A 4 2.36 45.56 
9 E 5 2.65 46.78 
10 B 5 2.13 46.35 
11 C 5 2.52 49.53 
12 D 5 2.70 49.46 
14 F 5 2.83 51.17 
15 A 5 1.82 47.21 
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Table 15. (continued) 
Pen TRT Rep Ash Wt. 
16 G 6 2.68 
17 A 6 1.96 
18 G 6 3.01 
19 F 6 2.66 
20 D 6 2.91 
21 C 6 2.46 
22 E 6 2.16 
23 B 6 1.72 

Trt A: Corn-soybean meal diets + 0% monosodium phosphate 
Trt 8: Corn-soybean meal diets+ 0.21 % monosodium phosphate 
Trt C: Corn-soybean meal diets+ 0.43% monosodium phosphate 
Trt D: Corn-soybean meal diets+ 0.66% monosodium phosphate 
Trt E: Corn-soybean meal diets+ 250 SSF phytase 
Trt F: Corn-soybean meal diets + 500 SSF phytase 
Trt G: Corn-soybean meal diets+ 1,000 SSF phytase 
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%ash 
50.03 
46.82 
52.70 
51.20 
51.81 
50.68 
46.75 
46.59 



Appendix Table 16 

Analysis of variance fat-free metacarpal ash weight and percent 
ash{Experiment 1 }. 

Mean Sguares 
Source df Ash Wt. %ash 
Total 41 
Error 30 0.03487127 2.0033605 
Repetition 5 0.42259238 17.9016171 
Treatment 6 0.81921508 20.9532024 

Linear MSP 1 3.43070083 84. 99150083 
Quadratic MSP 1 0.04083750 0.63050417 
Cubic MSP 1 0.00494083 0.23674083 

Linear SSF 1 2.39894335 72.09558962 
Quadratic SSF 1 0.67694900 12.00467582 
Cubic SSF 1 0.01265457 0.27777151 

None vs SSF 1 2.42366806 62.14266806 
C.V., % 6.96 2.81 
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Appendix Table 17 

Pigs means for carcass composition, % {Experiment 1 }. 
% 

Pen TRT Rep % water Qrotein % Fat %Ash %P 
1 A 1 62.79 19.03 16.77 1.94 0.32 
6 B 1 65.34 17.47 14.33 2.14 0.37 
2 C 1 59.76 19.96 19.47 2.82 0.46 
7 D 1 62.84 17.19 15.93 2.58 0.49 
4 E 1 65.07 17.25 14.15 2.31 0.44 
5 F 1 63.12 19.41 16.21 2.38 0.42 
3 G 1 63.04 19.74 16.20 2.17 0.38 
16 A 2 63.84 18.91 15.07 2.15 0.37 
12 B 2 64.46 18.82 14.37 2.43 0.41 
10 C 2 63.16 18.34 16.57 2.13 0.37 
14 D 2 63.02 18.90 15.69 2.73 0.51 
15 E 2 62.71 18.89 17.08 2.25 0.37 
9 F 2 63.87 18.39 14.49 2.66 0.42 

11 G 2 61.58 18.35 17.52 2.42 0.44 
23 A 3 63.61 18.98 15.76 1.97 0.38 
18 B 3 63.18 18.41 16.44 1.87 0.41 
21 C 3 64.53 19.03 14.15 2.46 0.42 
19 D 3 64.20 19.23 14.54 2.49 0.48 
20 E 3 63.59 18.57 16.18 2.32 0.37 
22 F 3 60.20 18.21 19.79 2.23 0.38 
17 G 3 63.60 19.24 14.37 2.77 0.48 .. 
1 B 4 63.74 19.20 15.21 2.03 0.33 
2 E 4 62.45 19.90 15.29 2.05 0.37 
3 D 4 64.84 18.95 13.85 2.24 0.42 
4 C 4 62.93 19.61 15.52 2.28 0.40 
5 F 4 61.77 19.73 16.08 2.47 0.46 
6 G 4 65.02 19.37 12.72 2.54 0.45 
7 A 4 64.24 19.30 14.40 1.79 0.31 
9 E 5 65.48 18.92 13.75 1.91 0.35 
10 B 5 65.41 19.51 13.07 2.06 0.36 
11 C 5 64.54 18.78 14.14 2.33 0.43 
12 D 5 63.72 19.16 15.08 2.39 0.42 
14 F 5 64.04 19.38 14.66 2.33 0.40 
15 A 5 62.71 18.05 17.78 1.77 0.30 
16 G 5 65.46 19.56 12.39 2.63 0.44 
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Table 17. (continued) 

Pen 
17 
18 
19 
20 
21 
22 
23 

TRT 
A 
G 
F 
D 
C 
E 
B 

Rep 
6 
6 
6 
6 
6 
6 
6 

% water 
64.28 
62.36 
61.67 
65.55 
63.94 
63.99 
64.75 

% 
protein 

19.23 
18.16 
19.26 
19.14 
18.42 
18.35 
18.54 

% Fat 
14.38 
17.01 
17.01 
13.46 
15.28 
15.68 
14.46 

%Ash 
1.69 
2.30 
2.14 
2.28 
2.18 
1.96 
2.03 

Trt A: Corn-soybean meal diets + 0% monosodium phosphate 
Trt B: Corn-soybean meal diets+ 0.21 % monosodium phosphate 
Trt C: Corn-soybean meal diets + 0.43% monosodium phosphate 
Trt D: Corn-soybean meal diets+ 0.66% monosodium phosphate 
Trt E: Corn-soybean meal diets+ 250 SSF phytase 
Trt F: Corn-soybean meal diets + 500 SSF phytase 
Trt G: Corn-soybean meal diets + 1,000 SSF phytase 
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%P 
0.30 
0.42 
0.40 
0.41 
0.35 
0.35 
0.33 



Appendix Table 18 

Analysis of variance for for carcass composition,% (Experiment 1). 
Mean Squares 

Source df water protein Fat 
Total 41 
Error 30 1.63124381 0.43118619 2.4669019 
Repetition 5 1.77068381 0.71134286 3.39997524 
Treatment 6 2.58580476 0.20912619 2.35395238 

Linear MSP 1 0.00005333 0.00300000 0.76480333 
Quadratic MSP 1 0.00041667 0.00001667 0.00375000 
Cubic MSP 1 5.96748000 0.46875000 6.23808000 

Linear SSF 1 0.30285991 0.23400032 0.76683876 
Quadratic SSF 1 2.19838187 0.01766404 2.12102993 
Cubic SSF 1 4.57500504 0.45451834 3.02335065 

None vs SSF 1 0.40350139 0.00045000 0.05013889 
C.V.,% 2.00 3.48 10.20 

Table 18 (Continued) 
Mean Squares 

Source df Ash p 
Total 41 
Error 30 0.03114190 0.00104016 
Repetition 5 0.08902857 0.00280238 
Treatment 6 0.28874286 0.01093254 

Linear MSP 1 1.16821333 0.05084083 
Quadratic MSP 1 0.02281667 0.00020417 
Cubic MSP 1 0.01925333 0.00006750 

Linear SSF 1 1.07930023 0.03420191 
Quadratic SSF 1 0.14462537 0.00403128 
Cubic SSF 1 0.00582054 0.00006682 

None vs SSF 1 0.86900139 0.02722222 
C.V., % 7.83 8.12 
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Appendix Table 19 

Pigs means for carcass accretion rate(g/d} {Experiment 1 ). 
Pen TRT Re~ Water Protein Fat Ash p 

