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PREFACE 

A tandem reduction-reductive amination sequence has been developed for the 

synthesis of benzo-fused substituted nitrogen heterocycles, including 2-alkyl-1,2,3,4-

tetrahydroquinoline-4-carboxylic esters as well as 2-alkyl-lH-1-benzazepine-5-

carboxylic esters. The key step in the synthesis is a tandem reduction-reductive 

amination sequence involving (1) catalytic reduction of an aromatic nitro group followed 

by (2) reductive amination with an intramolecular ketone or aldehyde substituent. In 

substrates incorporating a ketone group, reduction of the final imine intermediate was 

highly diastereoselective, giving predominantly the product having a cis relationship 

between the substituents at the C2 and C4 or C2 and CS positions. 

This tandem reduction-reductive amination sequence has been extended to the 

enantioselective synthesis of 2-alkyl-lH-1-benzazepine-5-carboxylic esters using (-)-8-

phenylmenthol as a chiral auxiliary. The key step in the synthesis was the 

diastereoselective conjugate addition reaction of (-)-8-phenylmenthyl (2-

nitrophenyl)acetate with a,~-unsaturated ketones. The diastereoselectivities of the 

conjugate additions were moderate as a result of the reaction conditions. Reduction of 

the (-)-8-phenylmenthyl ester and isolation of pure (-)-8-phenylmenthol demonstrated 

that the chiral auxiliary can be recycled. 
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CHAPTER I 

REDUCTIVE CYCLIZATION OF 

AROMATIC AND ALIPHATIC NITRO COMPOUNDS 

CONTAINING AN INTRAMOLECULAR CARBONYL GROUP 

Introduction 

Nitro groups are easily hydrogenated to the corresponding amines or the 

hydroxylamines. Rylander1 has reviewed catalytic hydrogenation methods for reducing 

aromatic and aliphatic nitro groups. The catalysts used for the reduction of nitro 

compounds include supported and unsupported palladium, platinum, and nickel, as well 

as rhodium and ruthenium. The reaction of the products of reduced nitro groups, i.e. 

amines and hydroxylamines, with other :functional groups present in the molecule 

provides a convenient means of synthesizing various nitrogen heterocycles. The product 

of the cyclization depends on the :functional group that reacts with the reduced nitro and 

can include lactams, N-hydroxylactams, as well as saturated and unsaturated nitrogen 

heterocycles. 

In the present work, the reduction of an aromatic nitro group followed by 

cyclization with an aldehyde, ketone, or ester functional group present in the molecule 

resulted in cyclization to a nitrogen heterocycle. This process is termed a tandem 

reduction-reductive amination. With respect to other groups in the molecule, the 
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reduction-reductive amination of the aromatic nitro group with an intramolecular ketone 

occurred with a high degree of diastereoselectivity. 

Early Examples 

In 1948, Kloetzel2 reported the catalytic hydrogenation of y-nitroketones in the 

synthesis of substituted pyrrolidines. For example, the catalytic hydrogenation of 1 under 

68 atm hydrogen with a Raney nickel catalyst in methanol at 100 °C yielded 2 in 78% 

yield (Figure 1 ). The product yields were increased by the addition of liquid ammonia to 

the hydrogenation vessel. 

68 atm H2, RaNi 

MeOH 
100°c 

78% 

Ph 

Et~Me 
I 
H 

2 

Figure 1. Catalytic hydrogenation of y-nitroketone 1. 

Another early example involved the catalytic hydrogenation of 2-nitro-4,5-

dimethoxyphenylacetic acid (3) under 3 atm of hydrogen with an 8% palladium-on-

carbon catalyst in acetic acid at 80 °C. This resulted in the formation of2-indolinone 4 in 

75% yield (Figure 2).3 Acidic conditions and higher temperatures were necessary for 

lactam cyclization to occur. Catalytic hydrogenation of ethyl ester 5 carried out in ethyl 

acetate at room temperature gave uncyclized aminoester 6. 
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MeOX::C:CO,H 

Meo N02 

3 

5 

3 atm H2 

8% Pd/C 

AcOH 
80°C 

75% 

3 atm H2 
8% Pd/C 

EtOAc 
20°c 

MeOX):)= I o 
Meo ,-,:;::. N, 

H 
4 

6 

Figure 2. Reductive cyclization of nitroacid 3 and reduction of nitroester 5. 

Masamune and co-workers4 used a reductive cyclization of nitroacids in the 

preparation of octahydrophenanthridines. Catalytic hydrogenation of 7 under 1 atm of 

hydrogen in ethyl acetate in the presence of platinum oxide at 20 °C produced 8 (Figure 

3). Reduction of ester 9 under the same conditions also produced 8. 

d2H 1 atm H2 c& Pt02 

EtOAc N 0 
N02 ~ 

7 8 

d2,Me 
1 atm H2 

Pt02 
8 

EtOAc 

N02 

9 

Figure 3. Reductive cyclization of nitroacid 7 and nitroester 9 producing cyclized 
product 8. 

3 



Synthesis of Lactams 

Kupchan and co-workers5 utilized the reductive cyclization of a nitroester in the 

structure elucidation of aristolochic acid derivatives. The aristolochic acid derivatives 

were being studied for their potential use as tumor inhibitors. The methyl ester of 

aristolochic acid 10 was catalytically hydrogenated at atmospheric pressure using 10% 

palladium-on-carbon in ethyl acetate at 20 °C to produce 11 in 88% yield (Figure 4). 

10 

1atm H2 

10% Pd/C 

EtOAc 

88% 

0 

<o N-H 
0 

11 

Figure 4. Catalytic hydrogenation of nitroester 10 to yield a lactam. 

Gutsche and co-workers6 also successfully reduced a nitroester to produce a 

lactam. Catalytic hydrogenation of nitroester 12 under 50-70 atm hydrogen using Raney 

nickel in ethanol at 80-100 °C produced lactam 13 in 88% yield (Figure 5). 

12 

50-70 atm H2 

Ra Ni 

EtOH 

88% 

~),N~H 
~o 

13 

Figure 5. Catalytic hydrogenation of nitroester 12 to yield a lactam. 
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Cyclizations Involving N-Bydroxyl Amines 

Mann and co-workers7 have demonstrated that partial reduction of a nitro group to 

a hydroxylamine followed by cyclization with an intramolecular carboxyl group resulted 

in the formation of N-hydroxylactam products (Figure 6). Reductive cyclization of 14 in 

ethanol under 1 atm hydrogen with a platinum oxide catalyst at 20 ·c produced N

hydroxylactam 15 in 90% yield. Treatment of the same nitro ester 14 with tin(II) 

chloride in concentrated hydrochloric acid produced lactam 16 in 80% yield. Reduction 

of a similar nitroester, 17, using catalytic hydrogentation with a platinum oxide catalyst 

or tin(II) chloride resulted in formation of lactam product 18 in 85% yield. The 

formation of N-hydroxylactam 15 was rationalized by investigation of the mechanism of 

reduction. Cyclization of the N-hydroxylamine occurred before the N-hydroxylamine 

underwent further reduction. 

s 



Ph, N o?:tMe ~Me 1 atm H2 
~ Pt02 '-::::: 

Et EtOH N 0 
N02 90% 

I 
OH 

14 15 

o?:tMe SnCl2 '-::::: 
14 

conc.HCI N 0 
80% ~ 

16 

Ph Ph 
I I dtMe o:.f:M• H2, Pt02 or SnCl2 '-::::: 

Et 
85% N 0 

N02 ~ 

17 18 

Figure 6. Modification of reduction conditions to produce N-hydroxylactams and 
lactams. 

Compounds containing a glutamic acid subunit are of interest for their potential 

neuroexcitory characteristics. Kraus and co-workers8 observed the fortnation of an N-

hydroxyl product when subjecting nitroketone 19 to reductive cyclization. Reduction of 

19 with ammonium formate as the hydrogen transfer agent and a palladium-on-carbon 

catalyst in methanol produced pyrrolidine 20 in 89% yield (Figure 7). 
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10% Pd/C 

C02Me HC02NH4, MeOH 

89% 

19 20 

Figure 7. Reductive cyclization producing an N-hydroxylactam. 

Similar reduction conditions were employed by Degnan and Meyers9 in an 

attempted enantioselective synthesis of 2-aminotetralins (Figure 8). Reduction of nitro 

ketone 21 using ammonium formate and a palladium-on-carbon catalyst in 

tetrahydrofuran and methanol produced nitrone 22 in 93% yield. Again, cyclization of 

the intermediate hydroxylamine with the carbonyl occured before further reduction to the 

amme. 

10% Pd/C 

21 93% 22 

Figure 8. Reductive cyclization producing a nitrone. 

Dugat and co-workers10 also isolated a nitrone product upon reduction of a 

nitroketone (Figure 9). Treatment of 23 with ammonium formate and a palladium on 

carbon catalyst produced nitrone 24 in 80% yield. Further reduction of 24 with metallic 

sodium in ethanol produced amine 25 in 95% yield. 
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10% Pd/C 

HC02NH4 

80% 

o
f 

~ 
Ph) 
24 

Na 

EtOH 

95% 

Figure 9. Reductive cyclization producing a nitrone and further reduction to the amine. 

Cyclizations with Aldehydes 

Artico and co-workers11 synthesized pyrrolobenzodiazepine derivatives as 

potential anti-tumor and antibacterial agents. Pyrrolobenzodiazepine derivatives have 

structures similar to the antibiotic anthramycin. The catalytic hydrogenation of 1-(2-

nitrophenyl)-2-pyrrolecarbaldehyde (26) in ethyl acetate under 4 atm of hydrogen using 

10% palladium-on-carbon in ethyl acetate yielded benzodiazepine 27 (Figure I 0). 

26 

4 atm H2 
Pd/C 

EtOAc 

27 

Figure 10. Reductive cyclization of a nitroaldehyde to produce a benzodiazepine 
derivative. 

Substituted, chiral, nonracemic pyrrolidines derived from both natural and 

unnatural sources are of interest for their potential biological activities and much effort 

has been devoted to the development of asymmetric syntheses to produce these 

compounds. Barbas and co-workers12 utilized the reductive amination of a y-
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nitroaldehyde in the final step of their synthesis of chiral pyrrolidines. For example, y-

nitroaldehyde 28 was catalytically hydrogenated under 3 atm hydrogen with 

palladium(II) hydroxide in methanol at 20 °C. This was followed by conversion to the N-

tosyl derivative by treatment with tosyl chloride in methylene chloride to produce 

pyrrolidine 29 in 82% overall yield (Figure 11 ). 

H 

28 

1) 3 atm H2, Pd(OH)2, MeOH 

2) TsCI, CH2Cl2 

82% 

--Lt? 
N 
I 
Ts 

29 

Figure 11. Reductive cyclization producing a chiral pyrrolidine. 

Ventrice and co-workers13 have investigated the reduction of nitroaromatic 

compounds bearing aldehyde-containing side chains of various lengths to yield both 

monomeric and dimeric products (Figure 12). The hydrogenations were carried out at 

atmospheric pressure with either platinum oxide or 10% palladium-on-carbon catalysts in 

methanol at 20 °C. Catalytic hydrogenation of 30 yielded 67% of 7-membered ring 

monomer 31 whereas catalytic hydrogenation of 32 yielded 30% of the macrocyclic 

dimer 33 and 14% of the monomeric product 34. Catalytic hydrogenation of 35 yielded 

75% of 14-membered ring monomer 36 and 6% of the dimeric product 37. The 

formation of dimeric products was rationalized to be the result of a competition between 

intramolecular versus intermolecular reductive amination.14 Reactions leading to the 

formation of smaller rings (7 membered rings) and larger rings (> 14 membered rings) 

were favored over reactions leading to the formation of medium rings (9-10 membered 
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rings). These observations are in agreement with thermodynamic data on ring size and 

bond strain. 15 

Q'A Hz, 10% Pd/C co-MeOH H 
N02 N 

67% I 

H 

30 31 

q:,): H2, 10% Pd/C 

MeOH 

32 

cxO-(CH2hj_Ni) CC°~ '~ + 

~tT(CH2)2-0 ,N 

33 

36 

H2, 10% Pd/C 

MeOH 

H 

34 

37 

Figure 12. Reductive cyclization of nitroaromatic aldehydes resulting in monomeric 
and dimeric products. 

The addition of one or two equivalents of a chelating agent [Ag(OTf)2, Ba(N03)2, 

or La(OTf)20] led to the exclusive formation of monomeric products. This observation 
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was rationalized by energy minimization calculations in which chelation of the metal to 

the monomeric product resulted in a lower conformational change than chelation of the 

metal to the dimeric product. 

Zhao and co~workers16 utilized the reductive cyclization of a nitroaromatic 

aldehyde in the synthesis of substituted phenanthridines. Substituted phenanthridines are 

being investigated for use as antitumor agents. In this synthesis, treatment of 

benzaldehyde derivative 38 with zinc dust in acetic acid at reflux gave phenanthridine 

product 39 in 83% yield (Figure 13). 

Meo 

38 

Zn 

AcOH, reflux 

83% 

39 

Figure 13. Reductive cyclization of nitroaldehyde 38 producing a phenanthridine. 

Cyclizations with Ketones 

Topliss and co-workers17 utilized a reductive cyclization reaction in the synthesis 

of dibenzo[bJ][J ,5]diazocine derivatives, which were being investigated for their 

potential sedative and anticonvulsant properties (Figure 14). Catalytic hydrogenation of 

40 under 4 atm of hydrogen using a 5% palladium-on-carbon at 20 °C yielded 41. 

Reduction of 40 at a higher temperature (40-50 °C) gave 42. The higher reduction 

temperature in the second case caused hydrogenolysis of the phenyl ketone before 

reductive cyclization occurred. 
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~p 4 atm H2 ~)) ~ 5% Pd/C 

Cl O I 0 EtOH, 20 °C Cl N o 
Ph N02 Ph H 
40 41 

4 atm H2 

~N~ 40 
5% Pd/C ~ 

EtOH, 40-50 °c Cl I 0 

Ph NH2 

42 

Figure 14. Catalytic hydrogenation of nitrophenylketone 40 under different conditions. 

Elliot and co-workers18 utilized a reductive cyclization in the synthesis of 

pyrazine derivatives being studied as potential folic acid metabolism inhibitors (Figure 

15). Catalytic hydrogenation of 43 under atmospheric pressure using Raney nickel in 

ethyl acetate at 20 ·c yielded 44. Oxidation of 44 with potassium. permanganate in 

acetone at 20 ·c yielded pyrazine 45 in 49% overall yield. 
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43 

~ ~ 
Et02C ..... Nq~ NI ~e 

N ~ N~N, 
Ph 

Et02C ..... N"H 

44 

49% 

1 atm H2, RaNi 

EtOAc 

~ 
Et02C ..... Nq~ N".1 ~e 

N ~ N~N, 
Ph 

Et02C ..... N"H 

45 

Figure 15. Reductive cyclization and subsequent oxidation of nitroketone 43 producing 
pyrazine 45. 

Spectaline is an alkaloid found in very small quantities in nature. Pateme and co-

workers19 have reported in their total syntheses of spectaline that catalytic reduction of 

diastereomeric mixture 46 in ethanol under 3 atm hydrogen with a mixed palladium and 

platinum-on-carbon catalyst in ethanol at 20 °C produced 2,6-substituted piperidin-3-ol 

diastereomers 47 (Figure 16). The diastereomers were easily separated by column 

chromatography with silica gel. 

HOY! 

Me~ r0 
N02 (CH2)12COMe 

46 

3 atm H2 
Pd,PUC 

EtOH 
HOn 
Me N (CH2)12COMe 

t4 
47 

Figure 16. Reductive cyclization ofnitroketone 46 producing piperadin-3-ol 47. 
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Seeman and co-workers20 synthesized a series of nicotine derivatives with an 

additional fused ring hindering the mobility of the parent ring in order to study the 

pharmacological properties of various nicotine conformations. Reductive cyclization of 

nitroketone 48 under 3.5 atm hydrogen using a Raney nickel catalyst in ethanol at 20 °C 

afforded imine 49 in 76% yield. Further reduction of imine 49 with sodium 

cyanoborohydride in a solution of aqueous hydrochloric acid and methanol produced the 

desired nornicotine derivative 50 in 53% yield (Figure 17). The stereochemistry of the 

fused ring was determined by NOE experiments. Irradiation of the bridgehead benzylic 

proton resulted in an enhancement of the resonance of the other bridgehead proton, 

demonstrating a cis relationship. 

O N02 3.5 atm H2 

N
~ ~~R_aN_i~--

EtOH 

48 
76% 

49 

NaCNBH3 

HCl(aq)/MeOH 

53% 
50 

Figure 17. Reductive cyclization and subsequent reduction of nitroketone 48 producing 
nornicotine derivative (50). 
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CHAPTER II 

DIASTEREOSELECTIVE SYNTHESIS OF 2,4-DISUBSTITUTED AND 1,2,4-

TRISUBSTITUTED TETRAHYDROQUINOLINES BY A 

TANDEM REDUCTION-REDUCTIVE AMINATION 

Introduction 

The tetrahydroquinoline ring system has been of interest for many years due to its 

presence in many natural products21 and its biological activity.22•23 Previous work by 

Bunce and co-workers24 demonstrated the use of tandem reduction-Michael addition 

reactions for the synthesis of tetrahydroquinoline-2-acetic esters. The synthesis involved 

reduction of an aromatic nitro group followed by intramolecular Michael addition of the 

resulting amine to an a.,~-unsaturated ester to give a benzo-fused nitrogen heterocycle. 

This work has been extended to reactions of the amine produced from reduction of the 

aromatic nitro compound with a pendant aldehyde or ketone substituent. 

Synthesis of Cyclization Substrates. The first stage of the synthesis is 

illustrated in Figure 18. Esterification of (2-nitrophenyl)acetic acid (1) in methanol 

saturated with dry HCI gave 2 in 96% yield. Alkylation of 2 with various allylic halides, 

3-7, in dry acetonitrile containing potassium carbonate and a catalytic amount of 18-

crown-6 at 55-65 °C produced esters 8-12. The yields from alkylations using allylic 

bromides were improved when a catalytic amount of sodium iodide was added to the 
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reaction mixture. The yields of the alkylations ranged from 46 to 93% and are 

summarized in Table I. 

~0
2
H HCI, MeOH 

ILAN0
2 

--96_°/i_o __ 

1 

o5· 
N02 R 

8 R=Me 
9 R= Ph 
10 R = n-Bu 
11 R = t-Bu 
12 R= H 

d:~~e --K-~-:-3-, 1-:-:-(:-:-
Nal, MeCN 

2 

3 R=Me 
4 R= Ph 
5 R = n-Bu 
6 R = t-Bu 
7 R= H 

Figure 18. Preparation of methyl 2-nitrophenylacetate (2) and subsequent alkylation 
with substituted allylic halides. 
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TABLE I 

THE ALKYLATION OF METHYL (2-NITROPHENYL)ACETATE 

WITH 2-SUBSTITUTED ALL YLIC HALIDES 

starting allylic halide R product yield(%) 

3 Me 8 88 
4 Ph 9 46 
5 n-Bu 10 91 
6 t-Bu 11 93 
7 H 12 88 

Ozonolysis of esters 9-12 in methanol at -78 °C followed by reductive workup 

with dimethyl sulfide and p-toluenesulfonic acid produced ketones 13-16 in yields of 89-

95% (Table II) as shown in Figure 19. Ozonolysis of 8 under the same conditions 

produced the expected aldehyde 17 and approximately 5-10% of the aldehyde dimethyl 

acetal 18 as shown in Figure 20. Conversion of acetal 18 to aldehyde 17 was 

accomplished in 98% yield by treatment with a 1:1 mixture of 3% aqueous HC104 and 

tetrahydrofuran. 

~
2
MeR~1)~0_3,_M_e_O_H~--

~ A 2) Me2S, p-TsOH 

N02 

8 R=Me 
9 R= Ph 

10 R = n-Bu 
11 R = t-Bu 

o5: 
N02 

13 R= Me 
14 R=Ph 
15 R = n-Bu 
16 R = t-Bu 

Figure 19. Ozonolysis of methyl (±)-4-alkyl-2-(2-nitrophenyl)-4-pentenoates. 
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TABLEil 

OZONOL YSIS OF 4-ALKYL-2-(2-NITROPHENYL)-4-PENTENOIC ESTERS 

starting alkene R product yield(%) 

8 Me 13 94 
9 Ph 14 89 

10 n-Bu 15 95 
11 t-Bu 16 92 

~ 
CO2 Me en· 1) 03, MeOH O? + 

~ 2) Me2S, p-TsOH OMe 
N02 N02 N02 OMe 

12 17 18 

17 + 18 3% HCI04 / THF 17 

Figure 20. Ozonolysis of alkene 12 followed by complete conversion to the aldehyde. 

The reduction-reductive amination of compounds 13-17 is illustrated in Figure 21. 

Hydrogenation in methanol using a 5% palladium-on-carbon catalyst produced the 

1,2,3,4-tetrahydroquinoline products 19-23 in yields from 88-99% (Table rrn. The 2,4-

disubstituted 1,2,3,4-tetrahydroquinoline products 19-22 were isolated as single 

diastereomers with a cis relationship between the substituents at C2 and C4. 
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13 R = Me 
14 R = Ph 
15 R = n-Bu 
16 R = t-Bu 
17 R= H 

4 atm H2, 5% Pd/C 

MeOH 

19 R= Me 
20 R= Ph 
21 R = n-Bu 
22 R = t-Bu 
23 R=H 

Figure 21. Tandem reduction-reductive amination of nitro ketones. 

