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FOREWORD 

This thesis comprises the following three peer-reviewed scientific publications 

(Chapters Ill, IV & VI) and are presented in the published journal format. 

1. Mohan M, Malayer JR, Geisert RD, Morgan GL. Expression of retinol

binding protein messenger RNA and retinoic acid receptors in 

preattachment bovine embryos. Mol Reprod Dev 2001; 60:289-296. 

2. Mohan M, Malayer JR, Geisert RD, Morgan GL. Expression patterns of 

retinoid X receptors, retinaldehyde dehydrogenase, and peroxisome 

proliferator activated receptor gamma in bovine preattachment embryos. 

Biol Reprod 2002; 66:692-700. 

3. Mohan M, Ryder S, Claypool PL, Geisert RD, Malayer JR. Analysis of 

gene expression in the bovine blastocyst produced in vitro using 

suppression-subtractive hybridization. Biol Reprod 2002; 67:447-453. 

Chapters V and VII will be submitted for publication soon and have been 

written in the format prescribed for Molecular Reproduction and Development. 
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Chapter I 

Introduction 

Vitamin A (retinal) and its metabolic derivatives, collectively called 

retinoids, are essential for normal embryo development and epithelial 

differentiation. From studies conducted as early as in the 1940s, it was known 

that both deficiency and excess of vitamin A could seriously impair 

embryogenesis. At this stage, however, the mode of action of retinoic acid at the 

molecular level was not known. Approximately fifteen years ago two independent 

laboratories identified the first nuclear receptor, retinoic acid receptor alpha 

(RARa), that was responsible for transducing the downstream effects of retinoic 

acid. Since then a second set of receptors, retinoid X receptor (RXRs), along with 

their isoforms, subisoforms, enzymes involved in the synthesis and metabolism 

of retinoic acid (RA), retinoid binding proteins and several other RA-related 

metabolites have been identified. 

Retinal is oxidized to retinaldehyde by a group of enzymes called alcohol 

dehydrogenases (ADH). Retinoic acid, the active metabolite, is then generated 

through oxidation by a second group of enzymes called aldehyde 

dehydrogenases (ALDH) or retinaldehyde dehydrogenases (RALDH-2). It is now 

clear that the RA generated in situ exerts its molecular action by binding to two 

sets of receptors, namely, retinoic acid receptors (RARs) and retinoid X receptors 

(RXRs ). The RA-RAR complex can then heterodimerize with RXRs and bind to 
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specific regulatory elements (retinoic acid response elements) found in the 

promoter regions of target genes and can either up or down regulate the 

expression of that gene. In addition to binding RARs, RXRs can also 

heterodimerize with thyroid hormome receptor, vitamin D receptor, peroxisome 

proliferator activated receptor (PPAR). Several approaches have been 

undertaken to study the biological significance of the vitamin A signaling pathway 

and the majority of these studies have been performed in mice. 

Deficiency of vitamin A in pregnant rats leads to decreased ovarian steroid 

production and fetal resorption (Ganguly et al., 1971 ). In cycling animals, 

deficiency may lead to decreased ovarian size, decreased ovarian steroid 

production, and reproductive senescence (Juneja et al., 1966; Jayaram et al., 

1973). Increased germ cell number and germ cell meiosis resulted following 

treatment of in vitro cultured fetal mouse ovaries with RA (Livera et al., 2000). 

Treatment of pregnant rats with RA led to an elevation in the total number of 

primordial oocytes in the ovary of female offspring (Morita and Tilly, 1999). 

Retinal administration to swine before breeding advanced meiotic resumption, 

altered follicular hormone concentrations, and increased litter size. In the ewe, 

administration of retinal in combination with superovulation was associated with 

increased developmental potential of embryos in vitro (Whaley et al., 2000). 

Similarly, in cattle and sheep, retinal administered simultaneously during 

superovulation improved the quality and development of the resulting embryos 

(Shaw et al., 1995; Eberhardt et al., 1999). These studies indicated that retinoids 

could regulate oogenesis and survival of the oocyte in the ovary of mouse 
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fetuses and improve embryo survival in farm species, possibly, by positively 

influencing oocyte maturation in vivo. The evidence provided above is based on 

work in which vitamin A was administered in the maternal diet or by injection. In 

addition, at the beginning of this project no evidence was available to show that 

vitamin A or its derivatives has a direct effect on the preattachment embryo or 

whether vitamin A added to embryos in culture affects development. Therefore, 

in order to elucidate the mode of action of retinal and its metabolites it was 

necessary to investigate if the different components of the retinoid signaling 

pathway existed in the early embryo. Therefore, I have attempted to test the 

hypothesis that retinal and its metabolites exert a direct effect upon the 

preattachment bovine embryo in vitro. The following objectives were pursued in 

order to test the above hypothesis. 

1. Determine the capability for retinoic acid synthesis by characterizing the 

expression of transcripts for the enzymes ADH, ALDH and RALDH-2 in 

the preattachment bovine embryo between the 2-cell and hatched 

blastocyst stages to metabolize retinal to retinoic acid in vitro. 

2. Further characterize patterns of expression of transcripts for RARs, RXRs, 

RBPs, PPAR and RALDH-2 in the preattachment embryo. 

Recently, following upon our findings on the expression of the different 

components of the retinoic acid signaling pathway in the preattachment bovine 

embryo, Duque et al. (2002) reported that addition of of 5 nM 9-cis retinoic acid 

during prematuration of bovine oocytes in the presence of roscovitine improved 
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cytoplasmic granular migration, embryonic development, cryopreservation 

tolerance, total cell numbers and, as a consequence, embryonic quality. More 

recently, the same laboratory also showed that addition of 9-cis retinoic acid 

during prematuration improved early embryonic development and pregnancies in 

cattle (Hidalgo et al., 2003). Therefore, my second hypothesis is that addition of 5 

nm 9-cis retinoic acid during prematuration enhanced early embryonic 

development and pregnancy rates by interacting directly with the cumulus-oocyte 

complex (COC's). Since cumulus-granulosa cells play an important role during 

oocyte maturation I am hypothesizing that retinoic acid had a positive effect on 

events associated with oocyte maturation in vitro. In order to test this hypothesis 

the following objectives were pursued. 

1. Determine the capability of COC's to metabolize retinal to retinoic acid in 

vitro by characterizing the expression of transcripts for the enzymes ADH, 

ALDH and RALDH-2. 

2. Determine the expression of transcripts for RARs, RXRs, RBPs, PPAR 

and RALDH-2 in COC's. 

3. Determine the capacity for a receptor-mediated response to retinoic acid 

in COC's using transfected reporter gene constructs in-vitro. 

Studying differential gene expression with the available molecular techniques 

requires a certain minimum concentration of total RNA (-2-4 µg). However, it is 

extremely difficult to obtain such concentrations of total RNA from preattachment 

embryos. Therefore, these constraints present a great challenge to the 
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successful implementation of a study of this nature'. Therefore, our third 

hypothesis is that it is possible to perform a global transcriptome analysis using 

small amounts of total RNA such as obtainable from preattachment embryos: 

The following objective was pursued: 

To identify differentially expressed genes in in vitro generated 

preattachment intact and hatched blastocysts using SMART PCR, SSH 

and Real-time PCR. 

In vitro produced bovine embryos offers an attractive alternative to 

generate blastocysts and stage specific preattachment embryos useful for 

commercial purposes and basic research. Although oocytes aspirated from 

follicles can undergo spontaneous maturation, their development to the 

preattachment stages following in vitro fertilization is less successful than 

oocytes matured in vivo. Several differences have been documented between in 

vitro and in vivo derived bovine embryos. In vitro produced bovine embryos 

exhibit aberrations in the expression of developmentally important genes during 

the first 7-8 days of in vitro culture. Therefore, we hypothesize that, in addition to 

the existing information, differences in relative abundance exist for several 

hitherto unidentified developmentally important genes. 

My final objective is to identify changes in gene expression between in 

vitro produced and in vivo derived day 7 blastocysts using SMART PCR, 

SSH and Real-time PCR. 
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Chapter II 

Literature Review 

Introduction 

Vitamin A and its physiological metabolites, collectively known as 

retinoids, have profound effects on embryonic morphogenesis, cell growth and 

differentiation, vision and reproduction (Hofmann and Eichele, 1994; Eskild and 

Hansson, 1994; Deluca, 1991 ). It has been known for many years that an 

adequate level of vitamin A in the maternal diet is crucial for the normal 

development of the embryo (Kalter and Warkany, 1961 ). Both deficiency and 

excess of vitamin A during pregnancy results in fetal death or congenital 

anomalies. The biologically active form of vitamin A, retinoic acid, is now 

recognized as an important signaling molecule. Retinoic acid can regulate cell 

division and differentiation in tissues of ectodermal, endodermal and mesodermal 

origin (Brockes 1989, Roberts and Sporn, 1984, Wolf, 1984) by causing changes 

in the expression of homeobox genes, growth factors and their receptors. These 

effects of retinoids have been shown through exogenous administration of 

retinoic acid. During the last two decades it has become clear that vitamin A 

exerts the majority of its effects via a complex signal transduction pathway. This 

pathway involves specific retinal binding proteins, retinoid receptors located in 

target cell nuclei, and biologically active metabolites of vitamin A, which function 

as ligands for these receptor proteins. 
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Metabolism of Retinoids 

Retinol Dehydrogenases 

Retinal (vitamin A), through a series of oxidation reactions, can give rise to 

several physiologically active compounds (Napoli et al., 1993) inside the cell. A 

specific protein called retinal-binding protein (RBP) is involved in the systemic 

and intercellular transport of retinal. Intracellular transport of retinal is 

accomplished by cellular retinal-binding protein (CRBP). CRBP accumulates 

retinal, stimulates the mobilization of retinal from retinal esters, and transfers 

retinal to alcohol dehydrogenase (ADH) which catalyzes the first step involving 

the reversible oxidation of retinal to retinal (Chen et al., 1995). Two types of 

alcohol dehydrogenase have been identified that perform this function, namely, 

medium chain cytoplasmic alcohol dehydrogenases and the short-chain 

membrane bound alcohol dehdyrogenases. Very recently, another enzyme called 

9-cis retinal dehydrogenase that can oxidize 9-cis retinal to 9-cis retinoic acid 

was identified in mouse embryonic tissues (Romert et al., 1998). 

Medium-Chain alcohol dehydrogenase family 

This family of alcohol dehydrogenases is known to comprise about four 

classes of zinc-dependant cytosolic enzymes, namely, classes I, II, Ill and IV 

(ADH1, -2, -3, and -4 ). Two of these, ADH1 and ADH4 dehydrogenases, can 

oxidize retinal to retinaldehyde. Among the two, only ADH1 is inhibited by 
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ethanol. The deer mouse which is negative for alcohol dehydrogenase does not 

have any ethanol dehydrogenase activity and still can oxidize retinal to 

retinaldehyde. This would indicate that the ethanol sensitive form of alcohol 

dehydrogenase is not an absolute requirement during embryogenesis. ADH1 has 

been localized in few places such as the developing kidneys (Rossant et al., 

1991; Vonesch et al., 1994) and is entirely absent from the central nervous 

system (Vonesch et al., 1994 ). Another enzyme, ADH4, can also oxidize retinal 

to retinaldehyde and among the alcohol dehydrogenases in the mouse, ADH4 

has been identified to have a high catalytic efficiency for retinal oxidation (Connor 

and Smit, 1987; Boleda et al., 1993; Yang et al., 1994; Kedishvili et al., 1995). In 

the mouse, using whole mount in situ hybridization, ADH4 mRNA has been 

detected at low levels in the primitive streak mesoderm by E7.5 (7.5 days post

coitum) (Ang et al., 1997). By E8.5, much higher expression levels were detected 

in the posterior mesoderm and cranial mesenchyme (Ang et al., 1996). Its 

expression has also been detected in the central nervous system, in tissues 

around the developing eye, otic vesicles and migrating neural crest (Haselbeck 

and Duester, 1998). Interestingly, ADH4 is not present in the embryonic retina 

and is totally lost from the embryo by E 10.5 (Ang et al., 1996). There certainly 

exists a redundancy in retinal dehydrogenases since null mutations for ADH4 

and ADH1 develop normally (Deltour et al., 1999). 
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Short-chain dehydrogenaseslreductases and 9-cis-RA synthesis 

In the adult organism, the expression of about five different microsomal 

retinal dehydrogenase/reductase is known (Su et al., 1998). However, the 

distribution of all five dehydrogenases in the embryo is not known. Recently, two 

short chain dehydrogenase/reductases specific for cis-retinol isomers were 

identified (Mertz et al., 1997; Romert et al., 1998). One of them, 9-cis retinal 

dehydrogenase, is widely expressed in the central nervous system, eye, ear and 

somites (Romert et al., 1998). The second candidate was found to be identical to 

11-cis retinal dehydrogenase, an enzyme required for the regeneration of the 

visual chromophore in the retinal pigment epithelium (Driessen et al., 1998; 

Simon et al., 1995). The activity of 9-cis retinal dehdyrogenase is important for 

two reasons. First, the existence of a metabolizable pool of 9-cis retinal is known, 

at least in the adult (Labrecque et al., 1995). Secondly, 9-cis retinoic acid, the 

ligand responsible for activating RXRs can be generated from 9-cis retinal rather 

than isomerized from all-trans retinoic acid. To date, 9-cis retinoic acid has only 

been identified in the Xenopus embryo (Kraft et al., 1994 ). However, lower levels 

of this isomer may be present in other species. 

Short chain dehydrogenase/reductases may also be involved in the 

reduction of retinaldehyde to retinal through a specific retinaldehyde oxidase 

activity. In this way, retinal can be regenerated from retinaldehyde. The evidence 

for this activity comes from the fact that the type II microsomal dehydrogenase 

was found to be associated with the cytochrome P450/CTP2D1 oxidase which 
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when combined with NADPH-P450 reductase can promote retinaldehyde 

oxidase acitivity. 

Retinaldehyde dehydrogenases 

Members of the cytosolic class I aldehyde dehydrogenases (ALDH), 

catalyze the irreversible oxidation of retinaldehyde to all-trans retinoic acid in the 

embryo (Chen et al., 1995). Two enzymes, ALDH2 and V1, are responsible for 

retinoic acid synthesis from retinaldehyde in the dorsal and ventral retina, 

respectively (McCafferey et al., 1992). In addition, three cytosolic retinaldehyde 

dehydrogenases (RALDH-1, RALDH-2 and RALDH-3) can function as efficient 

retinal dehydrogenases (Zhao et al., 1996; Wang et al., 1996; Yoshida et al., 

1998; Niederreither et al., 1999; Grun et al., 2000). A similar expression pattern 

has been detected for ALDH-1 (Ang and Duester, 1997). Zymographic assays 

have demonstrated the presence of RALDH-2 activity in mouse embryos as early 

as E8.0 (Mccaffery et al., 1997). In situ hybridization studies have shown the 

expression of RALDH-2 to be initially similar to ALDH-1, but unlike ALDH-1 is not 

expressed in the cranial mesenchyme by E8.5 (Niederreither et al., 1997). 

Further studies performed using a tissue explant bioassay have shown that 

retinoic acid is detectable as early as E7.5 during primitive streak formation (Ang 

et al., 1996). Recently, the distribution of mRNA for all three RALDHs during fetal 

development and organ differentiation in the mouse was examined (Niederreither 

et al., 2002). Similarly, expression of a Lacz transgene linked to a retinoic acid 

response element introduced into mouse embryos was observed at E7.5 in the 
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posterior half of the embryo (Rossant et al., 1991 ). In the presence of labeled 

retinal, retinoic acid production was primarily in posterior tissues of E?.75 mouse 

embryos (Hogan et al., 1992). RALDH-2 knock out mice do not survive beyond 

day 10 of gestation demonstrating the importance of RALDH-2 mediated retinoic 

acid synthesis during embryogenesis (Niederreither et al., 1999). These embryos 

exhibit shortened trunks and open neural tubes. 

Retinoic acid metabolizing enzymes, Cyp26A 1 and Cyp2681 

Several cytochrome P450 enzymes have the ability to oxidize embryonic 

all-trans RA. Among these, two enzymes, Cyp26A1 and Cyp26B1, have received 

a lot of attention. The expression of Cyp26A 1 (Fujii et al., 1997; De Roos et al., 

1999) and Cyp26B1 (Maclean et al., 2001) during embryogenesis in the mouse 

has been described. Interestingly, regions in the embryo expressing RALDH-2 

have high concentrations of retinoic acid and the boundaries of these regions 

express Cyp26A 1 meaning that excess retinoic acid needs to be metabolized or 

neutralized to prevent any embryo toxicity. Similar to RALDH-2 knock out mice, 

Cyp26A1 is absolutely essential for normal embryogenesis (Abu-Abed et al., 

2001; Sakai et al., 2001 ). Cyp26A 1 null mutant embryos show defects similar to 

those observed in embryos that have been subjected to RA toxicity during 

embryogenesis (Abu-Abed et al., 2001; Sakai et al., 2001 ). Differential 

expression patterns of both Cyp26A 1 and Cyp26B1 during mouse 

embryogenesis was recently described (Abu-Abed et al., 2002.). 
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Retinoid Transport Proteins 

Retinoids being lipophilic molecules depend on several retinoid binding 

proteins for their cytoplasmic transport. A specific protein called retinol-binding 

protein (RBP) is involved in the systemic and intercellular transport of retinol. 

Several other retinoid binding proteins such as cellular retinol binding protein 

(CRBP-1 & II) for retinol and cellular retinoic acid binding protein (CRABP I & II) 

for retinoic acid have been identified and their expression patterns in the 

developing embryo characterized (Ruberte et al., 1992). Transcripts for CRBP 

have been detected in the primitive streak region and allantois of the late 

presomite stage mouse embryo as early as day 7.5 post-coitum (Ruberte et al., 

1991 ). As mentioned earlier, it is assumed that CRBP can bind retinol and 

present it to retinol dehydrogenases and promote RA synthesis. The formed 

retinaldehyde can again bind CRBP-1 which is then made available to RALDH 

for oxidation to RA (Ottonello et al., 1993). 

A second binding protein called cellular retinoic acid binding protein 

(CRABP) is involved in intracellular retinoic acid homeostasis (Napoli, 1996). 

CRABP has been suggested to serve as a transport protein delivering retinoic 

acid to the nucleus (Donovan et al., 1995) and also as a sequestering agent 

limiting the transcriptional potential of retinoic acid (Napoli, 1993). CRABP 

transcripts appear in the decidual tissue surrounding the early conceptus even 

before they appear in the embryo (Sapin et al., 1997). The yolk sac membranes 

express CRBP transcripts and not CRABP, suggesting the possible need to 
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function to protect the early embryo from any free retinoic acid in the maternal 

blood passing through the sinuses close to the embryo. CRABP-1 may also play 

a role in the breakdown of RA as catabolic enzymes like Cyp26A 1 have more 

affinity for holo-CRABP-1 as a substrate (Fiorella and Napoli, 1994 ). RBP is 

dispensable for embryo development, as homozygous RBP null mutant mice are 

viable and fertile. However, the ability of these RBP null mutant mice to maintain 

adequate liver retinal stores is impaired (Quadro et al., 1999). Interestingly, in the 

total absence of both CRBP-1 and CRABP, development continues uninterrupted 

(Lampron et al., 1995). 

Nuclear Retinoic acid Receptors 

Retinoic acid exerts its effect by interacting with two separate subfamilies 

of nuclear receptors. Retinoic acid receptors (RAR) bind the ligands all-trans 

retinoic acid and 9-cis retinoic acid, while retinoic X receptors (RXR) bind only 9-

cis retinoic acid (Allenby et al., 1993; Levin et al., 1992; Mangelsdorf et al., 

1990). Three subtypes for RARs (RARa, ~. y) and RXRs (RXRa, ~. y) have been 

identified by cDNA cloning in both human and mouse. Most of these subtypes 

can generate different isotypes by alternate splicing and/or alternative promoter 

usage (Giguere et al., 1990; Leroy et al., 1991 a,b; Zelent et al., 1991 ). To date 

seven different isotypes have been identified for both RARa (Leroy et al., 1991 a) 

and y (Kastner et al., 1990) and at least four isotypes for RAR~. Unlike RARs, 

among all three RXR isotypes, an additional isotype has been identified for only 

RXRy (Liu and Linney, 1993). In situ hybridization studies have shown specific 
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spatio-temporal patterns of distribution of all three RAR transcripts at all stages of 

embryogenesis in the mouse (Ruberte et al., 1990a; Ruberte et al., 1991; Dolle 

et al., 1989; Dolle et al., 1990). While RARa showed a generalized pattern of 

expression, RARs p and y showed a more restricted pattern of expression. The 

appearance of precartilage condensation and keratinizing squamous epithelia 

has been shown to correlate with the expression of either RARy (Ruberte et al., 

1990b) or complementary expression of both RARp and RARy (Dolle et al., 1989; 

Dolle et al., 1990). RARp expression has been localized to sites undergoing 

programmed cell death and also in nervous structures (Dolle et al., 1989; Dolle et 

al., 1990). Northern blot analysis has revealed the expression of specific isoforms 

of RARs at various stages of mouse development (Leroy et al., 1991 a; Zelent et 

al., 1991; Kastner et al., 1990). Transgenic mouse lines bearing a Lac Z reporter 

gene under the control of a RARP P2 promoter have been used to reveal the 

distribution pattern of various RAR transcripts (Mendelsohn et al., 1991; 

Reynolds et al., 1991 ). The chick embryo expresses RARP (Smith and Eichele, 

1991; Rowe et al., 1991) and RARy is expressed in the Xenopus embryo 

(Ellinger-Ziegelbauer and Dreyer, 1991 ). Transcripts for all three RARs have 

been detected in the early developing porcine conceptus on days 10-12 of 

gestation (Yelich et al., 1997). Among the RXRs, RXRP shows a generalized 

pattern of expression, however, RXRa and RXRy exhibit more restricted patterns 

of expression (Mangelsdorf et al., 1992; Dolle et al., 1994). For the RXRs, 

transcripts for RXRa and y have been detected in Xenopus eggs and during early 

development (Blumberg et al., 1992). The expression of all three RXRs has been 
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detected using northern analysis at all stages of mouse gestation from day 10.5 

to birth (Mangelsdorf et al., 1992). In the chick, expression of RXRy was detected 

in the spinal ganglia and nerves as well as neural crest cells (Rowe et al., 1991 ). 

These studies to a certain extent show that the expression of the various RAR 

subtypes is conserved across higher vertebrates. 

RARs can heterodimerize with RXRs. In contrast, RXRs can form 

homodimers with other RXR molecules and heterodimers not only with RARs 

(Giguere, 1994; Petkovich; 1992; Zhang et al., 1992) but also with other 

homologous nuclear receptors. These include the thyroid hormone receptors 

(TRa and TR~) (Giguere, 1994), vitamin D receptor (VDR) (Giguere, 1994), 

peroxisome proliferator-activated receptor a (PPAR) (Palmer et al., 1994) and 

several orphan receptors (Apfel et al., 1994; Kliewer et al., 1992). The RAR or 

RXR dimers then regulate gene expression by binding to specific DNA sequence 

elements (retinoic acid response elements; RAREs) found in or near retinoid

responsive gene promoters. The DNA-bound receptor then recruits other nuclear 

proteins to the target promoter site. This complex serves to modulate the stability 

of the basal transcription complex and thereby control the rate of formation of the 

target gene transcript. Each retinoic acid receptor is believed to regulate an 

entirely different subset of genes. 

The physiological functions of retinoid receptors have been investigated 

by creating homozygous mutant mice for either a particular subtype or an isotype 

of a subtype using homologous recombination. Interestingly, mice homozygous 

for isoforms such as RARa1 (Lufkin et al., 1993), RAR~2 or y2 (Lohnes et al., 
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1993) are viable and do not exhibit any recognizable defects or malformations. 

The failure to observe any developmental defects in these single mutant mice 

can be partially explained by the redundancy between RARs, meaning that the 

other RAR subtypes/isoforms of each subtype expressed in a given cell can 

compensate for a particular missing subtype. Knocking out the entire RARa gene 

showed testicular degeneration and early post-natal mortality (Lufkin et al., 

1993). RARy mutant mice on the other hand showed several abnormalities such 

as homeotic transformations of the cervical vertebra and occipital region of the 

skull, fused first and second ribs, and irregularities of the tracheal rings (Lohnes 

et al., 1993). However, subsequent studies performed along these lines 

employing double mutants for both RARa and RARy saw all of the congenital 

defects that have been previously reported for embryos from vitamin A deficient 

mothers (Lohnes et al., 1994 ). RXRP mutant mice were morphologically normal 

with the exception that males were sterile (Kastner et al., 1996). RXRa mutant 

mice died between 13.5 to 16.5 days post coitum. In addition, these mutant mice 

also exhibited hypoplastic development of the ventricular septation, abnormalities 

of the eye (Sucov et al., 1994 ). RAR double or compound mutants were lost 

either in utero or immediately after birth (Lohnes et al., 1994; Luo et al., 1996; 

Mendelsohn et al., 1994 ). Majority of the abnormalities in RAR mutant mice 

including multiple abnormalities reiterated those described earlier for vitamin A 

deficiency mice. Noticeably, RXRp-1-/RXRf1- double and RXRa +i-1 RXRp+/RXRf1-

triple mutant mice survived and showed no congenital or postnatal abnormalities. 

However, these double and triple mutant mice exhibited marked growth 
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deficiency and sterility in males due to non-functional RXR/3 (Krezel et al., 1996). 

This would mean that a single copy of RXRa is sufficient to fulfill most functions 

of RXRs. The importance of RXRa is further clear from the fact that synergy 

exists only between RXRa and RAR mutations and not when RXR/3 or RXRy 

mutations were combined with RARs (Kastner et al., 1997). Embryos carrying 

null mutations of both RXRa and /3 die between 9.5 and 10.5 days of gestation 

(Wendling et al., 1999). Lack of formation of the labyrinthine zone of the 

chorioallantoic placenta appeared to be the cause. These authors concluded that 

heterodimerization of RXRs with RARs and PPARy was essential for 

postimplantation development and formation of the chorioallantoic placenta, 

respectively. 

Retinoids and Growth Factor Synthesis 

An important role attributed to retinoids is in regulating and controlling the 

expression of the genes for many growth factors and their receptors. 

Development and differentiation events occurring in the fertilized oocyte and 

continuing through the spherical blastocyst stage begin during transit through the 

fallopian tube (Kaye, 1997). During this journey, it is believed that diffusible 

factors can serve as signals to optimize events in preimplantation development. 

These events include synthesis of DNA, RNA, and protein, cell proliferation, 

blastocoel expansion and blastocyst hatching from the zona pellucida (Wood and 

Kaye, 1989; Harvey and Kaye; 1989, 1991, 1992; Gardner and Kaye, 1991; 
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Rappolee et al., 1992; Zhang et al., 1994 ). These diffusible factors may include 

products secreted by the embryo (i.e., insulin-like growth factor), the reproductive 

tract (i.e., tumor necrosis factor-a) or those, like insulin, originating from distant 

organs. 

Retinoids have been shown to have an influence on the expression of 

peptide growth factors TGF-p, IGF-1 and II, EGF, and their corresponding 

receptors. Retinoids are potent inhibitors of cell growth and inducers of cell 

differentiation. Retinoic acid induced secretion of bioactive TGF-P2 when added 

to primary murine keratinocyte cultures (Glick et al., 1989), human lung 

carcinoma A-549 cells, and normal rat kidney NRK fibroblasts (Danielpour et al., 

1991 ). In the presence of retinoic acid, F9 and PC13 teratocarcinoma cells 

differentiated and, at the same time, expressed TGF-p receptor, which is 

normally absent in these cells (Rizzino, 1987). Suboptimal concentrations of 

retinoic acid required to induce differentiation in cells when added to HL-60 

promyelocytic leukemia cells induced expression of both TGF-P and its receptor. 

These observations suggest that retinoic acid can directly regulate the 

expression of TGF-p ligand and its receptor and that the growth-inhibitory effects 

of retinoic acid on these cell types are mediated through a negative autocrine 

effect of TGF-p during the process of differentiation (Falk et al., 1991 ). A single 

oral dose of 1 OOµg of retinoic acid when given to vitamin A deficient rats caused 

tissue specific alterations in the expression of the TGF-P isoforms. Vitamin A 

deficient rats had low expression levels of TGF-P1 in epidermal, tracheobronchial 

and intestinal mucosa! epithelium than rats treated with retinoic acid (Glick et al., 
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1991 ). Retinoic acid when administered at teratogenic doses to mice on day 8 of 

pregnancy slightly decreased the expression of TGFp1, had very little effect on 

expression on TGFp2 and completely abolished the expression of TGFp3 in 

several fetal tissues, including mesenchyme of the head and epithelial structures 

of the heart (Mahmood et al., 1992). Considering the fact that the craniofacial 

and cardiac malformations resulting from excessive dosing with retinoic acid are 

localized to tissues known to express high levels of TGF-p, it appears that a 

peptide like TGF-p may have a possible role in mediating certain actions of 

retinoids. On the whole, data from the vitamin A deficient and overdosed rats 

suggests that patterns of TGF-P isoform expression in epithelial tissues during 

normal development is likely to be under the regulatory control of retinoids. 

Epidermal growth factor (EGF) and Transforming growth factor-a {TGF-a) 

are potent mitogens and retinoic acid is involved in the control of both receptor 

and ligand expresion (Gudas et al., 1994). Retinoids can either enhance 

epidermal growth factor receptor (EGF-R) expression (Oberg et al., 1988; 

Junquero et al., 1990; Kinoshita et al., 1992), or suppress EGF-R expression 

(Oikarinen et al., 1989; Steck et al., 1990) and modulate cellular responses to 

EGF with no major effects on EGF-R number or affinity (Yung et al., 1989; 

Harper et al., 1988). TGF-P also has effects on EGF-R expression similar to 

retinoic acid in several cell lines (van Zoelen at al., 1986; Assoian, 1985). This 

raises the question whether the effects of retinoic acid are mediated via TGF-P, 

which is known to be induced by retinoic acid treatment of the same cells 

(Danielpour et al., 1991 ). On the other hand, retinoic acid has been shown to 
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suppress the expression of TGF-a (Miller et al., 1990). Furthermore, retinoid 

induced suppression of EGF-R synthesis correlated well with the inhibitory 

effects of retinoic acid on cell growth (Steck et al., 1990). In the same study cells 

that became resistant to the growth-inhibitory effects of retinoic acid were 

unresponsive to regulation of EGF-R by retinoids (Steck et al., 1990). These data 

suggests that regulation of cell growth/differentiation by retinoids might involve 

increasing the activity of negative growth factors like TGF-P and decreasing the 

activity of positive growth factors like EGF and TGF- a. 