1 A 1 296.02 153.46 134.98 12.04 1.61 
2 C 1 286.03 168.17 167.09 21.81 3.17 
3 G 1 295.68 156.20 124.91 14.13 2.19 
4 E 1 234.96 111.19 88.10 12.68 2.19 
5 F 1 306.84 157.68 129.17 16.64 2.63 
6 B 1 311.94 134.30 107.29 13.77 2.06 
7 D 1 292.97 131.65 122.82 18.22 3.22 
9 F 2 228.28 119.87 89.70 15.65 2.01 
10 C 2 290.20 138.24 123.99 13.40 1.96 
11 G 2 269.88 136.92 131.64 15.95 . 2.60 
12 B 2 238.31 122.92 88.05 13.72 1.93 
14 D 2 261.56 135.75 109.32 17.89 3.10 
15 E 2 271.13 140.54 126.51 14.10 1.93 
16 A 2 234.13 123.79 93.87 11.48 1.58 
17 G 3 232.60 126.39 88.09 16.56 2.51 
18 B 3 244.97 123.85 108.80 9.59 2.04 
19 D 3 252.18 130.10 92.26 14.80 2.62 
20 E 3 280.73 133.05 113.09 14.45 1.89 
21 C 3 229.91 120.27 82.83 13.53 1.95 
22 F 3 278.73 138.31 153.91 14.77 2.13 
23 A 3 280.11 136.91 109.71 11.38 1.99 
1 B 4 352.95 163.79 126.18 15.52 1.93 
2 E 4 307.32 160.20 118.56 14.61 2.17 
3 D 4 314.44 145.26 100.26 15.96 2.55 
4 C 4 358.19 170.77 131.35 18.86 2.77 
5 F 4 267.94 146.28 116.12 17.58 2.72 
6 G 4 285.97 139.31 82.99 17.76 2.57 
7 A 4 272.29 134.14 94.36 10.19 1.27 
9 E 5 277.74 128.09 86.73 11.11 1.58 
10 B 5 246.20 123.26 74.52 11.42 1.54 
11 C 5 304.84 136.20 96.91 16.34 2.47 
12 D 5 274.19 130.76 97.99 15.82 2.23 
14 F 5 346.29 152.95 109.93 17.99 2.43 
15 A 5 273.15 121.44 119.02 10.41 1.22 
16 G 5 254.91 121.05 67.73 16.19 2.10 
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Table 19. {continued} 
Pen TRT Rep Water Protein Fat Ash 
17 A 6 234.40 123.67 87.00 8.13 
18 G 6 316.81 142.33 133.66 17.46 
19 F 6 252.75 132.60 115.34 13.46 
20 D 6 286.28 128.32 83.01 14.60 
21 C 6 275.43 121.51 96.39 13.70 
22 E 6 269.93 116.22 94.79 11.53 
23 B 6 231.89 102.97 74.08 10.52 

Trt A: Corn-soybean meal diets + 0% monosodium phosphate 
Trt B: Corn-soybean meal diets + 0.21 % monosodium phosphate 
Trt C: Corn-soybean meal diets+ 0.43% monosodium phosphate 
Trt D: Corn-soybean meal diets + 0.66% monosodium phosphate 
Trt E: Corn-soybean meal diets + 250 SSF phytase 
Trt F: Corn-soybean meal diets + 500 SSF phytase 
Trt G: Corn-soybean meal diets+ 1,000 SSF phytase 
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p 

1.07 
2.66 
2.02 
2.06 
1.63 
1.54 
1.14 



Appendix Table 20 

Analysis of variance for carcass accretion rate (g/d) (Experiment 1 ). 
Mean Squares 

Source df water protein Fat 
Total 41 
Error 30 930.93962 162.721210 437.83202 
Repetition 5 2943.05871 763.466766 851.012454 
Treatment 6 400.85572 163.255916 391.309666 

Linear MSP 1 1286.420083 99.6634133 3.267000 
Quadratic MSP 1 409.530817 40.0416667 45.045600 
Cubic MSP 1 578.602083 495.23907000 1281.840333 

Linear SSF 1 331.069183 126.3250498 0.449433 
Quadratic SSF 1 394.731236 81.1384837 398.491529 
Cubic SSF 1 6.391659 164.8499633 459.300845 

None vs SSF 1 601.987168 86.5708681 40.725312 
C.V., % 11.02 9.43 19.56 

Table 20. (Continued) 
Mean Squares 

Source df Ash p 
Total 41 
Error 30 3.1478698 0.09728746 
Repetition 5 9.5017810 0.44114857 
Treatment 6 33.2301746 1.06099127 

Linear MSP 1 128.2987200 4.97354083 
Quadratic MSP 1 5.2828167 0.00020417 
Cubic MSP 1 10.5850800 0.06960083 

Linear SSF 1 105.4992203 3.03962044 
Quadratic SSF 1 23.3800325 0.54254640 
Cubic SSF 1 2.6144898 0.03524656 

None vs SSF 1 92.7749014 2.58781250 
C.V., % 12.30 14.72 
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Appendix Table 21 

Pigs means for average daily gain, average daily feed intake, average daily 
dry matter intake, and gain:feed (Experiment 2}. 

PEN TRT REP ADG,g ADFl,g G:F, g/kg 
1 D 1 817.6 1592.0 513.6 
2 B 1 500.2 1114.5 448.8 
3 C 1 597.3 1191.7 501.2 
4 A 1 645.3 1342.8 480.6 
5 C 2 690.6 1406.3 491.1 
6 A 2 646.6 1299.0 497.7 
7 B 2 743.8 1636.5 454.5 
8 D 2 716.6 1348.2 531.5 
9 B 3 659.5 1313.3 502.2 
10 C 3 566.2 1182.4 478.9 
11 D 3 736.0 1403.7 524.3 
12 A 3 561.1 1231.4 455.6 
13 B 4 453.5 1134.0 399.9 
14 A 4 541.6 1205.8 449.2 
15 D 4 815.0 1606.0 507.5 
16 C 4 716.6 1473.8 486.2 
17 B 5 606.4 1296.2 467.8 
18 D 5 699.7 1335.2 524.0 
19 C 5 641.4 1259.4 509.3 
20 A 5 618.1 1234.2 500.8 
21 C 6 609.0 1249.3 487.5 
22 D 6 697.1 1433.6 486.3 
23 A 6 530.0 1264.5 419.1 
24 B 6 602.5 1309.2 460.2 

Trt A: Control diet (Corn-soybean meal + 20% wheat middlings) 
Trt B: Control diet+ SSF 250 PU/kg 
Trt C: Control diet+ SSF 500 PU/kg 
Trt D: Positive control (Corn-soybean meal + 20% corn starch) 
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Appendix Table 22 

Analysis of variance for average daily gain, average daily feed intake, 
average daily dry matter intake, and gain:feed (Experiment 2). 

Source 
Total 
Error 
Repetition 
Treatment 

Linear SSF 
Quadratic SSF 
WM vs CS 

C.V.,% 

df 
39 
28 
5 
6 
1 
1 
1 

ADG 

3977.0904 
4354.46420 

26919.65042 
6380.02637 

810.43589 
72446.53167 

9.698813 
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Mean Squares 
ADFI 

11065.7723 
7552.2767 

44014.1779 
2882.2560 

153.0398 
125798.8337 
7.951996 

G:F 

347.07203 
803.134722 

2660. 790648 
1905.120000 
212.558034 

6055.017558 
3.82 



Appendix Table 23 

Pigs means for average dry matter intake, excretion, absorbed, and 
digestibility {Experiment 2}. 