TABLE ID 

TANDEM REDUCTION-REDUCTIVE AMINATION OF NITROKETONES 

starting ketone R product yield(%) 

13 Me 19 98 
14 Ph 20 97 
15 n-Bu 21 99 
16 t-Bu 22 93 
17 H 23 88 

A variation of the procedure was attempted by alkylating 2 with a.-chloroketones 

(Figure 22). This was intended to provide a more direct means of synthesizing 

nitroketones 13-16. Alkylation of 2 with chloroacetone by the method described above 

yielded ketone 13 in 56% yield. Attempted alkylation of 2 with phenacyl chloride, 

however, gave none of the phenyl ketone product. The lower yield and limited scope of 

this reaction led us to abandon this approach. 
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d.02Me 0 q5· c10R 

K2C03, Nal 
N02 18-C-6, MeCN R 

N02 

2 R=Me 13 R= Me 
R= Ph 14 R = Ph 

Figure 22. Attempted alkylation of methyl 2-nitrophenylacetate with a-chloroketones. 

Syntheses of 1,2,4-Trisubstituted-1,2,3,4-Tetrahydroquinolines. Synthesis of 

1,2,4-trisubstituted-1,2,3,4-tetrahydroquinolines 24-27 was accomplished by modifying 

the procedure (Figure 23). The alkylation products 13-16 were ozonized in methanol, but 

the treatment with dimethyl sulfide and p-toluenesulfonic acid was omitted. Instead, two 

equivalents of 3 7% aqueous formaldehyde were added to the crude ozonolysate and 

hydrogenation was carried out directly. This afforded the I-methyl derivatives of the 2,4-

trisubstituted tetrahydroquinoline products 24-27 in yields of 73-80% (Table IV). 

Presumably, different alkyl groups could be added by using different aldehydes. The 

1,2,4-trisubstituted products 24-27 were isolated as single diastereomers with the 

substituents on C2 and C4 demonstrating a cis relationship. 
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~MeR _1)_0_3_, _M_eo_H_,_-7_8_0_c---1_ 

Y A 2) H2, Pd/C, MeOH 
N02 2 eq 37% HCHO (aq) 

9 R=Me 
10 R = Ph 
11 R = n-Bu 
12 R = t-Bu 

c5· 
I R 

Me 

24 R=Me 
25 R= Ph 
26 R = n-Bu 
27 R = t-Bu 

Figure 23. Ozonolysis and tandem reduction-reductive amination sequence leading to 
1,2,4 trisubstituted products. 

TABLE IV 

OZONOLYSIS FOLLOWED BY TANDEM REDUCTION-REDUCTIVE 
AMINATION OF NITROKETONES 

starting ketone R product yield(%) 

13 Me 24 80 
14 Ph 25 73 
15 n-Bu 26 76 
16 t-Bu 27 74 
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Synthesis of Tricyclic 1,2,3,4-Tetrahydroquinoline Derivatives. Alkylation of 

2 with 1-(bromomethyl)cyclopentene (28) or 1-(bromomethyl)-2-methylcyclopentene 

(29) by the method described previously produced alkylated nitro esters 30 and 31 in 

yields of76 and 82%, respectively (Figure 24). 

~ o:::
2
Me -K2-:-0-3-~-8--C--6-, • 

MeCN 

2 28 R=H 
29 R=Me 

30 R=H 
31 R=Me 

Figure 24. Alkylation of methyl 2-nitrophenylacetate with 1-(bromomethyl) 
cyclopentenes. 

The synthesis of tricyclic product 34 is shown in Figure 25. Ozonolysis and 

reductive workup of ester 30 produced a mixture of ketoaldehyde 32 and keto acetal 33. 

Treatment of the mixture of 32 and 33 with 3% aqueous HC104 in tetrahydrofuran as 

described for 17 and 18 produced the ketoaldehyde 32 in 94% yield. Hydrogenation of 

32 then produced the tricyclic product 34 in 69% yield. The fused ring residue at C2 and 

the ester group on C4 again displayed a cis relationship. 
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1) 03, MeOH, -78 °C 
2) Me2S, p-TsOH 

-78 °c--20°c 

+ 

32 

4 atm H2, 5% Pd/C 
32 

MeOH, 30 °C 

33 

34 

3% HCI04:THF (1:1) 

o0c 

Figure 25. Tandem reduction-reductive amination to form a tricylic compound. 

Ozonolysis and reductive workup of ester 31 produced diketone 35 in 95% yield 

(Figure 26). Hydrogenation of diketone 35 by the standard conditions gave a mixture of 

products, with the major band being the expected tricyclic product 36 in 60% yield. 

Analysis of the other bands revealed two side products, 37 and 38, in yields of 6% and 

2%, respectively. 
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31 

4 atm H2, 5% Pd/C 

MeOH, 30°c 

+ 

38 

1) 03, MeOH 

2) Me2S, p-TsOH 

35 

+ 

36 37 

Me 

Figure 26. Ozonolysis of2-methyl-l-cyclopentenyl substituted ester followed by 
tandem reduction-reductive amination. 

Diastereoselectivity in the Reduction-Reductive Amination. The ClS 

selectivity demonstrated in the formation of the 2,4-disubstituted (19-22) and 1,2,4-

trisubstituted 1,2,3,4-tetrahydroquinoline (24-27) products can be rationalized by 

investigation of the mechanism of the reduction (Figure 27). The exact chronology of 

steps is unknown, but the reaction sequence likely begins with reduction of the aromatic 

nitro group to an amine (39) or N-hydroxylamine. Condensation with the carbonyl group 

followed by dehydration produces imine 40. The double bond of 40 possesses two 

diastereotopic faces, one of which is partially blocked by the ester group. Addition of 

hydrogen in the final reduction occurs at the opposite face, producing products 19-22 

with the C2 substituent cis to the C4 ester group. Formation of the N-methyl products 
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24-27 occurs by a similar mechanism with an additional reductive amination between the 

formaldehyde and the tetrahydroquinoline nitrogen. 

o5· 
N02 R 

13 R = Me 
14 R = Ph 
15 R = n-Bu 
16 R = t-Bu 

H2, Pd/C 

MeOH 

o!)_ 
N ft R 

H-H 

~ IN R 
H 

40 19-22 

Figure 27. Proposed mechanism of the tandem reduction-reductive amination. 

The cis relationship between the C2 ring residue and the C4 ester group in product 

36 results from reduction of imine 41, producing intermediate 42. Condensation of the 

tetrahydroquinoline nitrogen with the side chain carbonyl group results in closure of the 

ring to produce enamine 43. The final addition of hydrogen to intermediate 43 occurs to 

the molecular face opposite the C4 ester, resulting in a cis relationship between the 

methyl group, the ring residue, and the ester group. Product 37 is formed by 

tautomerization of imine 41 to enamine 44, which subsequently adds to the side chain 

ketone (Figure 28). Finally, product 38 is formed by reduction of the nitro group 

followed by a single reductive ring closure (Figure 29). 
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Figure 28. Intermediates leading to the formation of product 36. 

44 

Figure 29. Intermediate leading to the formation of product 37. 

Spectroscopic Determination of Stereochemistry. The 1H NMR and X-ray 

crystallographic data compiled by Crabb and co-workers25 show that the heterocyclic ring 

of 1,2,3,4-tetrahydroquinolines adopts a half chair conformation. The cis relationship 

between the C2 alkyl and C4 carboxylate ester in products 19-22 was determined by the 

magnitude of coupling constants in the 1 H NMR spectra and application of the Karplus 

relationship. The cis assignment can be demonstrated using the C2 methyl product 19 as 

an example (Figure 30). The signal assignments were confirmed by a COSY-45 
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spectrum (Plate I). In the 1H NMR spectrum, the most downfield signal in the aliphatic 

region (8 3.96) is assigned to H4 which is coupled to the two protons on C3 (J4,3ax = 12.0 

Hz, J4,3eq = 5.9 Hz). The magnitude of these coupling constants indicates a dihedral 

angle of nearly 180° between the coupled protons; thus the ester group on C4 is in a 

pseudoequatorial position and the proton is in a pseudoaxial position. The signal at o 

3 .41 is assigned to H2 which is coupled to the two protons on C3 (J2,3ax = 11.5 Hz, J4,3eq = 

2.6 Hz) and the methyl substituent (J2,Me = 6.3 Hz). The large coupling constant between 

H2 and H3ax also indicates a dihedral angle of nearly 180° between these protons 

indicating that the C2 methyl is in a pseudoequatorial position and the proton is in a 

pseudoaxial position. Pseudo-equatorial placement of the substituents on C2 and C4 

indicates that the groups are cis. 

3 l;I 

Me02C 1 4 o-N-H 
rl - ~ /Me r~ 

Figure 30. Half chair conformation of methyl product (19). 

The relative stereochemistry of the two substituents on the heterocyclic ring was 

further confirmed by a NOESY spectrum (Plate II) of C2 methyl product 19. An NOE 

crosspeak is observed between H4 at 8 3.96 and H2 at o 3.41. The presence of the 

crosspeak demonstrates the near 1,3-diaxial relationship between these two protons and 

thus the cis relationship between the two ring substituents. 

The cis relationship between the ester group, the ring methylene, and the methyl 

substituent of tricyclic product 36 was also confirmed by a NOESY spectrum (Plate III). 
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A correlation is observed between Ha and He with Hb, placing these protons in a 1,3-

diaxial like relationship with each other (Figure 31 ). The structure of product 37 was also 

confirmed by a NOESY spectrum. 

Figure 31. Illustration of the cis relationship between the ester group, the ring 
methylene, and the methyl substituent in product 36. 
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Plate I. COSY of Methyl (± )-(2R* ,4S*)-2-Methyl-1,2,3,4-tetrahydroquinoline-4-
carboxylate (19). 
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Plate II. NOESY of Methyl (±)-(2R*,4S*)-2-Methyl-l,2,3,4-tetrahydroquinoline-4-
carboxylate (19). 

30 



F2 
(ppm 

3.0 

3.2 

3.4 

3.6 

0 

""'Tn-rrf""'1'T" 1 1 J, t 1 1 I 1 1 LI I ~f"rT'1-,-,~f"TT"TTTT""'" 

4. 8 4. 6 4. 4 4. 2 4. 0 3·. 8 . 

Fl (ppm)· 

I 
o·I 

i 
! 

·I 
I 
! 

I 
I 

I . 

I 
:-n-rrTTT,-,-n,-rrn,TTTTTTJTTTTf',Trrn,,·p,-rJ 

3.6 3.4 3.2 3.0 

Plate III. NOESY of Methyl (±)-(1R*,4aR*,6S*)-1-Methyl-2,3,4,4a,5,6- hexahydro
lH-benzo[ c ]quinolizine-6-carboxylate (36). 

31 



Discussion. The key step in the synthesis is the tandem reduction-reductive 

amination sequence initiated by catalytic reduction of the nitro group. In substrates 

incorporating a ketone group, reduction of the final imine intermediate 41 was highly 

diastereoselective, resulting from addition of hydrogen to the face opposite the ester 

group. This resulted in the formation of a single product having a cis relationship 

between the C2 alkyl and the C4 ester groups in products 19-22. This synthesis was 

extended to include the synthesis of 2-alkyl-l-methyl-1,2,3,4-tetrahydroquinoline-4-

carboxylic esters 24-27 in which the C2 alkyl and C4 ester groups also displayed a cis 

relationship. The synthesis of methyl-1,2,3,4-tetrahydroquinoline-4-carboxylate (23) was 

also accomplished by the same tandem reduction-reductive amination procedure. 

The synthesis of fused tricyclic products 34 and 36 by reduction-double reductive 

amination has been accomplished. The synthesis of fused tricyclic product 34 was also 

diastereoselective, resulting in formation of a product having a cis relationship between 

the C4 ester group and the C2 fused ring residue. In the synthesis of 36, the major 

product displayed a cis relationship between the C4 ester group, the C2 alkyl group, and 

the methyl substituent. 

Conclusion. This work represents a new synthetic approach to the production of 

2-alkyl and 2-alkyl-l-methyl-1,2,3,4-tetrahydroquinoline-4-carboxylic esters, as well as 

related tricyclic structures. The C4 ester group acts as a stereodirecting group in the 

reductive cyclization for the addition of hydrogen to the final imine, resulting in the 

formation of the product as a single diastereomer. This methodology in which the ester 

group directs the addition of hydrogen to a double bond can be applied to the 

construction of more complex ring systems. 
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EXPERIMENTAL 

Commercial reagents and solvents were used as received. Potassium carbonate 

was ground into a fine powder, dried under vacuum for 24 h at 120 ·c, and then stored in 

an oven at 120 ·c until needed. Allylic halides 3 and 4 were commercially available. 

The allylic halides needed for the syntheses of compounds 10-12 were prepared by the 

following methods: 3-iodo-2-phenylpropene (5) was prepared by the method of Bunce 

and Zimmerman;26 3-bromo-2-butylpropene (6) was prepared by (1) addition of HBr to 

l-hexyne,27 (2) conversion to the Grignard reagent followed by reaction with 

formaldehyde gas and (3) conversion of the alcohol to the bromide by reaction with PBr3 

(38% overall yield); 3-bromo-2-tert-butylpropene (7) was prepared following the 

procedure of Dauben and co-workers;28 l-(bromomethyl)-1-cyclopentene (28) was 

prepared by (1) reduction of cyclopentene-l-carboaldehyde29 with lithium aluminum 

hydride and (2) conversion of the alcohol to the bromide by treatment with PBr3;30 l

(bromomethyl)-2-methyl- l-cyclopentene (29) was prepared from 2-methyl-1-

cyclopentene-l-carboxaldehyde31 according to the procedure of Ziegler and co-workers.32 

All reactions were run under dry nitrogen and in oven-dried glassware. The HCl 

(0.2 M, 1 M, 2 M, and 6 M), NaOH (0.2 M and 1 M), NaHC03 (saturated), Na2S203 

(5%), and NaCl (saturated) used in various procedures refer to aqueous solutions. 

Reactions were monitored by one of the following methods: (1) TLC on silica gel GF 

plates (Analtech no. 21521) with UV detection, or (2) capillary GC (SE-30 column, 6 m x 

0.25 mm i.d., 0.25 µm film thickness) with FI detection programmed between 50-300 ·c. 

Preparative separations were performed by one of the following methods: (1) flash 

column chromatography on silica gel (grade 62, 60-200 mesh) containing UV-active 
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phosphor (Sorbent Technologies UV- 5) or (2) PTLC on 20-cm x 20-cm silica gel GF 

plates (Analtech no. 02015). Band elution for both methods was monitored by using a 

hand-held UV lamp. Melting points were uncorrected. IR spectra were run as thin films 

on NaCl disks and referenced to polystyrene. 1H and Be NMR spectra were measured in 

CDCh at 300 MHz and 75 MHz respectively using (CH3)4Si as an internal standard. 

COSY and NOESY spectra were recorded at 400 MHz. High-resolution mass spectra 

(HRMS, EI/DP) were obtained at 70 eV. 

Esterification of 2-Nitrophenylacetic Acid (1): Methyl (2-Nitrophenyl) 

Acetate (2). A saturated solution of HCl in 500 mL of anhydrous methanoi33 was 

prepared in a 1000-mL, three-necked, round-bottomed flask fitted with a reflux 

condenser and a magnetic stir bar. To this solution was added 50.0 g (276 mmol) of 1. 

The solution was refluxed for approximately 15 h. After cooling to room temperature, 

the solution was concentrated under vacuum, diluted with saturated NaCl, and extracted 

with 100 mL of ether (3x). The combined organic layers were washed with NaHC03 

(2x), dried (MgS04), and evaporated under reduced pressure to give the crude ester as a 

yellow oil. Vacuum distillation then gave 51. 7 g (265 mmol, 96%) of a pale yellow oil, 

bp 115-117 ·c (0.1 mm Hg). IR 1735, 1521, 1348 cm-1; 1H NMR 6 8.12 (d, J= 8.1 

Hz, 1 H), 7.61 (t, J= 1.6 Hz, 1 H), 7.48 (t, J= 7.8 Hz, 1 H), 7.36 (d, J= 1.5 Hz, 1 H), 

4.04 (s, 2 H), 3.72 (s, 3 H); Be NMR 6 170.4, 148.7, 133.6, 133.3, 129.7, 128.6, 125.3, 

52.2, 39.5. 

Representative Procedure for the Alkylation of Methyl (2-

Nitrophenyl)acetate (2): Methyl (:1:)-2-(2-Nitrophenyl)-4-pentenoate (8). The general 

procedure of Makosza and Tyrala34 was used. A 250-mL, three-necked, round-bottomed 
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flask containing a magnetic stir bar was charged with 100 mL of dry acetonitrile, 15 mg 

of 18-crown-6, and 17.4 g (126 mmol) of anhydrous potassium carbonate. Stirring was 

started and 2.93 g (15.0 mmol) of2 was added. To the resulting blue solution was added, 

2. 72 g (18.8 mmol) of 3 and the solution was stirred at 55-65 °C. The progress of the 

reaction was monitored by TLC. After 9 h, TLC indicated that the reaction was not 

complete and 0.25 g (1.67 mmol) of sodium iodide was added. The reaction was stirred 

for a total of 18 h and then allowed to cool to room temperature. The reaction mixture 

was vacuum filtered to remove potassium carbonate and other insoluble salts, dissolved 

into ether, washed with Na2S203 (3x) and NaCl (2x), dried (MgS04), vacuum filtered, 

and concentrated under reduced pressure. The resulting yellow oil was purified by flash 

chromatography on a 30 cm x 2.5 cm silica gel column eluted with increasing 

concentrations of ether in hexanes (5-15%) to yield 3.09 g (12.2 mmol, 88%) of 9 as a 

light yellow oil. IR 1736, 1641, 1532, 1350 cm-1; 1H NMR 6 7.90 (dd, J = 8.2, 1.4 Hz, 

1 H), 7.62-7.51 (complex, 2 H), 7.43 (m, 1 H), 5.73 (ddt, J = 17.1, 10.1, 6.9 Hz, 1 H), 

5.05 (dm, J= 17.1 Hz, 1 H), 5.01 (dm, J= 10.1 Hz, 1 H), 4.31 (t, J= 7.5 Hz, 1 H), 3.68 

(s, 3 H), 2.91 (m, 1 H), 2.63 (m, 1 H); 13C NMR 6 172.7, 149.5, 134.5, 133.1, 133.0, 

130.2, 128.2, 124.8, 117.9, 52.2, 46.0, 36.8; HRMS m/z: Calcd for C12H13N04: 

235.0844; Found 235.0847. 

Anal. Calcd for C12H13N04: C, 61.28; H, 5.53. Found: C, 61.54; H, 5.58. 

Methyl (±)-4-Methyl-2-(2-nitrophenyl)-4-pentenoate (9). 3.30 g (13.3 mmol, 

88%); IR 1737, 1659, 1523, 1353 cm-1; 1HNMR 6 7.88 (d,J= 8.2 Hz, 1 H), 7.58 (m, 

2 H), 7.42 (m, 1 H), 4.75 (s, 1 H), 4.48 (t, J= 7.5 Hz, 1 H), 3.67 (s, 3 H), 2.87 (dd, J= 

14.4, 7.5 Hz, 1 H), 2.55 (dd, J= 14.4, 7.5 Hz, 1 H) 1.73 (s, 3 H); 13C NMR 6 172.8, 
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149.5, 141.8, 133.0, 130.0, 128.1, 124.7, 113.2, 52.3, 44.4, 40.8, 22.2; HRMS mlz ealcd 

for eBH1sN04: 249.1001; Found: 249.0998. 

Anal. ealcd for eBH1sN04: e, 62.65; H, 6.02. Found: e, 62.78; H, 6.05. 

Methyl (±)-4-Phenyl-2-(2-nitrophenyl)-4-pentenoate (10). 0.50 g (1.61 mmol, 

46%); IR 1736, 1635, 1530, 1353 cm-1; 1HNMR o 7.88 (d,J= 8.0 Hz, 1 H), 7.53 (t,J 

= 7.7 Hz, 1 H), 7.41-7.24 (complex, 7 H), 5.19 (s, 1 H), 4.94 (s, 1 H), 4.29 (dd, J= 8.3, 

6.6 Hz, 1 H), 3.63 (s, 3 H), 3.53 (dd, J= 13.7, 6.6 Hz, 1 H), 3.03 (dd, J= 13.7, 8.3 Hz, 1 

H); Be NMR o 172.5, 149.6, 145.1, 139.9 (2), 131.1, 128.4, 128.2, 127.8, 126.2, 124.8, 

115.4, 52.2, 46.0, 38.2; HRMS m/z: ealcd for e1sH11N04: 311.1157; Found: 311.1154. 

Anal. ealcd for C18H17N04: C, 69.45; H, 5.47. Found: e, 69.66; H, 5.48. 