Retinoic acid has also been reported to regulate the expression of yet 

another diverse set of growth factors called heparin-binding growth factors which 

includes platelet-derived growth factor, the family of fibroblast growth factors, and 

a newly described class of retinoid-inducible heparin-binding growth factor which 

includes heparin- binding neurite promoting factor (HBNF) and midkine (MK). 

Retinoids exert effects on the expression of both acidic and basic FGF but their 

expression during embryogenesis depended on the stage of cell differentiation 

(Hebert et al., 1990). However, another member of the FGF family called kFGF 

or hst-1/HSTF1, even though expressed, is restricted to undifferentiated 

embryonal carcinoma and embryonic stem-cell lines. Under the influence of 

retinoic acid these cells differentiate with a concomitant downregulation of the 

kFGF expression (Hebert et al., 1990; Schoorlemmer and Kruijer, 1991 ). 

Similarly, retinoic acid treatment of cultured chicken embryo fibroblasts and 

myotubes induces the expression of the chicken homolog of MK, RI-HB (Retinoic 
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acid inducible heparin binding growth factor) (Urios et al., 1991; Raulais et al., 

1991 ). 

Platelet derived growth factor (PDGF) consists of two chains, A and B, 

their corresponding receptors are termed a and p. PDGF A chain is expressed 

abundantly in undifferentiated F9 mouse embryonal carcinoma cells (Mercola et 

al., 1990). mRNA levels are low for the B chain and their receptors, however 

(Mercola et al., 1990). Following retinoic acid induced differentiation of these 

cells, mRNA as well as the mitogenic activity of the A chain start to decline 

(Rizzino and Bowen-Pope, 1985; Mercola et al., 1990). At the same time the 

expression of both a and p receptors begin to increase during the differentiation 

process (Mercola et al., 1990). 

Insulin-like growth factors (IGF-1 and IGF-11) are potent mitogens which 

play an important role in cell growth and differentiation. IGF-1 is believed to 

mediate the actions of growth hormone (GH) in regulating normal growth and 

development. On the other hand, IGF-11 is expressed in the fetus. In rat glioma 

C6 cells, retinoic acid has been shown to reduce the expression of IGF-1 mRNA, 

thereby suppressing the growth of these cells (Lowe et al., 1992). In human 

neuroblastoma cell line, retinoic acid stimulated the expression of IGF-11 mRNA 

and protein (Matsumoto et al., 1992). Both these effects of retinoic acid required 

de novo protein synthesis indicating that the effects were probably indirect. In 

MCF-7 human breast cancer cells and in rat hepatocytes retinoic acid was shown 

to regulate the activity of IGFs by indirectly stimulating the production of IGF 

binding proteins suggesting that this could in yet another way contribute to the 
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growth suppressing effects of retinoic acid (Fontana et al., 1991; Schmid et al., 

1992). 

Leukemia inhibitory factor (LIF) is a multifunctional cytokine and 

depending on the specific cell type can either stimulate or inhibit the 

differentiation of cells. LIF has been to shown to maintain pluripotent embryonic 

stem cells in their undifferentiated state (Williams et al., 1988). In nullipotent 

embryonal carcinoma cell lines, effects of LIF are cell specific. While LIF has no 

effect on the differentiation of F9 cells induced by retinoic acid, it blocked retinoic 

acid-induced differentiation of an F9 derivative, OTF9 cells. This shows that LIF 

was exerting its effect at a point downstream to the steps requiring retinoic acid 

(Brown et al., 1992). In summary, it is clear that retinoids suppress the growth of 

epithelial cells by regulating the activity of growth factors. As far as negative 

growth factors like TGF-~ are concerned, retinoic acid upregulates the 

expression of both the ligand and its receptor. In the case of positive growth 

factors, retinoic acid downregulates the expression of TGF-a ligand and its 

receptor, EGF-R. Retinoic acid also inhibits the expression of IGFs and 

stimulates the expression of IGF- binding proteins. Interestingly, the early bovine 

embryo expresses transcripts for TGF-~2, TGF-a, PDGF-a, IGF-1, IGF-11, PDGF

a receptor, insulin receptor, IGF-1 and IGF-11 receptor (Watson et al., 1992), LIF 

(Eckert and Niemann, 1998) and IGF binding proteins (Winger et al., 1997). 

Collectively, a possible regulator of gene expression like retinoic acid during 

blastocyst formation can be envisioned since this stage represents the first 

differentiation event in the mammalian preattachment embryo. 
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Retinoids and Placental Function 

Transplacental transfer of retinal \has been studied in humans, mice, rats 

and monkeys (Creech Kraft et al., 1987; 1988; 1989a,b; Kochhar et al., 1988; 

Ward and Morriss-kay, 1995; Tzimas et al., 1996). Retinoic acid and its 

metabolites accumulate in the embryo rapidly, with maximum concentrations 

appearing 2-4 h following maternal administration, thereby suggesting that a 

specific uptake pathway exists for the transfer of vitamin A from the mother to the 

embryo. Maternal RBP-bound retinal interacts with a cell surface receptor for 

RBP (RBPr) and is actively accumulated at the maternal face of the yolk-sac 

placenta which is mainly composed of the visceral endoderm, a highly 

endocytotic tissue. Developing rodent embryos therefore acquire retinal from 

neighbouring maternal blood sinuses via interaction of maternal RBP-retinol with 

an RBPr in the visceral yolk sac endoderm. The visceral endodermal cells 

synthesize RBP and serve to transfer retinal from the yolk sac vasculature to the 

embryo. Several aspects of placental function such as control of estradiol 

production (Piao et al., 1997) and regulation of production of chorionic 

gonadatropin and placental lactogen (Chou, 1992; Stephanou and Hanwerger, 

1995) are dependent on retinoid activity. During placental development, retinoic 

acid through moderating the production of metalloproteinase inhibitors or the 

spatiotemporal expression pattern of connexins might aid in regulating the 

trophoblastic invasion of the uterus (Winterhager et al., 1996). Human 
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trophoblast cells express CRBPs and some nuclear retinoid receptors lending 

support to the involvement of retinoids in chorioallantoic placental function 

(Roulier et al., 1994; Stephanou et al., 1994). In addition, the level of expression 

of some retinoic acid receptors varies during the differentiation of cultured 

cytotrophoblasts 'into syntiotrophoblasts (Stephanou et al., 1994 ). 

Retinoic acid acting via RARs can stimulate gene expression and 
' 

se~retion ,of laminin ~1 (Marotti et al., 1985; Ross et al., 1994) and ~1 integrin 

expression (Ross et al., 1994) in murine F9 teratocarcinoma stem cells. 

Treatment of expanding mouse blastocyst with retinoic acid results in increased 

transcription ,and translation of laminin ~1 (Kang et al., 1990). Gene expression 

and the active protein of ~1 integrin has been detected in the pig (Yelich et al., 

1997) and bovine conceptuses (Maclaren et al., 1995). In the pig, gene 

expression for laminin has been detected during the transition from tubular to 

filamentous morphology (Cunningham et al., 1996). While laminin is required for 

the assembly of the extracellular matrix, changes in cell shape and in cell 

migration (Hakamori et al., 1984 ), integrins serve as receptors for the laminins 

(Ruoslahti and Pierschbacher, 1987). Dynamic cellular interactions that occur 

when integrins bind their ligands influence the actin cytoskeleton and modify cell 

shape and function (Tamkun et al. 1986; Adam and Watt, 1993). In the pig, 

retinoic acid can indirectly regulate the breakdown of extracellular matrix by 

influencing the production of proteinase urokinase-type plasminogen activator 

and its inhibitor (Fazleabas et al., 1983). Retinoids play a very important role in 

the development and growth of the pig placenta (Dantzer and Winther, 2001 ). 
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Both transcripts and the mature protein for RBP have been detected in the pig 

placenta and uterus (Harney et al., 1990, 1994a,b; Trout et al., 1992, Schweigert 

et al., 1999). Recently, immunohistochemical localization of RBP, CRBP-1 and 

CRABP-1 within the interareolar regioh and the areolar gland complex was 

reported in the pig suggesting that vitamin A was most likely transported to the 

conceptus through the areolar gland complex (Schweigert et al., 2002). Retinoic 

acid has been implicated in the formation of giant cells during placentation in the 

mouse (Yan et al., 2001 ). Retinoic acid treatment of trophoblastic stem cells in 

vitro prevented further proliferation and induced differentiation into giant cells. 

Similarly, retinoic acid administered to pregnant mice suppressed 

spongiotrophoblast formation and accelerated their differentiation into giant cells. 

The expression of retinoic acid inducible Stra genes such as ephrinB1 receptor 

tyrosine kinase ligand, Meis2 homeobox gene, AP-2 related gene AP-2 gamma 

in the murine placenta was recently reported (Sapin et al., 2000). This is the first 

report on the identification of specific retinoic acid induced target genes during 

placentation indicating that retinoids are likely to regulate several signal 

transduction pathways in various placental cell types. 

Retinoids and Early Embryo Development 

As mentioned earlier, embryonic development is a complex process that is 

extremely sensitive to vitamin A as both deficiency and excess can lead to 

abortion and embryonic malformation. In the human, important vitamin A 
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dependant events are likely to begin at the time of gastrulation and neurulation, 

sometime during the first 2-3 weeks of gestation (Zile, 1998). In the quail embryo, 

an absolute requirement for vitamin A during the very early stages of life has 

been demonstrated, absence of which leads to gross abnormalities and early 

embryonic death (Zile, 1998). 

Administration of retinal or p-carotene tremendously enhanced the 

survivability of embryos in mice (Chew and Archer, 1983) and rabbits 

(Besenfelder et al., 1993). In swine, retinal palmitate administered as a single 

injection increased litter size when given 5 days before observed estrus (Brief 

and Chew, 1985; Coffey and Britt, 1993; Britt et al., 1992). In cattle, 

measurement of retinal concentrations during follicular development has shown 

higher concentrations to be present in healthy follicles and correlated well with 

estradiol concentrations (Schweigert and Zucker, 1988; Schweigert et al., 1988; 

Brown et al., 2003). However, very low concentrations were detected in atretic 

follicles. Accordingly, these authors used retinal concentrations in follicular fluid 

as a measure of follicular health (Schweigert and Zucker, 1988; Schweigert et al., 

1988). 

A single injection of retinal palmitate given 5-7 days before induced estrus 

in combination with FSH did not increase ovulation rates or total yield of embryos 

on day 7 (Shaw et al., 1995). Surprisingly, retinal-treated cows yielded more 

blastocysts evaluated to be of high quality than untreated controls (Shaw et al., 

1995). More recently, adminstration of retinal to heifers four days prior to ovum 

pick improved the yield of cumulus oocyte complexes (Hidalgo et al., 2002). At 
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this time it was not known if these effects were attributable to retinal or its 

metabolite, retinoic acid. Again the nature of these effects, whether direct on the 

embryo or indirect through the production of embryotrophic factors from 

reproductive tract, was not clear. RBP has been recorded to be synthesized in 

several reproductive tissues such as the ovine ovary (Eberhardt et al., 1996), 

ovine oviduct (Eberhardt et al., 1999a) and bovine endometrium (Lui and Godkin, 

1992; Mackenzie et al., 1997). Expression of retinal-binding protein and its 

mRNA has been detected in the extraembryonic membranes (Day 45), 

expanding blastocysts but not in spherical blastocysts (Liu et al., 1993). More 

recently, the mature protein for RBP was localized to the theca and granulosa 

cells of both antral and preantral follicles in the bovine ovary (Brown et al., 2003). 

CRBP immunostaining was, however, stronger in the granulosa cells of preantral 

follicles than antral follicles (Brown et al., 2003). Therefore, it appears that the 

follicular cells are well equipped to take up retinal that is either naturally available 

or administered exogenously. Similarly, treatment of ewes during a 

superovulation regimen with retinal but not retinoic acid improved the 

developmental competence of embryos in vitro. More morulae recovered on day 

6 developed to blastocyst and hatched in retinal treated than retinoic acid treated 

ewes (Eber~ardt et al., 1999b ). This meant that a specific transport protein for 

retinal and not retinoic acid may have been existent in the blood and, possibly, in 

ovine preimplantation embryos too. Treatment of gilts with vitamin A altered 

oocyte and embryo development by advancing meiotic resumption and as a 

result fewer oocytes recovered were in the germinal vesicle stage compared to 
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control gilts (Whaley et al., 2000). In addition, vitamin A treated gilts also had 

higher concentrations of progesterone, IGF-1, and PGF2a than control untreated 

gilts (Whaley et al., 2000). More recently, Duque et al. (2002) treated bovine 

oocytes with 5nM 9-cis retinoic acid during prematuration (under meiosis 

inhibitory conditions with 25 µM of roscovitine). These authors reported improved 

cytoplasmic cortical granular migration, embryonic development, tolerance to 

cryopreservation and increased total cell numbers in blastocysts. These studies 

indicate that retinoids have the potential to enhance embryonic survival by 

positively enhancing oocyte developmehUmaturation before ovulation. Therefore, 

it may be concluded that retinal can have embryotrophic effects when 

administered in vivo and retinoic acid on the other hand can exert similar effects 

in vitro. 

Using high peformance liquid chromatography, it was recently shown that 

the porcine blastocyst, in particular the trophoblast region is capable of 

synthesizing retinoic acid (Parrow et al., 1998). Retinoids in blastocyst explants 

and TE1, a continuous trophectoderm cell line, induced gene expression from a 

retinoic acid responsive enhancer element in an in vitro assay system (Parrow et 

al., 1998). Therefore, it appears that the porcine conceptus does not solely rely 

on the circulating retinoic acid from the uterine environment to influence 

embryonic differentiation, morphogenesis and development. 

In the studies of Shaw et al. (1995) and Eberhardt et al. (1999b) involving 

cattle and sheep, respectively, the mechanism by which retinal influenced 

subsequent embryonic development is not clear. As suggested by Eberhardt et 
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al. (1999b), retinal administration might have through some unknown ways first 

affected the oocyte and later facilitated the transition from maternal to embryonic 

genome control, thereby, preventing the 8-16 cell block. The differentiation 

events in the early preimplantation embryo begin during the transition from 

morulae to the blastocyst involving structural and functional alterations (Pedersen 

and Burdsal, 1994 ). These events include the processes of compaction, 

formation of the blastocoel and differentiation of the trophectoderm and inner cell 

mass (Pedersen and Burdsal, 1994 ). The last two events are important for the 

development of the placenta and the fetus itself. It thus appears that the 

influence of retinal and its metabolites on early embryo development may begin 

during the growth of the oocyte inside the follicle. This influence is likely to 

continue during the development of the preattachment embryo via direct or 

indirect means. No direct evidence, however, is available to support these 

statements in the preattachment bovine embryo. 

Retinoic acid has been shown to induce tight junction structures and 

regulate the expression of several tight junction-associated molecules, such as 

Z0-1, occludin, claudin-6, and claudin-7, as well as a barrier function in the 

genetically engineered cell line F9 murine embryonal carcinoma cells (Kubota et 

al., 2001 ). During preattachment embryogenesis, formation of tight junctions 

between trophectodermal cells is critical for the formation of the blastocoel and 

subsequently for blastocyst formation. In this context, retinoic acid treatment of 

human hepatoma Hep G2 cells increased the amounts and phosphorylation of 

connexins (Ara et al., 2002). Retinoic acid treatment also stabilized connexin 
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molecules in plasma membrane plaques and enhanced gap junctional 

intercellular communication (Ara et al., 2002). Establishment of tight junctions 

and expression of intercellular communication proteins such as connexins are 

critical determinants of blastocyst formation (Watson et al., 2001 ). Diez et al., 

2002, recently reported that the addition of 5 nM of 9-cis RA during in vitro 

maturation could alter inner cell mass/trophectoderm cell ratio. Based on these 

observations, it is likely that retinoic acid may regulate an important 

developmental event such as blasotycst formation during preattachment 

embryogenesis. 

Evidence is also available to show that the postimplantation development 

requires the mammalian embryo to metabolize retinal into retinoic acid. Targeted 

disruption of the retinaldehyde dehydrogenase-2 (RALDH-2) enzyme in mice 

resulted in embryonic mortality around midgestation (Niederreither et al., 1999). 

RALDH-T1
- embryos died around midgestation without undergoing axial rotation, 

shortened along the anterioposterior axis, and did not form limb buds 

(Niederreither et al., 1999). These embryos presented with anomalous hearts, 

truncated frontonasal region and severely reduced otocysts (Niederreither et al., 

1999). 

Genes Regulated by Retinoic Acid during Embryonic Development 

In an attempt to identify retinoic acid regulated genes during embryonic 

development, Chen et al., (2002) created retinoic acid deficient embryos 
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employing retinal-binding protein antisense oligodeoxynucleotide treatment in 

contrast to the classic retinoic acid receptor knock out mice. Using differential

display RT-PCR these authors identified genes in the Wnt signaling pathway, 

components of the ubiquitin-dependant proteasome degradation pathway, and 

enzymes involved in oxidative phosphorylation pathway in the mitochondria. 

More recently, genes specifically regulated by a single retinoic acid receptor 

isoform, RAR02, in F9 teratocarcinoma cells were isolated (Zhuang et al., 2003). 

The identified genes encoded various transcription factors, cell surface signal 

transduction molecules, and metabolic enzymes. Some of these genes included 

c-myc, FOG1, GATA6, glutamate dehydrogenase, glutathione-S-transferase 

homologue (p28), Foxq1, Hic5, Meis1 a, Dab2, mid kine, and the PDGF-a 

receptor. 

Thus, it is of interest to study the interactions between the early 

preattachment bovine embryo and the environment in the reproductive tract and 

the possible involvement of retinoids during this critical stage. Much information 

has been generated concerning the effects of retinoids on cellular differentiation 

and embryonic development in rodents. However, with very little information 

known in the bovine, it is necessary to examine the possible role retinoic acid 

may have during the early development and the expression of genes they 

regulate that may play critical roles during development and in preparing the 

early conceptus for the process of attachment. Furthermore, there is little insight 

into either the synthesis or metabolism of retinoids in the bovine embryo or 

receptors that might transduce their morphogenetic signals. Therefore, we 
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assumed that the molecular and genetic dissection of the retinoid signaling 

pathway using in-vitro produced bovine embryos would provide us greater insight 

into understanding the influence of retinoids on embryo development. 

The long term objective of this thesis research is to identify and 

characterize downstream target genes regulated by both retinoic acid and the in 

vitro culture system. Microarrays would be the technique of choice for studying 

differential gene expression irrespective of the tissue and species of choice. The 

bovine genme is not yet sequenced and therefore, it may not be possible to 

construct an array specific to the bovine. In addition, at least 5-10 µg of RNA is 

necessary to label the target before probing the slide containing the different 

target cDNAs. At present using SMART PCR it may be possible to generate 5-

10 µg of cDNA for labeling. Due to the above mentioned constraints other 

techniques such as 00-RT-PCR, RT-AFLP have been used extensively to study 

differential gene expression in preattachment bovine embryos. DD-RT-PCR has 

a few disadvantages such as it is biased towards amplifying high abundance 

transcripts and hence is not sensitive enough to identify differentially expressed 

genes with low abundance. In addition, 00-RT-PCR requires the use of 

radioisotopes and large sequencing gels which can impose serious health 

hazards and make the whole process cumbersome (Diatchenko et al., 1996). 

SSH on the other hand, is very sensitive and can pick both low and high 

abundance transcripts (Diatchenko et al., 1996). No prior knowledge of gene 

expression is required and SSH enables subtraction of common sequences and 

enriches only the differentially expressed genes. Basically, this technique 
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involves comparing gene expression patterns between two different tissue 

samples. One of them, say, the tissue in which we are interested in identifying 

the differentially expressed genes serves as the tester. The cDNA is first 

digested with a restriction enzyme to obtain fragments with an average size of 

about 600 bp. The restriction enzyme digested products are then ligated with two 

different adaptors in independent ligation reactions. cDNA from the second tissue 

sample, which is called the driver, is added in several fold excess and allowed to 

hybridize so that majority of the common gene sequences between the two 

samples form hybrids and are eliminated. This step results in enrichment of 

genes that are mostly unique to the tissue in which we are interested in 

identifying differentially expressed genes. The tissue samples are switched 

around and the procedure is once again repeated. The differentially expressed 

products are cloned into plasmids and a differential screening analysis is 

performed to identify true differentially expressed gene products. 

The SSH protocol, however, involves digesting the cDNA with restriction 

enzymes such as Rsal, a four base cutter, to generate smaller cDNA fragments 

with an average size of about 600 bp. These smaller sized fragments hybridize 

more efficiently since larger fragments tend to form complex secondary 

structures which may interfere with the hybridization process. This step makes it 

impossible to obtain full length cDNAs representing differentially expressed 

genes. SSH also requires at least 2-4 µg of cDNA to begin with and this amount 

can be easily generated using SMART PCR. The final products of SSH are in 

the form of small fragments ranging in size from 250 bp to 1.5 kb called 
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expressed sequence tags (ESTs). These ESTs can be used to discover novel 

genes, characterize gene function, quantify the expression patterns of a 

particular gene of interest. 

It is always advisable to reconfirm the data obtained with SSH using an 

independent technique such as a northern blot or competitive PCR or using the 

more recently developed real-time quantitative RT-PCR. In majority of the cases, 

the SSH data should agree with the real-time quantitative RT-PCR data. 
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Chapter Ill 

DETECTION OF TRANSCRIPTS FOR RETINOL-BINDING PROTEIN AND 

RETINOIC ACID RECEPTORS IN BOVINE PREIMPLANTATION EMBRYOS 

Abstract 

In cattle, retinoic acid (RA) has been indirectly associated with 

developmental potential of the embryo. RA is transported by retinal-binding 

protein (RBP) and actions of RA are mediated by several subtypes of nuclear 

retinoic acid receptors (RAR). Bovine embryos, produced in vitro from oocytes 

harvested from ovaries collected at a local abattoir, were frozen in liquid nitrogen 

at the oocyte, 2-, 4-, 8-, 16 to 20-cell, morula, blastocyst and hatched blastocyst 

stages. Employing reverse transcription polymerase chain reaction (RT-PCR) we 

investigated mRNA expression for RBP, RARa, RAR~, RARy, and 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Total RNA was extracted 

from 25 pooled embryos at each stage and RT-PCR analysis was repeated 

thrice. GAPDH transcript was detected in all stages. Transcripts for RBP, RARa 

and RARy were also detected in all stages from the oocyte through to the 

hatched blastocyst. Expression of RAR~ was not detected at any stage. Whole

mount immunohistochemistry was performed with intact and hatched blastocysts 

using polyclonal antibodies against RARa and RARy2 to investigate if these 

57 



embryonic mRNAs were translated to the mature protein. Strong immunostaining 

was observed for both RARa and RARy2 in the inner cell mass and 

trophectoderm of intact and hatched blastocysts. Expression of mRNA for RBP, 

RARa, RARy and of the RARa and RARy2 receptor proteins in the bovine 

embryo suggests that RA is likely to directly regulate gene expression during 

preimplantation development. 

Introduction 

Vitamin A and its physiological metabolites, collectively known as retinoids 

have profound effects on embryonic morphogenesis, cell growth and 

differentiation, vision and reproduction (Deluca, 1991; Hofmann and Eichele, 

1994; Eskild and Hansson, 1994 ). It has been known for a long time that an 

adequate level of vitamin A in the maternal diet is crucial for the normal 

development of the embryo (Kalter and Warkany, 1959). Retinal (vitamin A) is 

metabolized in the cell, giving rise to several physiologically active compounds 

(Napoli et al., 1993). Retinoids are believed to induce cell differentiation in vitro 

by causing changes in the expression of homeobox genes, growth factors and 

their receptors. 

A specific protein called retinal-binding protein (RBP) is involved in the 

systemic and intercellular transport of retinal. Intracellular sequestration of retinal 

is accomplished by cellular retinal-binding protein (CRBP). CRBP accumulates 
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retinol, stimulates mobilization of retinol from retinol esters and transfers retinol to 

retinol dehydrogenase for conversion to retinal and finally all-trans retinoic acid. 

Retinoic acid exerts its effect by interacting with two separate subgroups 

of nuclear receptors, retinoic acid receptors (RARa, RAR~, RARy) and retinoid X 

receptors (RXRa, RXR~, RXRy). Ligand-receptor complexes can then either 

activate or repress specific target genes by associating with specific response 

elements found near the promoter region. 

Embryonic development is a complex process that is extremely sensitive 

to vitamin A as both deficiency and excess can lead to abortion and embryonic 

malformation. In the human, important vitamin A-dependent events occur at the 

time of gastrulation and neurulation, sometime during the first 2-3 weeks of 

gestation (Zile, 1998). In the quail embryo, an absolute requirement for vitamin A 

during the very early stages of life has been demonstrated, absence of which 

leads to gross abnormalities and early embryonic death (Zile, 1998). In 

polytoccus species like mice (Chew and Archer, 1983), rabbits (Besenfelder et 

al., 1993) and swine (Brief and Chew, 1983; Britt et al., 1992; Coffee and Britt, 

1993) retinol supplementation has been shown to promote embryo survival. In 

cattle, retinol administered at the time of superovulation increased the number of 

transferrable embryos (Shaw et al., 1995). Although the importance of retinoids 

to embryonic development is well known in rodents, amphibians and quail, little is 

known about its role during preimplantation development in cattle. The objectives 

of this study were to detect specific components of the vitamin A signaling 

pathway in bovine preimplantation embryos. 
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Materials And Methods 

In vitro Embryo Production 

Oocyte Maturation 

Ovaries were collected from cows at a local abattoir and transported to the 

laboratory in physiological saline supplemented with penicillin-G (100 IU/ ml) and 

streptomycin sulfate (0.2 µg/ml) at 26-30°C within 5 hrs. Oocytes were aspirated 

from follicles ranging in diameter from 2 to 5 mm using an 18-gauge needle into 

modified-PBS solution. The oocytes were then washed twice using maturation 

medium (TCM-199; Sigma Chemical Co., St. Louis, MO, USA) supplemented 

with estrus cow serum (ECS), 0.01 mg/ml follicle stimulating hormone (FSH; 

Folltropin, Vetrepharm, Canada), and 50 µg/ml gentamycin (Sigma Chemical 

Co.). Cumulus-oocyte complexes (100-200) were introduced into a 35 x 10 mm 

polystyrene petri dish containing 2.5 ml of the maturation medium covered with 

mineral oil and cultured for 24 h at 38.5°C under 5% CO2 in air. 

In vitro fertilization 

Frozen spermatozoa were thawed in a water bath (37°C) and washed 

twice in Brackett and Oliphant's medium supplemented with caffeine (2.5 mM) 

(Caff-BO) by centrifugation at 500g for 5 min. Spermatozoa were then 
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resuspended in Caff-BO supplemented with bovine serum albumin (1 %) (BSA, 

Sigma Chemical Co.) and heparin (20 µg/ml) (Sigma Chemical Co.) to give a 

final sperm concentration of 5 x 106/ml. A droplet of the sperm preparation (100 

µI) covered with mineral oil was preincubated for 10 min under the same 

conditions described earlier for in vitro maturation. In vitro matured oocytes 

numbering 15-20 were transferred into a sperm drop for insemination. 

Approximately 18-20 h post insemination, the oocytes were washed and 

transferred to the culture medium contained in a polystyrene dish (4-well 

multidish; Nunclon; Roskilde, Denmark) covered with 0.5 ml mineral oil for further 

development. The culture medium consisted of TCM-199 supplemented with 5% 

ECS, insulin (5 µg/ml) (Sigma Chemical Co.) and gentamycin (50 µg/ml) (Sigma 

Chemical Co.). The cumulus cells surrounding the embryos were removed at 48 

h post in vitro fertilization (IVF) by repeated pipetting. The cumulus cells were 

allowed to form a monolayer on which the embryos were cultured until day 9. 

The culture medium was replaced every 48-72 h. 

RNA extraction 

Immature bovine oocytes and embryos at the 2-, 4-, 8-, 16 to 20-cell, 

morula and blastocyst stages were frozen in 250 µI of denaturing solution 

[guanidium isothiocyanate (4 M), sodium citrate (25 mM; pH 7.0), sarcosyl 

(0.5%), 2-P mercaptoethanol (0.1 M)]. Total RNA was extracted from a pool of 25 

embryos at each stage in 500 µI of denaturing solution plus 70 µI sodium acetate 

(2 M; pH 4.0), 500 µI phenol, 140 µI chloroform/iso-amyl alcohol (49:1 fresh 
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dilution). All tubes were vortexed, cooled on ice (15 min), and centrifuged for 20 

min (21,000 rpm) at 4°C. The aqueous phase (600 µI) was transferred to a fresh, 

sterile microcentrifuge tube (1.5 ml) and 500 µI of chloroform was added. Tubes 

were vortexed and centrifuged at 3000 rpm for 10 min at 4°C. The aqueous 

phase (500 µI) was removed and transferred into a fresh sterile microcentrifuge 

tube and the chloroform extraction repeated. The aqueous phase (400 µI) was 

recovered and an equal volume of RNA binding salt was added (RNaid Matrix; 

BIO 101, LaJolla, CA, USA). A glass bead suspension matrix (RNaid Matrix; BIO 

101) was added and the sample vortexed. The suspension was vortexed (15 

min) at room temperature, transferred to a fresh tube and centrifuged (3,000 rpm) 

for 2 min. The aqueous phase was discarded, and the remaining pellet was 

washed with 500 µI of a 50% RNA wash solution (RN aid Matrix; BIO 101) and 

50% ethanol solution, vortexed, and centrifuged (10,000 rpm) for 2 min. The 

pellet was washed three times, dried at room temperature (10 min), and 

resuspended in 50 µI of diethyl pyrocarbonate-treated water. The solution was 

subsequently heated for 4 min (56°C) to elute the bound RNA and centrifuged 

(14,000 rpm) for 2 min. Approximately, 40 µI of the aqueous phase was 

transferred to a sterile microcentrifuge tube. 