Intake Feces Absorbed Digestibility 
Pen TRT Period BLK g/d g/d g/d % 

1 D 1 1 1357.32 149.85 1207.46 88.96 
2 B 1 1 1070.87 186.16 884.71 82.62 
3 C 1 1 1310.48 247.99 1062.49 81.08 
4 A 1 1 1302.90 227.23 1075.67 82.56 
5 C 1 2 1231.90 225.98 1005.92 81.66 
6 A 1 2 996.10 172.23 823.87 82.71 
7 B 1 2 1362.00 234.71 1127.29 82.77 
8 D 1 2 1136.87 139.86 997.01 87.70 
9 B 1 3 1159.73 198.4 7 961.25 82.89 
10 C 1 3 930.94 177.26 753.68 80.96 
11 D 1 3 1302.11 118.46 1183.65 90.90 
12 A 1 3 1135.65 220.23 915.42 80.61 
13 B 1 4 953.05 165.77 787.27 82.61 
14 A 1 4 819.49 143.74 675.76 82.46 
15 D 1 4 1622.60 173.06 1449.54 89.33 
16 C 1 4 1132.42 211.41 921.01 81.33 
17 B 1 5 1109.06 214.34 894.72 80.67 
18 D 1 5 1262.78 149.27 1113.51 88.18 
19 C 1 5 1135.35 227.81 907.54 79.93 
20 A 1 5 1225.16 246.54 978.63 79.88 
21 C 1 6 931.97 172.73 759.24 81.47 
22 D 1 6 1371.29 134.69 1236.60 90.18 
24 B 1 6 1187.39 213.01 974.39 82.06 
1 D 2 1 1772.56 196.52 1576.04 88.91 
2 B 2 1 1246.70 219.95 1026.74 82.36 
3 C 2 1 1080.11 218.95 861.16 79.73 
4 A 2 1 1305.64 248.77 1056.87 80.95 
5 C 2 2 1694.51 286.60 1407.92 83.09 
6 A 2 2 1514.22 275.87 1238.35 81.78 
7 B 2 2 1880.67 407.32 1473.35 78.34 
8 D 2 2 1537.97 150.55 1387.42 90.21 
9 B 2 3 1343.57 213.39 1130.18 84.12 
10 C 2 3 1384.51 224.13 1160.38 83.81 
11 D 2 3 2033.31 149.69 1883.63 92.64 
12 A 2 3 1238.57 218.87 1019.70 82.33 
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Table 23. (continued} 
Intake Feces Absorbed Digestibility 

Pen TRT Period BLK g/d g/d g/d % 
13 B 2 4 1150.65 223.10 927.55 80.61 
14 A 2 4 1357.53 214.18 1143.35 84.22 
15 D 2 4 1738.35 203.99 1534.36 88.27 
16 C 2 4 1605.93 282.72 1323.21 82.40 
17 B 2 5 1372.32 237.13 1135.19 82.72 
18 D 2 5 1535.22 158.49 1376.73 89.68 
19 C 2 5 1095.96 215.68 880.29 80.32 
20 A 2 5 1106.14 219.97 886.17 80.11 
21 C 2 6 1242.93 197.61 1045.32 84.10 
22 D 2 6 1584.93 156.29 1428.64 90.14 
23 A 2 6 1266.18 207.62 1058.56 83.60 
24 B 2 6 1202.33 175.90 1026.43 85.37 

Trt A: Control diet (Corn-soybean meal + 20% wheat middlings) 
Trt B: Control diet+ SSF 250 PU/kg 
Trt C: Control diet + SSF 500 PU/kg 
Trt D: Positive control (Corn-soybean meal + 20% corn starch 
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Appendix Table 24 

Analysis of average dry matter intake, excretion, absorbed, and digestibility 
(Experiment 2}. 

Mean Sguares 
Source df Intake Feces Absorbed Digestibility 

g/d g/d g/d % 
Total 44 
Error 32 31575.850 764.36358 24526.426 1.3840497 
Repetition 5 13167.2896 1219.83907 11884.671 5.6010799 
Period 1 663910.3978 7463.50458 530591.859 6.7833639 
Treatment 3 296508.9504 10691.49301 413162.012 167 .2779658 
Trt X Period 3 18772.1719 96.37027 18508.679 0.3173457 
Linear SSF 1 9099. 1869 539.66850 5206.739 0.6871480 
Quadratic SSF 1 3955.5990 1530.77788 948.498 4.1929823 
WM vs CS 1 883186.0408 29705.266.9 1236833.299 490.7798348 

C.V., % 13.76 13.81 14.36 1.39 
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Appendix Table 25 

Pigs means for average daily phosphorus intake, excretion, absorption, 
and digestibilit~ {Experiment 2). 

Intake Feces Absorbed Digestibility 
Pen TRT Period BLK g/d g/d g/d % 

1 D 1 1 8.01 3.22 4.78 59.73 
2 B 1 1 6.10 3.45 2.64 43.35 
3 C 1 1 7.31 3.32 3.98 54.51 
4 A 1 1 7.25 4.00 3.25 44.78 
5 C 1 2 6.87 3.98 2.89 42.06 
6 A 1 2 5.54 3.40 2.14 38.63 
7 B 1 2 7.75 4.17 3.59 46.27 
8 D 1 2 6.71 3.20 3.51 52.35 
9 B 1 3 6.60 3.48 3.12 47.21 
10 C 1 3 5.19 2.99 2.20 42.44 
11 D 1 3 7.68 2.79 4.89 63.72 
12 A 1 3 6.32 4.23 2.09 33.06 
13 B 1 4 5.42 3.41 2.01 37.08 
14 A 1 4 4.56 2.86 1.70 37.23 
15 D 1 4 9.57 3.60 5.97 62.39 
16 C 1 4 6.32 3.45 2.86 45.35 
17 B 1 5 6.31 4.16 2.16 34.17 
18 D 1 5 7.45 3.23 4.22 56.67 
19 C 1 5 6.33 4.00 2.33 36.76 
20 A 1 5 6.82 4.82 2.00 29.29 
21 C 1 6 5.20 3.42 1.77 34.10 
22 D 1 6 8.09 3.27 4.82 59.54 
24 B 1 6 6.76 4.39 2.37 35.08 
1 D 2 1 10.46 4.15 6.31 60.34 
2 B 2 1 7.10 3.43 3.66 51.63 
3 C 2 1 6.02 3.56 2.47 40.93 
4 A 2 1 7.27 4.84 2.43 33.45 
5 C 2 2 9.45 5.27 4.18 44.28 
6 A 2 2 8.43 5.31 3.12 36.99 
7 B 2 2 10.70 7.23 3.47 32.42 
8 D 2 2 9.07 3.85 5.22 57.55 
9 B 2 3 7.65 3.91 3.74 48.88 
10 C 2 3 7.72 3.59 4.13 53.44 
11 D 2 3 11.99 3.51 8.49 70.75 
12 A 2 3 6.89 3.93 2.97 43.03 
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Table 25. (continued) 
Intake Feces Absorbed Digestibility 