Methyl (±)-4-Butyl-2-(2-nitrophenyl)-4-pentenoate (11). 2.65 g (9.10 mmol, 

91%); IR 1744, 1646, 1532, 1354cm"1; 1HNMR o 7.87(d,J=7.8Hz, 1 H), 7.57(m, 

2 H), 7.41 (m, 1 H), 4.75 (s, 1 H), 4.66 (s, 1 H), 4.47 (dd, J = 8.0, 7.1 Hz, 1 H), 3.67 {s, 3 

H), 2.87 (dd, J= 14.7, 8.0 Hz, 1 H), 2.54 (dd, J= 14.7, 7.1 Hz, 1 H), 2.00 (t, J= 7.3 Hz, 2 

H), 1.42 (complex, 4 H), 0.89 (t, J= 7.1 Hz, 3 H); Be NMR o 172.9, 149.4, 145.9, 

133.1, 132.9, 129.9, 128.1, 124.7, 111.7, 52.3, 44.5, 39.1, 35.5, 29.8, 22.3, 13.9; HRMS 

m/z: ealcd for e16H21N04: 291.1470; Found: 291.1470. 

Anal. ealcd for e16H21N04: e, 65.98; H, 7.22. Found: e, 66.09; H, 7.25. 

Methyl (±)-4-tert-Butyl-2-(2-nitrophenyl)-4-pentenoate (12). 3.52 g (12.1 

mmol, 93%); IR 1745, 1645, 1530, 1353 cm·1; 1H NMR o 7.87 (d, J= 7.8 Hz, 1 H), 

7.58 {m, 2 H), 7.42 {m, 1 H), 4.89 (s, 1 H), 4.57 (s, 1 H), 4.56 (m, 1 H), 3.67 (s, 3 H), 

2.93 (dd, J= 16.4, 8.0 Hz, 1 H), 2.56 (dd, J= 16.4, 7.4 Hz, 1 H), 1.04 (s, 9 H); Be NMR 
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o 173.0, 153.9, 149.5, 133.4, 132.9, 129.8, 128.1, 124.7, 107.7, 50.3, 44.7, 36.2, 34.3, 

29.0; HRMS mlz: Calcd for C16H21N04: 291.1470; Found: 291.1469. 

Anal. Calcd for C1~21N04: C, 65.98; H, 7.22. Found: C, 66.17; H, 7.23. 

Representative Procedure for Ozonolysis: Methyl (±)-2-(2-Nitrophenyl)-4-

oxopentanoate (13). A solution containing 1.25 g (5.02 mmol) of 8 in 125 mL of 

methanol was cooled to - 78 °C and treated with ozone until TLC indicated that all of the 

starting material had been consumed. The reaction was quenched at -78 °C by the 

addition of 5.08 g (6.00 mL, 84.9 mmol) of dimethyl sulfide and 200 mg of p

toluenesulfonic acid. The reaction mixture was stirred, allowed to warm to room 

temperature over 8 h, and concentrated under reduced pressure. The resulting yellow oil 

was flash cbromatographed on a 30 cm x 2 cm silica gel column eluted with increasing 

concentrations of ether in hexanes (5-15%) to yield 1.18 g (4.72 mmol, 94%) of 13 as a 

light yellow oil. IR 1742, 1715, 1528, 1353 cm-1; 1H NMR o 7.97 (d, J= 8.0 Hz, 1 

H), 7.58 (t, J= 7.7 Hz, 1 H), 7.44 (m, 2 H), 4.69 (dd, J= 8.2, 4.8 Hz, 1 H), 3.66 (s, 1 H), 

3.48 (dd, J= 18.1, 8.2 Hz, 1 H), 2.87 (dd, J= 18.1, 4.8 Hz, 1 H), 2.20 (s, 3 H); 13C NMR 

o 205.2, 172.2, 149.4, 133.5 (2), 131.0, 128.5, 125.2, 52.5, 46.3, 42.7, 29.8; HRMS mlz: 

Calcd for C12H13NOs: 251.0793; Found: 251.0791. 

Anal. Calcd for C12H13N05: C, 57.37; H, 5.18. Found: C, 57.69; H, 5.23. 

Methyl (±)-2-(2-Nitrophenyl)-4-oxo-4-phenylbutanoate (14). mp 80-82 °C; 

1.41 g (4.50 mmol, 89%); IR 1746, 1687, 1530, 1353 cm-1; 1H NMR o 7.98 (m, 3 H), 

7.57 (m, 3 H), 7.46 (m, 3 H), 4.91 (dd, J= 7.8, 5.1 Hz, 1 H), 4.03 (dd, J= 18.1, 7.8 Hz, 1 

H) 3.69 (s, 1 H), 3.47 (dd, J = 18.1, 5.1 Hz, 1 H); 13C NMR o 196.7, 172.4, 149.3, 
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136.2, 133.5, 133.4, 131.0, 128.5, 128.1, 125.2, 52.6, 42.8, 42.0; HRMS mlz: Calcd for 

C11H1sNOs: 313.0950; Found: 313.0948. 

Anal. Calcd for C11H1sNOs: C, 65.18; H, 4.79. Found: C, 65.50; H, 4.84. 

Methyl (±)-2-(2-Nitrophenyl)-4-oxooctanoate (15). 1.04 g (3.55 mmol, 95%); 

IR 1744, 1715, 1527, 1354cm-1; 1HNMR o 7.97(d,J=8.l Hz, 1 H), 7.58(t,J=7.7 

Hz, 1 H), 7.45 (d, J= 7.8 Hz, 1 H), 7.44 (t, J= 7.3 Hz, 1 H), 4.70 (dd, J= 8.4, 4.8 Hz, 1 

H), 3.66 (s, 1 H), 3.44 (dd, J= 18.1, 8.4 Hz, 1 H), 2.85 (dd, J= 18.1, 4.8 Hz, 1 H), 2.45 

(m, 2 H), 1.57 (quintet, J= 7.3 Hz, 2 H), 1.30 (sextet, J= 7.4 Hz, 2 H) 0.89 (t, J= 7.3 Hz, 

3 H); Be NMR o 201.8, 112.3, 148.7, 133.5 (2), 131.0, 128.4, 125.2, 52.5, 45.4, 42.7, 

42.4, 25.8, 22.2, 13.8; HRMS mlz: Calcd for C1sH19NOs: 293.1263; Found: 293.1260. 

Anal. Calcd for C15H19N05: C, 61.43; H, 6.48. Found: C, 61.75; H, 6.54. 

Methyl (±)-5,5-Dimethyl-2-(2-nitrophenyl)-4-oxohexanoate (16). 2.18 g (7.44 

mmol, 92%); IR 1744, 1712, 1530, 1353 cm-1; 1H NMR o 7.96 (d, J= 8.1 Hz, 1 H), 

7.57 (t, J= 7.6 Hz, 1 H), 7.45 (d, J= 7.7 Hz, 1 H), 7.44 (t, J= 7.3 Hz, 1 H), 4.66 (dd, J= 

8.5, 4.8 Hz, 1 H), 3.66 (s, 1 H), 3.48 (dd, J= 18.1, 8.5 Hz, 1 H), 2.96 (dd, J= 18.1, 4.8 

Hz, 1 H). 1.15 (s, 9 H); Be NMR o 212.7, 172.5, 148.7, 133.6, 133.4, 130.7, 128.4, 

125.2, 52.4, 44.0, 42.8, 40.3, 26.3 (3); HRMS mlz: Calcd for C1sH19NOs: 293.1263; 

Found: 293.1262. 

Anal. Calcd for C1sH19NOs: C, 61.43; H, 6.48. Found: C, 61.69; H, 6.52. 

Methyl (±)-2-(2-Nitrophenyl)-4-oxobutanoate (17). A solution of 1.50 g (6.38 

mmol) of 8 in 150 mL of methanol was treated with ozone at -78 °C until TLC indicated 

that all of the starting material had been consumed. The reaction was quenched at-78 °C 

by adding 6.49 g (7. 70 mL, 108.5 mmol) of dimethyl sulfide and 260 mg of p-
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toluenesulfonic acid. The reaction mixture was stirred and allowed to warm to room 

temperature over 8 h, then concentrated under reduced pressure. The resulting yellow oil 

was diluted with ether, washed with NaHC03 (2x) and NaCl (lx), and dried (MgS04). 

Vacuum filtration followed by concentration under reduced pressure gave a mixture of 

aldehyde 17 and acetal 18. This mixture was dissolved with 75 mL of tetrahydrofuran 

and cooled to O °C. To the resulting solution, 75 mL of a 3% aqueous solution of HC104 

was added dropwise, and the reaction was stirred at O °C for 1 h and at room temperature 

for 6 h. The solution was extracted with methylene chloride (2x) and the combined 

organic layers were washed with NaHC03 (2x) and NaCl (lx), dried (MgS04}, vacuum 

:filtered, and concentrated under reduced pressure to yield 1.48 g ( 6.24 mmol, 98%) of 17 

which was used without further purification. IR 2846, 2733, 1744, 1729, 1527, 1354 

cm-1; 1H NMR a 9.80 (s, 1 H), 8.00 (dd, J= 7.8, 1.4 Hz, 1 H), 7.58 (td, J= 7.7, 1.4 Hz, 

1 H), 7.47 (m, 2 H), 4.76 (dd, J= 8.1, 5.1 Hz, 1 H), 3.65 (s, 1 H), 3.55 (dd, J= 18.7, 8.1 

Hz, 1 H), 2.97 (dd, J = 18.7, 5.1 Hz, 1 H); 13C NMR a 198.5, 171.8, 148.7, 133.6, 

132.9, 130.9, 128.7, 125.4, 52.7, 46.6, 41.4; HRMS mlz: Calcd for C11H11NOs: 

237.0637; Found: 237.0636. 

Representative Procedure for Reduction-Reductive Amination: Methyl (±)

(2R* ,4S*)-2-Methyl-1,2,3,4-tetrahydroquinoline-4-carboxylate (19). To a solution 

containing 750 mg (2.99 mmol) of 13 in 125 mL of methanol was added 190 mg of 5%. 

palladium-on-carbon. The mixture was hydrogenated in a stainless steel hydrogenation 

vessel under 4 atm of hydrogen at 30 °C for 2.5 h. The crude reaction mixture was 

concentrated, diluted with diethyl ether, and vacuum filtered through a pad of Celite 

topped with a layer of MgS04 to remove the catalyst. The :filtrate was concentrated under 
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vacuum to yield 600 mg (2.93 mmol, 98%) of 19 as a light yellow oil that crystallized on 

standing at-20 °e. The resulting solid was triturated with 3% ether in hexanes to give 19 

asanoffwhitepowder,mp82-84°e. IR 3395, 1737cm-1; 1HNMR 6 7.01 (t,J=8.l 

Hz, 1 H), 6.97 (d, J= 7.7 Hz, 1 H), 6.64 (t, J= 7.7 Hz, 1 H), 6.50 (d, J= 8.1 Hz, 1 H), 

3.96 (dd, J= 12.0, 5.9 Hz, 1 H), 3.76 (br s, 1 H), 3.76 (s, 3 H), 3.41 (m, 1 H), 2.15 (ddd, J 

= 12.8, 5.9, 2.6 Hz, 1 H), 1.95 (dd, J = 22.9, 12.8 Hz, 1 H), 1.23 (d, J = 6.3 Hz, 3 H); 

Be NMR 6 175.o, 144.7, 128.1, 121.3, 111.9, 111.6, 114.7, 52.0, 46.3, 43.9, 34.4, 22.3; 

HRMS m/z: ealcd for e12H1sN02: 205.1103; Found: 205.1104. 

Anal. ealcd for e12H1sN02: e, 70.24; H, 7.32; N, 6.83. Found: e, 70.29; H, 

7.33; N, 6.76. 

Methyl (±)-(2R*, 4S*) -2- Phenyl-I, 2, 3, 4-tetrahydroquinoline-4-carboxylate 

(20). 619 mg (2.32 mmol, 97%); mp 75-78 °e; IR 3395, 1736 cm-1; 1H NMR 6 7.45-

7.27 (complex, 5 H), 7.07 (t, J= 8.1 Hz, 1 H), 7.03 (d, J= 7.7, 1 H), 6.72 (t, J= 7.7 Hz, 

1 H), 6.57 (d, J= 8.1 Hz, 1 H), 4.42 (dd, J= 10.2, 3.7 Hz, 1 H), 4.11 (dd, J= 11.1, 6.5 

Hz, 1 H), 4.10 (br s, 1 H), 3.71 (s, 3 H), 2.36 (m, 2 H); Be NMR 6 174.5, 144.7, 143.2, 

128.7, 128.3, 128.1, 127.9, 126.7, 117.8, 117.7, 114.9, 55.7, 52.0, 44.1, 35.2; HRMS m/z: 

ealcd for e11H11N02: 267.1259; Found: 267.1259. 

Anal. ealcd for e12H1sN02: e, 76.40; H, 6.37; N, 5.24. Found: e, 76.33; H, 

7.33; N, 5.29. 

Methyl (± )-(2R* ,4S*)-2-Butyl-1,2,3,4-tetrahydroquinoline-4-carboxylate (21 ). 

625 mg (2.53 mmol, 99%); mp 53-54 °e; IR 3393, 1736 cm-1; 1HNMR 6 7.02 (t,J= 

8.1 Hz, 1 H), 6.96 (d, J= 7.7 Hz, 1 H), 6.64 (t, J= 7.7 Hz, 1 H), 6.51 (d, J= 8.1 Hz, 1 

H), 3.94 (dd, J= 11.8, 5.7 Hz, 1 H), 3.80 (br s, 1 H), 3.76 (s, 3 H), 3.26 (m, 2 H), 2.21 
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(ddd, J = 12.6, 5.7, 2.5 Hz, 1 H), 1.94 (dd, J = 23.6, 11.0 Hz, 1 H), 1.52 (m, 2 H), 1.38 

(m, 4 H), 0.93 (t, J= 6.9 Hz, 3 H); 13e NMR o 175.0, 144.6, 128.1, 127.9, 118.1, 117.4, 

114.7, 52.0, 50.7, 43.9, 36.1, 32.5, 27.6, 22.7, 14.0; HRMS m/z: ealcd for e 15H21N02: 

247.1572; Found: 247.1571. 

Anal. ealcd for e1sH21N02: e, 72.87; H, 8.50; N, 5.67. Found: e, 73.06; H, 

8.52; N, 5. 72. 

Methyl (±)-(2R* ,4S*)-2-tert-Butyl-1,2,3,4-tetrahydroquinoline-4-carboxylate 

(22). 588 mg (2.38 mmol, 93%); mp 76-79 °e; IR 3381, 1736 cm·1; 1H NMR o 7.02 

(t, J= 8.0 Hz, 1 H), 6.93 (d, J= 7.7 Hz, 1 H), 6.62 (t, J= 7.6 Hz, 1 H), 6.53 (d, J= 8.1 

Hz, 1 H), 3.93 (dd, J= 12.5, 5.3 Hz, 1 H), 3.84 (br s, 1 H), 3.78 (s, 3 H), 3.00 (dd, J= 

11.5, 2.3 Hz, 1 H), 2.20 (ddd, J= 12.5, 5.3, 2.3 Hz, 1 H), 1.93 (dd, J= 24.0, 11.5 Hz, 1 

H), 0.98 (s, 9 H); Be NMR o 175.2, 145.2, 127.9, 127.7, 118.2, 117.3, 114.8, 59.8, 

52.0, 44.4, 33.3, 27.7, 25.8 (3); HRMS mlz: ealcd for e1sH21N02: 247.1572; Found: 

247.1568. 

Anal. ealcd for e1sH21N02: e, 72.87; H, 8.50; N, 5.67. Found: e, 73.08; H, 

8.53; N, 5.65. 

Methyl (±)-1,2,3,4-Tetrahydroquinoline-4-carboxylate (23). 400 mg (2.09 

mmol,90%); IR 3403, 1729cm·1; 1HNMR o 7.10(d,J=7.8Hz, 1 H), 7.02(t,J=8.0 

Hz, 1 H), 6.63 (t, J= 7.8 Hz, 1 H), 6.51 (d, J= 8.0 Hz, 1 H), 3.78 (t, J= 4.8 Hz, 1 H), 

3.71 (s, 3 H), 3.69 (br s, 1 H), 3.43 (td, J= 11.0, 3.2 Hz, 1 H), 3.27 (dt, J= 11.5, 4.8 Hz, 

1 H), 2.27 (m, 1 H); Be NMR o 174.9, 144.5, 130.3, 128.1, 117.0 (2), 114.8, 52.0, 41.5, 

38.7, 24.4; HRMS mlz: ealcd for euH13N02: 191.0946; Found: 191.0943. 
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Anal. Calcd for C11H13N02: C, 69.11; H, 6.81; N, 7.32. Found: C, 69.29; H, 

6.85; N, 7.41. 

Alternative Procedure for the Alkylation of Methyl (2-Nitrophenyl) acetate 

(2): Methyl (±)-2-(2-Nitrophenyl)-4-oxopentanoate (13). The general procedure of 

Mak:osza and Tyrala34 was used. A 250-mL, three-necked, round-bottomed flask 

containing a magnetic stir bar was charged with 75 mL of dry acetonitrile, 12 mg of 18-

crown-6, and 11.6 g (84 mmol) of anhydrous potassium carbonate. Stirring was initiated 

and 1.95 g (10 mmol) of 2 was added. To the resulting blue solution, was added 1.16 g 

(12.5 mmol) of chloroacetone and the solution was stirred at 30 °C. The reaction 

progress was monitored by TLC. After 24 h, TLC indicated that the reaction was 

proceeding slowly and 0.25 g (1.67 mmol) of sodium iodide was added. An additional 

3.25 g (35.2 mmol) of chloroacetone was added was added over a 12-day period. After 

12 days, the reaction mixture was vacuum filtered, diluted with ether, washed with 

Na2S203 (3x) and NaCl (2x), dried (MgS04), vacuum :filtered, and concentrated under 

reduced pressure. The resulting yellow oil was purified by flash chromatography on a 30 

cm x 2.5 cm silica gel column eluted with increasing concentrations of ether in hexanes 

(5-20%) to yield 2.79 g (11.1 mmol, 56%) of 13 as a light yellow oil. The spectral data 

matched those reported above. 

Attempted Alternative for the Alkylation of Methyl (2-Nitrophenyl)acetate 

(2): Methyl (±)-2-(2-Nitrophenyl)-4-oxo-4-phenylpentanoate (14). The general 

procedure of Mak:osza and Tyrala34 was used. A 250-mL, three-necked, round-bottomed 

flask containing a magnetic stir bar was charged with 75 mL of dry acetonitrile, 12 mg of 

18-crown-6, and 11.6 g (84 mmol) of anhydrous potassium carbonate. Stirring was 
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initiated and 1.95 g (10 mmol) of 2 was added. To the resulting blue solution, was added 

a solution of 2.03 g (13.1 mmol) of phenacyl chloride in 10 mL of dry acetonitrile and the 

solution was stirred at 30 °C. The reaction progress was monitored by TLC. After 24 h, 

TLC indicated that the reaction was proceeding slowly and 0.50 g (3.34 mmol) of sodium 

iodide was added. An additional 0.60 g (3.9 mmol) of sodium iodide was added over 3 

days. Further TLC indicated that no product was being formed. 

Representative Ozonolysis and Reduction-Reductive Amination Procedure: 

Methyl (2R* ,4S*)-l,2-Dimethyl-1,2,3,4-tetrahydroquinoline-4-carboxylate (24). A 

solution containing 500 mg (2.01 mmol) of 9 in 125 mL of methanol was cooled to -78 

°C and treated with ozone until TLC showed that all of the starting material was 

consumed. The crude reaction mixture was transferred to a stainless steel hydrogenation 

vessel. To the mixture was added 0.50 mL of 37% aqueous formaldehyde (54.5 mg, 18.2 

mmol of HCHO) and 125 mg of 5% palladium-on-carbon. The mixture was 

hydrogenated under 4 atm of hydrogen for 6 h at 30 °C. Following hydrogenation, the 

reaction mixture was concentrated, diluted with ether, and vacuum filtered through a pad 

of Celite topped with a layer MgS04 to remove the catalyst. Concentration gave a yellow 

oil that was flash chromatographed on a 30 cm x 2 cm silica gel column eluted with 

increasing concentrations of ether in hexanes (5-20%). The major band yielded 352 mg 

(1.61 mmol, 80%) of 24 as a light yellow oil that darkened upon exposure to air. IR 

1744 cm·1; 1H NMR c3 7.15 (tm, J= 7.4 Hz, 1 H), 7.00 (dm, J= 7.4 Hz, 1 H), 6.65 (td, 

J= 7.4, 1.2 Hz, 1 H), 6.62 (d, J= 7.4 Hz, 1 H), 3.79 (t, J= 6.4 Hz, 1 H), 3.74 (s, 3 H), 

3.40 (sextet, J= 5.9 Hz, 1 H), 2.88 (s, 3 H), 2.26 (m, 2 H), 1.13 (d, J= 6.5 Hz, 1 H): 13C 

43 



NMR o 174.8, 145.5, 139.1, 128.2, 119.1, 116.0, 119.9, 52.9, 52.0, 41.9, 36.5, 32.7, 

18.5; HRMS m/z: ealcd for eBH11N02: 219.1259; Found: 219.1257. 

Anal. ealcd for eBH17N02: e, 71.23; H, 7.76; N, 6.39. Found: e, 71.51; H, 

7.80; N, 6.42. 