Reverse transcription-polymerase chain reaction 

In order to maximize the sensitivity of detection, reverse transcription

polymerase chain reaction (RT-PCR) was the method of choice for investigating 

gene expression from the small quantities of RNA obtained from bovine embryos. 
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Two micrograms of total RNA was denatured by heating to 70°C and reverse 

transcribed in the presence of random hexamers (pdN6; 100 pmole; Pharmacia, 

Piscataway, NJ, USA), dATP, dTTP, dCTP and dGTP (dNTPs, Pharmacia), 

MgC'2, RNase inhibitor (20 U/reaction; Promega, Madison, WI) and reverse 

transcriptase (Superscript™, 200 U/reaction; Gibco-BRL, Gaithersburg, MD, 

USA) at 42°C for 1 hr. The RT reaction was terminated by heating to 70°C. 

One to five microliter aliquots of reverse transcribed cDNA was denatured 

by heating to 95°C and subjected to PCR in the presence of pmole quantities of 

specific primers, MgCl2, dNTPs, and Arriplitaq™ DNA polymerase (0.5 U/reaction; 

Perkin-Elmer, Foster City, CA). Specific primers and the PCR conditions used to 

generate target cDNA fragments are shown in Tables 1 and 2. Products of RT

PCR were resolved on 1.5% agarose-TAE [Tris-acetate (40 mM), EDTA (1 mM)] 

gels and visualized on an UV-transilluminator following ethidium bromide 

staining. Representative RT-PCR products from each primer were excised from 

agarose gels, subcloned and subjected to dideoxy chain termination sequencing 

(Applied Biosystems, Model 373A Automated Sequencer, OSU Recombinant 

DNA/Protein Resource Facility). The identity of each product was confirmed in a 

sequence homology analysis using the Basic Local Alignment Search Tool 

(BLAST; Altschul et al., 1990). 

Whole mount immunohistochemistry 

In vitro produced bovine blastocysts and hatched blastocysts in a 

polystyrene dish (4-well multidish; Nunclon) were washed in PBS and fixed in 4% 
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paraformaldehyde overnight at 4°C. Fixed embryos were washed thrice with PBS 

and permeabilized in PBS containing 0.1 % Triton X-100 (PSST) at room 

temperature for 30 min. Embryos were then incubated in blocking solution [PSST 

containing BSA (10 mg/ml)] for 1 hr. Embryos were incubated with the polyclonal 

primary antibody (either RARa or RARy2) (Affinity Bioreagents®, Golden, CO) at 

a 1 :500 dilution in blocking solution overnight at 4°C. Embryos were washed 5 

times in PSST with the last wash done overnight at 4°C. Detection of RARa and 

RARy primary antibody was performed using a goat anti-rabbit lgG conjugated to 

horseradish peroxidase (Kirkegaard & Perry Laboratory, Gaithersburg, MD), 

diluted at 1 :500 in blocking solution, and incubated overnight at 4°C. Embryos 

were again washed 5 times in PSST with the last wash done overnight at 4°C. 

Embryos were then transferred to a dish containing diaminobenzidine tablets 

(Sigma Chemical Co) dissolved in 15 ml of water. Embryos were frequently 

observed for the appearance of a reddish brown color. The color reaction was 

stopped by moving the embryos to water. 

Results 

Bovine in vitro embryo production 

In vitro fertilization and production of bovine embryos has been conducted 

in our laboratory on a weekly basis since October 1998. Our cleavage rates have 

ranged from 60-70% of all fertilized oocytes. Blastocyst production rates have 
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ranged between 35 and 40% of all presumptive zygotes. Our first in vitro fertilized 

embryo transfer resulted in the birth of a normal, healthy calf in August 1999. 

Presence of Transcripts for RBP and RARs in the Early Bovine Embryo 

Primer sequences and PCR conditions used to amplify RBP, RARa, RARy 

and GAPDH are given in Tables 1 and 2. Products of the predicted size (Table 1) 

were detected for each target cDNA (Figs 1-4 ). The identity of the PCR products 

was verified by sequence analysis. The isolated bovine cDNA sequences 

exhibited a very high (90-96%) homology to published mouse and human RBP, 

RARa and RARy cDNA sequences. 

Transcript for GAPDH was detected at all stages of embryo development 

examined (Fig. 1) suggesting that RNA populations suitable for RT-PCR 

amplification of specific cDNAs were produced. Although met~ods employed in 

this study are not quantitative, under similar conditions, the level of the message 

was apparently lower at the 16 to 20-cell stage than at other times examined, 

and was elevated again at the morula stage. Disappearance of the message 

between the 8 to 16-cell and morula stages suggests that utilization and/or 

degradation of all maternally-derived transcripts had occurred followed by 

reappearance at the initiation of transcription from the embryonic genome. This is 

in agreement with the model for transition from maternal to embryonic genome 

control in the bovine occurring around the 8 to 16-cell stage (Telford et al., 1990). 

Transcripts for RARa and RARy (Fig. 2) were also detected in all stages 

from the 2-cell embryo through to the hatched blastocyst. On the other hand, 
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expression of RAR~ was not detected at any stage examined (data not shown). 

Using these same primers, we have previously shown that RAR~ message to be 

present in bovine tissue (Malayer and Woods, 1998). As in the case of GAPDH 

expression, the level of the message was apparently lower at the 16 to 20-cell 

stage than at other times examined, and elevated again at the morula stage. 

While expression of RARa was apparently consistent across stages examined, 

expression of RARy was low from the 2-cell through blastocyst stages and 

increased in the hatched blastocyst. Expression of mRNAs for RARa, RARy 

suggests that RA is likely to be able to regulate gene expression during 

preattachment development in the bovine through nuclear receptor-mediated 

pathways. 

Transcript for RBP (Fig. 3) was also detected in all stages from the 2-cell 

embryo through to the hatched blastocyst. Again, the level of the message was 

apparently lower at the 16 to 20-cell stage than at other times examined, and 

elevated again at the morula stage. Expression of the RBP gene in the 

preattachment embryo suggests the capacity for intercellular binding and 

transport of retinal. Transcripts for RARa, RARy, and RBP were also identified in 

immature oocytes (Fig. 4 ). 

Presence of RAR proteins in the Early Bovine Embryo 

Presence of the transcript does not necessary result in protein expression. 

Employing whole mount immunohistochemistry, we were able to detect 

immunoreactive RARa and RARy2 proteins in the trophectoderm and the inner 
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cell mass of blastocysts, and hatched blastocysts (Figs. 5 and 6). 

lmmunostaining for RARa appeared heavier in the inner cell mass and lighter in 

trophectoderm of intact blastocysts (Fig. 5). In the hatched blastocysts, staining 

of RARa immunoreactive protein appeared similar in the inner cell mass and 

trophectoderm. lmmunostaining for RARy2 appeared similar in the inner cell 

mass and trophectoderm of intact blastocysts as well as hatched blastocysts 

(Fig. 6). In the mouse, RARy2 is the isoform expressed during early 

embryogenesis (Kastner et al., 1990). These results suggest that, at least in the 

blastocyst stages, expression of transcripts for these receptor molecules 

translates into protein expression. Further, RA may exert effects at the level of 

the nuclear RARs in both inner cell mass and trophectoderm target cells. 

Discussion 

It has been shown that vitamin A administered to the dam improved 

pregnancy rates and/or embryo quality. Retinal administered to cattle on the first 

and last day during a five day superovulation regimen increased the number of 

high quality embryos without any significant increase in ovulation rates in 

comparison to control animals (Shaw et al., 1995). Similar increases in embryo 

survival rate have been demonstrated in mice (Chew and Archer, 1983), rabbits 

(Besenfelder et al., 1993), swine (Brief and chew, 1983; Britt et al., 1992; Coffey 

and Britt, 1993) and sheep (Eberhardt et al., 1999) following administration of 

retinal or ~-carotene. It remains unclear whether these effects were the result of 
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either a direct effect on the embryo or an indirect effect through stimulation of the 

secretion of embryotrophic factors by the oviduct and/or uterine endometria. 

Even though the importance of vitamin A to developmental biology has been 

known for decades, its mechanism of action came to light only in 1987. In the 

same year, two laboratories (Giguere et al., 1987; Petkovich et al., 1987) 

independently identified a nuclear retinoid receptor, RARa 1 . Later, two more 

receptors, RAR~ and RARy were identified and cloned. Three years later, 

another family of nuclear retinoid receptors, the RXRs, were identified 

(Mangelsdorf, 1990). 

The retinoid signalling pathway has been very extensively researched in 

the mouse with emphasis on its role after gastrulation (Gudas, 1994 ). However, 

there is not much information in other vertebrate lineages, especially the 

domestic animals. The one exception to this is perhaps the pig (Harney et al., 

1994; Yelich et al., 1997, Parrow et al., 1998). Further, most of the available 

information is concentrated towards advanced stages of embryonic development 

with very little known concerning the preimplantation stages. Given that the 

trophoblast is the first differentiated tissue in the preimplantation embryo 

(Pederson, 1986) and RA being a potent differentiating agent, possibilities exist 

for RA to perform a crucial role in cellular differentiation processes during early 

stages of development. Keeping this in mind, in the present study we have 

addressed the importance of vitamin A in preattachment embryo development 

more specifically by hypothesizing the existence of the binding protein and 

nuclear receptors that constitute the retinoid signalling pathway. 
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Retinol is believed to serve as a potent morphogen during early embryonic 

development in vertebrates (Kraft et al., 1994; Horton and Maden, 1995); 

however excess can lead to embryonic anomalies (Horton and Maden, 1995). A 

specific protein, RBP, is believed to bind retinol and serve as a transport system 

for retinol from the plasma to its target cell (Blomhoff, 1990). Following entry into 

the cell, retinol is first oxidized to retinaldehyde by alcohol dehydrogenases, then 

again oxidized to the active form, retinoic acid, by aldehyde dehydrogenases 

(Gregg Duester, 1997). Retinoic acid is then believed to bind with nuclear RARs 

and, along with other specific proteins, form a complex that binds to specific 

retinoic acid response elements on the DNA (Langston et al., 1997). This 

transcriptional control has been linked to several important homeobox genes, 

growth factor genes, and other genes important in developmental processes (De 

Luca et al., 1991; Malcolm Maden, 1994). In the present study, mRNA for RBP 

was detected in all stages of bovine preimplantation embryos produced in vitro 

beginning from the oocyte all the way through hatched blastocysts (Figs. 3 and 

4 ). Previously, in situ hybridization and immunohistochemistry studies have 

revealed the presence of the transcript for RBP and immunoreactive protein, 

respectively, in day 13 tubular conceptuses (Liu et al., 1993). In the same study, 

day 13 spherical conceptuses apparently did not synthesize RBP. RT-PCR is a 

very sensitive technique and is capable of detecting low abundance transcripts 

that may be beyond the detection power of in situ hybridization depending on the 

signal to noise ratio in the in situ assay. Similarly, RBP has been shown to be 

actively secreted by the day 13 elongated sheep conceptus (Liu et al., 1992) and 
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the elongated pig conceptus (Harney et al., 1990). Transcripts for RBP have 

been localized to the inner cell mass and trophectoderm of the elongating pig 

conceptus (Trout et al., 1991 ). In cattle, measurement of retinal concentrations 

during follicular development has shown higher concentrations to be present in 

healthy follicles and correlated with estradiol concentrations (Schweigert and 

Zucker, 1988; Schweigert et al., 1988). However, very low concentrations of 

retinal were detected in atretic follicles. Accordingly, these authors used retinal 

concentrations in follicular fluid as a measure of follicular health (Schweigert and 

Zucker, 1988; Schweigert et al., 1988). This finding would indicate that the 

immature bovine oocyte does encounter retinal under physiologically normal 

conditions even before fertilization. The detection of transcripts for RBP in the 

immature oocyte (Fig. 4) in the present study further supports these early 

findings. The avian oocyte takes up retinal by endocytosis (Vieira and Schneider, 

1993). Retinal bound to RBP and TTR (transthyretin) along with other retinoid 

metabolites derived from retinal are stored in the oocytic yolk and is believed to 

be important during avian embryonic development (Bermudez et al., 1993; Dong 

and Zile, 1995). 

Messenger RNA transcripts encoding two of the retinoid receptors, RARa 

and RARy were detected in preimplantation bovine embryos produced in vitro 

from the oocyte through to the hatched blastocyst stage (Fig. 2). The presence of 

the transcripts encoding the different RA receptor subtypes suggests the 

existence of a specific retinoid signaling system for retinol/retinoic acid in bovine 

preimplantation embryos. This also suggests that these mRNAs are synthesized 
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during oogenesis and persist in the cleaving embryo up to the 16 to 20-cell stage 

when they are completely utilized and/or degraded and reappear after the 

embryonic genome becomes activated. Using immunocytochemistry we were 

able to identify the presence of the RARa and RARy2 subtype receptor proteins 

in bovine blastocysts. These receptors are present in both the inner cell mass 

and trophectoderm. In the mouse, extensive in situ hybridization studies have 

revealed the presence and the specific spatiotemporal patterns of distribution of 

mRNA for RARa, RARP, RARy at all stages of embryogenesis (Ruberte et al., 

1990; 1991; Dolle et al., 1989, 1990), Similarly, there are a few reports on the 

expression of RARf3 in the chick embryo (Naji et al., 1991; Rowe et al., 1991; 

Smith et al., 1991 ). In the pig embryo, transcripts for RARa, RARP, RARy have 

been detected in both spherical and tubular conceptuses (Yelich et al., 1997). 

Unfertilized Xenopus laevis eggs have been shown to contain functionally active 

RARa and RARy (Blumberg et al., 1992). Collectively, based on the information 

available in different species it is likely that expression of RARs is conserved 

across higher vertebrates. Further, homology searches revealed greater than 

90% similarity of bovine RAR sequences with human and rat homologs. 

The physiological functions of these RARs have been investigated by 

creating homozygous mutant mice for either a particular subtype or an isotype of 

a subtype using homologous recombination. Interestingly, homozygous mice 

deficient in either RARa1 (Lufkin et al., 1993), RARp2 or y2 (Lohnes et al., 1993) 

are viable and do not exhibit any recognizable defects or malformations. The 

failure to observe any developmental defects in these single mutant mice can be 
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partially explained by the redundancy between RARs, meaning that the other 

RAR subtypes expressed in a given cell can compensate for a particular missing 

subtype. However, subsequent studies employing double mutants for both RARa 

and RARy generated all of the congenital defects that have been previously 

reported for embryos from vitamin A deficient mothers (Lohnes et al., 1994 ). 

Taken together, the demonstration of the presence of RBP and two RAR 

subtypes in the bovine preattachment embryo suggests that improved embryo 

quality following retinal administration resulted in part from direct action on the 

embryo. This effect may result from events as early as the oocyte, and is likely 

to result at least in part from events at the blastocyst stage, day 7 or 8 post

fertilization, if not before. 
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Table 1. Sequences of primers used in RT-PCR assay 

mRNA Species Primer Nucleotide Sequence Product Size (bp) 

5'-TTCCGAGTCAAAGAGAACTTCG- 3' 
RBP 5' -TCAT AGTCCGTGTCGATGATCC-3' 311 

5' -GCATCCAGAAGAACATGGTGT- 3' 
RARa 5'-CTGCTTGGCGAACTCCACAGT-3' 392 

5'-GCAGGAATGCACAGAGAGCTAT- 3' 
RARl3 5'-GAAGGCCTGTTTCTGTGTCAT-3' 373 

5'-GGCATGTCCAAGGAAGCTGT- 3' 
RA Ry 5'-GTTCTCCAGCATCTCTCGGAT-3' 795 

5' -CCTTCATTGACCTTCACT ACATGGTCT A-3' 
GAP DH 5'-GCTGTAGCCAAATTCATTGTCGTTACCA-3' 800 
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Table 2. PCR conditions for amplification of GAPDH, RBP, RARa, RAR~, RARy 

mRNA MgCl2 dNTPs Primer Annealing PCR Cycles 

Species (mM} (µM} (µM} Temperature (°C} 

GAP DH 1.5 0.1 1 60 40 

RBP 1.5 0.2 0.6 60 25 

RARa 1.5 0.2 1 60 25 

RAR0 1.5 1.5 1.5 60 25 

RARy 2.5 0.1 1 60 25 
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Figure 1. Expression of transcript for GAPDH (800 base pairs) using RT-PCR in 
25 pooled embryos at the oocyte, 2-, 4-, 8-, 16 to 20-cell, morula, blastocyst, and 
hatched blastocyst stages. Negative control lane contains the product of RT-PCR 
under identical conditions in the absence of RNA template. Products of RT-PCR 
were resolved in 1.5% TAE-agarose gels and visualized by ethidium bromide 
staining. 
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Figure 2. Expression of transcript for RAR a (392 base pairs) (A) and RARy (795 
base pairs) (8) using RT-PCR in 25 pooled embryos at the 2-, 4-, 8-, 16 to 20-
cell , morula, blastocyst, and hatched blastocyst stages. Negative control lane 
contains the product of RT-PCR under identical conditions in the absence of 
RNA template. Positive control lane contains the product of RT-PCR using RNA 
from hatched blastocysts. Products of RT-PCR were resolved in 1.5% TAE
agarose gels and visualized by ethidium bromide staining. 

76 



500 -+ 

400 -+ 

300 --+ 

200-+ 

Figure 3. Expression of transcript for RBP (311 base pairs) using RT-PCR in 25 
pooled embryos at the 2-, 4-, 8-, 16 to 20-cell , morula, blastocyst, and hatched 
blastocyst stages. Negative control lane (not shown here) contained the product 
of RT-PCR under identical conditions in the absence of RNA template. Positive 
control lane contains the product of RT-PCR using RNA from bovine uterine 
endometrium. Products of RT-PCR were resolved in 1.5% TAE-agarose gels and 
visualized by ethidium bromide staining. 
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Figure 4. Expression of transcript for RBP (311 base pairs), RARa (392 base 
pairs) and RARy (795 base pairs) using RT-PCR in unfertilized bovine oocytes 
collected at the time of in vitro fertilization from abattoir ovaries. Negative control 
lane (not shown here) contained the product of RT-PCR under identical 
conditions in the absence of RNA template. Products of RT-PCR were resolved 
in 1.5% TAE-agarose gels and visualized by ethidium bromide staining. 
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Figure 5. Whole mount immunolocalization of RARa. protein in intact blastocysts 
and hatched blastocysts produced in vitro. In both blastocysts (A) and hatched 
blastocysts (8), immunoreactive RARa. was localized in both inner cell mass cells 
(thin arrow) and the trophectoderm (thick arrow). Control embryos were 
prepared with the primary antibody omitted (C), secondary antibody omitted (D) 
or both primary and secondary antibody omitted (E), and in all cases were devoid 
of immunostaining. 
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Figure 6. Whole mount immunolocalization of RARy2 protein in intact blastocysts 
and hatched blastocysts produced in vitro. In both blastocysts (A) and hatched 
blastocysts (8), immunoreactive RARy2 was localized in both inner cell mass 
cells (thin arrow) and the trophectoderm (thick arrow). Control embryos were 
prepared with the primary antibody omitted (C), secondary antibody omitted (D) 
or both primary and secondary antibody omitted (E), and in all cases were devoid 
of immunostaining. 
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Chapter IV 

EXPRESSION PATTERNS OF RETINOID X RECEPTORS, RETINALDEHYDE 

DEHYDROGENASE, AND PEROXISOME PROLIFERATOR ACTIVATED 

RECEPTORS IN BOVINE PREATTACHMENT EMBRYOS 

Abstract 

In cattle, administration of retinal at the time of superovulation has been 

indirectly associated with enhanced developmental potential of the embryo. 

Vitamin A and its metabolites influence several developmental processes by 

interacting with two different types of nuclear receptors, retinoic acid receptors 

(RARs) and retinoid X receptors (RXRs). Given the limited information available 

concerning the RXR-mediated retinoid signaling system, particularly in species 

other than rodents, this study was performed to gain insight into the potential role 

of retinoid signaling during preattachment embryo development in the cow. 

Bovine embryos were produced in vitro from oocytes harvested from abattoir 

ovaries and frozen in liquid nitrogen at the oocyte, 2-, 4-, 8-, 16- to 20-cell, 

morula, blastocyst and hatched blastocyst stages. Reverse transcription 

polymerase chain reaction (PCR) and whole mount in situ hybridization were 

utilized to investigate mRNA expression for RXRa, RXRp, RXRy, alcohol 

dehyd rogenase (ADH-1), retinaldehyde dehydrogenase-2 (RALDH-2), 
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peroxisome proliferator activated receptor gamma (PPARy), and glyceraldehyde-

3-phosphate dehydrogenase (GAPDH). Transcripts for RXRa, RXRp, RALDH-2, 

PPARy were detected in all stages beginning from the oocyte through to the 

hatched blastocyst. Whole mount in situ hybridization performed using 

digoxigenin labeled antisense probes detected all four transcripts in both inner 

cell mass and trophectoderm of hatched blastocysts. PCR products obtained for 

ADH 1 exhibited very low homology to known human and mouse sequences. 

lmmunohistochemistry was performed using polyclonal anti-rabbit antibodies 

against RXRP and PPARy to investigate if these embryonic mRNAs were 

translated to the mature protein. Strong immunostaining was observed for both 

RXRp and PPARy in the trophectoderm and inner cell mass cells of intact and 

hatched blastocysts. GAPDH mRNA was detected in all stages. Messenger RNA 

was not detected at any stage for RXRy. Expression of mRNA for RXRa, RXRp, 

RALDH-2, PPARy suggests that the early embryo may be competent to 

synthesize retinoic acid and regulate gene expression during preattachment 

development in vitro. 

Introduction 

Apart from its crucial roles in cell growth and differentiation, vision and 

maintenance of epithelia, vitamin A and its physiological metabolites, collectively 

known as retinoids have profound effects on mammalian reproduction and 

embryonic morphogenesis [1 ]. The inclusion of adequate levels of vitamin A in 
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the maternal diet has been stressed because of its requirement for normal 

embryo development [2]. 

Retinal (vitamin A) metabolism in the cell can give rise to many 

physiologically active compounds [3]. Retinal is secreted into the circulation 

bound to a specific protein called retinal-binding protein (RBP), which is mainly 

responsible for its intercellular transport. Because retinal lacks appreciable water 

solubility, it is bound intracellularly to a second binding protein called cellular 

retinal binding protein (CRBP), which helps solubilize it in the aqueous cellular 

environment. Before exerting its biological effects, retinal is oxidized to 

retinaldehyde by a group of enzymes called retinal dehydrogenases; 

retinaldehyde is then oxidized to retinoic acid (RA) by a second group of 

enzymes called aldehyde dehydrogenases. RA and its isoforms are believed to 

interact with 2 separate subgroups of nuclear receptors, retinoic acid receptors 

(RARa, RAR~, RARy) and retinoid X receptors (RXRa, RXR~, RXRy). The 

formation of ligand-receptor complexes will either activate or repress specific 

target genes by binding to specific response elements present in the vicinity of 

the promoter region. 

Approximately a decade ago, the RXRs, the second class of nuclear 

retinoid receptors responsible for transduction of the differentiating properties of 

9 cis-retinoic acid was discovered [4]. Similar to the RARs, three separate RXR 

genes (a, ~. and y) are known to exist. Retinoid receptors can give rise to 

isoforms through differential splicing or promotor usage; however, unlike the 

RARs, receptor isoforms have been isolated only for RXRy. RXRs play a crucial 
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role in several nuclear receptor signaling pathways by homodimerizing or 

heterodimerizing with RARs, thyroid hormone receptors, vitamin 0 3 receptors, 

peroxisomal proliferator activated receptors (PPAR) and a number of orphan 

receptors [5]. Thus, RXRs may be key players in several hormonal pathways. 

The extreme sensitivity of embryonic development to vitamin A is clear; 

both hypovitaminosis and hypervitaminosis A can lead to abortion and embryonic 

malformation. Important vitamin A-mediated events occur during very early 

stages in the quail and around the first 2-3 wk of gestation in the human [6]. 

Retinal supplementation enhanced embryo survival in polytoccus species such 

as mice [7], rabbits [8] and swine [9]. Retinal administered at the time of 

superovulation increased the number of transferrable embryos in cattle [1 O] and 

increased blastocyst formation and hatching rates in sheep [11]. Recently, in the 

pig, administration of vitamin A to sows before ovulation enhanced embryonal 

survival by advancing meiotic resumption and altering follicular hormonal 

environment during follicle maturation [12]. Promotion of embryonic development 

in these studies suggested a possible direct or indirect interaction with the 

developing embryo. Hypothesizing a direct interaction, as a first approach, we 

detected the mRNAs for RBP, RARa and RARy and the RARa and RARy 

immunoreactive proteins in bovine preattachment embryos fertilized in vitro [13]. 

To better understand the retinoid signaling pathway, we used reverse 

transcription polymerase chain reaction (RT-PCR), whole mount in situ 

hybridization, and immunohistochemistry to characterize the expression and 

spatial distribution of RXRs, alcohol dehydrogenase I (ADHI), retinaldehyde 
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dehydrogenase 2 (RALDH-2) and PPARy in the preattachment bovine embryo 

produced in vitro. 

Materials And Methods 

In Vitro Maturation, Fertilization, and Culture 

Ovaries were collected from cows at a local abattoir and transported to the 

laboratory in 0.9% normal saline supplemented with penicillin-G (100 IU/ ml) and 

streptomycin sulfate (0.2 µg/ml) (Sigma Chemical Co., St. Louis, MO) at 26-30°C 

within 5 h. Oocytes were aspirated from follicles ranging in diameter from 2 to 5 

mm using an 18-gauge needle into modified-PBS solution (Life Technologies 

Inc., Rockville Maryland). In vitro maturation, fertilization, and culture were 

performed according to protocols described by Mohan et al. [13]. 

RNA Extraction 

Immature bovine oocytes and embryos at the 2-, 4-, 8-, 16 to 20-cell, 

morula and blastocyst stages were frozen in 250 µI of denaturing solution (4 M 

guanidium isothiocyanate (Promega, Madison, WI), 25 mM sodium citrate, pH 

7.0, 0.5% sarcosyl, 0.1 M 2-p mercaptoethanol; Sigma). Total RNA was 

extracted from a pool of 25 embryos at each stage according to protocols 

described by Mohan et al. [13]. 
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Reverse Transcription-Polymerase Chain Reaction 

In order to maximize the sensitivity of detection, RT-PCR was the method 

of choice for investigating gene expression from the small quantities of RNA 

obtained from bovine embryos. Ten microliters of the eluted total RNA was 

denatured by heating to 70°C and reverse transcribed in the presence of random 

hexamers (pdN6; 100 pmole; Pharmacia, Piscataway, NJ, USA), dATP, dTTP, 

dCTP and dGTP (dNTPs, Pharmacia), MgC'2, RNase inhibitor (20 Li/reaction; 

Pro mega) and reverse transcriptase (Superscript™, 200 Li/reaction; Gibco-BRL, 

Gaithersburg, MD) at 42°C for 1 hr. The RT reaction was terminated by heating 

to 70°C. 

Reverse transcribed cDNA (1-2 µI) was denatured by heating to 95°C and 

subjected to PCR in the presence of picomole quantities of specific primers, 

MgC'2, dNTPs, and Amplitaq™ DNA polymerase (0.5 Li/reaction; Perkin-Elmer, 

Foster City, CA). Specific primers and the PCR conditions used to generate 

target cDNA fragments using a 2-step PCR procedure are shown in Tables 1 and 

2. Because of the variation in published sequences for ADH-1, we used 

degenerate primers to amplify this target (Table 1 ). Products of RT-PCR were 

resolved on 1.5% agarose-TAE (40 mM Tris-acetate, 1 mM EDTA) gels and 

visualized on an ultraviolet transilluminator following ethidium bromide staining. 

Representative RT-PCR products from each primer were excised from agarose 

gels, subcloned, and subjected to dideoxy chain termination sequencing (Model 

373A Automated Sequencer; Applied Biosystems, Foster City, CA). The identity 

of each product was confirmed in a sequence homology analysis using the Basic 
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Local Alignment Search Tool (BLAST) [14]. The analysis was repeated on 4 

separate groups of embryos. 

Whole Mount In Situ Hybridization 

All RT-PCR products were cloned into pCR II vector (lnvitrogen, Carlsbad, 

CA). The cDNA-containing plasmids were linearized with BamHI and EcoRV 

depending on the orientation, to generate either the antisense or sense probe. 

The resulting fragments were phenol-choloroform extracted, ethanol precipitated 

and used as plasmid templates for riboprobe synthesis (Roche Diagnostics 

Corporation, Indianapolis, IN). In vitro transcription was performed with 1 µg of 

plasmid template in a final volume of 21 µI containing the digoxigenin RNA 

labeling mix, transcription buffer, 10 mM dithiothreitol, RNase inhibitor (1 unit), 

SP6 RNA polymerase or T7 RNA polymerase incubated for 2 h at 37°C. The 

template cDNAs were digested with RNase-free DNase (5 units) for 15 min at 

37°C, and the reaction was stopped by adding 0.2 M EDTA, pH 8.0 (2µ1). The 

riboprobes were ethanol precipitated in the presence of 4M LiCI and quantified 

with a series of digoxigenin labeled control RNAs according to the manufacturers 

instructions (Roche Diagnostics). 

Day 9-10 hatched blastocysts produced in vitro were fixed overnight in 4% 

paraformaldehyde, washed in PBS containing 0.1 % Tween- 20 (PBST), and 

dehydrated by an ascending methanol concentration series immediately followed 

by rehydration in the reverse order on ice. Rehydrated embryos were washed 3 

times with PBST at room temperature. Embryos were permeabilized by 3 
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incubations in a cocktail of ionic and non-ionic detergents (RIPA: 150 mM NaCl, 

1 % Nonidet P-40, 0.5% Sodium deoxycholate, 0.1 % SOS, 1 mM EDTA, 50 mM 

Tris pH 8.0), with each incubation lasting 10 minutes. Embryos were then post

fixed with 4% paraformaldehyde/0.2% electronmicroscopy grade glutaraldehyde 

in PBS for 20 minutes. Prehybridization, hybridization and posthybridization were 

performed at 60°C for PPARy, 65°C for RXR~ and 70°C for RXRa and RALDH-2. 