Pen TRT Period BLK g/d g/d g/d % 
13 B 2 4 6.55 4.01 2.54 38.75 
14 A 2 4 7.55 4.30 3.26 43.09 
15 D 2 4 10.25 4.08 6.18 60.23 
16 C 2 4 8.96 4.14 4.81 53.73 
17 B 2 5 7.81 4.44 3.37 43.12 
18 D 2 5 9.06 3.67 5.39 59.52 
19 C 2 5 6.11 3.80 2.32 37.89 
20 A 2 5 6.16 4.12 2.03 33.02 
21 C 2 6 6.93 3.75 3.18 45.94 
22 D 2 6 9.35 3.63 5.72 61.20 
23 A 2 6 7.05 4.33 2.71 38.52 
24 B 2 6 6.84 3.94 2.90 42.44 

Trt A: Control diet (Corn-soybean meal+ 20% wheat middlings) 
Trt B: Control diet+ SSF 250 PU/kg 
Trt C: Control diet+ SSF 500 PU/kg 
Trt D: Positive control (Corn-soybean meal + 20% corn starch 
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Appendix Table 26 

Analysis of variance for average daily phosphorus intake, excretion, 
absorption, and digestibility (Experiment 2} 

Mean Sguares 
Source df Intake Feces Absorbed Digestibility 

g/d g/d g/d % 
Total 44 
Error 32 1.0185035 0.20826342 0.54630581 21.341576 
Repetition 5 0.42205990 0.36676480 1.05994946 89.302097 
Period 1 21.66255499 2.43478280 9.62475643 125.501512 
Treatment 3 14.4914621 0.84104855 21.33124634 1173.316955 
Trt X Period 3 0.71694803 0.11117273 0.48582697 6.953198 

Linear SSF 1 0.31958776 0.87073015 2.23514597 292.445300 
Quadratic SSF 1 0.00004835 0.00873989 0.01009990 7.877461 
WM vs CS 1 43.21296404 1.68772730 62.0641394 3244.06748 

C.V.,% 13.71 11.92 20.94 9.56 
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Appendix Table 27 

Pigs means for average daily nitrogen intake, excretion, absorption, and 
digestibilit}" {Experiment 2}. 

Intake Feces Absorbed Digestibility 
Pen TRT Period BLK g/d g/d g/d % 
1 D 1 1 41.99 7.74 34.25 81.57 
2 B 1 1 36.47 7.88 28.59 78.40 
3 C 1 1 44.97 10.74 34.23 76.12 
4 A 1 1 44.91 9.49 35.42 78.88 
5 C 1 2 42.27 10.53 31.74 75.08 
6 A 1 2 34.34 7.35 26.98 78.59 
7 B 1 2 46.38 9.91 36.47 78.63 
8 D 1 2 35.17 6.93 28.24 80.28 
9 B 1 3 39.49 7.92 31.57 79.94 
10 C 1 3 31.95 7.76 24.19 75.71 
11 D 1 3 40.28 4.70 35.58 88.33 
12 A 1 3 39.15 8.90 30.24 77.26 
13 B 1 4 32.46 6.29 26.17 80.62 
14 A 1 4 28.25 6.73 21.52 76.18 
15 D 1 4 50.20 7.62 42.57 84.81 
16 C 1 4 38.86 9.64 29.22 75.19 
17 B 1 5 37.77 9.81 27.96 74.04 
18 D 1 5 39.07 7.83 31.24 79.96 
19 C 1 5 38.96 9.20 29.77 76.40 
20 A 1 5 42.23 10.26 31.97 75.70 
21 C 1 6 31.98 6.90 25.08 78.43 
22 D 1 6 42.42 6.19 36.23 85.41 
24 B 1 6 40.44 8.69 31.74 78.50 
1 D 2 1 54.84 8.84 45.99 83.87 
2 B 2 1 42.46 8.31 34.14 80.42 
3 C 2 1 37.07 8.28 28.78 77.65 
4 A 2 1 45.01 10.57 34.44 76.52 
5 C 2 2 58.15 12.19 45.96 79.03 
6 A 2 2 52.19 11.62 40.58 77.75 
7 B 2 2 64.05 17.44 46.60 72.76 
8 D 2 2 47.58 6.67 40.91 85.97 
9 B 2 3 45.76 8.30 37.45 81.85 
10 C 2 3 47.51 8.99 38.52 81.08 
11 D 2 3 62.90 6.22 56.69 90.11 
12 A 2 3 42.69 8.47 34.22 80.16 
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Table 27. {continued} 
Intake Feces Absorbed Digestibility 

Pen TRT Period BLK g/d g/d g/d % 
13 B 2 4 39.19 9.32 29.87 76.22 
14 A 2 4 46.79 8.37 38.42 82.11 
15 D 2 4 53.78 8.95 44.83 83.35 
16 C 2 4 55.11 12.64 42.47 77.06 
17 B 2 5 46.73 10.31 36.43 77.95 
18 D 2 5 47.49 7.57 39.93 84.07 
19 C 2 5 37.61 8.43 29.18 77.60 
20 A 2 5 38.13 9.85 28.27 74.16 
21 C 2 6 42.65 7.18 35.47 83.16 
22 D 2 6 49.03 7.12 41.91 85.47 
23 A 2 6 43.64 7.57 36.07 82.65 
24 B 2 6 40.95 6.24 34.70 84.76 

Trt A: Control diet (Corn-soybean meal + 20% wheat middlings) 
Trt B: Control diet+ SSF 250 PU/kg 
Trt C: Control diet+ SSF 500 PU/kg 
Trt D: Positive control (Corn-soybean meal + 20% corn starch 
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Appendix Table 28 

Analysis of variance for average daily nitrogen intake, excretion, 
absorption, and digestibilit~ {Experiment 2}. 

Mean Sguares 
Source df Intake Feces Absorbed Digestibility 

g/d g/d g/d % 
Total 44 
Error 32 35.165679 1.8600488 25.182466 4.1271265 
Repetition 5 14.7490486 5.48188820 15.5905398 24.874333 
Period 1 725.506453 5.18421320 608.1355201 46.9108197 
Treatment 3 101.8138735 10.22321631 163.7979437 111.8583515 
Trt X Period 3 14.2047629 0.30068556 13.6842241 1.961275 

Linear SSF 1 8.0012207 1.61180357 2.4471146 2.3230154 
Quadratic SSF 1 9.4937899 2.82001627 1.9780331 8.0245746 
WM vs CS 1 293.4 706346 24.98854830 489.9503052 318.4174190 

C.V., % 13.82 16.10 14.57 2.54 
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Appendix Table 29 

Pigs means for average daily gross energy intake, excretion, absorption, 
and digestibility {Experiment 2). 

