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CHAPTER I 

ESTIMATION OF NITROGEN MINERALIZATION IN SOILS FROM 
LONG-TERM APPLICATION OF FERTILIZER AND ITS EFFECT 
ON WINTER WHEAT RESPONSE TO TOPDRESS NITROGEN 

ABSTRACT 

Currently, nitrogen use efficiency (NUE) of worldwide cereal production is 

estimated to be 33%. Mineralization of the soil organic N fraction can impact 

how crops use inorganic fertilizer N additions. Accurate prediction of soil N 

mineralization is possible under controlled conditions (temperature and 

moisture), but varies greatly with environmental changes under field conditions. 

If N mineralization during a growing season could be quantified, in-season 

adjustment of N could be refined by topdress fertilization. One long-term, 

continuous winter wheat experiment was chosen for this study that has received 

fixed rates of N for 30 consecutive years. The main plots were split such that 

one-third received preplant N, one-third received topdress N, and one-third did 

not receive N. Preplant and topdress rates were equivalent to historical rates, 

and the subplots were re-randomized each year for two years (such that each 

subplot did not receive N for one year). Optical sensor readings were taken from 

each subplot and the normalized difference vegetative index (NOVI) was 

calculated. A response ·index was also calculated for each main plot using both 
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NOVI and yield measurements. When the amount of N accumulated within the 

forage from a crop receiving N is equal to or close to the amount of N 

accumulated within the forage of a crop not receiving N (due to mineralization or 

N contribution from other sources), topdressing of N does not result in increased 

yields. This evidence further supports the inclusion of some sort of fertilizer 

response index (RI) in N management to maximize nitrogen use efficiency and 

profitability. 

INTRODUCTION 

Accurate prediction of N mineralization is extremely important to 

increasing worldwide nitrogen use efficiency (NUE) (Honyecutt, 1999). Currently, 

N fertilizer rates are based solely on yield goals which are determined from 

historical performance with credits given to soil inorganic N determined by soil 

testing. In Oklahoma wheat production, split applications of N between the fall 

and spring are common. If N mineralization rates between the fall and spring 

application could be quantified, producers could adjust N management in­

season, resulting in higher NUE. This ability to adjust N fertilization rates in­

season has significant implications economically and environmentally. 

Raun and Johnson (1999) reported worldwide NUE of cereal production to 

be 33%. This implies that only 33% of N applied as fertilizer is recovered by the 

grain. A factor which may contribute to this low NUE is unpredictable 

mineralization of organic matter decreasing or increasing the need for 

supplemental fertilizer N. For example, a long-term trial established in 1977 
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shows dramatic changes in check yields (0-N) from year to year, believed to 

have resulted from N mineralization (Johnson et al., 2000). This indicates that in 

years of high mineralized N, the yield response to fertilizer N may be small, 

resulting in low NUE. The economic implications of this are significant. If a 

producer can determine that N mineralization is high, and thus response to 

additional N is expected to be low, adjustment of in-season fertilizer N addition 

could result in less N being applied, while not adversely affecting yields. 

The environmental implications are just as significant. Excess N in the soil 

profile can be subject to several losses that can negatively affect the 

environment. The major soil N sources of environmental contamination are 

denitrification (Burford and Bremner, 1975; Olson et al., 1979), leaching 

(Johnson and Raun, 1995), and runoff. Denitrification of soil nitrate results in 

nitrous oxide release to the atmosphere which is known to contribute to the 

greenhouse effect (Beardsley, 1997). Leaching of nitrate to groundwater is an 

often identified source of environmental contamination from excess fertilizer N 

(Goss and Goorahoo, 1995; Paramasivam and Alva, 1997). The problem of 

hypoxia is a result of runoff producing a toxic effect on aquatic organisms 

(Gascho et al., 1998; Burkart and James, 1999). If producers could make N 

management decisions based on potential crop response (and that included N 

mineralization), environmental impacts of N could be minimized. 

Because N mineralization is a result of microbial activity, soil environment 

plays an important role in determining the mineralization rate. Soil temperature, 

soil moisture, and oxygen supply are all rate controlling factors of microbial 
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activity. Optimum soil temperature for N mineralization ranges from 25 to 35°G 

(Havlin et al., 1999). Soil moisture content regulates aerobic and anaerobic 

microbial activity; maximum aerobic activity and resulting N mineralization occur 

between 50 and 70% water-filled pore space (Havlin et al., 1999). 

Numerous methods exist to measure the potential N mineralization of a 

specific soil (Schepers and Meisinger, 1994). The initial approach was the buried 

bag method, where a soil sample was placed in a polyethylene bag, returned to 

the field, and later retrieved for analysis (Eno, 1960). This method did not, 

however, take into account soil water dynamics (Honeycutt, 1999). Schnabel 

(1983), in an attempt to overcome the buried bag flaw, suggested placing anion 

exchange resins at the base of intact soil cores with their tops open to rainfall 

input and with the base open to allow the water to percolate out. These methods 

are not easily adapted to producer use. Additionally, the methods defined above 

do not consider the plant as an integral part of the system. Ultimately, a healthy, 

growing plant may be the best measure of soil fertility and the best indicator of N 

mineralization. 

Optical sensing technology using canopy reflectance to determine plant 

health and N uptake have become useful in replacing destructive methods of 

analysis. Stone et al. (1996) showed that the use of a vegetative index 

determined using plant reflectance in the red (660 ± 10 nm) and near-infrared 

(NIR) (780 ± 10 nm) regions of the spectrum could be a reliable predictor of 

forage N uptake. The reflectance based normalized difference vegetative index 

(NOVI) is calculated using the equation: 
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NOVI = [(NIRret) - (Redret)] I [(NIRret) + (Redret)] [ 1] 

where NIRret and Redret are the amounts of NIR and red light reflected from the 

crop canopy, respectively. 

A response index (RIHarvest) determined using harvested grain yield has 

been proposed to indicate crop response to applied N (Johnson et al., 2000). 

The RIHarvest is calculated using the equation: 

RIHarvest = (grain yield with application of N /grain yield where no N has 

been applied) [2] 

Mullen et al. (2001) evaluated the relationship between RIHarvest and an RI 

measured in-season using NOVI (RINov,) to determine if the response to applied 

N could be accurately identified mid-season. The RINov1 is calculated using the 

equation: 

RINov, = (NOVI with application of N/NDVI where no N has been applied) 

[3] 

The objective of this work is to establish a method to determine N 

mineralization based on NOVI differences between plots receiving N and those 

not receiving N, and determine if the addition of topdress N would result in 

increased yield based on differences in forage N uptake. 

MATERIALS AND METHODS 

The experimental site was selected in the fall of 2000 at the North Central 

Experiment Station near Lahoma, Oklahoma (Grant silt loam, fine-silty, mixed, 

thermic Udic Argiustoll). Treatments were superimposed on a pre-existing long-
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term winter wheat fertility study known as 502, which was established in 1977. 

The 502 experiment is laid out in a randomized complete block design with 14 

treatments evaluating varying levels of nitrogen, phosphorus, and potassium 

fertility. Plots with similar P and K fertility but with varying levels of N fertilization 

were used for the current study. These plots receive ammonium nitrate-N rates 

of 0, 22, 45, 67, 90, and 112 kg ha-1 broadcast applied, pre plant, using a dry 

fertilizer spreader. Initial soil test data is reported in Table 1. Dates of activities 

are reported in Table 2. 