Methyl (2R* ,4S*)-1-Methyl-2-phenyl-1,2,3,4-tetrahydroquinoline-4-carboxyl

ate (25). 330mg(l.17mmol, 73%); IR 1744cm-1; 1HNMR 8 7.34-7.18(complex,6 

H), 6.97 (d, J = 7.4 Hz, 1 H), 6.75 (d, J = 7.4 Hz, 1 H), 6.70 (t, J = 7.4 Hz, 1 H), 4.43 (dd, 

J= 7.6, 4.8 Hz, 1 H), 3.85 (dd, J= 8.1, 5.3 Hz, 1 H), 3.42 (s, 3 H), 2.80 (s, 3 H), 2.56 (dt, 

J= 13.3, 8.1 Hz, 1 H), 2.40 (dt,J= 13.3, 5.3 Hz, 1 H); Be NMR o 173.8, 146.1, 142.5, 

128.7, 128.5, 128.4, 127.7, 126.9, 119.5, 116.2, 111.6, 62.4, 51.8, 42.6, 37.8, 34.8; 

HRMS m/z: ealcd for e1sH19N02: 281.1416; Found: 281.1415. 

Anal. ealcd for e1sH19N02: e, 76.87; H, 6.76; N, 4.98. Found: e, 76.59; H, 

6.82; N, 4.90. 

Methyl (2R* ,4S*)-2.-Butyl-1-methyl-1,2,3,4-tetrahydroquinoline-4-carboxyl

ate (26). 341mg(l.31mmol,76%); IR 1744cm-1; 1HNMR 8 7.14(tm,J=7.4Hz, 

1 H), 6.96 (dm, J = 7.4 Hz, 1 H), 6.64 (td, J = 7.4, 1.2 Hz, 1 H), 6.59 (d, J = 7.5 Hz, 1 H), 

3.74 (t, J = 6.3 Hz, 1 H), 3.73 (s, 3 H), 3.24 (m, 1 H), 2.91 (s, 3 H), 2.37 (dt, J = 13.6, 5.8 

Hz, 1 H), 2.20 (ddd, J= 13.6, 6.3, 3.9 Hz, 1 H), 1.59 (m, 1 H), 1.36-1.19 (complex, 5 H), 

0.88 (t, J= 6.6 Hz, 3 H); Be NMR 8 179.4, 145.4, 129.2, 128.2, 118.9, 115.7, 111.7, 

58.0, 52.0, 41.6, 37.4, 31.4, 29.0, 27.8, 22.9, 14.1; HRMS m/z: ealcd for e16H23N02: 

261.1729; Found: 261.1728. 

Anal. ealcd for e16H23N02: e, 73.56; H, 8.81; N, 5.36. Found: e, 73.78; H, 

8.85; N, 5.33. 
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Methyl (2R* ,4S*)-2-tert-Butyl-1-methyl-1,2,3,4-tetrahydroquinoline-4-car-

boxylate (27). 332 mg (1.27 mmol, 74%); IR 1744 cm-1; 1H NMR o 7.14 (tm, J= 8.0 

Hz, 1 H), 6.85 (dm, J= 7.6 Hz, 1 H), 6.72 (t, J= 7.8 Hz, 1 H), 6.68 (dd, J= 7.4, 1.1 Hz, 1 

H), 3.82 (s, 3 H), 3.53 (dd, J= 12.0, 3.8 Hz, 1 H), 3.11 (s, 3 H), 3.04 (dd, J= 10.0, 7.7 

Hz, 1 H), 2.34 (ddd, J= 13.4, 7.7, 3.8 Hz, 1 H), 2.03 (ddd, J= 13.4, 12.0, 10.0 Hz, 1 H), 

0.91 (s, 9 H); Be NMR o 174.4, 149.1, 127.8, 127.5, 124.5, 117.9, 117.3, 67.6, 51.8, 

44.8, 42.8, 38.3, 32.2, 27.6 (3); HRMS m/z: ealcd for e1JI23N02: 261.1729; Found: 

261.1725. 

Anal. ealcd for e1JI23N02: e, 73.56; H, 8.81; N, 5.36. Found: e, 73.51; H, 

8.84; N, 5.51. 

Methyl (±)-3-(1-Cyclopentenyl)-2-(2-nitrophenyl)propanoate (30). The 

general procedure of Makoska and Tyrala34 was used. A 250 mL, three-necked, round

bottomed flask was charged with 95 mL of acetonitrile, 24.0 g (174 mmol) of anhydrous 

potassium carbonate, and 20 mg of 18-crown-6. Stirring was started and 2.93 g (15 

mmol) of 2 was added . The reaction turned a deep blue, and 5.35 g (24.0 mmol) of 28 

was added. The mixture was stirred at reflux for approximately 18 h. The solids were 

removed by vacuum filtration and the filtrate was concentrated under reduced pressure. 

The resulting oil was flash chromatographed on a 30 cm x 2.5 cm silica gel column 

eluted with increasing concentrations of ether in hexanes (5-15%) to yield 2.73 g (9.92 

mmol, 66%) of30 as a light yellow oil. IR 1737, 1654, 1530, 1353 cm-1; 1H NMR o 

7.86 (d, J= 8.1 Hz, 1 H), 7.57 (dd, J= 4.9, 1.1 Hz, 2 H), 7.40 (m, 1 H), 5.29 (m, 1 H), 

4.45 (t, J = 7.4 Hz, 1 H), 3.67 (s, 3 H), 2.93 (dd, J = 15.5, 7.6 Hz, 1 H), 2.61 (dd, J = 

15.5, 7.2 Hz, 1 H), 2.25-2.17 (complex, 4 H), 1.80 (quintet, J= 7.3 Hz, 2 H); Be NMR 
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o 173.0, 149.4, 140.5, 133.3, 132.8, 129.8, 128.0, 126.7, 124.6, 52.3, 44.7, 35.0, 34.5, 

32.5, 23.5; HRMS m/z: Calcd for C1sH11N04: 275.1157; Found: 275.1154. 

Anal. Calcd for C1sH11N04: C, 65.45; H, 6.18. Found: C, 65.69; H, 6.22. 

Methyl (±)-3-(2-Methyl-1-cyclopentenyl)-2-(2-nitrophenyl)propanoate (31 ). 

3.91 g (13.5 mmol, 82%); IR 1738, 1530, 1353 cm-1; 1H NMR o 7.85 (d, J = 8.0 Hz, 1 

H), 7.56 (dd, J = 4.9, 1.2 Hz, 2 H), 7.40 (m, 1 H), 4.38 (dd, J = 8.5, 6.6 Hz, 1 H), 3.68 (s, 

3 H), 2.85 (dd, J = 13.5, 6.6 Hz, 1 H), 2.61 (dd, J = 13.5, 8.5 Hz, 1 H), 2.22-2.10 

(complex, 4 H), 1.68 (m, 2 H), 1.36 (s, 3 H); 13C NMR o 173.1, 149.5, 135.4, 133.5, 

132.7, 130.6, 130.3, 127.9, 124.5, 52.3, 44.6, 38.3, 35.7, 32.4, 21.6, 13.5; HRMS m/z: 

Calcd for C16H19N04: 289.1314; Found: 289.1313. 

Anal. Calcd for C16H19N04: C, 66.44; H, 6.57. Found: C, 66.71; H, 6.60. 

Methyl (±)-2-(2-Nitrophenyl)-4,8-dioxooctanoate (32). A solution of 600 mg 

(2.18 mmol) of 30 in 150 mL of methanol was treated with ozone at -78 °C until TLC 

indicated that all of the starting material had been consumed. The reaction mixture was 

treated with dimethyl sulfide and p-toluenesulfonic acid as previously described. The 

reaction mixture was stirred and allowed to warm to room temperature over 12 h and then 

concentrated under reduced pressure. The resulting yellow oil was diluted with ether, 

washed with NaHC03 (2x) and NaCl (lx), and dried (MgS04). Vacuum filtration 

followed by concentration under reduced pressure gave a mixture of keto aldehyde 32 

and ketoacetal 33. The mixture was dissolved in tetrahydrofuran and an equal volume of 

3% aqueous HC104 was added at O °C. The reaction was stirred at O °C for 1 h and at 

room temperature for 3 h. The solution was extracted with methylene chloride (2x). The 

organic layer was washed with NaHC03 (2x) and NaCl (lx), dried (MgS04), vacuum 
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filtered, and concentrated under reduced pressure to yield 626 mg (2.04 mmol, 94%) of 

32, which was used without further purification: IR 2840, 2733, 1744, 1730, 1530, 1353 

cm·\ 1H NMR o 9.75 (t, J = 1.4 Hz, 1 H), 7.97 (dd, J= 8.0, 1.2 Hz, 1 H), 7.59 (td, J= 

7.4, 1.4 Hz, 1 H), 7.45 (m, 2 H), 4.71 (dd, J= 8.8, 4.5 Hz, 1 H), 3.65 (s, 3 H), 3.42 (dd, J 

= 17.9, 8.8 Hz, 1 H), 2.82 (dd, J = 17.9, 4.5 Hz, 1 H), 2.66-2.43 (complex, 4 H), 1.92 

(quintet, J= 7.0 Hz, 2 H); BC NMR o 206.6, 201.7, 172.1, 148.5, 133.5, 133.2, 130.8, 

128.4, 125.2, 52.4, 45.3, 42.7, 41.2, 30.2, 15.9; HRMS m/z: Calcd for C1sH11N06: 

307.1055; Found: 307.1052. 

Methyl (±)-( 4aR* ,6S*)-2,3,4,4a,5,6-Hexahydro-1H-benzo[c]quinolizine-6-car

boxylate (34). To a solution of 550 mg (1.79 mmol) of 32 in 150 mL of methanol was 

added 200 mg of 5% palladium-on-carbon. The mixture was hydrogenated in a stainless 

steel hydrogenation vessel under 4 atm of hydrogen at 30 °C for 2.5 h. The crude 

reaction mixture was concentrated, diluted with ether, and vacuum filtered through a pad 

of Celite topped with a layer MgS04 to remove the catalyst. Concentration of the filtrate 

under vacuum yielded a light yellow oil that crystallized on standing. Recrystallization 

from pentane gave 303 mg (1.24 mmol, 69%) of 34 as light yellow crystals, mp 68-70 

°C. IR 1744 cm·1; 1H NMR o 7.13 (tm, J = 7.7 Hz, 1 H), 6.96 (dm, J = 7.7 Hz, 1 H), 

6.85 (d, J= 8.1 Hz, 1 H), 6.69 (t, J= 8.1 Hz, 1 H), 3.91 (m, 2 H), 3.74 (s, 3 H), 2.85 (m, 

1 H), 2.56 (td, J= 12.2, 2.7 Hz, 1 H), 2.16 (m, 2 H), 1.77 (m, 3 H), 1.64 (m, 1 H), 1.39 

(m, 2 H); Be NMR o 174.9, 146.9, 128.1 (2), 121.5, 117.8, 113.4, 55.4, 52.0, 47.9, 

43.9, 34.0, 33.5, 25.8, 24.0; HRMS mlz: Calcd for C1sH19N02: 245.1416; Found: 

245.1418. 
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Anal. Calcd for C1sH19N02: C, 73.47; H, 7.76; N, 5.71. Found: C, 73.66; H, 

7.79; N, 5.76. 

Methyl (±)-2-(2-Nitrophenyl)-4,8-dioxononanoate (35). A solution of 1.00 g 

(3.46 mmol) of 31 in 150 mL of methanol was cooled to -78 °C and treated with ozone 

until TLC indicated that all of the starting material was consumed. The ozonolysate was 

treated with 10.0 g (8.46 mL, 136 mmol) of dimethyl sulfide and 250 mg of p

toluenesulfonic acid, and subsequently warmed to room temperature over 12 h. The 

reaction mixture was concentrated under vacuum and diluted with ether. The solution 

was washed with NaHC03 (2x) and NaCl (lx), dried (MgS04), vacuum filtered, and 

concentrated under reduced pressure. The resulting oil was flash chromatographed on a 

30 cm x 2.5 cm silica gel column using increasing concentrations of ether in hexanes ( 5-

20%) to yield 1.06 g (3.29 mmol, 95%) of 35 as a yellow oil that crystallized upon 

standing, mp 47-48 °C. IR 1744, 1715, 1530, 1353 cm-1; 1H NMR o 7.97 (dd, J = 8.0, 

1.5 Hz, 1 H), 7.59 (td, J= 1.5, 1.5 Hz, 1 H), 7.44 (m, 2 H), 4.70 (dd, J= 8.8, 4.5 Hz, 1 

H), 3.66 (s, 3 H), 3.42 (dd, J= 17.9, 8.8 Hz, 1 H), 2.82 (dd, J= 17.9, 4.5 Hz, 1 H), 2.62-

2.41 (complex, 4 H), 2.13 (s, 3 H), 1.86 (quintet, J= 7.0 Hz, 2 H); 13C NMR o 208.3, 

207.1, 172.2, 148.6, 133.5, 133.3, 130.8, 128.4, 125.2, 52.5, 45.3, 42.7, 42.2, 41.3, 29.9, 

17.5; HRMS m/z: Calcd for C16H19N06: 321.1212; Found: 321.1208. 

Methyl (±)-(lR* ,4aR*, 6S*)-1-Methyl -2,3,4,4a,5,6-hexahydro-1H-benzo[c]

quinolizine-6-carboxylate (36). To a solution of 500 mg (1.56 mmol) of 35 in 150 mL 

of methanol was added 200 mg of 5% palladium-on-carbon. The mixture was 

hydrogenated in a stainless steel hydrogenation vessel under 4 atm of hydrogen at 30 °C 

for 3 h. The crude reaction mixture was concentrated, diluted with ether, and vacuum 
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filtered through a pad of Celite topped with a layer of MgS04 to remove the catalyst. 

Concentration of the filtrate produced a light yellow oil that was purified by PTLC using 

50% ether in hexanes. The main band gave 242 mg (0.93 mmol, 60%) of 36 as a light 

yellow oil that crystallized upon standing, mp 36-38 °C. IR 1744 cm-1; 1H NMR o 

7.13 (t, J= 7.5 Hz, 1 H), 6.97 (d, J= 7.5 Hz, 1 H), 6.67 (m, 2 H), 3.84 (dd, J= 9.5, 5.8 

Hz, 1 H), 3.71 {s, 3 H), 3.53 (m, 1 H), 3.19 (m, 1 H), 2.17-1.94 (complex, 3 H), 1.80 {m, 

2 H), 1.65 (m, 1 H), 1.57 {m, 2 H), 1.23 (d, J= 6.3 Hz, 3 H); BC NMR o 175.0, 146.4, 

127.8, 127.4, 123.3, 116.9, 112.7, 52.3, 51.9, 49.9, 44.2, 35.1, 31.1, 29.5, 20.9, 18.0; 

HRMS m/z: Calcd for C1Jli1N02: 259.1572; Found: 259.1571. 

Anal. Calcd for C16H21N02: C, 74.13; H, 8.11; N, 5.41. Found: C, 74.36; H, 

8.15; N, 5.39. 

Two other minor bands isolated from the PTLC gave the following compounds: 

Methyl (8S*, 9S*)- 8 -Methyl- 5, 6, 7, 8, 8a, 9, 10, lOa-octahydroacridine- 9 -

carboxylate (37). 24 mg (0.093 mmol, 6%); mp 91-93 °C; IR 3374, 1730 cm-1; 1H 

NMR o 7.15 (dm, J= 7.7 Hz, 1 H), 7.02 (tm, J= 7.7 Hz, 1 H), 6.65 (dt, J= 7.6, 1.2 Hz, 

1 H), 6.53 (dd, J= 8.0, 1.2 Hz, 1 H), 3.69 {s, 3 H), 3.58 {d, J= 9.8 Hz, 1 H), 3.38 (br s, 1 

H), 2.73 {td, J = 10.6, 3.9 Hz, 1 H), 1.93 (q, J = 10.0 Hz, 1 H), 1.87 (m, 1 H), 1.78 (m, 1 

H), 1.67 (dm, J= 12.8 Hz, 1 H), 1.43 (tm, J= 9.4 Hz, 1 H), 1.40-1.09 (complex, 3 H), 

o.93 (d, J= 6.6 Hz, 3 H); Be NMR o 176.o, 145.2, 121.1, 121.6, 119.6, 118.2, 115.o, 

54.5, 52.0, 48.8, 47.7, 37.6, 35.4, 33.1, 23.9, 18.8; HRMS m/z: Calcd for C16H21N02: 

259.1573; Found: 259.1576. 

Anal. Calcd for C16H21N02: C, 74.13; H, 8.11; N, 5.41. Found: C, 74.35; H, 

8.14; N, 5.34. 
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Methyl (2R* ,4S*)-2-( 4-0xopentyl)-1,2,3,4-tetrahydroquinoline-4-carboxylate 

(38). 9mg(0.033mmol,2%); IR 3388, 1740cm-1; 1HNMR o 7.02(tm,J=7.7Hz, 1 

H), 6.96 (dm, J= 7.7 Hz, 1 H), 6.64 (dt, J= 7.7, 1.2 Hz, 1 H), 6.52 (dd, J= 8.0, 1.2 Hz, 1 

H), 3.93 (dd, J = 11.7, 5.8 Hz, 1 H), 3.76 (s, 3 H), 3.69 (dd, J = 10.5, 4.4 Hz, 1 H), 3.26 

(m, 1 H), 2.50 (t, J= 7.1 Hz, 1 H), 1.20 (dd, J= 5.8, 2.6 Hz, 1 H), 2.16 (m, 1 H), 2.15 (s, 

3 H), 1.98 (quintet, J = 11.7 Hz, 1 H), 1.74 (m, 2 H), 1.52 (m, 2 H); 13C NMR o 208.5, 

174.9, 144.5, 128.1, 128.0, 118.1, 117.6, 114.8, 52.0, 50.4, 43.7, 43.3, 35.7, 32.3, 30.0, 

19.3; HRMS m/z: Calcd for C16H21N03: 275.1521; Found: 275.1522. 

Anal. Calcd for C16H21N03: C, 69.82; H, 7.63; N, 5.09. Found: C, 70.11; H, 

7.67; N, 5.18. 
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CHAPTER ill 

DIASTEREOSELECTIVE SYNTHESIS OF 2,5-DISUBSTITUTED 

2,3,4,5-TETRAHYDRO-lH-l-BENZAZEPINES BY A 

TANDEM REDUCTION-REDUCTIVE AMINATION 

Introduction 

Certain tetrahydro-lH-1-benzazepine derivatives have been found to selectively 

inhibit specific receptors of the hormone arginine vasopressin (A VP). A VP exerts its 

actions through two receptor subtypes, V la and V 2, which play a role in the regulation of 

renal and cardiovascular functions. The control of blood pressure, blood volume, and 

plasma osmolality are mediated by A VP V 2 receptors in the kidneys. Inhibitors of the 

A VP V 2 receptor may have applications as treatments for disorders such as diabetes, 

congestive heart failure, and hypertension.35 

Previous work by Bunce and co-workers demonstrated the use of the reduction

reductive amination reaction for the synthesis of 2,4-disubstituted-1,2,3,4-

tetrahydroquinolines. The tandem reduction-reductive amination sequence producing the 

2,4-disubstituted-1,2,3,4-tetrahydroquinolines was highly diastereoselective, resulting in 

the exclusive formation of cis products. Application of this method to the synthesis of 

larger ring systems was investigated to determine if the diastereoselectivity of the 

reduction-reductive amination was maintained. The reduction-reductive amination 
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method has thus been extended to the synthesis of 2,5-disubstituted-2,3,4,5-tetrahydro-

lH-1-benzazepine derivatives. 

Synthesis of Cyclization Substrates. The synthesis of 1 is shown in Figure 18. 

Alkylation of 1 with various vinyl ketones, 2-5, in dry acetonitrile at 55-60 °C containing 

potassium carbonate and a catalytic amount of 18-crown-634 produced esters 6-9 (Figure 

32). The yields of the alkylations ranged from 71 % to 94% and are summarized in Table 

IV. 

0 do2Me ('R G N02 K2C03, 18-C-6 
55-60 °C, MeCN 

N02 0 R 

1 2 R=Me 6 R=Me 
3 R= Et 7 R= Et 
4 R= Ph 8 R= Ph 
5 R=OMe 9 R=OMe 

Figure 32. Alkylation of methyl (2-nitrophenyl)acetate (1) with vinyl ketones 2-5. 

TABLE IV 

THE ALKYLATION OF METHYL (2-NITROPHENYL) ACETATE 

WITH VINYL KETONES 

starting vinyl ketone 

2 
3 
4 
5 

R 

Me 
Et 
Ph 

OMe 

52 

Product 

6 
7 
8 
9 

yield(%) 

91 
94 
90 
71 



The synthesis of nitroaldehyde 12 is shown in Figure 33. Alkylation of 1 with 4-

iodo-1-butene in acetonitrile at 55-60 °C containing postassium carbonate and a catalytic 

amount of 18-crown-6 gave alkene 10 in 59% yield. Ozonolysis of 10 in methanol at -78 

°C followed by reductive workup with dimethyl sulfide and p-TsOH produced acetal 11 

containing 5-10% of aldehyde 12. Conversion of acetal 11 to the aldehyde 12 was 

accomplished in 94% yield by treatment with a 1 :1 mixture of a 3% aqueous solution of 

HCl04 and tetrahydrofuran. 

~::Me -K-~-C-0-3-. M-e~-N-
55-60 QC 

1 

1) 03, MeOH 
2) Me2S, p-TsOH 

11 12 

3% HCI04 I THF 
12 

Figure 33. Synthesis of nitroaldehyde 12. 

Synthesis of 2,5-Disubstituted 2,3,4,5-Tetrahydro-1H-1-benzazepines. The 

reduction-reductive amination of compounds 6 and 7 are illustrated in Figure 34. 