Embryos were washed five times in PBST and incubated for 15 minutes with a 

1: 1 mix of hybridization mixture (HB- 50% deionized formamide, 5X saline

sodium citrate [SSC], pH 7.0, 50µg/ml heparin, 0.1 % Tween 20) and PBST 

followed by a brief wash with HB at room temperature. Embryos were incubated 

for 1-3 h in prehybridization mixture (HB containing 100 µg/ml tRNA and 100 

µg/ml sheared denatured herring sperm DNA). The probes were denatured at 95 

°C for 10 minutes and added to the HB mix at the following concentrations 

(1µg/100µ1 for PPARy, RXR~, RALDH-2 and 0.5µg/100µ1 for RXRa). 

Hybridization was carried out overnight in a box saturated with 50% 

formamide/5X SSC to prevent evaporation at the temperatures used for each 

probe. Posthybridization washes included 50% formamide in 2X SSCT (SSCT: 

SSC + 0.1 % Tween 20) (30 min), 2X SSCT containing 0.5% SOS (2 x 15 min), 

0.2X SSCT containing 1% SOS (2 x 15 min) and 0.1X SSCT containing 2% SOS 

(2 x 20 min). 

Specific in situ hybridization signals were detected by incubation in a 

peroxidase conjugated anti-DIG antibody solution at a dilution of 1:100 (Roche 

Diagnostics) and 3,3' diaminobenzidine (DAB; Sigma) for color development. The 
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color reaction was stopped by moving embryos to PBS. Hatched blastocysts 

subjected to hybridization with the sense probe served as controls. This 

procedure was repeated on 4 separate groups of embryos. 

Whole Mount Jmmunohistochemistry 

In vitro produced bovine blastocysts and hatched blastocysts were 

washed in PBS and fixed in 4% paraformaldehyde overnight at 4°C. Fixed 

embryos were dehydrated in an ascending methanol series (5 min) and 

permeabilized in PBS containing 0.1 % Triton X-100 (PSST) at room temperature 

for 40 min. Embryos were then incubated in blocking solution (PSST containing 

1 % casein) for 1 h. Embryos were incubated with the polyclonal primary antibody 

(either RXR~ or PPARy: Affinity Bioreagents, Golden, CO) at a 1 :500 dilution in 

blocking solution overnight at 4°C. Embryos were washed 5 times in PSST, with 

the final wash lasting 4 h. Detection of RXR~ and PPARy primary antibody was 

performed using a goat anti-rabbit lgG conjugated to horseradish peroxidase 

(Kirkegaard & Perry Laboratories, Gaithersdurg, MD), diluted at 1 :500 in blocking 

solution, and incubated for 2.5 h at room temperature. Embryos were again 

washed 5 times in PSST with the final wash lasting 4-5 h. Embryos were then 

transferred to a dish containing DAB tablets dissolved in 5 ml of water. Embryos 

were frequently observed for the appearance of a reddish brown color. The color 

reaction was stopped by moving the embryos to PBS. Control embryos were 

prepared by omitting primary antibody, secondary antibody or both primary and 
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secondary antibodies. This procedure was repeated for two separate groups of 

embryos. 

Results 

Presence of Transcripts for RXRs, RALDH-2 and PPARr in the Early Bovine 

Embryo 

Primer sequences and PCR conditions used to amplify RXRa, RXR~, 

RXRy, ADH-1, RALDH-2, PPARy and glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) are given in Tables 1 and 2. Products of the predicted 

size (Table 1) were detected for each target cDNA (Figures 1-3). Because mRNA 

was extracted from a small sample of 25 embryos, a second round of 

amplification was needed to visualize PCR amplicons. The identity of the PCR 

products was verified by sequence analysis. The isolated bovine cDNA 

sequences exhibited a very high (>90%) homology to published mouse and 

human RXRa, RXR~, RALDH-2, and PPARy cDNA sequences. 

Transcript for GAPDH was detected at all stages of embryo development 

examined except the 16- to 20-cell stage (Fig. 1 ), suggesting that RNA 

populations suitable for RT-PCR amplification of specific cDNAs were produced. 

Although methods employed in this study are not quantitative, under similar 

conditions, the level of the message was apparently decreased from 2 cells to 

below the limit of detection in the 16- to 20-cell stage, increased to the morula 

stage, and remained elevated through the blastocyst stage. Disappearance of 
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the message between the 8- to 16-cell and the 16 to 20-cell stages suggests that 

utilization and/or degradation of all maternally-derived transcripts had occurred 

followed by reappearance at the initiation of transcription from the embryonic 

genome. This is in agreement with the model for transition from maternal to 

embryonic genome control in the bovine occurring around the 8- to 16-cell stage 

[19]. 

Transcripts for RXRa (Fig. 2A) and RXR~ (Fig. 28) were also detected in 

all stages from the 2-cell embryo through to the hatched blastocyst. However, 

expression of RXRy was not detected at any stage examined (data not shown). 

As in the case of GAPDH expression, the level of the message for both RXRa 

and RXR~ was apparently lower at the 16- to 20-cell stage and elevated again at 

the morula stage. RXRa message was very low from the 2-cell through the 

morula stages until the blasotcyst stage, when the transcript levels apparently 

increased. On the contrary, RXR~ expression was clearly evident from the 2-cell 

through to the 8- to 16-cell stage. 

Transcripts for PPARy (Fig. 3A) and RALDH-2 (Fig. 38) decreased from 

the 2-cell to the morula stage. The level of the message was lower at the 8- to 

16-cell and 16- to 20-cell stage and was undetectable at the morula stage. The 

message levels were elevated again at the blastocyst stage. PCR products 

obtained for ADH1 agreed in terms of the predicted size. Their sequence 

exihibited very low homology to mouse and human sequences. Transcripts for 

RXRa, RXR~, RALDH-2 and PPARy were also identified in immature oocytes 

(Data not shown). 
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In Situ Localization of Transcripts for RXRs, RALDH-2 and PPARy 

Identifying the cell type that expressed the RXR and PPAR genes was 

essential in determining the possible combinations of RXR homo/heterodimers 

that formed in the embryo during preattachment embryogenesis. RXRa 

transcripts were present in the trophectoderm cells and inner cell mass cells. The 

hybridization signal obtained with the antisense probe was much stronger than 

that seen with the sense probe (Fig. 4A). The sense probe, however, produced a 

mild background signal in the inner cell mass (Fig. 48). RXR~. RALDH-2 and 

PPARy had a distribution similar to that of RXRa. All three transcripts were 

detected in both trophectoderm cells and inner cell mass cells (Fig. 4, C, E, and 

G). Detection was more specific compared with that of RXRa; no signal was 

obtained with the control sense probes (Fig. 4, D, F, and H). The hybridization 

signal for all 4 transcripts appeared stronger in the inner cell mass cells than in 

the trophectoderm cells. 

Presence of RXR Proteins in the Early Bovine Embryo 

Whole mount lmmunohistochemistry revealed immunoreactive RXR~ and 

PPARy proteins in the trophectoderm and inner cell mass of blastocysts and 

hatched blastocysts (Figs. 5 and 6). Both RXR~ and PPARy immunoreactive 

proteins were expressed in the same region as their corresponding transcripts. 
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Discussion 

Retinoic acid and its metabolites are believed to function as potent 

morphogens during early embryonic development [20]. Apart from the RARs, 

RXRs along with their ligand 9-cis retinoic acid constitute a second retinoid 

signaling pathway, the role of which has been well dissected in the mouse, 

especially for later embryonic stages [21, 22]. Information on other vertebrate 

lineages, especially domestic animals, is very limited. Gene expression studies 

for RXRs and RA metabolizing enzymes have not been focussed towards 

preattachment embryonic stages. Preattachment embryo development in 

mammals involves the participation of a variety of growth factors, their receptors, 

cell adhesion molecules, etc. During the last 2 decades, it has become clear that 

these molecules fulfill a mandatory requirement in supporting the progression of 

embryos during the period of early preattachment development. Given that 

retinoids may induce cell differentiation in vitro by regulating the expression of 

homeobox genes, growth factors and their receptors [23], the existence of a 

master regulatory system involving retinoic acid seem plausible. In an earlier 

study, applied to in vitro fertilized preattachment bovine embryos, we detected 

mRNA for RBP, RARa and RARy and the immunoreactive protein for RARa and 

RARy [13]. In the present study, we investigated the importance of vitamin A 

during preattachment development more specifically by characterizing the 

expression patterns of RXRs, ADH-1, RALDH-2 and PPARy in preattachment 

bovine embryos. 
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Although RXRp and RXRa are ubiquitously expressed in every embryonic 

tissue during mouse development, RXRy shows a restricted pattern during 

embryogenesis [21, 22]. In earlier studies on Xenopus /aevis, RXRy and RXRa 

were detected in unfertilized eggs and embryos until gastrulation [24]. Later, in 

the same species, a third RXR more closely resembling mammalian RXRp was 

identified and shown to be expressed throughout early development [25]. 

Extending these studies to preattachment embryos of farm animals, in the 

present study we detected mRNA for RXRa and RXRp in the unfertilized oocyte, 

indicating that these transcripts are synthesized and accumulated during 

oogenesis. These transcripts showed a steadily declining pattern through early 

cleavage indicating usage or degradation until the 16- to 20- cell stage, at which 

time the embryonic genome gets activated. Messenger RNA for the both RXR 

subtypes reappeared at the morula and persisted at higher levels until the 

hatched blastocyst stage. In the blastocyst, both the trophectoderm and inner cell 

mass cells expressed both RXR subtypes (Fig. 4, A and C). The results of 

immunohistochemistry suggest that, at least in the blastocyst stages, expression 

of transcripts for RXRP translates into protein expression (Fig. 5A). Expression of 

the protein may also enable a// trans RA/9-cis RA to exert effects at the level of 

the nuclear RXRs in both trophectoderm and inner cell mass cells. Messenger 

RNA for RXRy was not detected, suggesting that RXRy may not be important 

during very early stages of mammalian embryo development and that its lack can 

be compensated by the presence of the other two RXRs. Expression of these 

RXR subtypes suggests some essential function for these receptors during 
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maturation, fertilization, early cleavage, blastocyst development and/or hatching, 

most likely regulation of gene expression through nuclear receptor-mediated 

pathways. 

The functional significance of RXR expression during embryogenesis has 

been investigated by creating entire subtype, double and compound mutant 

mice. Although RXR(3 knockout mice appeared morphologically normal with the 

exception that males were sterile [26], homozygous RXRa mutant mice died 

around 13.5-16.5 days post coitum [27]. Double (RXR13-1-/RXRf'-) and triple 

(RXRa +t-1RXR13-1-/RXRf'-) RXR mutant mice, other than displaying marked growth 

deficiency and sterility in males, were postnatally normal [28]. These studies 

meant that early developmental processes could proceed normally provided a 

single copy of RXRa was available to heterodimerize with RARs and other 

nuclear receptors such as PPARs. Further, RXRa-1-/RXRl3_,_ mutant mice died 

between 9.5 and 10.5 days of gestation [29], again implicating RXRa as the main 

RXR during early development. Previously, we showed that the preattachment 

bovine embryo fertilized and cultured in vitro expressed both mRNA and the 

mature protein (immunoreactive) for RAR subtypes a, and y [13]. This expression 

suggests possibilities for a functional interaction between RARs and RXRs in 

transduction of the retinoid signal around this critical period of development. 

Detailed analysis of RAR/RXRa double-null mutant phenotypes revealed that 

RXRa/RAR heterodimers are the most common functional units responsible in 

transduction of the retinoid signal during embryogenesis [30]. Messenger RNA 

for RXRa is strongly expressed in the placenta in the mouse [31] and human 
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[32]. Abnormalities of the chorioallantoic placenta have been the hallmark of 

RXRa_,_ homozygous [33] and RXRa-1-/RXRp-1- compound mutant mice [29] 

suggesting a critical role for RXRa during placentation. During the formation of 

the blastocyst, retinoid signaling utilizing RXRa may contribute to the process of 

differentiation as loss of RXRa alters morphological endodermal differentiation of 

F9 cells [34]. 

Presence of the mRNA and protein for the nuclear receptors of the retinoid 

superfamily prompted us to investigate if the preattachment bovine embryo was 

capable of synthesizing retinoic acid, the biologically active ligand for retinoid 

receptors. ADH-1 and ADH-IV along with several other enzymes, i.e., 3 forms of 

microsomal retinal dehydrogenase and short chain dehydrogenase/reductases, 

can oxidize all trans-retinal to all trans-retinal [35-38]. We investigated gene 

expression for ADH-1 using degenerate primers in a nested PCR. Despite 

obtaining a PCR product for ADH-1 very close to the required size in all 

preattachment stages examined, homology searches revealed extremely low 

similarity to known alcohol dehydrogenases. Therefore, the conversion of retinal 

to retinaldehyde in bovine embryos needs further scrutiny. Retinaldehyde 

generated from retinal is oxidized to RA by another group of enzymes called 

aldehyde dehydrogenases (ALDHs) [39], among which ALDH-1 is known to 

efficiently perform this function [40]. Recently, RALDH-2, a NAO-dependant 

dehydrogenase known to exhibit the greatest specificity for retinaldehyde, was 

cloned and its expression patterns characterized throughout embryogenesis [41]. 

RALDH-2 is essential for embryo survival and morphogenesis in the mouse, and 
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its complete absence or knockout results in embryonic mortality around 

midgestation [42]. Transcripts for RALDH-2 also occur in immature bovine 

oocytes. Although not quantitative, the message level started to diminish as early 

cleavage progressed, suggesting that these transcripts were either translated or 

degraded, and then disappeared but reemerged at the morula stage and 

remained constant all the way through to the hatched blastocyst stages. Using in 

situ hybridization, we localized mRNA for RALDH-2 to both the inner cell mass 

and trophectoderm in the present study (Fig. 4E). The bovine unfertilized oocyte 

does encounter retinal due its presence in higher concentrations in healthy 

follicles [43-44]. The bovine oocyte also contains transcripts for RBP, which may 

aid in the uptake of retinal in the follicle [13]. These observations and the 

detection of RALDH-2 in the present study suggest possible retinoic acid 

synthesis and, together with the presence of nuclear receptors, the presence of a 

retinoid signaling pathway from the oocyte through the hatched blastocyst stage. 

Because PPARy is a well established heterodimeric partner for RX.Rs, we 

also examined the embryonic expression and localization of this isoform of PPAR 

using PCR, in situ hybridization and immunohistochemistry. The PPAR family of 

nuclear receptors, which consist of a, 13, and y isoforms, has received much 

attention mainly because of its role in the regulation of lipid and glucose 

metabolism [45]. The 3 isoforms, which are encoded by different genes, differ in 

their metabolic effects, tissue specific expression, and response to 

pharmacological agents. PPARy is specifically expressed in adipose tissue and 

acts to supresss adipocyte differentiation. It has two isoforms, y1 and y2, which 
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are derived from the same gene through differential splicing and promotor usage. 

PPARy was given attention in this study because it is essential for placental 

development and differentiation in the mouse [46] and is expressed in 

syntiotrophoblasts and cytotrophoblasts in human placental villi [4 7], suggesting 

a similar function. We detected mRNA encoding for PPARy in all stages of 

preattachment development in vitro, from the 2-cell to the hatched blastocyst. 

Transcripts were also detected in the oocytes, suggesting a likely role during in 

vitro maturation and fertilization. Expression of PPARy would indicate the 

presence of a heterodimeric partner for RXRs during preattachment 

development. With the exception of PPARy, mRNA encoding PPARa, ~ have 

been detected in Xenopus oocytes and embryos [48]. 

All three isoforms of PPAR can be activated by many of the same ligands 

and bind to the same peroxisome proliferator response element in the promoter 

regions of their target genes. They exert similar influence on transcriptional 

regulation of several enzymes involved in fatty acid oxidation in vitro [49]. Under 

in vitro conditions, all 3 PPAR subtypes can interact with either RXRa, RXR~, or 

RXRy [50, 51]. Thus, under specific conditions regulation of PPAR target gene 

transcription is contingent on its heterodimerization with RXRs. The occurrence 

of PPARy-RXRa/RXR~ heterodimer can be expected because in the present 

study PPARy mRNA was found to be coexpressed with RXRa and RXR~ in both 

trophectoderm and inner cell mass cells (Fig. 4 A, C, and G). The 

immunolocalization of PPARy and RXR~ protein in both trophectoderm and inner 
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cell mass cells (Figs. 5 and 6) indicates that at least in the blastocyst these 

proteins are available for interaction. 

The simultaneous expression of RARs [13], RXRs and RALDH-2 provides 

a compelling argument for the existence of a functional retinoid signaling 

pathway and support for the hypothesis that the transduced signal functions in 

the regulation of a subset of genes important during preattachment development 

in the cow. Providing more support to this argument is the presence of significant 

concentrations of retinoic acid in day 10 spherical blastocysts and trophectoderm 

cell lines in the pig, as revealed by HPLC and reporter assays [52]. A specific 

enzyme namely, 9-cis retinal dehydrogenase [53] can oxidize 9-cis retinal to 9-cis 

retinaldehyde, which may then be oxidized to 9-cis RA, a specific ligand that can 

activate RXRs. However, nothing is known about the activity of this enzyme in 

bovine preattachment embryos. In Xenopus embryos, RXRs respond to various 

natural vitamin A metabolites, including RA, albeit at higher concentrations than 

those of RARs [24]. In the Xenopus study, presence of both RARs and RXRs in 

a single cell was advantageous because it gave the embryo an option to respond 

to a shallow gradient of RA through differential activation of either RARs or 

RXRs. Whether the expression of RXRs and RARs along with PPARy would 

encourage homodimerization or heterodimerization, thereby activating some 

putative retinoid responsive target genes during preattachment development in 

the cow, is largely unknown and needs future attention. 
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Table 1. Sequences of primers used in RT-PCR assay 

Product Size 
mRNA Primer Nucleotide Sequence (bp) and 

Species Reference 

5'-GGACACCAAACATTTCCTGCC- 3' 415(15) 
RX Ra 5'-GATGTGCTTGGTGAAGGAAGCC-3' 

5'-GGCTGGCAAACGGCTA- 3' 207 (15) 
RXR~ 5'-TGGCCAGGCACTTCTG-3' 

5' -GCAGGAA TGCACAGAGAGCT AT- 3' 373 (16) 
RX Ry 5'-GAAGGCCTGTTTCTGTGTCAT-3' 

5'-TCCGTGATGGAAGACCACTC- 3' 332 (17) 
PPARy 5' -CCCTTGCATCCTTCACAAGC-3' 

5'-TCCCTGTCTGTAATCCAGCCAC- 3' 531 
RALDH-2 5'-GAAAGCCAGCCTCCTTGATGAG- 3' 

5' - GAGGATCCGAGGAT AT AGAAGTTGCACC-3' 350 (18) 
ADH1 5' - GATCT AGACCNACNCCNCCNARNCCRAA-3' 

5'- GAGGATCCGGNRTNGTNGARAGYRTNGG-3' 
5'- GATCTAGACCRWANCCNGTNGANAHNCC-3' 

5'-CCTTCATTGACCTTCACTACATGGTCTA-3' 800 
GAPDH 5'-GCTGT AGCCAAA TTCATTGTCGTT ACCA-3' 
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Table 2. PCR conditions for amplification of GAPDH, RXRa, RXRp, RXRy, 
PPARy 

mRNA MgCl2 dNTPs Primer Annealing PCR Cycles 

Species (mM) (µM) (µM) Temperature (°C) 
PCRI PCR II 

GAP DH 1.5 0.1 1 60 10 20 

RX Ra 2.5 0.5 1.5 64 25 25 

RXR~ 1 0.5 0.5 50 20 20 

RX Ry 1.5 1.5 1.5 60 25 25 

PPARy 1 0.5 1.5 55 25 25 

RALDH-2 1 0.5 0.5 60 25 25 

ADH1 1 0.25 0.5 48 & 50 20 25 
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FIG 1. Expression of transcript for GAPDH (800 base pairs) using RT-PCR in 25 
pooled embryos at the oocyte, 2-, 4-, 8-, 16 to 20-cell, morula, blastocyst, and 
hatched blastocyst stag,es. Negative control lane contains the product of RT-PCR 
under identical conditions in the absence of RNA template. Products of RT-PCR 
were resolved in 1.5% TAE-agarose gels and visualized by ethidium bromide 
staining. 
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FIG 2. Expression of transcript for RXRu (415 base pairs) (A) and RXRP (207 
base pairs) (B) using RT-PCR in 25 pooled embryos at the 2-, 4-, 8-, 16 to 20-
cell, morula, blastocyst, and hatched blastocyst stages. Negative control lane 
contains the product of RT-PCR under identical conditions in the absence of 
RNA template. Positive control lane contains the product of RT-PCR using RNA 
from hatched blastocysts. Products of RT-PCR were resolved in 1.5% TAE
agarose gels and visualized by ethidium bromide staining. 
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FIG 3. Expression of transcript for PPARy (332 base pairs) (A) and RALDH-2 
_(531 base pairs) .(~) using RT-PCR in 25 pooled embryos at the 2-, 4-, 8-, 16 to 
20-cell , morula, blastocyst, and hatched blastocyst stages. Negative control lane 
contains the product of RT-PCR under identical conditions in the absence of 
RNA template. Positive control lane contains the product of RT-PCR using RNA 
from hatched blastocysts. Products of RT-PCR were resolved in 1.5% TAE
agarose gels and visualized by ethidium bromide staining. 
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FIG 4. Whole mount in situ hybridization with the following digoxigenin-labeled 
bovine cRNA probes: RXRa antisense (A), RXRa sense (B), RXRP antisense 
(C), RXRP sense (D), RALDH-2 antisense (E), RALDH-2 sense (F), and PPARy 
antisense (G), PPARy sense (H) was performed on hatched blastocysts fertilized 
and cultured in vitro. RXRa antisense probe (A) demonstrated a much stronger 
signal in the trophectoderm (thick arrow) and inner cell mass cells (thin arrow), 
than in controls hybridized with a sense RXRa probe (B). RXRP (C) , RALDH-2 
(E) and PPARy (G) mRNA was expressed in the trophectoderm (thick arrow) and 
inner cell mass cells (thin arrow). Hybridization with the sense probe for RXRP 
(D) , RALDH-2 (F) and PPARy (H) was devoid of staining. 
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C 

FIG 5. Whole mount immunolocalization of RXRr3 protein in intact blastocysts 
and hatched blastocysts produced in vitro. In both blastocysts (A) and hatched 
blastocysts (8 ), immunoreactive RXRr3 was localized in both inner cell mass cells 
(thin arrow) and the trophectoderm (thick arrow). Control embryos were prepared 
with the primary antibody omitted (C), secondary antibody omitted (0 ) or both 
primary and secondary antibody omitted (E), and in all cases were devoid of 
immunostaining. 
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FIG 6. Whole mount immunolocalization of PPARy protein in intact blastocysts 
and hatched blastocysts produced in vitro. In both blastocysts (A) and hatched 
blastocysts (B), immunoreactive PPARy was localized in both inner cell mass 
cells (thin arrow) and the trophectoderm (thick arrow). Control embryos were 
prepared with the primary antibody omitted (C), secondary antibody omitted (D) 
or both primary and secondary antibody omitted (E) , and in all cases were devoid 
of immunostaining. 
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ChapterV 

BOVINE CUMULUS-GRANULOSA CELLS CONTAIN BIOLOGICALLY ACTIVE 

RETINOID RECEPTORS THAT CAN RESPOND TO 

RETINOIC ACID 

Abstract 

Retinoids, a class of compounds which include retinal and its metabolite, 

retinoic acid, are absolutely essential for ovarian steroid production, oocyte 

maturation, and early embryogenesis. Previous studies have detected high 

concentrations of retinal in bovine large follicles. Further, administration of retinal 

in vivo and supplementation of retinoic acid during in vitro maturation results in 

enhanced embryonic development. In the present study, we hypothesized that 

retinoids administered either in vivo or in vitro interacts with both the cumulus

granulosa cells and the oocyte. Total RNA extracted from in vitro cultured 

cumulus-granulosa cells was subjected to reverse transcription polymerase chain 

reaction (RT-PCR) and mRNA expression for RBP, RARa, RARp, RARy, RXRa, 

RXRp, RALDH-2, and PPARy. Transcripts were detected for RBP, RARa, RARy, 

RXRa, RXRp, RALDH-2, and PPARy. Expression of RARP was not detected in 

cumulus cells. The biological acitivity of these endogenous retinoid receptors was 

tested using a transient reporter assay using the pAAV-MCS-PRARE-Luc vector. 

Addition of 0.5 and 1 µM all-trans retinoic acid significantly (P < 0.05) increased 
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the activity of the pAAV-MCS-pRARE-Luc reporter compared to cells transfected 

with the control reporter lacking a retinoic acid response element. Addition of 5 or 

10 µM all-trans retinal stimulated a mild increase in reporter activity, however, the 

increase was not statistically significant. Based on these results we conclude that 

cumulus cells contain endogenously active retinoid receptors and may also be 

competent to synthesize retinoic acid using the precursor, retinal. These results 

also indirectly provide evidence that retinoids administered either in vivo or in 

vitro may have exerted a receptor mediated effect on cumulus-granulosa cells. 

Introduction 

Retinoids, which include vitamin A and its active metabolites, are unstable 

hydrophobic compounds essential for cell growth and differentiation (Blomhoff, 

1994) and more importantly, for embryonic and placental development (Bavik et 

al., 1996). Various retinoid binding proteins such as the 21 kDa plasma retinal 

binding protein (RBP), cellular retinal binding protein (CRBP-1 & II) and cellular 

retinoic acid binding proteins (CRABP-1 & II) both of -16 kDa molecular weight, 

exist in the cell. RBP is extracellular and functions in the intercellular transport of 

retinal. On the other hand, CRBP-1 & II functions in the intracellular transport of 

retinal and its metabolism to retinoic acid. CRABP-1 & II not only regulates 

retinoic acid availability to retinoic acid receptors but also modulates its 

metabolism (Napoli, 1996). Biologically active retinoids mediate their effects on 

target cells through binding to two sets of nuclear receptors, namely, retinoic acid 
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receptors (RARs) and retinoid X receptors (RXRs ), that are members of 

steroid/thyroid hormone nuclear receptor superfamily. Both RARs and RXRs 

have three subtypes, a, p, y. Ligand-bound RARs and RXRs function as 

transcription factors by binding to cis-acting DNA sequences called retinoic acid 

response elements (RAREs). RAREs comprise directly repeated hexameric half

sites with consensus sequences (5'-PuG(G/T)TCA-3') and are located within the 

transcriptional regulatory regions of target genes and facilitate transcriptional 

regulation of these genes (Xiao et al., 1995). The first step in the synthesis of 

retinoic acid is the oxidation of retinal to retinaldehyde by alcohol 

dehydrogenases (Clagett-Dame and Deluca, 2003). Both medium and short 

chain retinal dehydrogenases can perform this function. The next step involves 

the oxidation of retinaldehyde to retinoic acid by aldehyde dehydrogenases 

(Clagett-Dame and Deluca, 2003). Several aldehyde dehydrogenases (AlDH) 

including three NAO-dependant enzymes specific for retinaldehyde called 

RAlDH-1, -2 and -3, have been isolated and characterized (Clagett-Dame and 

Deluca, 2003). 

We had earlier shown that both immature oocytes and the early 

preattachment bovine embryo, from the 2-cell to the hatched blastocysts, 

express mRNA for RBP, RARa & y, RXRa & p, and RAlDH-2 (Mohan et al., 

2001, 2002). In addition, we also detected the immunoreactive protein for RARa, 

y2 and RXRP in both inner cell mass and trophectoderm cells of intact and 

hatched blastocysts. Recently, Duque et al. (2002) showed that addition of 5nM 

9-cis retinoic acid (9-cis RA) during prematuration of cumulus-oocyte complexes 
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(COCs) in the presence of roscovitine improved cytoplasmic maturation and had 

a positive effect on blastocyst development and freeze-thaw survival rates. COCs 

treated with 9-cis RA had higher total cell numbers than untreated controls. In 

addition, the same authors also provided evidence to show that 9-cis RA induced 

trophectoderm differentiation, altered inner cell mass to trophectoderm cell ratio 

and also increased pregnancy rates following transfer of 9-cis RA treated day 7 

blastocysts (Hidalgo et al., 2003). Based on these and our earlier studies we 

hypothesize that the cumulus-granulosa cells may be the predominant targets for 

retinoic acid added during in vitro prematuration. The objective of the present 

study is to investigate the presence of the retinoid signaling pathway in cumulus

granulosa cells, and retinoic acid responsiveness in cumulus-granulosa cells. 

Materials and Methods 

Cell Culture 

Experiments were carried out using cumulus cells harvested from follicles 

utilized for our routine in vitro fertilization studies. Cumulus cells that were 

removed following in vitro maturation and at the time of fertilization were 

maintained in Hyclone's high glucose Dulbecco's modified Eagle's Medium 

(Hyclone Laboratories Inc, Logan, UT) containing 1x antibiotic-antimycotic 

(Sigma Chemical Company, MO), and supplemented with 10% fetal calf serum 
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(FCS) (Hyclone Laboratories Inc, Logan, UT). Cultures were maintained at 37°C 

in a humidified atmosphere of 95% air, 5% CO2 and fed every 48 h. 

RNA Extraction and Reverse Transcription Polymerase Reaction 

RNA extraction and reverse transcription were performed according to the 

methods described in Mohan et al. (2001) with the following modifications. In the 

present study total RNA was extracted from cumulus-granulosa cells and only 

one round of PCR was performed owing to the large amount of RNA available 

from cumulus-granulosa cells. 