Main plots were divided into 3 subplots, with three different types of N 

application (preplant, topdress, or O N). Main plot size was 4.9 x 18.3 m, and 

subplot size was 4.9 x 6.1 m. Subplots either received no N or N was applied 

preplant or as a topdress. Subplot treatments were imposed to evaluate the 

difference between N mineralization with regard to previous N application rates. 

Altering the timing of the applications allows for analysis of possible differences 

in N mineralization due to timing of N applications. 

Spectral reflectance was measured using a handheld sensor constructed 

at Oklahoma State University that included two upward and downward directed 

photodiode sensors that collected irradiated red (671 ±6nm) and near-infrared 

(NIR)(780±6nm) light from the crop canopy (Stone et al., 1996). Reflectance 

readings were taken three times during the winter months of 2001 and 2002. 

The winter wheat growth stage when sensor readings were taken generally 

corresponded to Feekes 3 (tillers formed), 4 (erection of the pseudo-stem, leaf 

sheaths beginning to lengthen), 5 (pseudo-stem strongly erect) and 6 (first node 
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of stem visible) (Large, 1954). Nitrogen mineralization (N contribution from the 

soil) was estimated by measuring the amount of N taken up by the check 

treatment where no N has been applied for the last 30 years. The model used to 

predict forage N uptake waspresented in Stone et al. (1996). 

Winter wheat grain was harvested using a self-propelled combine, 

removing an area of 2 x 6.1 m from the center of each subplot. A subsample of 

wheat grain from each subplot was taken for total N analysis using the Carlo­

Erba NA-1500 dry combustion analyzer (Schepers et al., 1989). 

Response indexes (RI) were calculated in-season using NOVI and at 

harvest using grain yield as proposed by Johnson et al. (2000) and Mullen et al. 

(2001 ). Response indexes were calculated using the average of subplot data so 

that a RI was calculated within each N rate. 

Differences between yield and grain N of subplots was evaluated using 

ANOVA generated by SAS (SAS, 2000). Regression equations and coefficients 

of determination (r) values were determined using Microsoft Excel and verified 

using SAS. 

RESULTS 

Estimated N Mineralized 

The amount of N contributed by the soil at Feekes 4 in 2000-2001, 

determined using the predicted forage N uptake of the check (0 N) treatment, 

was 15.7 kg N ha-1 (Table 3). At this stage of growth, application of N did not 

increase forage N uptake. This implies that N supplied as preplant fertilizer was 
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unnecessary because the crop did not have an environment conducive to growth 

beyond what the soil was able to support. At Feekes 5, the predicted forage N 

uptake of the check treatment, predicted with the model of Stone et al. (1996), 

was 17.6 kg N ha-1 again with no increases in forage N uptake due to application 

of N (Table 4). The plant had taken up considerably more Nat Feekes 6, when 

the check treatment was predicted to contain 39.2 kg N ha-1
, and the 67 kg N ha-1 

rate resulted in the only response above the check treatment (Table 5). Based 

on the fact that no significant differences in forage N uptake existed between 

treatments where N was applied one would not expect any significant differences 

in grain yield. If the difference between the amount of N accumulated in the plant 

in an area that has received fertilizer N is small compared to an area that has not 

received N, the likelihood of observing a response to additional topdress N 

should be small. 

In 2001-2002, forage N uptake of the check treatment at Feekes 4 was 

higher than the previous year (21.2 kg N ha-1), but application of N did not 

increase forage N uptake (Table 3). At Feekes 5, application of 22 kg N ha-1 

preplant resulted in the highest forage N uptake of all preplant treatments, while 

application of topdress N did not increase forage N uptake (Table 4). Some 

differences in forage N uptake were noted at Feekes 6 when the wheat forage 

had accumulated considerably more N (Table 5). A linear and quadratic increase 

in forage N uptake was observed for both preplant and topdress N application, 

but the same trends were noted for treatments that historically receive N. This is 

primarily due to the fact that the check plot accumulated significantly less N than 

8 



the N treatments, which indicates that the response to N was higher the second 

year of the study. Even though there was a significant response to N, treatments 

that historically received N showed the same response indicating that even 

though the experiment was responsive (with respect to the true N check) the 

environment within each treatment was affected by historical management and 

not responsive. 

Grain Yield 

As indicated in the forage N uptake data, yield response to N was low the 

initial year of the study (Table 6). Although application of either preplant or 

topdress N did not result in yields above that of the check (0 N), treatment 

differences were noted. Topdress N was applied rather late in the season 

primarily due to a late planting date and a cool, dry winter resulting in very little 

vegetative growth. In 2001, application of N topdress resulted in a linear 

decrease in grain yield (p < 0.05). This is interesting because it elucidates the 

fact that application of N above what is needed by the plant can cause a 

decrease in haNested grain whether by lodging or increased water use resulting 

in late season plant stress. Within rates, differences in timing of N application 

were noted. No differences in yield were noted between application of topdress 

N and historical N rate at any rate of application. When N was preplant applied 

at rates of 45 and 112 kg ha-1
, grain yield was increased compared to treatments 

not receiving N this specific year (historically N has been applied at equivalent 
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rates). At N rates of 67 and 112 kg ha-1
, preplant application of N resulted in 

increased yield compared to topdress treatments. 

Since no differences existed in the amount of N taken up in wheat forage 

at the time of topdressing, the likelihood of observing a response to topdress N 

was small. This was actually observed by the lack of yield response to topdress 

N, which is an important point. If producers can identify when the likelihood of a 

response does or does not exist, N management can be altered to increase 

profitability and decrease environmental impact. 

As indicated by the differences in forage N uptake associated with N 

treatments, grain yield differences due to application of N did exist with respect to 

the true N check in 2001-2002. Preplant application of N and where N had 

historically been applied resulted in a quadratic increase in yield (Table 6). Grain 

yield was statistically maximized when preplant N was applied at the 22 kg N ha-1 

rate. As in the first year, differences in NOVI of plots receiving N and plots not 

receiving N were small resulting in a small response index. Thus the likelihood of 

observing a response to applied N was small which was noted by the lack of 

yield response to topdress N. Even though there was a response to applied N 

(compared to the true N check), the treatment where N had historically been 

applied did not result in lower grain yields than its corresponding subplots that 

had received preplant or topdress N. Thus addition of N was not necessary to 

maximize yield where N had been historically applied. Due to the fact that the 

plot had historically received N, the need for additional N was diminished even 

though there was obviously a response to N relative to the check plot. 
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Grain N 

Although grain yield was relatively unaffected by application of N in the 

initial year of the study, grain N was altered by application of both preplant and 

topdress N. A linear and quadratic increase in grain N was observed when N 

was applied preplant, topdress, and based on historical N application (Table 7). 

Differences in grain N due to timing of N application were also noted at each 

level of N. Application of preplant N, with the exception of the 45 kg N ha-1 rate, 

resulted in increased grain N compared to treatments where N was historically 

applied but not in this year. Topdress N application with the exception of the 90 

kg N ha-1 rate resulted in increased grain N above that of historical N treatments 

where N was not applied this year. Grain N was also increased at the 90 kg N 

ha-1 rate when N was applied preplant compared to topdress application. 

Even though grain yield was unaffected by N application, grain N was 

quite responsive to additional N. Presently, premiums for high protein grain are 

not paid to Oklahoma producers, thus application of additional N to improve 

protein is not economically motivated. 

Despite the fact that addition of N did not greatly increase grain yield in 

2001-2002, application of N did increase grain N concentration. A linear and 

quadratic response to applied N (preplant and topdress) and historical N 

application was noted (Table 7). Application of preplant or topdress N up to 45 

kg N ha-1 did not increase grain N levels compared to treatment~ based on 
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historical N application (not receiving N within this year). Application of N above 

45 kg N ha·1 did result in higher grain N concentrations than historical N 

treatments. Timing of N application (preplant or topdress) did not have an effect 

on grain N concentration. As noted for grain yield and estimated N 

mineralization, the responsiveness of the experiment was apparent (with respect 

to the true check), but within treatments, historical application of N precluded the 

need for fertilizer N. 