Intake Feces Absorbed Digestibility 
Pen TRT Period BLK g/d g/d g/d % 

1 D 1 1 5813.12 739.83 5073.29 87.27 
2 B 1 1 4664.39 912.84 3751.55 80.43 
3 C 1 1 5708.24 1214.63 4493.60 78.72 
4 A 1 1 5764.41 1072.78 4691.62 81.39 
5 C 1 2 5365.94 1120.51 4245.43 79.12 
6 A 1 2 4407.06 863.37 3543.69 80.41 
7 B 1 2 5932.47 1104.82 4827.65 81.38 
8 D 1 2 4868.99 686.16 4182.83 85.91 
9 B 1 3 5051.44 929.12 4122.31 81.61 
10 C 1 3 4055.01 837.95 3217.05 79.34 
11 D 1 3 5576.67 560.62 5016.05 89.95 
12 A 1 3 5024.44 1039.25 3985.19 79.32 
13 B 1 4 4151.21 782.78 3368.43 81.14 
14 A 1 4 3625.69 698.41 2927.27 80.74 
15 D 1 4 6949.26 813.92 6135.34 88.29 
16 C 1 4 4932.61 991.99 3940.62 79.89 
17 B 1 5 4830.76 1069.78 3760.98 77.85 
18 D 1 5 5408.25 736.93 4671.33 86.37 
19 C 1 5 4945.39 1084.25 3861.14 78.08 
20 A 1 5 5420.49 888.82 4531.67 83.60 
21 C 1 6 4059.50 844.37 3215.13 79.20 
22 D 1 6 5872.98 660.07 5212.90 88.76 
24 B 1 6 5171.94 1016.92 4155.02 80.34 
1 D 2 1 7591.54 895.67 6695.88 88.20 
2 B 2 1 5430.25 1013.68 4416.57 81.33 
3 C 2 1 4704.77 1013.05 3691.72 78.47 
4 A 2 1 5776.53 1143.22 4633.31 80.21 
5 C 2 2 7381.01 1346.88 6034.13 81.75 
6 A 2 2 6699.35 1239.29 5460.06 81.50 
7 B 2 2 8191.65 1899.63 6292.02 76.81 
8 D 2 2 6586.80 713.80 5873.00 89.16 
9 B 2 3 5852.18 993.15 4859.03 83.03 
10 C 2 3 6030.69 1053.11 4977.58 82.54 
11 D 2 3 8708.28 700.95 8007.34 91.95 
12 A 2 3 5479.82 1021.43 4458.39 81.36 
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Table 29. {continued} 
Intake Feces Absorbed Digestibility 

Pen TRT Period BLK g/d g/d g/d % 
13 B 2 4 5011.90 1060.63 3951.27 78.84 
14 A 2 4 6006.12 1013.51 4992.61 83.13 
15 D 2 4 7445.00 940.63 6504.37 87.37 
16 C 2 4 6995.14 1340.27 5654.87 80.84 
17 B 2 5 5977.41 1113.54 4863.88 81.37 
18 D 2 5 6575.04 742.68 5832.36 88.70 
19 C 2 5 4773.82 966.23 3807.59 79.76 
20 A 2 5 4893.88 1067.80 3826.08 78.18 
21 C 2 6 5414.00 917.00 4497.00 83.06 
22 D 2 6 6787.96 718.17 6069.79 89.42 
23 A 2 6 5601.95 939.19 4662.76 83.23 
24 B 2 6 5237.00 821.01 4415.98 84.32 

Trt A: Control diet (Corn-soybean meal + 20% wheat middlings) 
Trt B: Control diet+ SSF 250 PU/kg 
Trt C: Control diet+ SSF 500 PU/kg 

Trt D: Positive control (Corn-soybean meal + 20% corn starch 
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Appendix Table 30 

Analysis of variance for average daily gross energy intake, excretion, 
absorption, and digestibilit~ (Experiment 2}. 

Mean Squares 
Source df Intake Feces Absorbed Digestibility 

g/d g/d g/d % 
Total 44 
Error 32 5.7587.66 15084.305 468455.71 2.0746267 
Repetition 5 248570.01 30012.3724 198048.02 6.2714195 
Period 1 12523219.05 118824.5810 10202387.4 7 15.0038944 
Treatment 3 4545820.69 226989.0150 6666921.65 177.0271184 
Trt X Period 3 328211.73 7326.3469 342540.21 2.1768584 

Linear SSF 1 48486.23 36003.0508 927.44 8.6112176 
Quadratic SSF 1 142184.39 8776.1811 80309.50 0.5488184 
WM vs CS 1 13567 859. 72 620122.8749 19989358 .29 513.7760863 

C.V., % 13.77 13.05 14.64 1.74 
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Appendix Table 31 

Pigs means for metatarsal (MT), metacarpal (MC), and femur strength 
{Experiment 2}. 

Pen TRT Re12 MC,kg MT, kg Femur, kg Average, kg 
1 D 1 80.64 63.78 258.85 134.42 
2 B 1 47.28 47.10 137.92 77.43 
3 C 1 50.12 42.00 219.44 103.86 
4 A 1 33.19 17.94 109.57 53.57 
5 C 2 61.40 45.86 191.81 99.69 
6 A 2 50.04 51.90 164.17 88.71 
7 B 2 58.38 49.82 225.82 111.34 
8 D 2 78.51 77.14 241.83 132.49 
9 B 3 44.06 42.47 194.05 93.53 
10 C 3 39.41 40.30 158.62 79.44 
11 D 3 50.19 48.17 232.60 110.32 
12 A 3 42.75 37.58 122.32 67.55 
13 B 4 40.97 42.96 155.10 79.68 
14 A 4 43.54 39.25 159.08 80.62 
15 D 4 73.58 83.67 309.94 155.73 
16 C 4 53.49 55.11 186.97 98.52 
17 B 5 43.71 34.56 119.87 66.05 
18 D 5 68.96 67.87 217.71 118.18 
19 C 5 51.49 48.05 149.39 82.98 
20 A 5 38.33 30.40 153.72 74.15 
21 C 6 57.35 44.05 158.87 86.76 
22 D 6 63.01 66.57 259.16 129.58 
23 A 6 41.81 22.98 132.05 65.61 
24 B 6 50.41 45.85 193.95 96.73 

Trt A: Control diet (Corn-soybean meal + 20% wheat middlings) 
Trt B: Control diet+ SSF 250 PU/kg 
Trt C: Control diet+ SSF 500 PU/kg 

Trt D: Positive control (Corn-soybean meal + 20% corn starch 
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Appendix Table 32 

Analysis of variance for metatarsal {MT), metacarpal {MC), and femur 
strength (Experiment 2}. 

Mean Sguares 
Source df MC,kg MT, kg Femur, kg Average, kg 

Total 23 
Error 15 40.358032 65.001678 888.11559 146.71388 
Repetition 5 133.169937 159.238707 1157.58746 318.68321 
Treatment 3 842.226406 1262. 7 4 7828 13860.85813 3685.01898 

Linear SSF 1 337.080000 472.758533 4188.42967 1220.890133 
Quadratic SSF 1 1.246944 69.722500 603.60300 128.671211 
WM vs CS 1 2188.352272 3245. 762450 36790.54170 9705.495606 

C.V.,% 12.07 16.89 16.06 12.71 

189 



Appendix Table 33 

Pigs means for weights of metatarsal (MT), metacarpal (MC), and femur 
(FM) and FM diameter (Experiment 2). 

Pen TRT Rep MT, g MC, g FM, g FM,mm 
1 D 1 64.6 54.8 161.8 18.2 
2 B 1 67.6 56.3 151.0 17.9 
3 C 1 78.9 61.7 157.5 19.0 
4 A 1 60.9 52.9 143.9 17.9 
5 C 2 72.6 62.5 179.5 18.9 
6 A 2 78.0 61.8 185.2 21.1 
7 B 2 77.5 65.5 183.4 22.0 
8 D 2 84.8 69.4 203.6 22.0 
9 B 3 56.9 44.0 147.5 18.0 
10 C 3 66.7 48.5 173.3 18.8 
11 D 3 71.8 59.2 181.1 20.8 
12 A 3 69.9 59.0 164.9 19.5 
13 B 4 72.9 58.8 163.9 19.5 
14 A 4 73.4 57.6 164.9 17.9 
15 D 4 83.5 63.1 181.0 20.9 
16 C 4 73.4 57.0 177.9 19.0 
17 B 5 67.7 57.6 157.5 19.3 
18 D 5 68.7 55.2 164.5 18.5 
19 C 5 66.4 54.4 164.4 18.0 
20 A 5 66.0 56.1 158.7 20.5 
21 C 6 64.0 53.2 156.2 18.4 
22 D 6 80.0 67.0 192.4 23.4 
23 A 6 63.0 52.0 153.8 17.8 
24 B 6 57.1 48.0 147.1 18.2 

Trt A: Control diet (Corn-soybean meal + 20% wheat middlings) 
Trt B: Control diet+ SSF 250 PU/kg 
Trt C: Control diet+ SSF 500 PU/kg 
Trt D: Positive control (Corn-soybean meal + 20% corn starch) 
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Appendix Table 34 

Analysis of variance for weights of metatarsal (MT), metacarpal (MC), and 
femur strength and femur diameter (Experiment 2). 