Reporter Plasmid Constructs 

The plasmid pGL3 promotor vector (Promega Corporation, Madison, WI) 

contains the SV40 promoter driving expression of the firefly luciferase reporter 

gene. To confer retinoic acid responsiveness, a 37 bp consensus retinoic acid 

response element (RARE) from the human retinoic acid receptor ~2 (de The et 

al., 1990) carrying Kpn1 linkers on the 5' prime end of both strands was cloned 

into the multiple cloning region located upstream of the SV40 promoter to 

produce the pGL3 promoter ~RARE plasmid. The expression cassette from the 

pGL3 promoter RARE plasmid was isolated by cutting with the restriction enzyme 

C/a1. A second vector, pAAVMCS (4.7 kb) (Stratagene Corporation, La Jolla, 

CA) containing inverted terminal repeats (ITRs) was digested with Not1 to 

remove the expression cassette (1.8 kb). The remaining backbone of the 

pAAVMCS vector containing the ITRs (2.9 kb) was ligated to the expression 
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cassette of the pGL3 promoter vector to generate the final reporter construct, 

hereafter called pAAVMCS-pGL3-~RARE-Luc vector (Fig. 1 ). pAAVMCS-pGL3-

~RARE-Luc vector was digested with Kpn1 to remove the RARE for control 

studies. 

Transient Transfection Assays 

Cumulus cells were cultured in 48-well plates (Costar, Corning Inc., 

Corning, NY) at a density of 35,000 cells per well in 500 µI of DMEM (Hyclone 

Laboratories Inc., Logan, UT} containing 5% charcoal dextran-extracted FCS, 1 x 

antibiotic-antimycotic and 2mM glutamine (Sigma Chemical Company). At 85-

90% confluency, the cells were transfected with pAAVMCS-pGL3-~RARE-Luc or 

control reporter vector. For each well, approximately 1 µI of the transfection 

reagent (Lipofectamine 2000 Reagent, lnvitrogen Corp, CA) was diluted in 37 µI 

of serum-and antibiotic-free DMEM. DNA was then diluted at a concentration of 

500 ng in 37 µI of serum-and antibiotic-free DMEM in a separate tube. The DNA 

was then mixed with the liposomes and the transfection mixture was incubated at 

room temperature for about 20 minutes for the DNA-liposome complexes to form. 

Before transfection, the culture media in each well was replaced with 200 µI of 

serum-and antibiotic-free DMEM and 74 µI of the DNA-Liposome complex was 

added to achieve a final volume of 274 µI. The transfection media was removed 

6-8 h later and replenished with 500 µI of antibiotic-antimycotic free fresh media 

and the cells were allowed to recover for 24 h. Twenty four hours post

transfection the cells received one of the five treatments: all-trans retinoic acid 
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(Sigma Chemical Co) at two different concentrations (0.5 and 1 µM), 5 or 10 µM 

all-trans retinal, or alcohol vehicle. One micromolar and five micromolar 

concentrations were selected for all-trans RA and all-trans retinal, respectively, 

because these concentrations have been previously shown to enhance in vitro 

bovine embryo development (Duque et al., 2002; Livingston et al., 2002). The 

specified concentration of each ligand was added to triplicate wells and the entire 

assay was repeated twice. Twelve hours post-treatment, the culture medium was 

removed and the cells were washed with Ca2
+-, Mg2

+- containing Dulbecco's 

phosphate buffered saline (DPBS) (lnvitrogen Corporation, CA). Luciferase 

assays were performed using the Luclite Luciferase Reporter gene assay kit 

according to the manufacturer's instructions (Perkin Elmer Life Sciences, Boston, 

MA). The cell lysates were transferred to a 96-well Microtiter luminescence 

microplates (Microlite 1+,Thermo Biosystems, Vantaa, Finland). Luminescence in 

each well was recorded by counting the plates on a TopCount NXT Microplate 

scintillation and luminescence counter (Packard Instrument Company, IL) for 30 

seconds. For each treatment, luminescence recordings were obtained from the 

mean of triplicate wells. Luminescence measurements were normalized to the 

protein content and are expressed as luminescence units per microgram protein. 

The protein content in the cell lysate was measured using the Bio-Rad DC 

protein assay kit (Bio-Rad Laboratories, Hercules, CA). 
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Statistical Analysis 

Luminescence measurements for all five ligand concentrations including 

alcohol from cells transfected with either pAA VMCS-pGL3-PRARE-Luc or the 

control vector were analyzed as a 2 x 5 factorial experiment with subsamples in a 

completely randomized design using Proc Mixed. Mean luminescence 

mesurements for each ligand concentration for both pAAVMCS-pGL3-PRARE

Luc and the control vector transfected cells were compared using the tukey's 

procedure. A probability value of P < 0.05 was considered significant. 

Results 

Reverse Transcription Polymerase Chain Reaction 

Primer sequences and PCR conditions used to amplify RBP, RARa, RARy 

RXRa, RXRP, RALDH-2 and PPAR were previously described (Mohan et al., 

2001; 2002). Products of the predicted size were detected for each target cDNA 

(Fig. 2). The identity of the PCR products was verified by sequence analysis. The 

isolated bovine cDNA sequences exhibited a very high (>90%) homology to 

published mouse and human RBP, RARa and RARy cDNA sequences. 

Out of the three known isoforms for both RARs and RXRs, the expression 

of two were observed in cumulus granulosa cells. A 392 bp and 795 bp product 

was detected for RARa and RARy (Fig. 2), respectively. In addition to the 795 bp 

product corresponding to RARy, a second product migrating between 400 and 
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500 bp was also detected. We have not sequenced the lower molecular weight 

product and therefore, it is not clear if this product represents a different isoform 

of RARy or if it is the result of non-specific amplification. A 311 bp product was 

detected for retinal binding protein. Similarly, a 415 bp and 207 bp product was 

detected for RXRa, RXRP, respectively. On the other hand, expression of RARp 

and RXRy was not detected (data not shown). A 432 bp product representing the 

heterodimerization partner for RXRs, namely, PPARy was also detected in 

cumulus-granulosa cells. Cumulus-granulosa cells also expressed RALDH-2, the 

enzyme responsible for the conversion of retinaldehyde to retinoic acid which 

was detected as a 531 bp fragment. 

Transient Reporter Assays 

To understand the transcriptional properties of the endogenous retinoid 

receptors, a retinoid responsive reporter construct, pAAVMCS-pGL3-pRARE-Luc 

vector was introduced using liposomes into cumulus granulosa cells. A similar 

vector lacking the pRARE was also transfected into cells to serve as a control. 

The assay was performed twice and a similar trend in luminescence activity as 

presented here was observed on both occasions. The data on fold increase 

provided here is from a single assay and is presented in Figure 3. There was a 

vector by ligand concentration interaction and therefore, for each vector, mean 

luminescence measurements at each of the ligand concentrations were 

compared using the tukey's procedure. In Figure 3, both 0.5 and 1 µM all-trans 

RA significantly increased (P < 0.05) pAAVMCS-pGL3-PRARE-Luc activity by 
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3.87- and 2.46- fold, respectively, compared to the cells transfected with the 

control vector. Supplementation of 5 µM retinal caused a mild increase in 

pAAVMCS-pGL3-~RARE-Luc activity (1.63- fold) (P > 0.05). Increasing the 

concentration of retinal from 5 µM to 10 µM accordingly increased pAAVMCS

pGL3-~RARE-Luc activity (2.14- fold) (P > 0.05) compared to the cells 

transfected with the control vector. However, the increase in reporter activity 

observed following retinal treatment at both concentrations was not statistically 

significant. Addition of alcohol vehicle did not ,stimulate an increase in 

pAAVMCS-pGL3-~RARE-Luc activity. 

Discussion 

Cumulus-granulosa cells play a very important role during maturation so 

that the oocyte acquires competence for further development (Fatehi et al., 

2002). Since mammalian oocytes develop in the follicular environment tightly 

surrounded by cumulus cells, these cells directly exert their effects on the 

developing oocyte. Cumulus cells support oocyte maturation before ovulation, 

facilitate oocyte transport into the oviduct during ovulation and thereafter 

orchestrates the complex mechanisms that control the interaction of 

spermatozoa with the oocyte (Tanghe et al, 2002). At least under in vitro 

conditions these observations are exemplified by the fact that cumulus removal 

before IVF reduced cleavage rate in the cow (Fatehi et al., 2002). Administration 
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of retinal to cows in conjunction with superovulation protocols increased the 

number of transferable blastocysts on day 7 (Shaw et al., 1995) and more 

recently improved the yield of cumulus oocyte complexes from heifers following 

transvaginal ultrasound aspiration (Hidalgo et al., 2003). 

Earlier, Scheigwert et al. (1988) and more recently, Brown et al. (2003) 

reported detecting retinal in the follicular fluid of bovine dominant follicles. Both 

these authors observed vitamin A concentrations to be highest in large nonatretic 

follicles and lowest in small atretic follicles and correlated their findings with 

follicular fluid estradiol concentrations. In the later study, both the mRNA and 

immunoreactive RBP was detected in granulosa, theca cells, and the blood 

vessels lining the follicle (Brown et al., 2003). In addition, RBP concentrations 

were also found to be elevated in follicles containing high retinal concentrations 

(Brown et al., 2003). These findings indicate that retinal is available in high 

concentrations in the follicular fluid of large ovulatory follicles and the follicular 

cells were equipped to take up retinal from the follicular fluid. In the present 

study, we also detected mRNA expression for RBP in cumulus cells which is in 

agreement with the findings of Brown et al. (2003), which suggests the capacity 

for intercellular binding and transport of retinal. The presence of RBP does not 

signify the possibility for retinoic acid synthesis or provide information about the 

fate of retinal following uptake by cumulus-granulosa cells from the follicular fluid. 

No effort was made in the present study to investigate the expression of alcohol 

dehydrogenases responsible for the oxidation of retinal to retinaldehyde. We 

earlier reported detecting a product very close to the expected size for alcohol 
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dehydrogenase IV using nested PCR in bovine preattachment embryos (Mohan 

et al., 2002). However, BLAST searches revealed less than 45% homology to 

alcohol dehydrogenase IV. Using RT-PCR, we detected RALDH-2 in cumulus 

granulosa cells indicating the possibility of retinoic acid synthesis at least from 

retinaldehyde. Data from our transient reporter assays show that addition of 

retinal at 5 and 10 µM concentrations to cells transfected with the pAA VMCS

pGL3-pRARE-Luc vector did not cause a significant increase in reporter activity 

compared to controls (Fig. 3). Ethanol was used as a solvent for retinoids used in 

this study and it is possible that ethanol decreased retinoic acid synthesis in 

competition with all-trans retinal to inhibit alcohol dehydrogenase (Molotkov and 

Duester, 2002). This reduction in reporter activity was not observed with all-trans 

retinoic acid since it acts at a step downstream of the inhibitory point. Based on 

these results it is not clear if cumulus cells can oxidize retinal to retinaldehyde or 

in other words if alcohol dehydrogenase activity is existent in cumulus cells. 

Therefore, in the future it may be a good idea to test the effect of retinal dissolved 

in another solvent such as dimethyl sulfoxide on activation of the reporter. The 

detection of RALDH-2, nevertheless, indirectly points towards the likely 

oxidization of retinal to retinoic acid by cumulus-granulosa cells since 

retinaldehyde, the substrate for RALDH-2 is generated from retinal. Retinoic acid 

thus generated may then activate the reporter. 

Transcripts for RARa, RARy, RXRa and RXRp were also expressed in 

cumulus cells (Fig. 2). The presence of both RAR and RXRs would mean that 

both all-trans and 9-cis RA have the potential to exert receptor mediated effects 
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on transcriptional regulation in cumulus-granulosa cells. Interestingly, presence 

of the mRNA does not specify the presence of the mature protein. Furthermore, 

presence of the mature protein does not guarantee biological activity. Therefore, 

we tested the biological activity of both RARs and RXRs using a transient 

reporter assay. Addition of both 0.5 and 1 µM RA significantly increased reporter 

activity in cells transfected with the pAAVMCS vector carrying the RARE 

sequence compared to the cells transfected with the control vector. The main 

reason for performing a retinoid sensitive reporter assay is to only show that the 

retinoid receptors expressed by the oumulus-oocyte complexes are biologically 

active or in other words capable of binding retinoic acid. Therefore, caution 

should be exercised while interpreting the data from the reporter assay since it 

neither represents a dose-response nor a time course study. These results 

basically show that cumulus-granulosa cells contain endogenous retinoid 

receptors capable of binding all-trans retinoic acid and these receptors may 

transduce the retinoid signal further downstream. Based on our transient reporter 

assay results it appears that addition of 5 nM 9-cis and 1 µM all-trans retinoic acid 

to the in vitro maturation medium (Duque et al. 2002) had a direct positive effect 

on the cumulus oocyte complex, thereby enhancing embryo development. We 

also detected transcripts for PPARy in cumulus cells. The expression of PPARy 

further suggests the possibility for heterodimerization between RXRs and 

PPARs. 

The mechanisms by which addition of retinoic acid brought about positive 

effects on embryonic development in earlier studies is unclear and needs further 
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investigation. Exposure of immature porcine granulosa cells to 1 µM retinoic acid 

for 15 hrs inhibited mRNA expression of LH receptor via downregulation of c-fos 

mRNA (Hattori et al., 2000). Consequently, RA-treated immature granulosa cells 

failed to differentiate into mature cells. Similarly, RA also inhibited transcription of 

FSH receptor mRNA in a dose-dependant manner (Minegishi et al., 2000). 

Follicle stimulating hormone is partly responsible for the differentiation process 

initially through the induction of FSH receptors and later of LH receptors (Hseuh 

et al., 1989). It is likely that retinoic acid could have exerted a very similar 

negative effect on bovine cumulus-granulosa cells during in vitro maturation 

(Duque et al., 2002). However, the significance of retinoic acid induced 

downregulation of both LH and FSH receptor mRNA and its consequent effects 

on in vitro oocyte maturation needs future investigation. Further, retinoic acid 

receptors being ligand activated transcription factors are involved in regulating 

the transcription of several genes. One such target gene is midkine, initially 

identified in a teratocarcinoma cell line as a retinoic acid inducible gene 

(Kadomatsu et al., 1988). Midkine belongs to the family of heparin-binding 

growth/differentiation factors. Midkine has been detected and reported to be 

present at a concentration of 125 ng/ml in the bovine follicular fluid (Ohyama et 

al., 1994). Further, in situ hybridization studies have shown that midkine mRNA is 

restricted to the granulosa cells of healthy rat follicles (Karina et al., 1995) and 

RA has been shown to induce a 2-fold increase in midkine mRNA at a 

concentration of 0.3 µM (Minegishi et al., 1996). Similarly, treatment of bovine 

cumulus-granulosa cells with 5 nM 9-cis retinoic acid increased the expression of 
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midkine mRNA (Rayo et al., 2003). More recently, addition of midkine during in 

vitro oocyte maturation influenced cytoplasmic maturation of oocytes and 

increased blastocyst yields compared to untreated controls (Ikeda et al., 2000a, 

2000b). 

In summary, we detected mRNA expression for RBP, nuclear retinoic acid 

and retinoid X receptors, PPARy and RALDH-2 in bovine cumulus granulose 

cells. The activation of the reporter construct following the addition of all-trans 

retinoic acid would indicate that these endogenous retinoid receptors are 

competent to bind the ligand and may be capable of transducing the biologically 

active retinoid signal further downstream. Presence of biologically active retinoic 

acid and retinoid X receptors also suggests that retinal and its metabolite retinoic 

acid may exert transcriptional regulation during in vitro/in vivo oocyte maturation 

in the bovine. Retinoic acid is believed to be a potent regulator of cell 

differentiation, cell proliferation and apoptosis by regulating the expression of 

specific genes. Identification of functional retinoic acid responsive genes and 

their downstream products will throw more light into the mechanisms by which 

retinoic acid addition during prematuration enhanced blastocyst development 

rates and increased blastocyst cell numbers (Duque et al., 2002). Therefore, 

elucidation of the molecular pathways involved in retinoid-mediated regulation of 

gene expression in COCs remains a high priority in the future. 
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Figure 1. The plasmid pAAV-MCS-~RARE-Luc was generated by inserting a 37 
bp consensus retinoic acid response element (RARE) from the human retinoic 
acid receptor ~2 carrying Kpn1 linkers on the 5' prime end of both strands into 
the pGL3 promotor vector (Promega Corporation, Madison, WI). The expression 
cassette with the RARE sequence was then ligated to the back bone of the 
pAAVMCS vector carrying the ITR sequences. This construct was characterized 
by restriction mapping and by dideoxy chain-termination sequencing to verify that 
the ~2 RARE was intact. The SV40 promoter drives expression of the firefly 
luciferase reporter. 
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Figure 2. Expression of transcripts for RBP (311 bp, Lane 2), RARa (392 bp, 
Lane 3), RARy (795 bp, Lane 4), RXRa (415 bp, Lane 6), RXRJ3 (Lane 7, 207 
bp), RALDH-2 (531 bp, Lane 8) and PPARy (332 bp, Lane 9) using RT-PCR in 
cumulus cells. Lanes 1 and 5 contain DNA marker. Negative control lane (not 
shown here) contained the product of RT-PCR under indentical conditions in the 
absence of RNA template. Products of RT-PCR were resolved in 2% TAE
agarose gel and visualized by ethidium bromide staining. 
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Figure 3. Transactivation of retinoid-responsive reporter gene (pAAVMCS-pGL3-
~RARE-Luc) by endogenous retinoid receptors in bovine cumulus-granulosa 
cells. The Y axis represents luciferase activity in luminescence units (LU) per 
microgram total protein following treatment with all-trans retinoic acid (RA) (0.5 
or 1 µM), all-trans retinal (ROH) (5 or 10 µM) and alcohol vehicle control. Each 
sample was accordingly normalized and means±SEs were evaluated for LU/µg of 
total protein. Within each treatment (ligand concentration) means with different 
superscripts differ significantly (P < 0.05). The assay was carried out in triplicate 
wells for each treatment and performed twice. The data shown here is from one 
such experiment. 
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Chapter VI 

ANALYSIS OF GENE EXPRESSION IN THE BOVINE BLASTOCYST USING 

SUPPRESSION SUBTRACTIVE HYBRIDIZATION 

Abstract 

Successful embryonic development is dependant on the stage-specific 

expression of the appropriate genes in the correct tissue at the right time. 

Creating a database on stage-specific gene expression patterns will not only 

throw light on the molecular control of preattachment development but also help 

us better understand those factors responsible for early embryonic mortality. 

Unfortunately, information on stage-specific gene expression during early 

embryonic development in the bovine is lacking. In the present study, we 

compared gene expression between in vitro-produced day 7-8 intact blastocysts 

(driver) and day 9-10 hatched blastocysts (tester) using suppression-subtractive 

hybridization. Pools of 30 embryos for both driver and tester were used in the 

RNA extraction process. From limited amounts of starting material (-400 ng of 

total RNA), a reverse transcription-polymerase chain reaction (RT-PCR) 

procedure was used to amplify the mRNA and generate sufficient cDNA to 

conduct suppression-subtractive hybridization. The subtracted cDNA products 

were cloned and, 126 cDNAs representing expressed mRNAs were isolated, 

sized, single-pass sequenced, and compared to known sequences in GenBank. 
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Ninety-two clones provided sequence information for further analysis. Among 

these, 31 clones exhibited high homology to known genes. Three clones, 

namely, 26S proteasomal ATPase (PSMC3), casein kinase 2 a subunit (CK2) 

and phosphoglycerate kinase (PGK) were selected and further characterized 

using real-time quantitative PCR to assess their differential expression in hatched 

blastocysts. Overall, a 1.3-, 1.6-, and 1.5-fold increase in expression level was 

observed in hatched blastocysts compared with intact blastocyst for PSMC3, 

CK2 and PGK, respectively. The results show that construction of subtracted 

cDNA libraries from small numbers of embryos is feasible and can provide 

information on gene expression patterns during preattachment embryogenesis. 

Introduction 

The development of a fertilized ovum into a highly complex individual 

requires the orchestrated expression of specific subsets of genes. In most 

mammals, including cattle, after fertilization the zygote undergoes several 

cleavage divisions, it compacts and cavitates to form a blastocyst, and hatches. 

These early events, collectively called preattachment embryogenesis, are initially 

supported by the utilization of transcripts and proteins synthesized during 

oogenesis until a stage when the embryonic genome becomes activated. In the 

bovine this occurs around the 8- to 16-cell stage [1]. Further development is 

dependant on the successful control of both temporal and spatial gene 

expression following activation of the embryonic genome. 
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Recent studies reveal that most embryo losses in heifers occur before day 

14 after insemination [2]. Contemporary developments in the in vitro production 

(IVP) of bovine embryos have fostered basic studies aimed toward 

understanding the intricate pathways controlling early embryo development. 

Despite these advances, success rates in terms of blastocyst yields range 

between 30% and 40% following in vitro culture with 50% being able to initiate a 

successful pregnancy following transfer [3]. Furthermore, in vitro produced 

embryos continue to exhibit conspicuous morphological, biochemical and 

metabolic differences compared to their in vivo counterparts [4]. Other 

detrimental effects of in vitro embryo culture include fetal oversize and significant 

fetal loss after Day 35 due to failure of normal allantoic development within the 

conceptus [5]. These negative consequences have substantially hampered the 

field application of in vitro embryo production in the bovine. 

It is presumed that successful preimplantation and early fetal development 

is reliant on the timely expression of approximately 10,000 genes [4]. 

Unfortunately, sequence information for only a few of these genes is currently 

known meaning that our basic understanding of gene expression patterns driving 

blastocyst development is very restricted. In many cases, our present knowledge 

of genes expressed during early embryogenesis in the bovine has been gained 

from studies using data extrapolated from mouse as the starting point. Thus, the 

identification of novel genes and analysis of their function during preimplantation 

embryogenesis in the bovine is necessary. Several modifications of the reverse 

transcription polymerase chain reaction (RT-PCR) have been used to quantify 
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the relative abundances of individual gene transcripts [4]. Differential display RT

PCR developed a decade ago [6] was recently applied to compare patterns of 

RNA expression from preattachment bovine embryos [7]. Large and 

representative subtractive cDNA libraries have been successfully constructed 

from preattachment murine embryos to identify novel genes critical for 

development [8]. 

The present communication describes the use of a modification of 

suppression-subtractive hybridization (SSH) originally developed in 1996 [9], to 

study differential gene expression in the bovine preattachment embryo. Use of 

SSH is advantageous for it enriches low abundance transcripts that are 

differentially expressed in the tester population. For a discussion of the basis of 

SSH and how it leads to the enrichment and isolation of differentially expressed 

transcripts, see [9]. In the present study, we attempted to identify changes in 

gene expression between in vitro produced, intact Day 7-8 blastocysts (driver) 

and day 9-10 hatched blastocysts (tester). A better knowledge of gene 

expression patterns during early preattachment development would yield insights 

into the molecular pathways controlling early development and as a preamble to 

understanding events that may be compromised in early embryonic mortality. 
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Materials and Methods 

In vitro Maturation, Fertilization and Culture 

Ovaries were collected from cows at a local abattoir and transported to the 

laboratory in 0.9% normal saline supplemented with penicillin-G (100 IU/ ml) and 

streptomycin sulfate (0.2 µg/ml) at 26-30°C within 5 h. Oocytes were aspirated 

from follicles ranging in diameter from 2 to 8 mm using an 18-gauge needle and 

transferred into a modified-PBS solution containing 0.3% BSA. In vitro 

maturation, fertilization and culture were performed according to protocols 

described in Mohan et al. [1 O]. 

RNA extraction 

In vitro produced intact blastocyst (day 7-8) and hatched blastocyst (day 

9-10) stages (n=30) were frozen in 250 µI of denaturing solution (4 M guanidium 

isothiocyanate, 25 mM sodium citrate, pH 7.0, 0.5% sarcosyl, 0.1 M 2-P 

mercaptoethanol). Total RNA was extracted according to the method described 

in Mohan et al. [1 O] from a pool of 30 embryos at both stages. 

Driver and Tester cDNA Synthesis 

Due to the small amounts of mRNA extractable from bovine embryos, 

mRNA was reverse transcribed and the cDNA was subjected to the PCR using 

the SMART cDNA synthesis kit (Clontech Laboratories Inc., Palo Alto, CA). 
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Protocols were followed according to the manufacturers instructions. Briefly, 

about 400 ng of total RNA from both blastocysts (driver) and hatched blastocysts 

(tester) were denatured at 70°C for 2 min, then reverse transcribed in the 

presence of 1 µM of cDNA synthesis primer (CDS), 1 µM SMART II 

oligonucleotide, 1 mM of 50X dNTPs and 200 units of reverse transcriptase 

(Superscript, 200 U per reaction; lnvitrogen, Carlsbad, CA) at 42°C for 1 hr. The 

reaction was primed using an anchored oligo-dT primer called the CDS primer, 

carrying an internal PCR primer sequence at the 5' end. The SMART II 

oligonucleotide anneals with the CCC tailing left by the reverse transcriptase on 

the newly formed cDNA and contains the same internal primer as the CDS 

primer. The samples were diluted with 40 µI of Tris-EDTA (TE) buffer and the 

reaction was stopped by heating to 70° C for 7 minutes. Approximately, 4 µI of 

diluted driver and tester cDNA were denatured for 1 minute at 95°C and 

subjected to 34 PCR cycles in the presence of 0.2 mM of 50X dNTP; 0.2 mM of 

PCR primer, which anneals on both the SMART II oligonucleotide; and the CDS 

primer along with 2 µI of 50X Advantage 2 polymerase mix (Clontech). The 

cycling conditions were as follows: denauration at 95°C for 5 sec, annealing at 

65°C for 5 sec and extension at 68°C for 6 min. Aliquots (15µ1) were analyzed on 

a 2% agarose gel. PCR products were extracted once with 150 µI of 

phenol:chloroform:isoamyl alcohol (25:24:1 ). Approximately 120 µI of the 

aqueous phase was removed and concentrated to about 40-70 µI using 700 µI of 

n-butanol. The cDNA was then purified using CHROMA SPIN-350 gel exclusion 

columns (Clontech) to remove unincorporated dNTPs, primers and DNA 
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fragments less than 300 base pairs in length. Both driver and tester cDNAs were 

then digested with 15 units of Rsal in a 500 µI reaction mixture at 37°C for 3 h, 

and the reaction was stopped by adding 8 µI of EDTA. Rsal digested driver and 

tester cDNA were extracted once with phenol:chloroform:isoamyl alcohol. The 

aqueous phase was removed, precipitated with ethanol, and the pellet was 

redissolved in 7µ1 of TNE buffer (1 OmM Tris-HCI pH 8, 1 OmM NaCl, and 0.1 mM 

EDTA). The final concentration of both driver and tester was -300 ng/µI. One 

microliter of Rsal digested tester cDNA was diluted in 5 µI of sterile water, and 2 

µI of diluted tester was then ligated with 2 µI of adapter 1 and adapter 2R (2 µM) 

according to the guidelines provided in PCR-Select cDNA subtraction kit 

(Clontech Laboratories) in separate ligation reactions in a total volume of 10 µI at 

16°C overnight using 400 units of T4 DNA ligase in 2 µI of 5X ligation buffer. The 

ligation was stopped by adding EDTNglycogen mixture and heated at 72°C for 5 

min to inactivate the ligase. Samples were stored at -20°C. A PCR based ligation 

efficiency analysis to verify that at least 25% of the cDNAs had adaptors on both 

ends was performed according to the instructions detailed in the Clontech PCR

Select cDNA subtraction kit user manual. 

Suppression Subtractive Hybridization 

SSH (9) was performed using the Clontech PCR-Select cDNA subtraction 

kit. Briefly, 1.5 µI of driver ds cDNA (-450 ng) was added to each of two tubes 

containing 1.5 µI of adapter 1 and adapter 2R-ligated tester cDNA (-20 ng) in 1 

µI of 4X hybridization buffer. The samples were denatured at 98°C for 1.5 min, 
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and then allowed to anneal at 68°C for 8 h. Following first hybridization, the two 

samples were combined in the presence of fresh excess denatured driver cDNA 

(-300 ng) in 1 µI of 4X hybridization buffer. The samples were allowed to 

hybridize overnight at 68°C. The hybridized samples were diluted in 200 µI of 

dilution buffer (20 mM Hepes, pH 8.3, 50 mM NaCl, and 0.2 mM EDTA), heated 

at 68°C for 7 min, and stored at -20°C. 

PCR Amplification of Subtracted Products 

Two PCR amplifications of the subtracted cDNAs were performed. The 

primary PCR contained 1 µI of diluted, subtracted cDNA, and 24 µI of the PCR 

master mixture prepared using the reagents provided in the kit. PCR was 

performed at 75°C for 5 min to extend the adaptors; 94°C for 25 sec; and 27 

cycles at 94°C for 1 O sec, 66°C for 30 sec, and 72°C for 1.5 min. The amplified 

products were diluted 10-fold in sterile deionized water. The diluted primary PCR 

product was used as template in a secondary nested PCR for 10 cycles at 94°C 

for 1 O sec, 68°C for 30 sec, 72°C for 1.5 min using two nested primers, 1 and 2R, 

provided in the kit. Primary and secondary PCR products were analyzed on a 2% 

agarose gel. A second PCR-based analysis was performed according to the 

instructions detailed in the Clontech PCR-Select cDNA subtraction kit user 

manual to test for the efficiency of subtraction. 
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Cloning and Analysis of Subtracted cDNA 

Following PCR subtraction, the amplified products were cloned into the 

pCR II vector of the TA cloning kit (lnvitrogen) and used to transform competent 

DH5a Escherichia coli cells. Colonies were grown for 16-18 h at 37°C on Luria 

broth (LB) agar plates containing ampicillin, X-gal (5-bromo 4-chloro 3-indoyl-~

D-galactopyranoside), and isopropyl-~-0-thiogalactopyranoside for blue/while 

colony selection. Plasmids were extracted and the inserts were subjected to 

dideoxy chain termination sequencing (Applied Biosystems, Model 373A 

Automated Sequencer, Oklahoma State University Recombinant DNA/Protein 

Resource Facility) and the identity of each product was confirmed in a sequence 

homology analysis using the Basic Local Alignment Search Tool [11]. 