Grain N Uptake and NUE 

Because grain N was highly affected by application of N, grain N uptake 

was also significantly altered due to application of N. A linear trend of increasing 

grain N uptake was noted for both preplant and topdress application of N with a 

quadratic trend also noted for preplant treatments (Table 8). Timing of 

application also resulted in differences in grain N uptake within specific N rates. 

Application of preplant Nat rates of 45 kg ha·1 and higher resulted in increased 

grain N uptake compared to treatments where N was historically applied but not 

in this year. Topdress N application increased grain N uptake above that of 

historical treatments at the 45 kg N ha·1 rate. At the 67 and 90 kg N ha·1 rates, 

application of preplant N resulted in increased grain N uptake compared to 

topdress treatments. 

Although grain N uptake was significantly affected by application of N, 

NUE levels never exceeded 20% (data not shown). Thus the amount of fertilizer 

N utilized by the plant was small and supplementation of N was probably 
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unnecessary. This again illustrates that identifying the responsiveness of the 

crop for the specific environment is essential to maximize profit and minimize 

environmental impact. 

Contrary to the initial year of the study, grain N uptake was significantly 

affected by application of N and treatments that historically receive N in 2001-

2002 (Table 8). Application of N (preplant and topdress) and historical 

application of N resulted in a linear and quadratic increase in grain N uptake. At 

the 45 kg N ha-1 rate, application of preplant N increased grain N uptake 

compared to the historical N treatment. Thus applying N this year did not 

increase grain N uptake when taking into consideration historical N application 

(with the exception of the 45 kg N ha-1 rate). 

Although grain N uptake was significantly increased compared to the true 

N check treatment, application of N did not result in NUE values greater than 

30% when compared to the corresponding historical N treatment. Thus not 

applying N (where N had historically been applied) was the best option 

environmentally and economically. 

DISCUSSION 

It is interesting to note that yield levels varied greatly between the two 

years of this trial while response to applied N was low each year. Comparison of 

grain yield between the two years reveals that the amount of N required for 

maximum yield differed. But based on the lack of response or low response to 
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applied N, the soil was able to contribute enough N via mineralization, rainfall, 

etc. to provide the majority of N needed to maximize yield. 

The ability to recognize the responsiveness of a crop to N is more 

important than simply quantifying the amount of N mineralized. Lab procedures 

that provide estimates of N mineralization potentials of soils are really of no 

practical use in determining N need. Not only because a lab environment can 

not accurately replicate field conditions, but it also can not identify the N need of 

the crop within the growing season. Utilizing the crop as an indicator of N 

mineralization is a more sensible technique because it integrates all soil 

conditions for both microbial activity and plant growth up to the point when 

sensor measurements are taken. 

CONCLUSIONS 

When the amount of N accumulated within the forage from a crop 

receiving N is equal to or close to the amount of N accumulated within the forage 

of a crop not receiving N, topdressing of N does not result in increased yields, but 

may however influence grain N concentration. This evidence further supports the 

inclusion of some sort of RI in N management to maximize nitrogen use 

efficiency and profitability. The ability to recognize that application of topdress N 

will not contribute to higher yields but may result in higher grain protein, provides 

producers the opportunity to manage N for protein if premiums are available. 

Using the crop to estimate N mineralized (or N contribution of the environment) 

with NOVI may prove to be a more reliable method than current lab techniques. 
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Historical N management also greatly affects crop response within a given year. 

If producers wish to maximize profit, preplant N rates must be decreased 

significantly or eliminated. Even N rates as low as 22 kg N ha-1
, when applied 

annually for a number of years, can diminish the need for additional fertilizer N 

within a given year. 

15 



REFERENCES 

Beardsley, T. 1997. When nutrients turn noxious. Scientific American. 

Burford, J.R. and J. M. Bremner. 1975. Relationships between the denitrification 
capacities of soils and total , water-soluble and readily decomposable soil 
organic matter. Soil Biochem. 7:389-394. 

Burkart, M.R., and D.E. James. 1999. Agricultural-nitrogen contributions to 
hypoxia in the Gulf of Mexico. J. Environ. Qual. 28:850-859. 

Eno, C.F. 1960. Nitrate production in the field by incubating the soil in 
polyethylene bags. Soil Sci. Soc. Am. Proc. 24:277-279. 

Gascho, G.J. , R.D. Wauchope, J.G. Davis, C.C. Truman, C.C. Dowler, J.E. 
Hook, H.R. Sumner, and A.W. Johnson. 1998. Nitrate-nitrogen, soluble, 
and bioavailable phosphorus runoff from simulated rainfall after fertilizer 
application. Soil Sci. Soc. Am. J. 62:1711-1718. 

Goss, M.J. and D. Goorahoo. 1995. Nitrate contamination of groundwater: 
measurement and prediction. Fert. Res. 42:331-338. 

Havlin, J. L., J. D. Beaton, S. L. Tisdale, and W. L. Nelson. 1999. Nitrogen. p. 
86-153 In: J. L. Havlin, J. D. Beaton, S. L. Tisdale and W. L. Nelson (eds) 
soil Fertility and Fertilizers: An Introduction to Nutrient Management Sixth 
Ed. Prentice Hall, Upper Saddle River, NJ. 

Honeycutt, C.W. 1999. Nitrogen mineralization from soil organic matter and 
crop residues: field validation of laboratory predictions. Soil Sci. Soc. Am. 
J. 63:134-141. 

Johnson, G.V., and W.R. Raun. 1995. Nitrate leaching in continuous winter 
wheat: use of a soil-plant buffering concept to account for fertilizer 
nitrogen. J. Prod. Agric. 8:486-491. 

Johnson, G.V. , W.R. Raun, and R.W. Mullen. 2000. Nitrogen use efficiency as 
influenced by crop response index. p. 291. In Agronomy Abstracts. ASA, 
Madison, WI. 

Large, E.G. 1954. Growth stages in cereals. Plant Pathol. 3:128-129. 

Mullen, R.W., W.E. Thomason, G.V. Johnson, K.W. Freeman, M.L. Stone, J.B. 
Solie, and W.R. Raun. 2001. Use of an in-season response index to 
predict potential yield increases from applied nitrogen. In 2001 annual 
meeting abstracts [CD-ROM]. ASA, CSSA, and SSSA, Madison, WI. 

16 



Olson, R.V., LS. Murphy, H.C. Moser, C.W. Swallow. 1979. Fate of tagged 
fertilizer nitrogen applied to winter wheat. Soil Sci. Soc. Am. J. 43:973-
975. 

Paramasivam, S. and A.K. Alva. 1997. Leaching of nitrogen forms from 
controlled-release nitrogen fertilizers. Commun. Soil Sci. and Plant Anal. 
28: 1663-167 4. 

Raun, W.R. and G.V. Johnson. 1999. Improving nitrogen use efficiency for 
cereal production. Agron. J. 91 :357-363. 

SAS Institute. 2000. SAS/STAT User's Guide. Release 8.1 ed. SAS Inst., Cary, 
NC. 

Schepers, J.S., D.D. Francis, and M.T. Thomison. 1989. Simultaneous 
determination of total C, total N, and 1 N on soil and plant material. 
Commun. Soil Sci. Plant Anal. 20:949-959. 