Mean Squares 
Source df MT, g MC, g FM, g FM, mm 
Total 23 
Error 15 32.906306 22.8877778 62.193889 1.83986111 
Repetition 5 113.6187500 71.178667 557.407667 3.20941667 
Treatment 3 88.8426389 48.1411111 579.037222 4.35486111 

Linear SSF 1 9.7200000 0.3675000 116.563333 0.56333333 
Quadratic SSF 1 31.7344444 7.3802778 175.121111 0.25000000 
WM vs CS 1 225.0734722 136.6755556 1445.427222 12.25125000 

C.V.,% 8.16 8.35 4.71 6.99 
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Appendix Table 35 

Pigs means for fat-free metacarpal ash weight and percent ash (Experiment 
2). 

Pen 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

TRT 
D 
B 
C 
A 
C 
A 
B 
D 
B 
C 
D 
A 
B 
A 
D 
C 
B 
D 
C 
A 
C 
D 
A 
B 

BLK 
1 
1 
1 
1 
2 
2 
2 
2 
3 
3 
3 
3 
4 
4 
4 
4 
5 
5 
5 
5 
6 
6 
6 
6 

Ash Wt, g 
2.69 
2.36 
2.53 
1.75 
2.75 
2.68 
2.76 
3.26 
2.05 
1.99 
2.96 
2.40 
2.34 
2.26 
3.59 
2.62 
2.07 
2.68 
2.37 
1.97 
2.26 
3.10 
1.91 
2.15 

Trt A: Control diet (Corn-soybean meal + 20% wheat middlings) 
Trt B: Control diet + SSF 250 PU/kg 
Trt C: Control diet+ SSF 500 PU/kg 
Trt D: Positive control (Corn-soybean meal + 20% corn starch 
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%ash 
54.62 
49.71 
52.37 
48.56 
53.16 
52.80 
52.76 
54.17 
50.47 
50.49 
53.88 
47.22 
49.21 
48.88 
56.74 
51.57 
50.55 
54.85 
51.68 
47.50 
52.29 
55.06 
49.77 
52.84 



Appendix Table 36 

Analysis of variance fat-free metacarpal ash weight and percent ash 
(Experiment 2). 

Source 
Total 
Error 
Repetition 
Treatment 

Linear SSF 
Quadratic SSF 
WM vs CS 

C.V.,% 

df 
23 
15 
5 
3 
1 
1 
1 

Mean Squares 
Ash Wt, g %ash 

0.05151444 
0.23451667 
0.92556111 
0.20020833 
0.00002500 
2.57645000 

9.15 

193 

1.4860575 
3.8490442 

34.9127708 
23.60407500 
0.63733611 

80.49690139 
2.35 



Appendix Table 37 

Pigs means for average daily gain, average daily feed intake, average daily 
dr~ matter intake, and gain:feed {Experiment 3}. 

PEN TRT REP ADG,g ADFl,g G:F, g/kg 
1 A 1 628 1231 458 
2 C 1 622 1332 503 
3 B 1 466 1261 335 
4 D 1 706 1185 491 
5 C 2 758 1247 490 
6 D 2 622 1336 452 
7 B 2 564 1220 446 
8 A 2 441 1493 267 
9 D 3 797 1246 459 
10 A 3 693 1290 373 
11 C 3 590 1430 397 
12 B 3 492 1264 325 
13 C 4 661 1204 501 
14 D 4 622 1234 441 
15 B 4 674 1080 580 
16 A 4 505 1198 454 
17 D 5 667 1018 589 
18 B 5 570 1315 441 
19 A 5 603 1294 380 
20 C 5 615 1376 373 
21 B 6 544 1125 473 
22 C 6 577 1119 437 
23 A 6 460 1340 353 
24 D 6 551 1104 429 

Trt A: Control diet 
Trt B: Control diet+ SSF 250 PU/kg 
Trt C: Control diet+ SSF 500 PU/kg 
Trt D: Control diet + SSF 1,000 PU/kg 
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Appendix Table 38 

Analysis of variance for average daily gain, average daily feed intake, 
average daily dry matter intake, and gain:feed (Experiment 3). 

Source 
Total 
Error 
Repetition 
Treatment 

Linear SSF 
Quadratic SSF 
Cubic SSF 
None vs SSF 

C.V.,% 

df 
23 
15 
5 
3 
1 
1 
1 
1 

ADG 

7.118.6111 
5507.50000 

19581.94444 
48002.96863 

500.43694 
10242.40062 
17112.50000 

14.03 

195 

Mean Squares 
ADFI 

9682.5314 
15948.69422 
19981.64218 
28541 .59410 

39.64170 
31363. 73693 
28832.80934 

7.89 

G:F 

5263.0556 
5054.16667 
9993.05556 

26409.64751 
3127.72454 

441.82114 
23834. 72222 

16.69 



Appendix Table 39 

Pigs means for average dry matter intake, excretion, absorbed, and 
digestibilit~ {Experiment 3}. 

Intake Feces Absorbed Digestibility 
Pen TRT BLK g/d g/d g/d % 

1 A 1 846.28 211.57 634.71 75.00 
2 C 1 1297.95 277.98 1019.97 78.58 
3 B 1 1070.27 275.65 794.62 74.25 
4 D 1 1129.30 282.60 846.70 74.98 
5 C 2 1112.39 262.10 850.29 76.44 
6 D 2 1165.88 247.86 918.01 78.74 
7 B 2 978.63 244.18 734.45 75.05 
8 A 2 845.06 217.50 627.56 74.26 
9 D 3 1056.17 206.10 850.07 80.49 
10 A 3 956.98 226.34 730.65 76.35 
11 C 3 1097.92 225.07 872.85 79.50 
12 B 3 921.70 204.53 717.17 77.81 
13 C 4 1161.20 252.61 908.59 78.25 
14 D 4 1127 .15 205.26 921.89 81.79 
15 B 4 1348.10 262.30 1085.80 80.54 
16 A 4 919.93 230.68 689.25 74.92 
17 D 5 1242.15 252.90 989.26 79.64 
18 B 5 827.31 215.28 612.03 73.98 
19 A 5 926.53 237.27 689.26 74.39 
20 C 5 1204.59 214.64 989.95 82.18 
21 B 6 1076.16 240.69 835.48 77.63 
22 C 6 1030.16 225.93 804.23 78.07 
23 A 6 922.88 176.38 746.51 80.89 

Trt A: Control diet 
Trt B: Control diet+ SSF 250 PU/kg 
Trt C: Control diet+ SSF 500 PU/kg 
Trt D: Control diet + SSF 1,000 PU/kg 
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Appendix Table 40 

Analysis of average dry matter intake, excretion, absorbed, and digestibility 
(Experiment 3). 