Quantitative 1- step RT-PCR 

Expression of three clones of interest: namely, 26S proteasomal ATPase 

(PSMC3), Casein kinase 2 a II subunit (CK2), and phosphoglycerate kinase 

(PGK) was evaluated by real-time quantitative RT-PCR utilizing a fluorescent 

reporter and 5' exonuclease assay system [12]. This technique from our previous 

experience, is capable of efficiently amplifying and detecting a product from as 

few as 10 copies of the target. Approximately 20 pooled embryos per group were 

grouped as early blastocysts, expanded blastocysts, early hatched blastocysts, 

and late hatched blastocysts (in culture until day 10). One sample from each of 

the 4 stages was assayed in triplicate wells. All 4 samples representing each of 

the 4 stages came from different embryo batches (i.e., embryos from 4 
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independent runs of the in vitro fertilization protocol were present in each pool). 

Reverse transcription of total RNA and PCR amplification was performed using 

the Taqman One-Step RT-PCR Master Mix Reagents Kit, Taqman fluorescent 

probe, and sequence detection primers (PE Applied Biosystems. Foster City, 

CA). Taqman probe specific for target was designed to contain a fluorescent 5' 

reporter dye (FAM) and 3' quencher dye (TAMRA). Each RT-PCR reaction (25 

µI) contained the following: 2X Master Mix without uracil-N-glycosylase (12.5 µI), 

40X Multiscribe and RNAse Inhibitor Mix (0.63 µI), target forward primer (200 

nM), target reverse primer (200 nM), fluorescent labeled target probe (200 nM) 

designed from the mRNA sequence isolated from hatched blastocysts using 

SSH, and total RNA (40 ng) quantified spectrophotometrically based on A260:A280 

ratios. Forward and reverse primer and probe sequence for all three targets are 

shown in Table 1. The PCR amplification was carried out in the ABI PRISM 7700 

Sequence Detection System (PE Applied Biosystems). Thermal cycling 

conditions were 48°C for 30 minutes, 95°C for 10 minutes followed by 40 

repetitive cycles of 95°C for 15 sec and 60°C for 1 minute. As a normalization 

control for RNA loading, parallel reactions in the same multiwell plate were 

performed using 18S ribosomal RNA as target (18S Ribosomal Control Kit, PE 

Applied Biosystems). _ 

Quantification of gene amplification was made following RT-PCR by 

determining the threshold cycle (CT) number for FAM fluorescence within the 

geometric region of the semi-log plot generated during PCR. Within this region of 

the amplification curve, each difference of one cycle is equivalent to a doubling of 
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the amplified product of the PCR. The relative quantification of target gene 

expression across treatments was evaluated using the comparative Cr method 

[13]. The ~Cr value was determined by subtracting the ribosomal Cr value for 

each sample from the target Cr value of that sample. Calculation of ~~Cr 

involved using the highest sample ~Cr value (i.e., sample with the lowest target 

expression) as an arbitrary constant to subtract from all other ~Cr sample values. 

Fold changes in the relative gene expression of target was determined by 

evaluating the expression, 2-M er. 

Statistical Analysis 

Quantitative RT-PCR ~Cr values were analyzed using Proc Mixed [14] as 

a completely randomized design with 4 treatments. Blastocysts grouped as early 

and late (expanded) and hatched blastocysts grouped as early and late (in 

culture until day 10) were considered as four independent treatments. All 

possible comparisons among the different embryonic stages were performed for 

all three mRNAs quantified. A probability value of P < 0.05 was considered 

significant. Results are presented as arithmetic means± SEM. 

Results 

Suppression Subtractive Hybridization 
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After 34 PCR cycles using the SMART cDNA synthesis kit, agarose gel 

electrophoresis revealed cDNA bands ranging in size from 250 bp to 1.5 

kilobases (kb) for both blastocyst and hatched blastocyst (data not shown). 

Following size exclusion chromatography and Rsal digestion, approximate yields 

of cDNA for the tester and driver ranged around 5-8 µg. Two different adaptors 

were ligated to the tester cDNA, and ligation efficiency was confirmed using a 

PCR-based assay employing two different sets of primers in two independent 

PCR reactions. The first set of primers included a glyceraldehyde-3-phosphate 

dehydrogenase-specific (G3PDH 3' primer) primer and PCR primer 1, which 

bound specifically to the adaptor sequence (product size -1.2 kb). The second 

set of primers bound internally to the G3PDH gene (G3PDH 3' and 5' primer) 

(product size -500 bp). The PCR product using both sets of primers resulted in 

bands of the expected size (data not shown). Further, the PCR products 

amplified using both primer sets were of the same intensity, indicating that the 

adaptor ligations worked successfully. Finally, a PCR-based subtraction 

efficiency analysis was done using specific primers provided in the kit by 

comparing the abundance of G3PDH before and after subtraction. For the 

unsubtracted sample, a G3PDH PCR product (500 bp) was seen after 18 cycles 

(data not shown). However, the same product in the subtracted sample appeared 

after 23 cycles (data not shown), indicating that G3PDH levels were reduced 

several fold in the subtracted product. 

A total of 126 clones were selected after SSH, and we obtained partial 

sequence information on 92 clones following dideoxy chain termination 
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sequencing. After restriction digestion with EcoR1 and agarose gel 

electrophoresis it was found that approximately 18% of the clones were in the 

100-300 bp size range, 40% in the 301-500 bp size range, 27% in the 501-800 

bp size range and 15% ranged in size from 801-1500 bp. The partial sequence 

obtained from all 92 clones were compared with known sequences in the 

GenBank (National Center for Biotechnology Information, Bethesda, MD) 

database. Their putative identity, nucleotide homologies with other known 

sequences and insert size are shown in Table 2. Sequence data were submitted 

to the dbEST database (National Center for Biotechnology Information). 

RT-PCR Quantitation Using Taqman PCR 

The mRNA expression of PSMC3, CK2, and PGK was quantified using 

the ABI PRISM 7700 Sequence Detection System (PE Applied Biosystems). 

Specific primers designed for all three genes amplified mRNA in all embryo 

samples with alteration of probe fluorescence detected within 30 cycles (Table 

3). The relative abundance of mRNAs encoding PSMC3, CK2 and PGK was 

calculated using the comparative Cr method (Table 3). 

Ribosomal 18S RNA was used to normalize each sample for variation in 

RNA loading. As shown in Table 3, 18S rRNA was variable across 

developmental stages as a result of the dynamic nature of the RNA populations 

in the developing embryonic cells. We are not aware of any product suitable as a 

stable normalizer for this type of analysis in the preattachment embryo. Results 
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with G3PDH (not shown) reveal that it is also dynamic in these embryos, as are 

structural elements as actin. 

Based on normalization with 188 rRNA levels, expression of 268 

proteasomal ATPase (PSMC3) mRNA in early intact blastocysts was significantly 

different from late hatched blastocysts (P < 0.05). Similarly, expression of CK2 

mRNA in late intact blastocysts was significantly different from late hatched 

blastocysts (P < 0.05). However, in the case of PGK, early hatched blastocysts 

exhibited significant differences compared to late hatched blastocysts (P < 0.05). 

Overall, hatched blastocysts had higher expression levels than intact blastocysts 

for all three genes examined as well as for 188 rRNA. Differences in expression 

for all three genes based solely on RNA loading in the PCR reactions were 

several fold greater between intact and hatched blastocysts (4- to 8-fold; Table 3) 

than when analysis was based on normalization. This can be evaluated based 

simply on the differences in average Cr values. We report the more conservative 

approach above, and recognize the technical limitations of using a normalization 

control. 

Discussion 

Early embryonic mortality is a well-recognized cause for reproductive 

failure in cattle leading to the loss of a large number of potential calves, retarded 

genetic progress, and significant loss of money and time in rebreeding cows. 

Owing to the even greater losses when employing in vitro fertilized embryos, 
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suggestions have been made to transfer at least two embryos to achieve a 

successful pregnancy [15). It is very likely that several extrinsic and intrinsic 

embryonic factors could be at fault. Focusing our efforts to circumvent various 

factors intrinsic to the embryo would require us to have a better insight into the 

changes in gene expression occurring during early embryo development. 

Embryonic development is to a great extent controlled and regulated by 

differential gene expression and successful development to term is strictly 

contingent upon these changes in gene expression taking place at the right time 

in the appropriate tissue. 

Since each stage of embryonic development is characterized by the 

activation of a diverse set of genes [16), it is becoming increasingly necessary 

that we have a better perception of stage-specific gene expression patterns. 

Much progress has been made in understanding normal embryonic development 

in mice through transgenic and knockout experiments [17), however, these 

developments are only beginning in domestic animals. Suppression subtractive 

hybridization is a very sensitive technique and has the advantage of greatly 

enhancing levels of mRNA sequences that are unique to the tissue of interest 

being investigated, while reducing sequences that are common to both tissues 

being compared. The entire task can be accomplished without prior knowledge of 

genes being expressed, and yields subtracted cDNA that is either upregulated or 

differentially expressed. Making use of SSH, stage specific gene expression 

patterns were recently described for the hatched blastocyst in human [18) and 

day 15 conceptuses in the equine [19). Working along the same lines, in the 
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present study, we report the construction of a subtracted cDNA library from 

bovine hatched blastocysts. Approximately 92 from a total of 126 clones isolated 

provided sequence information. Homology searches revealed the identities of 31 

clones with known genes (Table 2), among which three of them, namely, 26S 

proteasomal ATPase (PSMC3), CK2, PGK with known established roles during 

early embryogenesis were further characterized using real time quantitative PCR. 

In the rest of the discussion, a possible relationship between the known 

physiological functions of these three cDNAs and early embryogenesis in the 

bovine is described. 

Protein synthesis in the early preattachment embryo has been subjected 

to a great deal of scrutiny in the recent past [20-22]. The protein content of in vivo 

derived preattachment cattle embryos from the two-cell through to the elongated 

blastocyst at day 16 has been described [20]. The protein content increased two 

fold from the morula to the expanded blastocyst stage followed by a 160-fold 

increase to the hatched blastocyst stage on day 13. While protein synthesis is 

critical, proteolysis on the other hand is equally vital to the upkeep of appropriate 

levels of short-lived and regulatory proteins mostly involved in basic cellular 

processes such as regulation of cell cycle and division, development and 

differentiation, cellular metabolism, heat shock and stress response, modulation 

of the immune and inflammatory responses, modulation of cell surface receptors 

and ion channels, transcription, and signaling factors, [23, 24]. 

In eukaryotic cells, degradation of intracellular proteins is mediated by a 

non- lysosomal ATP-dependant protease complex, the 26S proteasome. This 
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complex, present in both the nucleus and cytoplasm, consists of a proteolytic 

cylinder-shaped particle (20S proteasome) and an ATPase-containing complex 

(19S cap complex). The ubiquitin conjugated proteins are unfolded by the 19S 

regulatory subunit thereby facilitating their entry into the 20S proteasome cylinder 

particle (25, 26). Several ATPases with a highly conserved ATPase domain [27] 

such as PSMC1 (S4), PSMC2 (MSS1 ), PSMC3 (TBP1 ), PSMC4 (TBP7) and 

PSMC5 (TRIP1) comprise the 19S complex. While protein synthesis has been 

extensively researched in the early preattachment embryo, protein degradation 

or its control during preattachment bovine embryo development has never been 

looked into. One of the subtracted products isolated and further characterized in 

the present study revealed 90% similarity to the conserved ATPase domain of 

PSMC3 as well as tat binding protein 1 (TBP1 ). PSMC3 which is synonymous to 

TBP1 was earlier identified as a component of human immunodeficiency virus 

tat-binding protein and negatively regulated tat-mediated transcriptional activity. 

In Table 3, the CT values for 26S proteasomal ATPase (PSMC3) decreased in 

the hatched blastocysts indicating that the target copy numbers were higher in 

the hatched blastocysts which agrees with the fact that SSH enables isolation of 

differentially expressed/upregulated sequences. After normalization with an 

internal control such as 18S rRNA we see that the fold differences when 

expressed with respect to late blastocysts, on an average scale increased by 

approximately 1.3 fold in the hatched blastocysts (Table 3). The differential 

expression of this ATPase may be indicative of an energy-dependant active 

protein degradative process in the hatched blastocyst to eliminate abnormal 

164 



proteins along with various cell cycle regulatory proteins so that development 

can continue uninterrupted. From recent studies in mice it appears that PSMC3 

may be highly indispensable for early preattachment development because 

PSMC3 knockout mice fail to implant owing to defective blastocyst development 

[28]. E3.5 PSMc3-1- embryos when cultured in vitro for 5 days exhibited shrinking 

of embryonic cells and failed to differentiate into trophectoderm and inner cell 

mass cells. Taken together, these and our findings lead to the suggestion of a 

specific role for PSMC3 in blastocyst formation in the bovine. 

Casein kinase-2, a pleiotropic serine-threonine specific growth related 

protein kinase is known to regulate a myriad of intracellular processes 

fundamental to maintaining cell viability, cell proliferation and differentiation, 

signal transduction, transcriptional control, apoptosis, cell cycle, etc. [29]. Not 

only it is ubiquitously expressed in every eukaryotic tissue but also in every 

cellular compartment [30]. Described to exist as a spontaneous heterotetramer 

(Mr of -130,000) it is composed of two catalytic subunits namely, a, (Mr 42-44 

kDa) and/ or a' (Mr 38 kDa) and two non-catalytic ~-subunits whose Mr in animals 

is approximately 26 kDa. In contrast to other protein kinases, CK2 is unique in its 

ability to utilize GTP, in addition to ATP as a phosphate donor. Approximately 

160 proteins are known to be phosphorylated by CK2 including several proteins 

involved in cell cycle control, transcriptional and translational processes (29). 

To our knowledge, CK2 expression or activity has never been investigated 

during early embryogenesis in the bovine. A second cDNA clone isolated had 

very high homology to the regulatory alpha subunit of CK2 of several species 
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(Table 3) and its expression was quantified using the taqman PCR assay. 

Following quantification, an approximately 1.6 fold increase in CK2 mRNA levels 

was detected in hatched blastocyst compared to intact blastocysts (Table 3). 

Considered by some as a "proliferation marker", the high expression pattern of 

CK2 in hatched blastocyst is no surprise as the hatched blastocyst is a stage 

during embryonic development where naturally high proliferation rates prevail. An 

increase in CK2 has been reported during late embryogenesis in mice [31] and 

early embryogenesis in nematodes [32] and insects [33]. In sea urchins, almost 

all of the increase in phosphorylation during early development has been 

attributed to CK2 like activity [34]. Embryonic stage-specific changes in protein 

phosphorylation has been described for mice [35] and more recently in 

elongating blastocysts in cattle [36]. In the mouse, protein phosphoryation is 

associated in critical events such as zygotic genome activation [37], blastocyst 

expansion [38] and is required for preimplantation embryo development [39]. 

Interestingly, growth factors, whose participation in promoting early 

embryogenesis is quite transparent, have also been shown to satisfy this 

essential role at least in part by regulatin'g the expression and activity of CK2 

[40]. 

The current school of thought on blastocyst formation involves the 

establishment of a trans-trophectoderm ion gradient(s), contributed equally by 

Na/K-ATPase, which drives water through water channels called aquaporins [41 ]. 

Aquaporins belong to a critical group of genes whose members are integral 

membrane proteins and function to channel the movement of water through the 
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cell membrane [42]. A role for CK2 in blastocyst formation is further strengthened 

by the presence of supposed CK2 phosphorylation sites in the primary amino 

acid sequence of aquaporins [42]. Recently, it was reported that CK2 may be 

involved in the phosphorylation of the proteasome and is critical for its 

association with the 19S regulatory complex and activity [43]. Very interestingly, 

in sea urchins, inhibition of CK2 activity delayed hatching of the blastula from the 

fertilization envelope and the transition from blastula to gastrula [34]. It is an 

interesting question to ask whether a similar cause-and-effect relationship would 

be applicable to the bovine blastocyst. Taken together, the hitherto known 

functions of CK2 fit very well with the events leading to the formation and 

possibly hatching of the blastocyst implying that CK2 activity has important 

physiological roles during early embryogenesis in the bovine. 

Two metabolic pathways, namely, the pentose phosphate pathway and 

the Embden-Meyerhof pathway play essential roles during embryo development 

[44]. Cattle embryos utilize very little glucose until the 16-cell stage [3, 44, 45]. 

However, utilization of glucose significantly increases at the morula stage [44] 

through to blastocyst expansion [45]. PGK catalyzes the first ATP-generating 

reaction in glycolysis by transferring a phosphoryl group from the acyl phosphate 

of 1,3-bisphosphoglycerate to ADP forming 3-phosphoglycerate and ATP. A third 

subtracted cDNA clone representing PGK was isolated and selected for further 

characterization using real-time PCR. Similar to the previous two products, the 

expression of PGK was 1.5 fold higher in hatched blastocysts compared with 

intact blastocysts (Table 3). The expression of PGK would suggest active 
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utilization of glycolytic substrates like glucose to meet the energy requirements of 

the early embryo. An increase in the utilization of glucose has been reported as a 

means to meet the growing energy demands of Na+-K+ ATPase required for the 

formation and maintenance of the blastocele [45] and one other report suggested 

it to be essential for hatching of the bovine blastocyst [46]. Higher glucose 

utilization has also been directly correlated with greater blastocyst viability [4 7] 

and better developmental potential in vitro in day 10 cattle embryos [46]. The 

trend towards higher expression of PGK as embryo development advances seem 

to agree with the aforementioned reports on glucose utilization/metabolism by the 

bovine embryo in vitro. 

In summary, data presented here are the first description of the generation 

of an embryonic preattachment stage-specific cDNA library using SSH in the 

bovine. We successfully sequenced and identified several differentially 

expressed mRNAs from in vitro produced bovine hatched blastocysts which may 

play important roles during early embryogenesis. Expression levels of three of 

these mRNAs, namely, 26S proteasomal ATPase (PSMC3), CK2 and PSGK 

known to be associated with early embryogenesis were shown to increase in the 

hatched blastocyst using the Taqman real-time quantitative PCR assay. The 

information available on these three markers together with our findings suggest 

that they may have an imperative role to play during preattachment 

embryogenesis. The characterization studies done in the present study pertain to 

in vitro derived embryos and need to be extended to their in vivo counterparts 

and also to embryos produced in defined culture systems. The subtracted clones 
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analyzed in the present study were randomly picked and they certainly do not 

represent true positives meaning they are not solely specific to the hatched 

blastocysts. Hence, a different approach to follow in future studies would be to 

identify the true positive clones using a differential screening protocol. These 

subtracted stage specific cDNA clones can be spotted on a microarray and we 

anticipate that, in the future, mRNA phenotyping on embryos subjected to 

differing culture conditions will be profiled with greater ease and thereby, 

immensely augment our ongoing efforts to optimize culture environments in vitro. 

The use of these advanced molec1e1lar techniques to study preattachment 

embryogenesis in the bovine is expected to create new prospects for research 

and substantially contribute to the enduring efforts to understand embryo 

development so that assisted reproduction technologies can be successfully 

applied in the bovine. 
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Table 1. Primers and probe sequences used for Real time RT-PCR. 

Gene Primer sequence Probe sequence 

PSMC3 5'-AAGTCTCCCGGCTTCAGCTT-3' 5'-FAM-TCGGCATCCACCAAGCCAATCACT-TAMRA-3' 
5' -ACGCGGCAGACCTACTTCCT-3' 

CK2 5' -CCAAGGCAGGGAGTTCGT-3' 5' - FAM-CACACTGGCAGACA TTGT AAAAGACCCTGTGT-
5' -GAG GCGGTCCCAACATCA-3' TAMRA-3' 

PGK 5'-GATGTTTATGTCAATGATGCTTTTGG-3' 5'-FAM-TGCTCACCGAGCCCACAGCTCC-T AMRA-3' 
5'-TCTTTGGCAGA TTTACTCCTACCA-3' 
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Table 2. Identity, size and percentage homology of putative bovine hatched blastocyst subtracted cDNA clones compared 
to known sequences in GenBank. 

Identity Clone number Accession number Base pairs Homologya 
sequenced 

60S Ribosomal protein OKST HatBlast- 01- BM076109 320 Human 92% (296/320) 
L7 (8 clones) 05, 14-16 
Proteasome 26S subunit OKST HatBlast- 21 BM076114 672 Human 90% (366/403) 
ATPase (PSMC3) Mouse 88% (350/397) 

Phosphoglycerate kinase OKST HatBlast- 23 BM076116 610 Human 93% (567/606) 
1 Mouse 89% (525/589) 

40S Ribsomal protein OKST HatBlast- 29 BM076118 616 Human 92% (421/457) 
S25 Mouse 88% (391/443) 

Rat 90% (352/388) 

Ribosomal protein L27 OKST HatBlast- 30 BM076119 320 Human 91 % (245/267) 
Mouse 91 % (239/262) 

Dog 95% (247/260) 

Chaperonin 10 OKST HatBlast- 31 BM076120 588 Cow 96% (443/457) 
Human 90% (391/430) 

Rat 87% (342/392) 
Mouse 87% (322/369) 

Chicken 80% (180/224) 

SH3- domain protein 5 OKST HatBlast- 36 BM076123 730 Human 91 % (421/462) 
(Ponsin) Mouse 87% (381/435) 

Glycine receptor beta OKST HatBlast- 37 BM076124 350 Cow 89% (204/229) 
subunit 
Ribosomal protein L 18a OKST HatBlast- 42 BM076128 147 Human 90% (108/120) 

Activated RNA OKST HatBlast- 46 BM076131 490 Human 91 % (368/401) 
polymerase II Mouse 87% (359/411) 
transcription cofactor 4 

Casein kinase II alpha OKST HatBlast- 48, BM076133 341 Cow 100% (308/308) 
subunit (2 clones) 88 Human 97% (299/307) 

Mouse 94% (290/308) 

Cytochrome C oxidase OKST HatBlast- 49, BM076134 593 Cow 99% (317/320) 
subunit VII (COX7c1) (5 103, V, Z, BB Human 87% (185/212) 
clones) Mouse 88% (156/176) 

Tropomyosin OKST HatBlast- 51-52 BM076135 321 Human 83% (198/236) 
pseudogene (2 clones) 

Mannosidase alpha OKST HatBlast- 57 BM076138 216 Human 85% (181/211) 
Class 2A member 1 Mouse 83% (168/201) 

Transcription elongation OKST HatBlast- 58 BM076139 621 Human 90% (313/346) 
factor B Mouse 90% (284/315) 

Mitochondrial ribosomal OKST HatBlast- 59 336 Human 93% (213/228) 
protein S21 Mouse 85% (188/219) 

Chloride intracellular OKST HatBlast- 70 BM076142 283 Human 91 % (261/283) 
channel Mouse 88% (252/286) 

KIAA0809 protein OKST HatBlast- 73 BM076143 491 Human 92% (455/491) 

Eukaryotic translation OKST HatBlast- 75, BM076145 295 Human 92% (274/295) 
initiation factor (EIF5) (2 92 Rat 91 % (269/295) 
clones) 
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Zinc finger protein 277 OKST HatBJast- 85 BM076147 283 Human 98% (225/228) 
(2NF 277) 

Opa-interacting protein OKST HatBJast- 93 BM076151 277 Human 93% (249/265) 
OIP2 

RNA polymerase I (DNA OKST HatBJast- 97 BM076154 628 Human 91 % (272/296) 
directed I Mouse 86% (249/288) 

Rat 88% (255/287) 

Nucleosome assembly OKST Ha!Blast- 99, BM076155 271 Human 86% (86/99) 
protein 1 like (NAP ILi) (2 102 
clones) 

Mitochondrial ribosomal OKST HatBlast- 100- 239 Human 90% (137/151) 
protein (MRP L24) (2 101 
clones) 

Ribosomal protein S26 OKST HatBlast- 104 BM076158 216 Human 92% (179/194) 
(RPS 26) 40S (2 clones) Mouse 89% (170/190) 

Rat 90% (157/193) 

DC 13 protein OKST Ha!Blast- C BM076162 650 Human 95% (159/166) 

Deoxyguanosine kinase OKST HatBJast- H, I BM076163 318 Human 96% (308/318) 
(2 clones) 

Mitochondrial ribosomal OKST Ha!Blast- Q 388 Human 86% (124/143) 
protein L20 Mouse 83% (113/135) 

Mariners transposase OKST HatBlast- R BM076166 568 Human 93% (496/533) 
gene 

Mitochondrial ATP OKST HatBlast- T 341 Human 99% (108/109) 
synthesis d-subunit 

Other Mitochondrial OKST HatBJast- 28, 
genes (8 clones) 33,35,62, 63,64,65, 

w 
Unknown (36 Clones) OKST Ha!Blast- 13, (Within the series 

17, 18, 19,20,22,27, 
32,34,38,39,41,44, BM076109-
45,47,53, 56,66,67, BM076168) 
68, 69, 74,83,84,86, 
87, 89, 90, 95, 96, 
108, 109,112,L,O,X 

aThe percentages are based on BLAST searches of the Gen Bank database. The numbers in parethesis show 
the number of bases (query/subject) that were compared. 
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Table 3. Quantitative PCR analysis of specific mRNA expression in bovine blastocysts. 

Embryonic Subtracted 18S rRNA 8CT :I: ,r MCT§ Fold difference 
stage product Average cTt 

Average Cr t 

PSMC3 
Blastocyst 
Early 25.75 ± 0.37 23.05 ± 0.08 2.7 ± 0.388 -1.25 ± 0.38 2.4 (1.83-3.09) 
Late 27.27 ± 0.07 23.32± 0.18 3.94 ± 0.19ab 0.00 ± 0.19 0.00 

H. Blastocyst 
Early 24.88 ± 0.05 21.45 ± 0.16 3.43 ± 0.17 ab - 0.51 ± 0.17 1.4 (1.27-1.6) 
Late 23.90 ± 0.15 20.25 ± 0.01 3.65 ± 0.15b -0.3 ± 0.15 1.2 (1.23-1.37) 

CK2 
Blastocyst 

1.63 ± 0.19 ab Early 24.68 ± 0.31 23.05 ± 0.08 -0.49 ± 0.19 1.4 (1.23-1.6) 
Late 25.43 ± 0.03 23.32 ± 0.12 2.11 ± 0.128 0.00 ± 0.12 0.00 

H. Blastocyst 
Early 22.89 ± 0.59 21.45 ± 0.08 1.45 ± 0.59 ab -0.66 ± 0.59 1.6 (1.05-2.37) 
Late 21.67 ± 0.08 20.25 ± 0.005 1.41 ± o.o8b -0.7 ± 0.08 1.6 (1.54-1.72) 

PGK 
Blastocyst 

1.92 ± 0.09 ab Early 24.97 ± 0.04 23.05 ± 0.08 0.00 ± 0.09 0.00 
Late 24.87 ± 0.08 23.32 ± 0.12 1.55±0.15ab -0.38 ± 0.15 1.3 (1.17-1.44) 

H. Blastocyst 
Early 22.93 ± 0.21 21.45±0.16 1.48 ± 0.268 -0.44 ± 0.26 1.4 (1.13-1.62) 
Late 21.53 ± 0.26 20.25 ± 0.005 1.27 ± 0.26b -0.65 ± 0.26 1.6 (1.31-1.88) 

tcr = Cycle threshold: cycle number in which amplification crosses the threshold set in the geometric portion of 
amplification curve. 
*8Cr = Subtracted gene product of interest Cr - 18s rRNA Cr : normalization of PCR cycles for subtracted gene target 
with 18s rRNA and the values are presented as a mean Cr± SD 
§88Cr = Mean 8Cr - highest mean 8Cr value: the mean value of either early or late blastocyst (highest 8Cr; lowest 
expression of target in study) was used as a calibrator to set the baseline for comparing mean differences in values 
across all other stages. 
,rabvalues with a common superscript within same column for each of the three mRNAs do not differ significantly (P > 
0.05) 
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Chapter VII 

COMPARATIVE GLOBAL GENE EXPRESSION ANALYSIS BETWEEN IN VIVO 

AND IN VITRO DAY 7 BOVINE BLASTOCYSTS 

Abstract 

In vitro produced bovine embryos (IVP) have darker cytoplasm, reduced 

buoyant density, fragile zonae pellucidae, chromosomal abnormalities, higher 

pregnancy failure rates and altered gene expression compared to embryos 

produced in vivo. Characterization of early deviations in gene expression would 

enable us to better understand the biology of early embryo development and 

improve in vitro culture systems. Here we compared gene expression between 

Day 7 blastocysts generated in TCM 199 with 5% FBS and Day 7 in vivo derived 

blastocysts and using suppression-subtractive hybridization (SSH). Pools of 25 

embryos for both driver and tester were used in the RNA extraction process. The 

subtracted products were cloned and subjected to differential hybridization 

screening analysis. cDNAs were isolated, single-pass sequenced and subjected 

to BLAST search. Of 32 in vivo ESTs (expressed sequence tags) that provided 

sequence information, 30 matched homologous sequences in GenBank. Of 32 in 

vitro ESTs, 22 provided specific matches while the remaining 10 represented 

novel transcripts. Two in vivo ESTs, galectin-1 and fibronectin, and one in vitro 

EST, filamin A, were further characterized using real-time quantitative PCR. 
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Significant increases in the expression level of galectin-1 and fibronectin were 

observed in the in vivo derived blastocysts compared to blastocysts produced in 

TCM199 with 5% FBS and CR1 aa cultures. No significant difference in filamin A 

expression was found between blastocysts derived in vivo and those from either 

of the in vitro production systems. We conclude that these techniques are useful 

to characterize the transcriptome of the early prettachment embryo and observed 

deviations in mRNA expression may partially explain the differences in quality 

between in vivo and in vitro produced embryos. 

Introduction 

Following the birth of the first in vitro matured, fertilized and cultured calf in 

1982 (Brackett et al., 1982), in vitro embryo production (IVP) technology showed 

great promise as a tool for both basic research and commercial applications. 

Improvement in IVP over the last decade has resulted in at least 30-40% of 

immature oocytes developing to the blastocyst stage following in vitro maturation, 

fertilization and culture (Niemann and Wrenzycki, 2000; Gutierrez-Adan et al., 

2001 ). Unfortunately, the quality and developmental competence of in vitro 

produced bovine embryos has failed to keep up with those of their in vivo 

counterparts (Viuff et al., 1999, 2000). 