Schepers, J.S. and J.J. Meisinger. 1994. Field indicators of nitrogen 
mineralization. p.31-47. In J.L. Havlin and J.S. Jacobsen (ed.) Soil 
testing: prospects for Improving Nutritent Recommendations. SSSA Spec. 
Publ. 40. ASA, CSSA, and SSSA, Madison, WI. 

Schnabel, R.R. 1983. Measuring nitrogen leaching with ion exchange resin: a 
laboratory assessment. Soil Sci. Soc. Am. J. 47:1041-1042. 

Stone, M.L., J.B. Solie, R.W. Whitney, W.R. Raun, and H.L. Lees. 1996. 
Sensors for detection of nitrogen in winter wheat. SAE Technical paper 
series. SAE Paper No. 961757. SAE, Warrendale, PA. 

17 



TABLE 1. Initial soil data from main plots in fall of 1999. 

Nitrogen rate 
k h -1 --- g a ---

0 
22 
45 
67 
90 

112 

7.7 
7.5 
7.7 
7.6 
7.1 
7.2 

0.9 
0.9 
0.9 
0.9 
0.8 
0.9 

31.5 
25.5 
26.8 
28.1 
32.8 
30.8 

10.4 
7.8 

14.3 
19.3 
19.5 
22.6 

127 
155 
141 
159 
140 
164 

1133 
1082 
1114 
1158 
1156 
1173 

pH 

5.5 
5.4 
5.3 
5.6 
5.8 
5.8 

QC-organic carbon, TN-total nitrogen, NH4-N and N03-N-2 M KCI extraction, P and K - Mehlich 
Ill extraction, pH-1 :1 soil:water 
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TABLE 2. Fertilization, planting, topdressing, and harvest dates at Lahoma, 
Oklahoma, 2000-2001 and 2001-2002. 

Year 
2000-2001 
2001-2002 

Fertilization 
08/09/00 
30/08/01 

Planting 
01/12/00 
28/11/01 

19 

Topdressing 
05/04/01 
22/03/02 

Harvest 
15/06/01 
26/06/02 



TABLE 3. NOVI and estimated N mineralized based on forage N uptake 
calculated using NOVI at Feekes 4, 2000-2001 and 2001-2002. 

N rate Timing of NOVI values 
Forage N uptake 

kg ha· 
kg ha·1 N application 2001 2002 2001 2002 
0 0.210 0.481 15.7 21.1 

22 pp 0.195 0.572 15.6 27.1 

TD 0.183 0.519 15.5 23.0 

NA 0.191 0.554 15.5 25.4 

45 pp 0.190 0.436 15.6 19.5 

TD 0.157 0.438 15.4 19.5 

NA 0.157 0.424 15.4 19.0 

67 pp 0.252 0.468 16.0 20.5 

TD 0.189 0.507 15.6 22.3 

NA 0.199 0.555 15.6 25.5 

90 pp 0.174 0.449 15.5 19.8 

TD 0.140 0.464 15.3 20.4 

NA 0.142 0.398 15.3 18.3 

112 pp 0.194 0.407 15.6 18.5 

TD 0.148 0.455 15.4 20.1 

NA 0.136 0.452 15.3 19.9 

SED 0.021 0.042 0.1 2.1 
Contrasts 
N rate linear - PP NS *** NS ** 

N rate quadratic - PP NS NS NS NS 
N rate linear - TD *** NS NS NS 
N rate quadratic - TD NS NS NS NS 
N rate linear - NA *** * *** NS 
N rate quadratic - NA NS NS NS NS 
NA - no N applied, PP - N applied preplant, TD - N applied topdress 
*, **,***,NS - significant at the 0.1, 0.05, and 0.01 confidence level or non-significant (NS) 
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TABLE 4. NOVI and estimated N mineralized based on forage N uptake 
calculated using NOVI at Feekes 5, 2000-2001 and 2001-2002. 

N rate Timing of NOVI values 
Forage N uptake 

kg ha-
kg ha-1 N application 2001 2002 2001 2002 
0 0.370 0.487 17.6 21.4 

22 pp 0.302 0.593 16.5 28.9 

TD 0.293 0.542 16.4 24.4 

NA 0.318 0.577 16.8 27.2 

45 pp 0.325 0.504 16.8 22.6 

TD 0.254 0.474 16.0 21.4 

NA 0.256 0.465 16.0 20.4 

67 pp 0.363 0.521 17.5 23.1 

TD 0.319 0.566 16.7 26.2 

NA 0.331 0.574 16.9 26.9 

90 pp 0.317 0.502 16.7 21.9 

TD 0.259 0.507 16.1 22.6 

NA 0.244 0.446 15.9 19.7 

112 pp 0.283 0.479 16.3 21.3 

TD 0.247 0.509 15.9 22.8 

NA 0.207 0.494 15.6 21.8 

SEO 0.036 0.034 0.6 2.4 
Contrasts 
N rate linear - PP NS NS NS NS 
N rate quadratic - PP NS NS NS NS 
N rate linear - TD *** NS ** NS 
N rate quadratic - TD NS NS NS NS 
N rate linear - NA *** NS *** NS 
N rate quadratic - NA NS NS NS NS 
NA - no N applied, PP - N applied preplant, TD - N applied topdress 
*, **,***,NS - significant at the 0.1, 0.05, and 0.01 confidence level or non-significant (NS) 
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TABLE 5. NOVI and estimated N mineralized based on forage N uptake 
calculated using NOVI at Feekes 6, 2000-2001 and 2001-2002. 

N rate Timing of NOVI values 
Forage N uptake 

kg ha-
kg ha-1 N application 2001 2002 2001 2002 
0 0.672 0.690 39.2 43.4 

22 pp 0.662 0.781 37.9 70.9 

TD 0.665 0.784 38.1 73.0 

NA 0.669 0.772 38.9 67.3 

45 pp 0.717 0.766 48.5 64.4 

TD 0.663 0.752 36.9 60.2 

NA 0.675 0.754 39.9 59.4 

67 pp 0.727 0.802 51.3 75.1 

TD 0.703 0.795 45.2 73.1 

NA 0.719 0.799 49.3 74.8 

90 pp 0.669 0.794 38.4 73.7 

TD 0.657 0.793 37.1 74.3 

NA 0.651 0.760 35.3 61.1 

112 pp 0.638 0.759 34.1 61.5 

TD 0.647 0.772 34.9 65.8 

NA 0.608 0.749 30.7 56.7 

SEO 0.028 0.017 4.0 5.5 
Contrasts 
N rate linear - PP NS *** NS *** 

N rate quadratic - PP *** *** *** *** 

N rate linear - TD NS *** NS *** 

N rate quadratic - TD NS *** NS *** 

N rate linear - NA * *** NS *** 

N rate quadratic - NA *** *** NS *** 

NA - no N applied, PP - N applied preplant, TD - N applied topdress 
*, **,***,NS- significant at the 0.1, 0.05, and 0.01 confidence level or non-significant (NS) 
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TABLE 6. Effect of N and timing of N application on winter wheat grain yield, 
2000-2001 and 2001-2002. 