Mean Sguares 
Source df Intake Feces Absorbed Digestibility 

g/d g/d g/d % 
Total 23 
Error 15 12505.0477 511.85816 10337.6797 4.5914667 
Repetition 5 9136.9180 1176.826830 6985.3671 8.14172667 
Treatment 3 79443.5341 875.530700 65537.3028 15.46756667 

Linear SSF 1 167127.9194 888.521726 143640.1435 38.19520594 
Quadratic SSF 1 69488.4188 1586.25483 50081.0539 3.36733477 
Cubic SSF 1 1714.3838 152.813741 2890.7962 4.84015496 
None vs SSF 1 191225. 7710 2538.043756 14698.4164 22.00055556 

C.V., % 10.57 9.65 12.35 2.76 
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Appendix Table 41 

Pigs means for average daily organic matter intake, excretion, absorption, 
and digestibilit~ {Experiment 3}. 

Intake Feces Absorbed Digestibility 
Pen TRT BLK g/d g/d g/d % 

1 A 1 787.72 184.55 603.18 76.57 
2 C 1 786.59 186.48 600.11 76.29 
3 B 1 890.77 193.67 697.10 78.26 
4 D 1 856.27 199.22 657.05 76.73 
5 C 2 862.42 206.30 656.12 76.08 
6 D 2 859.03 149.49 709.53 82.60 
7 B 2 995.07 243.37 751.70 75.54 
8 A 2 909.87 212.07 697.80 76.69 
9 D 3 856.94 177.75 679.19 79.26 
10 A 3 1253.38 226.54 1026.84 81.93 
11 C 3 769.18 185.46 583.72 75.89 
12 B 3 1000.55 211.02 789.53 78.91 
13 C 4 1203.50 245.22 958.28 79.62 
14 D 4 1031.44 229.31 802.13 77.77 
15 B 4 1018.02 196.34 821.68 80.71 
16 A 4 1076.70 218.53 858.17 79.70 
17 D 5 1116.93 186.45 930.48 83.31 
18 B 5 955.19 196.60 758.59 79.42 
19 A 5 1047.60 248.64 798.96 76.27 
20 C 5 1081.53 216.71 864.82 79.96 
21 B 6 979.76 178.66 801.10 81.76 
22 C 6 1045.61 178.13 867.48 82.96 
23 A 6 1152.29 223.49 928.79 80.60 

Trt A: Control diet 
Trt B: Control diet+ SSF 250 PU/kg 
Trt C: Control diet+ SSF 500 PU/kg 
Trt D: Control diet+ SSF 1,000 PU/kg 
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Appendix Table 42 

Analysis of variance for average daily organic matter intake, excretion, 
absorption, and digestibilitt {Experiment 3} 

Mean Sguares 
Source df Intake Feces Absorbed Digestibility 

g/d g/d g/d % 
Total 23 
Error 15 10796.9427 416.77545 8970.8595 4.1529911 
Repetition 5 7885.7667 1021.671904 6174.1753 8.31776667 
Treatment 3 66412.8620 820.960115 53894.7264 10.97809444 

Linear SSF 1 139626.8329 935.215875 117707.6198 26.57896973 
Quadratic SSF 1 58338.7888 1388.956214 41724.4094 1.79362493 
Cubic SSF 1 1273.0658 138.710061 2252.2211 4.56168197 
None vs SSF 1 160639.6221 2406 .445312 123723.2768 13.60680556 

C.V.,% 10.58 10.00 12.17 2.58 
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Appendix Table 43 

Pigs means for average daily ash intake, excretion, absorption, and 
digestibilit~ (Experiment 3}. 

Intake Feces Absorbed Digestibility 
Pen TRT BLK g/d g/d g/d % 

1 A 1 58.56 27.02 31.53 53.85 
2 C 1 94.45 32.76 61.69 65.31 
3 B 1 75.20 32.28 42.92 57.08 
4 D 1 81.70 33.96 47.74 58.43 
5 C 2 80.95 32.79 48.16 59.49 
6 D 2 84.35 31.15 53.20 63.07 
7 B 2 68.76 32.11 36.65 53.30 
8 A 2 58.47 31.02 27.45 46.94 
9 D 3 76.41 27.44 48.97 64.09 
10 A 3 66.22 32.67 33.55 50.66 
11 C 3 79.90 28.73 51.17 64.04 
12 B 3 64.76 26.78 37.98 58.65 
13 C 4 84.50 34.08 50.42 59.67 
14 D 4 81.55 27.13 54.42 66.73 
15 B 4 94.72 35.76 58.96 62.25 
16 A 4 63.65 31.46 32.19 50.58 
17 D 5 89.87 29.40 60.46 67.28 
18 B 5 58.13 29.82 28.30 48.69 
19 A 5 64.11 30.97 33.14 51.69 
20 C 5 87.66 28.19 59.47 67.84 
21 B 6 75.61 29.67 45.95 60.77 
22 C 6 74.96 29.33 45.64 60.88 
23 A 6 63.86 26.88 36.97 57.90 

Trt A: Control diet 
Trt B: Control diet + SSF 250 PU/kg 
Trt C: Control diet + SSF 500 PU/kg 
Trt D: Control diet + SSF 1,000 PU/kg 
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Appendix Table 44 

Analysis of variance for average daily ash intake, excretion, absorption, 
and digestibility (Experiment 3). 

Mean Sguares 
Source df Intake Feces Absorbed Digestibility 

g/d g/d g/d % 
Total 23 
Error 15 62.732111 6.4086408 50.404805 16.4089342 
Repetition 5 46.049684 8.76301417 27.647154 11.4194675 
Treatment 3 585.022337 2.48217083 570.470149 184.7529042 

Linear SSF 1 1235.489254 0.59893351 1290.418817 452.5110410 
Quadratic SSF 1 486.824376 6.50530253 381.189495 88.9950920 
Cubic SSF 1 32.754147 0.34227234 39.802760 12.2127423 
None vs SSF 1 1331.710035 1.75781250 1237.116701 381.1100347 

C.V.,% 10.51 8.31 15.81 6.88 
Trt A: Control diet 
Trt B: Control diet + SSF 250 PU/kg 
Trt C: Control diet + SSF 500 PU/kg 
Trt D: Control diet + SSF 1,000 PU/kg 
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Appendix Table 45 

Pigs means for average daily phosphorus energy intake, excretion, 
absorption, and digestibilitl {Experiment 3}. 

Intake Feces Absorbed Digestibility 
Pen TRT BLK kcal/d kcal/d kcal/d % 

1 A 1 4.15 2.71 1.45 34.81 
2 C 1 6.46 3.03 3.44 53.17 
3 B 1 5.22 2.90 2.32 44.40 
4 D 1 5.47 2.60 2.86 52.38 
5 C 2 5.54 2.71 2.83 51.04 
6 D 2 5.65 2.56 3.09 54.71 
7 B 2 4.77 2.82 1.95 40.96 
8 A 2 4.15 3.01 1.14 27.39 
9 D 3 5.11 2.29 2.83 55.32 
10 A 3 4.70 3.04 1.66 35.27 
11 C 3 5.47 2.52 2.95 53.90 
12 B 3 4.49 2.23 2.26 50.26 
13 C 4 5.78 2.88 2.90 50.22 
14 D 4 5.46 2.35 3.11 57.03 
15 B 4 6.57 3.21 3.36 51.11 
16 A 4 4.52 3.01 1.50 33.31 
17 D 5 6.02 2.28 3.74 62.11 
18 B 5 4.03 2.56 1.47 36.44 
19 A 5 4.55 3.06 1.49 32.75 
20 C 5 6.00 2.22 3.78 62.98 
21 B 6 5.25 2.52 2.73 52.00 
22 C 6 5.13 2.29 2.83 55.27 
23 A 6 4.53 2.62 1.91 42.13 

Trt A: Control diet 
Trt B: Control diet + SSF 250 PU/kg 
Trt C: Control diet + SSF 500 PU/kg 
Trt D: Control diet + SSF 1,000 PU/kg 

202 



Appendix Table 46 

Analysis of variance for average daily phosphorus intake, excretion, 
absorption, and digestibility (Experiment 3). 