Reduction of 6 and 7 under 4 atm of hydrogen in methanol at 30-35 °C using 5% 

palladium-on-carbon catalyst produced both the cis and trans products, in overall yields 
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of 98% (13 and 14) and 73% (15 and 16). The cis:trans ratio for products 13 and 14 was 

11 :l; the cis:trans ratio of 15 and 16 was 8:1. The structure of 13 was confirmed with X-

ray crystallographic data (Plate IV). 

6 R=Me 
7 R=~t 

4 atm H2, 5% Pd/C 

MeOH, 30-35 °c 

13 R= Me 
15 R = Et 

+ 

14 R=Me 
16 R= Et 

Figure 34. Tandem reduction-reductive amination forming cis and trans products. 
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Plate IV. X-ray structure of Methyl (±)-(2R*,5S*)-2-Methyl-2,3,4,5-tetrahydro-1H-1-
benzazepine-5-carboxylate (13). 
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Reduction-reductive amination of the phenyl-susbstituted substrate 8 under 4 atm 

of hydrogen in methanol at 30-35 ·c using 5% palladium-on-carbon catalyst gave a 

mixture of compounds, with the major product being amide 17 in 31 % yield. Analysis of 

the two other bands revealed the expected products 18 and 19 in yields of 16% and 3% 

respectively (Figure 35). Catalytic hydrogenation at 1.5-2 atm of hydrogen and 20 °C did 

not improve the yield of products 18 and 19. 

~ ~Ph 4 atm H2, 5% Pd/C "-:::: 

MeOH, 3Q..35 °c N 
N02 0 Ph or \ 

H 
1 atm H2, 20 °c 

8 17 

co +CQ + 

~ Ph ~ ,/Ph 
H H 

18 19 

Figure 35. Tandem reduction-reductive amination of nitrophenylketone 8 forming a 
mixture of products. 

Catalytic hydrogenation of diester 9 resulted in the formation of the uncyclized 

derivative 20 in 97% yield. Cyclization of 20 was accomplished by heating in benzene at 

50 °C to give lactam 21 in 76% yield. The catalytic hydrogenation of diester 9 and 

subsequent cyclization are shown in Figure 36. 
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9 

benzene 

so 0c 

4 atm H2, 5% Pd/C 

MeOH 

21 

0 
NH2 0 OMe 

20 

Figure 36. Catalytic hydrogenation of diester 9 and subsequent cyclization. 

The synthesis of methyl 2,3,4,5-tetrahydro-lH-1-benzazepine-5-carboxylate (22) 

is shown in Figure 37. Reduction-reductive amination of 12 in methanol at 30-35 °C 

using 5% palladium-on-carbon catalyst produced 22 in 60% yield. 

12 

4 atm H2, 5% Pd/C 

MeOH, 30-35 °c co 
I 

H 
22 

Figure 37. Synthesis of methyl 2,3,4,5-tetrahydro-lH-1-benzazepine-5- carboxylate 22. 

Discussion. As demonstrated previously for the synthesis of 2,4-disubstituted 

1,2,3,4-tetrahydroquinolines, the major product is cis. The diastereoselectivity of the 

reduction-reductive amination arises from the addition of a hydrogen molecule to the face 

opposite the methyl ester in the final imine intermediate (Figure 28 in Chapter II). In the 

reduction-reductive amination producing the 2,5-disubstituted 2,3,4,5-tetrahydro-lH-1-
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benzazepine products 13-16, the reaction was also diastereoselective for the cis isomer 

(11:1 for 13 and 14, 8:1 for 15 and 16) but to a lesser degree than observed for the 

tetrahydroquinolines. The exact order of steps is unknown, but the reaction sequence 

likely begins with reduction of the aromatic nitro group to give amine 23 or the N

hydroxylamine (Figure 38). Condensation of the reduced nitrogen intermediate with the 

carbonyl followed by dehydration produces imine 24. The double bond of 24 possesses 

two diastereotopic faces, one of which is partially blocked by the methyl ester. In 

comparison to the six-membered ring closures required to prepare tetrahydroquinolines, 

the methyl ester of imine 24 is further away from the double bond being reduced and the 

ring is more conformationally mobile. In one possible conformation of 24, the ester 

group is in a pseudo-equatorial position. The greater distance from the double bond and 

pseudo-equatorial placement of the ester substituent makes it less effective at blocking 

the imine double bond to hydrogenation. This results in the production of trans minor 

products 14 and 16 in significant quantities. Tandem reduction-reductive amination was 

also employed successfully to synthesize the monosubstituted 2,3,4,5-tetrahydro-lH-l

benzazepine 22. 
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~ 
N02 0 R 

7 R=Me 
8 R = Et 

24 

ciri + 

J'l H 
H 

13 R = Me 
15 R = Et 

H2, Pd/C ~ MeOH 

NH2 0 R 

~ 
,N R 

H 

15 R = Me 
16 R = Et 

23 

-H20 

Figure 38. Proposed mechanism of the tandem reduction-reductive amination. 

Catalytic hydrogenation of nitrophenylketone 8 under 4 atm of hydrogen in 

methanol at 30-35 °C produced amide 17 as the major product (Figure 39). This product 

likely results from reduction of the nitro group and hydrogenolysis of the ketone carbonyl 

forming intermediate 25, followed by cyclization to give the lactam product. The 

formation of minor benzazepine products 18 and 19 arises from reduction of the nitro 

group and subsequent cyclization with an intact phenyl ketone in a manner similar to that 

mentioned for products 13-16. Hydrogenolysis of a phenyl ketone has been observed at 

1 atm of hydrogen in ethanol at 20 °C using a 5% palladium-on-carbon catalyst.36 
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Catalytic hydrogenation of nitrophenylketones resulting in hydrogenolysis of the phenyl 

carbonyl group has been demonstrated at temperatures of 40-50 °C, whereas reductive 

cyclization occurred when the reaction was carried out at 20 °C.17 Catalytic 

hydrogenation of 8 under 1.5-2 atm hydrogen at 20 °C did not increase the yields of 

benzazepine products 18 and 19. 

8 

H2, Pd/C 

MeOH 

-MeOH 00::Ph 
\ 
H 

17 

25 

Figure 39. Hydrogenolysis of nitrophenylketone 8 prior to cyclization resulting in the 
formation of 17. 

Catalytic hydrogenation of diester 9 resulted in the formation of uncyclized 20 

(Figure 36). The cyclization of 20 to lactam 21 occurred upon heating in benzene at 50 

°C. In accordance with expected entropic considerations, formation of a 5-membered 

ring occurred in preference to the formation of a 7-membered ring.37 The formation of 

the five-membered ring product is consistent with previous observations that five- and 

six-membered ring closures of carbocycles37 and heterocycles are entropically favored 

over the formation of larger rings. 38 
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Conclusion. This work represents the application of the tandem reduction

reductive amination approach to the diastereoselective production of 2-alkyl-2,3,4,5-

tetrahydro-lH-1-benzazepine-5-carboxylic esters; the unsubstituted tetrahydro-lH-1-

benzazepine-5-carboxylic ester was also prepared. The diastereoselectivity derives from 

C5 ester group which directs the addition of hydrogen to the opposite side of the final 

imine intermediate. In these cases involving closure to benzazepine products, the 

blocking effect of the C5 ester was less effective than previously observed for closures to 

tetrahydroquinolines. Reductive cyclization of a nitrodiester to a lactam was also 

accomplished by the same catalytic hydrogenation conditions. Exclusive formation of 

the five membered ring lactam was observed. 
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EXPERIMENTAL 

Commercial reagents and solvents were used as received. Potassium carbonate 

was ground into a fine powder, dried under vacuum for 24 h at 120 ·c, and stored in an 

oven at 120 °C until needed. Methyl (2-nitrophenyl)acetate (1) was prepared the method 

of Marvel and co-workers.33 Unsaturated carbonyl compounds 2, 3, and 5 were 

commercially available. Phenyl vinyl ketone 4 was prepared by the method of Reich and 

co-workers.39 Commercially available 4-bromo-1-butene was converted to the iodide by 

treatment with sodium iodide in acetone. 

All reactions were run under dry nitrogen and in oven-dried glassware. The HCl 

(0.2 M, 1 M, 2 M, and 6 M), NaOH (0.2 M and 1 M), NaHC03 (saturated), Na2S203 

(5%), and NaCl (saturated) used in various procedures were aqueous solutions. 

Reactions were monitored by one of the following methods: (1) TLC on silica gel GF 

plates (Analtech no. 21521) with UV detection, or (2) capillary GC (SE-30 column, 6 m x 

0.25 mm i.d., 0.25 µm film thickness) with FI detection programmed between 50-300 ·c. 

Preparative separations were performed by one of the following methods: (1) flash 

column chromatography on silica gel (grade 62, 60-200 mesh) containing UV-active 

phosphor (Sorbent Technologies UV- 5) or (2) PTLC on 20-cm x 20-cm silica gel GF 

plates (Analtech no. 02015). Band elution for both methods was monitored using a hand

held UV lamp. Melting points were uncorrected. IR spectra were run as thin films on 

NaCl disks and referenced to polystyrene. 1H and 13C NMR spectra were measured in 

CDCh at 300 MHz and 75 MHz, respectively, using (CH3)4Si. as an internal standard. 

High-resolution mass spectra (HRMS, EI/DP) were obtained at 70 eV. 
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Representative Procedure for Conjugate Addition Reactions: Methyl (±)-2-

(2-Nitrophenyl)-5-oxohexanoate (6). The general procedure of Makosza and Tyrala34 

was adapted. A 250-mL, three-necked, round-bottomed flask containing a magnetic stir 

bar was charged with 50 mL of dry acetonitrile, 12 mg of 18-crown-6, and 11.6 g (84 

mmol) of anhydrous potassium carbonate. Stirring was initiated and 1.95 g (10.0 mmol) 

of 1 was added. To the resulting blue solution was added 0.92 g (13.2 mmol, 1.1 mL) of 

2 and the solution was stirred at 55-60 ·c. The progress of the reaction was monitored by 

TLC. The reaction was stirred for a total of 48 h, allowed to cool to room temperature, 

and filtered to remove solids. The filtrate was diluted with ether, washed with NaHC03 

(lx) and NaCl (lx), dried (MgS04), vacuum filtered, and concentrated under reduced 

pressure. The resulting yellow oil was purified by flash chromatography on a 30 cm x 

2.5 cm silica gel column eluted with increasing concentrations of ether in hexanes (5-

15%) to yield 2.40 g (9.05 mmol, 91%) of6 as a light yellow oil. IR 1744, 1716, 1530, 

1360 cm·1; 1H NMR o 7.89 (d, J= 8.1 Hz, 1 H), 7.61 (t, J= 7.1 Hz, 1 H), 7.51 (d, J= 

7.9 Hz, 1 H), 7.44 (t, J= 7.1 Hz, 1 H), 4.18 (t, J= 7.3 Hz, 1 H), 3.66 (s, 3 H), 2.60-2.42 

(complex, 3 H), 2.11 (m, 1 H), 2.12 (s, 3 H); 13C NMR o 207.3, 172.6, 149.5, 140.4, 

133.2, 129.9, 128.3, 124.7, 52.3, 45.1, 41.1, 29.9, 26.6; HRMS mlz: Calcd for 

C13H1sNOs: 265.0950; Found: 265.0946. 

Anal. Calcd for C13H1sNOs: C, 58.86; H, 5.70; N, 5.28. Found: C, 58.83; H, 

5.72; N, 5.30. 

Methyl (±)-2-(2-Nitrophenyl)-5-oxoheptanoate (7). 2.62 g (9.39 mmol, 94%); 

IR 1739, 1722, 1530, 1360 cm·1; 1H NMR o 7.89 (d, J= 8.1 Hz, 1 H), 7.60 (t, J= 7.6 

Hz, 1 H), 7.52 (d, J = 7.9 Hz, 1 H), 7.44 (t, J= 7.7 Hz, 1 H), 4.19 (t, J= 7.1 Hz, 1 H), 
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3.66 {s, 3 H), 2.57-2.36 (complex, 5 H), 2.14 (m, 1 H), 1.04 {t, J = 7.4 Hz, 3 H); Be 

NMR o 210.1, 172.7, 149.4, 140.9, 133.2, 130.0, 128.3, 124.7, 52.3, 45.2, 39.7, 35.8, 

26.7, 7.7; HRMS m/z: ealcd for e14H11N05: 279.1106; Found: 279.1105. 

Anal. ealcd for e14H11NOs: e, 60.21; H, 6.13; N, 5.02. Found: e, 60.19; H, 

6.15; N, 5.04. 

Methyl (±)-2-(2-Nitrophenyl)-5-oxo-5-phenylpentanoate (8). 3.18 g (9.72 

mmol, 90%); IR 1744, 1687, 1530, 1353 cm-1; 1H NMR o 7.90 (t, J= 7.1 Hz, 2 H), 

7.63-7.46 (complex, 3 H), 7.44-7.40 (complex, 4 H), 4.32 (t, J= 7.4 Hz, 1 H), 3.67 (s, 3 

H), 3.07 {m, 2 H), 2.64 (m, 1 H), 2.30 (m, 1 H); Be NMR o 198.8, 172.7, 149.4, 136.6, 

133.3, 133.2, 133.1, 130.0, 128.6, 128.3, 128.0, 124.8, 52.3, 45.4, 36.3, 27.2; HRMS 

mlz: ealcd for e1sH11NOs: 327.7111; Found: 327.7109. 

Anal. ealcd for e1sH11NOs: e, 66.05; H, 5.23; N, 4.28. Found; e, 65.92; H, 

5.18; N, 4.20. 

Dimethyl (±)-2-(2-Nitrophenyl)pentanedioate (9). 1.99 g (7.08 mmol, 71 %); 

IR 1744, 1530, 1360 cm-1; 1H NMR o 7.91 (d, J= 8.2 Hz, 1 H), 7.61 (t, J= 7.6 Hz, 1 

H), 7.52-7.41 (complex, 2 H), 4.27 (t, J= 7.3 Hz, 1 H), 3.67 (s, 3 H), 3.66 {s, 3 H), 2.52 

(m, 1 H), 2.37 (m, 2 H), 2.18 (m, 1 H); Be NMR o 172.9, 172.5, 149.4, 133.2, 132.9, 

129.9, 128.4, 124.9, 52.4, 51.7, 45.2, 31.8, 27.9; HRMS m/z: ealcd for eBH15N06: 

281.0899; Found: 281.0897. 

Anal. ealcd for eBH1sN06: e, 55.51; H, 5.38; N, 4.98. Found: e, 55.37; H, 

5.43; N, 5.05. 

Alkylation of Methyl (2-Nitrophenyl) Acetate (1): Methyl (±)-2-(2-

Nitrophenyl)-5-hexenoate (10). The general procedure of Makosza and Tyrala34 was 
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used. A 250-mL, three-necked, round-bottomed flask containing a magnetic stir bar was 

charged with 100 mL of dry acetonitrile, 12 mg of 18-crown-6, and 11.6 g (84 mmol) of 

anhydrous potassium carbonate. Stirring was initiated and 1.95 g (10.0 mmol) of 1 was 

added. To the resulting blue solution was added 2.27 g (12.5 mmol) of 4-iodo-1-butene 

and the solution was stirred at 55-60 °C. The progress of the reaction was monitored by 

TLC. The reaction was stirred at 55-60 °C for a total of 18 hand then allowed to cool to 

room temperature. The reaction mixture was diluted with ether, vacuum filtered to 

remove solids, and concentrated under reduced pressure. The resulting yellow oil was 

purified by flash chromatography on a 30 cm x 2.5 cm silica gel column eluted with 

increasing concentrations of ether in hexanes (5-15%) to yield 1.47 g (5.90 mmol, 59%) 

oflOasalightyellowoil. IR 1735,1528cm·1; 1HNMR 6 7.88(d,J=8.1Hz,1H), 

7.62-7.52 (complex, 2 H), 7.42 (t, J= 7.0 Hz, 1 H), 5.77 (m, 1 H), 5.02 (m, 1 H), 4.98 (m, 

1 H), 4.20 (t, J= 7.2 Hz, 1 H), 3.67 (s, 3 H), 2.28 (m, 1 H), 2.07 (m, 2 H), 1.93 (m, 1 H); 

13C NMR 6 173.1, 137.0, 133.5, 133.0, 129.9, 128.1, 124.7, 155.8, 100.0, 52.3, 45.4, 

32.0, 31.6; HRMS mlz: Calcd for C13H1sN04: 249.1001; Found: 249.1000. 

Anal. Calcd for C13H1sN04: C, 62.64; H, 6.07; N, 5.62. Found: C, 62.41; H, 

6.01; N, 5.75. 

Ozonolysis of Methyl (±)-2-(2-Nitrophenyl)-5-bexenoate (10): Methyl (±)-2-

(2-Nitrophenyl)-5-oxopentanoate (12). A solution containing 1.20 g (4.82 mmol) of 10 

and 125 mL of methanol was cooled to -78 °C and treated with ozone until TLC 

indicated that all of the starting material had been consumed. The reaction was quenched 

at -78 °C by adding of 5.08 g (6.00 mL, 84.9 mmol) of dimethyl sulfide and 200 mg of 

p-toluenesulfonic acid. The reaction mixture was stirred, allowed to warm to room 
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temperature over .8 h, and concentrated under reduced pressure. The resulting solution 

was diluted with ether, washed with NaHC03 (lx) and NaCl (lx), and dried with MgS04. 

Vacuum filtration followed by concentration under reduced pressure gave a mixture of 

dimethyl acetal 11 containing a small amount of aldehyde 12. The mixture was dissolved 

in 3% aqueous HC104 and tetrahydrofuran (1:1) and the reaction was stirred at O °C for 1 

h and at room temperature for 3 h. The solution was extracted into methylene chloride 

(2x). The organic layer was washed with NaHC03 (2x) and NaCl (lx), dried (MgS04), 

vacuum filtered, and concentrated under reduced pressure to yield 1.14 g (4.53 mmol, 

94%) of 12, which was used without further purification: IR 2.830, 2720, 1737, 1527, 

1353 cm·1; 1HNMR <> 9.76 (s, 1 H), 7.91 (d,J= .8.1 Hz, 1 H), 7.61 (t,J= 7.5 Hz, 1 H), 

7.59-7.42 (complex, 2 H), 4.21 (t, J = 6.9 Hz, 1 H), 3.67 (s, 3 H), 2.65-2.45 (complex, 3 

H), 2.20 (m, 1 H); 13C NMR <> 200 . .8, 172.5, 149.3, 133.3, 132.9, 129.9, 12.8.5, 124.9, 

52.4, 45.3, 41.7, 25.1; HRMS mlz: Calcd for C12H13N05: 251.0793; Found: 251.0791. 

Representative Procedure for Reduction-Reductive Amination: Methyl (±)

(2R*,5S*)-2-Methyl-2,3,4,5-tetrahydro-1H-1-benzazepine-5-carboxylate (13). To a 

solution of 1.00 g (3.77 mmol) of 6 in 200 mL of methanol was added 200 mg of 5% 

palladium-on-carbon. The mixtwe was hydrogenated in a stainless steel hydrogenation 

vessel under 4 atm of hydrogen for 3 h at 30 °C. The crude reaction mixture was 

concentrated, diluted with ether, and vacuum filtered through a pad of Celite topped with 

a layer of MgS04 to remove the catalyst. Concentration of the filtrate produced a light 

yellow oil that was purified by PTLC using increasing concentrations of ether in hexanes 

(5-50%). Band 2 (from the top) gave 740 mg (3.3.8 mmol, 90%) of 13 as a light yellow 

oil that crystallized upon standing, mp 102-104 °C. IR 3359, 1737 cm·1; 1H NMR o 
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7.11 (t, J = 7.6 Hz, 1 H), 7.04 (d, J = 7.6 Hz, 1 H), 6.87 (t, J = 7.4 Hz, 1 H), 6.75 (d, J = 

7.7 Hz, 1 H), 3.85 (dd, J= 8.3, 2.7 Hz, 1 H), 3.66 (s, 3 H), 2.91 (m, 1 H), 2.41 (m, 1 H), 

1.78-1.64 (complex, 3 H), 1.22 (d, J= 6.5 Hz, 3 H); Be NMR o 173.7, 148.6, 131.2, 

130.4, 127.9, 121.2, 120.8, 53.6, 51.8, 50.3, 34.9, 28.1, 24.0; HRMS m/z: ealcd for 

eBH11N02: 219.1259; Found: 219.1258. 

Anal. ealcd for eBH11N02: e, 71.21; H, 7.81; N, 6.39. Found: e, 71.18; H, 

7.84; N, 6.42. 

Methyl (±)-(2S*, SS*)-2-Methyl-2,3,4,5-tetrahydro -lH -1-benzazepine-5-car

boxylate (14). Band 1: 70 mg (0.32 mmol, 9%); mp 45-47 °e; IR 3353, 1730 cm·1; 1H 

NMR o 7.07 (t, J= 7.5 Hz, 1 H), 6.94 (d, J= 7.6 Hz, 1 H), 6.85 (t, J= 7.3 Hz, 1 H), 

6.73 (d, J= 7.6 Hz, 1 H), 3.84 (dd, J= 8.5, 2.0 Hz, 1 H), 3.75 (s, 3H), 3.05 (m, 1 H), 2.19 

(m, 1 H), 1.94-1.81 (complex, 2 H), 1.58-1.45 (complex, 1 H), 1.20 (d, J= 6.4 Hz, 3 H); 

Be NMR o 175.3, 148.3, 129.7, 128.8, 127.4, 121.0, 120.3, 52.5, 51.8, 48.9, 36.2, 27.5, 

23.3; HRMS mlz: ealcd for eBH17N02: 219.2828; Found: 219.2825. 