To date, several differences have been recorded between in vivo and in 

vitro produced bovine embryos (Holm et al., 1998). In vitro produced blastocysts 

have gross morphological abnormalities such as having darker cytoplasm (Leibo 
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et al., 1995) and swollen blastomeres (Rizas et al., 2001 ), low buoyant density 

due to high lipid content (Leiba et al., 1995), high proportion of polyploid cells 

(Viuff et al., 1999, 2000; Slimane et al., 2000), a very delicate zona pellucida 

(Duby et al., 1997), reduced perivitelline space, accelerated development rates 

(Thompson et al., 1998; Lonergan et al., 1999), and aberrant expression of gap 

junctional proteins (Bony et al., 1999). In addition, differences have been 

observed in embryonic metabolism (Niemann and Wrenzycki, 2000; Khurana and 

Niemann, 2000) and gene expression patterns (Lazzari et al., 2002; Rizas et al., 

2002, 2003). These differences might explain the high embryonic and fetal losses 

(Niemann and Wrenzycki; Thompson et al., 1998) that have been observed 

following the transfer of in vitro fertilized embryos. 

While the innate quality of the oocyte to a great extent determines the 

fraction of oocytes developing to the blastocyst stage (Rizas et al., 2002), recent 

evidence suggests that the in vitro culture environment to which the embryos are 

exposed following fertilization is the key determinant of blastocyst quality (Rizas 

et al., 2002). Therefore, any inadequacies in the culture environment can 

seriously compromise the developmental potential of in vitro produced embryos. 

Suboptimal in vitro culture conditions have been previously shown to modify the 

expression patterns of several developmentally important genes (Lazzari et al., 

2002; Niemann et al., 2003). It is presumed that successful preimplantation and 

early fetal development is reliant on the timely expression of approximately 

10,000 genes. Therefore, we hypothesize that, in addition to the existing 
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information, differences in relative abundance exist for several hitherto 

unidentified developmentally important genes. 

Several modifications of the reverse transcription polymerase chain 

reaction (RT-PCR) have been used to quantify the relative abundances of 

individual gene transcripts (Niemann and Wrenzycki, 2000) and these include 

DD-RT-PCR (Natale et al., 2000), semiquantitative RT-PCR (Wrenzycki et al., 

2002), RT-AFLP (Rizas et al., 2002). In this study, we describe the use of SSH 

originally developed in 1996, (Diatchenko et al., 1996) and its applicability to 

studying differential gene expression in early preattachment bovine blastocysts. 

Use of SSH is advantageous for it enriches low abundance transcripts that are 

differentially expressed in the tester population. In the present study, we 

attempted to identify changes in gene expression between in vitro produced day 

7 blastocysts (driver) and in vivo derived day 7 blastocysts (tester) and vice 

versa. A comprehensive knowledge of altered gene expression patterns induced 

by the post fertilization culture environment would help us better understand the 

factors responsible for poor embryo quality, high embryonic loss and abnormal 

embryonic development. These studies will further provide us an opportunity 

sometime in the future to utilize the expression patterns of these marker genes to 

modify and improve the composition of in vitro culture media. 
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Materials and Methods 

In Vitro Maturation, Fertilization and Culture 

Ovaries were collected from cows at a local abattoir and transported to the 

laboratory in 0.9% normal saline supplemented with penicillin-G (100 IU/ ml) and 

streptomycin sulfate (0.2 µg/ml) at 26-30 °C within 5 h. Oocytes were aspirated 

from follicles ranging in diameter from 2 to 8 mm using an 18-gauge needle and 

subsequently placed into a modified-PBS solution. In vitro maturation, fertilization 

and culture were performed according to protocols previously described in 

Mohan et al. (2001 ). Zygotes were cultured in CR1 aa medium with 5% FBS 

introduced on day 5 of in vitro culture. For Real-time quantitative PCR analysis, 

three independent groups of embryos from each of the three production systems 

ie., in vivo-derived, in vitro produced embryos cultured either in TCM199 or 

CR1 aa with 5% FBS with each group containing ten embryos were utilized. Total 

RNA was extracted from -10 pooled day 7 in vivo blastocysts, day 7 in vitro 

blastocysts cultured in TCM199 with 5% FBS as well as CR1aa. In vitro 

produced embryos originating from either TCM199 or CR1aa cultures were 

visually monitored during in vitro culture and only unexpanded, morphologically 

clear and uniform looking intact blastocysts were selected RNA extraction. 

In Vivo Embryo Production 

For in vivo blastocyst production, Angus cows were superovulated by i.m. 

300 mg of FSH (Folltropin; London, ON, Canada) given in a series of decreasing 
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doses over a 4-day period. On the morning and evening of the third day of FSH 

treatment an i.m. injection of 25 mg of prostaglandin F2a was administered to 

induce luteolysis. Donor cows were artificially inseminated 12 and 24 h after first 

standing estrus with semen from a proven Hereford sire. Early stage blastocysts 

were recovered by nonsurgical uterine flushing on Day 7 after the first standing 

estrus (Day O = standing estrus). 

RNA Extraction 

In vivo and in vitro produced unexpanded blastocysts with intact zona 

pellucida (day 7) (n=25) were frozen in 250 µI of denaturing solution (4 M 

guanidium isothiocyanate, 25 mM sodium citrate, pH 7 .0, 0.5% sarcosyl, 0.1 M 2-

P mercaptoethanol). In vitro produced embryos were visually monitored during in 

vitro culture and only unexpanded, morphologically clear and uniform looking 

intact blastocysts were selected for RNA extraction. Total RNA was extracted 

from a pool of 25 embryos at both stages according to the method described in 

Mohan et al. (2001 ). 

Suppression Subtractive Hybridization and PCR Amplification of 

Subtracted Products 

Subtractive hybridization was performed using the CLONTECH PCR

Select cDNA subtraction kit as described in Mohan et al. (2002) using cDNA 

synthesized with the SMART™ cDNA synthesis kit (CLONTECH Laboratories, 

Inc, Palo Alto, CA). After completion of PCR and before subjecting the amplified 
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products to SSH, 5 µI aliquots were run on a 2% agarose gel to verify that the 

amplified products ranged in size from 500 bp to about 6 kb and were not 

inadvertently overamplified. Subtraction was performed in two directions: cDNA 

derived from in vivo blastocysts served as tester and in vitro blastocyst cDNA 

served as driver and vice versa. In brief, both the tester and driver cDNAs were 

digested with Rsal following which two different adaptors, namely, adaptor 1 or 

adaptor 2R were ligated to two separate pools of tester cDNA in independent 

ligation reactions. Adaptor ligated tester cDNAs were then allowed to hybridize in 

the presence of excess driver cDNA in two separate hybridization reactions. The 

two tester populations ligated with the two different adaptors were then mixed in 

the presence of excess driver and allowed to hybridize a second time. After the 

second hybridization, tester cDNA was subjected to a primary and a secondary 

PCR amplification. Following subtractive hybridization and PCR amplification, the 

amplified products were cloned into the pCR II vector of the TA cloning kit 

(lnvitrogen, Carlsbad, CA) and used to transform competent DH5a Escherichia 

coli cells. 

Differential Screening and Clone Analysis 

Ninety six clones each from the in vivo and in vitro blastocyst-enriched 

libraries were randomly picked and grown overnight in 96-well plates. Plasmids 

from each clone were extracted and four identical dot blots were prepared for 

each subtraction. The forward subtracted, unsubtracted and reverse subtracted, 

unsubtracted PCR products were purified, digested with Rsal to remove the 
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adaptor sequences, and used as templates for synthesizing probes for 

differential screening. The Rsal digested products were purified and non

radioactively labeled with digoxigenin using the random-primed DNA labeling kit 

(Roche Diagnostics, Mannheim, Germany). Membranes were prehybridized for 

30 min in DIG Easy Hyb (Roche) and hybridized overnight in the same solution at 

42° C with the forward subtracted, unsubtracted forward driver, reverse 

subtracted and unsubtracted reverse driver probes. Post hybridization washes 

included two washes with 0.5% SSC+0.1 %SOS (10 min) followed by two 30 

minute washes in 0.1 X SSC, 0.1 % SOS. Membranes were rinsed briefly in 

washing buffer and detected with alkaline phosphatase-conjugated anti

digoxigenin antibodies (Roche) and CSPD as a chromogenic substrate according 

to the manufacturer's instructions. Based on the visual assessment of signal 

intensity by two different investigators, three different types of differentially 

expressed clones were picked: 1. Clones that hybridized to the forward 

subtracted and unsubtracted probes and not to the reverse subtracted and 

unsubtracted probes. 2. Clones that hybridized only to the forward subtracted 

probes. 3. Clones that hybridized to both forward and reverse subtracted probes, 

but with different intensities. Differentially expressed clones were grown 

overnight, plasmids extracted and the inserts were subjected to dideoxy chain 

termination sequencing (Applied Biosystems, Model 373A Automated 

Sequencer, Oklahoma State University Recombinant DNA/Protein Facility) and 

the identity of each product was confirmed in a sequence homology analysis 

using the Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1990). 
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Quantitative 1-Step RT-PCR 

Expression of 3 ESTs of interest; namely, galectin-1 and fibronectin 

isolated from in vivo blastocysts and filamin- A found to be upregulated in in vitro 

produced blastocysts was evaluated by real-time quantitative RT-PCR using a 

fluorescent reporter and 5' exonuclease assay system as previously described in 

our laboratory (Mohan et al., 2002). Three independent groups of embryos for 

each of the three production systems ie., in vivo-derived, in vitro produced 

embryos cultured either in TCM199 or CR1 aa with 5% FBS with each group 

containing ten embryos were utilized for real-time RT-PCR analysis. Total RNA 

was extracted from -10 pooled day 7 in vivo blastocysts, day 7 in vitro 

blastocysts cultured in TCM199 with 5% FBS as well as CR1aa. In vitro 

produced embryos originating from either TCM199 or CR1 aa cultures were 

visually monitored during in vitro culture and only unexpanded, morphologically 

clear and uniform looking intact blastocysts were selected for RNA extraction. 

Total RNA from all embryo samples was quantified at least twice using ribogreen 

assays and spectrophotometrically based on A260 values and 20 ng of total RNA 

was employed for real-time PCR analysis. In this way, we ensured that equal 

concentrations of RNA was loaded for all samples and that changes in gene 

expression did not arise as a result of differences in cell number. Total RNA from 

each group of embryos was assayed in triplicate wells (in total 27 wells). 

Quantification of gene amplification was made following RT-PCR by 

determining the threshold cycle (Cr) number for FAM fluorescence within the 
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geometric region of the semilog plot generated during PCR. Within this region of 

the amplification curve, each difference of one cycle is equivalent to a doubling of 

the amplified product of the PCR. The quantification of target gene expression 

was done using the relative standard curve method. The quantification of target 

gene expression was normalized to the expression of 1 SS ribosomal RNA, and 

standard curves were generated for each of the three targets and the 1 SS 

ribosomal RNA control in order to determine the total input RNA. A best-fit line 

was generated using Microsoft Excel Software and the concentration was 

determined from the threshold cycle value of the known standards. For each 

culture system, the concentration of mRNA of each target and 1 SS ribosomal 

RNA were determined from their respective standard curves in order to assess 

the amplification efficiency. The concentration of target mRNA was then divided 

by the 1 SS ribosomal RNA to obtain a normalized value for each of the three 

target transcripts. The sample with the lowest value was considered the 

calibrator, and assigned a value of one, or 1x sample. The relative abundance 

was determined by dividing each of the normalized target values by the calibrator 

normalized target value. 

Statistical Analysis 

The normalized values for each target transcript were analyzed using SAS 

Proc Mixed (SAS. SAS/STAT User's Guide, 1989) as a completely randomized 

design with three treatments. Blastocysts obtained in vivo (a), and in vitro from 

TCM199 with 5% FBS (b) or CR1aa (c) cultures were considered as three 
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independent treatments. A probability value of P < 0.05 was considered 

significant. Results are presented as bar graphs representing relative 

abundance. Comparisons among the three different culture systems for all three 

genes assayed were made using least significant difference (LSD) and tukey's 

procedure. 

Results 

Suppression Subtractive Hybridization 

After 27 PCR cycles using the SMART™ cDNA synthesis kit, agarose gel 

electrophoresis revealed cDNA bands ranging in size from 200 bp to 1.6 kb for 

both in vivo and in vitro produced blastocyst pools (data not shown). Following 

size exclusion chromatography and Rsa I digestion, approximate yields of cDNA 

for the tester and driver ranged approximately 3-4 µg. Two different adaptors 

were ligated to the tester cDNA and ligation efficiency was confirmed using a 

PCR based assay employing two different sets of primers in two independent 

PCR reactions according to the manufacturer's instructions. Finally, a PCR 

based subtraction efficiency analysis was done using specific G3PDH primers 

provided in the kit according to the manufacturer's instructions. After differential 

hybridization screening 45 in vivo and 51 in vitro clones were identified as 

differentially expressed. Differentially expressed clones were picked based on 

the criteria outlined in the materials and methods section. Approximately 32 from 

a total of 45 in vivo clones isolated provided sequence information. The partial 
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sequences obtained from all clones were compared with known sequences in the 

GenBank (National Center for Biotechnology Information, Bethesda, MD) 

database. Homology searches revealed the identities of 31 clones with known 

genes. Two clones represented novel uncharacterized transcripts. Similarly, 32 

out of the 51 in vitro clones provided sequence information. Out of these, 22 

clones matched homologous sequences in the Gen Bank and 10 did not provide 

any matches. Their putative identity, nucleotide homologies with other known 

sequences and number of base pairs sequenced are presented in table 2. 

Sequence data were submitted to the dbEST database (National Center for 

Biotechnology Information). 

RT -PCR Quantitation Using Taqman PCR 

The quantitation of mRNA expression for galectin-1, fibronectin and filamin 

A was done using the ABI PRISM 7700 Sequence Detection System (PE Applied 

Biosystems). The quantification of mRNA expression was done using the relative 

standard curve method. 

Ribosomal 18S RNA was used to normalize each sample for variation in 

RNA loading. Galectin-1 expression levels in embryos cultured in TCM199 and 

CR1 aa appeared very similar (Fig. 1 ), and the differences were not statistically 

significant. Comparison of relative abundance of galectin-1 transcripts between in 

vivo-derived and in vitro produced embryos was made using least significant 

difference and tukey's procedure. According to tukey's procedure, the P value for 

comparisons between in vivo and TCM199 cultured embryos and between in vivo 
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and CR1aa cultures was 0.053 and 0.08, respectively. Based on LSD, however, 

galectin-1 expression in in vivo derived embryos was significantly different (P < 

0.05) from embryos derived from both in vitro culture systems. It is assumed that 

a P value between 0.05 and 0.10 may result in significant differences provided 

the sample size is increased. Based on the above assumption, we accepted the 

comparisons made using LSD. Expression of galectin-1 mRNA in vivo-derived 

embryos was significantly different from embryos cultured in either TCM199 and 

CR1 aa media (P < 0.05) (Fig. 1 ). Based on normalization with 18S rRNA levels, 

expression of galectin-1 mRNA was 2.93 times higher in in vivo produced 

blastocysts compared to blastocysts obtained from both in vitro culture systems 

(Fig. 1 ). Similarly, expression of fibronectin in in vivo produced blastocysts was 

significantly different from in vitro produced embryos irrespective of the culture 

system used. Blastocysts produced in vivo exhibited approximately -2.64 fold 

greater expression than those produced and cultured in vitro in TCM199 with 5% 

FBS (P < 0.05) (Fig. 2). The difference in relative abundance was almost 4.93-

fold between in vivo blastocysts and those that were obtained from CR 1 aa 

cultures (P < 0.05) (Fig. 2). These observations further confirmed the results of 

the forward subtraction. In order to confirm the results of the reverse subtraction, 

filamin A, isolated from in vitro produced blastocysts was further characterized. 

Interestingly, in vitro produced blastocysts cultured in TCM199 showed an -1.45-

fold higher expression than those derived in vivo, however, the differences did 

not show statistical significance (Fig. 3). Unlike, galectin-1 and fibronectin, the 
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relative abundance of filamin A in blastocysts cultured in CR1aa was similar to 

those produced in vivo. 

Discussion 

The first 7 days of in vitro embryo culture is a very sensitive phase during 

early development because several important biological events occur during this 

window. These include timing of first cleavage division, embryonic genome 

activation, compaction of the morula, differentiation of the blastocyst into 

trophectoderm and inner cell mass (Rizos et al., 2003). Further development is 

dependant on the successful control of both temporal and spatial gene 

expression following the activation of the embryonic genome. Therefore, any 

deviation from normal gene expression pattern during this period may have 

developmental consequences later during embryogenesis. 

Serum supplementation during in vitro culture, irrespective of duration of 

exposure has had a profound impact on the rate of blastocyst development, sex 

ratio (Gutierrez-Adan et al., 2001 ), blastocyst morphology (Abe et al., 1999; Fair 

et al., 2001) and metabolism (Khurana and Niemann, 2000). Serum, still a major 

component of in vitro culture media (Thompson et al., 1998; Lonergan et al., 

1999) does exert a biphasic effect on embryo development. While serum 

hindered early cleavage divisions, its presence was found to be beneficial at the 

morula to blastocyst transition stage (Pinyopummintr and Bavister, 1994 ). The 

embryotrophic effects of serum, however, remain inexplicable due to its 
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undefined composition and batch to batch variation. Because a lot of attention is 

being paid to understanding the cell biology of blastocyst development, there is 

more evidence to indicate that prolonged serum treatment can adversely affect 

blastocyst morphology, biochemistry (Fair et al., 2001; Farin et al., 2001) and 

fetal development leading to increased birth weights in the long term (Thompson 

et al., 1998; Lonergan et al., 1999). Further, supplementation of the bovine in 

vitro culture medium with serum has been recently shown to alter the expression 

patterns of several developmentally important genes (Lazzari et al., 2002; Rizos 

et al., 2002, 2003). Therefore, the present study was done to help elucidate 

altered gene expression patterns in blastocysts induced by the inclusion of serum 

in the in vitro embryo culture media. The information generated from studies of 

this kind, will hopefully contribute to improving the efficiency of current in vitro 

embryo production systems. A few laboratories have addressed this critical issue 

(Niemann and Wrenzycki, 2000; Lazzari et al., 2002; Rizos et al., 2002, 2003; 

Niemann et al., 2002), and, more needs to be done in order to get a 

comprehensive understanding of this deviation. 

Suppression subtractive hybridization is a very sensitive technique and 

has the advantage of greatly enhancing levels of mRNA sequences that are 

unique to the tissue of interest, while reducing sequences common to both 

tissues. The entire task can be accomplished without prior knowledge of genes 

being expressed, and yields subtracted cDNA pools that are either upregulated 

or differentially expressed. The SSH protocol, however, involves digesting the 

cDNA with Rsal, a four base cutter, to generate smaller cDNA fragments with an 
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average size of about 600 bp (Diatchenko et al., 1996). These smaller sized 

fragments hybridize more efficiently since larger fragments tend to form complex 

secondary structures and are likely to hinder the hybridization process 

(Diatchenko et al., 1996). This step makes it impossible to obtain full length 

cDNAs representing differentially expressed genes. SSH also requires at least 2-

4 µg of cDNA to begin with and this amount is difficult to obtain, especially, from 

preattachment embryos. Using the SMART PCR synthesis kit the required 

amount of cDNA for SSH was successfully generated. The final products of SSH 

are in the form of small cDNA fragments ranging in size from 250 bp to 1.5 kb 

called expressed sequence tags (ESTs). These ESTs can be used to discover 

novel genes (Adams et al., 1995), characterize gene function (Papadopoulos et 

al., 1994 ), and quantify the expression patterns of a particular gene of interest 

(Okubo et al., 1992). 

Making use of SSH, we had earlier described stage specific gene 

expression patterns for the bovine hatched blastocyst (Mohan et al., 2002). In the 

present study, we report the construction of a subtracted cDNA library from day 7 

in vivo derived and in vitro produced blastocysts cultured in TCM 199 in the 

presence of 5% FBS. Out of the thirty-two ESTs representing in vivo blastocysts, 

roughly 19% were homologous to coding regions for products involved in protein 

synthesis, and included several ribosomal proteins and 16% represented 

products related to metabolism. The remaining identified ESTs were related to 

mitochondrial function (22%), transcription (6%), lectins (3%) and others (19%). 

Among the ESTs isolated from in vitro blastocysts, roughly 38% matched 

196 



products involved in transcription, and the remaining were related to signaling 

(10%), metabolism (23%), protein synthesis (10%) and others (19%). Of 

significance is the observation that 38% of the in vitro subtracted ESTs 

represented products related to transcription compared to 6% of the in vivo 

subtracted ESTs. The majority of these are nuclear proteins, possibly expressed 

as a defense mechanism to overcome the adverse environment arising from 

suboptimal in vitro culture conditions. Two in vivo subtracted ESTs, galectin-1, 

and fibronectin and one in vitro subtracted EST, filamin A with recognized roles 

during early embryogenesis were further characterized using real-time 

quantitative PCR. Expression of galectin-1 has been well characterized during 

embryogenesis in mice (Poirier and Robertson, 1993), human (Van den Brule et 

al., 1997) and birds (Levi and Teichberg, 1989). Recently, using SSH, Ponsuksili 

et al. (2002) isolated galectin-3 and fibronectin from in vitro produced bovine 

blastocysts. Using real-time PCR, they also showed that the mRNA expression 

for galectin-3 was three fold higher in blastocyst stage than in the morula stage. 

Galectin-1 can transform non-myogenic cells such as fibroblasts to muscle cells 

thereby implicating its role in cellular differentiation processes (Goldring et al., 

2002). Filamin A was originally isolated from murine blastocysts and since two 

ESTs isolated from in vitro produced blastocysts showed greater than 95% 

homology to filamin A, we envisaged that filamin A probably had a regulatory role 

to play during early embryo development and hence characterizing its expression 

level was important. 
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Galectin-1 is a member of the galectin family of carbohydrate binding 

proteins and to date is known to include at least 14 members (Liu et al., 2002). 

Galectin-1 exists as a homodimer with two conserved carbohydrate recognition 

domains (CRDs) and has a binding affinity for p-galactosides. With the aid of two 

CRDs, galectin-1 can play important roles in mediating cell-cell and cell matrix 

interactions. Further, galectin-1 has been shown to cross link T-cell 

glycoproteins, by specifically recognizing galactose residues on CD45 and CD26. 

In this way, galectin-1 can induce apoptosis of activated T cells via ERK 

(extracellular regulatory kinase) phosphorylation and activation of specific 

transcription factors (Rabinovich et al., 2000). Based on this function a role for 

galectin-1 in providing immune privilege to the developing haploid sperm cells in 

the testis was recently proposed (Dettin et al., 2003). Other functions of galectin-

1 include regulation of cell transformation, anchoring Ras to the cell membrane 

and nuclear splicing of pre-mRNA (Liu et al., 2002). In the present study, 

galectin-1 expression was found to be 2.93-fold higher in blastocysts produced in 

vivo compared to in vitro produced blastocysts (Fig. 1 ). In addition to the 

regulatory roles, expression of galectin-1 by the bovine preattachment embryo 

may function to protect the implanting embryo from the harmful effects of the 

maternal immune system. Reduced expression of galectin-1 by in vitro produced 

embryos as observed in the present study may be partially responsible for the 

high embryonic loss and poor pregnancy rates following transfer of IVP embryos. 

A second in vivo subtracted clone that we identified as differentially 

expressed was fibronectin. Fibronectin is an extracellular matrix protein and 
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performs vital roles during cell proliferation, cell adhesion and cell mobility. The 

size of the fibronectin gene is about 50 kb and several isoforms exist for 

fibronectin due to alternative splicing of ED-A, ED-B and Ill-CS regions and post

translational modifications (Przybysz and Katnik-Prastowska, 2001 ). Fibronectin 

exists as a homodimer and has several domains such as, heparin binding 

domain, fibrin binding domain, collagen binding domain, cell recognition domain. 

The presence of many such domains provides fibronectin the opportunity to 

interact and bind several ligands such as, cells, heparin, fibrin, collagen, 

immunolgobins, DNA., etc (Yamada 1 1991 ). Because events such as cell 

proliferation, cell adhesion and cell mobility are active during early 

embryogenesis, fibronectin does automatically qualify as an important participant 

during this phase of embryo development. Our results show that early 

preattachment embryos not only express fibronectin but also differ in their 

expression patterns depending on the source of production and type of in vitro 

culture system employed. In the present study, in vivo derived blastocysts had an 

approximately 2.64- fold increase in fibronectin expression compared to 

blastocysts cultured in TCM199 with 5% FBS (Fig. 2). However, fibronectin 

expression in in vivo derived blastocysts was at least 4.65- fold higher compared 

to blastocysts derived from CR1 aa cultures (Fig. 2). This significant difference in 

expression between in vivo and in vitro produced embryos further indicates that 

the mRNA expression for fibronectin, a very important extracellular matrix protein 

is significantly reduced in bovine embryos produced in vitro. Considering the 

known functions of fibronectin during early embryogenesis, lower expression 
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patterns exhibited by in vitro produced embryos may be responsible for the poor 

quality of these embryos compared to their in vivo counterparts. 

The expression patterns of galectin-1 and fibronectin in in vivo-derived 

embryos as revealed by real-time PCR confirmed the results of the forward 

subtraction. In order to confirm the validity of the reverse subtraction, we 

characterized a third subtracted clone, namely filamin A, isolated from in vitro 

produced embryos. Filamin A is a high molecular mass cytoplasmic actin binding 

protein. There are three known isoforms, filamin A, B and C, transcribed from 3 

independent genes (Van der Flier and Sonnenberg, 2001 ). The primary function 

of filamin A is to organize actin filaments into networks and stress fibers. They 

also anchor various transmembrane proteins to the actin cytoskeleton to provide 

a scaffold for cytoplasmic signaling proteins (Van der Flier and Sonnenberg, 

2001 ). Furthermore, filamin A also functions to transduce stress signals to the 

actin cytoskeleton by interacting with the cytoplasmic domain of integrins 

(Stossel et al., 2001 ). This association signals the actin cytoskeleton to stiffen so 

that the cell can now withstand any additional strain or stress. It is clear from 

recent studies that in vitro produced embryos are constantly subjected to cellular 

stress arising from suboptimal culture conditions. The in vitro culture system 

induced stress is indicated by the enhanced expression of HSP 70.1 by in vitro 

produced embryos (Lazzari et al., 2002). In the present study, in vitro produced 

blastocysts cultured in TCM 199 with 5% FBS showed a 1.45-fold increase in 

filamin A expression compared to in vivo produced embryos and in vitro 

produced embryos cultured in CR1aa media (Fig. 3). Unlike galectin-1 and 
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fibronectin, only a very small increase in filamin A expression was observed in in 

vitro produced embryos cultured in TCM199 and the increase was not statistically 

significant. These observations mean that filamin A mostly likely falls under the 

so called " very low abundance transcript" category. Further, based on the real

time quantification data it was observed that while target Ct values were lower for 

both galectin-1 and fibronectin, these values representing filamin A were greater 

than thirty for both in vivo and in vitro produced embryos. The above finding 

further strengthens our claim that filamin A could possibly be a very low 

abundance transcript. 

A few in vivo and in vitro ESTs did not match any homologous sequences 

in the GenBank initially, however, they did provide perfect matches when 

subjected to the blast search at a later date. Interestingly, six in vivo ESTs 

matched mitochondrial DNA and mitochondrial products coding for various 

metabolic enzymes (Table 2). Mitochondrial dysfunction/ degeneration has been 

identified as a conspicuous molecular pathology associated with in vitro embryo 

culture involving serum (Farin et al., 2001; Crosier et al., 2001; Abe et al., 2002). 

This finding therefore, may be significant because of the high redundancy (6 

clones) and its uniqueness to the in vivo derived blastocyst. These results further 

corroborate the observations made earlier by others (Farin et al., 2001; Abe et 

al., 2002), using a different approach. Similarly, two unique in vitro ESTs gave 

>98% homology with pyruvate kinase, a glycolytic enzyme that catalyzes the 

conversion of phosphoenolpyruvate to pyruvate during which process an ATP 

molecule is generated (Table 2). The isolation and identification of pyruvate 
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kinase as a differentially expressed gene from in vitro produced blastocysts 

indirectly supports the findings of Khurana and Niemann (Khurana and Niemann, 

2000) on early embryonic metabolism. In their study, in vitro blastocysts cultured 

in the presence of serum were found have high rates of glycolysis and produced 

high amounts of lactic acid. In addition, approximately seven in vitro specific 

ESTs were found to be homologous to a nuclear protein namely, aortic 

preferentially expression gene (APEG) found to be expressed in differentiated 

aortic vascular smooth muscle cells (Chen et al., 2001) (Table 2). The function of 

APEG during early preattachment embryogenesis under in vitro conditions is not 

clear and certainly requires scrutiny in the future as it may be of interest to 

researchers working in the field of early mammalian development. 

In summary, we have performed a SSH analysis between bovine in vivo 

and in vitro produced embryos cultured in the presence of serum. Two in vivo 

subtracted clones representing galectin-1 and fibronectin were further 

characterized using real-time PCR and the expression levels were shown to be 

elevated in in vivo produced embryos compared to blastocysts derived from two 

in vitro culture systems. Filamin-A, an EST isolated from in vitro produced 

embryos using SSH was also characterized using real-time PCR. Interestingly, 

even though a slight increase (1.45- fold) was observed in embryos produced in 

TCM199 with 5% FBS this increase was not statistically significant. Therefore the 

expression pattern of filamin A based on real-time RT-PCR did not agree with 

SSH. The findings in the present study further supports the earlier generated 

hypothesis by others that there are several candidate genes whose expression 
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patterns differ as a result of employing suboptimal culture systems. In the future it 

is necessary to extend these studies to embryos cultured in other in vitro systems 

such as SOF, Gardner's G1 & G2 both in the presence and absence of serum. 

We suggest that deviations in gene expression patterns do exist between in vivo 

and in vitro produced bovine embryos. 
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Table 1. Primers and probe sequences used for real time RT-PCR. 