Source 

Total 
Error 
Repetition 
Treatment 

Linear SSF 
Quadratic SSF 
Cubic SSF 
None vs SSF 

C.V., % 
Trt A: Control diet 

df 

23 
15 
5 
3 
1 
1 
1 
1 

Intake 
g/d 

0.30033417 
0.21877417 
1.98230417 
3.63663507 
2.14891331 
0.16136688 
4.51501250 

10.57 

Trt B: Control diet+ SSF 250 PU/kg 
Trt C: Control diet+ SSF 500 PU/kg 
Trt D: Control diet + SSF 1,000 PU/kg 

Mean Squares 
Feces Absorbed 

g/d g/d 

0.05354889 
0.11720000 
0.24187222 
0.69603864 
0.02483140 
0.00474688 
0.48347222 

8.69 
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0.21590528 
0.10877417 
3.24038194 
7.51464703 
2.63574270 
0.11076076 
7.95340139 

18.42 

Digestibility 
% 

23.205028 
25.361657 

594.079287 
1396.812426 
383.080233 

2.346054 
1426.848200 

10.11 



Appendix Table 47 

Pigs means for average daily nitrogen intake, excretion, absorption, and 
digestibilit~ (Experiment 3}. 

Intake Feces Absorbed Digestibility 
Pen TRT BLK g/d gl/d gl/d % 

1 A 1 28.48 7.13 21.35 74.98 
2 C 1 28.44 8.41 20.03 70.41 
3 B 1 32.21 8.11 24.10 74.82 
4 D 1 30.96 8.90 22.06 71.26 
5 C 2 31.18 8.54 22.64 72.61 
6 D 2 31.06 6.10 24.95 80.35 
7 B 2 37.57 11.21 26.36 70.17 
8 A 2 34.35 8.92 25.43 74.03 
9 D 3 32.35 8.21 24.14 74.63 
10 A 3 47.32 10.36 36.96 78.10 
11 C 3 29.04 8.07 20.96 72.19 
12 B 3 37.77 10.20 27.58 73.01 
13 C 4 45.39 10.34 35.05 77.22 
14 D 4 38.90 9.99 28.92 74.33 
15 B 4 38.40 8.69 29.71 77.37 
16 A 4 40.61 9.26 31.35 77.19 
17 D 5 42.13 8.97 33.16 78.72 
18 B 5 36.03 9.15 26.87 74.60 
19 A 5 40.24 11.26 28.97 72.01 
20 C 5 41.54 8.61 32.93 79.28 
21 B 6 37.63 6.99 30.64 81.43 
22 C 6 40.16 7.42 32.74 81.51 
23 A 6 44.26 10.20 34.06 76.96 
24 D 6 39.78 8.81 30.97 77.86 
1 A 1 28.48 7.13 21.35 74.98 
2 C 1 28.44 8.41 20.03 70.41 
3 B 1 32.21 8.11 24.10 74.82 

Trt A: Control diet 
Trt B: Control diet+ SSF 250 PU/kg 
Trt C: Control diet + SSF 500 PU/kg 
Trt D: Control diet+ SSF 1,000 PU/kg 
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Appendix Table 48 

Analysis of variance for average daily nitrogen intake, excretion, 
absorption, and digestibility (Experiment 3) 

Mean Squares 
Source df Intake Feces Absorbed Digestibility 

Total 
Error 
Repetition 
Treatment 
Linear SSF 
Quadratic SSF 
Cubic SSF 
None vs SSF 

C.V.,% 

g/d g/d g/d 0/o 
23 
15 15.3486578 
5 11 .2860467 
3 135.0634 778 
1 300.5309586 
1 104.6227284 
1 0.0369729 
1 340.0832000 

10.61 

1.36422417 
1.69188417 
3.35030417 
1.43923136 
7.33040433 
1.28128147 
8.74316806 

13.11 
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12.2855753 
8.0588842 

106.2433486 
260.3530371 

56.6256400 
1.7514988 

239.8415014 
12.52 

9.0724878 
8.24077667 

27 .12437778 
70.57440444 
0.16373090 

10.63494985 
19 .34420000 

3.98 



Appendix Table 49 

Pigs means for average daily gross energy intake, excretion, absorption, 
and disestibilitl {Ex~eriment 3}. 

Intake Feces Absorbed Digestibility 
Pen TRT BLK kcal/d kcal/d kcal/d % 

1 A 1 3719.21 953.41 2765.80 74.37 
2 C 1 3713.86 980.51 2733.35 73.60 
3 B 1 4205.72 1031.09 3174.64 75.48 
4 D 1 4042.86 1065.12 2977.73 73.65 
5 C 2 4071.90 1129.83 2942.07 72.25 
6 D 2 4055.86 817.91 3237.95 79.83 
7 B 2 4710.87 1287.17 3423.69 72.68 
8 A 2 4307.53 1127.94 3179.59 73.81 
9 D 3 4056.92 951.72 3105.20 76.54 
10 A 3 5933.74 1228.90 4704.84 79.29 
11 C 3 3641.45 1006.76 2634.69 72.35 
12 B 3 4736.81 1166.24 3570.57 75.38 
13 C 4 5619.73 1286.25 4333.47 77.11 
14 D 4 4816.30 1235.66 3580.64 74.34 
15 B 4 4753.65 1042.65 3711.00 78.07 
16 A 4 5027.66 1162.95 3864.71 76.87 
17 D 5 5215.49 1040.29 4175.20 80.05 
18 B 5 4460.27 1065.63 3394.65 76.11 
19 A 5 4903.28 1320.35 3582.92 73.07 
20 C 5 5062.09 1135.49 3926.60 77.57 
21 B 6 4585.75 958.56 3627.19 79.10 
22 C 6 4893.95 952.70 3941.25 80.53 
23 A 6 5393.27 1210.09 4183.18 77.56 

Trt A: Control diet 
Trt B: Control diet + SSF 250 PU/kg 
Trt C: Control diet + SSF 500 PU/kg 
Trt D: Control diet + SSF 1,000 PU/kg 
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Appendix Table 50 

Analysis of variance for average daily gross energy intake, excretion, 
absorption, and digestibility (Experiment 3) 

Mean Squares 
Source df Intake Feces Absorbed Digestibility 

kcal/d kcal/d kcal/d % 
Total 23 
Error 15 240261.299 12727.4648 192380.985 5.3981578 
Repetition 5 175480.494 21596.4820 133762.848 7.77602667 
Treatment 3 1332695.312 26366.0476 1018694.131 11.16221111 

Linear SSF 1 2770353.735 28792.44904 2234285.080 27.33131895 
Quadratic SSF 1 1221660.633 44786.94622 798625.769 1.12491544 
Cubic SSF 1 6073.808 5518.80523 23172.999 5.03038908 
None vs SSF 1 3353303.258 77448.01650 2411515.450 12.40020000 

C.V., % 10.62 10.30 12.46 3.05 
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