Anal. ealcd for eBH11N02: e, 71.21; H, 7.81; N, 6.39. Found: e, 71.18; H, 

7.82; N, 6.42. 

Reduction-Reductive Amination of Methyl (±)-2-(2-Nitrophenyl)-5-

oxoheptanoate (7): Methyl (±) - (2R*, SS*)-2-Ethyl- 2, 3, 4, 5-tetrahydro -lH -1-

benzazepine-5-carboxylate (15). Band 2: 540 mg (2.32 mmol, 65%); mp 74-76 °e; IR 

3360, 1728 cm·1; 1H NMR o 7.11 (t, J= 7.6 Hz, 1 H), 7.03 (d, J= 7.5 Hz, 1 H), 6.88 (t, 

J= 7.4 Hz, 1 H), 6.76 (d, J= 7.7 Hz, 1 H), 3.85 (dd, J= 6.2, 2.5 Hz, 1 H), 3.66 (s, 3 H), 

2.66 (m, 1 H), 2.43 (m, 1 H), 1. 78-1.63 ( complex, 3 H), 1.52 ( quintet, J = 7 .3 Hz, 2 H), 

0.99 (t, J = 7.4 Hz, 3 H); Be NMR o 173.8, 148.6, 130.9, 130.5, 127.9, 121.2, 120.8, 
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59.7, 51.8, 50.2, 32.7, 30.1, 28.0, 10.8; HRMS m/z: Calcd for C14H19N02: 233.1416; 

Found: 233.1414. 

Anal. Calcd for C14H19N02: C, 72.07; H, 8.21; N, 6.00. Found: C, 72.27; H, 

8.26; N, 5.93. 

Methyl (±)-(2S*, SS*)-2-Ethyl- 2, 3, 4, 5-tetrahydro -lH-l-benzazepine-5-car

boxylate (16). Band 1: 70 mg (0.30 mmol, 8%); mp 46-48 °C; IR 3365, 1735 cm·1; 

1H NMR 6 7.07 (t, J = 7.5 Hz, 1 H), 6.95 (d, J = 7.6 Hz, 1 H), 6.85 (t, J = 7.5 Hz, 1 H), 

6.73 (d, J = 7.8 Hz, I H), 3.85 (dd, J = 8.4, 2.3 Hz, 1 H), 3.74 (s, 3 H), 2.81 (m, 1 H), 

2.15 (m, 1 H), 1.99-1.84 (complex, 3 H), 2.81 (m, 2 H), 0.98 (t, J= 7.4 Hz, 3 H); Be 

NMR 6 175.2, 148.2, 129.5, 129.1, 127.4, 120.8, 120.3, 58.3, 51.9, 49.0, 33.5, 29.5, 

27.0; HRMS m/z: Calcd for C14H19N02: 233.1416; Found: 233.1413. 

Anal. Calcd for C14H19N02: C, 72.07; H, 8.21; N, 6.00. Found: C, 72.16; H, 

8.25; N, 5.89. 

Reduction-Reductive Amination of Methyl (±)-2-(2-Nitrophenyl)-5-oxo-5-

phenylpentanoate (8): (±)-3-(3-Phenylpropyl)-2-indolinone (17). Band 3: 120 mg 

(0.48 mmol, 31%); mp 82-83 °C (lit. mp 84-85 ·c)4°; IR 3321, 1711, 1631, 1473 cm·1; 

1H NMR 6 7.66 (s, 1 H), 7.28-7.12 (complex, 7 H), 7~01 (t, J= 7.5 Hz, 1 H), 6.85 (d, J= 

7.5 Hz, 1 H), 3.49 (t, J= 6.0 Hz, 1 H), 2.64 (m, 2 H), 2.01 (m, 2 H), 1.79-1.60 (complex, 

2 H); Be NMR 6 180.1, 141.8, 141.6, 129.6, 128.3, 128.2, 121.8, 125.8, 124.o, 122.2, 

109.8, 46.0, 35.8, 30.1, 27.5; HRMS m/z: Calcd for C17H11NO: 251.1310; Found: 

251.1307. 

Anal. Calcd for C17H17NO: C, 81.24; H, 6.82; N, 5.57. Found: C, 81.06; H, 

6.77; N, 5.74. 
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Methyl (±)-(2R*, 5S*)-2-Phenyl-2,3,4,5-tetrahydro-1H-1-benzazepine-5-car

boxylate (18). Band 2: 70 mg (0.25 mmol, 16%); mp 82-84 °e; IR 3344, 1739 cm·1; 

1H NMR o 7.41-7.62 (complex, 5 H), 7.10 (t, J= 7.5 Hz, 1 H), 6.99 (d, J= 7.4 Hz, 1 H), 

6.92 (t, J = 7.4 Hz, 1 H), 6.75 (d, J = 7.9 Hz, 1 H), 3.99-3.92 (complex, 2 H), 3.78 (s, 3 

H), 2.22 (m, 1 H), 2.25-1.89 ( complex, 3 H); Be NMR o 175.4, 148.0, 145.4, 130.6, 

128.8, 128.0, 127.5, 127.4, 126.4, 121.6, 120.8, 62.3, 51.8, 48.6, 36.9, 27.8; HRMS m/z: 

ealcd for e1sH19N02: 281.1416; Found: 281.1414. 

Anal. ealcd for el8H19N02: e, 76.84; H, 6.81; N, 4.98. Found: e, 76.71; H, 

6.74; N, 5.09. 

Methyl (±)-(2S*, 5S*)-2-Phenyl-2,3,4,5-tetrahydro-1H-l-benzazepine-5-car

boxylate (19). Band 1: 10 mg (0.04 mmol, 3%); mp 68-70 °e; IR 3349, 1733 cm·1; 1H 

NMR o 7.39-7.26 (complex, 5 H), 7.15-7.10 (complex, 2 H), 6.93 (t, J = 7.3 Hz, 1 H), 

6.75 (d, J = 7.6 Hz, 1 H), 3.94 (dd, J = 5.9, 3.4 Hz, 1 H), 3.85 (dd, J = 11.2, 1.9 Hz, 1 H), 

3.70 (s, 3 H), 2.52 (m, 1 H), 2.15 (m, 1 H), 1.97-1.65 (complex, 2 H); Be NMR o 

173.5, 148.4, 145.7, 131.3, 130.4, 128.7, 128.1, 127.5, 126.4, 121.6, 121.0, 63.4, 51.9, 

50.1, 35.2, 28.1; HRMS m/z: ealcd for e1sH19N02: 281.1416; Found: 281.1415. 

Anal. ealcd for e1sH19N02: e, 76.84; H, 6.81; N, 4.98. Found: e, 76.79; H, 

6.83; N, 5.02. 

Catalytic Hydrogenation of Dimethyl (±)-2-(2-Nitrophenyl)pentanedioate 

(9): Dimethyl (±)-2-(2-Aminophenyl)pentanedioate (20). 650 mg (2.59 mmol, 97%); 

IR 3411, 1744, 1732cm·1; 1HNMR o 7.10-7.04(complex,2H),6.80-6.68(complex,2 

H), 3.78 (t, J= 7.4 Hz, 1 H), 3.68 (s, 3 H), 3.67 (s, 3 H), 2.41-2.32 (complex, 3 H), 2.15 
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(m, 1 H); Be NMR <> 174.0, 173.9, 144.9, 128.2, 127.9, 122.7, 118.9, 116.7, 52.2, 51.7, 

45.4, 31.4, 25.8; HRMS m/z: Calcd for C13H11N04: 251.1157; Found: 251.1155. 

Anal. Calcd for C13H11N04: C, 62.14; H, 6.82; N, 5.57. Found; C, 61.97; H, 

6.75; N, 5.66. 

Methyl (±)-3-(2-0xoindolin-3-yl)propanoate (21). A solution of 650 mg (2.59 

mmol) of 20 was dissolved in benzene and heated at 50 ·c. The reaction progress was 

monitored by TLC. After 5 days, the solution was concentrated under reduced pressure 

and purified by PTLC using 50% ether in hexanes. The major band afforded 430 mg 

(1.96 mmol, 76%) of 21 as a light yellow oil that crystallized upon standing; mp 69-72 

·c. IR 3259, 1733, 1711 cm·1; 1H NMR <> 9.11 (s, 1 H), 7.28-7.22 ( complex, 2 H), 

7.03 (t, J= 7.5 Hz, 1 H), 6.92 (d, J= 7.6 Hz, 1 H), 3.63 (s, 3 H), 3.55 (t, J= 5.9 Hz, 1 H), 

2.57-2.21 (complex, 4 H); Be NMR <> 180.1, 173.3, 141.6, 128.6, 128.1, 124.1, 122.4, 

109.9, 51.6, 44.9, 30.0, 25.4; HRMS m/z: Calcd for C12HBN03: 219.0895; Found: 

219.0892. 

Anal. Calcd for C1sH19N(h: C, 65.74; H, 5.98; N, 6.39. Found: C, 65.61; H, 

6.01; N, 6.45. 

Reduction-Reductive Am.ination of Methyl (±)-2-(2-Nitrophenyl)-5-

oxopentanoate (12): Methyl (±)-2,3,4,5-tetrahydro-lH-1-benzazepine-5-carboxylate 

(22). 280mg(l.37mmol,60%); IR 3366, 1730cm·1; 1HNMR <> 7.10(t,J=7.6Hz, 

1 H), 7.01 (d, J= 7.6 Hz, 1 H), 6.87 (t, J= 7.4 Hz, 1 H), 6.75 (d, J:;::: 7.7 Hz, 1 H), 3.86 

(dd, J= 7.3, 2.1 Hz, 1 H), 3.70 (s, 3 H), 3.13 (m, 1 H), 3.00 (m, 1 H), 2.20 (m, 1 H), 1.93-

1.76 (complex, 3 H); 13C NMR <> 174.4, 149.9, 130.4, 130.1, 127.7, 121.0, 120.2, 51.8, 

50.2, 48.0, 28.5, 28.1; HRMS m/z: Calcd for C12H15N02: 205.1103; Found: 205.1101. 
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Anal. Calcd for C12H1sN02: C, 70.22; H, 7.37; N, 6.82. Found: C, 70.39; H, 

7.42; N, 6.75. 
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CHAPTER IV 

CHIRAL 2-ALKYL- 2,3,4,5-TETRAHYDRO-lH-1-BENZAZEPINES BY A 

TANDEM REDUCTION-REDUCTIVE AMINATION 

Introduction 

The chirality present in biological systems has made the synthesis of 

enantiomerically pure compounds essential. An approach to controlling the 

stereochemistry in the preparation of chiral compounds is asymmetric synthesis. 

Asymmetric synthesis involves the transformation of a prochiral molecule into a chiral 

product. This can be accomplished by the temporary introduction of an auxiliary group 

(called a chiral auxiliary) containing one or more stereocenters which directs the 

introduction of chirality into the prochiral molecule through a diastereoselective 

transformation. This process is termed asymmetric induction. Subsequent removal of the 

chiral auxiliary produces a compound containing a newly formed stereocenter with high 

enantiomeric purity. Chiral auxiliaries that are inexpensive or recyclable are ideal in this 

type of asymmetric synthesis.41 

Chiral auxiliaries derived from menthol were introduced by Corey42 in 1975 and 

have been used in a large number of diastereoselective syntheses since that time. One of 

the most useful menthol derivatives used as a chiral auxiliary is (-)-8-phenylmenthol (1) 

(Figure 40). This chiral auxiliary can influence the diastereoselectivity of a reaction to 
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produce compounds with >90% de.43 Control of the stereochemistry at the position ~ to 

the attachment of the 8-phenylmenthol chiral auxiliary is the most effective, since this 

position is closest to the phenyl group present on the auxiliary. 

_J_Ph 
~OH 

1 

Figure 40. (-)-8-phenylmenthol. 

Bunce and co-workers have described a tandem reduction-reductive amination 

sequence for the diastereoselective synthesis of 2-alkyl-tetrahydroquinoline-4-

carboxylate esters. This method has recently been extended to the synthesis of 

enantiomerically pure 2-alkyl-1,2,3,4-tetrahydroquinoline-4-carboxylate esters through 

the use of the (-)-8-phenylmenthol chiral auxiliary esterified to the substrate. In the 

present work, the conjugate addition of (-)-8-phenylmenthyl ester enolates to a,~-

unsaturated ketones occurred with moderate diastereoselectivity. This chapter will 

discuss the ability of the chiral auxiliary to stereodifferentiate the faces of (-)-8-

phenylmenthyl ester enolates in alkylation reactions. Application of this method to the 

enantioselective synthesis of 2-alkyl-lH-1-benzazepine-5-carboxylate esters using (-)-8-

phenylmenthol will also be described. 

Alkylations with Alkyl Halides. The alkylation of (-)-8-phenylmenthyl 

phenylacetate (2) was demonstrated by Solladie-Cavallo and co-workers44 to be 

diastereoselective (Figure 41 ). Esterification of phenylacetic acid with (-)-8-

phenylmenthol (1) using DCC (1,3-dicyclohexylcarbodiimide) and DMAP (4-

dimethylaminopyridine) in ether produced (-)-8-phenylmenthyl phenylacetate (2) in 95% 
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yield. Treatment of 2 with LDA in tetrahydrofuran at -50 °C followed by reaction with 

methyl iodide produced 3 and 4 with 98% overall yield, but with no diastereoselectivity 

( diastereomeric ratio 1: 1 ). Alkylations with larger alkyl halides improved the 

diastereoselectivity. For example, alkylation of2 with benzyl bromide using butyllithium 

in tetrahydrofuran gave 5 and 6 in 93% overall yield and with a diastereomeric ratio of 

69:31. 

The addition of DMPU [l ,3-dimethyl-3,4,5,6-tetrahydro-2-(lH)-pyrimidinone] 

increased the diastereoselectivity of the alkylation with methyl iodide to 4: 1 in 90% 

overall yield. The improvement of diastereoselectivity by the addition of DMPU was 

explained to be due to a decrease in the level of aggregation between enolates and the 

metal cation. Aggregation occurs at the side of the enolate not hindered by the chiral 

auxiliary. This prevents alkylation at the less hindered side, thus the diastereoselective 

action of the chiral auxiliary is diminished. This argument was reinforced by the use of 

the Schwesinger (t-BuP4) base. The t-BuP4 base is known to generate a nonaggregated 

enolate.45 Alkylation of (-)-8-phenylmenthyl phenylacetate (2) with ethyl iodide using t

BuP4 base yielded 7 and 8 in 95% overall yield with a high degree of diastereoselectivity 

(>98:2). Removal of the chiral auxiliary was accomplished by reduction of ester 7 with 

lithium aluminum hydride in tetrahydrofuran to yield (-)-8-phenylmenthol (1) and chiral 

alcohol 9 in 90% yield. 
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#h PhCH2C02H #~,l,Ph 
OH 

DCC,DMAP 

1 Et20 2 
95% 

2 
1) LDA, THF, -50 °c ~~~Ph + #~~Ph 2)Mel 

Me Me 

98% 3 1:1 4 

2 
1) Buli, THF, -50 °c #~\Ph #~~Ph + 

2)~ 
.o Br Ph 'Ph 

93% 5 69:31 6 

2 
1) t-BuP4, THF, -95 °c #~~Ph + #~~Ph 
2) Etl 

Et Et 

95% 7 95:5 8 

#~~Ph 
Et 

THF 
HO~Ph 

Et 
90% 

7 9 

Figure 41. Alkylation of (-)-8-phenylmenthyl phenylacetate (2) with various alkyl 
halides, and cleavage of the chiral auxiliary. 

Fuk:omoto and co-workers46 used a diastereoselective alkylation of (-)-8-

phenylmenthyl hydrogen malonate (10) in a synthesis of a-alkyl-a-amino acids. 

Treatment of 10 with two equivalents of LOA followed by reaction with ethyl iodide 
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produced 11 and 12 in 83% overall yield and a diastereomeric ratio of 4:1. Alkylation of 

10 with benzyl bromide under the same conditions gave 13 and 14 in 72% overall yield 

and a diastereomeric ratio of 12: 1 (Figure 42). 

_)_Ph O 0 

fi!:l"oVoH 
Me 

10 

10 

2 eq LOA 

Etl, THF, -25 °c 

2 eq LOA 

PhCH2Br 
THF, -25 °C 

_)_Ph O 0 

fi!:l"oVoH 
Et Me 

11 

_)_Ph O 0 

fi!:l"oVoH 
PhCH2 Me 

13 

4:1 12 

12:1 14 

Figure 42. Diastereoselective alkylation of (-)-8-phenylmenthyl hydrogen malonate 10 
with ethyl iodide and benzyl bromide. 

Nouguier and co-workers47 investigated the effectiveness of various chiral 

auxiliaries on the alkylation of esters of 2-nitropropanoic acid with p-nitrobenzyl chloride 

(Figure 43). The (-)-8-phenylmenthyl ester of 2-nitropropionic acid 15 was alkylated 

with p-nitrobenzyl chloride in DMF ( dimethylformamide) containing sodium hydride at 

room temperature. Alkylation of 15 gave 16 in 22% overall yield with a 60% de. 

NaH, DMF 

22% 
15 

Figure 43. Diastereoselective alkylation of 2-nitropropionate ester 15. 
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Conjugate Additions. Corey and Peterson48 investigated the diastereoselective 

Michael addition of enolates derived from (-)-8-phenylmenthol with crotonates (Figure 

44). Reaction of (-)-8-phenylmenthol (1) with propanoyl chloride in benzene containing 

pyridine gave ester 17. Ester 17 was converted to Z-enolate 18 by treatment with LDA 

in tetrahydrofuran at -78 °C.49 Reaction of 3 with methyl (E)-2-butenoate produced two 

sets of products, the predominate products being threo (the methyl substituents are on 

opposite sides of a Newman projection of the molecule when the ester groups are 

eclipsed), 19 and 20 in 90% overall yield. The diastereomeric ratio of 19 to 20 was 95:5. 

0 

~h 
~Cl 

~ho 
OH pyr, benzene oV 

1 17 

~i-tt 
~CO2 Me 

Me 

-100 °c 
18 

19 95:5 

_)__ Ph O f¥1e 

~O~C02Me 
Me 

20 

LOA 

THF, -78 °C 

Figure 44. Michael addition of Z-enolate to methyl (E)-2-butenoate. 

The preference for the threo products was rationalized by investigation of the 

mechanism of attack by the Z-enolate with methyl (E)-2-butenoate (Figure 45). The 

enolate oxygen, the ester carbonyl, and the methoxy oxygen all coordinate the lithium 
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counterion as the substrates approach each other and in the transition state. This 

conformation leads to the threo stereochemistry between the two methyl groups in the 

product. The diastereomeric ratio of 95:5 between the two threo diastereomers arises 

from the (-)-8-phenylmenthyl chiral auxiliary blocking the attack of methyl (E)-2-

butenoate at the backside of the enolate. 

u+ 

~n~ei )yH 
~o~o .. Jl 

MeH Me 

Figure 45. Coordination of the ester enolate and methyl (E)-2-butenoate to the lithium 
counterion. 

The reaction of indole-containing enolates with N-alkyl-3-vinylpyridinium salts 

has been used in the synthesis mavacurine type alkaloids. 50 Mavacurine type alkaloids 

are tryptophan containing compounds derived from plants of the genus Strychonos. 

Several of the mavacurine alkaloids are being studied for use as muscle relaxants.21 

Bennasar and co-workers51 attempted a stereoselective synthesis of C-mavacurine 

alkaloids using (-)-8-phenylmenthyl esters (Figure 46). The reaction of indole (27) and 

chloroacetate 28 using sodium hydride in DMF at O °C gave (-)-8-phenylmenthyl ester 29 

in 78% yield. (-)-8-Phenylmenthyl ester 29 was treated with LHMDS (lithium 

hexamethyldisilazide) in tetrahydrofuran at -78 °C and reacted with pyridinium iodide 

30. The temperature was increased to -30 °C and a dry solution of HCl in benzene was 

added to give a mixture of diastereomers 31 and 32 in 28% overall yield. The 

diastereomeric ratio of 31 to 32 was 2.5: 1. The use of LDA as the base did not improve 

the diastereoselectivity. 
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NaH 

DMF, 0°C 

27 28 

1) LOA, THF, -78 °c 
29 + 

2) HCI, benzene, -30 °c 

30 

32 

Figure 46. Attempted enantioselective synthesis of C-mavacurine alkaloids 31 and 32. 

The ratio of diastereomers 31 to 32 was rationalized by considering the reaction 

mechanism. The enolate of 29 attacks the para position of the pyridinium ion 30, 

forming intermediate 33. Intermediate 33 is then protonated forming intermediate 34 

which undergoes a regiospecific cyclization resulting in formation of the products 31 and 

32, which display a cis relationship between the bridgehead hydrogens on C3 and C 15 

(Figure 47). Both 31 and 32 have a trans relationship between the hydrogens on C15 and 

C16, which was shown by previous studies to occur with a diastereoselectivity of 5:1.51 
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The 2.5:1 ratio between products 31 and 32 therefore arises from the reaction of the 

enolate of 29 with pyridinium iodide 30. 