Yield, kg ha· 
N rate, kg ha·1 Timing of N a1212lication 2001 2002 

0 1655 2446 

22 pp 1356 3145 

TD 1465 3068 

NA 1458 3163 

45 pp 1632 3232 

TD 1468 2870 

NA 1336 2693 

67 pp 1648 2998 

TD 1443 2821 

NA 1517 3389 

90 pp 1517 2859 

TD 1443 3013 

NA 1361 2650 

112 pp 1520 2951 

TD 1203 3014 

NA 1247 3015 

SEO 120 232 
Contrasts 
N rate linear - PP NS NS 
N rate quadratic - PP NS ** 

N rate linear - TD *** NS 
N rate quadratic - TD NS NS 
N rate linear - NA *** NS 
N rate quadratic - NA NS ** 

NA - no N applied, PP - N applied preplant, TD - N applied topdress 
*, **, ***, NS - significant at the 0.1, 0.05, and 0.01 confidence level or non-significant (NS) 
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TABLE 7. Effect of N and timing of N application on winter wheat grain N, 2000-
2001 and 2001-2002. 

N rate, kg ha-1 
Grain N, g kg-

0 

22 

45 

67 

90 

112 

Contrasts 

Timing of N application 

pp 

TD 

NA 
pp 

TD 

NA 
pp 

TD 

NA 
pp 

TD 

NA 
pp 

TD 

NA 

SED 

2001 
18.9 

24.7 

24.2 

22.7 

24.2 

25.6 

23.5 

25.1 

24.3 

23.0 

26.4 

24.6 

23.5 

26.2 

26.0 

24.1 

0.1 

N rate linear - PP *** 
N rate quadratic - PP *** 
N rate linear - TD *** 
N rate quadratic - TD *** 
N rate linear - NA *** 
N rate quadratic - NA *** 
NA - no N applied, PP - N applied preplant, TD - N applied topdress 

2002 
18.7 

20.7 

21.1 

20.0 

22.8 

23.0 

23.5 

25.0 

24.7 

22.9 

25.2 

24.8 

23.9 

25.2 

25.3 

23.8 

0.1 

*** 
*** 
*** 
*** 
*** 
** 

*, **,***,NS - significant at the 0.1, 0.05, and 0.01 confidence level or non-significant (NS) 
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TABLE 8. Effect of N and timing of N application on winter wheat grain N uptake, 
2000-2001 and 2001-2002. 

N rate, kg ha-1 

Grain N u12take, kg ha-

0 

22 

45 

67 

90 

112 

Contrasts 

Timing of N a1212lication 

pp 

TD 

NA 
pp 

TD 

NA 
pp 

TD 

NA 
pp 

TD 

NA 
pp 

TD 

NA 

SEO 

2001 
31.5 

32.9 

35.3 

33.5 

39.3 

37.5 

31.4 

41.3 

35.0 

34.9 

39.9 

35.4 

31.9 

39.6 

31.3 

30.1 

2.7 

N rate linear - PP *** 

N rate quadratic - PP ** 

N rate linear - TD NS 
N rate quadratic - TD *** 

N rate linear - NA NS 
N rate quadratic - NA NS 
NA - no N applied, PP - N applied preplant, TD - N applied topdress 

2002 
45.7 

65.1 

64.9 

63.6 

73.5 

65.6 

61.7 

74.9 

68.5 

77.5 

72.2 

75.2 

62.2 

74.4 

76.4 

71.9 

5.8 

*** 

*** 

*** 

* 
*** 

** 

*, **, ***, NS - significant at the 0.1, 0.05, and 0.01 confidence level or non-significant (NS) 
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FIGURE 1. Grain yield response to N applied either preplant (PP) or topdress 
(TD) and response to historical N rate (NA) at Lahoma, Oklahoma, 2000-2001. 
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FIGURE 2. Grain N response to N applied either preplant (PP) or topdress (TD) 
and response to historical N rate (NA) at Lahoma, Oklahoma, 2000-2001. 
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FIGURE 3. Grain N uptake response to N applied either preplant (PP) or 
topdress (TD) and response to historical N rate (NA) at Lahoma, Oklahoma, 
2000-2001. 
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FIGURE 4. Grain yield response to N applied either preplant (PP) or topdress 
(TD) and response to historical N rate (NA) at Lahoma, Oklahoma, 2001-2002. 
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FIGURE 5. Grain N response to N applied either preplant (PP) or topdress (TD) 
and response to historical N rate (NA) at Lahoma, Oklahoma, 2001-2002. 
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FIGURE 6. Grain N uptake response to N applied either preplant (PP) or 
topdress (TD) and response to historical N rate (NA) at Lahoma, Oklahoma, 
2001-2002. 
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Response Index 

An in-season response index (RINov1) was calculated using the average 

preplant NOVI and the average historical N application NOVI within the subplots 

as was RIHarvest. The correlation between RINov1 and RIHarvest was relatively good 

at each stage of growth when sensor readings were taken (r>0.69) (Figures 7, 8, 

and 9). The relationship between RINov1 and RIHarvest was different for each stage 

of growth, noted by the change in the regression lines, but appeared to be best at 

Feekes 5. 

The RI calculated using the preplant yield and historical N application yield 

for each subplot was more related to the unfertilized yield (historical N 

application) than the fertilized yield (preplant or topdress N) within each year 

(Figures 10-13). In 2000-2001, the relationship between the RINov1 and check (0 

N) yield was better than the relationship between RINov1 and fertilized yield 

(Figures 10 and 11. The same was noted in 2001-2002 but the differences in the 

relationships were more dramatic (Figures 12 and 13). This elucidates the fact 

that RI is more a function of check yield than fertilized yield. 

33 



FIGURE 7. Relationship between RINov1 and RIHarvest of subplots at Feekes 4 at 
Lahoma, Oklahoma, 2000-2001 and 2001-2002. 
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FIGURE 8. Relationship between RINov1 and RIHarvest of subplots at Feekes 5 at 
Lahoma, Oklahoma, 2000-2001 and 2001-2002. 
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FIGURE 9. Relationship between RINov1 and RIHarvest of subplots at Feekes 6 at 
Lahoma, Oklahoma, 2000-2001 and 2001-2002. 
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FIGURE 10. Relationship between RI Nov, and the average yield of unfertilized 
subplots at Lahoma, Oklahoma, 2000-2001. 
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FIGURE 11. Relationship between RINov, and the average yield of fertilized 
subplots at Lahoma, Oklahoma, 2000-2001. 
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FIGURE 12. Relationship between RINov1 and the average yield of unfertilized 
subplots at Lahoma, Oklahoma, 2001-2002. 
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FIGURE 13. Relationship between RINov1 and the average yield of fertilized 
subplots at Lahoma, Oklahoma, 2001-2002. 
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CHAPTER II 

USE OF IN-SEASON SENSOR DERIVED RESPONSE INDICES TO PREDICT 
THE RESPONSE INDEX AT HARVEST 

ABSTRACT 

Current nitrogen use efficiency (NUE) of cereal crop production is 

estimated to be near 33%, indicating that much of the applied fertilizer nitrogen 

(N) is not utilized by the plant and is susceptible to loss from the soil-plant 

system. Supplying fertilizer N only when a crop response is expected may 

improve use efficiency and profitability. A response index using harvest data was 

recently proposed that indicates the actual crop response to additional N within a 

given year. This response index, RIHarvest, is calculated by dividing the average 

grain yield of the highest yielding treatment receiving preplant N by the average 

yield of a check treatment (0 N). Although theoretically useful, RIHarvest does not 

allow for in-season adjustment of N application. The objective of this work was to 

determine the relationship between RIHarvest and the response index measured in-

season (RINov1) using the normalized difference vegetative index (NOVI). 

Research was conducted in thirty existing field experiments in Oklahoma. Each 

field experiment evaluated crop response to varying levels of preplant N. At 

Feekes growth stages 5, 9, and 10.5, RIHarvest was accurately predicted using 

RINov, (r > 0.64). These results indicated that the in-season response index 
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based on sensor readings is a viable method for identifying environments (i.e. 

fields) where the potential to respond to additional N exists. 