Gene Primer sequence Probe sequence Product 
(bp) 

Galectin-1 5'- CCTGGAAGTGTCGTGGAGGTAT- 3' 5'-CATCTCCTTCAACCAGACGGACCT AACCA- 3' 75 
5'- TCGTATCCATCAGGCAGCTT-3' 

Fibronectin 5'- TGACAGAGAAGATTCCCGAGAGTAATAT- 3' 5'-CAACCCAGAGAAACAAGCGTGGACCTC-3' 91 
5'- CGAACACCACTCCAGTTTGGAT- 3' 

Filamin A 5'- CCTGAGGGCTACCGTGTCA- 3' 5'- CCCATGGCACCTGGCAGCTACC- 3' 72 
5'- GCCACCATACTTGATGGAGATG-3' 
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Table 2. Identity, size, and percentage homology of putative bovine in vivo and in vitro blastocyst specific subtracted 
cDNA clones compared to known sequences in GenBank. 

Identity Clone number Gen Bank Base Homology" 
accession Pairs 

number Sequenced 

In Vivo Blastocyst 
subtracted clones 

Galectin-1 OKST lnvivoBlast-18 CD28525 456 Bovine 98% (398/405) 
Human 86% (346/401) 

Mouse 83% (337/406) 

Transcription elongation OKST lnvivoBlast-24, CD28526, 30 591 Human 92% (425/460) 
factor B (SIii) (2 clones) 41 Rat 91 % (406/446) 

Mouse 90% (417/461) 

Peroxiredoxin 2 OKST lnvivoBlast-28 CD28527 610 Bovine 100% (173/173) 
Human 85% (135/154) 
Mouse 89% (116/129) 

Ribosomal protein S4 OKST lnvivoBlast-29 722 Cat 85% (248/291) 
Hamster 84% (237/282) 
Rat 83% (234/279) 
Human 84% (222/264) 

Fibronectin (3 clones) OKST lnvivoBlast-31, CD28528, 486 Bovine 98% (455/461) 
62, 71 34, 38 Equine 89% (212/238) 

Rabbit 81 % (371/453) 
Human 87% (182/209) 

Cytochrome C Oxidase (3 OKST lnvivoBlast-32, CD28529 227 Bovine 99%(210/212) 
clones) 54, 75 Human 86% (177/204) 

Mouse 84% (144/170) 

Ribosomal protein L24 OKST lnvivoBlast-47 514 Bovine 97% (427/439) 
Human 90% (430/473) 
Mouse 89% (392/439) 
Rat 89% (392/439) 

Vacuolar protein sorting 29 OKST lnvivoBlast-56 CD28532 694 Human 93% (562/602) 
Rat 88% (490/556) 
Mouse 87% (453/515) 

Glucose transporter type 3 OKST lnvivoBlast-60 CD28533 698 Ovine 95% (345/361) 
Bovine 97% (306/313) 

Eukaryotic translation OKST lnvivoBlast-68 CD28536 493 Bovine 89% (441/493) 
elongation factor 1 alpha Dog 83% (414/493) 

Human 83% (414/493) 

Ubiquinol-cytochrome c OKST lnvivoBlast-69 CD28537 703 Human 90% (289/320) 
reductase binding protein Mouse 88% (303/341) 

Cytoskeletal tropomyosin OKST lnvivoBlast-76 CD28539 433 Human 88% (257/289) 
TM30(nm) Mouse 86% (123/143) 

Rat 85% (125/146) 

Proteasome (prosome, OKST lnvivoBlast-83 CD28540 282 Human 93% (237/253) 
macropain) subunit, alpha Rat 89% (229/257) 
type, 2 Mouse 87% (226/257) 
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Actin OKST lnvivoBlast-84 CD28541 694 Bovine 97% (394/404) 
Rat 92% (328/354) 
Human 92% (337 /366) 
Mouse 92% (327/355) 

Ribosomal protein S25 OKST lnvivoBlast-85 519 Human 91% (421/458) 
(RPS25) Rat 90% (353/388) 

Mouse 88% (396/44 7) 

Ribosomal protein S27 OKST lnvivoBlast-86 317 Human 93% (275/293) 
(metallopanstimulin 1) Mouse 93% (270/290) 
(RPS27) Rat 92% (255/276) 

Ring-box protein 1 (RBX1) OKST lnvivoBlast-92 CD28543 487 Human 89% (408/454) 
Mouse 92% (255/276) 
Rat 92% (255/276) 

Chaperonin containing OKST lnvivoBlast-94 CD28544 571 Human 94% (534/565) 
TCP1, Rat 90% (512/568) 
subunit 3 (gamma) Mouse 89% (510/568) 

Thymosin beta-10 OKST lnvivoBlast-96 CD28545 301 Bovine 98% (280/284) 
Equine 88% (207/235) 
Human 89% (178/200) 
Mouse 93% (112/120) 
Rat 93% (112/120) 

Mitochondrial genes and OKST lnvivoBlast-48, 
mitochondrial RNA 59, 72,90,95,82 
products 

Unknown ESTs (2 clones) OKST lnvivoBlast-44, CD28531, 35 
63 

In Vitro Blastocyst 
Subtracted Clones 

Nuclear protein 220 (2 OKST lnvitroBlast-10, CD28547 696 Mouse 95% (661/694) 
clones) 53 CD038846 Human 91% (237/258) 

28S ribosomal RNA (3 OKST lnvitroBlast-17, 303 Mouse 100% (282/282) 
clones) 64, 71 Rat 99% (278/280) 

Splicing factor, OKST lnvitroBlast-18, CD28549, 256 Rat 99% (255/256) 
arginine/serine- rich 2 (SC- 22,90 51,69 Mouse 94% (197/208) 
35) (3 clones) Human 95% (105/11 O) 

Pyruvate kinase (2 clones) OKST lnvitroBlast-23, CD28552, 66 487 Mouse 99% (465/469) 
74 Rat 99% (300/302) 

Human 85% (88/103) 

Aortic preferentially OKST lnvitroBlast-29, CD28554, 485 Rat 100% (250/250) 
expressed gene 1 (Apeg1) 75,80,83,89, 93,94 67, 68, 69, Mouse 91 % (230/252) 
(7 clones) 71, 72 Human 87% (74/85) 

Filamin A like protein (3 OKST lnvitroBlast-46, CD28557, 695 Mouse 96% (673/695) 
clones) 60, 72 61, 65 Bovine 85% (595/692) 

Human 91% (357/389) 

Clathrin OKST lnvitroBlast-65 CD28563 589 Rat 97% (325/334) 
Mouse 97% (313/322) 
Human 89% (283/316) 

Heat shock protein 105 OKST lnvitroBlast-92 CD28570 702 Rat 99% (435/449) 
kDa alpha Mouse 90% (545/604) 

Human 83% (381/459) 
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Unknown ESTs (10 clones) OKST lnvitroBlast-5, 
19,20,25,32, 33,48, 
56,59,95 

CD28546, 
50, 53, 55, 
56, 58, 59, 
60, 73 

Percentages are based on BLAST searches of the GenBank database. The numbers in parentheses show the 
number of bases (query/subject) that were compared. Mitochondrial and ribosomal RNA sequences were not 
reported to dbEST. 
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Figure 1. Relative abundance in gene expression for galectin-1 detected using 
one-step real-time RT-PCR (n= 3, representing 3 pools of -10 blastocysts per 
treatment). The fold differences in gene expression were calculated as described 
in Materials and Methods. Bar graphs with different superscripts differ 
significantly (P < 0.05). Bars with a common superscript do not differ significantly 
from each other. 
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Figure 2. Relative abundance in gene expression for fibronectin detected using 
one-step real-time RT-PCR (n= 3, representing 3 pools of -10 blastocysts per 
treatment). The fold differences in gene expression were calculated as described 
in Materials and Methods. Bar graphs with different superscripts differ 
significantly (P < 0.05). Bars with a common superscript do not differ significantly 
from each other. 
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Figure 3. Relative abundance in gene expression for filamin A detected using 
one-step real-time RT-PCR (n= 3, representing 3 pools of -1 O blastocysts per 
treatment). The fold differences in gene expression were calculated as described 
in Materials and Methods. Bar graphs with similar superscript do not differ 
significantly (P > 0.05). 
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General Discussion and Conclusions 

Given the limited information available concerning the retinoid signaling 

pathway in the bovine, and the fact that previous work on the role played by this 

pathway has focused primarily on the rodent species, the present research work 

was carried out to generate information for developing an understanding of the 

role of the retinoid signaling system in early developmental processes in non

rodent species such as cattle. Irrespective of the species of interest, the current 

information available on the role played by the retinoid signaling pathway 

pertains predominantly to postimplantation stages and very little information is 

known during preattachment embryogenesis. Therefore, the successful 

execution of a project of this nature would require an unrestricted supply of 

preattachment stage bovine embryos. These early embryonic stages are 

normally found in the oviduct and are therefore, difficult to retrieve through non

surgical means. The ready availability of an in vitro bovine embryo production 

system was very encouraging as it alleviated this difficulty. Before we employed 

embryos produced from our in vitro system for research studies it was necessary 

to ascertain that the resultant embryos from our IVF system were competent 

enough to establish viable pregnancies and translate these pregnancies into 

viable calves. In order to fulfill the above objective, we non-surgically transferred 

three day 7 blastocysts into a single holstein friesian receipient cow in November 

1998. Two embryos were transferred into the ipsilateral horn and one into the 

contralateral horn. A viable male calf was delivered on the 1st of August 1999. 
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Before we studied the functions of the retinoid signaling system in bovine 

preattachment embryos it was vital that we investigated the expression patterns 

of the different components of the signaling system. The different components 

comprise retinal binding protein, enzymes involved in the oxidation of retinal to 

retinaldehyde and then to retinoic acid, retinoic acid receptors, retinoid X 

receptors, other retinoid binding proteins such as cellular retinal binding protein, 

cellular retinoic acid binding protein., etc. In chapter Ill, as a first approach we 

investigated the expression of retinal binding protein, retinoic acid receptor a, ~. 

and y at the mRNA and protein level. Employing the sensitive RT-PCR method, 

transcripts for RBP, RARa, and RARy were detected in all stages from the 

oocyte through to the hatched blastocyst. Expression of RAR~ was not detected 

at any stage. Strong immunostaining was observed for both RARa and RARy2 in 

the inner cell mass and trophectoderm of intact and hatched blastocysts. In 

chapter IV, we determined the expression patterns of the remaining components 

of the retinoid signaling pathway. These included the retinoid X receptors, alcohol 

dehydrogenases, retinaldehyde dehydrogenases and PPAR which is an 

important heterodimerization partner for RXRs. RT-PCR was again employed to 

investigate mRNA expression for RXRa, RXR~, RXRy, alcohol dehydrogenase I 

(ADH-1), retinaldehyde dehydrogenase 2 (RALDH-2), and peroxisome proliferator 

activated receptor gamma (PPARy). In addition, whole mount in situ hybridization 

using digoxigenin labeled probes was also utilized to specifically determine which 

of the two cell types in the blastocysts actually expressed the transcripts. 

Transcripts for RXRa, RXR~, RALDH-2, and PPARy were detected in all stages 
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beginning from the oocyte through to the hatched blastocyst. Whole mount in situ 

hybridization performed using digoxigenin-labeled antisense probes detected all 

4 transcripts in both the inner cell mass and the trophectoderm of hatched 

blastocysts. PCR products obtained for ADH-1 exhibited less than 45% homology 

to known human and mouse sequences. Employing polyclonal antibodies strong 

immunostaining was observed for both RXR~ and PPARy in the trophectoderm 

and inner cell mass cells of intact and hatched blastocysts. Based on in situ 

hybridization and immunohistochemistry it is clear that both cell types in the early 

blastocyst express these receptor proteins. Messenger RNA was not detected at 

any stage for RXRy. Expression of mRNA for RBP, RARa, RARy, RXRa, RXR~, 

and PPARy by the bovine embryo may suggest a role for retinoic acid in 

regulation of gene expression during preattachment development. Expression of 

mRNA for RALDH-2, suggests that the early bovine embryo may be competent 

to synthesize retinoic acid during preattachment development in vitro. 

Similar expression patterns for retinoic acid receptors have been 

previously reported in murine preattachment embryos (Wu et al., 1992). In their 

study too, RAR~ was also not detected at any stage of development. Therefore 

expression patterns, at least in the mouse and the bovine, agree and it is likely 

that these expression patterns might be conserved across the different 

mammalian species. Presence of the immunoreactive receptor protein for a few 

of the RARs and RXRs does not necessarily guarantee biological activity. 

Techniques such as transient reporter and electromobility shift assays are 

available to study biological activity of the receptor protein or in other words 
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protein-DNA interactions. Introducing transgenic reporter constructs into 

blastocysts is not an easy task due to the presence of the zona pellucida which 

can effectively block successful transfection. A second problem is that these 

early embryonic stages are very sensitive to mild insults and introduction of any 

foreign DNA can easily impede further development. Third, following hatching the 

embryo may be amenable to transfection but with reduced viability since hatched 

embryos do not survive longer under in vitro conditions. Fourth, given the limited 

number of blastocysts that hatch under in vitro conditions these numbers may not 

be sufficient to detect a significantly quantitative signal following transfection. To 

overcome some of these problems we decided to employ a cell line derived from 

the bovine trophectoderm generated by Talbot et al. (2000). This cell line is 

immortal and has gone through several passages. Our initial attempts to 

transfect reporter constructs into this cell line using different transfection reagents 

did not succeed. The trophectodermal cell line not only was difficult to transfect 

but also resisted lysis. We then packaged the reporter construct into replication 

incompetent adeno-associated viruses, purified and concentrated the virus using 

centrifugal concentrator filter devices with a molecular weight cut off of 100 kDa. 

Before we packaged the gene of interest into viral particles we generated viral 

particles carrying the coding region of the beta-galactosidase gene in order to 

ascertain that the virus was able to successfully transfect cells. Interestingly, 

while the virus successfully transfected bovine cumulus and 1080 mouse 

fibrosarcoma cell lines as revealed by the blue color following X-gal staining, it 

failed to infect the trophectodermal cell line. Adena-associated viruses utilize 
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heparan sulfate proteoglycans as receptors for attaching and gaining entry into 

the cell. Our negative results may be explained by the fact that this cell line has 

gone through several passages and it is more likely that the cells no longer 

express heparan sulphate proteoglycans on the surface thus preventing 

successful entry of the virus. Therefore, at this point we do not have direct 

evidence to show that the receptor mediated retinoid effects exist in the bovine 

blastocyst. 

Recently, improved cytoplasmic maturation, increased embryonic cell 

numbers, increased cryotolerance, enhanced embryo development and 

pregnancies were reported following addition of 5 nM 9-cis retinoic acid during 

prematuration in the presence of roscovitine (Duque et al., 2002; Hidalgo et al., 

2003). Later, the same authors also showed that 9-cis retinoic acid treatment 

enhanced the expression of midkine, a growth factor belonging to the family of 

heparin binding growth/differentiation factors in cumulus granulosa cells (Rayo et 

al., 2003). In addition, positive effects of supplemental retinal at 5 µM 

concentration during in vitro maturation on blastocyst cell number was also 

recently reported (Livingston et al., 2003). These studies show that the retinoid 

signaling pathway can be successfully exploited practically to improve in vitro 

embryo development and pregnancy rates in cattle. However, this study also 

raised a few questions as to how 9-cis retinoic acid brought about these positive 

effects. It will be advantageous to have a clear understanding of the mechanism 

of action and the cell types that were targets for the retinoids. It is possible that 9-

cis retinoic acid had a direct effect on either the cumulus cells or the oocyte or 
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both. Similar positive effects on embryo development in the bovine have also 

been observed using 1 µM retinoic acid (Duque et al., 2002). In chapter V, we 

hypothesized that addition of retinoic acid during prematuration of bovine 

cumulus oocyte complex induced a receptor mediated effect particularly, on 

cumulus-granulosa cells. In chapter Ill and IV, we showed that the immature 

bovine oocyte expressed RARa, y, RXRa, ~. PPARy and RALDH-2 meaning that 

the different components of the retinoid signaling system were in place at least at 

the mRNA level. In chapter V we detected RARa, y, RXRa, ~. PPARy and 

RALDH-2 at the mRNA level in bovine cumulus-granulosa cells. Therefore, it 

appears that both cumulus-granulosa cells and the immature oocyte can possibly 

respond to retinoids. However, mRNA expression does not guarantee presence 

of the biologically active protein. mRNAs can either be translated to the functional 

protein or be destroyed and not be translated at all. Therefore, a transient 

reporter assay was performed to determine the existence of a biologically active 

retinoid signaling system in cumulus-granulosa cells. This assay not only 

confirms the existence of the receptor proteins but also provides evidence for 

their biological activity. The retinoic acid response element (RARE) from the 

human RAR ~2 promoter (de The et al., 1990) was cloned into the Kpn1 site of 

the pGL3 promoter vector containing the firefly luciferase reporter driven by the 

SV40 promoter. The idea is that if cumulus-granulosa cells expressed active 

retinoic acid receptor proteins these proteins in the presence of the ligand should 

be able to form a complex with the ligand, bind to the RARE and activate the 

luciferase reporter. Using this reporter construct we have shown that 
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endogenous retinoid receptors expressed by cumulus cells are biologically 

active. Retinoic acid at 0.5 and 1 µM concentration significantly induced reporter 

activity in bovine cumulus- granulosa cells. In our reporter assays, the data was 

expressed as luminescence unit per microgram total protein. This method was 

followed to make sure that cells in all wells were completely lysed and that we 

were not unintentionally transferring incompletely lysed cellular contents for 

luminescence measurements. Still an important shortcoming with our luciferase 

assay protocol is that it does not minimize experimental variability caused by 

differences in cell viability or transfection efficiency. Therefore, the assay was 

performed several times in its present format to check for repeatability and 

ascertain that the increase in activity observed was due to retinoid receptor 

activation of the reporter and not due to the variations mentioned above. These 

shortcomings can be overcome in the future by switching to a dual reporter assay 

(Promega Corporation, Madison, WI). The dual reporter assay involves 

simultaneous expression and measurement of two individual reporter enzymes 

within a single cell. In this assay, the "experimental" reporter which is a firefly 

luciferase is correlated with the effect of specific experimental conditions, while 

the activity of the co-transfected "control" reporter which is a Renilla luciferase 

functions as an internal control. The activity of the experimental reporter can then 

be normalized to the control reporter. Performing a dual reporter assays calls for 

additional equipment such as a luminometer and due to the non-availability of a 

luminometer we were unsuccessful in performing a dual reporter assay. 
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Due to the hindrance imposed by the presence of the zona pellucida 

around the oocyte we were not successful in introducing reporter gene constructs 

into the oocyte and therefore, it was not possible to test the same hypothesis on 

immature oocytes. Finally, since RARs and RXRs are ligand activated 

transcription factors, the presence of any one or all the components of the 

retinoid signaling pathway together with our reporter assay results may 

necessarily mean that there is retinoid-mediated gene activation in the cumulus 

oocyte complex or at least in the cumulus-granulosa cells. Therefore, the 

objective of identifying target genes that are specifically regulated by retinoic acid 

in the cumulus oocyte complex remains. Identifying these genes will provide us a 

molecular insight into the role played by vitamin A and their metabolites during in 

vitro/in vivo oocyte maturation in cattle. Due to time constraints this objective was 

not pursued. 

Therefore, combining the data from our studies, those of Shaw et al., 

1995, Duque et al., 2002, Hidalgo et al., 2002, Brown et al., 2003, and Hidalgo et 

al., 2003 it is possible that retinol injections given to cattle during superovulation 

programs or retinoic acid treatments provided during in vitro maturation has had 

a direct positive effect on the follicular cells, predominantly the cumulus

granulosa cells and possibly the oocyte too. This positive interaction was likely 

facilitated by the expression of the binding proteins, retinoid receptors and 

retinoic acid synthesizing enzymes by the cumulus cells. The expression of 

RARs, RXRs along with PPARy in both cumulus cells would also mean that these 

receptors can possibly homo or heterodimerize to transduce the retinoid signal. 
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Expression of RALDH2 also shows that cumulus cells may be competent to 

synthesize retinoic acid from retinal that is present in the follicular fluid (Brown et 

al., 2003). 

It is also necessary to know whether cells in the early preattachment 

bovine blastocyst that have transcripts for the various retinoid receptors and the 

immunoreactive retinoid receptor proteins can interact with physiologically 

significant concentrations of retinoic acid from an endogenous or exogenous 

source. Endogenously produced retinoids have been measured using HPLC in 

various species including the porcine day 10 blastocyst (Cosaridis et al., 1996; 

Horton and Maden, 1995; Parrow et al., 1998). These studies show that the early 

embryo has the enzymatic capabilities to fully metabolize vitamin A. Studies in 

both young and adult animals show that a stringent homeostatic mechanism 

operates in controlling the systemic levels of vitamin A. It is therefore, assumed 

that a similar homeostatic system is existent in the embryo as excess and 

deficiency can lead to anomalies in the embryo. Recently, it was shown that the 

treatment of murine blastocysts with 10 µM retinoic acid induced apoptosis 

preferably in the inner cell mass cells and significantly reduced the average 

number of total cells in the blastocysts (Huang et al., 2003). As a result fewer 

retinoic acid treated blastocysts implanted compared to control untreated 

blastocysts. This study indirectly shows that retinoic acid most likely exerted a 

receptor mediated effect on the inner cell mass cells. As of now this is the only 

evidence available to show that a retinoid receptor mediated effect of retinoic 

acid is operational in the blastocyst. Therefore, biological activity of the retinoid 
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receptor proteins in the early preattachment blastocyst also need to be 

demonstrated in the future. The availability of the CT-1 trophectodermal cell line 

and techniques like non-radioactive electromobility shift assays should help 

resolve the issue. 

Retinoids are expensive, unstable hydrophobic ligands, light sensitive and 

are therefore, easily oxidized. An alternative would be to use synthetic reduced

toxicity retinoids called heteroarotinoids that have been developed and used for 

the prevention and treatment of cancer (Benbrook et al., 1997). At the molecular 

level, these compounds act very similarly to the endogenous retinoids. The 

availability of a completely serum free in-vitro bovine embryo production/culture 

system effectively enables the possibility of examining the effects of 

heteroarotinoids on in vitro maturation, cleavage rates, blastocyst production, 

hatching rates and cell number. Studies can later be extended to understand 

which receptors and genes are regulated by the most active compounds. The 

information thus generated can then be used to design highly specialized 

retinoids to exclusively promote embryo development. 

Early embryonic development in the bovine may be comparable to the 

human and many analogies could be drawn. It is assumed that identifying key 

genetic markers that are regulated by retinoic acid may improve our 

understanding of the events occurring during maturation, around preattachment I 

implantation period and will throw more light towards understanding the biology 

of preattachment development and accordingly develop suitable remedies to 

prevent early embryonic mortality. 
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In order to identify differentially expressed genes, techniques with high 

sensitivity and efficiency need to be optimized for the cell type of interest. Several 

techniques are currently available for this purpose. These include several 

modifications of RT-PCR that comprise DDRT-PCR, RT-AFLP., etc. Even though 

DDRT-PCR has been used extensively it has several disadvantages. These 

include the use of radioisotopes which can be a major health hazard. DDRT-PCR 

also has an inherent tendency to pick high abundance transcripts and has a high 

false positive rate. In the absence of a microarray, a second technique available 

to study differential gene expression is subtractive hybridization. Recently, a 

suppression PCR step was included and it is now called suppression subtractive 

hybridization (SSH) (Diatchenko et al., 1996). SSH has several advantages over 

DDRT-PCR as it does not require the use of isotopes, can pick both high and low 

abundance transcripts and does not produce false positive data. However, 

successful use of SSH requires at least 2-4 µg of total RNA to begin with. Our 

primary interest was to study differential gene expression in bovine 

preattachment embryos, however, obtaining 2-4 µg of total RNA became a major 

constraint. Employing SMART-PCR we were able to successfully generate the 

required amount of cDNA from intact expanded (driver) and hatched bovine 

blastocysts (tester) generated in vitro. This procedure enabled .us to perform SSH 

uninterruptedly. In this way, a subtracted cDNA library from bovine hatched 

blastocysts was successfully constructed. Approximately, 92 from a total of 126 

ESTs isolated provided sequence information. Homology searches revealed the 

identities of 31 of these expressed sequences (expressed sequence tag; EST) 
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with known genes, among which three, PSMC3, CK2, and PGK with predicted 

roles during early embryogenesis were further characterized using real-time 

quantitative PCR. Overall, the largest group of identified ESTs, roughly 40%, was 

homologous to coding regions for products involved in protein synthesis, and 

included several ribosomal proteins. The remaining identified ESTs were related 

to transcription (about 20%), metabolism (20%), and signaling (20%). The use of 

SMART-PCR, although useful can also prove disastrous if adequate precautions 

are not taken. Overamplification of the cDNA is a serious inadvertent error that 

the researcher is likely to commit. Therefore, in spite of taking adequate 

precautions it is always advisable and safe to validate quantitative differences of 

a few ESTs using another independent technique such as northern blot, 

competitive PCR, or real-time RT-PCR. In this study, employing real-time RT

PCR we observed an overall 1.3-, 1.6-, and 1.5-fold increase in expression level 

in hatched blastocysts compared with intact blastocyst for PSMC3, CK2, and 

PGK, respectively. More importantly, we only performed SSH in one direction. As 

a result we had to sequence almost all the clones that we got following 

transformation of bacterial cells with the subtracted products. This approach is 

certainly not very cost effective. Therefore, in the future it would be ideal to 

perform SSH in both the forward and reverse direction, and identify the true 

positive clones (i.e., transcripts unique to one or the other stage) using a 

differential hybridization screening protocol. In this way, we can narrow down the 

number of differentially expressed products to be sequenced which would not 
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only help avoid additional expenditure but also provide us some assurance that 

only the differentially expressed ESTs are picked. 

The entire project involved the use of in vitro produced bovine embryos 

and it is now well-known that the quality of in vitro produced embryos continue to 

lag behind those of their in vivo counterparts. Several differences including 

deviations in early gene expression between the two production systems have 

been documented and those differences have been provided in detail in chapter 

VII. Since we had optimized methods to study differential gene expression we 

included an additional objective to identify and characterize some of the hitherto, 

unidentified genes between in vivo and in vitro produced embryos. Comparisons 

were made between Day 7 blastocysts generated in TCM199 with 5% FBS 

(driver) and Day 7 in vivo derived blastocysts (tester) and vice-versa using 

suppression-subtractive hybridization (SSH). In this study, SSH was performed in 

both forward and reverse directions and in order to identify the true differentially 

expressed genes we performed a differential hybridization screening analysis. 

Forty-five forward subtracted cDNAs and 51 reverse subtracted cDNAs were 

isolated, single-pass sequenced and subjected to BLAST search. Out of the 33 in 

vivo clones that provided sequence information, 31 clones matched homologous 

sequences in the GenBank and the remaining two did not provide any matches. 

On the other hand, out of the 31 in vitro specific clones, 21 clones provided 

specific matches while the remaining 10 clones represented novel transcripts. 

Two in vivo clones, galectin-1 and fibronectin and one in vitro clone namely, 

filamin A were selected and further characterized using real-time quantitative 
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PCR. The real-time PCR results obtained for galectin-1 and fibronectin were in 

agreement with SSH. Overall, a 2.93-, 2.64-fold increase in expression level was 

observed in in vivo derived blastocysts compared to blastocysts cultured in 

TCM199 with 5% FBS for galectin-1 and fibronectin, respectively. However, 

fibronectin expression in in vivo derived blastocysts was at least 4.65-fold higher 

compared to blastocysts derived from CR1 aa cultures. On the other hand, filamin 

A expression in blastocysts derived from TCM199 with 5% FBS cultures was not 

significantly different from in vivo derived blastocysts. Transcriptome analysis 

performed between in vivo and in vitro blastocysts revealed deviations in mRNA 

expression and the differences may partially explain why the quality of in vitro 

embryos are inferior to that of their in vivo counterparts. Several mitochondrial 

genes were also found to be differentially expressed in blastocysts derived in 

vivo. One in vitro subtracted product had a high redundancy and revealed high 

homology to a nuclear protein namely, aortic preferentially expressed gene 

(APEG). The expression and the function of this gene during in vitro embryo 

development is not clear and needs further investigation. More importantly, the 

gene expression data we obtained from this study agreed well with the 

information already available on the morphological and functional differences 

between in vivo and in vitro generated embryos. 

In majority of the cases, the SSH data should agree with the real-time RT

PCR data. There are instances where real-time data may not agree statistically 

with the SSH data. There are several possible reasons and one of them could be 

reduced sample size. Therefore, while performing real-time RT-PCR it is always 
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advisable to have multiple samples. Another important point to keep in mind is 

that subtracted products that show high redundancy (repeating clones) are better 

enriched and are more likely to be differentially expressed. Since SSH is a very 

sensitive technique and from my experience it will help isolate target genes that 

show differences is expression ranging from 1.3 to several fold higher. Therefore, 

it may be advisable to be very stringent while performing the differential 

screening analysis and this part of the technique is totally subjective. The 

investigator could make the choice to pick products that only hybridize to the 

forward subtracted probe or forward subtracted and unsubtracted probe. Again, 

differences in gene expression will depend on the type of tissue samples being 

compared. When comparisons are made, say for example, between 

preattachment embryos of the same stage originating from different culture 

environments it may be unwise to expect too many genes to be differentially 

expressed or genes that show very high differences in expression patterns as a 

result of differing culture conditions. In chapter VII, initially we did not get many 

products with good matches after homology searches, however, at a later date 

we did see several mitochondrial genes and APEG representing in vivo and in 

vitro embryos, respectively. Both these products showed very high redundancy 

(-6-7 clones) and would have been good targets for further characterization 

using real-time RT-PCR. Further, fibronectin was isolated thrice compared to 

galectin-1 which was represented by only one clone. Based on real-time PCR 

analysis, expression of fibronectin was not only high but also statistically 

significant from in vitro produced embryos. 
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The successful implementation of differential gene expression analysis 

using preattachment embryos opens up new opportunities for comparisons to be 

made in the immediate future involving embryos produced from other currently 

available culture systems. Further, some of these genes may serve as markers 

and aid in the modification/development of new in vitro embryo culture systems. 

However, additional studies involving embryos originating from other available in 

vitro culture systems and more characterization studies will be required before 

we identify and establish good marker genes. Differentially expressed genes 

from both subtractions may be immobilized on a microarray platform. Availability 

of a embryo specific microarray would permit large scale screening of embryos 

originating from different culture systems and will also give us the opportunity to 

modify/change or device new culture media based on the expression patterns of 

these genes. 
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