33 34 

32 

Figure 47. Intermediates in the regiospecific cyclization leading to C-mavacurine 
alkaloids 31 and 32. 
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RESULTS 

Synthesis of (-)-8-Phenylmenthol. The procedure reported by Ort52 for the 

synthesis of (-)-8-phenylmenthol was followed. Commercially available technical grade 

(R)-( + )-pulegone (35) was reacted with phenylmagnesium bromide in the presence of 

copper(!) bromide to give the 1,4-addition products 36 and 37. Equilibration of the 

product mixture using potassium hydroxide in 90% ethanol produced an 87:13 mixture of 

36 and 37, respectively, in 78% overall yield (Figure 48). 

1) PhMgBr, CuBr 

~ Et20, -20 °C 
+ 

2) 2N HCI 
0 

3) KOH, 90% EtOH /f" 
reflux Ph Ph 

35 36 37 

Figure 48. 1,4-Addition ofphenylmagnesium bromide to (R)-(+)-pulegone. 

The equilibrated mixture of ketones 36 and 37 was reduced using metallic sodium 

and isopropyl alcohol in toluene at reflux to produce alcohols 38 and 39 in 85% overall 

yield. Reaction of the alcohols with chloroacetyl chloride in methylene chloride at O °C 

containing DMAP and TEA (triethylamine) followed by fractional crystallization of the 

diastereomeric chloroacetates produced pure 40 in 44% yield from the mixture of 

alcohols (Figure 49). 
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Na, i-PrOH 
36 + 37 

toluene, reflux 

DMAP, TEA, 

CH2Cl2, 0°C 

/[" 
Ph 

38 

40 

Ph 

39 

Figure 49. Synthesis of chloroacetate diastereomer of (-)-8-phenylmenthol. 

Ester 40 was purified by kinetic crystallization from anhydrous ethanol. 

Hydrolysis of ester 40 by treatment with potassium hydroxide in 90% ethanol followed 

by vacuum distillation produced optically pure 1. The optical rotation of 1 was [a]o23 = 

-26° (lit value [a]o23 = -26.4°),52 demonstrating that the product had been isolated with 

>95% optical purity. The reaction producing pure (-)-8-phenylmenthol (1) is shown in 

Figure 50. 

KOH, 90% EtOH 
40 

reflux 

/f'-. 
Ph 

1 

Figure 50. Hydrolysis of chloroacetate ester 40 to produce (-)-8-phenylmenthol. 
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Synthesis of (-)-8-phenylmenthyl ester of 2-nitrophenylacetic acid. Reaction 

of 2-nitrophenylacetic acid (41) with thionyl chloride produced acid chloride 42. 

Following removal of the excess thionyl chloride, 42 was esterified at O °C with alcohol 1 

in methylene chloride containing DMAP and TEA to produce optically pure ester 43 in 

76% yield from the alcohol (Figure 51). 

~OH 

~ 6 
SOCl2 

reflux 
N02 

41 

42 + 1 
DMAP, TEA 

. CH2Cl2, 0 °C 

~Cl 

~ 6 
N02 

42 

~ol)Q 
~ N02 
Ph 

43 

Figure 51. Synthesis of2-nitrophenylacetyl ester of (-)-8-phenylmenthol. 

Diastereoselective Synthesis of Cyclization Substrates. The conjugate addition 

reactions of (-)-8-phenylmenthyl ester 43 with vinyl ketones 44-45 are shown in Figure 

52. The reactions were carried out in dry acetonitrile containing 8.4 equivalents of 

potassium carbonate and a catalytic amount of 18-crown-6. 34 The reaction was set up at 

0 ·c and gradually warmed to 20 ·cover 12 hours producing ketones 46-49. The overall 

yields of the alkylations were 64% (for products 46 and 47) and 58% (for products 48 and 

49). In both cases, the alkylations yielded diastereomeric mixtures that could not be 

separated chromatographically. The diastereomeric ratios, determined by 1H NMR, were 

5:1 (for products 46 and 47) and 3:1 (for products 48 and 49). 
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43 

(\a 
- 0 

/f"-
Ph 

R 

46 R= Me 
48 R = Et 

K2C03, 18-C-6 
MeCN 

44 R = Me 
45 R = Et 

C\);Q 
/f'-- [ N02 

Ph 'f=O 
R 

47 R = Me 
49 R = Et 

Figure 52. Alkylation of 2-nitrophenylacetyl ester of (-)-8-phenylmenthol with 
substituted vinyl ketones. 

Synthesis of Chiral 2,5-Disubstituted 2,3,4,5-Tetrahydro-lH-1-Benzazepines. 

The reduction-reductive amination of compounds 46/47 and 48/49 is illustrated in Figure 

53. The reduction of 46/47 and 48/49 in methanol under 4 atm of hydrogen using 5% 

palladium-on-carbon catalyst gave products 50-53 in overall yields of 52% for methyl-

substituted products 50 and 51 and 70% for ethyl-substituted products 52 and 53. For the 

methyl-substituted products 50 and 51, the cis:trans ratio was 13:1; the cis:trans ratio for 

the ethyl-substituted products 52 and 53 was 7:1. The reduction-reductive amination 

products were also isolated as mixtures of diastereomers as a result of the moderate 

diastereoselectivity of the conjugate addition of 43 with 44 and 45. The diastereomeric 
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mixtures could not be separated chromatographically, and 1H NMR data showed that the 

minor diastereomers were present in ratios similar to those observed with the conjugate 

addition products. 

&a 
. 0 

~ 
Ph 

R 

46 R = Me 
48 R = Et 

&a 
. 0 

~ 
Ph 

50 R= Me 
52 R= Et 

R 

H2, 5% Pd/C 

MeOH 

+ 

51 R = Me 
53 R = Et 

Figure 53. Tandem reduction-reductive amination ofnitro ketones 46 and 47. 

Removal of the Chiral Auxiliary. To demonstrate that the chiral auxiliary could 

be recycled and that the optical activity of the (-)-8-phenylmenthol had been retained, 

ester 50 was reduced with lithium aluminum hydride in tetrahydrofuran53 to give alcohols 

54 and 1 in 55% yield (Figure 54). The recovered (-)-8-phenylmenthol displayed 

essentially the same optical rotation as the starting material ([a]o23 = -26°, lit value [a]i3 

= -26.4°). 
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&a 
- 0 THF, r. t. + 

/f"-
Ph 

/f"-
Ph Me 

50 54 1 

Figure 54. Removal of the (-)-8-phenylmenthol chiral auxiliary. 

Discussion. The conjugate addition of (-)-8-phenylmenthyl ester 43 to vinyl 

ketones 44 and 45 occurred with moderate diastereoselectivity to give products 46 and 47 

with a diastereomeric ratio of 5: 1 and products 48 and 49 with a diastereomeric ratio of 

3: 1. A factor contributing to moderate diastereoselectivity may be the reaction 

temperature. The reaction progress was monitored by TLC, which indicated that the 

reaction proceeded only at temperatures near 20 °C. Higher reaction temperatures have 

been demonstrated to reduce the diastereoselective action of the (-)-8-phenylmenthol 

chiral auxiliary. 54 Another factor contributing to the moderate diastereoselectivity is the 

reversibility of the conjugate addition. Enolization of the initial addition product and 

reversion back to the starting materials may contribute to the formation of the minor 

diastereomers. 55 

As demonstrated previously for the synthesis of the 2,5-disubstituted 2,3,4,5-

tetrahydro-lH-1-benzazepine products, the major product in the chiral series has the cis 

orientation of groups at C2 and C5. The diastereoselectivity of the reduction-reductive 

amination arises from the addition of a hydrogen molecule to the final imine intermediate 

cross the face opposite the ester (Figure 38). The diastereoselective ratios for the methyl 
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(50 and 51) and ethyl products (52 and 53) were 13:1 and 7:1, respectively, compared 

with 11: 1 and 8: 1 for methyl ester products. 

Removal of the chiral auxiliary was accomplished by reduction of (-)-8-

phenylmenthyl ester 50 using lithium aluminum hydride to give alcohol 54 and pure (-)-

8-phenylmenthol (1) in 55% yield. The isolation of pure (-)-8-phenylmenthol 

demonstrated that the chiral auxiliary could be recycled and that it had the same optical 

rotation as the starting material. 

Conclusion. This work represents an attempt to extend the previous 

enantioselective synthesis of pure 2-alkyl-1,2,3,4-tetrahydroquinoline-4-carboxylate 

esters to 2-alkyl-2,3,4,5-tetrahydro-lH-1-benzazepine-5-carboxylic esters. The key step 

in the synthesis is the diastereoselective conjugate addition of (-)-8-phenylmenthyl 2-

nitrophenyl acetate to a,~-unsaturated ketones. The diastereoselectivities of the 

alkylations were moderate, resulting from the higher reaction temperature requirement 

and the inherent reversibility of the conjugate additions. Subsequent reduction-reductive 

amination of the nitroketones produced 2-alkyl-2,3,4,5-tetrahydro-lH-1-benzazepine-5-

carboxylic ester products with a high degree of diastereoselectivity. The recovery of 

optically pure (-)-8-phenylmenthol demonstrates that the chiral auxiliary can be recycled. 
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EXPERIMENTAL 

Commercial reagents and solvents were used as received. Potassium carbonate 

was ground to a fine powder, dried under vacuum for 24 hat 120 ·c, and stored in an 

oven at 120 °C until needed. Magnesium turnings were kept in an oven. at 120 ·c and 

ground in a mortar and pestel prior to use. The copper(I) bromide was purified by 

dissolving in a 2 M HBr solution followed precipitation by dilution with water and 

vacuum filtration. The filter cake was washed with anhydrous ethanol and ether then 

dried and stored at O ·c.56 All reactions were run under dry nitrogen and in oven-dried 

glassware. The HCl (0.2 M, 1 M, 2 M, and 6 M), NaOH (0.2 M and 1 M), NaHC03 

(saturated), and NaCl (saturated) used in various procedures were aqueous solutions. 

Reactions were monitored by one of the following methods: (1) TLC on silica gel GF 

plates (Analtech no. 21521) with UV detection, or (2) capillary GC (SE-30 column, 6 m x 

0.25 mm i.d., 0.25 µm film thickness) with FI detection programmed between 50-300°C. 

Preparative separations were performed by one of the following methods: (1) flash 

column chromatography on silica gel (grade 62, 60-200 mesh) containing UV-active 

phosphor (Sorbent Technologies UV- 5) or (2) PTLC on 20-cm x 20-cm silica gel GF 

plates (Analtech no. 02015). Band elution for both methods was monitored using a hand

held UV lamp. Melting points were uncorrected. IR spectra were were run as thin films 

on NaCl disks and referenced to polystyrene. 1H and 13C NMR spectra were measured in 

CDCh at 300 MHz and 75 MHz, respectively, using (CH3)4Si as an internal standard. 

High-resolution mass spectra (HRMS, El/DP) were obtained at 70 eV. 

(2RS,5R)-5-Methyl-2-(1-methyl-1-phenylethyl)cyclohexanone (36, 37). In a 

500-mL, three-necked, round-bottomed flask fitted with a reflux condenser carrying a 
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CaClz drying tube, a magnetic stir bar, and a 250-mL addition funnel was placed 5.40 g 

(0.23 mol) of magnesium turnings and 25 mL of ether. To this flask was added 3.92 g 

(25.0 mmol) of bromobenzene in 25 mL of ether and the flask was warmed to initiate 

formation of the Grignard reagent. After the reaction had started, 35.3 g (0.22 mol) of 

bromobenzene in 150 mL of ether was added dropwise over 1 h. After the addition of 

bromobenzene was complete, the reaction was heated to reflux for 1 h. The solution was 

cooled to room temperature, and an additional 200 mL of ether was added to give a total 

volume of about 400 mL. A nitrogen inlet and a pierced rubber septum with a stainless 

steel tube inlet replaced the reflux condenser and pressure-eqna1izing funnel, 

respectively. 

In a 1000-mL, three-necked, round-bottomed flask fitted with a mechanical 

stirrer, a reflux condenser carrying a CaC}z drying tube, and a rubber septum was added 

2.25 g (15.6 mmol) of copper(I) bromide and 100 mL of ether. The mixture was 

vigorously stirred and cooled to -20 ·c. The ethereal Grignard solution from the first 

reaction flask was transferred to the second flask through the stainless steel cannula using 

nitrogen pressure. After addition of the Grignard solution, the rubber septum was 

replaced by a 250-mL addition funnel containing 21.6 g (0.14 mol) of (R)-(+)-pulegone 

(35) in 100 mL of ether. This solution was added with stirring to the dark-green reaction 

mixture over 2 h. After the addition was complete, the reaction mixture was stirred 

overnight at -5 ·c. To the vigorously stirred reaction mixture was added 150 mL of an 

ice-cold solution of 2 M HCl. The organic layer was separated and filtered with suction, 

and the residue on the funnel was washed with an additional 50 mL of ether. The 

aqueous layer was saturated with ~Cl (aq) and extracted with 100 mL of ether (3x). 
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The combined organic layers were washed with NaHC03 (2x) and NaCl, dried (MgS04), 

and vacuum filtered to remove solids. The solvent was evaporated under reduced 

pressure to give 24.3 g (0.11 mol, 75%) of the crude products 36 and 37 that were used 

without further purification. 

The crude mixture of 36 and 37 was dissolved in 350 mL of 90% ethanol. To this 

solution was added 35.0 g (0.63 mol) of potassium hydroxide pellets. The solution was 

stirred at reflux for 8 h. After cooling to room temperature, the solution was concentrated 

under reduced pressure to a volume of approximately 50 mL followed by the addition of 

200 mL of water. The solution was saturated with NaCl and extracted with 50 mL of 

ether ( 4x). The combined organic layers were dried (MgS04), vacuum filtered to remove 

solids, and concentrated under reduced pressure. Vacuum distillation gave three 

fractions: the first fraction (boiling range <80 °C) was discarded. The second fraction 

(boiling range 80-100 ·c, 0.05 mm Hg) consisted mainly ofbiphenyl. The third fraction 

(boiling range 100-110 ·c, 0.05 mm Hg) yielded 23.7 g (103 mmol, 74%) of equilibrated 

ketones 36 and 37 (87:13). 

(1RS,2SR,5R)-5-Methyl-2-(l-methyl-1-phenylethyl)cyclohexanol (38, 39). In a 

250-mL, three-necked, round-bottomed flask fitted with a reflux condenser carrying a 

CaCh tube, a mechanical stirrer, and a 125 mL addition funnel was placed 6.60 g (288 

mmol) of metallic sodium in 90 mL of toluene. The mixture was stirred vigorously and 

heated to reflux. Once a fine suspension of sodium was obtained, a solution of 22. 7 g 

(98.5 mmol) of equilibrated 36 and 37 in 16.3 g (20.7 mL, 276 mmol) of 2-propanol was 

added dropwise. After the addition was complete, the reaction was stirred at reflux for an 

additional 8 hand then cooled to O ·c. The mixture was diluted with 100 mL of ether 
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and poured into 300 mL of ice-cold water. The aqueous layer was separated, saturated 

with NaCl, and extracted with 50 mL of ether (3x). The combined organic layers were 

washed with NaCl (2x), dried (MgS04), vacuum filtered, and concentrated under reduced 

pressure to give a yellow oil. Vacuum distillation of the oil yielded 17.6 g (75.8 mmol, 

77%) of a pale yellow oil containing 38 and 39, bp 102-107 °C (0.1 mm Hg). 

(1R,2SR,5R)-5-Methyl-2-(1-methyl-l-phenylethyl)cyclohexylacetate ( 40). In a 

500-mL, three-necked, round-bottomed flask fitted with a reflux condenser carrying a 

CaCh drying tube, a 125-m.L addition funnel, and a magnetic stir bar was added 'J7.3 g 

(161 mmol) of the mixture of38 and 39, 1.95 g (16.0 mmol) ofDMAP, and 24.3 g (33.5 

mL, 240 mmol) of TEA in 125 mL methylene chloride. The stirred solution was cooled 

to O ·c and 36.1 g (25.5 mL, 320 mmol) of chloroacetyl chloride in 75 mL of methylene 

chloride was added over 2 h. After the addition was complete, the reaction was stirred at 

0 ·c for an additional 8 h and at room temperature for 36 h. The solution was 

concentrated under reduced pressure to a volume of approximately 50 mL and then 

dissolved in 100 mL of ether. The organic solution was washed with 1 M HCl (3x), 

NaHC03 (2x), NaCl (lx), dried (MgS04), vacuum filtered to remove solids, and 

concentrated under reduced pressure. The resulting yellow oil was dissolved in 50 mL of . 

anhydrous ethanol and cooled to initiate crystallization. The resulting crystals were 

isolated by vacuum filtration and recrystallized from anhydrous ethanol. Isolation of the 

resulting white crystals afforded 21.8 g (70.7 mmol, 44%) of chloroacetate 40, mp 77-79 

·c, (lit mp 82-83 °C); [a]o23 = +22.5 • (c = 2.3, CC4). IR 1760 cm-1; 1H NMR 6 7.33-

7.26 (complex, 3 H), 7.17-7.11 (complex, 2 H), 4.90 (td,J= 10.9, 4.6 Hz, 1 H), 3.35 (d,J 

= 14.9 Hz, 1 H), 3.01 (d, J = 15.0 Hz, 1 H), 2.08 (tm, J = 11.4 Hz, 1 H), 1.93-1.81 
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(complex, 2 H), 1.73 (m, 1 H), 1.59-0.85 (complex, 13 H); 13C NMR o 166.5, 151.7, 

128.0, 125.3, 125.1, 75.8, 50.2, 41.5, 40.8, 39.4, 34.4, 31.2, 29.8, 26.2, 22.6, 21.7. 

(1R;2S,5R)-5-Methyl-2-(l-methyl-1-phenylethyl)cyclohexanol (1). In a 1000-

mL, three-necked, round-bottomed flask fitted with a reflux condenser and a magnetic 

stir bar was placed 21.6 g (70.0 mmol) of 40 dissolved in a solution of 700 mL of 90% 

ethanol, and 7.84 g (0.14 mol) of potassium hydroxide pellets. The solution was heated 

at reflux for 8 h and then concentrated under reduced pressure to a volume of 

approximately 100 mL. To this solution was added 250 mL of ether and 100 mL of 

water. The aqueous phase was separated, saturated with NaCl and extracted with 50 mL 

of ether (2x). The combined organic layers were extracted with NaCl (lx), dried 

(MgS04), filtered, and concentrated under reduced pressure to give a yellow oil. Vacuum 

distillation afforded 14.6 g (62.9 mmol, 90%) of (-)-8-phenyhnenthol (1) as a colorless 

oil, bp 105-108 °C (0.05 mm); [a]230 =-26 ° (c = 1.4, EtOH); IR 3570, 3407 cm-1; 1H 

NMR o 7.39 (d, J= 7.2 Hz, 2 H), 7.32 (t, J= 6.9 Hz, 2 H), 7.18 (t, J= 7.0 Hz, 1 H), 3.53 

(qd, J= 9.7, 4.3 Hz, lH), 1.84 (m, 1 H), 1.76-1.59 (complex, 3 H), 1.45-1.29 (complex, 7 

H), 1.21-0.83 (complex, 7 H); 13C NMR o 151.2, 128.4, 125.7 (2), 72.9, 54.1, 45.3, 

39.7, 34.8, 31.4, 28.6, 26.4, 24.2, 22.0. 

(1R,2S,5R)-8-Phenylmenthyl 2-Nitrophenylacetate (43). In a 250-mL, round

bottomed flask containing a magnetic stir bar and fitted with a reflux condenser carrying 

a CaCh drying tube was placed 2.00 g (11.0 mmol) of 41 and 15.0 mL of thionyl 

chloride. The mixture was refluxed for 8 h, while ensuring that the temperature of the 

oil bath did not exceed 80 °C. Excess thionyl chloride was removed by addition of 25 

mL of benzene followed by distillation under reduced pressure. This procedure was 
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repeated three times to yield 2.10 g (10.6 mmol, 96%) of 2-nitrophenylacetyl chloride 

( 42) as a red oil that was used without further purification. 

In a 100-mL, three-necked, round-bottomed flask fitted with a reflux condenser 

carrying a CaCh drying tube, a 125-mL addition funnel, and a magnetic stir bar was 

added 1.50 g (6.47 mmol) of 1, 90 mg (0.74 mmol) ofDMAP, and 1.07 g (1.47 mL, 10.6 

mmol) of TEA in 40 mL methylene chloride. The stirred solution was cooled to O °C and 

2.10 g (10.6 mmol) of 42 in 20 mL of methylene chloride was added over 1 h. After the 

addition was complete, the reaction was stirred at O ° C for an additional 8 h and then at 

room temperature for 36 h. The solution was concentrated under reduced pressure to a 

volume of approximately 10 mL and then dissolved in 25 mL of ether. The solution was 

washed with 1 M HCl (3x), NaHC03 (2x), NaCl (Ix), dried (MgS04), vacuum filtered, 

and concentrated under reduced pressure. The resulting oil was chromatographed on a 50 

cm x 2 cm silica gel column eluted with increasing concentrations of ether in hexane (0-

5%) to yield 2.25 g (5.69 mmol, 88%) of 43. IR 1732, 1530, 1349 cm·1; 1H NMR o 

8.06 (dd, J= 8.1, 1.3 Hz, 1 H), 7.55 (t, J= 7.6 Hz, 1 H), 7.46-7.15 (complex, 7 H), 4.84 

(td, J= 10.6, 4.4 Hz, 1 H), 3.52 (d, J= 17.3 Hz, 1 H), 3.19 (d, J= 17.3 Hz, 1 H), 2.04 

(tm, J= 10.9 Hz, 1 H), 1.87 (m, 1 H), 1.82-1.60 (complex, 2 H), 1.42-0.90 (complex, 8 

H), 0.88 (d, J = 6.6 Hz, 3 H); 13C NMR o 169.2, 151.8, 148.8, 133.3, 133.2, 129.9, 

128.4, 127.9, 125.7, 125.5, 125.1, 75.2, 50.1, 41.4, 39.6, 39.3, 34.5, 31.3, 28.5, 26.4, 24.2, 

21.8; HRMS mlz: Calcd for C24H29N04: 395.2096; Found: 395.2095. 