INTRODUCTION 

Raun and Johnson (1999) estimated current nitrogen use efficiency (NUE) 

of worldwide cereal production to be near 33%, which suggests that current N 

strategies are extremely inefficient. Current Oklahoma N fertilizer 

recommendations are calculated using the equation, Nrec = yield goal (kg ha-

1)*0.033, where the yield goal is based on the average wheat yield for the past 5 

years and, on average, 33 kg of N is needed to produce 1000 kg of grain. 

Typically, all N is injected preplant as anhydrous ammonia between mid-August 

and mid-September. Avoiding excess application of N fertilizers in crop 

production is one way to increase NUE (Kanampiu et al., 1997). Application 

methods which avoid applying large amounts of N at any one time can also 

increase NUE (Wuest and Cassman, 1992). The soil/plant system is capable of 

loss via denitrification (Burford and Bremner, 1975; Olson et al., 1979, Burkart 

and James, 1999), runoff (Gascho et al., 1998; Burkart and James, 1999), or 

leaching (Goss and Goorahoo, 1995; Paramasivam and Alva, 1997). Thus, there 

is more N available for loss at any given time during the growing season if N is 

applied only once per season. Multiple timely applications of N during the 

growing season, while potentially costly, could significantly increase NUE. 

Alternative methods of determining fertilizer N rates for winter wheat using 

early-season estimates of N uptake and potential yield determined from in-
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season spectral measurements collected between January and April have been 

developed (Lukina et al., 2001; Raun et al., 2002). Using a modified daytime­

lighting reflectance-sensor, early-season plant N uptake between Feekes 

physiological stages 4 (leaf sheaths lengthen) and 6 (first node of stem visible) 

(Large, 1954) has been found to be highly correlated with NOVI (Stone et al., 

1996; Solie et al., 1996). Reflectance based NOVI was calculated using the 

following equation: 

NOVI = [(NIRretlNIRinc) - (Redret/Redinc)] I [(NIRretfNIRinc) + (RedretfRedinc)] 

[1] 

where NIRref and Redref are the near-infrared and red reflected radiance of the 

crop, respectively, and NIRinc and Redinc are the near-infrared and red incident 

radiance, respectively. Further analyses showed that a reliable in-season 

estimate of yield (INSEY) could be obtained from dividing NOVI by the days from 

planting to sensing date (where growing degree days > 0) (Raun et al., 2002). 

This INSEY was subsequently used to estimate N uptake in the grain based on a 

predicted yield level. Finally, using predicted wheat N uptake (measured by 

NOVI) and projected grain N uptake from estimated yield (INSEY), topdress 

fertilizer N rates were adjusted based on the difference (grain N uptake minus 

early season plant N uptake) (Lukina et al., 2001 ). 

Recently, a response index (RIHarvest) was proposed that indicates the 

actual crop response to applied N (Johnson et al., 2000). The RIHarvest is 

calculated using the following equation: 
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RIHarvest = (highest mean yield N-treatment)/(mean yield check treatment) 

[2] 

Freeman et al. (2000) showed that when RIHarvest was greater than 1.5, the 

correlation of INSEY, determined at Feekes 5, and final grain yield was 

improved. This suggests that when differences in wheat forage exist at Feekes 

5, due to applied N, the ability to accurately predict final grain yield is enhanced. 

Increased non-fertilizer N contribution via mineralization or rainfall are the most 

likely reasons for low RIHarvest· The use of RIHarvest does not allow for in-season 

adjustment of N, thus its practical value to N management is minimal. 

In-season sensor measurements of NOVI as an indicator of wheat N 

uptake between plots receiving N and those not receiving N can be used in the 

same way using the following equation: 

RINov, = (highest mean NOVI N treatment)/(mean NOVI check treatment) 

[3] 

Basing fertilizer rates on in-season estimate of yield (INSEY) and RINov, may help 

optimize in-season fertilizer application which in turn could increase NUE and 

yield. The objective of this work was to determine if RINov, could accurately 

predict RI Harvest at Feekes growth stages 5, 9, 10.5, and 11 .2. 

MATERIALS AND METHODS 

Research was conducted at either an on-going long-term experiment 

(numbers assigned in the 1960's, 1970's, and 1990's as experiments 222, 301, 

502, and 801 ), or a short-term (1-3 years) field experiment that included the 
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evaluation of preplant N rates (Tables 1 and 2). The soils at each of these 

locations follow; Perkins, Teller sandy loam (fine-loamy, mixed, thermic Udic 

Argiustoll); Hennessey, Shellabarger sandy loam (fine-loamy, mixed, thermic 

Udic Argiustoll); Stillwater, Kirkland silt loam (fine, mixed, thermic Udertic 

Paleustoll); Stillwater-Efaw, Norge silt loam (fine-silty, mixed, thermic Udic 

Paleustoll); Lahoma, Grant silt loam (fine-silty, mixed, thermic Udic Argiustoll); 

Haskell, Taloka silt loam (fine, mixed, thermic Mollie Albaqualf); and Tipton, 

Tipton silt loam (fine-loamy, mixed, thermic Pachic argiusoll). The anhydrous 

ammonia (AA) nitrogen use efficiency (NUE) experiments were initiated in 1999. 

The N rate by P rate (N*P) experiment at Perkins was initiated in 1996. 

Experiments 222, 301, 502, and 801 were initiated in 1969, 1993, 1971, and 

1977, respectively, and all four evaluate annual rates of applied N as ammonium 

nitrate at constant levels of P and K (Table 1 ). Winter wheat was planted at a 78 

kg ha-1 seeding rate using a 0.19 m row spacing. All field experiments where 

sensor and yield data were collected employed randomized complete block 

designs with 3 to 4 replications (depending on site). 

During the winter months of 1998, 1999, 2000, 2001, and 2002 spectral 

reflectance readings at Feekes (Large, 1954) growth stage 5 were taken from 

thirty existing winter wheat experiments. Sensor measurements were taken from 

treatments with varying levels of N nutrition within each replication. Additionally, 

spectral reflectance readings were taken at Feekes growth stages 9, 10.5, and 

11.2 from fourteen existing winter wheat experiments during 2000 and 2001. 

Spectral reflectance was measured using a handheld sensor constructed at 
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Oklahoma State University that included two upward and downward directed 

photodiode sensors that received irradiated red (671 ±6nm) and near-infrared 

(NIR)(780±6nm) light from the crop canopy (Stone et al., 1996). The sensor was 

placed approximately 1.5 m above the crop for all readings, and approximately 

10 readings were collected per second resulting in approximately 40 readings 

taken per plot. Reflectance readings from all plots at each experiment were 

collected at one post-dormancy date in 1998, 1999, and 2002 and four post­

dormancy dates in 2000 and 2001. The date when readings were collected 

generally corresponded to Feekes growth stages 5 (pseudo-stem, formed by 

sheaths of leaves strongly erect), 9 (ligule of last leaf just visible), 10.5 

(flowering), and 11.2 (mealy ripe, contents of kernel soft but dry) (Large, 1954). 

Consistent with different planting times and growing conditions, spectral 

reflectance readings were collected between January and May (Table 2). All 

reflectance readings from wheat were taken from a 4.0 m2 area (same area as 

that harvested for grain yield) between 10 a.m. and 4 p.m. under natural light. 

After NOVI values were calculated using equation [1 ], RI Nov, was 

computed using equation [2]. Grain yield was determined using a self propelled 

combine which harvested the same 4.0 m2 area where spectral reflectance data 

were collected. From the yield data, RIHarvest was calculated using equation [3]. 