Anal. Calcd for C2~29N04: C, 72.91; H, 7.34. Found: C, 72.68; H, 7.45. 

Representative Procedure for Conjugate Addition Reactions: (1R,2S,5R)-8-

Phenylmenthyl (2-Nitrophenyl)-5-oxohexanoate (46, 47). The general procedure of 
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Makosza and Tyrala34 was adapted. A 100-mL, three-necked, round-bottomed flask 

equipped with a magnetic stir bar was charged with 40 mL of dry acetonitrile, 8 mg of 

18-crown-6 and 3.48 g (25.2 mmol) of anhydrous potassium carbonate. Stirring was 

started and 1.19 g (3.00 mmol) of 43 was added. The mixture was cooled to O °C and 0.32 

g ( 4.50 mmol) of 44 was added. The solution was allowed to warm to room temperature 

over 48 h and then filtered to remove solids. Concentration gave a yellow oil that was 

purified by PTLC using increasing concentrations of ether in hexanes (5-15%) to yield 

0.89 g (1.9 mmol, 64%) of 46 and 47 as a white solid (5:1). The mp of the diastereomeric 

mixture was 114-116 °C. Spectral data for the major diastereomer ( 46): IR 1725, 1535, 

1353 cm·1; 1H NMR o 7.85 (d, J= 8.1 Hz, 1 H), 7.56 {t, J= 7.8 Hz, 1 H), 7.49-7.08 

(complex, 7 H), 4.77 {td, J= 10.8, 4.4 Hz, 1 H), 3.74 (dd, J= 8.2, 6.6 Hz, 1 H), 2.44-1.89 

(complex, 10 H), 1.66-1.38 (complex, 4 H), 1.26-1.16 (complex, 5 H), 1.07 {s, 1 H), 1.01 

(s, 1 H), 0.87 (d, J= 6.5 Hz, 3 H); Be NMR o 207.3, 171.2, 151.0, 132.8, 132.7, 130.3, 

129.5, 128.1, 125.4, 125.2, 125.1, 124.6, 76.2, 50.2, 45.5, 41.5, 41.2, 39.7, 34.4, 31.3, 

29.9, 26.8, 26.4 (2), 26.1, 21.7; HRMS m/z: Calcd for C2sH3sNOs: 465.2515; Found: 

465.2513. 

Anal. Calcd for C2sH3sNOs: C, 72.23; H, 7.58; N, 3.01. Found: C, 72.54; H, 

7.66; N, 2.80. 

(1R,2S,5R) -8- Phenylmenthyl - (2-Nitrophenyl) -5- oxoheptanoate (48, 49). 

0.60 g (1.25 mmol, 58%, diastereomeric ratio 3:1); Spectral data for the major 

diasteromer (48): IR 1725, 1713, 1526, 1353 cm·1; 1H NMR o 7.85 {d, J = 8.1 Hz, 1 

H), 7.59-7.08 (complex, 8 H), 4.78 (td, J= 10.6, 3.7 Hz, 1 H), 3.76 (dd, J= 8.4, 6.5 Hz, 1 

H), 2.51-1.84 (complex, 12 H), 1.69-0.76 (complex, 14 H); Be NMR o 210.3, 171.3, 
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151.3, 132.9, 132.8, 130.3, 129.6, 128.1, 125.5, 125.4, 125.2, 124.6, 76.2, 50.2, 45.6, 

41.6, 39.9, 39.5, 35.8, 34.4, 31.3, 28.3, 26.5, 26.4, 26.2, 24.4, 21.7; HRMS mlz: Calcd 

for C29H31NOs: 479.2671; Found: 479.2669. 

Anal. Calcd for C29H37N05: C, 72.62; H, 7.78; N, 2.92. Found: C, 72.89; H, 

7.87; N, 2.73. 

Representative Procedure for Reduction-Reductive Amination: (IR, 2S, 5R)-

8-Phenylmenthyl (2R*,5S*)-2-Methyl- 2, 3, 4, 5-tetrahydro-lH-l-benzazepine-5-car

boxylate (50). To a solution of 0.89 mg (1.91 mmol) of 46/47 in 150 mL of methanol 

was added 300 mg of 5% palladium-on-carbon. The mixture was hydrogenated in a 

stainless steel hydrogenation vessel under 4 atm of hydrogen at 30 °C for 3 h. The crude 

reaction mixture was concentrated, diluted with ether, and vacuum filtered through a pad 

of Celite topped with a layer of MgS04 to remove the catalyst. Concentration of the 

filtrate produced a light yellow oil that was purified by PTLC using increasing 

concentrations of ether in hexanes (5-50%) to give 2 bands. Band 2 (from the top) gave 

390 mg (0.93 mmol, 49%); IR 3350, 1722 cm"1; 1H NMR o 7.35-6.93 (complex, 7 H), 

6.85 (t, J= 7.3 Hz, 1 H), 6.69 (d, J= 7.7 Hz, 1 H), 4.89 (td, J= 10.7, 4.3 Hz, 1 H), 3.03 

(dd, J = 5.8, 3.0 Hz, 1 H), 2.73 (m, lH), 2.06 (m, 2 H), 1.90 (m, 1 H), 1.77-0.93 

(complex, 22 H), 0.87 {d, J = 10.0 Hz, 3 H); 13C NMR o 171.9, 151.9, 148.8, 131.5, 

130.6, 127.8, 125.4, 125.3, 124.9, 121.1, 120.8, 74.4, 53.8, 50.5, 50.2, 41.7, 39.5, 35.3, 

34.5, 31.2, 28.3, 28.2, 26.5, 24.3, 24.2, 21.7; HRMS mlz: Calcd for C2sH37N02: 

419.2824; Found: 419.2823. 

Anal. Calcd for C2sH31N02: C, 80.15; H, 8.89; N, 3.34. Found: C, 80.45; H, 

8.97; N, 3.21. 
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(1R,2S,SR)-8-Phenylmenthyl (2S, SS)-2-Methyl-2, 3, 4, 5-tetrahydro -1H-1-

benzazepine-5-carboxylate (51). Band 1: 30 mg (0.072 mmol, 4%); IR 3350, 1716 

cm·1; 1H NMR 6 7.31-7.14 (complex, 5 H), 7.07-7.01 (complex, 2 H), 6.78 (m, 1 H), 

6.66 (d, J= 8.1 Hz, 1 H), 4.83 (td, J= 10.6, 4.5 Hz, 1 H), 3.19 (dd, J= 6.8, 3.4 Hz, 1 H), 

2.94 (m, 1 H), 2.20 (m, 1 H), 1.80 (m, 2 H), 1.67-0.86 (complex, 18 H), 0.80 (d, J= 6.6 

Hz, 3 H); Be NMR 6 172.7, 151.4, 148.2, 130.8, 130.4, 127.8, 127.4, 125.5, 125.0, 

120.7, 120.2, 74.2, 53.1, 50.1, 49.3, 41.1, 39.8, 34.4, 34.1, 31.4, 27.3, 26.7, 26.6, 26.5, 

23.9, 21.8; HRMS m/z: ealcd for e2sH31N02: 419.2824; Found: 419.2822. 

Anal. ealcd for e2sH31N02: e, 80.15; H, 8.89; N, 3.34. Found: e, 80.43; H, 

8.95; N, 3.25. 

Reduction-Reductive Amination of (1R,2S,SR)-8-Phenylmenthyl (2R)-(2-

Nitrophenyl)-S-oxoheptanoate ( 48): (1R,2S,5R)-8-Phenylmenthyl (2R* ,5S*)-2-Ethyl-

2,3,4,5-tetrahydro-1H-l-benzazepine-5-carboxylate (52). Band 2 (from the top): 300 

mg (0.69 mmol, 55%); IR 3367, 1716 cm·1; 1H NMR 6 7.34-6.95 (complex, 7 H), 6.86 

(t, J= 7.4 Hz, 1 H), 6.71 (d, J= 7.8 Hz, 1 H), 4.84 (td, J= 10.6, 4.6 Hz, 1 H), 3.05 (dd, J 

= 5.9, 2.9 Hz, 1 H), 2.46 (m, 1 H), 2.11-0.80 (complex, 26 H); Be NMR 6 172.0, 152.0, 

148.9, 131.4, 131.0, 127.9, 127.2, 125.4, 125.0, 121.2, 120.8, 74.5, 59.9, 57.0, 50.5, 50.3, 

41.8, 39.6, 34.6, 33.0, 31.3, 30.4, 28.3, 26.6, 24.4, 21.8, 10.8; HRMS m/z: ealcd for 

C29H39N02: 433.2981; Found: 433.2980. 

Anal. ealcd for e29H39N02: e, 80.33; H, 9.06; N, 3.23. Found: e, 80.64; H, 

9.14; N, 3.06. 

(1R,2S,5R)-8-Phenylmenthyl(2S*,5S*)-2-Ethyl-2,3,4,S-tetrahydro-1H-l-benz

azepine-5-carboxylate (53). Band 1 (from the top): 45 mg (0.10 mmol, 8%); IR 3367, 
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1716 cm·1; 1H NMR 6 7.31-7.13 (complex, 6 H), 7.04 (m, 1 H), 6.78 (m, 1 H), 6.67 (d, 

J= 7.7 Hz, 1 H), 4.84 (td, J= 10.6, 4.3 Hz, 1 H), 3.19 (dd, J= 7.2, 3.2 Hz, 1 H), 2.71 (m, 

1 H), 2.19 (m, 1 H), 1.84-1.24 (complex, 16 H), 1.23 (s, 3 H), 1.16 (s, 3 H), 0.8l(d, J= 

6.5 Hz, 3 H); 13C NMR 6 172.9, 151.4, 148.2, 130.4 (2), 127.9, 127.4, 125.5, 125.0, 

120.6, 120.1, 74.2, 58.9, 57.0, 50.1, 49.2, 41.2, 39.8, 34.4, 31.8, 31.2, 30.0, 27.2, 26.7, 

26.4, 21.8, 10.6; HRMS m/z: Calcd for C29H39N02: 433.2981; Found: 433.2979. 

Anal. Calcd for C29H39N02: C, 80.33; H, 9.06; N, 3.23. Found: C, 80.29; H, 

9.08; N, 3.24. 

(2R*, 5S*) -2-Methyl-2,3,4,5-tetrahydro-lH-1-benzazepine-5-methanol (54). 

The general procedure of Tolvanen and co-workers53 was followed. A suspension of 44 

mg (1.60 mmol) of lithium aluminum hydride in 40 mL of dry tetrahydrofuran was 

prepared and cooled to O °C. To the suspension was added 130 mg (0.31 mmol) of 50 in 

10 mL of dry tetrahydrofuran. The mixture was stirred and warmed to room temperature. 

The progress of the reaction was followed by TLC. After 8 h, 20 mL of saturated sodium 

sulfate solution was cautiously added and the mixture was vacuum filtered through 

Celite. The filter cake was rinsed with 25 mL of methylene chloride, an additional 25 mL 

of methylene chloride was added to the filtrate and the mixture was washed with 

saturated NaCl solution. The aqueous layer was saturated with NaCl and was further 

extracted with methylene chloride (2x). The combined organic layers were washed with 

NaCl, dried (MgS04), vacuum filtered, and concentrated under reduced pressure to give a 

light yellow oil which was purified by PTLC using increasing concentrations of ether in 

hexanes (15-50%) to give 30 mg (0.17 mmol, 55%) of 54. IR 3555, 3336 cm·1; 1H 

NMR 6 7.11-7.05 (complex, 2 H), 6.89 (t, J= 7.2 Hz, 1 H), 6.74 (d, J= 7.7 Hz, 1 H), 
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4.01 (dd, J= 10.5, 6.1 Hz, 1 H), 3.90 (dd, J= 10.5, 5.6 Hz, 1 H), 3.02 (m, 1 H), 2.95 (m, 

1 H), 2.07 (m, 1 H), 1.82-1.67 (complex, 3 H), 1.27 (d, J= 6.4 Hz, 3 H); 13C NMR 6 

148.2, 133.8, 131.5, 127.5, 121.9, 120.9, 65.5, 54.4, 48.0, 34.5, 29.2, 24.2; HRMS m/z: 

Calcd for C12H11NO: 191.1310; Found: 191.1308. 

Anal. Calcd for C17H17NO: C, 75.35; H, 8.96; N, 7.32. Found: C, 75.55; H, 

9.07; N, 7.21. 

(lR, 2S, SR)-8-Phenylmenthol (1). 40 mg (0.17 mmol, 55%) was also recovered 

from the PTLC plate, [a]l3 = -26° (c = 0.31, EtOH). 
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CRYSTAL DATA AND STRUCTURE REFINEMENT FOR (±)-(5S*,2R*)-

2-METHYL-2,3,4,5-TETRAHYDR0-1H-1-BENZAZEPINE-5-

CARBOXYLATE (13) 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

Z, Calculated density 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected I unique 

Completeness to 2theta = 30.00 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F2 

Final R indices [1>2sigma (I)] 

R indices (all data) 

Largest diff. peak and hole 
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C13H11N02 

219.28 

293 (2) K 

0.71073 A 

Monoclinic, P2/c 

a= 9.312(13) A alpha= 90 deg 

b = 14.805(11) A beta= 102.48(4) deg 

c = 9.373(6) A gamma= 90 deg 

1262(2) A3 

4, 1.154 Mg/m3 

0.078 mm·1 

472 

0.1 X 0.1 X 0.1 mm 

2.24 to 30.00 deg 

-13<=h<=l, -20<=k<=20, -8<=1<=10 

4469 I 2241 [R(int) = 0.0700] 

58.7% 

Full-matrix least-squares on F2 

2241 IO I 146 

0.839 

Rl = 0.0628, wR2 = 0.1041 

Rl = 0.1845, wR2 = 0.1606 

0.140 and-0.178 e.A""3 



ATOMIC COORDINATES AND EQUIVALENT ISOTROPIC 

DISPLACEMENT PARAMETERS FOR (::1::)-(5S*,2R*)-2-METHYL-2,3,4,5-

TETRAHYDRO-lH-1-BENZAZEPINE-5-CARBOXYLATE (13) 

X y z U (eq) 

C(l) 2900(4) 5551(2) 115(6) 48(1) 

N(2) 3480(3) 4650(2) 192(4) 51(1) 

C(3) 2492(4) 3858(2) 174(6) 62(2) 

C(3') 3422(5) 3062(2) 898(6) 82(2) 

C(4) 1676(5) 3608(3) -1364(7) 71(2) 

C(5) 585(4) 4319(3) -2157(6) 73(2) 

C(6) 1282(4) 5240(3) -2466(6) 62(2) 

C(7) 1823(4) 5842(2) -1140(6) 55(2) 

C(8) 1307(4) 6742(3) -1137(6) 70(2) 

C(9) 1850(5) 7347(3) -24(7) 76(2) 

C(lO) 2950(4) 7069(3) 1166(7) 75(2) 

C(l 1) 3470(4) 6177(2) 1216(6) 61(2) 

C(12) 2479(4) 5118(3) -3407(7) 55(2) 

C(13) 2962(5) 4468(3) -5580(7) 87(2) 

0(12) 3702(3) 5466(2) -3138(4) 71(1) 

0(121 1986(3) 4580(2) -4557(5) 80(2) 
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BOND LENGTHS (A) FOR (±)-(5S*,2R*)-2-METHYL-2,3,4,5-

TETRAHYDR0-1H-1-BENZAZEPINE-5-CARBOXYLATE (13) 

Bond Length 

C(l)- (Cll) 
C(l)-N(2) 
C(l)-C(7) 
N(2)-C(3) 
C(3)-C(4) 
C(3)- C(3') 
C(4)-C(5) 
C(5)-C(6) 
C(6)-C(7) 
C(6)-C(l2) 
C(7)-C(8) 
C(8)-C(9) 
C(9)-C(l0) 
C(lO) - C(ll) 
C(l2) - 0(12) 
C(l2)-'- 0(12') 
C(13) - 0(12') 
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A 
1.403(6) 
1.435(4) 
1.437(6) 
1.488(4) 
1.523(7) 
1.532(5) 
1.539(6) 
1.563(5) 
1.524(7) 
1.575(7) 
1.417(5) 
1.385(7) 
1.404(7) 
1.405(5) 
1.225(4) 
1.339(6) 
1.466(6) 



BOND ANGLES FOR (±)-(5S*,2R*)-2-METHYL-2,3,4,5-TETRAHYDR0-

1H-1-BENZAZEPINE-5-CARBOXYLATE (13) 

Bond 

C(l 1)- C(l)-N(2) 
C(l 1)- C(l)-C(7) 
N(2)-C(l)-C(7) 
C(l) - N(2) - C(3) 
N(2)-C(3)-C(4) 
N(2) - C(3)- C(31 
C(4)-C(3)-C(31 
C(3)-C(4)-C(5) 
C(4)-C(5)-C(6) 
C(7)- C(6)-C(5) 
C(7) - C(l) - C(8) 
C(7) - C(6) - C(l2) 
C(5) - C(6) - C(l2) 
C(8)-C(7)- C(l) 
C(8)-C(7)-C(6) 
C(9) - C(8) - C(7) 
C(8) - C(9) - C(l 0) 
C(9)- C(lO)-C(l l) 
C(l)-C(l l)-C(lO) 
0(12) - C(l2) - 0(121 
0(12) - C(l2)- C(6) 
0(121- C(l2)- C(6) 
C(l2) - 0(121- C(l3) 
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Angle (0 ) 

119.9(4) 
119.3(3) 
120.6(4) 
120.4(3) 
112.6(4) 
108.2(3) 
110.5(4) 
115.6(4) 
115.5(3) 
115.9(4) 
112.0(3) 
112.1(4) 
117.3(4) 
120.0(4) 
122.7(3) 
122.8(5) 
119.6(4) 
119.3(5) 
121.6(4) 
123.9(5) 
125.1(5) 
111.0(4) 
116.1(4) 



ANISOTROPIC DISPLACEMENT PARAMETERS FOR (±)-(5S*,2R*)-2-

METHYL-2,3,4,5-TETRAHYDRO-lH-1-BENZAZEPINE-5-

CARBOXYLATE (13) 

Ull U22 U33 U23 Ul3 Ul2 
C(l) 52(2) 47(2) 42(5) -4(2) 12(2) -4(2) 
N(2) 52(2) 47(2) 53(4) 0(2) 8(1) 1(1) 
C(3) 66(3) 49(2) 72(6) 1(3) 17(2) -8(2) 
C(3') 101(4) 55(2) 90(7) 4(3) 22(3) 1(2) 
C(4) 87(3) 57(2) 71(7) -8(3) 20(3) -24(2) 
C(5) 71(3) 89(3) 59(6) -16(3) 10(2) -25(2) 
C(6) 55(2) 72(3) 58(6) 4(3) 7(2) 3(2) 
C(7) 55(2) 54(2) 54(6) 6(3) 9(2) 0(2) 
C(8) 75(3) 62(2) 72(6) 9(3) 16(2) 14(2) 
C(9) 95(4) 50(2) 84(7) -1(3) 24(3) 9(2) 
C(lO) 80(3) 56(2) 89(7) -19(3) 21(3) -7(2) 
C(ll) 61(2) 55(2) 65(5) -5(3) 9(2) -5(2) 
C(l2) 70(3) 57(2) 34(6) 1(3) 2(2) -1(2) 
C(l3) 102(4) 120(4) 41(8) -30(4) 19(3) -8(3) 
0(12) 67(2) 83(2) 66(4) -5(2) 16(2) -16(1) 
0(12') 78(2) 110(2) 53(5) -22{3) 19(2) -14(2) 
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HYDROGEN COORDINATES AND ISOTROPIC DISPLACEMENT 

PARAMETERS FOR (±)-(5S*,2R*)-2-METHYL-2,3,4,5-TETRAHYDRO

JH-1-BENZAZEPINE-5-CARBOXYLATE (13) 

X y z U(eq) 

H(2) 4421 4587 677 50 
H(3A) 1778 4015 733 80 
H(3'A) 2774 2560 918 50 
H(3'B) 3904 3234 1871 50 
H(3'C) 4315 2862 644 50 
H(4A) 1167 3051 -1293 80 
H(4B) 2395 3491 -1937 80 
H(5A) -160 4423 -1611 80 
H(5B) 116 4066 -3083 80 
H(6A) 511 5582 -3078 80 
H(8A) 541 6941 -1932 80 
H(9A) 1470 7952 -59 80 
H(lOA) 3347 7492 1927 80 
H(llA) 4227 5983 2023 80 
H(13A) 2510 4071 -6357 80 
H(13B) 3138 5045 -5978 80 
H(13C) 2879 4214 -5072 80 
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