Linear and quadratic models were used to determine the relationships between 

RIHarvest and RINov, using SAS PROC REG (SAS lnsitute, 2000). 
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RESULTS AND DISCUSSION 

RIHarvest vs RINDVI at Feekes 5 

Average yield and NOVI values used in RINov1 and RIHarvest calculations are 

reported in Table 3. In these experiments RINov1 measured at Feekes 5 was 

highly correlated to RIHarvest (R2 = 0.64, P<0.001) (Figure 1 ). In this work, we 

recognize that yield enhancing and limiting factors can occur after sensor 

readings are collected that can result in RIHarvest being underestimated or 

overestimated by RINov1. For example, in 1999, early spring rains after a dry fall 

planting period improved growing conditions after the sensing dates. This may 

have resulted in an increased response to N in fertilized plots causing a larger 

RIHarvest than would have been predicted by RINov1. As a result, RINov1 measured 

closer to harvest (Feekes 9 and 10.5) should be a better predictor of RIHarvest· 

RI Harvest vs RINDVI at Feekes 9, 10.5, and 11.2 

The relationships between RINov1 and RIHarvest measured at Feekes growth 

stages 5 (Figure 1 ), 9 (Figure 2), and 10.5 (Figure 3) were similar. Prediction of 

RIHarvest at Feekes 11.2 was poor, primarily due to early maturation of the check 

(0-N) plots relative to plots receiving N (Figure 4). It is important to note that 

sensor readings taken at later stages of growth (near maturation) would most 

likely result in overestimation of RIHarvest due to early maturation of check (0-N) 

plots resulting in low NOVI values, thus decreasing the value of the denominator 

in the calculation of RINov1. 
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The ability to predict whether a response to applied N can be expected is 

important. If a response to N is expected, then N management strategies can be 

altered to apply N based on responsiveness. To date, many researchers have 

struggled to develop indices that assess N mineralization potential. The basic 

concept is that if N mineralization potential could be determined, N 

recommendations could be refined. 

Utilizing the crop to assess N contribution from the soil without N 

fertilization within the growing season, whether by increased rainfall N or 

mineralization, is novel. The higher the yield level the soil will support without N 

fertilization (low RINovr), in general, the lower the amounts of fertilizer N that will 

be needed to reach maximum yields. This is not to say that soil testing for 

ammonium and/or nitrate before fertilizer application is not a reliable tool for 

assessing N need, but rather that the soil test information determined at a point 

in time is static and provides no prediction of mineralization and/or immobilization 

which can occur throughout the growing season. 

The importance of determining RI using in-season measurements of NOVI 

can be summarized in the following scenarios. First, if RINovr for a location is 

relatively low (Rk1 .1) meaning that the check (0-N) NOVI and NOVI from N 

fertilized treatments are similar, the probability of a response to additional N will 

be low, and thus little, if any, fertilizer N is required. Conversely, if the NOVI of 

the check treatment is low and the NOVI of N fertilized treatments is high 

resulting in a high RINovr (RI> 1.1 ), the probability of a response to additional N is 

good, and thus additional fertilizer should be applied. Considering that final grain 
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yield differences due to applied N are being predicted from mid-winter readings 

at Feekes 5, this information becomes increasingly useful. 

The ability of sensors to accurately quantify differences in wheat NOVI 

between treatments receiving N and those not receiving N at such a high 

resolution (4 m2
) is an exciting prospect. Demonstrated spatial variability within a 

field shows that differences in moisture holding capacity, soil test P, organic C, 

nitrate, and ammonium can exist at resolutions of 1 m2 (Raun et al., 1998). 

Determination of RINov, for a specific environment (i.e. field) will be computed 

using a high N strip on a field-size scale and determination of yield potential 

using INSEY could be used in conjunction to determine N requirement on a 1 m2 

basis. 

Current research from Nebraska uses chlorophyll meter readings to 

calculate a sufficiency index determined by dividing an as-needed N treatment by 

a well-fertilized treatment (Varvel et al., 1997). Their reference is a well-fertilized 

treatment and not a check treatment as suggested in this paper. Mathematically, 

the response index is simply the inverse of the sufficiency index, but theoretically 

the concepts are different. Utilizing the sufficiency concept, one applies N 

fertilizer in an attempt to match the tissue N concentration of a well fertilized strip 

(assumed to be 100% sufficient) without recognizing yield potential. Our 

approach has been to first recognize yield potential and then to fertilize based on 

the likelihood of obtaining a response (Raun et al., 2002). The response index is 

indicative of the % increase in yield that could be obtained via N fertilization, but 

by itself says nothing about what N rate should be applied, whereas the 
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sufficiency concept is bound directly to an actual fertilizer N rate. Our approach 

partitions the response index and an estimate of yield potential (Lukina et al., 

2001) into two separate components. The first step is to predict potential yield 

with no added N fertilizer, and then determine N removal (potential yield 

multiplied times average percent N in the grain, e.g., 2.35 for winter wheat in the 

central Great Plains). With the prediction of potential yield with no N fertilization 

(VP0), the response index allows us to project the potential yield that could be 

achieved with added N fertilization (VPN), multiplying VP0 times RI. In any given 

year, fertilizer N requirements are determined by subtracting grain N uptake at 

VP0 from grain N uptake at VPN, and dividing by a theoretical maximum use 

efficiency of topdress N of 0.70. 

CONCLUSION 

Based on analysis of thirty winter wheat experiments conducted from 1998 

to 2002 under different growing conditions RINov1 was found to provide good 

prediction of RIHarvest at Feekes growth stages 5, 9, and 10.5. This ability to 

determine the responsiveness of the crop to. additional N at early stages of 

growth (i.e. Feekes 5) allows altering of N management schemes to potentially 

increase yield and NUE. Application of the response index strategy may prevent 

over application of fertilizer N when yield increases are not likely, thus increasing 

returns to producers while decreasing environmental risk. 
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TABLE 1. Fertilizer rates of N, P, and Kat Haskell, Hennessey, Lahoma, Perkins and Stillwater, OK. 

Stillwater AA Stillwater 301 t Haskell 801 Hennessey AA Lahoma 502 Perkins N & P Stillwater 222 
--------------------------------------------------------------------N-P-K (kg ha-1)-----------------------------------------------------------------

0-0-0* 0-0-0* 0-58-111 0-0-0* 0-19-56 0-29-0** 0-29-37 
56-0-0 45-0-0 112-58-111 56-0-0 22-19-56 56-29-0 45-29-37 
90-0-0 90-0-0 112-39-111 90-0-0 45-19--56 112-29-0 90-29-37 

123-0-0 179-0-0 168-58-111 123-0-0 67-19-56 168-29-0 
90-19-56 

*-Blanket application of P and K to 100% sufficiency 
**-Blanket application of K to 100% sufficiency 
t - ammonium nitrate was the N source, excluding AA experiments. 

112-19-56 



TABLE 2. Experiments where sensor and winter wheat grain yield data were collected, location, activity dates, and 
variety. 

Days from planting to 
Exeeriment Location Year Planting date Sensing date sensing Harvest date Varie!Y 
N*Pii Perkins, OK 1998 21/10/97 02/041981 163 16/06/98 Tonkawa 
N*S® Perkins, OK 1998 21/10/97 02/04198t 163 16/06/98 Tonkawa 
N*Pii Tipton, OK 1998 10/10/97 01/03/98t 142 03/06/98 Tonkawa 
N*Pii Perkins, OK 1999 12/10/98 04/03/99t 143 09/06/99 Tonkawa 
Experiment 222 Stillwater, OK 1999 13/10/98 24/02/99t 134 15/06/99 Tonkawa 
Experiment 301 Stillwater, OK 1999 15/10/98 24103/99t 160 15/06/99 Tonkawa 
Efaw AA Stillwater, OK 1999 09/11/98 24103/99t 135 15/06/99 Tonkawa 
Experiment 502 Lahoma, OK 1999 09/10/98 05/03/99t 147 30/06/99 Tonkawa 
Experiment 801 Haskell, OK 1999 16/10/98 23/03/99t 158 06/07/99 2163 
N*Pii Perkins, OK 2000 08/10/99 08/021oot 123 30/05/00 Custer 

04104/00* 179 
24/04/oo' 199 

n 22/05/00+ 227 ... 
Experiment 301 Stillwater, OK 2000 07/10/99 101021oot 126 15/06/00 Custer 

04104100* 180 
24/04/oo' 200 
22/05/00+ 228 

Experiment 222 Stillwater, OK 2000 07/10/99 101021oot 126 06/07/00 Custer 
30103100: 175 
24104/00 200 
22/05/00+ 228 

Efaw AA Stillwater, OK 2000 07/10/99 151021oot 126 07/07/00 Custer 
04/04100* 180 
24/04/oo· 200 
22/05/00+ 228 

Experiment 502 Lahoma, OK 2000 12/10/99 151021oot 126 13/06/00 Custer 
28/03/00* 168 
21104100· 198 
22/05/00+ 223 

Experiment 801 Haskell, OK 2000 08/10/99 14/03/oot 158 02/06/00 2137 
02/04100* 1n 
25104100· 200 
16/05/00+ 221 

Hennessey AA Hennessey, OK 2000 07/10/99 151021oot 131 07/06/00 Custer 
28/03/00* 173 
27/04/00 203 
22/05/00+ 228 



N*P~ Perkins, OK 2001 17/11/00 13/04/01t 148 07/06/01 Custer 
30/04/01* 165 
10/05/0f 175 
24105/01+ 189 

Experiment 301 Stillwater, OK 2001 16/11/00 13/04101t 149 11/06/01 Custer 
30/04101* 164 
10/05101' 174 
24105/01+ 188 

Experiment 222 Stillwater, OK 2001 20/11/00 13/04101t 145 12/06/01 Custer 
30/04/01: 162 
10/05/01 172 
24/05/01• 186 

Efaw AA Stillwater, OK 2001 22/11/00 13/04/01 t 143 11/06/01 Custer 
30/04/01: 160 
10/05/01 170 
24/05/01· 184 

Experiment 502 Lahoma, OK 2001 01/12/00 13/04/01t 133 15/06/01 Custer 
28/04101* 148 
10/05/01 160 
24/05/01+ 174 

Experiment 801 Haskell, OK 2001 04110/00 15/04101t 187 06/06/01 2137 
29/04101: 201 
10/05/01 212 
24/05/01+ 226 

Hennessey AA Hennessey, OK 2001 21/11/00 13/04/01t 144 13/06/01 Custer 
30/04/01* 163 
10/05/01 173 
24/05/01+ 187 

N*P~ Perkins, OK 2002 16/10/01 27/02/02t 98 Custer 

Experiment 222 Stillwater, OK 2002 10/10/01 27/02/02t 104 Tonkawa 

Experiment 301 Stillwater, OK 2002 12/10/01 27/02/02t 92 Tonkawa 

Efaw AA Stillwater, OK 2002 04110/01 27/02/02t 97 Tonkawa 

Experiment 502 Lahoma, OK 2002 28/11/01 29/03/02t 66 Tonkawa 

Experiment 801 Haskell, OK 2002 19/10/01 13/03/02t 97 2137 

Hennessey AA Hennessey, OK 2002 03/10/01 26/03/02t 93 Custer 
11N*P-N rate by P rate experiment. 
@N*S-N rate by spacing experiment. 
t. *· •. + - corresponds to Feekes growth stages s; 9, 10.5, and 11.2, respectively. 



TABLE 3. Mean NOVI values and yield levels of check treatments and treatments receiving preplant N for 30 winter 
wheat experiments. 

Check NOVI NOVI Check NOVI NOVI Check NOVI NOVI Check Yield Maximum Yield 
Experiment Year (0-N) N-fertilized (O-N) N-fertilized (0-N) N-fertilized (0 N) N-fertilized 

-----------Feekes 5----------- -----------Feekes 9---------- ---------Feekes 10.5-------- k h _, ------------ g a ----------
Perkins N*S:j: 1998 0.56 0.77 1332 2375 
Perkins N*Pt 1998 0.43 0.64 1214 1921 
Tipton N*S:j: 1998 0.74 0.89 3285 5466 
Efaw AA* 1999 0.63 0.78 2169 3708 
Efaw 301 1999 0.34 0.78 939 2662 
Haskell 801 1999 0.72 0.87 1990 2600 
Lahoma 502 1999 0.62 0.87 1680 4443 
Perkins N*Pt 1999 0.43 0.63 1077 2568 
Stillwater 222 1999 0.54 0.66 926 1724 
Efaw AA* 2000 0.77 0.86 0.82 0.91 0.71 0.80 2184 3053 
Efaw 301 2000 0.17 0.65 0.23 0.90 0.19 0.80 975 3382 
Haskell 801 2000 0.73 0.88 0.73 0.88 0.65 0.81 2399 3070 
Hennessey AA* 2000 0.86 0.89 0.91 0.93 0.84 0.86 3800 4064 
Lahoma 502 2000 0.52 0.89 0.49 0.90 0.42 0.88 1954 3543 
Perkins N*Pt 2000 0.52 0.71 0.73 0.87 0.59 0.74 2605 3898 
Stillwater 222 2000 0.45 0.81 0.48 0.90 0.41 0.81 1282 2450 
Efaw AA* 2001 0.51 0.69 0.64 0.70 0.55 0.69 2693 3488 
Efaw 301 2001 0.20 0.45 0.28 0.50 0.24 0.43 922 2096 
Haskell 801 2001 0.65 0.78 0.65 0.77 0.61 0.76 3695 4200 
Hennessey AA* 2001 0.39 0.60 0.47 0.62 1905 2952 
Lahoma 502 2001 0.34 0.33 0.56 0.60 821 946 
Perkins N*Pt 2001 0.62 0.60 0.55 0.55 0.49 0.51 2751 2498 
Stillwater 222 2001 0.35 0.55 0.45 0.58 0.41 0.54 1165 1944 
Efaw AA* 2002 0.57 0.73 1812 4201 
Efaw 301 2002 0.37 0.55 732 3276 
Haskell 801 2002 0.61 0.73 2752 3008 



Hennessey AA* 2002 0.46 0.52 2886 3165 
Lahoma 502 2002 0.37 0.49 2324 2733 
Perkins N*Pt 2002 0.68 0.73 2926 3252 
Stillwater 222 2002 0.36 0.68 2423 1040 
tN*S-N rate by spacing experiment; :j:N*P-N rate by P rate experiment; *AA-anhydrous ammonia experiment; •NUE-nitrogen use efficiency 



FIGURE 1. Relationship between RINov1 and RIHaNest at Feekes 5 across 29 
locations in Oklahoma, 1998-2002. 
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FIGURE 2. Relationship between RINov1 and RIHarvset at Feekes 9 across 12 
locations, 2000-2001 . 
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FIGURE 3. Relationship between RI Nov, and RIHarvset at Feekes 10.5 across 13 
locations, 2000-2001. 
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FIGURE 4. Relationship between RINov1 and RIHarvset at Feekes 11.2 across 13 
locations, 2000-2001. 
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